
Victor Malyshkin (Ed.)

 123

LN
CS

 1
04

21

14th International Conference, PaCT 2017
Nizhny Novgorod, Russia, September 4–8, 2017
Proceedings

Parallel Computing
Technologies

Lecture Notes in Computer Science 10421

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Victor Malyshkin (Ed.)

Parallel Computing
Technologies
14th International Conference, PaCT 2017
Nizhny Novgorod, Russia, September 4–8, 2017
Proceedings

123

Editor
Victor Malyshkin
Russian Academy of Sciences
Novosibirsk
Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-62931-5 ISBN 978-3-319-62932-2 (eBook)
DOI 10.1007/978-3-319-62932-2

Library of Congress Control Number: 2017946060

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 2017 International Conference on Parallel Computing Technologies (PaCT) was a
four-day event held in Nizhny Novgorod (Russia). This was the 14th international
conference in the PaCT series. The conferences are held in Russia every odd year. The
first conference, PaCT 1991, was held in Novosibirsk (Academgorodok), September
7–11, 1991. The next PaCT conferences were held in Obninsk (near Moscow), August
30 to September 4, 1993; in St.-Petersburg, September 12–15, 1995; in Yaroslavl,
September, 9–12 1997; in Pushkin (near St. Petersburg), September, 6–10, 1999; in
Academgorodok (Novosibirsk), September 3–7, 2001; in Nizhny Novgorod, September,
15–19, 2003; in Krasnoyarsk, September 5–9, 2005; in Pereslavl–Zalessky, September
3–7, 2007; in Novosibirsk, August 31–September 4, 2009; in Kazan, September 19–23,
2011; in St. Petersburg, September 30 to October 4, 2013; in Petrozavodsk, August 31 to
September 4, 2015. Since 1995 all the PaCT proceedings have been published by Springer
in the LNCS series. PaCT 2017 was jointly organized by the Institute of Computational
Mathematics and Mathematical Geophysics (Russian Academy of Sciences),
Lobachevsky State University of Nizhny Novgorod, Novosibirsk State University, and
Novosibirsk State Technical University.

The aim of PaCT 2017 was to give an overview of new developments, applications,
and trends in parallel computing technologies. We sincerely hope that the conference
will help our community to deepen the understanding of parallel computing tech-
nologies by providing a forum for an exchange of views between scientists and spe-
cialists from all over the world. The topics of PaCT conferences are progressively
changing, reflecting the modern trends in the area of parallel computing technologies.
For example, traditionally, in the area of knowledge accumulation on the methods of
parallel implementation of large-scale numerical models, papers describing numerical
algorithms and their implementation were accepted for PaCT. Today, most of these
papers were rejected because they did not contribute new knowledge to the PaCT
community. However, papers describing complex parallel implementation of
large-scale numerical models were accepted. Another progressively growing trend is
the development of systems of automatic construction of parallel programs on the basis
of axiomatic descriptions of an object domain. Papers describing fundamental algo-
rithms of dynamic distributed program construction were accepted, particularly those
on algorithms of the dynamic distribution of distributed data for distributed multi-
computers (DDD algorithms)

The conference attracted about 100 participants from around the world. Authors
from 13 countries submitted 93 papers. Of the papers submitted, 49 were selected for
the conference after being reviewed by an international Program Committee. Many
thanks to our sponsors: the Russian Academy of Sciences, Federal Agency for

In an older version of the front matter of these proceedings, the word “Nizhny” had been
written inconsistently. This has now been corrected.

Scientific Organization, Ministry of Education and Science of the Russian Federation,
Russian Foundation for Basic Research, Advanced Micro Devices, Inc., RSC Tech-
nologies, and Intel Corporation.

September 2017 Victor Malyshkin

VI Preface

Organization

PaCT 2017 was organized by the Supercomputer Software Department, Institute of
Computational Mathematics and Mathematical Geophysics Siberian Branch, Russian
Academy of Science (ICM&MG), Lobachevsky State University of Nizhny Novgorod
(UNN), Novosibirsk State University, and Novosibirsk State Technical University.

Organizing Committee

Conference Co-chairs

Victor Malyshkin ICM&MG, Novosibirsk
Victor Gergel UNN, Nizhny Novgorod

Conference Secretary

Maxim Gorodnichev ICM&MG, Novosibirsk

Organizing Committee Members

Svetlana Achasova ICM&MG
Sergey Arykov ICM&MG
Olga Bandman ICM&MG
Konstantin Barkalov UNN
Ekaterina Goldinova UNN
Vladimir Grishagin UNN
Sergey Kireev ICM&MG
Valentina Kustikova UNN
Elena Malkina UNN
Valentina Markova ICM&MG
Yur Medvedev ICM&MG
Joseph Meyerov UNN
Mikhai Ostapkevich ICM&MG
Vladislav Perepelkin ICM&MG
Georgy Schukin ICM&MG
Dmitry Shaposhnikov UNN
Alain Travina UNN

Steering Committee

Viktor Kazantsev UNN
Alexandr Moskovsky RSC Technologies
Grigory Osipov UNN
Vadim Saigin UNN
Roman Strongin UNN

Program Committee

Victor Malyshkin Russian Academy of Sciences, Co-Chair
Victor Gergel Lobachevsky State University of Nizhny Novgorod,

Co-Chair
Sergey Abramov Russian Academy of Sciences, Russia
Farhad Arbab Leiden University, The Netherlands
Jan Baetens Ghent University, Belgium
Stefania Bandini University of Milano-Bicocca, Italy
Olga Bandman Russian Academy of Sciences
Thomas Casavant University of Iowa, USA
Pierpaolo Degano University of Pisa, Italy
Dominique Désérable National Institute for Applied Sciences, Rennes, France
Bernard Goossens University of Perpignan, France
Sergei Gorlatch University of Münster, Germany
Yuri G. Karpov St. Petersburg State Polytechnical University, Russia
Alexey Lastovetsky University College Dublin, Ireland
Jie Li University of Tsukuba, Japan
Thomas Ludwig University of Hamburg and Climate Corporation Center,

Germany
Giancarlo Mauri University of Milano-Bicocca, Italy
Igor Menshov Russian Academy of Sciences
Nikolay Mirenkov University of Aizu, Japan
Dana Petcu West University of Timisoara, Romania
Viktor Prasanna University of Southern California, USA
Michel Raynal Research Institute in Computer Science and Random

Systems, Rennes, France
Bernard Roux National Center for Scientific Research, France
Yaroslav D. Sergeyev University of Calabria, Italy
Waleed W. Smari Ball Aerospace & Technologies Corp., Ohio, USA
Uwe Schwiegelshohn Technical University of Dortmund, Germany
Victor Toporkov National Research University, and Moscow Power

Institute, Russia
Carsten Trinitis University of Bedfordshire, UK, and Technical University

of Munich, Germany
Roman Wyrzykowski Czestochowa University of Technology, Poland

Additional Reviewers

S. Achasova
F. Arbab
J. Baetens
O. Bandman
N. Belyaev
O. Bessonov

T. Casavant
I. Chernykh
V. Gergel
B. Goossens
S. Gorlatch
M. Gorodnichev

Yu. Karpov
S. Kireev
S. Kronawitter
A. Lastovetsky
C. Lengauer
J. Li

VIII Organization

V. Malyshkin
V. Markova
I. Menshov
V.Perepelkin
D. Petcu

M. Raynal
G. Schukin
U. Schwiegelshohn
Y. Sergeyev
V. Shakhov

A. Simbuerger
B. Steinberg
A. Tkacheva
V. Toporkov
R. Wyrzykowski

Sponsoring Institutions

Ministry of Education and Science of the Russian Federation
Russian Academy of Sciences
Federal Agency for Scientific Organizations
Advanced Micro Devices, Inc.
RSC Technologies
Intel Corporation

Organization IX

Contents

Mainstream Parallel Computing

Experimenting with a Context-Aware Language . 3
Chiara Bodei, Pierpaolo Degano, Gian-Luigi Ferrari,
and Letterio Galletta

Generating Maximal Domino Patterns by Cellular Automata Agents 18
Rolf Hoffmann and Dominique Désérable

Automated Parallelization of a Simulation Method of Elastic Wave
Propagation in Media with Complex 3D Geometry Surface
on High-Performance Heterogeneous Clusters . 32

Nikita Kataev, Alexander Kolganov, and Pavel Titov

Parallel Algorithm with Modulus Structure for Simulation of Seismic
Wave Propagation in 3D Multiscale Multiphysics Media 42

Victor Kostin, Vadim Lisitsa, Galina Reshetova, and Vladimir Tcheverda

Performance Evaluation of Two Load Balancing Algorithms on a Hybrid
Parallel Architecture . 58

Tiago M. do Nascimento, Rodrigo W. dos Santos, and Marcelo Lobosco

Accelerated Analysis of Biological Parameters Space Using GPUs 70
Marco S. Nobile and Giancarlo Mauri

Parallel Models and Algorithms in Numerical Computation

Fragmentation of IADE Method Using LuNA System 85
Norma Alias and Sergey Kireev

Performance Aspects of Collocated and Staggered Grids for Particle-in-Cell
Plasma Simulation. 94

Sergey Bastrakov, Igor Surmin, Evgeny Efimenko, Arkady Gonoskov,
and Iosif Meyerov

Technological Aspects of the Hybrid Parallelization
with OpenMP and MPI . 101

Oleg Bessonov

Application of Graph Models to the Parallel Algorithms Design for the
Motion Simulation of Tethered Satellite Systems. 114

A.N. Kovartsev and V.V. Zhidchenko

http://dx.doi.org/10.1007/978-3-319-62932-2_1
http://dx.doi.org/10.1007/978-3-319-62932-2_2
http://dx.doi.org/10.1007/978-3-319-62932-2_3
http://dx.doi.org/10.1007/978-3-319-62932-2_3
http://dx.doi.org/10.1007/978-3-319-62932-2_3
http://dx.doi.org/10.1007/978-3-319-62932-2_4
http://dx.doi.org/10.1007/978-3-319-62932-2_4
http://dx.doi.org/10.1007/978-3-319-62932-2_5
http://dx.doi.org/10.1007/978-3-319-62932-2_5
http://dx.doi.org/10.1007/978-3-319-62932-2_6
http://dx.doi.org/10.1007/978-3-319-62932-2_7
http://dx.doi.org/10.1007/978-3-319-62932-2_8
http://dx.doi.org/10.1007/978-3-319-62932-2_8
http://dx.doi.org/10.1007/978-3-319-62932-2_9
http://dx.doi.org/10.1007/978-3-319-62932-2_9
http://dx.doi.org/10.1007/978-3-319-62932-2_10
http://dx.doi.org/10.1007/978-3-319-62932-2_10

The DiamondTetris Algorithm for Maximum Performance Vectorized
Stencil Computation . 124

Vadim Levchenko and Anastasia Perepelkina

A Parallel Locally-Adaptive 3D Model on Cartesian Nested-Type Grids 136
Igor Menshov and Viktor Sheverdin

Auto-Vectorization of Loops on Intel 64 and Intel Xeon Phi:
Analysis and Evaluation. 143

Olga V. Moldovanova and Mikhail G. Kurnosov

Parallel Algorithms for an Implicit CFD Solver on Tree-Based Grids 151
Pavel Pavlukhin and Igor Menshov

Software Implementation of Mathematical Model of Thermodynamic
Processes in a Steam Turbine on High-Performance System 159

Aleksandr Sukhinov, Aleksandr Chistyakov, Alla Nikitina,
Irina Yakovenko, Vladimir Parshukov, Nikolay Efimov,
Vadim Kopitsa, and Dmitriy Stepovoy

Predictive Modeling of Suffocation in Shallow Waters on a Multiprocessor
Computer System . 172

Aleksandr Sukhinov, Alla Nikitina, Aleksandr Chistyakov,
Vladimir Sumbaev, Maksim Abramov, and Alena Semenyakina

Cellular Automata and Discrete Event Systems

Finite and Infinite Computations and a Classification of Two-Dimensional
Cellular Automata Using Infinite Computations . 183

Louis D’Alotto

Multiple-Precision Residue-Based Arithmetic Library for Parallel
CPU-GPU Architectures: Data Types and Features 196

Konstantin Isupov, Alexander Kuvaev, Mikhail Popov,
and Anton Zaviyalov

Parallel Implementation of Cellular Automaton Model of the Carbon
Corrosion Under the Influence of the Electrochemical Oxidation. 205

A.E. Kireeva, K.K. Sabelfeld, N.V. Maltseva, and E.N. Gribov

A Fine-Grained Parallel Particle Swarm Optimization on Many-core
and Multi-core Architectures. 215

Nadia Nedjah, Rogério de Moraes Calazan,
and Luiza de Macedo Mourelle

The Implementation of Cellular Automata Interference of Two Waves
in LuNA Fragmented Programming System . 225

V.P. Markova and M.B. Ostapkevich

XII Contents

http://dx.doi.org/10.1007/978-3-319-62932-2_11
http://dx.doi.org/10.1007/978-3-319-62932-2_11
http://dx.doi.org/10.1007/978-3-319-62932-2_12
http://dx.doi.org/10.1007/978-3-319-62932-2_13
http://dx.doi.org/10.1007/978-3-319-62932-2_13
http://dx.doi.org/10.1007/978-3-319-62932-2_14
http://dx.doi.org/10.1007/978-3-319-62932-2_15
http://dx.doi.org/10.1007/978-3-319-62932-2_15
http://dx.doi.org/10.1007/978-3-319-62932-2_16
http://dx.doi.org/10.1007/978-3-319-62932-2_16
http://dx.doi.org/10.1007/978-3-319-62932-2_17
http://dx.doi.org/10.1007/978-3-319-62932-2_17
http://dx.doi.org/10.1007/978-3-319-62932-2_18
http://dx.doi.org/10.1007/978-3-319-62932-2_18
http://dx.doi.org/10.1007/978-3-319-62932-2_19
http://dx.doi.org/10.1007/978-3-319-62932-2_19
http://dx.doi.org/10.1007/978-3-319-62932-2_20
http://dx.doi.org/10.1007/978-3-319-62932-2_20
http://dx.doi.org/10.1007/978-3-319-62932-2_21
http://dx.doi.org/10.1007/978-3-319-62932-2_21

A New Class of the Smallest Four-State Partial FSSP Solutions
for One-Dimensional Ring Cellular Automata . 232

Hiroshi Umeo and Naoki Kamikawa

Properties of the Conservative Parallel Discrete Event
Simulation Algorithm . 246

Liliia Ziganurova and Lev Shchur

Organization of Parallel Computation

Combining Parallelization with Overlaps and Optimization of Cache
Memory Usage . 257

S.G. Ammaev, L.R. Gervich, and B.Y. Steinberg

Defining Order of Execution in Aspect Programming Language 265
Sergey Arykov

Automated GPU Support in LuNA Fragmented Programming System 272
Belyaev Nikolay and Vladislav Perepelkin

Automation Development Framework of Scalable Scientific Web
Applications Based on Subject Domain Knowledge. 278

Igor V. Bychkov, Gennady A. Oparin, Vera G. Bogdanova,
Anton A. Pashinin, and Sergey A. Gorsky

Stopwatch Automata-Based Model for Efficient Schedulability
Analysis of Modular Computer Systems. 289

Alevtina Glonina and Anatoly Bahmurov

Parallelizing Inline Data Reduction Operations for Primary
Storage Systems . 301

Jeonghyeon Ma and Chanik Park

Distributed Algorithm of Dynamic Multidimensional Data Mapping
on Multidimensional Multicomputer in the LuNA Fragmented
Programming System. 308

Victor E. Malyshkin and Georgy A. Schukin

Probabilistic Causal Message Ordering. 315
Achour Mostéfaoui and Stéphane Weiss

An Experimental Study of Workflow Scheduling Algorithms
for Heterogeneous Systems. 327

Alexey Nazarenko and Oleg Sukhoroslov

PGAS Approach to Implement Mapreduce Framework Based
on UPC Language. 342

Shomanov Aday, Akhmed-Zaki Darkhan, and Mansurova Madina

Contents XIII

http://dx.doi.org/10.1007/978-3-319-62932-2_22
http://dx.doi.org/10.1007/978-3-319-62932-2_22
http://dx.doi.org/10.1007/978-3-319-62932-2_23
http://dx.doi.org/10.1007/978-3-319-62932-2_23
http://dx.doi.org/10.1007/978-3-319-62932-2_24
http://dx.doi.org/10.1007/978-3-319-62932-2_24
http://dx.doi.org/10.1007/978-3-319-62932-2_25
http://dx.doi.org/10.1007/978-3-319-62932-2_26
http://dx.doi.org/10.1007/978-3-319-62932-2_27
http://dx.doi.org/10.1007/978-3-319-62932-2_27
http://dx.doi.org/10.1007/978-3-319-62932-2_28
http://dx.doi.org/10.1007/978-3-319-62932-2_28
http://dx.doi.org/10.1007/978-3-319-62932-2_29
http://dx.doi.org/10.1007/978-3-319-62932-2_29
http://dx.doi.org/10.1007/978-3-319-62932-2_30
http://dx.doi.org/10.1007/978-3-319-62932-2_30
http://dx.doi.org/10.1007/978-3-319-62932-2_30
http://dx.doi.org/10.1007/978-3-319-62932-2_31
http://dx.doi.org/10.1007/978-3-319-62932-2_32
http://dx.doi.org/10.1007/978-3-319-62932-2_32
http://dx.doi.org/10.1007/978-3-319-62932-2_33
http://dx.doi.org/10.1007/978-3-319-62932-2_33

Islands-of-Cores Approach for Harnessing SMP/NUMA Architectures
in Heterogeneous Stencil Computations . 351

Lukasz Szustak, Roman Wyrzykowski, and Ondřej Jakl

The Algorithm of Control Program Generation for Optimization
of LuNA Program Execution . 365

Anastasia A. Tkacheva

Cyclic Anticipation Scheduling in Grid VOs
with Stakeholders Preferences . 372

Victor Toporkov, Dmitry Yemelyanov, Anna Toporkova,
and Petr Potekhin

Parallel Computing Applications

Comparison of Auction Methods for Job Scheduling with Absolute
Priorities . 387

Anton Baranov, Pavel Telegin, and Artem Tikhomirov

Parallel Algorithm for Solving Constrained Global Optimization Problems . . . 396
Konstantin Barkalov and Ilya Lebedev

Parallelizing Metaheuristics for Optimal Design of Multiproduct
Batch Plants on GPU. 405

Andrey Borisenko and Sergei Gorlatch

The Optimization of Traffic Management for Cloud Application
and Services in the Virtual Data Center . 418

Irina Bolodurina and Denis Parfenov

Distributed Data Fusion for the Internet of Things. 427
Rustem Dautov and Salvatore Distefano

Scalable Computations of GeRa Code on the Base of Software
Platform INMOST . 433

Igor Konshin and Ivan Kapyrin

Parallel Computing for Time-Consuming Multicriterial
Optimization Problems. 446

Victor Gergel and Evgeny Kozinov

A Functional Approach to Parallelizing Data Mining Algorithms in Java 459
Ivan Kholod, Andrey Shorov, and Sergei Gorlatch

Parallel Calculation of Diameter Constrained Network Reliability 473
Sergei N. Nesterov and Denis A. Migov

XIV Contents

http://dx.doi.org/10.1007/978-3-319-62932-2_34
http://dx.doi.org/10.1007/978-3-319-62932-2_34
http://dx.doi.org/10.1007/978-3-319-62932-2_35
http://dx.doi.org/10.1007/978-3-319-62932-2_35
http://dx.doi.org/10.1007/978-3-319-62932-2_36
http://dx.doi.org/10.1007/978-3-319-62932-2_36
http://dx.doi.org/10.1007/978-3-319-62932-2_37
http://dx.doi.org/10.1007/978-3-319-62932-2_37
http://dx.doi.org/10.1007/978-3-319-62932-2_38
http://dx.doi.org/10.1007/978-3-319-62932-2_39
http://dx.doi.org/10.1007/978-3-319-62932-2_39
http://dx.doi.org/10.1007/978-3-319-62932-2_40
http://dx.doi.org/10.1007/978-3-319-62932-2_40
http://dx.doi.org/10.1007/978-3-319-62932-2_41
http://dx.doi.org/10.1007/978-3-319-62932-2_42
http://dx.doi.org/10.1007/978-3-319-62932-2_42
http://dx.doi.org/10.1007/978-3-319-62932-2_43
http://dx.doi.org/10.1007/978-3-319-62932-2_43
http://dx.doi.org/10.1007/978-3-319-62932-2_44
http://dx.doi.org/10.1007/978-3-319-62932-2_45

Congestion Game Scheduling Implementation for High-Throughput Virtual
Drug Screening Using BOINC-Based Desktop Grid 480

Natalia Nikitina, Evgeny Ivashko, and Andrei Tchernykh

Globalizer – A Parallel Software System for Solving Global
Optimization Problems. 492

Alexander Sysoyev, Konstantin Barkalov, Vladislav Sovrasov,
Ilya Lebedev, and Victor Gergel

A Novel String Representation and Kernel Function for the Comparison
of I/O Access Patterns . 500

Raul Torres, Julian Kunkel, Manuel F. Dolz, and Thomas Ludwig

Author Index . 513

Contents XV

http://dx.doi.org/10.1007/978-3-319-62932-2_46
http://dx.doi.org/10.1007/978-3-319-62932-2_46
http://dx.doi.org/10.1007/978-3-319-62932-2_47
http://dx.doi.org/10.1007/978-3-319-62932-2_47
http://dx.doi.org/10.1007/978-3-319-62932-2_48
http://dx.doi.org/10.1007/978-3-319-62932-2_48

Mainstream Parallel Computing

Experimenting with a Context-Aware Language

Chiara Bodei, Pierpaolo Degano, Gian-Luigi Ferrari, and Letterio Galletta(B)

Dipartimento di Informatica, Università di Pisa, Pisa, Italy
{chiara,degano,giangi,galletta}@di.unipi.it

Abstract. Contextual information plays an increasingly crucial role in
concurrent applications in the times of mobility and pervasiveness of
computing. Context-Oriented Programming languages explicitly treat
this kind of information. They provide primitive constructs to adapt the
behaviour of a program, depending on the evolution of its operational
environment, which is affected by other programs hosted therein inde-
pendently and unpredictably. We discuss these issues and the challenges
they pose, reporting on our recent work on MLCoDa, a language specifi-
cally designed for adaptation and equipped with a clear formal semantics
and analysis tools. We will show how applications and context interac-
tions can be better specified, analysed and controlled, with the help of
some experiments done with a preliminary implementation of MLCoDa.

1 Introduction

Today there is a growing trend in having software systems able to operate every
time and everywhere, and applications are working side by side, either in a coop-
erative or in a competitive way. Ubiquitous and pervasive computing scenarios
are typical of the Internet of Things (IoT), a cyber-physical communication
infrastructure, made of a wide variety of interconnected and possibly mobile
devices. As a consequence, modern software systems have to cope with chang-
ing operational environments, i.e. their context. At the same time, they must
never compromise their intended behaviour and their non-functional require-
ments, typically security or quality of service. Thus, programming languages
need effective mechanisms to become context-aware, so as to detect the changes
in the context where the application is plugged in, and to properly adapt to
them, with little or no user involvement. Accordingly these mechanisms must
maintain the functional and non-functional properties of applications after the
adaptation steps. For example, suppose you want to have just a quick look at
your mail and at your social platforms when in a hotel: you would like to con-
nect in a secure way, but without bothering with all the details of the wireless
connection, ideally in a fully transparent manner.

The context is crucial for adaptive software and typically it includes differ-
ent kinds of computationally accessible information coming from both outside
(e.g. sensor values, available devices, and code libraries offered by the environ-
ment), and from inside the application boundaries (e.g. its private resources, user
profiles, etc.). The literature proposes many different programming languages
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-62932-2 1

4 C. Bodei et al.

that support dynamic adjustments and tuning of programs, e.g. [17,18,20,24–
26] (a detailed discussion on the great deal of work in this area is in [13,23]). In
this field, Context Oriented Programming (COP) [1,9,15,16] offers a neat sepa-
ration between the working environment and the application. Indeed, the COP
linguistic paradigm explicitly deals with contexts, by providing programming
adaptation mechanisms to support dynamic changes of behaviour, in reaction
to changes in the context (see [2,23] for an overview). In this paradigm, pro-
gramming adaptation is specified using behavioural variations, chunks of code
that can be automatically selected depending on the current context hosting the
application, dynamically modifying its execution.

To address adaptivity we defined MLCoDa [3,10,11,13], a core of ML with
COP features. It has two tightly integrated components: a declarative constituent
for programming the context and a functional one for computing. The bipartition
reflects the separation of concerns between the specific abstractions for describ-
ing contexts and those used for programming applications [22]. The context in
MLCoDa is a knowledge base implemented as a (stratified, with negation) Dat-
alog program [19,21]. Applications inspect the contents of a context by simply
querying it, in spite of the possibly complex deductions required. The behavioural
variations of MLCoDa are a sort of pattern matching with Datalog goals as selec-
tors. They are a first class, higher-order construct that can then be referred to by
identifiers, and used as parameters in functions. This fosters dynamic, composi-
tional adaptation patterns, as well as reusable, modular code. The selection of a
goal is done by the dispatching mechanism that inspects the actual context and
makes the right choices. Note that the choice depends on both the application
code and the “open” context, unknown at development time. If no alternative
is viable then a functional failure occurs, as the application cannot adapt to the
current context. Non-functional failures are also possible, when the application
does not meet some requirements, e.g. about quality of service or security.

The execution model of MLCoDa assumes that the context is the interface
between each application it hosts and the system running it. Applications inter-
act with the system using a predefined set of APIs that provide handles to
resources and operations on them. Also, they interact with each other via the
context. The system and the applications do not trust each other, and may act
maliciously, e.g. one application can alter some parts of the context so driving
another in an unsafe state. The application designer would like to detect both
functional and non-functional failures as early as possible, and for that MLCoDa

has a two-phase static analysis, one at compile and one at load-time [4,11,13,14],
briefly summarised below. The static analysis takes care of failures in adaptation
to the current context (functional failures), dealing with the fact that appli-
cations operate in an “open” environment. Indeed, the actual value and even
the presence of some elements in the current context are only known when the
application is linked with it at run time. The first phase of our static analysis is
based on a type and effect system that, at compile time, computes a safe over-
approximation of the application behaviour, namely an effect. Then the effect
is used at load time to verify that the resources required by the application are

Experimenting with a Context-Aware Language 5

available in the actual context, and in its future modifications. To do that, the
effect of the application is suitably combined with the effect of the APIs pro-
vided by the context that are computed by the same type and effect system. If an
application passes this analysis, then no functional failure can arise at run time.
The results of the static analysis also drive an instrumentation of the original
code, so as to monitor its execution and block dangerous activities [4].

In addition to the formal aspects of MLCoDa, a main feature of our approach
is that a single and fairly small set of constructs is sufficient enough for becoming
a practical programming language, as shown in [7]. MLCoDa can easily be embed-
ded in a real programming eco-system as .NET, so preserving compatibility with
future extensions and with legacy code developed within this framework. Being
part of a well supported programming environment minimises the learning cost
and lowers the complexity of deploying and maintaining applications. In [7] a
prototypical implementation of MLCoDa is presented as an extension of the (ML
family) functional language F#. Indeed, no modifications at all were needed to
the available compiler and to its runtime. The F# metaprogramming facilities
are exploited, such as code introspection, quotation and reflection, as well as all
the features provided by .NET, including a vast collection of libraries and mod-
ules. In particular, we used the Just-In-Time mechanism for compiling to native
code. As a consequence, MLCoDa is implemented as a standard .NET library. In
the path towards the implementation a crucial role has been played by the for-
mal description of the language and by its formal semantics, which highlight and
explain how the two components of MLCoDa interact. Furthermore they helped
in identifying and describing the crucial parts of the implementation toolchain,
compilation, generated code and runtime structures.

Here, we will survey on some applications we developed in MLCoDa to assess
our language, showing how context interactions can be better specified, analysed
and controlled. We also discuss some extensions that will make our language
more expressive and applicable. The next section introduces MLCoDa, with the
help of our first case study. Two more case studies are summarised in Sect. 3.
Section 4 shortly illustrates the Just-In-Time compiler of MLCoDa. In Sect. 5 we
conclude and discuss the planned extensions, in particular those required to
handle many applications running concurrently.

2 A First Example: An e-Healthcare System

Here, we illustrate the main features of MLCoDa by considering an e-healthcare
system with a few aspects typical of the Internet of Things. A more detailed
description of this case study is in [7], and its full executable definition is in
https://github.com/vslab/fscoda.

In our scenario each physician can retrieve a patient’s clinical record using a
smartphone or a tablet, which also tracks the current location. Got the relevant
data, the doctor decides which exams the patient needs and the system helps
scheduling them. In addition, the system checks whether the doctor has the
competence and the permission to actually perform the required exam, otherwise

https://github.com/vslab/fscoda

6 C. Bodei et al.

it suggests another physician who is enabled to, possibly coming from another
department. Moving from a ward to another, the operating context changes
and allows the doctor to access the complete clinical records of the patients
therein. The application must adapt to the new context and it may additionally
provide different features, e.g. by disabling rights to use some equipment and by
acquiring access to new ones. Indeed, location-awareness of devices is exploited
to tune access policies.

The e-healthcare context. We consider below a small part of the context, in
particular that for storing and making some data available about the doctors’
location, information on their devices, the patients’ records and the ward med-
ical equipment. Some basic data are represented by Datalog facts, and one can
retrieve further information using the inference machinery of Datalog, which uses
logical rules, also stored in the context.

For example, the fact that Dr. Turk is in the cardiology ward is rendered as

physician_location("Dr. Turk" "Cardiology").

The following inference rule permits to deduce that the clinical data of patients
can be accessed by the doctors in the same department where patients are.
It states that the predicate on the left hand-side of the implication operator
:- holds when the conjunction of the predicates (physician_location and
patient_location) in the right hand-side yields true, i.e. when the physician
and patient’s location coincide.

physician_can_view_patient(Physician, Patient) :-
physician_location(Physician, Location),
patient_location(Patient, Location).

The MLCoDa context is quite expressive and can model fairly complex situations.
Typically, some medical exams can only be performed after some others. To
compute this list of exams, all the dependencies among them are to be considered.
This could be expressed by the following recursive rules:

patient_needs_result(Patient, Exam) :-
patient_has_been_prescribed(Patient, Exam).

patient_needs_result(Patient, Exam) :-
exam_requirement(TargetExam, Exam),
patient_needs_result(Patient, TargetExam).

The first rule means that the prescription of an exam implies that the involved
patient needs the results of the test. The second rule says that whenever a patient
needs an exam, so are also needed all the screenings the exam depends on.
Datalog can conveniently model recursive relations like the dependency among
exams, which may require involved queries with standard relational databases.

The next rule dictates that a patient has to do an exam if the two clauses in
the right hand-side are true. The first has been already discussed above, while
the second clause says that a patient should not do an exam if its results are

Experimenting with a Context-Aware Language 7

already known (in the rule below the operator \+ denotes the logical not, dealt
with in our version of Datalog [8]).

patient_should_do(Patient, Exam) :-
patient_needs_result(Patient, Exam),
\+ patient_has_result(Patient, Exam).

In addition, we can declaratively describe physical objects in quite a similar,
homogeneous manner. The following (simplified) rule specifies when a device
can display a certain exam, by checking whether it has the needed capabilities:

device_can_display_exam(Device, Exam) :-
device_has_caps(Device, Capability),
exam_view_caps(Exam, Capability).

By listing a set of facts, we can easily assert the capabilities of a device, e.g.

device_has_caps(’iPhone 5’, ’3D acceleration’).
device_has_caps(’iPhone 5’, ’Video codec’).
device_has_caps(’iPhone 5’, ’Text display’).
device_has_caps(’Apple Watch’, ’Text display’).

Adaptation constructs. Now we focus on context-dependent bindings and behav-
ioural variations. These adaptation constructs allow specifying program behav-
iour, which depends on the context in our e-healthcare system. When entering
a ward, the patients’ records under treatment can be displayed on the doctor’s
personal device. Moreover, the e-healthcare system computes the list of the clin-
ical exams a patient should do and that the doctor can perform. The following
code (in a F#-like syntax) shows how the adaptation constructs are used to
implement these functionalities. The display function, given a doctor phy and
a patient pat, prints the information about the patient’s exams on the screen.

1 let display phy pat =
2 match ctx with
3 | _ when !- physician_can_view_patient(phy, pat) ->
4 match ctx with
5 | _ when !- patient_has_result(pat, ctx?e) ->
6 printfn "%s sees that %s has done:" phy pat
7 for _ in !-- patient_has_result(pat, ctx?exam) do
8 display_exam phy ctx?exam
9 | _ ->

10 printfn "%s sees that %s has done no exam" phy pat
11

12 let next_exam = "no exam" |- True
13 let next_exam = ctx?exam |-
14 (physician_exam(phy, ctx?exam),
15 patient_active_exam(pat, ctx?exam))
16 printfn "%s can submit %s to %s" phy pat next_exam
17 | _ ->
18 printfn "%s cannot view details on %s" phy pat

8 C. Bodei et al.

Behavioural variations change the program flow according to the current
context. They have the form match ctx with | _ when !- Goal -> expression,
where the sub-expression match ctx with explicitly refers to the context; the part
| _ when !- Goal introduces the goal to solve; and -> expression is the sub-
expression to evaluate when the goal is true.

Using the outermost behavioural variation (starting at line 2), we check
whether the doctor phy is allowed to access the data of the patient pat, when
the goal physician_can_view_patient(phy, pat) at line 3 holds.

With the nested behavioural variation (line 4), we check if the patient has
got the results of some exams, using the predicate patient_has_result. If
this is the case, the for construct extracts the list of exam results from the
context (line 7). The statement for _ in !-- Goal do expression iterates
the evaluation of expression over all the solutions of the Goal. It works as
an iterator on-the-fly, driven by the solvability of the goal in the context. The
predicate patient_has_result at line 7 contains the goal variable ctx?exam:
if the query succeeds, at each iteration ctx?exam is bound to the current value
satisfying Goal. A goal variable is introduced in a goal, defining its scope, using
the syntax ctx?var_name.

Finally, through let x = expression1 |- Goal [in] expression2 (the
context dependent binding), the function display shows an exam that the physi-
cian phy can do on the patient pat. At lines 12–13 we declare by cases the
parameter next_exam, referred to in line 16. Only at run time when the actual
context is known, we can determine which case applies and which value will be
bound to next_exam when the parameter is used. If the goal in lines 14–15 holds,
then next_exam assumes the value retrieved from the context, otherwise it gets
the default value "no exam".

Note that it may happen that no goal is satisfied in a context while executing
a behavioural variation or resolving a parameter. This means that the application
in not able to adapt, either because the programmer assumed at design time the
presence of functionalities that the current context lacks, or because of design
errors. We classify this new kind of runtime errors as adaptation failures. For
example, the following function assumes that given the identifier of a physician,
it is always possible to retrieve the physician’s location from the context using
the physician_location predicate:

let find_physician phy =
let loc = ctx?location |-

physician_location(phy, ctx?location) in
loc

The context-dependent binding may find no solution for the goal, e.g. when
find_physician is invoked on a physician whose location is not in the context.
If this is the case, the current implementation throws a runtime exception.

let find_physician phy =
try

let loc = ctx?location |-
physician_location(phy, ctx?location) in loc

Experimenting with a Context-Aware Language 9

with e -> printfn "WARNING: cannot locate %s:\n%A" phy e
"unknown location"

As described in [11], we may adopt a more sophisticated approach where for
statically determining whether the adaptation might fail and reporting it before
running the application.

Finally, the interaction with the Datalog context is not limited to queries: it
is possible indeed to program the modifications to the knowledge base on which
it performs deduction, by adding or removing facts with the tell and retract

operations, as in:

tell <| patient_has_result("Jordan", "CT scan")

Some execution examples. We now show how the functions defined above give
different results when invoked in different contexts, parts of which are only
described intuitively. For instance, in a context where Dr. Turk is not in the
same ward as Bob, the result of the invocation display "Dr. Turk""Bob"

is Dr. Turk cannot view details on Bob. This is because physicians are
only allowed to see data about the patients in the department where
they are. Indeed, the behavioural variation introduced at line 3 on
physician_can_view_patient finds out that accessing data is not allowed.
If instead Dr. Cox is in the same department where Bob is, the call
display "Dr. Cox""Bob" correctly prints the details about Bob (actually
stored in the Datalog knowledge base):

Dr. Cox sees that Bob has done no exam
Dr. Cox can submit Bob to Blood test

In this case the outermost behavioural variation (starting at line 2) confirms
that Dr. Cox can view the data. The nested one (starting at line 4), driven by
patient_has_result, finds no exam for Bob, hence the function displays the
no-exam message (line 10). Furthermore, the program finds out that Dr. Cox
could do a blood test on Bob, as he is enabled to; then it additionally finds out
that Bob needs no pre-screening and so that exam can be done immediately,
because the predicate at line 15 holds.

Suppose now to have a slightly more complex situation, in which the context
itself is modified. Patient Jordan has already performed an EEG test, and doctors
prescribed her a CT and nothing else. Dr. Kelso is in Jordan’s room, is enabled
to do only CT tests and carries a device on which he can visualise the results.
In this context, the invocation display "Dr. Kelso""Jordan" outputs

Dr. Kelso sees that Jordan has done: EEG
Dr. Kelso can submit Jordan to CT scan

Differently from the case above, Jordan has already performed an exam, listed
by the iteration construct. Once Dr. Kelso have performed a CT scan on Jordan,
the context has to be accordingly changed, by asserting the fact

tell <| patient_has_result("Jordan", "CT scan")

10 C. Bodei et al.

Now the query display "Dr. Kelso""Jordan" has a different output in the
modified context: besides displaying a longer list of exam results, the application
shows Dr. Kelso that Jordan needs him to perform no other exam:

Dr. Kelso sees that Jordan has done: EEG, CT scan
Dr. Kelso can submit Jordan to no exam

Suppose now that Dr. Cox moves to Jordan room and checks her medical report,
but he has a device that cannot show CT images. The display_exam function
warns the doctor and possibly presents the results in a more limited form, e.g.
a static thumbnail. So, the result of the query display "Dr. Cox""Jordan" is

Dr. Cox sees that Jordan has done: EEG, CT scan
(current device cannot display the exam data)

Dr. Cox can submit Jordan to no exam

3 Further Case Studies

The following case studies illustrate how MLCoDa can be used to specify small-
sized real context-aware applications. Afterwards, we outline some internals of
our preliminary compiler.

Fsc-Rover. We now briefly describe the implementation in MLCoDa of a small
rover robot, endowed with two wheels, engine control, foto and video camera
and a distance sensor, done by Riccardo Rolla, a master student of our research
group (see https://github.com/riccardorolla/rpi-iot-fscoda). The rover moves in
a building, and detects the objects therein and some of their features. Also, it
interacts with other applications that use the information it collects, by exchang-
ing messages on the Internet. The rover can perform either its actions, called
local, or actions issued by other applications, called remote. Each kind of action
has a different set of parameters and the rover has to identify the right values
for them, by inspecting the properties of the objects in the context.

Besides getting a formal executable specification of a rover, differently from
the other case studies this one makes it evident that the context provides effective
support to uniformly handle both local and remote activities. The control loop
of the rover, shown below, is really quite standard: it repeats the following until
no-request is found

– Add to the rover program all the remote actions read from the context;
– Execute asynchronously local and remote actions;
– Collect and process data and store the results in the context;
– Send responses to remote applications.

while (not (get_detected "exit")) do
for _ in !-- request(ctx?idchat,ctx?cmd) do

array_cmd <- array_cmd |> Array.append [|ctx?cmd|]
for _ in !-- next(ctx?cmd) do

array_cmd <- array_cmd |> Array.append [|ctx?cmd|]

https://github.com/riccardorolla/rpi-iot-fscoda

Experimenting with a Context-Aware Language 11

listresult <- Async.Parallel
[for c in array_cmd -> execute c]

|> Async.RunSynchronously
for r in listresult do

match r with
|cmd,res -> for _ in !-- result(cmd,ctx?out) do

retract <| Fsc.Facts.result(cmd, ctx?out)
tell <| Fsc.Facts.result(cmd, res)

....
match ctx with
| _ when !- (request(ctx?idchat,ctx?cmd),result(ctx?cmd,ctx?out))

-> do
let result=send_message ctx?idchat ctx?cmd)
retract<|Fsc.Facts.request(ctx?idchat, ctx?cmd)

| _ -> printfn "no request"
....

run()

The query request(ctx?idchat,ctx?cmd) extracts information from
the context to assemble the list of commands to be executed. This is done by
checking for messages arriving at the context from the Internet. The tag idchat
identifies a remote application. Note that both rover commands and results are
modelled as suitable facts inside the context through the tell and retract

operations. The function run sets up the context, e.g. it turns on/off the video
camera and the distance sensor. Its code not displayed here also invokes a con-
figuration function that sets the sequence of local actions.

The behaviour of the rover also depends on the obstacles identified by the
camera in the current environment. The following function is used to detect the
nature of the obstacles by inspecting the context. The idea is that the objects
are suitable facts in the context and that object recognition in the current image
depends on the parameters of confidence of objects, such as size, rotation, etc.

let infoimage = get_out "discovery" |> imagerecognition
for tag in infoimage.tags do

discovery tag.name tag.confidence
for _ in !-- recognition(ctx?obj,ctx?value) do

FSEdit editor. Here, we briefly survey the implementation of FSEdit, a context-
aware text editor implemented in MLCoDa. This case study was a workbench
for testing how our implementation deals and interacts with pure F# code, in
particular against the standard GUI library provided by .NET. Besides playing
with contexts, this case study also helped finding some little flaws in the way
our compiler treated some pieces of code using the object oriented features of
F#. Furthermore, it also allowed us to identify some programming patterns that
may be considered as idiomatic of MLCoDa programs (see below).

The editor supports three different execution modes: rich text editor, text
editor and programming editor. A context switch among the different modes
changes the GUI of the editor, by offering e.g. different tool-bars and menus.

12 C. Bodei et al.

In the first mode, the GUI allows the user to set the size and the face of a font;
to change the color of text; and to adjust the alignment of the paragraphs. In the
second mode, the editor becomes very minimalistic and allows the user to edit
pure text files, where no information of the text formatting can change. Finally,
in the programming mode, the editor shows file line numbers and provides a
simple form of syntax highlighting for C source files.

The context of FSEdit contains the current execution mode and other infor-
mation that directly depend on it, as shown by the predicates below:

tokens(TS) :- tokens_(TS), execution_mode(programming).

file_dialog_filter(F) :- execution_mode(M),
file_dialog_filter_(F,M).

For example, the predicate tokens only holds in the programming mode and
returns the keywords of the programming language selected by the user to per-
form syntax highlighting. For simplicity, the editor currently supports the C
programming language only. The second piece of information is about the kind
of files supported by the editor in the different modes. For instance, *.rtf files in
rich text mode, *.txt files in text mode and *.c in programming mode.

As said before, the execution mode affects the behaviour of the editor. For
instance, in the following piece of code we invoke the syntax highlighter proce-
dure when the user changes the text, if the editor is in the right mode.

let textChanged (rt : RichTextBox) = // dlet
let def_behaviour () = ... // code not shown

let f_body = def_behaviour () |- True // Basic behaviour

let f_body = (f_body ; syntaxHighlighter rt) |-
execution_mode("programming")

f_body

As anticipated, this code snippet is interesting because it shows an idiomatic
use of the context dependent binding. Indeed, there are two definitions of the
identifier f_body: the first one represents the basic behaviour of the editor that
is independent of the context; the second one extends the basic behaviour with
the features that are to be provided when the editor is in the programming
mode. Notice in particular the use of f_body on the right-hand side in the last-
but-one line of the snippet. Although it may seem a recursive definition it is not;
it is instead an invocation of f_body defined in the previous line, i.e. the one
specifying the basic behaviour of the editor.

4 A Glimpse on MLCoDa Compiler

The MLCoDa compiler ypc is based on the integration of the functional language
F# with a customised version of YieldProlog1 serving as Datalog engine.
1 Available at https://github.com/vslab/YieldProlog.

https://github.com/vslab/YieldProlog

Experimenting with a Context-Aware Language 13

Our compiler ahead-of-time compiles each Datalog predicate into a .NET
method, whose code enumerates one by one the solutions, i.e. the assignments
of values to variables that satisfy the predicate. In this way, the interaction and
the data exchange between the application and the context is fully transparent
to the programmer because the .NET type system is uniformly used everywhere.

The functional part of MLCoDa that extends F# is implemented through
just-in-time compilation. To do that, a programmer annotates these extensions
with custom attributes, among which the most important is CoDa.Code. When
a function annotated by it is to be executed, the MLCoDa runtime is invoked
to trigger the compilation step. Since the operations needed to adapt the appli-
cation to contexts are transparently handled by our runtime support, the com-
piler fsharpc works as it is. Actually, CoDa.Code is an alias for the standard
ReflectedDefinitionAttribute that marks modules and members whose
abstract syntax trees are used at runtime through reflection. Of course MLCoDa

specific operations are only allowed in methods marked with this attribute; oth-
erwise an exception is raised when they are invoked.

5 Conclusions, Discussion and Open Problems

We have surveyed the COP language MLCoDa and we have reported on the exper-
iments carried on some case studies. These proved MLCoDa expressive enough
to support the designer of real applications, although admittedly simplified in
some details. The formal description of the dynamic and the static semantics
of MLCoDa drove a preliminary implementation of a compiler and of an analy-
sis tool. Especially, we found that the bipartite nature of MLCoDa permits the
designer to clearly separate the design of the context from that of the appli-
cation, yet maintaining their inter-relationships. This is particularly evident in
the rover case study of Sect. 3, where the context provides the mechanism to
virtualise and abstract from the communication infrastructure, thus making the
logic of the control of the rover fully independent from the actual features of the
communication infrastructure.

At the same time, the people working with MLCoDa asked for more func-
tionalities to make MLCoDa more effective, and below we discuss some lines of
improvement, both pragmatic and theoretical.

Non-functional properties. A crucial aspect that arose when designing the
e-healthcare system concerns context-aware security and privacy, which we
approached still from a formal linguistic viewpoint. We equipped MLCoDa with
security policies and with mechanisms for checking and enforcing them [4]. It
turns out that policies are just Datalog clauses and that enforcing them reduces
to asking goals. As a matter of fact, the control of safety properties, like access
control or other security policies, requires extensions to the knowledge base and
to its management that are not too heavy. We also extended the static analysis
mentioned above to identify the operations that may violate the security poli-
cies in force. Recall that this step can only be done at load time, because the

14 C. Bodei et al.

execution context is only known when the application is about to run, and thus
our static analysis cannot be completed at compile time. Yet we have been able
to instrument the code of an application, so as to incorporate in it an adap-
tive reference monitor, ready to stop executions when a policy to be enforced is
about to be violated. When an application enters a new context, the results of
the static analysis mentioned above are used to suitably drive the invocation of
the monitor that is switched on and off upon need.

Further work will investigate other non-functional properties that however
are of interest in real applications. A typical example is quality of service, which
requires enriching both our logical knowledge base and our applications with
quantitative information, in primis time. Such an extension would also provide
the basis for evaluating both applications and contexts. For instance, statistical
information about performance can help in choosing the application that better
fits our needs, as well as statistical information on the usage of contexts or
reliability of resources therein can be used for suggesting the user the context
that guarantees more performance. A further approach to statically reason about
resource usage, typically acquisition and release, is in [5].

Coherency of the context and interference. Other issues concern the context, in
particular the operations to handle it and to keep it coherent. When developing
and testing the e-healthcare system discussed in Sect. 2, it was necessary to
extend the Datalog deduction machinery in order to get the entire list of the
solutions to a given query.

Pursuing coherency at any cost can instead hinder adaptation, e.g. when
an application e can complete its task even in a context that became partially
incoherent. This is a pragmatically very relevant issue. Consider for example the
case when a resource becomes unavailable, but was usable by e in the context
when a specific behavioural variation started. At the moment we implemented
our language in a strict way that prevents e even to start executing. For sure this
guarantees that no troubles will arise, but also precludes to run an application
that only uses that resource when available, e.g. at the very beginning, and never
again, so no adaptation error will show up at run time. While a continuous run
time monitoring can handle this problem, but at a high cost, finding a sound and
efficient solution to this issue is a hard challenge from a theoretical point of view.
Indeed, it involves a careful mix of static analysis and of run time monitoring of
the applications that are executing in a context. Also, “living in an incoherent
context” is tightly connected with the way one deals with the needed recovery
mechanisms that should be activated without involving the users.

Concurrency. The above problem is critical in the inherently concurrent systems
we are studying. Indeed, an application does not perform its task in isolation,
rather it needs some resources offered by a context where plenty of other appli-
cations are running therein (often competing for those resources). For instance,
the implementation of the rover described in Sect. 3 posed concurrency issues,
because the control activity of the robot is performed in parallel with the collec-
tion and analysis of data coming from the context. The current ad hoc solution

Experimenting with a Context-Aware Language 15

exploits the management of threads offered by the operative system, and it is
not yet fully integrated in MLCoDa.

A first extension of MLCoDa with concurrency is in [12], where there is a
two-threaded system: the context and the application. The first virtualises the
resources and the communication infrastructure, as well as other software com-
ponents running within it. Consequently, the behaviour of a context, describing
in particular how it is updated, abstractly accounts for all the interactions of the
entities it hosts. The other thread is the application and the interactions with
the other entities therein are rendered as the occurrence of asynchronous events
that represent the relevant changes in the context. A more faithful description of
concurrency requires to explicitly describing the many applications that execute
in a context, that exchange information using it and that asynchronously update
it. This is the approach followed in [6]. Nonetheless, the well known problem of
interference now arises, because one thread can update the context possibly mak-
ing unavailable some resources or contradicting assumptions that another thread
relies upon. Classical techniques for controlling this form of misbehaviour, like
locks, are not satisfying, because they contrast with the basic assumption of hav-
ing an open world where applications appear and disappear unpredictably, and
freely update the context. However, application designers are only aware of the
relevant fragments of the context and cannot anticipate the effects a change may
have. Therefore, the overall consistency of the context cannot be controlled by
applications, and “living in an incoherent context” is unavoidable. The semantics
proposed in [6] addresses this problem using a run time verification mechanism.
Intuitively, the effects of the running applications are checked to guarantee that
the execution of the selected behavioural variation will lead no other application
to an inconsistent state, e.g. by disposing a shared resource. Dually, also the
other threads are checked to verify that they are harmless with respect to the
application entering in a behavioural variation.

Recovery mechanisms. We already mentioned briefly the need of recovery mech-
anism when run time errors arise, in particular when adaptation failures pre-
vent an application to complete its task. Recovery mechanisms are especially
needed to adapt applications that raise security failures, in case of policy viola-
tions. Recovery should be carried on with little or no user involvement, and this
imposes on the system running the applications to execute parts of their code
“atomically.” A typical way is to consider those pieces of code as all-or-nothing
transactions, and to store auxiliary information for recovering from failures. If
the entire transaction is successfully executed, then the auxiliary information
can be disposed, otherwise it has to be used to restore the application in a con-
sistent state, e.g. the one holding at the start of the transaction. To this end, we
plan to investigate recovery mechanisms appropriate for behavioural variations,
to allow the user to undo some actions considered risky or sensible, and force
the dispatching mechanism to make different, alternative choices.

However, in our world the context might have been changed in the meanwhile,
and such a state might not be consistent any longer. A deep analysis is therefore
needed of the interplay between the way applications use contextual information

16 C. Bodei et al.

to adapt or to execute, and the highly dynamic way in which contexts change.
A possible line of investigation can be giving up with the quest for a coherent
global context, while keeping coherent portions of it, i.e. local contexts where
applications run and, so to speak, posses for a while.

References

1. Appeltauer, M., Hirschfeld, R., Haupt, M., Masuhara, H.: ContextJ: context-
oriented programming with Java. Comput. Softw. 28(1), 272–292 (2011)

2. Appeltauer, M., Hirschfeld, R., Haupt, M., Lincke, J., Perscheid, M.: A compar-
ison of context-oriented programming languages. In: International Workshop on
Context-Oriented Programming (COP 2009), pp. 6:1–6:6. ACM, New York (2009)

3. Bodei, C., Degano, P., Ferrari, G.-L., Galletta, L.: Last mile’s resources. In: Probst,
C.W., Hankin, C., Hansen, R.R. (eds.) Semantics, Logics, and Calculi. LNCS, vol.
9560, pp. 33–53. Springer, Cham (2016). doi:10.1007/978-3-319-27810-0 2

4. Bodei, C., Degano, P., Galletta, L., Salvatori, F.: Context-aware security: linguistic
mechanisms and static analysis. J. Comput. Secur. 24(4), 427–477 (2016)

5. Bodei, C., Dinh, V.D., Ferrari, G.L.: Checking global usage of resources handled
with local policies. Sci. Comput. Program. 133, 20–50 (2017)

6. Busi, M., Degano, P., Galletta, L.: A semantics for disciplined concurrency in COP.
In: Proceedings of the ICTCS 2016. CEUR Proceedings, vol. 1720, pp. 177–189
(2016)

7. Canciani, A., Degano, P., Ferrari, G.L., Galletta, L.: A context-oriented extension
of F#. In: FOCLASA 2015. EPTCS, vol. 201, pp. 18–32 (2015)

8. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Trans. Knowl. and Data Eng. 1(1), 146–166 (1989)

9. Costanza, P.: Language constructs for context-oriented programming. In: Proceed-
ings of the Dynamic Languages Symposium, pp. 1–10. ACM Press (2005)

10. Degano, P., Ferrari, G.L., Galletta, L.: A two-component language for COP. In:
Proceedings of the 6th International Workshop on Context-Oriented Programming.
ACM Digital Library (2014)

11. Degano, P., Ferrari, G.-L., Galletta, L.: A two-phase static analysis for reliable
adaptation. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol.
8702, pp. 347–362. Springer, Cham (2014). doi:10.1007/978-3-319-10431-7 28

12. Degano, P., Ferrari, G.L., Galletta, L.: Event-driven adaptation in COP. In:
PLACES 2016. EPTCS, vol. 211 (2016)

13. Degano, P., Ferrari, G.L., Galletta, L.: A two-component language for adaptation:
design, semantics and program analysis. IEEE Trans. Softw. Eng. (2016). doi:10.
1109/TSE.2015.2496941

14. Galletta, L.: Adaptivity: linguistic mechanisms and static analysis tech-
niques. Ph.D. thesis, University of Pisa (2014). http://www.di.unipi.it/∼galletta/
phdThesis.pdf

15. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. J.
Object Technol. 7(3), 125–151 (2008)

16. Kamina, T., Aotani, T., Masuhara, H.: EventCJ: a context-oriented programming
language with declarative event-based context transition. In: Proceedings of the 10
International Conference on Aspect-Oriented Software Development (AOSD 2011),
pp. 253–264. ACM (2011)

http://dx.doi.org/10.1007/978-3-319-27810-0_2
http://dx.doi.org/10.1007/978-3-319-10431-7_28
http://dx.doi.org/10.1109/TSE.2015.2496941
http://dx.doi.org/10.1109/TSE.2015.2496941
http://www.di.unipi.it/~galletta/phdThesis.pdf
http://www.di.unipi.it/~galletta/phdThesis.pdf

Experimenting with a Context-Aware Language 17

17. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput.
36(1), 41–50 (2003)

18. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001). doi:10.1007/3-540-45337-7 18

19. Loke, S.W.: Representing and reasoning with situations for context-aware pervasive
computing: a logic programming perspective. Knowl. Eng. Rev. 19(3), 213–233
(2004)

20. Magee, J., Kramer, J.: Dynamic structure in software architectures. SIGSOFT
Softw. Eng. Notes 21(6), 3–14 (1996)

21. Orsi, G., Tanca, L.: Context modelling and context-aware querying. In: Moor, O.,
Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp.
225–244. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24206-9 13

22. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14:1–14:42 (2009)

23. Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: a soft-
ware engineering perspective. J. Syst. Softw. 85(8), 1801–1817 (2012)

24. Spinczyk, O., Gal, A., Schröder-Preikschat, W.: AspectC++: an aspect-oriented
extension to the C++ programming language. In: CRPIT 2002, pp. 53–60. Aus-
tralian Computer Society, Inc. (2002)

25. Walker, D., Zdancewic, S., Ligatti, J.: A theory of aspects. SIGPLAN Not. 38(9),
127–139 (2003)

26. Wand, M., Kiczales, G., Dutchyn, C.: A semantics for advice and dynamic join
points in aspect-oriented programming. ACM Trans. Program. Lang. Syst. 26(5),
890–910 (2004)

http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1007/978-3-642-24206-9_13

Generating Maximal Domino Patterns
by Cellular Automata Agents

Rolf Hoffmann1 and Dominique Désérable2(B)

1 Technische Universität Darmstadt, Darmstadt, Germany
hoffmann@informatik.tu-darmstadt.de

2 Institut National des Sciences Appliquées, Rennes, Rennes, France
domidese@gmail.com

Abstract. Considered is a 2D cellular automaton with moving agents.
The objective is to find agents controlled by a Finite State Program
(FSP) that can form domino patterns. The quality of a formed pat-
tern is measured by the degree of order computed by counting matching
3 × 3 patterns (templates). The class of domino patterns is defined by
four templates. An agent reacts on its own color, the color in front, and
whether it is blocked or not. It can change the color, move or not, and
turn into any direction. Four FSP were evolved for multi-agent systems
with 1, 2, 4 agents initially placed in the corners of the field. For a 12×12
training field the aimed pattern could be formed with a 100% degree of
order. The performance was also high with other field sizes. Livelocks are
avoided by using three different variants of the evolved FSP. The degree
of order usually fluctuates after reaching a certain threshold, but it can
also be stable, and the agents may show the termination by running in
a cycle, or by stopping their activity.

Keywords: Cellular automata agents · Multi-agent system · Pattern
formation · Evolving FSM behavior · Spatial computing

1 Introduction

Pattern formation is an area of active research in various domains as in physics,
chemistry, biology, computer science or natural and artificial life. There exists
a lot of examples, namely in polymer composites, laser trapping, spin systems,
self-organization, growth processes, morphogenesis, excitable media and so forth
[1–10]. Cellular automata (CA) make suitable and powerful tools for catching the
influence of the microscopic scale onto the macroscopic behavior of such complex
systems [11–13]. At the least, the 1–dimensional Wolfram’s “Elementary” CA
can be viewed as generating a large diversity of 2–dimensional patterns whenever
the time evolution axis is considered as the vertical spatial axis, with patterns
depending or not on the random initial configuration [14]. A similar evolution
process is observed in the Yamins–Nagpal “1D spatial computer” generating the
roughly radial striped pattern of the Drosophila melanogaster [15,16]. But the
authors emphasize therein how the local-to-global CA paradigm can turn into
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 18–31, 2017.
DOI: 10.1007/978-3-319-62932-2 2

Generating Maximal Domino Patterns by CA Agents 19

the inverse global-to-local question, namely “given a pattern, which agent rules
will robustly produce it?”

Based upon our experience from previous works dealing with CA agents
and with FSM–agents driven by Finite State Machines and generating spatial
patterns [17–19], we focus herein on the problem of generating an optimal config-
uration of domino patterns in an n×n field, from four 3×3 Moore-neighborhood
domino templates. “Optimal” means that the configuration must have neither
gap nor overlap. Although the objective in [19] was to form long orthogonal line
patterns, some similarity will be observed between both configurations as related
to alignments in spin systems. A more down-to-earth application for the domino
pattern is the problem of packing encountered in different logistics settings, such
as the loading of boxes on pallets, the arrangements of pallets in trucks, or cargo
stowage [20]. Another application is the construction of a sieve for rectangular
particles with a maximum flow rate.

Related Work. (i) Pattern formation. A programming language is presented in
[15] for pattern-formation of locally-interacting, identical agents – as an exam-
ple, the layout of a CMOS inverter is formed by agents. Agent-based pattern
formations in nature and physics are studied in [21,22]. In [23] a general frame-
work is proposed to discover rules that produce special spatial patterns based on
a combination of machine learning strategies including genetic algorithms and
artificial neural networks.

(ii) FSM–controlled agents. We have designed evolved FSM–controlled CA
agents for several tasks, like the Creature’s Exploration Problem [24,25], the All-
to-All Communication Task [25–27], the Target Searching Task [28], the Routing
Task [29,30]. The FSM for these tasks were evolved by genetic algorithms mainly.
Other related works are a multi-agent system modeled in CA for image process-
ing [31] and modeling the agent’s behavior by an FSM with a restricted number
of states [32]. An important pioneering work about FSM–controlled agents is
[33] and FSM–controlled robots are also well known [34].

This work extends the issues presented in [17–19] with a different class of
patterns herein and unlike in [19] only two colors and neither markers nor addi-
tional communication signals are used. Furthermore, agents are now able to find
patterns with the maximum degree of order. In Sect. 2 the class of target pat-
terns is defined and in Sect. 3 the multi-agent system is presented. In Sect. 4
livelock situations and the termination problem are described. The used genetic
algorithm is explained in Sect. 5 and the effectiveness and efficiency of selected
FSP are evaluated in Sect. 6 before Conclusion. The CA agents used herein are
implemented from the write access CA–w concept [35–37].

2 Domino Patterns and Degree of Order

Given a square array of (n + 2) × (n + 2) cells including border, we focus on the
problem of generating an optimal configuration of domino patterns in the n × n
enclosed field, from four domino templates (Fig. 1). The role of the border, with
a perimeter of 4n + 4 white cells, is to facilitate the work of the agents, thus

20 R. Hoffmann and D. Désérable

Fig. 1. (a) The four 3 × 3 domino templates define the domino pattern class. (b)
A pattern with 4 hits. It can be tiled (with overlaps) by matching templates. Each
matching template produces a hit (dot) in the center. (c) A pattern for a 4 × 4 field
(plus border) with the maximal degree or order 8. (d) A pattern for a 6 × 6 field with
the maximal degree or order 16.

moving within an uniform field. The four possible 3 × 3 Moore-neighborhood
domino templates around a central black cell are displayed in Fig. 1a, showing
our so-called spin-like left (←), up (↑), right (→), down (↓) dominos. They define
the domino pattern class.

The templates are tested on each of the n2 sites (ix, iy) of the n × n field. So
each template is applied in parallel on each cell, which can be seen as a classical
CA rule application. If a template fits on a site, then a hit (at most one) is
stored at this site. Then the sum of all hits is computed which defines the degree
of order h. A pattern with 4 hits is displayed in Fig. 1b: the top-left horizontal
domino is generated by matching the right template centered at (0, 0) with the
left template centered at (1, 0) then producing two hits. In the same way the
bottom-right vertical domino is generated by matching the down template with
the up template, thus giving altogether a pattern with order h = 4. Dominos are
isolated in the sense that neither contact nor overlap is allowed; in other words,
a black domino must be surrounded by ten white cells.

Domino Enumeration. For an even side length n, let hmax be the maximum
expected order. Hereafter we give an evaluation of this optimal order by induc-
tion in a non formal way. In (c) and (d) two optimal patterns are displayed
respectively for a 4 × 4 field and a 6 × 6 field. They are redisplayed in Fig. 2,

Fig. 2. From left to right: 1. Tiling the 4×4 field with 4 tetraminos. 2. Tiling the 6×6
field with 9 tetraminos. 3. The agent entering the central 6 × 6 subfield, with border,
in the 12 × 12 field: fifth snapshot of Fig. 5a.

Generating Maximal Domino Patterns by CA Agents 21

showing the patterns now tiled with square 2 × 2 tetraminos. Such a 4–mino
may either contain a domino or be empty. So, a n×n field (n even) can be tiled
by exactly ξ∗

n = n2/4 tetraminos. That gives an upper bound for the maximal
order. Note that the central 4–mino in the 6 × 6 field is empty.

Let us now observe the 12 × 12 field in Fig. 2 showing one agent generating
the pattern. Starting from the top-left corner, the agent generates 4 rows of 5
aligned dominos, moving clockwise, before entering a central 6× 6 subfield, with
border. We are now ready for the induction.

Let us call a “void” a cell belonging to an inner border and let νn be the
void index in a n × n field; we claim that ν0 = ν2 = ν4 = 0 and

νn = 4(n − 5) + νn−6 (n > 4) (1)

and give an informal proof. The first term of the sum is the perimeter (in number
of cells) of the inner border surrounding the central (n − 6) × (n − 6) subfield,
the second term denotes the number of voids in that subfield. Setting m = n/2
and p = �m/3� we get

νn =

⎧
⎨

⎩

4p (3p − 2) (m ≡ 0)
4p (3p) (m ≡ 1) (mod 3).
4p (3p + 2) (m ≡ 2)

(2)

The number ξn of non-empty 4–minos and bounded by ξ∗
n is then given by

ξn =
n2 − νn

4
(3)

Table 1. Domino enumeration for n×n fields: upper bound ξ∗
n, void index νn, domino

number ξn, optimal degree hmax.

n m p ξ∗
n νn ξn hmax

0 0 0 0 0 0 0

2 1 0 1 0 1 2

4 2 0 4 0 4 8

6 3 1 9 4 8 16

8 4 1 16 12 13 26

10 5 1 25 20 20 40

12 6 2 36 32 28 56

14 7 2 49 48 37 74

16 8 2 64 64 48 96

18 9 3 81 84 60 120

20 10 3 100 108 73 146

22 11 3 121 132 88 176

24 12 4 144 160 104 208

22 R. Hoffmann and D. Désérable

namely the domino number, and therefore the maximum expected order is
hmax = 2ξn and the relative order is hrel = h/hmax. 	

The quantities for the first even values of the field size n are displayed in
Table 1.

3 Modeling the Multi-agent-System

Compared to classical CA, moving agents with a certain “intelligence” have to
be modeled. Therefore the cell rule becomes more complex. Different situations
have to be taken into account, such as an agent is situated on a certain cell and
is actively performing actions, or an agent is blocked by another agent or by a
border cell in front. The cell state is modeled as a record of several data items:

CellState = (Color,Agent)
Color L ∈ {0, 1}
Agent = (Activity, Identifier,Direction,ControlState)

Activity ∈ {true, false}
Identifier ID ∈ {0, 1, ..., k − 1}
Direction D ∈ {0, 1, 2, 3} ≡{toN, toE, toS, toW}
ControlState S ∈ {0, 1, ..., Nstates − 1}.

This means that each cell contains a potential agent, which is either active
and visible or passive and not visible. When an agent is moving from A to
B, its whole state is copied from A to B and the Activity bit of A is set to
false. The agent’s structure is depicted in Fig. 3. The finite state machine (FSM)
realizes the “brain” or control unit of the agent. Embedded in the FSM is a state
table which defines the actual behavior. The state table can also be seen as a
program or algorithm. Therefore the abbreviations FSP (finite state program)
or AA (agent’s algorithm) are preferred herein. Outputs are the actions and the
next control state. Inputs are the control state s and defined input situations x.

Fig. 3. An agent is controlled by a finite state machine (FSM). The state table defines
the agent’s next control state, its next direction, and whether to move or not. The
table also defines whether the color shall be toggled (0 → 1) or (1 → 0).

Generating Maximal Domino Patterns by CA Agents 23

An input mapping function is used in order to limit the size of the state table.
The input mapping reduces all possible input combinations to an index x ∈ X =
{0, 1, . . . , Nx −1} used in combination with the control state to select the actual
line of the state table.

The capabilities of the agents have to be defined before designing or searching
for an AA. The main capabilities are: the perceivable inputs from the environ-
ment, the outputs and actions an agent can perform, the capacity of its memory
(number of possible control and data states) and its “intelligence” (useful proac-
tive and reactive activity). Here the intelligence is limited and carried out by a
mapping of its state and inputs to the next state, actions and outputs.

An agent can react on the following inputs:

• control state: agent’s control state s,
• direction: agent’s direction D,
• color: color L of the cell the agent is situated on,
• front color: color LF of the cell in front,
• blocked: the blocking condition caused either by a border, another agent in

front, or in case of a conflict when another agent gets priority to move to the
front cell. The inverse condition is called free.

An agent can perform the following actions:

• next state: state ← nextstate ∈ {0, ..., Nstates − 1}.
• move: move ∈ {0, 1} ≡ {wait, go}.
• turn: turn ∈ {0, 1, 2, 3}.

The new direction is D(t + 1) ← (D(t) + turn) mod 4.
• flip color: flipcolor ∈ {0, 1}.

The new color is L(t + 1) ← (L(t) + flipcolor) mod 2.

An agent has a moving direction D that also selects the cell in front as the
actual neighbor. What can an agent observe from a neighboring cell? In our
model it can only detect the blocking condition and the color in front. So the
agents’ sensing capabilities are weak.

All actions can be performed in parallel. There is only one constraint: when
the agent’s action is go and the situation is blocked, then an agent cannot move
and has to wait, but still it can turn and change the cell’s color. In case of a
moving conflict, the agent with the lowest identifier (ID = 0...k−1) gets priority.
Instead of using the identifier for prioritization, it would be possible to use other
schemes, e.g. random priority, or a cyclic priority with a fixed or space-dependent
base. The following input mapping was used, x ∈ {0, 1, . . . , 7}:

x = 0 + 4b, if color = 0 and frontcolor = 0
x = 1 + 4b, if color = 1 and frontcolor = 1
x = 2 + 4b, if color = 0 and frontcolor = 1
x = 3 + 4b, if color = 1 and frontcolor = 0

where b = 0 if free, otherwise b = 1 if blocked. This mapping was designed
by experience from former work. Of course, other input mappings are possible,

24 R. Hoffmann and D. Désérable

with more or less x codes, or other assignments, e.g. more neighbors could be
taken into account, the blocking conditions could be distinguished (by border,
by agent, by conflict), or a part of the agent’s private control state could be
presented to the neighbors. Note that the sensing capabilities are quite limited,
and that makes the given task difficult to solve.

4 Livelock and Termination

The Livelock Problem. During the work of evolving FSP, it turned out that
livelocks may appear for systems with more than one agent. In a livelock the
agents act in a way that there is no more progress in the system’s global state
towards the aimed pattern. An analogy is when two people meet head-on and
each tries to step around the other, but they end up swaying from side to side,
getting in each other way as they try to get out of the way. Here livelocks
appeared when 2 or 4 agents were placed symmetrically in space. Then the
state/actions sequence was the same and the agents got stuck in cyclic paths.
Fortunately we found a simple way to avoid them. Three variants of an FSP
are used. Agents start in three different control states, depending on the agent’s
identifier: initial state = ID mod 3. By this technique we were able to find FSP
without livelocks, agents can now show three different behaviors. As we cannot
influence the structure of the evolved FSP, the FSP state’s graph may have
different prefix state sequences, or the FSP may even fall into three separate
graphs (co-evolution of up to three FSP). This means that the genetic algorithm
automatically finds the best choice of more equal or more distinct FSP under
the restriction of a given maximal number of states Nstates.

The Termination Problem. How can the multi-agent system be stopped in
a decentralized way after having reached the required degree of order? One idea
is to communicate the hits all-to-all. Thereby the difficulty is that pattern and
degree of order are usually changing over time, and the transportation of the
hit information is delayed in space. So it would be more elegant, if the system
state (pattern or hit-count) reaches automatically a fixed point. We define for
our multi-agent system that has reached a certain degree of order

(1) Soft-termination: The pattern is stable, and there exists one agent that is
active (moves and/or changes direction).

(2) Hard-termination: The pattern is stable, and all agents are passive (not
moving and/or not changing direction).

The termination problem has been studied for distributed systems, and now
it is under research also for multi-agent systems [38].

5 Evolving FSP by a Genetic Algorithm

An ultimate aim could be to find an FSP that is optimal for all possible ini-
tial configurations on average. This aim is very difficult to reach because it

Generating Maximal Domino Patterns by CA Agents 25

needs a huge amount of computation time. Furthermore, it depends on the ques-
tion whether all-rounders or specialists are favored. Therefore, in this work we
searched only for specialists optimized for (i) a fixed field size of N = n × n,
n = 12, (ii) 4 special initial configurations with 1, 2, 4 agents where the agents
are placed in the corners of the field. The number of different FSP which can
be coded by a state table is Z = (|s||y|)(|s||x|) where |s| is the number of control
states, |x| is the number of inputs and |y| is the number of outputs. As the search
space increases exponentially, we restricted the number of inputs to |x| = 8 and
the number of states to |s| = Nstates = 18. Experiments with lower numbers of
states did not yield the aimed quality of solutions.

A relatively simple genetic algorithm similar to the one in [17] was used in
order to find (sub)optimal FSP with reasonable computational cost. A possible
FSP solution corresponds to the contents of the FSM’s state table. For each
input combination (x, state) = j, a list of actions is assigned:

actions(j) = (nextstate(j), move(j), turn(j), flipcolor(j))

as displayed on the FSP genome in Fig. 4.
The fitness is defined as the number t of time steps which is necessary to

emerge successfully a target pattern with a given degree htarget of order, aver-
aged over all given initial random configurations. “Successfully” means that a
target pattern with h ≥ htarget was found. The fitness function F is evaluated
by simulating the system with a tentative FSPi on a given initial configura-
tion. Then the mean fitness F (FSPi) is computed by averaging over all initial
configurations of the training set. F is then used to rank and sort the FSP.

In general it turned out that it was very time consuming to find good solutions
with a high degree of order, due to the difficulty of the agents’ task in relation
to their capabilities. Furthermore the search space is very large and difficult
to explore. The total computation time on a Intel Xeon QuadCore 2 GHz was
around 4 weeks to find all needed FSP.

Evolved Finite State Programs. The used fields are of size N = n × n. The
cell index (ix, iy) starts from the top left corner (0, 0) to the bottom right corner
(n − 1, n − 1). The top right corner is (n − 1, 0). The index K defines a set of
initial configurations. Here only 4 initial configurations are used:

K = 1: 1 agent with direction →, placed at (0, 0)
K = 2: 2 agents, one placed like in configuration K = 1, and another with

direction ← placed at (n − 1, n − 1)
K = 4: 4 agents, two of them placed like in configuration K = 2, and another

with direction ↓ placed at (n − 1, 0), and another with direction ↑ placed at
(0, n − 1)

K = 124: This index specifies a set of configurations, the union of K = 1, K = 2,
and K = 4

26 R. Hoffmann and D. Désérable

Fig. 4. FSP genome with Nstates = 18 states and Nx = 8 inputs.

The best found FSP is denoted by

FSPn,K,h: for field size n, configuration K, and a reached order hmax. The
reached order can also be given relatively as hrel with percent suffix

The following four FSP were evolved by the genetic algorithm:

FSP12,1,100% = FSP12,1,56

FSP12,2,100% = FSP12,2,56

FSP12,4,100% = FSP12,4,56

and the more general mixed one FSP12,124,100% that is 100% successful on each
of the 3 initial fields for K = 1, 2, 4. Its genome is displayed in Fig. 4. Note that
hmax = 56 for n = 12 according to Table 1 whence hrel = 100%.

6 Simulation and Performance Evaluation

Simulation. Firstly, the agent-system was simulated and observed for the first
three evolved programs (FSP12,1,56, FSP12,2,56, FSP12,4,56). Figure 5 shows the
time evolution of the domino pattern for the system with 1, 2, and 4 agents. The
strategy of 1 agent is to move along the border clockwise (Fig. 5a) and then after
one cycle moving inwards. Roughly the path is close to a spiral. Looking to the
path in detail, the agent moves more or less back and forth in order to build the
optimal pattern. Thereby already built dominoes can be destructed and rebuilt
in a different way. An optimal pattern with hmax = 56 is built at t = 215.

The systems with two agents (Fig. 5b) and four agents (Fig. 5c) follow a
similar strategy, but the work is shared and each agent cooperates in building
the optimal pattern. The cooperation is achieved by detecting dominoes already
in place and then rearrange them in a better way or move just inwards to the
empty area in order to create new dominoes. The optimal pattern is built at
t = 154 for the 2-agent-system, and at t = 51 for the 4-agent-system.

Generating Maximal Domino Patterns by CA Agents 27

Fig. 5. Dots are marking the hits. Inner squares in light grey are marking visited cells,
the darker the more often visited. (a) 1-agent-system. The agent starts in the left corner
and moves mainly clockwise, and from the border to the centre. At t = 215 an optimal
pattern with h = 56 is formed. For t ≥ 236 the pattern remains stable with h = 48.
(b) 2-agent-system. The agents are building the pattern together. Agent 0 and 1 use
a slightly different algorithm, see configuration at t = 18. For t ≥ 158 the agents run
in a cycle without changing the optimal pattern. (c) 4-agent-system. The agents 0, 1,
2 use slightly different algorithms, see configuration at t = 12. At (t = 98, h = 37) all
agents have stopped their activities.

28 R. Hoffmann and D. Désérable

Termination. What happens after having built the optimal pattern?
1-agent-system: During t = 215 . . . 235 the agent continues its walk in the

direction of the right border, thereby changing the pattern’s order in the sequence
h = 56, 52, 56, 54, 56, 54, 52, 50, 48. Then, for t ≥ 236 the pattern remains stable
with h = 48, and then for t ≥ 240 the agent is running a 4-step-cycle within a
block of 2×2 cells. So we have a non-optimal soft-termination with hrel = 48/56.

2-agent-system: For t = 154, 155, 156, 157, 158+ the agents change slightly
the order to h = 56, 52, 52, 52, 56. Then for t ≥ 158 each of them runs in a cycle
of period 8 following a square path within a block of 3×3 cells without changing
the optimal pattern. This means an optimal soft-termination with hrel = 100%.
This result was not expected and was not explicitly forced by the genetic. But
it shows that optimal terminations in such multi-agent-systems are possible and
can be evolved.

4-agent-system: For t = 51, 52, . . . 98+ the agents are reducing the order
to h = 56, 50, . . . 37 with fluctuations. At (t = 60, h = 49) agent 1 stops its
activities, and then at (t = 63, h = 47) agent 0 stops its activities, and then
at (t = 75, h = 44) agent 3 stops its activities, and then at (t = 98, h = 37)
agent 2 stops its activities. For t ≥ 98 all agents have stopped their activities,
this means a non-optimal hard-termination (see last snapshot in Fig. 5c). Agent
with ID = 0, 1, 2, 3 started at position (0, 0), (n − 1, 0), (n − 1, n − 1), (0, n − 1)
respectively. Agents 0 and 3 are using the same variant of the FSP whereas
agents 1 and 2 use other variants.

Table 2. Performance of the k–agent systems, especially evolved for each k. The 4–
agent system is almost 4 times faster than the 1–agent system.

Program Agents k Time tk Time per cell tk/N Speedup S = t1/tk Efficiency S/k

FSP12,1,100% 1 215 1.49 1.00 1.00

FSP12,2,100% 2 154 1.07 1.40 0.70

FSP12,4,100% 4 54 0.38 3.98 0.99

Comparison with the More General, Mixed FSP12,124,100%. The mixed
FSP was evolved to work with 1, 2, or 4 agents, therefore it is more general.
Now the time to reach 100% success is longer, t124 = 255, 180, 105 for k = 1, 2, 4.
Compared to the optimal time of the special FSP presented before and given in
Table 2 the ratio is t124/t(k) = 1.19, 1.17, 1.94. That means that special evolved
algorithms may save significant computation time, in our example up to 94%.

Performance of the Mixed FSP for Other Field Sizes. Now it was tested
how sensitive the mixed FSP is against a change of the field size. It was required
that all k–agent systems (k = 1, 2, 4) are successful to the up most reachable
degree hmax

rel . It was found by incrementing hrel to the point where at least
one agent-system was not successful. Table 3 shows the times tk to order the
systems up to hmax

rel (refer to Eq. 3 and Table 1 for hmax). In order to compare

Generating Maximal Domino Patterns by CA Agents 29

Table 3. Used was the mixed FSP evolved for field size 12 × 12. The times tk for
different field sizes was recorded for the maximal reachable degree of order.

Field size 4 × 4 6 × 6 8 × 8 10 × 10 12 × 12 14 × 14 16 × 16

Reached hmax
rel 4/8=50% 14/16=88% 22/26=85% 34/40=85% 56/56=100% 72/74=97% 88/96=92%

t1 10 52 82 125 255 303 351

t2 13 30 42 62 180 216 272

t4 4 19 21 32 105 123 161

Fig. 6. Time steps per cell needed to order the fields with a degree hrel ≥ 85%.

the performance for different field sizes the metric t/N (time steps per cell) was
used. Furthermore a fixed bound for hrel = 85% was used. Then the time was
measured for this bound. The outcome is depicted in Fig. 6. The normalized time
t/N is minimal at n = 16, 10, 10 for k = 1, 2, 4 and the 4-agent system is around
3 times faster than the 1-agent-system.

7 Conclusion

The class of the aimed domino patterns was defined by four templates (3×3 local
patterns). Four FSP were evolved for multi-agent systems with 1, 2, 4 agents
initially placed in the corners of the field. The reached degree of order was 100%
for the 12 × 12 training field, and greater than 85% for field sizes between 6 × 6
and 16 × 16. Livelocks were avoided by using up to three different variants of
the FSP depending on the agent’s identifier. These variants use different initial
control states and may show a totally different individual behavior. This can
be interpreted as a co-evolution of three cooperating behaviors. It was observed
that the achieved pattern can reach a stable fixed point, and then the agents
run in small cycles or even stop their activities totally. Further work is directed
to the termination problem, the co-evolution, and the problem of finding robust
multi-agent systems that can order fields of any size perfectly.

30 R. Hoffmann and D. Désérable

References

1. Shi, D., He, P., Lian, J., Chaud, X., Bud’ko, S.L., Beaugnon, E., Wang, L.M.,
Ewing, R.C., Tournier, R.: Magnetic alignment of carbon nanofibers in polymer
composites and anisotropy of mechanical properties. J. App. Phys. 97, 064312
(2005)

2. Itoh, M., Takahira, M., Yatagai, T.: Spatial arrangement of small particles by
imaging laser trapping system. Opt. Rev. 5(1), 55–58 (1998)

3. Jiang, Y., Narushima, T., Okamoto, H.: Nonlinear optical effects in trapping
nanoparticles with femtosecond pulses. Nat. Phys. 6, 1005–1009 (2010)

4. Niss, M.: History of the Lenz-Ising model, 1920–1950: from ferromagnetic to coop-
erative phenomena. Arch. Hist. Exact Sci. 59(3), 267–318 (2005)

5. Press, D., Ladd, T.D., Zhang, B., Yamamoto, Y.: Complete quantum control of a
single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)

6. Bagnold, R.E.: The Physics of Blown Sand and Desert Dunes. Chapmann and Hall,
Methuen, London (1941)

7. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond.
B237, 37–72 (1952)

8. Tyson, J.J.: The Belousov-Zhabotinskii Reaction. Lecture Notes in Biomathemat-
ics. Springer, Heidelberg (1976). doi:10.1007/978-3-642-93046-1

9. Greenberg, J.M., Hastings, S.P.: Spatial patterns for discrete models of diffusion
in excitable media. SIAM J. Appl. Math. 34(3), 515–523 (1978)

10. Progogine, I., Stengers, I.: Order out of Chaos. Heinemann, London (1983)
11. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cam-

bridge University Press, Cambridge (1998)
12. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern

Formation. Birkäuser, Boston (2005)
13. Désérable, D., Dupont, P., Hellou, M., Kamali-Bernard, S.: Cellular automata in

complex matter. Complex Syst. 20(1), 67–91 (2011)
14. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3),

601–644 (1983)
15. Nagpal, R.: Programmable pattern-formation and scale-independence. In: Minai,

A.A., Bar-Yam, Y. (eds.) Unifying Themes in Complex Sytems IV, pp. 275–282.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-73849-7 31

16. Yamins, D., Nagpal, R., Automated global-to-local programming in 1-D spa-
tial multi-agent systems. In: Proceedings of the 7th International Conference on
AAMAS, pp. 615–622 (2008)

17. Hoffmann, R.: How agents can form a specific pattern. In: W ↪as, J., Sirakoulis,
G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 660–669. Springer, Cham
(2014). doi:10.1007/978-3-319-11520-7 70

18. Hoffmann, R.: Cellular automata agents form path patterns effectively. Acta Phys.
Pol. B Proc. Suppl. 9(1), 63–75 (2016)

19. Hoffmann, R., Désérable, D.: Line patterns formed by cellular automata agents.
In: El Yacoubi, S., W ↪as, J., Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp.
424–434. Springer, Cham (2016). doi:10.1007/978-3-319-44365-2 42

20. Birgin, E.G., Lobato, R.D., Morabito, R.: An effective recursive partitioning app-
roach for the packing of identical rectangles in a rectangle. J. Oper. Res. Soc. 61,
303–320 (2010)

21. Bonabeau, E.: From classical models of morphogenesis to agent-based models of
pattern formation. Artif. Life 3(3), 191–211 (1997)

http://dx.doi.org/10.1007/978-3-642-93046-1
http://dx.doi.org/10.1007/978-3-540-73849-7_31
http://dx.doi.org/10.1007/978-3-319-11520-7_70
http://dx.doi.org/10.1007/978-3-319-44365-2_42

Generating Maximal Domino Patterns by CA Agents 31

22. Hamann, H., Schmickl, T., Crailsheim, K.: Self-organized pattern formation in a
swarm system as a transient phenomenon of non-linear dynamics. Math. Comput.
Mod. Dyn. Syst. 18(1), 39–50 (2012)

23. Bandini, S., Vanneschi, L., Wuensche, A., Shehata, A.B.: A neuro-genetic frame-
work for pattern recognition in complex systems. Fundam. Inf. 87(2), 207–226
(2008)

24. Halbach, M., Hoffmann, R., Both, L.: Optimal 6-state algorithms for the behavior
of several moving creatures. In: Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI
2006. LNCS, vol. 4173, pp. 571–581. Springer, Heidelberg (2006). doi:10.1007/
11861201 66

25. Ediger, P., Hoffmann, R.: Optimizing the creature’s rule for all-to-all communica-
tion. In: Adamatzky, A., et al. (eds.) Automata 2008, pp. 398–412 (2008)

26. Ediger, P., Hoffmann, R.: Solving all-to-all communication with CA agents more
effectively with flags. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp.
182–193. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03275-2 19

27. Hoffmann, R., Désérable, D.: All-to-all communication with cellular automata
agents in 2D grids. J. Supercomput. 69(1), 70–80 (2014)

28. Ediger, P., Hoffmann, R.: CA models for target searching agents. Elec. Notes Theor.
Comput. Sci. 252, 41–54 (2009)

29. Ediger, P., Hoffmann, R., Désérable, D.: Routing in the triangular grid with evolved
agents. J. Cell. Autom. 7(1), 47–65 (2012)

30. Ediger, P., Hoffmann, R., Désérable, D.: Rectangular vs triangular routing with
evolved agents. J. Cell. Autom. 8(1–2), 73–89 (2013)

31. Komann, M., Mainka, A., Fey, D.: Comparison of evolving uniform, non-uniform
cellular automaton, and genetic programming for centroid detection with hardware
agents. In: Malyshkin, V. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 432–441. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-73940-1 43

32. Mesot, B., Sanchez, E., Peña, C.-A., Perez-Uribe, A.: SOS++: finding smart behav-
iors using learning and evolution. In: Artificial Life VIII, pp. 264–273. MIT Press
(2002)

33. Blum, M., Sakoda, W.J.: On the capability of finite automata in 2 and 3 dimen-
sional space. In: SFCS 1977, pp. 147–161 (1977)

34. Rosenberg, A.L.: Algorithmic insights into finite-state robots. In: Sirakoulis,
G., Adamatzky, A. (eds.) Robots and Lattice Automata. Emergence, Complex-
ity and Computation, vol. 13, pp. 1–31. Springer, Cham (2015). doi:10.1007/
978-3-319-10924-4 1

35. Hoffmann, R.: The GCA-w massively parallel model. In: Malyshkin, V. (ed.) PaCT
2009. LNCS, vol. 5698, pp. 194–206. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03275-2 20

36. Hoffmann, R.: Rotor-routing algorithms described by CA-w. Acta Phys. Pol. B
Proc. Suppl. 5(1), 53–67 (2012)

37. Hoffmann, R., Désérable, D.: Routing by cellular automata agents in the triangular
lattice. In: Sirakoulis, G., Adamatzky, A. (eds.) Robots and Lattice Automata.
Emergence, Complexity and Computation, vol. 13, pp. 117–147. Springer, Cham
(2015). doi:10.1007/978-3-319-10924-4 6

38. Lahlouhi, A.: MAS-td: an approach to termination detection of multi-agent
systems. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.) MICAI
2014. LNCS, vol. 8856, pp. 472–482. Springer, Cham (2014). doi:10.1007/
978-3-319-13647-9 42

http://dx.doi.org/10.1007/11861201_66
http://dx.doi.org/10.1007/11861201_66
http://dx.doi.org/10.1007/978-3-642-03275-2_19
http://dx.doi.org/10.1007/978-3-540-73940-1_43
http://dx.doi.org/10.1007/978-3-319-10924-4_1
http://dx.doi.org/10.1007/978-3-319-10924-4_1
http://dx.doi.org/10.1007/978-3-642-03275-2_20
http://dx.doi.org/10.1007/978-3-642-03275-2_20
http://dx.doi.org/10.1007/978-3-319-10924-4_6
http://dx.doi.org/10.1007/978-3-319-13647-9_42
http://dx.doi.org/10.1007/978-3-319-13647-9_42

Automated Parallelization of a Simulation
Method of Elastic Wave Propagation in Media

with Complex 3D Geometry Surface
on High-Performance Heterogeneous Clusters

Nikita Kataev1(B), Alexander Kolganov1,2, and Pavel Titov3

1 Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
kaniandr@gmail.com

2 Moscow State University, Moscow, Russia
alex-w900i@yandex.ru

3 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia
tapawel@gmail.com

http://dvm-system.org/en/, http://www.msu.ru/en/, http://icmmg.nsc.ru/en

Abstract. The paper considers application of DVM and SAPFOR in
order to automate mapping of 3D elastic waves simulation method on
high-performance heterogeneous clusters. A distinctive feature of the pro-
posed method is the use of a curved three-dimensional grid, which is
consistent with the geometry of free surface. Usage of curved grids con-
siderably complicates both manual and automated parallelization. Tech-
nique to map curved grid on a structured grid has been presented to
solve this problem. The sequential program based on the finite difference
method on a structured grid, has been parallelized using Fortran-DVMH
language. Application of SAPFOR analysis tools simplified this paral-
lelization process. Features of automated parallelization are described.
Authors estimate efficiency and acceleration of the parallel program and
compare performance of the DVMH based program with a program
obtained after manual parallelization using MPI programming technol-
ogy.

Keywords: Automation of parallelization · Heterogeneous computa-
tional cluster · 3D modeling · Curvilinear grid · GPU · Xeon Phi

1 Introduction

3D modeling of elastic waves in media of various structures is an important
aspect of a geophysical 3D models creation and studying the characteristics of
wave fields. Often, to solve the inverse problem of geophysics is difficult, and

The reported study was funded by RFBR according to the research projects 17-01-
00820, 16-07-01067, 16-07-01014, 17-41-543003, 16-01-00455, 16-07-00434.

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 32–41, 2017.
DOI: 10.1007/978-3-319-62932-2 3

Automated Parallelization of a Simulation Method 33

one of the methods is to solve a set of direct problems with varying parameter
values and the geometry of the medium by comparing the actual data with the
simulation results.

The most used method for solving the direct problem is finite difference
method [1,2]. It should be noted that the investigated area can have a complex
3D surface geometry, therefore important feature point is to construct a curved
3D mesh. For example, the object of study can be magmatic volcano. The study-
ing of the medium structure and the monitoring of this object are an important
practical task that requires high performance computer power to produce results
quick enough. The theory of construction and application of curvilinear grids to
actual problems solving are well described in [3,4]. Such an approach to numer-
ical modeling of elastic waves involves working with a lot of 3D data. Given the
scale of the field in solving real-world problems numerical modeling task becomes
feasible on a personal workstation even with GPU.

There is an increased interest in the use of multi-core and heterogeneous com-
putational systems to achieve maximum performance in calculating the compu-
tationally intensive tasks of given class. At the same time the ability to write
parallel programs that can effectively tap full potential of these systems requires
programmers to thoroughly understand underlying hardware architecture as well
as programming models. The situation is drastically complicated with the wide-
spread acceptance of new architectures, such as NVIDIA GPU or Intel Xeon
Phi coprocessors. Multiple technologies of parallel programming should be used
simultaneously in order to exploit all levels of parallelism.

The matter becomes even more complicated if users map legacy sequential
code to a parallel architecture. Significant program transformations are often
necessary to avoid drawbacks which prevent program parallelization. Especially
important is simultaneous support of two versions of a program: sequential and
parallel. Development of tools that facilitate parallel code development and fur-
thermore development of tools that can identify parallelism in an automated way
can make an invaluable contribution to the evolution of supercomputing industry
and can dramatically reduce efforts required to implement parallel programs.

Automated parallelization relies on the ability to identify regions of code,
which can be run asynchronously with other parts of the program, and requires
an accurate static and dynamic dependence analysis. The use of interactive tools
is essential for automation of parallel programming [8–11]. Some of them rely on
automatic parallelizing compilers [10]. The other tools are based on parallelism
identification techniques (static and dynamic dependence analysis, source code
profiling) and assume that parallelism will be exploited by the user manually [8].
The SAPFOR system was primarily designed to simplify the mapping of sequen-
tial programs to a parallel architectures with distributed memory. The system
implements static and dynamic analysis techniques and focused on DVMH model
of the parallel programming for heterogeneous computational clusters [12,13].

The rest of the paper is organized as follows. Section 2 discusses the mathe-
matical problem. Section 3 describes parallel algorithm features and its software
implementation based on MPI technology. Section 4 focuses on usage of DVMH

34 N. Kataev et al.

model to exploit parallelism and discusses features of obtained program. Section 5
presents performance of parallel programs execution on heterogeneous computa-
tional clusters. The section illustrates exploration of strong and weak scaling, as
well as comparison of the results of DVMH and MPI parallel program execution.
Section 6 concludes and summarizes the paper.

2 Problem Statement

Solution of the direct problems of geophysics is related to the solution of equa-
tions of elasticity theory in the case of 3D medium. In this paper we consider the
elastic waves. Medium model is defined by three parameters: Lame coefficients
λ, μ and density ρ. For example, in [1] the equations are represented in terms of
displacement velocities. In this formulation, we must operate with 9 equations
and hence with 9 parameters at the stage of numerical implementation. Using
this approach will be sufficient resource intensive. It was therefore decided to
use the system, which is described by the three components of the displacement
vector (u, v, w)T . Such a method is more optimal in terms of saving memory and
computation time.

It is necessary to build a 3D model of the medium to solve the direct problem
namely to determine the size and shape of the field, and set the parameters λ, μ, ρ
for each of the components of the medium (the medium can be inhomogeneous).

In this paper the authors use curved 3D mesh construction. The most impor-
tant point is the orthogonal edges of cells near the free surface: all intersecting
edges of each cell near the curved free surface are locally orthogonal. This means
that in every point of the surface the vertical ribs of every cell are perpendicular
to the plane tangent to the surface at this point. In these same points the edges
corresponding to horizontal direction are also orthogonal. Such an approach to
solve this dynamic geophysical problem is used by one of the authors of this
paper for the first time. It allows to increase the accuracy of the approximation
of the boundary conditions for the numerical solution of the problem (for the
case of curved free surface area – from the first order when one uses a regular
hexahedral grid to the second order when one uses a curvilinear cells). The most
preferred method is proved to be a transfinite interpolation [3]. After getting
mesh built, it is necessary to convert to a new coordinate system, where the grid
is a regular hexahedral.

Numerical solution of the problem is based on the finite difference method.
This method has proved itself well to create on its basis 3D effective parallel
algorithm [6,7]. The basis of the formulas were taken from [5], adapted to the
3D-case. The scheme has a second-order approximation in space and time.

3 Parallel Algorithm and It’s Software Implementation
Using MPI

To perform parallel calculations for each unit, it is necessary for nine 3D arrays
to be placed and stored in a memory. Those arrays have values for the component

Automated Parallelization of a Simulation Method 35

displacements u, v, w, environment parameters λ, μ, ρ, as well as the coordinates
of the curved grid X,Y,Z. For this work the sequential meshing program and the
sequential program that implements the calculations for the difference scheme
have been developed in Fortran 95. Those two were combined into one program
and obtained program was parallelized using MPI parallel programming tech-
nology. Thus, you don’t have to record the coordinates of grid points on a hard
drive at the stage of the mesh-builder work, and then read them on the stage
of the main program work. The proposed approach significantly accelerates the
program, depending on the mesh size and hard drive access speed.

For arrays with u, v, w need to organize shadow data exchange between adja-
cent blocks. Each block has shadow edges, in which it receives remote data from
its neighbors. It sends its data in similar shadow edges of its neighbors. Com-
munications made through the created 3D-topology. Each computing process is
assigned a triple room: Cartesian coordinates in this topology. It is important
to note that data exchange are not only between processes according to one of
the adjacent coordinate directions. There are exchanges between the processes,
neighboring in all diagonal directions. Total number of exchanges is 26.

Using the finite difference method allows communication between processes
using non-blocking MPI exchanges. It uses a buffer array where the values of
u, v, w are copied. That allows for two neighboring blocks to exchange all data
in one message instead of three. Next, the calculation of the components u, v, w
for each block is divided into two independent parts: inside the block and on
the shadow edges of the block. Such partitioning enables to start asynchronous
communications earlier.

4 Parallelization of Given Program Using SAPFOR
and DVM Systems

4.1 Using Static Analyzer of SAPFOR System

The system for automated parallelization SAPFOR [10] is a software devel-
opment suit that is focused on cost reduction of manual program paralleliza-
tion. SAPFOR can be used to produce a parallel version of a program in a
semi-automatic way according to DVMH model of the parallel programming for
heterogeneous computational clusters. Fortran-DVMH language is currently sup-
ported. The system was extremely helpful to explore information structure of the
proposed algorithm. Data dependencies were discovered and classified according
to the relevant approach to a related issue. The visual assistance tool was used
to examine analysis results. Types of data dependencies which are supported by
SAPFOR are considered further.

Write after read and write after write dependencies produce writing conflicts
between different iterations of a loop which modify the same variable. Vari-
able privatization technique removes such conflicts and is natively supported by
DVMH languages with the use of PRIVATE specification followed by the list of

36 N. Kataev et al.

variables that should be privatized. This specification is not required if a pro-
gram is executed in the compute systems with distributed memory but in case of
intra-node parallelism or GPU computing their absence will lead to data races.

The source of private variables essentially are computations localized within
a single parallel loop iteration. In this case such variables are used to store tem-
porary intermediate results of calculations. With a large volume of calculations
in a loop the amount of temporary data can be significant thus may hinder the
insertion of PRIVATE specification manually. In DVMH version of proposed
algorithm the number of private variables within a single loop amounts to 53.
Automatic insertion of specifications and correctness verification of a user guide-
lines can reduce the cost of developing and of debugging of parallel programs [14].

A source of another type of loop carried dependencies which can be elim-
inated in order to enable parallel program execution is reduction operations,
such as accumulation of the sum of all elements in a set. Reduction produces
read after write dependency through value accumulation in some variable. The
parallel code will accumulate partial values and combine them after loop exit
since reduction operations are associative. SAPFOR analysis tools proved to be
useful to recognize reduction operations which find a minimum element from
a given list of expressions. To specify their in DVMH languages REDUCTION
construct can be used.

The other important feature of our system is investigation of regular loop
carried dependencies, the read after write dependencies with distances limited
constant. For each loop iteration this constant determines a number of previous
loop iterations required to execute it. Given the ACROSS specification which
is natively supported by DVMH languages that kind of loops can be executed
in parallel, the DVMH compiler will split a loop iteration space into stages to
implement pipeline parallelism. Static analysis implemented in SAPFOR system
revealed no regular dependencies in the developed program.

Static analysis of a code is essential pass for automatic parallelization. Even
so, it has a significant drawback, it is necessary to take conservative decisions.
This means that if you can not reliably test the absence of a data dependence,
in order to ensure correct execution of the program static analyzer concludes on
its presence. The use of static analysis to investigate loop carried dependencies
in conjunction with SAPFOR GUI and subsequent manual parallelization in
Fortran-DVMH language allowed to overcome this difficulty. It is worth noting
that the use of co-design in the development of the proposed algorithm provides
a minimum number of false positives (in case of 6% of loops). The emergence of
false positive dependencies was mainly caused by the presence of branches, for
which the analysis was unable to determine jump conditions. In more complex
situations SAPFOR system allows the use of dynamic analysis, which determines
the absence of dependencies at runtime for certain data sets.

4.2 Development of a Parallel Program in DVMH

To exploit parallelism with DVMH the following main specifications should be
placed in the program. To distribute data between compute nodes DISTRIBUTE

Automated Parallelization of a Simulation Method 37

directive is used. The ALIGN directive implements alignment of an array with
some other distributed array, so the first one will be also distributed. The PAR-
ALLEL directive should be placed on each loop which accesses distributed data.
The PARALLEL directive matches each iteration of the parallel loop with some
array element. It means that the loop iteration will be executed on the processor
where the corresponding array element is located.

In order to identify suitable arrays alignment, it is necessary to explore all
loops in a program. DVMH model requires the execution of the rule of own
computations for parallel loops. It means that a processor must modify only
its own data which are located in its local memory. Therefore it is enough to
examine a relation of loop parameter with array subscripts for all arrays modified
in this loop. The information obtained from analysis of all loops determine the
best array alignment to minimize the interprocessor communication.

In total, more than 100 arrays are used in the program. However not all
of them can be distributed. Mapping of a curvilinear grid on a structured grid
requires replication of some computations and data. The reason is that the algo-
rithm uses indirect array access, which is not supported in DVMH model. The
number of distributed arrays in the code amounts to 51. Since the configuration
of arrays used in the program is known before program execution, it is possible
to distinctly specify arrays alignment. For example, the following directives

!DVM$ DISTRIBUTE DQ1 DX (BLOCK, BLOCK, BLOCK)
!DVM$ ALIGN (i, j, k) WITH DQ1 DX(2 * i, 2 * j, 2 * k) : : alambda

describes distribution of the three-dimensional array DQ1 DX. Each array
dimension is distributed mainly by equal blocks. An element (i, j, k) of alambda
array should be placed on the processor that stores the element (2 * i, j * 2,
2 * k) of DQ1 DX array. This allocation allows us to align the array alambda,
which in each dimension is twice as little than the array DQ1 DX. Data that are
not specified by these directives are automatically distributed on each processor
(replicated data) and will have the same value on each processor.

If rules for the distribution and alignment have been successfully deter-
mined, it is essential to place PARALLEL directive on each loop to distrib-
ute its iterations between available processors. With the information received
from SAPFOR, it will be no trouble to add the necessary clauses PRIVATE,
REDUCTION ACROSS to this directive. To specify shadow data exchange
(SHADOW RENEW clause) all reading operations from distributed arrays
should be analyzed to determine presence of nonlocal elements usage. The
method for determining shadow edges is described in the example on the website
of DVM system [15]. The total number of parallelized loops is 63 from 91.

To achieve correctness of functional execution of the program it may be useful
to perform functional debugging after program parallelization. For this purpose
the program must be compiled as a parallel DVMH program (DVMH directives
are Fortran language comments for standard compilers therefore DVMH pro-
gram can be processed as usual serial program) in a special mode with debug
information. Then the compiled program should be run in debug mode to obtain
diagnostics in case of incorrect placement of any PARALLEL directives.

38 N. Kataev et al.

And finally, each parallel loop or a group of contiguous parallel loops should
be enclosed in the region, a part of the program (with one entrance and one exit)
that may be executed on one or several computational devices (for example, GPU
and CPU). For the GPU it is also necessary to specify the actualization directive
(ACTUAL, GET ACTUAL), which controls data movement between a random
access memory of CPU and memories of accelerators.

5 Results

The effectiveness of the resulting FDVMH-program and parallel program using
MPI technology (MPI program) was evaluated on the K100 supercomputer [16]
with Intel Xeon X5670 CPU and NVIDIA Tesla C2050 GPUs (Fermi architec-
ture), and on a local server with Intel Xeon E5 1660 v2 CPU and NVIDIA
GeForce GTX Titan GPU (Kepler architecture). We also explored weak and
strong scaling. Usage of the different generations of the GPUs made it possible
to show the impact of restrictions of Fermi architecture on program performance.

Each node of K100 has two 6-cores processors and three GPUs. Two proces-
sors are linked by a shared memory (NUMA architecture). As a result of the
experiments, it was found out that the optimal configuration to run FDVMH ver-
sion of proposed algorithm consists of two MPI processes per node (one process
to one physical CPU) and 6 cores and 1 GPU for each MPI process. The parallel
program with MPI uses 12 processes on each node. FDVMH program was also
launched with 12 MPI processes on each node to ensure correct comparison of
FDVMH program with MPI program.

Both programs use the same number of CPU cores. DVMH program uses
the following configurations: only MPI processes, MPI + OpenMP and MPI +
OpenMP + CUDA. A tools for automatic performance balancing between CPU
cores and GPU on each node is a part of DVM system. It was applied to the
last configuration. The result was a variation of proportions of computations
performed by the CPU and GPU from node to node, that was cause by unsta-
ble working of K100 compute nodes. Number of iterations to be performed to
complete the calculation depends on the size of the input data. Therefore, for a
correct comparison of total time of programs execution we choose the number of
iterations per second as a metric. The total execution time of the MPI program
is 3000 s on a single compute node, approximately.

We used 2 GB data per core and 24 GB data per node for weak scaling mea-
surement. Weak scaling results are given in Table 1. The table shows the number
of iterations per second for each configuration (the bigger, the better). In total,
we were able to use 480 CPU cores and 80 GPUs (40 nodes of K100), the size of
the problem in this case was approximately of 1000 GB. The Table 1 shows that
the DVMH program is not concede on execution speed to the MPI program.

The difference between the MPI program and DVMH program using only
the CPU cores does not exceed 3% in favor of DVMH despite the fact that the
manual parallelization uses MPI asynchronous transfers, but DVMH program
uses only the synchronous one. The exchanges between neigh-boring processes

Automated Parallelization of a Simulation Method 39

Table 1. The week scaling (the number of iterations per second)

Nodes 1 2 3 4 5 6 7 8 10 20 40

DVMH (MPI) 0.86 0.85 0.85 0.85 0.84 0.84 0.83 0.82 0.82 0.82 0.82

DVMH (MPI/OpenMP) 0.86 0.85 0.88 0.89 0.84 0.88 0.84 0.88 0.85 0.85 0.84

DVMH (MPI/ OpenMP/CUDA) 1.56 1.53 1.53 1.50 1.51 1.49 1.51 1.51 1.50 1.48 1.49

MPI program 0.85 0.85 0.85 0.85 0.85 0.85 0.83 0.83 0.82 0.82 0.82

are lasting a very small time compared to the time of the main calculations
so this prevents advantages of asynchronous transfers usage. Also the manual
parallelization program has the following problems: the barrier synchronizations,
the shadow edges exchange, an initialization of asynchronous communications
and a factor of communication environment architecture of K100.

The use of GPUs on each process makes the DVMH program execution two
times faster in comparison with the same DVMH program which is run without
using GPUs. The DVM system allows to get detailed statistics of the resources
usage for each loop in a source code. This statistic shows the compiler tries to use
all available resources on GPU. The Kepler architecture provides a significant
acceleration of DVMH program execution and allows to use more number of
registers per thread (256 registers on Kepler compared to 64 registers on Fermi).

Table 2. Comparison of the Fermi and Kepler architecture (the number of iterations
per second)

Variant of running of DVMH program Performance

DVMH (K100 OpenMP (6 cores)) 0.43

DVMH (K100 GPU Fermi) 0.34

DVMH (Xeon E5 OpenMP (6 cores)) 0.52

DVMH (Xeon E5 GPU Kepler) 3.4

The results of hybrid launches with different GPU generations are presented
in Table 2. The Table 2 shows that the performance of different generations of
CPUs practically does not differ (20% in favor of a more modern CPU). But the
involvement of the more modern GPU architecture makes it possible to obtain
6.5x times acceleration over all CPU cores and 10x times acceleration compared
to the Fermi architecture. Also, we can see that the performance of two GPUs
and the 12 cores of CPU of one K100 node is twice lower than the performance
of a single GPU Kepler architecture (ref. Table 1).

The DVMH program was launched on 1, 2, 4, 6 and 12 threads of 6-cores
Intel Xeon E5 for the strong scaling evaluation. These results are presented in
Table 3. We can achieve the linear strong scaling on the DVMH program relative
to parallel DVMH program running on the single thread and the almost linear
strong scalability relative to the serial program.

40 N. Kataev et al.

Table 3. The strong scaling (the number of iterations per second)

Numbers of threads 1 2 4 6 12

DVMH (Xeon E5 OpenMP) 0.08 0.15 0.31 0.45 0.52

Sequential program 0.09 N N N N

6 Conclusion

In this paper the authors examine the possibility of using SAPFOR [10] and
DVM [12] systems to automate the development of parallel programs on the
example of the numerical modeling of 3D elastic waves simulation with complex
free surface geometry. The use of curvilinear grids greatly complicates both man-
ual and automated parallelization. Mapping of a curvilinear grid on a structured
grid has been proposed to solve this problem. The co-design approach enables us
to apply automated analysis and parallelization techniques to enable concurrent
execution of this program.

SAPFOR was used to analyze the program and to get suggestions about what
directives of Fortran-DVMH language should be placed in the source code. We
use DVM system profiling capabilities to tune performance of the parallel pro-
gram. The DVM system also gives us a dynamic tool for a functional debugging
which is suited to verify correctness of all the DVMH directives in the program.
The manual check of DVMH directives correctness is very difficult due to the
fact that the program consists of more than 4000 lines. To ensure the correctness
of program execution on accelerators DVMH comparative debugging was used.
This is a special mode of a DVMH program execution. In this mode the output
data obtained in region during execution on GPU are compared with the data
obtained in the region during execution on CPU with a given degree of accuracy.

The results of program launches demonstrate good strong and weak scaling
(almost linear) both for DVMH program and MPI program. DVMH program
proved to be effective as the MPI program when used under the same conditions.
The DVMH program allows us to use in more efficient way all available resources
on any cluster by automatically load balancing methods implemented in DVMH
runtime system.

The considered tools included in SAPFOR and DVM systems can signifi-
cantly reduce the effort required to produce effective parallel programs that can
be mapped to different architectures. They can also help in the development and
optimization of scalable algorithms for supercomputers.

The source code of the developed programs are available here [17].

Automated Parallelization of a Simulation Method 41

References

1. Glinskiy, B.M., Karavaev, D.A., Kovalevskiy, V.V., Martynov, V.N.: Numerical
modeling and experimental research of the “Karabetov Mountain” mud volcano by
vibroseismic methods (in Russian). Numer. Methods Program. 11, 95–104 (2010)

2. Graves, R.W.: Simulating seismic wave propagation in 3D elastic media using stag-
gered grid finite differences. Bull. Seismol. Soc. Am. 86(4), 1091–1106 (1996)

3. Liseykin, V.D.: Difference Grid, Theory and Applications (in Russian), p. 3254.
FUE Publishing House SB RAS, Novosibirsk (2014)

4. Khakimzyanov, G.S., Shokin, Y.I.: Difference schemes on adaptive grids (in
Russian). Publishing Center NGU, Novosibirsk (2005)

5. Appelo, D., Petersson, N.A.: A stable finite difference method for the elastic wave
equation on complex geometries with free surfaces. Commun. Comput. Phys. 5(1),
84–107 (2009)

6. Komatitsch, D., Erlebacher, G., Goddeke, D., Michea, D.: High-order finite-element
seismic wave propagation modeling with MPI on a large GPU cluster. J. Comput.
Phys. 229(20), 7692–7714 (2010)

7. Karavaev, D.A., Glinsky, B.M., Kovalevsky, V.V.: A technology of 3D elastic wave
propagation simulation using hybrid supercomputers. In: CEUR Workshop Pro-
ceedings 1st Russian Conference on Supercomputing Days 2015, vol. 1482, pp.
26–33 (2015)

8. Intel Parallel Studio: http://software.intel.com/en-us/intel-parallel-studio-home
9. Sah, S., Vaidya, V.G.: Review of parallelization tools and introduction to easypar.

Int. J. Comput. Appl. 56(12), 17–29 (2012)
10. Bakhtin, V.A., Borodich, I.G., Kataev, N.A., Klinov, M.S., Kovaleva, N.V.,

Krukov, V.A., Podderugina, N.V.: Interaction with the programmer in the system
for automation parallelization SAPFOR. Vestnik of Lobachevsky State University
of Nizhni Novgorod 5(2), 242–245 (2012). Nizhni Novgorod State University Press,
Nizhni Novgorod (in Russian)

11. ParaWise Widening Accessibility to Efficient and Scalable Parallel Code. Parallel
Software Products White Paper WP-2004-01 (2004)

12. Konovalov, N.A., Krukov, V.A., Mikhajlov, S.N., Pogrebtsov, A.A.: Fortan DVM:
a language for portable parallel program development. Program. Comput. Softw.
21(1), 35–38 (1995)

13. Bakhtin, V.A., Klinov, M.S., Krukov, V.A., Podderugina, N.V., Pritula, M.N.,
Sazanov, Y.: Extension of the DVM-model of parallel programming for clusters
with heterogeneous nodes. Bulletin of South Ural State University. Series: Math-
ematical Modeling, Programming and Computer Software, vol. 18 (277), no. 12,
pp. 82–92. Publishing of the South Ural State University, Chelyabinsk (2012). (in
Russian)

14. Kataev, N.A.: Static analysis of sequential programs in the automatic paralleliza-
tion environment SAPFOR. Vestnik of Lobachevsky University of Nizhni Nov-
gorod, vol. 5(2), pp. 359–366. Nizhni Novgorod State University Press, Nizhni
Novgorod (2012)

15. Exmaple of program parallelization using DVMH-model. http://dvm-system.org/
en/examples/

16. Heterogeneous cluster K100. http://www.kiam.ru/MVS/resourses/k100.html
17. Source code. https://bitbucket.org/dvm-system/elastic-wave-3d

http://software.intel.com/en-us/intel-parallel-studio-home
http://dvm-system.org/en/examples/
http://dvm-system.org/en/examples/
http://www.kiam.ru/MVS/resourses/k100.html
https://bitbucket.org/dvm-system/elastic-wave-3d

Parallel Algorithm with Modulus Structure
for Simulation of Seismic Wave Propagation

in 3D Multiscale Multiphysics Media

Victor Kostin1, Vadim Lisitsa1, Galina Reshetova2,
and Vladimir Tcheverda1(B)

1 Institute of Petroleum Geology and Geophysics SB RAS,
3, prosp. Koptyug, 630090 Novosibirsk, Russia

vova chev@mail.ru
2 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,

6, prosp. Lavrentiev, 630090 Novosibirsk, Russia

Abstract. This paper presents a problem-oriented approach, designed
for the numerical simulation of seismic wave propagation in models con-
taining geological formations with complex properties such as anisotropy,
attenuation, and small-scale heterogeneities. Each of the named property
requires a special treatment that increases the computational complex-
ity of an algorithm in comparison with ideally elastic isotropic media.
At the same time, such formations are typically relatively small, filling
about 25% of the model, thus the local use of computationally expensive
approaches can speed-up the simulation essentially. In this paper we dis-
cuss both mathematical and numerical aspects of the hybrid algorithm
paying most attention to its parallel implementation. At the same time
essential efforts are spent to couple different equations and, hence, dif-
ferent finite-difference stencils to describe properly the different nature
of seismic wave propagation in different areas. The main issue in the
coupling is to suppress numerical artifacts down to the acceptable level,
usually a few tenth of the percent.

Keywords: Finite-difference schemes · Local grid refinement · Domain
decomposition · MPI · Group of processor units · Master processor unit ·
Coupling of finite-difference stencils

1 Introduction

Numerical simulation of seismic wave propagation in realistic 3D isotropic ideal-
elastic media has become a common tool in seismic prospecting. In particular,
the reverse time migration is based on the solution of multiple forward prob-
lems for the scalar wave equation; the full-wave form inversion assumes massive
simulations as a part of the misfit minimization algorithms. Typically, these sim-
ulations are performed by means of finite differences, as this method combines
a high efficiency with a suitable accuracy [14], and, in particular, a standard
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 42–57, 2017.
DOI: 10.1007/978-3-319-62932-2 4

Seismic Waves in Multiscale Multiphysics Media 43

staggered grid scheme (SSGS) is used [12] with parameters modification when
simulation is done for heterogeneous media [5,13]. However, if a model is com-
plicated by anisotropy, viscoelasticity or small-scale heterogeneities, then more
complex and computationally expensive approaches should be used which nar-
rows the applicability of the numerical methods. Specifically, in order to take
into account seismic attenuation, a generalized standard linear solid (GSLS)
model is commonly used [1], which needs additional memory variables. As a
result, the computational intensity of the algorithm doubles in comparison with
an ideal-elastic medium. If anisotropy is present in a model, then advanced finite
difference schemes such as the Lebedev scheme (LS) [4] or the rotated staggered
grid scheme [11] are needed. For the latter the number of variables per grid cell
and the number of floating point operations (flop) are four times as large as
those for the SSGS used for isotropic elastic media. The presence of small-scale
heterogeneities brings about the necessity of using sufficiently small grid steps
to match the scale, which may drastically increase the size of the problem up to
several orders [3,6].

At the same time, the formations with the above-mentioned properties are
typically small, up to 25% of the model due to the geological conditions under
which they were formed. As a result it is reasonable to use the computation-
ally intense approaches locally and to apply the efficient SSGS elsewhere in the
model. The problem of a proper coupling of different numerical techniques is con-
sidered and studied in this paper. Note that the main numerical method used
for simulation of seismic wave propagation in realistic models is time domain
explicit finite differences. Thus, we deal with stencil computations which can be
efficiently parallelized by the domain decomposition techniques [3]. On the other
hand, peculiarities of the coupling and imbalance in computational workloads
lead to a strong inhomogeneity thus requiring a detailed study of balancing,
scaling and efficiency of a parallel algorithm.

Note that the algorithm presented is aimed at the simulation of wave prop-
agation as applied to the exploration seismology. Thus the physical size of a
typical model is about 500 by 500 by 200 wavelengths, which results in the dis-
cretization of about 5000 by 5000 by 2000 points in each spatial direction or
5 × 1010 grid points. Approximately the same number of degrees of freedom is
needed for the finite element approximation. For anisotropic viscoelastic models
the total number of variables to be stored per grid cell should be about 150, which
leads to the evaluation of memory required in 30 Tb. Assume that a standard
cluster has one Gb of RAM per core and a typical simulation time (wall-clock
time) for one shot is about 6 h with the full use of the available RAM. A typical
acquisition system has about 10000 source positions. Thus, the total machine
time needed for the full experiment is 1.8 × 109 core-hours. Note that the pro-
vided estimations are valid up to ±20% for any numerical technique used for the
full waveform simulation. On the other hand, if the major part of the model is
isotropic ideal-elastic, then the number of parameters to be stored for the finite
difference approximation drops down to 12, which reduces significantly the RAM
requirements, the number of flops, and, consequently, the machine time needed
for simulation.

44 V. Kostin et al.

Below we consider separately each case (attenuation, anisotropy, small-scale
inhomogeneity), provide a mathematical description of the hybrid algorithm and
study its computational aspects in a considerable detail.

2 Elastic Media with Attenuation

2.1 Mathematical Formulation

The generalized standard linear solid (GSLS) model governing seismic wave
propagation in viscoelastic media is described by the equations:

ρ∂u
∂t = ∇σ

∂ε
∂t =

(∇u + ∇uT
)

∂σ
∂t = C1ε +

∑L
l=1 rl

τσ,l
∂rl

∂t = C2εr
l

(1)

where ρ is the mass density; C1 and C2 are fourth order tensors, defining the
model properties; u is the velocity vector; σ and ε are the stress and strain ten-
sors, respectively; rl are the tensors of memory variables. Note that the number
of memory variable tensors is L, which is typically two or three. Proper initial
and boundary conditions are assumed.

For the ideal-elastic models, the tensor C2 is zero which means that the
solution of the last equation is trivial if zero initial conditions are imposed.
Thus, memory variable tensors can be excluded from the equations and the
system turns into that for an ideal-elastic wave equation. This means that there
is no need to allocate random access memory (RAM) for the memory variables
in the ideal-elastic parts of the model.

Assume now a subdomain Ω ⊆ R3, where the full viscoelastic wave equation
is used, while the ideal-elastic wave equation is valid over the rest of the space.
It is easy to prove that the conditions at the interface Γ = ∂ Ω are

[σ · n]|Γ=0, [u]|Γ=0, (2)

where n is the vector of outward normal and [f] denotes a jump of the function
f at the interface Γ . These conditions are the same as those for the elastic
wave equation at the interface. Moreover, if a standard staggered grid scheme
(SSGS) [12] is used, these conditions are automatically satisfied [5,9]. Thus, the
coupling of the models does not require any special treatment of conditions at
the interface and can be implemented by allocating RAM for memory variables
and solving equations for them in the viscoelastic part of the model.

Seismic Waves in Multiscale Multiphysics Media 45

2.2 Parallel Implementation

The parallel implementation of the algorithm has been carried out using static
domain decomposition. It has the following features:

– the amount of RAM and flops per grid cell varies for elastic and viscoelastic
parts of the model; thus individual domain decomposition is needed;

– operators used to update the solution at the interfaces are local in all spatial
directions, thus there is a one-to-one correspondence between two adjacent
subdomains of different types (elastic and viscoelastic);

– computing one time step includes two different types of synchronization
points.

The first statement is self-evident. The second means that it is natural to
change the size of subdomains only in one direction, that is, normal to the
interface. Typically, this is the vertical direction due to the structure of geological
models, that is variation of parameters in the vertical direction is much stronger
than in the horizontal one. After that, no special treatment at the interface is
needed, one just has to allocate RAM for memory variables in the subdomains
where the viscoelastic wave equation is solved. The last statement affects the
efficiency of the algorithm the most. The first type of synchronization point
occurs immediately after the velocity components have been updated. This stage
requires the same amount of flops per grid cell both for elastic and viscoelastic
parts of the algorithm. Another synchronization should be applied when the
stresses are computed. This part is strongly different for the two models. This
means that regardless of the ratio of the elementary subdomains associated with
a single core (node) for elastic and viscoelastic subdomains some of the cores
will have a latency period.

The construction of the optimal domain decomposition is based on minimiza-
tion of the overall computational time (core-hours) of the algorithm. Assume a
computational domain of the volume V , where the viscoelastic and the elas-
tic wave equations are solved in the subdomains of volumes V v = αV and
V e = (1 − α)V , respectively with α ∈ [0, 1]. Denote the elementary volumes
assigned to a single core for the viscoelastic and the elastic parts of the model
are Ṽ v and Ṽ e = β Ṽ v, respectively. The total number of elementary subdomains
(cores) equal to:

N = V v/Ṽ v + V e/Ṽ e =
(

α +
1 − α

β

)
V/Ṽ v.

The computational time is equal to the sum of the times Tu and Tσ needed
to update the velocity and the stress components respectively multiplied by the
number of time steps. Denote by tvσ and teσ the time needed for updating the
stress tensor in the viscoelastic and elastic parts of the model per one grid point
and assume teσ = γtvσ. Similarly, introduce tvu = teu = δtvσ, which are the times
to update the velocity components. Having assumed a uniform mesh, a uniform

46 V. Kostin et al.

cores of the cluster, and taking into account the introduced notations, obtains
the estimation of the computational time of the algorithm:

T (α, β) = C [δ max(1, β) + max(1, βγ)] ×
(

α +
1 − α

β

)

where C is a parameter depending on the total volume, the number of time
steps etc., but it does not depend on the domain decomposition. The para-
meters γ = 0.33 and δ = 0.32 are difficult to estimate analytically, therefore
they are measured experimentally. A series of simulations are carried out using
four different clusters on the base of the Intel processors. They are: NKS-30T
of the Siberian Supercomputer center, MVS-100 K of the Joint Supercomputer
Center of the Russian Academy of Sciences, the clusters SKIF “Tchebyshev”
and “Lomonosov” of Moscow State University, and supercomputer HERMIT at
Stuttgart University. The absolute values of the time needed to update the veloc-
ity and stresses in the elastic and viscoelastic parts of the model vary for different
machines, but their ratios γ and δ are close to constants. Now a minimization
problem can be formulated as finding β delivering a minimum of T (α, β) for a
given α. The plots of T (β) for three different α are provided in Fig. 1, scaled so
that T = 1.

Fig. 1. Normalized core-hours with respect to β.

To confirm the correctness of the derived formula, a series of experiments were
conducted for fixed α and β. The results are plotted in Fig. 1 by the markers,
confirming the correctness of the theoretical estimation. According to this study
if a relative volume of the viscoelastic part is less than 25%, the optimal ratio of
elementary subdomains β should be 1/γ = 3. In this case, the computations on
the base of the hybrid algorithm are two times faster with respect to the pure
viscoelastic simulation.

Seismic Waves in Multiscale Multiphysics Media 47

3 Anisotropy

3.1 Finite Difference Approximation

In this section we consider the simulation of seismic wave propagation in ideal-
elastic anisotropic media. Assume system (1) with a zero attenuation term, that
is C2 ≡ 0. If a medium is isotropic, the stiffness tensor C1 has a specific form:

C1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

This means that the stress-strain relation (the third equation in (1) decouples
into four independent equations which can be solved within different spatial
points. As a result, one may define different components of the wavefield, that
is the velocity vector and the stress tensor components, at different grid points.
After that, standard central differences can be used to approximate system 1.
Consequently one needs to store one copy of each variable per grid cell, 9 values
in total. This scheme is known as a standard staggered grid scheme (SSGS) [11].

For anisotropic media, the stiffness tensor C1 has no special structure except
the symmetry cij = cji. As a result, no separation of variables can be applied,
and all the components of the stress tensor should be defined at the same grid
points. Similarly, all the components of the velocity vector should be stored at
each grid point, different from those for stresses. There are two schemes for
waves’ simulation in anisotropic media: the rotated staggered grid scheme [11]
(Saenger et al., 2010) and the Lebedev scheme (LS) [4]. The detailed comparison
of these approaches one can see in ([7], where the authors have proved that
implementation of the LS is preferred due to a lower demand for computational
resources. However, as compared to the SSGS, the Lebedev scheme requires four
times RAM as much as to store the wavefield variables - four copies of each
component per grid cell (see Figs. 2 and 3 for a greater detail).

3.2 Coupling

Assume the elastic anisotropic wave equation holds in a subdomain Ω ⊆ R3,
while the isotropic wave equation holds over the rest of the space. If differential
equations are considered, the conditions at the interface Γ = ∂Ω are stan-
dard and provided by formula 2. However, if a finite difference approximation
is applied, the number of variables for the LS is four times greater than for

48 V. Kostin et al.

Fig. 2. A grid cell for the SSGS. Filled circles correspond to the points where σxx, σyy

and σzz are defined, σyz is stored at empty circles, σxz is at rhombi, σxy is at crosses.
Velocity components are defined at arrows pointing to corresponding directions.

Fig. 3. A grid cell for the LS. All components of the stress tensor are defined at circles,
all velocity components are stored at rhombi.

the SSGS. This gives additional degrees of freedom and leads to the existence
of spurious modes for the LS. As was shown in [8], the LS based approximation
gives four times more unknown and possesses 12 plane-wave solutions instead of
three. As a result, the wavefield, computed with the LS, can be decoupled into
four parts: u++, u+−, u−+, and u. Here u++ is the velocity vector corresponding
to the true solution, while the others are numerical artifacts. A similar repre-
sentation is valid for the stress tensor also. Note that this decomposition holds
at each grid point. Thus, the correct conjugation conditions at the interface Γ
should be:

for the true components

uV = u++|Γ , σV n = σ++n|Γ

Seismic Waves in Multiscale Multiphysics Media 49

for each artificial mode all components should vanish

u±±|Γ = 0, σ±±n|Γ = 0.

Here n is the vector of external normal to Ω at the interface Γ . From the
physical standpoint these conditions permit the true solution to pass the interface
with no reflections but to keep all the artifacts inside the domain Ω without
transformation to any other type of waves.

The finite difference approximation of the presented conditions leads to the
necessity of wavefield interpolation with respect to tangential directions. This
interpolation has to be done at each time step. Our suggestion is to use the
fast Fourier transform (FFT)-based interpolation, as it possesses exponential
accuracy. Moreover, a typical discretization for the finite difference simulation
of wave propagation is about 10 points per wavelength, which means that about
30% in 1D (90% in 2D) of the FFT spectra of the solution corresponding to high
frequencies are trivial. This property will be used in the parallel implementation
of the algorithm.

Thus, the formulae to update the solution at the interface Γ , where the SSGS
and the LS are coupled, are local in normal direction, but non-local in tangential
directions, requiring the use of the full wavefield in the vicinity of the interface.
On the other hand, if the FFT-based interpolation is applied, only 10% of the
spectrum may be used to reduce the amount of data to be exchanged between
processor units.

3.3 Parallel Implementation

The main features of the algorithm are:

– the amount of RAM and flops for the anisotropic simulation is four times as
great as that for solving the isotropic problem either for updating velocities
or stresses;

– formulae to update the solution at the interface are local in normal direction
and non-local in tangential ones;

– the FFT-based interpolation is used, thus the transferred data can be com-
pressed.

The anisotropic formations are typically sub-horizontal layers elongated through-
out the model. Thus, it is reasonable to define the domain Ω, where the
anisotropic elastic wave equation is solved, as a horizontal layer embedding in the
formation. As a result, one obtains two interfaces (for each anisotropic domain),
they are: z = z+ and z = z−. Within each subdomain, independent 3D domain
decomposition is applied to ensure a high balancing level. Taking into account
the first two peculiarities of the algorithm, the optimal ratio of the isotropic to
anisotropic elementary subdomain is four. To organize the data transfer from
the isotropic to the anisotropic domain, the master processors are allocated in
each group at both sides of the interfaces. These processors receive the wave-
field to be interpolated from the corresponding side of the interface. After that,

50 V. Kostin et al.

Fig. 4. Strong scaling of the hybrid isotropic-anisotropic algorithm. Along the vertical

axis there is the value
nt(n)

n0t(n0)
, where n is the current number of processor units, n0

is some initial value. In our experiments n0 = 400.

the 2D FFT is applied by the master processors, and a significant part of the
spectra is sent to the master processor from the other side of the interface, where
the interpolation and inverse FFT are performed. Finally, the interpolated data
are sent to the processors which need these data. This part is the bottle-neck of
the algorithm; however this is a reasonable price for the non-local data transfer.
Moreover, the use of the non-blocking procedures Isend/Irecv allows overlapping
communications and the update of the solution in the interior of the subdomains.
The strong scaling of this implementation is close to 93% for the use of up to
4000 cores, see Fig. 4.

3.4 Numerical Experiment

For testing the isotropic/anisotropic coupling we used anisotropic Gullfaks 2.5D
model. The model: P-wave velocity and Thomsen’s parameter ε, is presented
in Figs. 5 and 6. Note that if ε = 0, the medium is isotropic, thus there is
one anisotropic layer in this model. The wave propagation in the anisotropic
Gullfaks model was simulated by the hybrid algorithm (Fig. 7) that was based
on the LS, after that the difference was computed (Fig. 8). One may note that
the error caused by the use of the coupled scheme is about 0.2%, which is an
acceptable level for seismic simulations. The speed-up of the hybrid algorithm
is 2.5 in comparison with the purely anisotropic simulation.

Seismic Waves in Multiscale Multiphysics Media 51

Fig. 5. P-wave velocity for Gullfaks model

Fig. 6. Thomsem’s parameter ε for the Gullfaks model.

Fig. 7. Wavefield computed by the hybrid algorithm.

52 V. Kostin et al.

Fig. 8. Difference in the wavefields computed by hybrid algorithm and that based on
the LS.

4 Multi-scale Simulation

4.1 Mathematical Formulation

The algorithm is developed to study scattering and diffraction of seismic waves
on clusters of small-scale heterogeneities such as fractures, cavities and karstic
formations. In such a situation, a detailed description of each fracture is not
reasonable but their distribution within a relatively small volume is of interest.
We assume that the reservoir model is given on a sufficiently fine grid, which
possesses grid steps of the size of several centimeters. A typical seismic wave
has a wavelength of about several dozen meters, with the grid steps of the back-
ground model being about several meters. Thus, a local mesh refinement is used
to perform the full waveform simulation of long wave propagation through a
reservoir with a fine structure. As explicit finite differences are used, the size
of the time step strongly depends on the spatial discretization and so the time
stepping should be local. As a result, the problem of simulation of seismic wave
propagation in models containing small-scale structures becomes a mathematical
problem of the local time-space mesh refinement.

Consider how coarse and fine grids are coupled. The necessary properties
of the finite difference method, based on a local grid refinement are stability
and an acceptable level of artificial/numerical reflections. Scattered waves have
an amplitude about 1% of the incident wave, thus the amplitude of artifacts
should be at most 0.1% of the incident wave. If we refine the grid simultaneously
with respect to time and space, then the stability of finite difference schemes
can be provided via coupling of a coarse and a fine grids on the basis of energy
conservation, which leads to an unacceptable level (more than 1%) of artificial
reflections [2]. We modify this approach so that the grid is refined with respect
to time and space in turn on two different surfaces surrounding the target area
with microstructure. This allows decoupling of the temporal and spatial grid
refinements independently and on this way to provide a desired level of artifacts.

Seismic Waves in Multiscale Multiphysics Media 53

Refinement with Respect to Time. A refinement in time with a fixed
1D spatial discretization is shown in Fig. 9. Its modification for 2D and 3D is
straightforward.

Fig. 9. Embedded stencils for local time step mesh.

Refinement with Respect to Space. To fit different spatial grids, a FFT-
based interpolation is used. The procedure is explained for a 2D problem. The
mutual disposition of a coarse and a fine spatial grids is illustrated in Fig. 10,
which corresponds to updating the stresses. As can be seen, to update the solu-
tion on a fine grid on the uppermost line it is necessary to know the wavefield at
the points marked with black, these points do not exist on a given coarse grid.
Using the fact that all of the points are on the same line (a plane in 3D), we seek
for the values of missing nodes by the FFT-based interpolation. This procedure
allows us to provide a required low level of artifacts (about 0.001 with respect
to the incident wave) generated at the interface of these two grids.

Fig. 10. Spatial steps refinement. Black marks correspond to the points where the
coarse-grid solution is interpolated.

4.2 Implementation of Parallel Computations

The use of the local space-time grid stepping makes difficult to ensure a uniform
work load for processors in the domain decomposition. In addition, the user
should be allowed to locate the reservoir anywhere in the background.

54 V. Kostin et al.

For implementation of parallel computations we introduce two groups of
processors: one for 3D heterogeneous environment (a coarse grid), another for
a fine mesh describing the reservoir (Fig. 11). There is a need for two level of
interactions between processor units: within each group and between the groups
as well. The data exchange within a group is done via faces of the adjacent
subdomains by non-blocking iSend/iReceive MPI procedures. The interaction
between the groups is designed for coupling a coarse and a fine grids.

From Coarse to Fine. The processors aligned to a coarse grid form a group
along each of the faces contacting the fine grid. At each of the faces, Master
Processor (MP) gathers the computed current values of stresses/displacements,
applies the FFT and sends the significant part of the spectrum to the relevant
MP on a fine grid (see Fig. 11). All the subsequent data processing, including
interpolation and inverse FFT, are performed by the relevant MP in the fine
grid group. Subsequently, this MP sends interpolated data to each processor in
its subgroup.

Fig. 11. Processor units for a coarse (left) and a fine (right) grids.

Exchange of the part of the FFT spectrum and interpolation performed by
the MP of the second group essentially decreases the amount of sent/received
data.

From Fine to Coarse. Processors from the second group compute the solution
on the fine grid. For each face of the fine grid block we also design a MP. This
MP collects data from a relevant face, performs the FFT, and sends a part of the
spectrum to the corresponding MP of the first group (a coarse grid). Formally,
the FFT can be excluded and the data to be exchanged can be obtained as
a projection of the fine grid solution onto the coarse grid, however the use of
truncated spectra decreases the amount of data to be exchanged and ensures
stability as it acts as a high-frequency filter.

4.3 Numerical Experiment

The designed algorithm was implemented to study the wave propagation in a
fractured reservoir embedded in a complex model with a buried viscoelastic

Seismic Waves in Multiscale Multiphysics Media 55

Fig. 12. The buried channel model, top view.

Fig. 13. 3D zero off-set cubes.

channel, see Fig. 12. Zero off-set seismic data are provided in Fig. 13, illustrating
the presence of scattered waves associated with a fractured reservoir. Next, these
scattered waves are used in some special imaging techniques in order to reveal
subseismic heterogeneities [10].

5 Conclusion

We have presented the algorithm for the numerical simulation of seismic wave
propagation in complex media. The algorithm is intended for the exploration
seismology and is based on finite differences as they combine a high compu-
tational efficiency with a desired accuracy [3,14]. The main stream-flow in the
modern exploration seismology is the local complication of the models. Thus,
the majority of the models are, in general, isotropic elastic having anisotropic
and viscoelastic intrusions or clusters of small-scale heterogeneities. Implemen-
tation of a brutal-force universal approach brings unrealistic demands on com-
putational resources up to Petabytes of RAM needed and up to 109 core-hours
required for the simulation. The proposed algorithm is based on the multi-physics
background: the complex techniques are used only locally, while the solution in
the major part of the model is computed by an efficient standard staggered
grid finite-difference scheme. Therefore acceleration of the family of the pre-
sented hybrid algorithms strongly depends on the relative volume of the subdo-
mains filled with the media with complicated geometrical and physical properties

56 V. Kostin et al.

(anisotropy, viscoelasticity, subseismic heterogeneities): the larger it is the less
acceleration is. But of course the way of parallel organization of these computa-
tions is also very important to provide solid scalability of the software. We use
two main tricks. We use two independent group of processor units - one for the
regular background medium (say, isotropic elastic without of small-scale intru-
sions), another anisotropic/viscoelastic/with microheterogeneities. The special
way of data exchange applied to organize cooperation of two groups provides
acceptable level of scalability. As one could see it is about 0.8 for a large number
of units involved. It is worth mentioning that to optimize parallelization within
groups we use non-blocking exchange procedures iSend/iReceive and hide wait-
ing time under computations.

Acknowledgements. This research is supported by the RSCF grant 17-17-01128.
The simulations were done on the Siberian Supercomputer Center, Joint Supercom-
puter Center of RAS and on the supercomputer “Lomonosov” of Moscow State Uni-
versity.

References

1. Blanch, J., Robertson, A., Symes, W.: Modeling of a constant Q: methodology
and algorithm for an efficient and optimally inexpensive viscoelastic technique.
Geophysiscs 60, 176–184 (1995)

2. Collino, F., Fouquet, T., Joly, P.: A conservative space-time mesh refinement
method for the 1-D wave equation. Part I: construction. Numer. Math. 95, 197–221
(2003)

3. Kostin, V., Lisitsa, V., Reshetova, G., Tcheverda, V.: Local time-space mesh refine-
ment for simulation of elastic wave propagation in multi-scale media. J. Comput.
Phys. 281, 669–689 (2015)

4. Lebedev, V.I.: Difference analogies of orthogonal decompositions of basic differ-
ential operators and some boundary value problems. Sov. Comput. Math. Math.
Phys. 4, 449–465 (1964)

5. Lisitsa, V., Podgornova, O., Tcheverda, V.: On the interface error analysis for finite
difference wave simulation. Comput. Geosci. 14, 769–778 (2010)

6. Lisitsa, V., Reshetova, G., Tcheverda, V.: Finite-difference algorithm with local
time-space grid refinement for simulation of waves. Comput. Geosci. 16, 39–54
(2011)

7. Lisitsa, V., Vishnevskiy, D.: Lebedev scheme for the numerical simulation of wave
propagation in 3D anisotropic elasticity. Geophys. Prospect. 58, 619–635 (2010)

8. Lisitsa, V., Vishnevsky, D.: On specific features of the Lebedev scheme in simulat-
ing elastic wave propagation in anisotropic media. Numer. Anal. Appl. 4, 125–135
(2011)

9. Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R.J., Halada, L.: 3D heterogeneous
staggered-grid finite-differece modeling of seismic motion with volume harmonic
and arithmetic averagigng of elastic moduli and densities. Bull. Seismol. Soc. Am.
92, 3042–3066 (2002)

10. Protasov, M., Reshetova, G., Tcheverda, V.: Fracture detection by Gaussian beam
imaging of seismic data and image spectrum analysis. Geophys. prospect. 64, 68–82
(2016)

Seismic Waves in Multiscale Multiphysics Media 57

11. Saenger, E.H., Gold, N., Shapiro, S.A.: Modeling the propagation of the elastic
waves using a modified finite-difference grid. Wave Motion 31, 77–92 (2000)

12. Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-
difference method. Geophysics 51, 889–901 (1986)

13. Vishnevsky, D., Lisitsa, V., Tcheverda, V., Reshetova, G.: Numerical study of
the interface error of finite difference simulation of seismic waves. Geophysics 79,
T219–T232 (2014)

14. Virieux, J., Calandra, H., Plessix, R.-E.: A review of the spectral, pseudo-spectral,
finite-difference and finite-element modelling techniques for geophysical imaging.
Geophys. Prospect. 59, 794–813 (2011)

Performance Evaluation of Two Load Balancing
Algorithms on a Hybrid Parallel Architecture

Tiago M. do Nascimento, Rodrigo W. dos Santos, and Marcelo Lobosco(B)

Graduate Program on Computational Modeling,
Federal University of Juiz de Fora, Juiz de Fora, Brazil

tiago.nascimento@uab.ufjf.br, {rodrigo.weber,marcelo.lobosco}@ufjf.edu.br

Abstract. Accelerated Processing Units (APUs) are an emerging archi-
tecture that integrates, in a single silicon chip, the traditional CPU and
the GPU. Due to its heterogeneous architecture, APUs impose new chal-
lenges to data parallel applications that want to take advantage of all
the processing units available on the hardware to minimize its execution
time. Some standards help in the task of writing parallel code for het-
erogeneous devices, but it is not easy to find the data division between
CPU and GPU that will minimize the execution time. In this context,
this work further extends and details load balancing algorithms designed
to be used in a data parallel problem. Also, a sensitivity analysis of the
parameters used in our models was performed. The results have shown
that the algorithms are effective in their purpose of improving the per-
formance of an application on an heterogeneous environment.

Keywords: Load balancing · Hybrid parallel architectures · APU ·
HPC

1 Introduction

Computers are becoming heterogeneous, parallel devices. Multicore CPUs have
now the company of accelerators, such as GPUs. While in some computers accel-
erators are attached as off-board devices, in other computers they appear inte-
grated to the processor. APU [2] is an example of new processor that merge, in
a single chip, the functionality of GPUs with the traditional multicore CPUs.

It is not a trivial task to take advantage of all parallelism available on APUs,
not only due to the heterogeneity of the architecture, but also due to the dis-
tinct types of parallelism their devices were designed to. Multicore CPUs were
designed to deal with Instruction Level Parallelism (ILP) and Thread Level Par-
allelism (TLP), while GPUs were designed to deal with Data Level Parallelism
(DLP)[3]. ILP is automatically explored by the hardware or, in some architec-
tures, by the hardware with the help of the compiler. However, programmers
must structure their code in order to explore TLP and DLP. Some tools, such
as those based on the OpenCL [6] and the OpenACC [1] standards, can help

The authors would like to thank UFJF, FAPEMIG, CAPES, and CNPq.

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 58–69, 2017.
DOI: 10.1007/978-3-319-62932-2 5

Performance Evaluation of Two Load Balancing Algorithms 59

programmers to write code to execute in heterogeneous architectures. OpenCL’s
application programming interface (API) is used to control the platform and
execute programs on the compute devices using TLP and DLP. Some issues,
however, remain open, such as the optimal load balancing (LB) between GPUs
and CPUs in order to explore TLP and DLP simultaneously. An automatic LB
scheme, based on the master-worker parallel pattern [5,6], can be implemented
in OpenCL. However, this parallel pattern is particularly suited for problems
based on TLP [5].

In previous works [7,8] we proposed two distinct solutions based on an in-
order execution for problems based on DLP. In the first algorithm [7], some sim-
ulation steps are used to measure the relative performance of GPUs and CPUs.
This relative performance ratio is then used to divide data between the GPU and
the CPU for the remaining steps. The main idea of the second algorithm [8] is
that the measurement process and the data division can be repeated during the
execution until the changes in the relative performance ratio are below a given
threshold. The first algorithm was named static because once the data is divided
between GPU and CPU, this division is kept until the computation finishes. The
second algorithm was named dynamic because data division can change along
the execution to adjust to the load. This paper has three contributions. The first
one is the extension done on both algorithms in order to reduce the costs of their
probe phases. The second one is sensitivity analysis of their key parameters. The
last contribution is to show that applications that seems to be regular parallel
applications, such as the HIS, may suffer from irregular execution time phases
during their execution due to the values used on their computations, which may
impact the LB algorithm. Although HIS executes exactly the same set of instruc-
tions on different data sets, its execution time changed a lot depending on the
values used in the computation. We suspect that this fluctuation in the execution
time is due to hardware optimizations, and consequently they can affect other
applications with similar characteristics.

The remaining of this work is organized as follows. In Sect. 2 we review and
extend the two LB algorithms. Section 3 presents the performance evaluation.
Finally, Sect. 4 presents our conclusions and plans for future works.

2 Load Balancing Algorithms

From a software perspective, there are two main parallel programming models:
Single Program, Multiple Data (SPMD) and Multiple Program, Multiple Data
(MPMD). In the SPMD model, all the processing units execute the same code,
on multiple data sets. Each processing unit has it own ID, which is used to define
the subset of data it must compute. In the MPMD model, different processing
units execute different codes, on different data. While the SPMD model maps
directly in a hardware that implements the DLP, such as a GPU, the MPMD
maps in a hardware that implements the TLP, such as a multicore CPU.

In this scenario, heterogeneous computers represent a big challenge to the
development of parallel applications, since it can be hard to use all distinct

60 T.M. do Nascimento et al.

devices simultaneously to execute a single program due to their distinct charac-
teristics. In fact, heterogeneous computing on CPUs and GPUs using architec-
tures like CUDA [4] and OpenCL [6] has fixed the roles for each device: GPUs
have been used to handle data parallel work while CPUs handle all the rest.
Although this fixed role for each device appears to be fine, CPUs are idle while
GPUs are handling the data parallel work. Since the CPUs do not block after
starting a computation on the GPUs, they could also handle part of the work
submitted to the GPU. However, it is not common to observe this alternative,
specially if data dependency exists in the code executed on GPUs and CPUs. In
summary, the use of this fixed role model underutilizes the system, since CPUs
are idle while GPUs are computing.

In previous works we have presented two distinct LB algorithms [7,8] to be
used by applications that use DLP. The algorithms were designed to extract
more performance from an heterogeneous device, such as an APU. The key idea
behind the two algorithms is similar: data is split into two parts, one of which will
be computed by the CPUs, while the other one will be computed by the GPUs.
The amount of data that will be assigned to the CPU and GPU depends on
their relative computing capabilities, which is measured in both LB algorithms
during the execution of the application.

The algorithms are generic in the sense they can be used in a wide variety of
data parallel applications. Usually these applications have at least two aligned
loops, in which the inner loop performs the same operations on distinct data
items, as Algorithm 1 shows. Each step of the inner loop (or a collection of loops,
in the case the data structure has more than one dimension) could be executed in
any order, since no data dependency occurs between two distinct loop iterations.
The number of steps the outer loop iterates is determined by the nature of the
problem, but usually a dependency exists between two consecutive steps: the
results of a previous step must be available before the start of a new one, since
these results will be used during computation. In many applications the outer
loop is related to the progress of a simulation over time, and for this reason will
be referred in this work as time-steps. The algorithms are tailored to decide the
amount of data each processing element will receive to compute in the inner
loop. During the computation of each data item, some algorithms require also
access to its neighbors data, which can be located at distinct memory spaces due
to data splitting between CPUs and GPUs. These data, called boundaries, must
be updated between two consecutive iteration of the outer loop. This update
requires the introduction of synchronization operations and the explicit copy of
data. Both data copy and synchronization operations are expensive, deteriorating
performance, and for this reason should be avoided.

2.1 Static Load Balancing Algorithm

The first LB algorithm [7] works as follows. For the first n percent of the time-
steps, both GPU and CPU receive a given percentage of data (PGPU and PCPU)
and the time required to compute them, including the time spent in commu-
nication, is recorded. This information is then used to compute the relative

Performance Evaluation of Two Load Balancing Algorithms 61

1 for all time-steps do
2 for each data item do
3 call cpus/gpus devices to compute a piece of data;
4 end
5 send/receive boundaries;
6 synchronize devices;
7 end

Algorithm 1. Data parallel algorithm

computing power between CPUs and GPUs and consequently determine the
amount of data each device will receive for the remaining time-steps. Equation 1
is used for this purpose.

PG =
Tc

(Tg + Tc)
, (1)

where Tc is given by:
Tc = TCPU × PCPU, (2)

and Tg is given by:
Tg = TGPU × PGPU. (3)

PG is the percentage of data that the GPU will receive to compute in the
remaining time-steps, so 1 − PG is the percentage that the CPU will receive.
TCPU and TGPU are respectively the time CPU and GPU spent to compute
the first n percent of the time-steps and PCPU and PGPU are respectively the
percentage of data that CPU and GPU received to compute in the first n percent
of the time-steps. This algorithm was called static LB because once the data is
divided between GPU and CPU (PG and 1 − PG, respectively), the division
remains the same until the computation finishes.

In the original algorithm [7], the percentage of time-steps used to measure
TCPU and TGPU was fixed in 1%. This work generalizes the original algorithm
since the value of n can be chosen (Algorithm 2, line 12). This modification led
us to do another slight modification in the original algorithm [7]: the initial
percentage of data PGPU and PCPU that were defined by the programmer, are
now computed using a probe time-step (Algorithm2, lines 5–8). The main reason
to this modification is to speed up the execution of the probe phase. If the value
of n is high and data is not well balanced between CPUs and GPUs, the time
spent in the probe phase can be high. The modification tries to reduce this
imbalance and is implemented as follows. A single time-step is used to probe
the relative computing power between CPUs and GPUs (Algorithm2, lines 5–8),
distributing for this purpose 50% of the data set to the CPU and 50% to the GPU
(Algorithm 2, lines 2–3). After this single time-step, the remaining n percent of
the time-steps (Algorithm 2, lines 12–17) will use the value computed during the
probe step and the algorithm proceeds its execution as explained above.

62 T.M. do Nascimento et al.

1 initialize opencl;
2 allocate memory in the CPU memory space (50% of the dataset size);
3 allocate memory in the GPU memory space (the remaining 50%);
4 start clock;
5 for a single time-step do
6 call cpu/gpu to compute their data;
7 synchronize queue;
8 end
9 finish clock;

10 compute PGPU and PCPU and reallocate memory accordingly;
11 start clock;
12 for n% of the time-steps do
13 call cpu/gpu to compute their data;
14 synchronize queue;
15 send/receive boundaries;
16 synchronize queue;
17 end
18 finish clock;
19 recompute PGPU and PCPU and reallocate memory accordingly;
20 for all the remaining time-steps do
21 call cpu/gpu to compute their data;
22 synchronize queue;
23 send/receive boundaries;
24 synchronize queue;
25 end
26 finalize opencl;

Algorithm 2. The static LB algorithm

2.2 Dynamic Load Balancing Algorithm

The dynamic LB algorithm [8] is similar to the static one in the sense that the
same equations are used to determine the amount of data that GPUs and CPUs
will receive. The difference is that this process will be repeated for each p percent
of the time-steps or until PG does not change its value by more than a given
threshold t. In the original work [8], p and t assumed a constant value, both
equal to 1%. This work generalizes the original algorithm, since distinct values
can be chosen to p (Algorithm 3, line 13) and t (Algorithm 3, line 22). Also, the
values of PGPU and PCPU are determined by the algorithm in the same way just
described for the static LB version. The Algorithm 3 presents the new dynamic
version.

Observe that the dynamic algorithm requires the reallocation of memory
(Algorithm 3, line 20) while the difference between old and new PGPU, in percent-
age terms, is greater than the threshold t. The memory reallocation is required
since data is redistributed between GPU and CPU due to the new value of PGPU

and PCPU. This is the main overhead of this algorithm, specially if the amount
of memory that must be reallocated is huge.

3 Performance Evaluation

This section evaluates the performance of the two LB algorithms presented in
this work using for this purpose a simulator of the Human Immune System [9,10].

Performance Evaluation of Two Load Balancing Algorithms 63

1 initialize opencl;
2 allocate memory in the CPU memory space (50% of the dataset size);
3 allocate memory in the GPU memory space (the remaining 50%);
4 start clock;
5 for a single time-step do
6 call cpu/gpu to compute their data;
7 synchronize queue;
8 end
9 finish clock;

10 compute PGPU and PCPU and reallocate memory accordingly;
11 repeat
12 start clock;
13 for p% of the time-steps do
14 call cpu/gpu to compute their data;
15 synchronize queue;
16 send/receive boundaries;
17 synchronize queue;
18 end
19 finish clock;
20 recompute PGPU and PCPU and reallocate memory accordingly;
21 compute d, the difference between old and new PGPU, in percentage terms;
22 until d>t;
23 for all the remaining time-steps do
24 call cpu/gpu to compute their data;
25 synchronize queue;
26 send/receive boundaries;
27 synchronize queue;
28 end
29 finalize opencl;

Algorithm 3. The dynamic LB algorithm

HIS was chosen because it is a representative of DLP algorithm: the same set of
operations must be executed in a large amount of data.

In order to evaluate the performance, the following parameters of the load-
balancing algorithms has been varied: (a) the percentage of time-steps n and p
used to measure TCPU and TGPU and (b) the threshold t. We also evaluated the
impact in performance of the total number of time-steps to be simulated. This
section starts describing the benchmark used to compare the load-balancing algo-
rithms. Next, the computational environment is described. Finally, the results
obtained are presented.

3.1 Benchmark

A three dimensional HIS simulator [9,10] was used to evaluate the performance
of the two load-balancing algorithms. The simulator implements a mathemat-
ical model that uses a set of eight Partial Differential Equations (PDEs) to
describe how some cells and molecules involved in the innate immune response,
such as neutrophils, macrophages, protein granules, pro- and anti-inflammatory
cytokines, reacts to an antigen. The mathematical model simulates the temporal
and spatial behavior of the antigen, as well as the immune cells and molecules.
In the model, an antigen is represented by the lipopolysaccharide. The diffu-
sion of some cells and molecules are described by the mathematical model, as
well as the process of chemotaxis. Chemotaxis is the movement of immune cells

64 T.M. do Nascimento et al.

in response to chemical stimuli by pro-inflammatory cytokine. Neutrophils and
macrophages move towards the gradient of pro-inflammatory cytokine concen-
tration. A detailed discussion about the mathematical model can be found in [9],
and details about its implementation can be found in [10]. This previous work
used C and CUDA in the implementation, using just GPUs in the computation,
while this work uses C and OpenCL, using both CPUs and GPUs available in
the APU in the computation.

The numerical methods used in this work are regular but requires that, at
each time-step, the kernels that execute on CPUs have access to the boundary
points computed by the GPUs on the previous time-step, and vice-versa.

3.2 Computational Platform

Computational experiments were performed on an A10-5800K Radeon APU.
A10-5800K is composed by one CPU and one GPU. The CPU has four 3.8 GHz
cores, with 16 KB of L1 data cache per core, and 2 × 2 MB of L2 cache, so two
cores share a single L2 cache. The GPU has 384 cores running at 800 MHz. The
system has 16 GB of main memory, 2 GB of which are assigned to the exclusive
use of the GPU. Unfortunately this APU model does not allow true memory shar-
ing between CPU and GPU, in the sense that memory operations such as loads
and stores cannot be used to establish direct communication between processes
running on the CPU and GPU. Instead, explicit memory copy operations imple-
mented in OpenCL API must be used to exchange data between processes on
CPU and GPU. The machine runs Linux 3.11.0-15. OpenCL version 1.2 AMD
and gcc version 4.6.3 were used to compile the codes.

3.3 Results

An additional feature that was implemented in this work is the way data division
is implemented. In our previous work [8], the amount of data that were assigned
to CPUs and GPUs considered the number of planes in X×Y ×Z, not the total
number of elements to be computed. In order to minimize data transfer due
to the exchange of boundaries, the percentage of data (PGPU, PCPU, and PG)
were always applied to the plane with smaller size. Since a plane is composed
by thousands of elements, a unique plane could be responsible for the imbalance
between CPUs and GPUs [8]. This work implements another way to divide data,
using individual elements, instead of planes. Figure 1 depicts these two ways to
divide data.

In previous works [7,8], the percentage of time-steps used to measure TCPU

and TGPU in both algorithms was fixed in 1%. In this work, in order to execute
the sensitivity analysis, this value was varied from 1% to 10%, in both algorithms.
Also, for the dynamic load-balancing algorithm, the value of the threshold, that
was also fixed at 1% in [8], was varied from 0.0025% to 10%. Two distinct
simulation time-steps values were used in the simulation: 10, 000 and 1, 000, 000.
In order to evaluate the impact of the data size in performance, two mesh sizes
were used in the evaluation: 50× 50× 50 and 200× 200× 200. We also evaluate

Performance Evaluation of Two Load Balancing Algorithms 65

Fig. 1. Two ways to divide data: division by planes (a) and division by individual
elements (b). The division by individual elements allows the algorithm to use of a
fine-grain data partition in the LB.

the impacts of the way data is partitioned between CPUs and GPUs in the
dynamic LB algorithm. The results for the version that uses the division of data
in planes will be referred as coarse grain version, while the version that divides
data by elements will be referred as fine grain version. Since the mesh sizes are
equal in all dimensions, we choose the Z plane to divide data in the coarse grain
version. The choice of other dimension would not impact performance, since the
same amount of data transfers due to boundaries exchange would occur. The
HIS application was executed at least 3 times for each LB algorithm, and all
standard deviations of the execution time were below 1.7%.

The values used for initial conditions and to set all parameters used in the
simulations are the same used in our previous work [7]. The parallel version
of the code that uses only CPUs, without using our load-balancing algorithms,
executes in 324 s and 13, 320 s for meshes of size 50×50×50 and 200×200×200,
respectively. The parallel version of the code that uses only GPUs, also without
using our load-balancing algorithms, executes in 59 s and 3, 576 s for meshes of
size 50 × 50 × 50 and 200 × 200 × 200, respectively.

Tables 1 and 2 present the parallel results obtained using a total of 10, 000
simulation time-steps for meshes of size 50×50×50 and 200×200×200, respec-
tively. Each line of the tables presents the results for distinct values of n and
p used for the percentage of time-steps in the static and dynamic algorithms,
respectively. Each column represents the distinct versions: static algorithm using
fine-grain data partition (SF), static algorithm using coarse-grain data partition
(SC), dynamic algorithm using fine-grain data partition (DF) and dynamic algo-
rithm using coarse-grain data partition (DC). In the case of the dynamic algo-
rithm, each column presents the execution time obtained for a distinct threshold
value. In the fine-grain versions, the threshold values were chosen in the sensitiv-
ity analysis to represent a single mesh line (composed by 50 elements for a mesh
of size 50×50×50 or 200 elements for a mesh of size 200×200×200), a quarter

66 T.M. do Nascimento et al.

Table 1. Execution time using a total of 10, 000 simulation time-steps for a mesh of
size 50× 50× 50. All results are in seconds. The values in boldface are the best results
obtained.

Time-steps SF SC DF DC

Line Quarter Half 1 plane 3 planes 5 planes

1% 50.9 51.5 48.4 48.4 48.4 50.1 49.3 49.3

2% 50.4 52.0 48.5 48.4 48.5 50.0 49.5 49.5

3% 50.5 52.2 48.7 48.6 48.7 50.5 49.8 49.8

5% 50.5 52.7 48.8 49.0 49.1 50.1 50.2 50.3

10% 51.1 52.0 50.0 50.2 50.4 51.2 51.4 51.3

Table 2. Execution time using a total of 10, 000 simulation time-steps for a mesh of
size 200× 200× 200. All results are in seconds. The value in boldface is the best result
obtained.

Time-steps SF SC DF DC

Line Quarter Half 1 plane 3 planes 5 planes

1% 2,995.7 2,934.0 2,729.8 2,802.4 2,827.2 2,825.1 2,799.8 2,823.0

2% 3,027.3 2,986.2 2,754.6 2,786.5 2,796.4 2,820.6 2,794.5 2,803.4

3% 2,833.3 2,841.5 2,764.0 2,797.6 2,793.4 2,821.1 2,809.8 2,800.2

5% 2,832.3 2,856.6 2,776.7 2,815.9 2,815.0 2,818.5 2,820.6 2,819,9

10% 2.896.1 2,893.1 2,837.5 2,855.7 2,855.7 2,880.6 2,881.1 2,876.9

of the plane (625 or 10, 000 elements) or half a plane (1, 250 or 20, 000 elements).
In the coarse-grain versions, the threshold values were chosen in the sensitivity
analysis to represent one plane (composed by 2, 500 elements for a mesh of size
50× 50× 50 or 40, 000 elements for a mesh of size 200× 200× 200), three planes
(7, 500 or 120, 000 elements) or five planes (12, 500 or 200, 000 elements).

As one can observe, for all mesh sizes, the best values are obtained using the
dynamic algorithm using fine-grain data partition (DF): 1% of the time-steps
and a single mesh line seems to be an adequate configuration to obtain a good
result for this benchmark. If the best values obtained by the dynamic algorithm
(48.4 and 2, 729.8) are compared with the best values obtained by the static
one (50.4 and 2, 832.3), we observe performance gains vary from 3.7% to 4.2%.
Compared to the parallel versions that do not use the LB, the dynamic algorithm
executes 6.7 times faster than the parallel CPU version and 1.2 times faster than
the parallel GPU version for the small mesh. For the larger mesh, the dynamic
algorithm executes 4.9 times faster than the parallel CPU version and 1.3 times
faster than the parallel GPU version.

The best performance obtained by the dynamic algorithm surprised us
because of its memory copies and reallocation costs. At first, we would expected
that the static algorithm would outperform the dynamic one. Neither memory
access times nor cache misses explain the dynamic LB algorithm performance

Performance Evaluation of Two Load Balancing Algorithms 67

Table 3. Execution time using a total of 10, 000 simulation time-steps for a mesh of
size 50 × 50 × 50, initialized with non-zero values. All results are in seconds.

Time-steps SF SC DF DC

Line Quarter Half 1 plane 3 planes 5 planes

1% 62.1 61.7 53.8 59.9 67.7 67.9 67.9 66.5

2% 62.5 62.3 54.8 60.0 60.2 59.6 64.9 64.9

3% 62.5 61.6 55.6 55.7 60.9 60.4 63.0 63.0

5% 61.8 61.6 57.6 62.8 62.4 62.0 61.5 61.5

10% 62.7 62.2 60.0 60.0 60.1 63.1 63.0 63.0

Table 4. Execution time using a total of 10, 000 simulation time-steps for a mesh of
size 200 × 200 × 200, initialized with non-zero values. All results are in seconds.

Time-steps SF SC DF DC

Line Quarter Half 1 plane 3 planes 5 planes

1% 6736,4 6169,7 4692,3 4811,3 4753,3 4698,8 5164,0 6812,3

2% 6129,6 5884,4 4696,5 4766,2 4750,0 4791,9 4898,2 6710,8

3% 5879,7 5912,3 4794,0 4737,5 4784,3 4838,3 5203,7 5202,7

5% 5723,7 5794,9 5021,1 4932,6 5060,3 5015,3 4924,6 6724,3

10% 5607,6 5602,1 5347,1 5339,9 5345,8 5358,8 5379,6 6473,8

since the values are closer to the ones obtained by the static algorithm. We fur-
ther investigate the cause of this problem and discovered that this effect occurs
due to an imbalance in the execution time in the initial and final time-steps of
the application. The cause of the imbalance is a hardware optimization done by
the CPU: in the beginning of the execution, due to the values used as initial con-
ditions, there are a lot of float-point multiplications by zero, which is detected
by the CPU hardware that take an early exit since the execution of the entire
processing pipelining is not required to obtain the final result. However, for the
non-zero values, the multiplication demands the execution of the entire process-
ing pipelining, which takes longer. So, some OpenCL processing units can be
idle while others are very busy. If a slice of the mesh, composed by zero values,
is allocated in the CPU, for example, its computing time will be recorded with a
lower value, and the CPU will receive more data than it can in fact handle. We
observed that the number of non zero values increase as time goes by, so this
hardware optimization is not taken again and the computation time becomes
regular, but just the dynamic load-balancing algorithm can adjust to this new
information. In the final of the computation, the number of zero values increase
again, and both algorithms suffer its effects.

To confirm the impact of the zero values to the imbalance, two final exper-
iments were conducted. First, we executed again the same set of experiments
described previously, but replacing the zero in the initial conditions to a tiny

68 T.M. do Nascimento et al.

Fig. 2. Non-zero values in a mesh of size 50 × 50 × 50. The results were collected at
each 10, 000 time-steps.

value different from zero (1.0×10−10). As a result, the execution time increased,
as Tables 3 and 4 show. For the 50 × 50 × 50 mesh, the increase in the execu-
tion time ranges from 11% to 39%, while for the 200 × 200 × 200 mesh, the
increase ranges from 66% to 141%. This point explains why the dynamic algo-
rithm, despite of its memory costs, performed better than the static algorithm,
and confirms that computing with zero values is faster than computing with non-
zero values. Finally, we collected the execution time for a mesh of size 50×50×50,
but now running 1, 000, 000 time-steps. We also collected the number of non-zero
positions in the mesh, as time goes by. The results were collected at each 10, 000
simulation steps. Figure 2 presents the results. One can observe that in the first
10, 000 time-steps, the number of non-zero values is equal to 44%; this number
increases during the execution to 97% and then drops to 88%.

4 Conclusion and Future Works

The heterogeneous APU architecture imposes new challenges to data parallel
applications that want to take advantage of all the processing units available
on the hardware to minimize its execution time. LB algorithms can help in
this task. This work has presented an extension done on two LB algorithms, a
static and a dynamic ones, in order to reduce the costs of their probe phases.
We have also presented a sensitivity analysis of the parameters used in our
models. The results have shown that the dynamic algorithm using fine-grain data
partition (one line) and 1% of the time-steps to probe the best data division,
obtained the best performance. This configuration outperformed in 4.2% the
best values obtained by the static algorithm. Compared to the parallel versions

Performance Evaluation of Two Load Balancing Algorithms 69

of the benchmark that do not use the LB techniques, the dynamic algorithm
executes up to 6.7 times faster. We have also shown that applications that seems
to be regular parallel applications, such as the one used in the performance
evaluation, suffer from irregular execution time phases during their execution
due to hardware optimizations done in the CPU, which impacts the static LB
algorithm. We plan, as future works, to evaluate the proposed LB algorithms
using other benchmarks as well as in other architectures, such a heterogeneous
cluster composed by distinct CPUs and GPUs.

References

1. The OpenACC application programming interface - version 2.5. Technical report
(2015). OpenAcc.org

2. Branover, A., Foley, D., Steinman, M.: AMD fusion APU: Llano. IEEE Micro
32(2), 28–37 (2012)

3. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach, 5th edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)

4. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors: A Hands-on
Approach, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2013)

5. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming, 1st
edn. Addison-Wesley Professional, Reading (2004)

6. Munshi, A., Gaster, B., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL Program-
ming Guide, 1st edn. Addison-Wesley Professional, Reading (2011)

7. do Nascimento, T.M., de Oliveira, J.M., Xavier, M.P., Pigozzo, A.B., dos Santos,
R.W., Lobosco, M.: On the use of multiple heterogeneous devices to speedup the
execution of a computational model of the human immune system. Appl. Math.
Comput. 267, 304–313 (2015)

8. do Nascimento, T.M., dos Santos, R.W., Lobosco, M.: On a dynamic scheduling
approach to execute opencl jobs on apus. In: Osthoff, C., Navaux, P.O.A., Barrios
Hernandez, C.J., Silva Dias, P.L. (eds.) CARLA 2015. CCIS, vol. 565, pp. 118–128.
Springer, Cham (2015). doi:10.1007/978-3-319-26928-3 9

9. Pigozzo, A.B., Macedo, G.C., Santos, R.W., Lobosco, M.: On the computational
modeling of the innate immune system. BMC Bioinform. 14(Suppl. 6), S7 (2013)

10. Rocha, P.A.F., Xavier, M.P., Pigozzo, A.B., M. Quintela, B., Macedo, G.C., San-
tos, R.W., Lobosco, M.: A three-dimensional computational model of the innate
immune system. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha,
A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7333, pp.
691–706. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31125-3 52

http://OpenAcc.org
http://dx.doi.org/10.1007/978-3-319-26928-3_9
http://dx.doi.org/10.1007/978-3-642-31125-3_52

Accelerated Analysis of Biological Parameters
Space Using GPUs

Marco S. Nobile1,2(B) and Giancarlo Mauri1,2

1 Department of Informatics, Systems and Communication,
University of Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy

nobile@disco.unimib.it
2 SYSBIO.IT Centre of Systems Biology, Milano, Italy

Abstract. Mathematical modeling and computer simulation represent
a valuable mean to integrate experimental research for the study of bio-
logical systems. However, many computational methods—e.g., sensitiv-
ity analysis—require the execution of a massive number of simulations to
investigate the model behavior in physiological or perturbed conditions,
which can be a computationally challenging task. This huge amount of
simulations is necessary to collect data in the vast space of kinetic para-
meters. This paper provides the state-of-the-art of biochemical simu-
lators relying on Graphics Processing Units (GPUs) in the context of
Systems Biology. Moreover, we discuss two examples of integration of
such simulators into computational methods for parameter sweep and
sensitivity analysis, both implemented using the Python language.

1 Introduction

Computational investigation of biological systems is nowadays a valuable and
integrative approach to classic laboratory experiments. Specifically, mechanism-
based modeling and simulation represents the most likely candidate to achieve
a detailed comprehension of cellular processes [1]. Unfortunately, sophisticated
techniques created on top of this approach—e.g., sensitivity analysis [2] or para-
meter estimation [3,4]—are often characterized by huge computational costs,
since they require large amounts of simulations, hampering their practical
applicability. This huge amount of simulations is necessary, because both meth-
ods require the exploration of the kinetic parameters space, in order to determine
how the system reacts or which parameterizations are closer to biological real-
ity. In principle, the problem can be mitigated by the combined use of parallel
computing architectures and advanced simulation algorithms.

There exist multiple options for parallel computation: compute clusters, grid
computing, cloud computing, many-cores architectures like Intel MICs and mas-
sively multi-cores architectures like modern Graphics Processing Units (GPUs).
Whereas the other architectures can be exploited with very limited modifica-
tions to existing softwares, GPUs are characterized by different programming
models, execution hierarchy and memory organization. In particular, GPUs are
based on a “relaxed” SIMD (i.e., Same Instruction, Multiple Data) paradigm [5],
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 70–81, 2017.
DOI: 10.1007/978-3-319-62932-2 6

Accelerated Analysis of Biological Parameters Space Using GPUs 71

which radically differs from the traditional multi-threaded execution, so that
algorithms generally require a complete redesign to fully leverage their pecu-
liar architecture. Nevertheless, the reasons why GPUs represent an attractive
opportunity are manifold:

– GPUs are massively multi-core, integrating thousands computation units
(e.g., Nvidia’s GeForce Titan Z contains 2 × 2880 cores);

– thanks to the high number of cores, GPUs provide access to tera-scale perfor-
mances on common workstations (e.g., the GPU Nvidia GeForce Titan X has
a theoretical peak power of 10.9 TFLOPS for single precision calculations);

– despite the relevant computational power, GPUs are relatively cheap and
more power-efficient with respect to other architectures. For instance, the
GPU Nvidia GeForce 1080 costs $ 599 at the time of writing, has a compu-
tational power of 9 TFLOPS and a power consumption of 180 W;

– GPUs allow to keep the data “local”, without the need for data transfers and
job scheduling;

– it is possible to create compute clusters based on GPUs, like TITAN at
the Oak Ridge National Laboratory [6], credited as the third fastest super-
computer in the planet at the time of writing.

All these advantages counter-balance the difficulty of GPUs programming,
motivating the intense ongoing research in the fields of Bioinformatics, Com-
putational Biology and Systems Biology [7]. In the latter years, many GPU-
powered methods have been developed, so that life scientists without computa-
tional expertise can leverage such implementations for their investigations. This
paper presents a survey of the published tools for GPU-powered simulation in
Systems Biology. Moreover, the manuscript provides two practical examples of
killer-applications implemented in Python: parameter sweep analysis and sen-
sitivity analysis. The goal is to prove the feasibility, simplicity and the com-
putational advantages of the investigation of biochemical systems by means of
GPUs.

The paper is structured as follows. Section 2 introduces the basics of biochem-
ical modeling and simulation. Section 3 presents the state-of-the-art of GPU-
powered biochemical simulation and related issues. Section 4 shows two exam-
ples of how to integrate a GPU-powered simulator into computational methods
for the investigation of biological systems. Finally, Sect. 5 concludes the paper
with a discussion of the results and potential future developments.

2 Methods

We can formalize a reaction-based model (RBM) of a biochemical system by
specifying the set S = {S1, . . . , SN} of chemical species occurring in the system
and the set R = {R1, . . . , RM} of chemical reactions [8]. We define reactions as:

Rj :
N∑

i=1

αjiSi
kj−→

N∑

i=1

βjiSi, (1)

72 M.S. Nobile and G. Mauri

where αji, βji ∈ N are the stoichiometric coefficients associated, respectively,
with the i-th reactant and the i-th product of the j-th reaction, with i =
1, . . . , N , j = 1, . . . ,M . The value kj ∈ R

+ is the kinetic (or stochastic) constant
associated to reaction Rj .

By assuming constant volume and temperature, and relying on mass-action
kinetics [8], a RBM can be automatically converted to a system of coupled
Ordinary Differential Equations (ODEs). As a matter of fact, for each chemical
species s ∈ S, it is possible to derive an ODE describing the variation in time
of its concentrations, according to the structure of the reactions in which it is
involved [9]. This procedure creates a set of N coupled ODEs which can be
simulated using ODE numerical solvers [10]. Among the existing integration
algorithms, LSODA [11] is one of the most popular, thanks to its capability of
dealing with stiff systems by automatically switching between explicit (i.e., the
Adams’ method) and implicit integration methods (i.e., backward differentiation
formulae).

When only a few molecules of chemical species are present, however, ODEs
generally fail to capture the emergent effects of biochemical stochastic processes
[12], like state-switching or multi-stability. In such a case, stochastic simulation
algorithms (e.g., exact methods like Gillespie’s Stochastic Simulation Algorithm
(SSA) [8] and its optimized variants [13], or approximate methods like tau-
leaping [14,15]) can be employed to produce an accurate simulated trajectory
of the RBMs. Since two independent stochastic simulations of the same model
yield different outcomes, the single output dynamics is rarely informative of a
system’s overall behavior. Hence, multiple repetitions are usually necessary to
assess the empirical distribution of the underlying Chemical Master Equation.

Regardless the simulation approach, the computational investigation of bio-
logical systems is a computationally challenging task, because of the huge space
of possible model parameterizations which give rise to possibly different emer-
gent behaviors. This circumstance motivates the need for advanced computing
architectures, most notably GPUs, described in the following section.

3 GPU-Powered Simulators

The simulation of mathematical models allows to determine the quantitative
variations of molecular species in time and in space. Simulation can be performed
with deterministic, stochastic or hybrid algorithms [12]; the last typology is usu-
ally based on a (possibly dynamic) partitioning of reactions that allows to limit
the use of pure stochastic simulation, which is more computationally expensive
than plain ODEs integration [16–18]. In any case, the simulation method should
be chosen according to the scale of the modeled system (i.e., number of mole-
cules) and the possible role of biological noise, not according to performance
motivations1.
1 Simulations can also be extended to keep track of the spatial positioning of species,

which is mandatory in the case of biological system whose components are not uni-
formly distributed in the reaction volume or its compartments. Spatial simulation
will not be discussed in this paper.

Accelerated Analysis of Biological Parameters Space Using GPUs 73

There are two possible ways to leverage GPUs in the case of biological sim-
ulation: fine-grained and coarse-grained simulation. In the first case, the cal-
culations of a single simulation are distributed over the available resources, to
accelerate the simulation of a large model; in the second case, a large number of
parallel simulations (using the same or different parameterizations) are executed
as individual threads and distributed over the available GPU cores. In the fol-
lowing section, the state-of-the-art of deterministic and stochastic GPU-powered
simulation is summarized.

3.1 Deterministic Simulation

When the concentrations of molecular species are high, and the effect of noise
can be neglected, ODEs represent the typical modeling approach for biological
systems. Given a model parameterization (i.e., the initial state of the system and
the set of kinetic parameters), the output dynamics of a system is calculated
using some numerical integrator [10].

Ackermann et al. [19] proposed a GPU-powered coarse-grained simulator,
designed to execute massively parallel simulations of biological molecular net-
works. Their method automatically converts a model, formalized using the Sys-
tems Biology Markup Language (SBML), into a CUDA implementation of the
Euler numerical integrator able to simulate that specific system. The execu-
tion on a Nvidia GeForce 9800 GX2 showed a speed-up between 28× and 63×,
compared to the execution on a CPU Intel Xeon 2.66 GHz (not leveraging any
multi-threading nor vector instructions). In a similar vein, a CUDA implemen-
tation of the LSODA algorithm, named cuda-sim, was presented by Zhou et al.
[20]. The cuda-sim simulator performs the so-called “just in time” (JIT) compila-
tion (that is, the creation, compilation and linking at run-time of automatically
created source code) by converting a SBML model into CUDA code. Authors
claim that cuda-sim achieves a 47× speed-up, with respect to a serial execution
performed with the LSODA implementation contained in the numpy library
[21]. Nobile et al. [22] created an alternative coarse-grained simulator based
on the LSODA algorithm, named cupSODA, designed to execute a large num-
ber of simultaneous deterministic simulations and accelerate typical tasks like
parameter estimation and reverse engineering. Given a RBM model, cupSODA
automatically determines the corresponding system of ODEs and the related
Jacobian matrix, assuming a strictly mass-action kinetics. Differently from cuda-
sim, though, cupSODA prevents JIT compilation, relying on a GPU-side parser.
Using this strategy, cupSODA achieves an acceleration up to 86× with respect
to COPASI [21], here considered as reference CPU-based LSODA biochemical
simulator.

Considering the fine-grained simulation, the only simulator is LASSIE, pro-
posed by Tangherloni et al. [23], LASSIE, is able to leverage implicit and explicit
integrations methods, and distributes the calculations that are required to sim-
ulate a large-scale model characterized by thousands reactions and chemical
species over the available GPU cores. Using a GPU Nvidia GeForce GTX Titan
Z, LASSIE outperforms a sequential simulation running on a CPU Intel i7-4790K
4.00 GHz, achieving up to 90× speed-up.

74 M.S. Nobile and G. Mauri

3.2 Stochastic Simulation

When the effect of biological noise cannot be neglected, randomness can be
described either by means of Stochastic Differential Equations (SDEs), which
extend ODEs with an additional term representing a stochastic process. Alter-
natively, the biochemical process can be defined by using explicit mechanistic
models, such as RBMs [8]. In this second case, the temporal evolution of the
species can be simulated by means of Monte Carlo procedures like SSA [8].

A CUDA version of SSA was developed by Li and Petzold [24]: it achieved
a 50× speed-up with respect to a common single-threaded CPU implementa-
tion. Sumiyoshi et al. [25] extended this methodology by performing a combined
coarse- and fine-grained parallelization. This version achieved a 130× speed-up
with respect to the sequential simulation on the host computer. Finally, Komarov
and D’Souza [26] designed GPU-ODM, a fine-grained simulator of large-scale
models based on SSA, which exploits special data structures and CUDA func-
tionalities. Thanks to these optimizations, GPU-ODM outperformed the most
advanced (even multi-threaded) CPU-based implementations of SSA.

The τ -leaping algorithm allows a faster generation of the dynamics of sto-
chastic models with respect to SSA, by calculating multiple reactions over longer
simulation steps [15,27]. Komarov et al. [28] proposed a fine-grained τ -leaping
implementation, which becomes efficient in the case of extremely large biochem-
ical networks (i.e., characterized by more than 105 reactions). Nobile et al. [29]
proposed cuTauLeaping, a coarse-grained implementation of the optimized ver-
sion of τ -leaping proposed by Cao et al. [15]. Thanks to the optimization of data
structures in low-latency memories, the use of advanced functionalities and the
splitting of the algorithm into multiple phases, cuTauLeaping was up to three
orders of magnitude faster on a GeForce GTX 590 GPU than the CPU-based
implementation of τ -leaping contained in COPASI [21], executed on a CPU Intel
Core i7-2600 3.4 GHz.

4 Applications of GPU-Powered Simulators

This section describes two examples of applications of GPU-powered simulators:
parameter sweep and sensitivity analysis. All tests were performed on a GPU
Nvidia GeForce Titan Z, 2880 cores, 876 MHz. The CPU was an Intel i7-3537U,
2.5 GHz. The OS was Microsoft Windows 8.1 Enterprise 64 bit, CUDA v7.5 with
driver 353.90, COPASI v4.15 build 95. In all tests, we exploit the cuTauLeaping
simulator [29], v1.0.0, which can be downloaded from GitHub (https://github.
com/aresio/cuTauLeaping). In order to replicate the experiments, it is necessary
to also download the following files from the aforementioned GitHub repository:

– the python script for the conversion of SBML files to cuTauLeaping’s input
format SBML2BSW.py;

– the example SBML file schloegl.xml.

We want to stress the fact that the experiments can be performed on different
models, provided that the SBML is based on mass-action kinetics. For the sake of

https://github.com/aresio/cuTauLeaping
https://github.com/aresio/cuTauLeaping

Accelerated Analysis of Biological Parameters Space Using GPUs 75

simplicity, in all tests that follow, it is assumed that the cuTauLeaping executable
binary file is copied in the input folders created by SBML2BSW.py script.

4.1 Parameter Sweep Analysis

Parameter Sweep Analysis (PSA), also known as parameter scan analysis, is
the systematic modification of a model’s parameterization in order to investi-
gate the impact of one or more synergistic perturbations. PSA represents the
most straightforward application of coarse-grained simulation: the GPU loads
the multiple parameterizations of the model and performs the simulations in
parallel.

In order to present a simple example of GPU-powered PSA on a stochastic
model, we exploit cuTauLeaping [29]. This tool does not natively import SBML
files and relies on its proprietary format; however, a simple python script can be
used to convert an arbitrary SBML into the proprietary format. The conversion
is performed with the following statement:

> python SBML2BSW.py <sbmlfile.xml> <output directory>

where sbmlfile.xml is the input SBML file to be converted and
output directory is the directory that will contain the input files for
cuTauLeaping. This command will create the base of the model that will be
used for the parallel simulations. However, in order to perform a PSA, we need
to add four additional files to the input folder:

– c matrix: this file must have 32 × B lines, B ∈ N>0, one for each parameter-
ization to be tested. Each line has M values, one for each reaction, defining
the values of the stochastic constants in that specific parameterization. All
values must be tab-separated;

– MX 0: this file must have 32×B lines, B ∈ N>0, one for each parameterization
to be tested. Each line has N values, one for each chemical species, defining
the values of the initial amounts in that specific parameterization. All values
must be tab-separated;

– M feed (optional): this file must have 32 × B lines, B ∈ N>0, one for each
parameterization to be tested. Each line has N values, one for each chemical
species, defining the initial amounts of the species whose amount must be fixed
(i.e., constant) throughout the simulation, in that specific parameterization.
All values must be tab-separated;

– t vector: this file has T ∈ N>0 rows and specifies the number T of times
instants in which the chemical species must be sampled.

These four files can be programmatically generated using any programming lan-
guage. In the case of stochastic models, a subset of the parameterizations can be
identical, in order to assess the frequency distributions of some chemical species,
given a specific parameterization.

When the input files are completed, we can finally launch cuTauLeaping and
execute the parallel simulations. cuTauLeaping is a command-line tool which
can be run using the following arguments:

76 M.S. Nobile and G. Mauri

Fig. 1. Example of GPU-powered stochastic PSA on the Schlögl model.

> ./cuTauLeaping input dir tpb bpg gpu 0 output dir pref

where input folder is the directory which contains the input files; cuTauLeap-
ing will perform tpb × bpg simulations, organized in bpg blocks, each block
composed of tpb threads; output dir is the directory in which output files will
be written; the files will be named pref z, with z = 0, . . . , tpb × bpg − 1. One
example is reported in Fig. 1, which shows a PSA on the Schlögl model [30], a
known system characterized by bi-stability. In this experiment, a single parame-
ter (i.e., the kinetic constant c3) is varied in the interval [6.9 · 10−4, 1.4 · 10−3].
Specifically, 20 different values in this interval are selected and used to perform
213 simulations, for a total of 163 840 simulations. Figure 1 shows the frequency
distributions of the chemical species “X” at time t = 10 [a.u.], obtained with each
parameterization, highlighting the change of the bi-modal distribution using dif-
ferent values for c3. The total running time to execute this PSA-1D was 7.34 s
with cuTauLeaping, and 911.74 s with the tau-leaping implementation contained
in the software COPASI [21], thus achieving a speed-up of more than two orders
of magnitude on GPUs2.

4.2 Sensitivity Analysis

Sensitivity Analysis (SA) is a computational method which investigates how the
uncertainty in the output of a given mathematical model can be apportioned
to different sources of uncertainty in its inputs [31]. The result of a SA is gen-
erally a ranking of the sensitivity coefficients. A variety of SA methods can be

2 Notably, the creation of the figure required approximatively 3 min.

Accelerated Analysis of Biological Parameters Space Using GPUs 77

employed for the investigation of biochemical systems (e.g., elementary-effects
[32,33], variance-based sensitivity [34], derivative-based sensitivity [35]).

Even though SA represents a powerful means to understand a system’s behav-
ior, a proper investigation of the multi-dimensional parameters space implies a
combinatorial explosion of kinetic configurations to be simulated. Fortunately,
since all simulations are mutually independent, the huge computational effort
can be mitigated by means of a parallel architecture and, notably, by adopting
coarse-grained GPU-powered simulators.

In Listing 1.1, it is shown how the stochastic simulator cuTauLeaping can
be integrated with the python library SAlib [36] to perform a SA of the Schlögl
model using Sobol’s method (line 41), generating 2048·(4·2+2) = 20480 samples
of the search space using Saltelli’s approach (line 16), considering boundaries of
the parameters space equal to ±10% the nominal value (rows 9–10). The SA will
determine the ranking of the sensitivity of stochastic parameters, with respect to
the amount of chemical species “X” (lines 27), here considered as the output of
the SA. We exploit the input directory created in the previous section, creating
ex novo new coarse-grained input files (rows 21–27). Finally we determine and
print the sensitivity coefficients (rows 41–42).

Listing 1.1. Example of SA performed with SAlib and cuTauLeaping.

1 from SALib . sample import s a l t e l l i
2 from SALib . analyze import sobol , morr is
3 import numpy as np
4 from subprocess import check output
5
6 problem = {
7 ’ num vars ’ : 4 ,
8 ’ names ’ : [’ c1 ’ , ’ c2 ’ , ’ c3 ’ , ’ c4 ’] ,
9 ’ bounds ’ : [[2 . 7 e−7, 3 .3 e −7] , [9 e−5, 1 .1 e −4] ,

10 [9 e−4, 1 .1 e −3] , [3 . 1 5 , 3 . 8 5]]
11 }
12
13 N = 2048
14
15 # Generate N∗(num vars∗2+2) samples
16 param values = s a l t e l l i . sample (problem , N, c a l c s e c ond o rd e r=True)
17 np . savetxt (” c matr ix ” , param values , d e l im i t e r=”\ t ”)
18
19 # Generate cuTauLeaping ’ s input f i l e s
20 MX 0 = [[100000 , 250 , 200000]]∗ len (param values)
21 np . savetxt (”MX 0” , MX 0 , d e l im i t e r=”\ t ” , fmt=”%d\ t%d\ t%d”)
22 MX feed = [[100000 , 0 , 200000]]∗ len (param values)
23 np . savetxt (”MX feed” , MX feed , d e l im i t e r=”\ t ” , fmt=”%d\ t%d\ t%d”)
24 t v e c t o r = [5 . 0]
25 np . savetxt (” t v e c t o r ” , t v e c t o r)
26 np . savetxt (” c s v e c t o r ” , [1])
27
28 # Run model with cuTauLeaping
29 BPG = len (param values) / 32
30 r e t = check output ([” . . / cuTauLeaping . exe ” , ” . ” , ”32” , s t r (BPG) ,
31 ”0” , ”0” , ” output” , ” s ch sa ” , ”0” , ”0” , ”2”])
32 r e t = re t . s p l i t (”\ r\n”) # s p l i t rows
33 r e t = map(lambda x : x . s p l i t (”\ t ”) , r e t) # s p l i t columns
34 r e t = f i l t e r (lambda x : len (x)>1, r e t) # remove empty l i n e s
35
36 # Read back the r e s u l t s
37 Y = np . empty ([param values . shape [0]])
38 for i , X in enumerate (param values) :
39 Y[i]= r e t [i] [1] # take amount and d i s ca rd time
40
41 # Perform ana l y s i s with Sobol ’ s method and
42 # pr in t f i r s t −order s e n s i t i v i t y i nd i c e s
43 Si = sobo l . analyze (problem , Y, p r i n t t o c o n s o l e=True)
44 print Si [’ S1 ’]

The sensitivity indices of the four stochastic constants, calculated by SAlib,
are equal to: 0.389, 0.115, 0.025 and 0.319, corresponding to the ranking

78 M.S. Nobile and G. Mauri

c1, c4, c2, c3, which is consistent with published literature [37]. The integration
of GPU-powered simulation in SAlib is pretty straightforward, and allows a rel-
evant reduction of the overall running time (less than 10 s, including input files
generation).

5 Discussion and Conclusions

General-purpose GPU computing represents a powerful alternative to classic
parallel or distributed computing (e.g., multi-threading, compute clusters, grid
computing) for scientific computation. GPUs are massively power-efficient multi-
core devices, cheaper than classic parallel architectures, providing tera-scale per-
formances on common workstations. Moreover, since GPUs keep the computa-
tion “local”, they prevent many issues affecting the alternative field of cloud
computing: security, privacy, data “lock-in”, and sensible data transfer.

Although GPUs are difficult to program—due to their peculiar memory and
execution hierarchies—many GPU-powered tools are already available for Sys-
tems Biology, Computational Biology, and Bioinformatics [7]. This paper pro-
vides a survey of GPU-powered biochemical simulators, summarizing the deter-
ministic and stochastic simulators presented in literature. The article also shows
two applications of coarse-grained simulation—i.e., parameter sweep analysis and
sensitivity analysis—explaining how to seamlessly integrate a GPU-powered sim-
ulator (i.e., cuTauLeaping [29]) into such tools, implemented with the Python
language. Thanks to this approach, the execution time of such activities was
strongly reduced. It is worth noting that coarse-grained simulation can acceler-
ate further tasks like parameter estimation [3,4] or the reverse engineering of
kinetic biochemical models [38,39], in which the structure of the RBM is com-
pletely or partially unknown.

The example code provided in this paper shows how the simulators can be
easily integrated and exploited to perform useful tasks; however, these activities
required the implementation of specific portions of code to create the neces-
sary input files. In order to further simplify the adoption of GPUs, there are
some projects aimed to further reduce any residual complexity. For instance, the
Computational Systems Biology platform COSYS [40] was designed to provide
scientists with a user-friendly visual interface to GPU-powered tools. Morever,
the applications of GPUs in Systems Biology are not limited to biochemical
simulation: GPUs can indeed be exploited to perform different tasks in Systems
Biology [7], notably large-scale network analytics using the nvGRAPH library
[41] which can be applied to genome-wide data, like the Cancer Genome Atlas.

It is worth noting that there exists a gap in the state-of-the-art of GPU-
powered biochemical simulation, represented by the lack of hybrid simulation
methods. These simulators partition the reactions set into “slow” and “fast”
regimes (including meso-scale regimes [16]), which are then simulated using
deterministic and stochastic approaches [17,18]. Hybrid simulation is more ade-
quate with such models than pure “exact” stochastic simulation for two rea-
sons: (i) stochastic simulation proceeds by calculating one reaction at a time,

Accelerated Analysis of Biological Parameters Space Using GPUs 79

with a time-step that is inversely proportional to the number of molecules. When
some chemical species have high concentrations, stochastic simulations becomes
unfeasible; (ii) hybrid simulation is also more accurate than strict deterministic
simulation, as the latter completely loses the emergent phenomena due to sto-
chasticity. A GPU-powered hybrid simulator—able to dynamically re-partition
the reactions set to adapt to system’s behavior—would easily take the place
of all existing simulators, introducing a methodology to efficiently simulate any
kind of RBM without the need for any modeling and simulation expertise.

The cuTauLeaping simulator considered in our tests is composed of three
different kernels: one kernel implements the tau-leaping simulations; one kernel
implements SSA (performed when the estimation of τ value is too small); a
third kernel verifies the termination criterion for the simulation and terminates
the run. Thus, the CPU is basically unused during kernels’ execution and its only
responsibility is to transfer data between the host and the device at the beginning
and at the end of the simulations, respectively. As a future improvement of the
simulator, we will consider the use of multi-threading to leverage the additional
cores on the CPU to further increase the level of parallelism.

References

1. Cazzaniga, P., Damiani, C., Besozzi, D., Colombo, R., Nobile, M.S., Gaglio, D.,
Pescini, D., Molinari, S., Mauri, G., Alberghina, L., Vanoni, M.: Computational
strategies for a system-level understanding of metabolism. Metabolites 4, 1034–
1087 (2014)

2. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,
Saisana, M., Tarantola, S.: Analysis, Global Sensitivity Analysis: The Primer.
Wiley-Interscience, Hoboken (2008)

3. Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical path-
ways: a comparison of global optimization methods. Genome Res. 13(11), 2467–
2474 (2003)

4. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: A GPU-based
multi-swarm PSO method for parameter estimation in stochastic biological systems
exploiting discrete-time target series. In: Giacobini, M., Vanneschi, L., Bush, W.S.
(eds.) EvoBIO 2012. LNCS, vol. 7246, pp. 74–85. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29066-4 7

5. Nvidia: Nvidia CUDA C Programming Guide 8.0 (2016)
6. Bland, A.S., Wells, J.C., Messer, O.E., et al.: Titan: early experience with the

Cray XK6 at oak ridge national laboratory. In: Proceedings of Cray User Group
Conference (CUG 2012) (2012)

7. Nobile, M.S., Cazzaniga, P., Tangherloni, A., Besozzi, D.: Graphics processing units
in bioinformatics, computational biology and systems biology. Brief. Bioinform.
(2016)

8. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Com-
put. Phys. 81, 2340–2361 (1977)

9. Wolkenhauer, O., Ullah, M., Kolch, W., Kwang-Hyun, C.: Modeling and simula-
tion of intracellular dynamics: choosing an appropriate framework. IEEE Trans.
Nanobiosci. 3(3), 200–207 (2004)

http://dx.doi.org/10.1007/978-3-642-29066-4_7

80 M.S. Nobile and G. Mauri

10. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley,
Chichester (2003)

11. Petzold, L.: Automatic selection of methods for solving stiff and nonstiff systems
of ordinary differential equations. SIAM J. Sci. Stat. Comput. 4, 136–148 (1983)

12. Wilkinson, D.: Stochastic modelling for quantitative description of heterogeneous
biological systems. Nat. Rev. Genet. 10(2), 122–133 (2009)

13. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)

14. Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in stochastic chem-
ically reacting systems: the implicit tau-leaping method. J. Chem. Phys. 119,
12784–12794 (2003)

15. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-
leaping simulation method. J. Chem. Phys. 124(4), 044109 (2006)

16. Re, A., Caravagna, G., Pescini, D., Nobile, M.S., Cazzaniga, P.: Approximate simu-
lation of chemical reaction systems with micro, meso and macro-scales. In: Proceed-
ings of the 13th International Conference on Computational Intelligence Methods
for Bioinformatics and Biostatistics (CIBB2016) (2016)

17. Harris, L.A., Clancy, P.: A “partitioned leaping” approach for multiscale modeling
of chemical reaction dynamics. J. Chem. Phys. 125(14), 144107 (2006)

18. Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of cou-
pled chemical or biochemical reactions. J. Chem. Phys. 122(5), 054103 (2005)

19. Ackermann, J., Baecher, P., Franzel, T., Goesele, M., Hamacher, K.: Massively-
parallel simulation of biochemical systems. In: Proceedings of Massively Parallel
Computational Biology on GPUs, Jahrestagung der Gesellschaft für Informatik
e.V, pp. 739–750 (2009)

20. Zhou, Y., Liepe, J., Sheng, X., Stumpf, M.P.H., Barnes, C.: GPU accelerated bio-
chemical network simulation. Bioinformatics 27(6), 874–876 (2011)

21. Hoops, S., Sahle, S., Gauges, R., et al.: COPASI - a COmplex PAthway SImulator.
Bioinformatics 22, 3067–3074 (2006)

22. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G.: GPU-accelerated simulations
of mass-action kinetics models with cupSODA. J. Supercomputing 69(1), 17–24
(2014)

23. Tangherloni, A., Nobile, M.S., Besozzi, D., Mauri, G., Cazzaniga, P.: LASSIE:
simulating large-scale models of biochemical systems on GPUs. BMC Bioinform.
18(1), 246 (2017)

24. Li, H., Petzold, L.R.: Efficient parallelization of the stochastic simulation algo-
rithm for chemically reacting systems on the graphics processing unit. Int. J. High
Perform. Comput. Appl. 24(2), 107–116 (2010)

25. Sumiyoshi, K., Hirata, K., Hiroi, N., et al.: Acceleration of discrete stochastic
biochemical simulation using GPGPU. Front. Physiol. 6(42) (2015)

26. Komarov, I., D’Souza, R.M.: Accelerating the gillespie exact stochastic simulation
algorithm using hybrid parallel execution on graphics processing units. PLoS ONE
7(11), e46693 (2012)

27. Gillespie, D.T., Petzold, L.R.: Improved leap-size selection for accelerated stochas-
tic simulation. J. Chem. Phys. 119, 8229–8234 (2003)

28. Komarov, I., D’Souza, R.M., Tapia, J.: Accelerating the gillespie τ -leaping method
using graphics processing units. PLoS ONE 7(6), e37370 (2012)

29. Nobile, M.S., Cazzaniga, P., Besozzi, D., et al.: cuTauLeaping: a GPU-powered
tau-leaping stochastic simulator for massive parallel analyses of biological systems.
PLoS ONE 9(3), e91963 (2014)

Accelerated Analysis of Biological Parameters Space Using GPUs 81

30. Wilhelm, T.: The smallest chemical reaction system with bistability. BMC Syst.
Biol. 3(1), 90 (2009)

31. Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis for chem-
ical models. Chem. Rev. 105, 2811–2827 (2005)

32. Morris, M.D.: Factorial sampling plans for preliminary computational experiments.
Technometrics 33(2), 161–174 (1991)

33. Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensi-
tivity analysis of large models. Environ. Model. Softw. 22(10), 1509–1518 (2007).
Modelling, computer-assisted simulations, and mapping of dangerous phenomena
for hazard assessment

34. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Vari-
ance based sensitivity analysis of model output. Design and estimator for the total
sensitivity index. Comput. Phys. Commun. 181(2), 259–270 (2010)

35. Sobol, I.M., Kucherenko, S.: Derivative based global sensitivity measures and
their link with global sensitivity indices. Math. Comput. Simul. 79(10), 3009–3017
(2009)

36. Usher, W., Herman, J., Whealton, C., Hadka, D.: Salib/salib: Launch!, October
2016

37. Degasperi, A., Gilmore, S.: Sensitivity analysis of stochastic models of bistable
biochemical reactions. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.)
SFM 2008. LNCS, vol. 5016, pp. 1–20. Berlin, Heidelberg (2008). doi:10.1007/
978-3-540-68894-5 1

38. Nobile, M.S., Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Reverse engineer-
ing of kinetic reaction networks by means of cartesian genetic programming and
particle swarm optimization. In: 2013 IEEE Congress on Evolutionary Computa-
tion, vol. 1, pp. 1594–1601. IEEE (2013)

39. Koza, J.R., Mydlowec, W., Lanza, G., Yu, J., Keane, M.A.: Automatic compu-
tational discovery of chemical reaction networks using genetic programming. In:
Džeroski, S., Todorovski, L. (eds.) Computational Discovery of Scientific Knowl-
edge. LNCS, vol. 4660, pp. 205–227. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73920-3 10

40. Cumbo, F., Nobile, M.S., Damiani, C., Colombo, R., Mauri, G., Cazzaniga, P.:
COSYS: computational systems biology infrastructure. In: Proceedings of the 13th
International Conference on Computational Intelligence Methods for Bioinformat-
ics and Biostatistics (CIBB2016) (2016)

41. Nvidia: nvGRAPH v8.0 (2016)

http://dx.doi.org/10.1007/978-3-540-68894-5_1
http://dx.doi.org/10.1007/978-3-540-68894-5_1
http://dx.doi.org/10.1007/978-3-540-73920-3_10
http://dx.doi.org/10.1007/978-3-540-73920-3_10

Parallel Models and Algorithms
in Numerical Computation

Fragmentation of IADE Method
Using LuNA System

Norma Alias1 and Sergey Kireev2,3(B)

1 Faculty of Science, Ibnu Sina Institute,
Universiti Teknologi Malaysia, Johor Bahru, Malaysia

norma@ibnusina.utm.my
2 ICMMG SB RAS, Novosibirsk, Russia

kireev@ssd.sscc.ru
3 Novosibirsk National Research University, Novosibirsk, Russia

Abstract. The fragmented programming system LuNA is based on the
Fragmented Programming Technology. LuNA is a platform for building
automatically tunable portable libraries of parallel numerical subrou-
tines. This paper focuses on the parallel implementation of the IADE
method for solving 1D partial differential equation (PDE) of parabolic
type using LuNA programming system. A fragmented numerical algo-
rithm of IADE method is designed in terms of the data-flow graph. A
performance comparison of different algorithm’s implementations includ-
ing LuNA and Message Passing Interface are given.

Keywords: Fragmented Programming Technology · LuNA system ·
Algorithm fragmentation · IADE method

1 Introduction

Today’s rapid development of parallel computing systems makes accumulation
of a portable numerical library of parallel subroutines an important and difficult
issue. A variety of parallel computer architectures including clusters, multicore
and many-core CPUs, accelerators, grids and hybrid systems makes it difficult
to develop a portable parallel algorithm and implement it efficiently for given
hardware. The Fragmented Programming Technology (FPT) [1] is an approach
to parallel programming that is aimed to solve the problem of parallel numerical
library accumulation [2,3]. It suggests to write a numerical algorithm in an
architecture-independent form of a data-flow graph and to tune it to a given
computer system in an automated way.

The purpose of the paper is to demonstrate the current implementation of
FPT on a solution of a certain problem and to evaluate the obtained perfor-
mance. The paper considers a model problem of 1D parabolic equation solution

The work has been supported by research grant FRGS/1/2015/TK10/UTM/02/7
and RAS Presidium Programs II.2Π/I.3-1 and II.2Π/I.4-1.

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 85–93, 2017.
DOI: 10.1007/978-3-319-62932-2 7

86 N. Alias and S. Kireev

using modification of IADE method [4] as an example of FPT application. A frag-
mented algorithm for the considered problem was developed and implemented
using fragmented programming system LuNA [5]. A performance comparison of
different algorithm implementations including LuNA and MPI was made.

2 Fragmented Programming Technology

The FPT defines a representation of an algorithm and a process of its optimiza-
tion to a certain parallel architecture. In FPT the representation of an algorithm
(called “fragmented algorithm”) have the following peculiarities:

– portability – the fragmented algorithm does not depend on a certain parallel
architecture of a multicomputer,

– automated tunability – the fragmented algorithm is able to be semi-automati-
cally tuned to a supercomputer of a certain class.

These properties allow to accumulate a library of parallel numerical subroutines
with high portability among present and future parallel architectures. In order
to satisfy these properties in FTP the following decisions were made:

– The fragmented algorithm is defined as a bipartite data-flow graph with nodes
being single assignment variables (called “data fragments”) and single execu-
tion operations (called “fragments of computation”). Each fragment of com-
putation is a designation of execution of some pure function called “code frag-
ment”. Arcs in the graph correspond to data dependencies originated from
numerical algorithm. So, the fragmented algorithm does not have any imple-
mentation specific elements, and is thus portable. Declarative concurrency of
the algorithm representation allows to execute fragments of execution in any
order that does not contradict to data dependencies.

– Data fragments of a fragmented algorithm are actually aggregates of atomic
variables. The sizes of the data fragments are parameters of the algorithm.
Consequently, the fragments of computation are aggregates of atomic vari-
ables and operations. On execution of a given fragmented algorithm the sizes
of fragments should be tuned to characteristics of a specific parallel computer,
for example, to fit a cache memory size.

– The problem of automated tuning of a fragmented algorithm to a certain
parallel computer is supposed to be solved in FPT by a special execution
system. In order to transfer all existing algorithms to a new supercomputer
architecture a new execution system should be implemented.

LuNA programming system [5–7] is a realization of FPT for a class of mul-
ticomputers with multicore computing nodes. It comprises LuNA language and
LuNA execution system. LuNA language is based on the structure of fragmented
algorithm with addition of means for working with enumerated sets of fragments,
for organization of structured code fragments that are similar to subroutines in
common programming languages, and provides an interface with code fragments
written in C++. LuNA execution system consists of a compiler, a generator and

Fragmentation of IADE Method Using LuNA System 87

a runtime system [5]. LuNA compiler receives a fragmented algorithm written
in LuNA language as input and makes common static optimizations. LuNA
generator in turn makes architecture specific static optimizations. Then, LuNA
runtime system executes the tuned algorithm on a certain multicomputer in
semi-interpreted mode providing necessary dynamic properties such as workload
balancing.

3 IADE-RB-CG Method

Iterative Alternating Decomposition Explicit (IADE) method has been used for
solution of multidimensional parabolic type problems since 90s [4,8,9]. Being
the second-order accurate in time and fourth-order accurate in space, the IADE
method is proved to be more accurate, more efficient, and has better rate of
convergence than the classical fourth-order iterative methods [8]. The method is
fully explicit, and this feature can be fully utilized for parallelization.

To approximate the solution of diffusion equation, the IADE scheme employs
the fractional splitting resulting in a two-stage iterative process. On the first half-
step of the i-th iteration the approximation solution xi+ 1

2 is computed using val-
ues xi, and on the second half-step the new values xi+1 are computed using xi+ 1

2 .
In basic sequential algorithm for 1D problem solution the value x

i+ 1
2

j depends

on x
i+ 1

2
j−1 , whereas the value xi+1

j depends on xi+1
j+1 (j is a spatial index) [4]. To

avoid dependency situation, several parallelization strategies are developed to
construct non-overlapping subdomains [9]. In this paper, a Red-Black ordering
approach was used for 1D problem, resulting in two half-sweeps for Red (even)
and Black (odd) elements. In addition, a Conjugate Gradient (CG) acceleration
was employed to improve convergence [9].

4 Fragmentation of IADE-RB-CG Method

A solution of 1D parabolic problem [4] is considered as an example of IADE-RB-
CG method application. The process of solution is a sequence of time steps; on
each step a system of linear equations with the same matrix and a new right-hand
side is solved by an iterative process.

The problem of creating a fragmented algorithm consists in decomposing the
algorithm into data fragments and fragments of computations with their sizes
being parameters of the algorithm and in defining all the necessary dependen-
cies between them. The sizes of fragments should be approximately equal to
ease the load balancing. Therefore, the global domain is divided into a number
of subdomains of equal sizes. Each subdomain contains Red and Black elements,
grouped in separate data fragments to reduce the number of data dependencies.
For example, the solution vector x of size M divided into m subdomains is repre-
sented in fragmented algorithm as a set of data fragments xR0, xR1, . . . , xRm−1

(for Red), and xB0, xB1, . . . , xBm−1 (for Black). The size of each data fragment
(except the last ones) is S ≈ M/(2m).

88 N. Alias and S. Kireev

The scheme of the fragmented algorithm of IADE-RB-CG method is shown
in Fig. 1a as a sequence of time steps n = 1, . . . , N . Circles denote sets of data
fragments, rectangles are code fragments. Black circles represent input data frag-
ments, white ones are output and gray ones are intermediate data fragments for
the time step. Code fragment “init f” calculates right-hand side vector values
in data fragments fRn, fBn. Code fragment “solve” calculates the solution for
the next time step. Data fragments on the left side of Fig. 1a hold coefficients
used for calculation. Data fragments yR, yB hold the half-step solution xi+ 1

2 .
Hereinafter, the initialization phase in the algorithm representation is omitted.
In Fig. 1b an implementation of a “solve” code fragment is shown. It contains an
iterative process continuing until convergence. Data fragments rR, rB and zR,
zB hold vectors used for CG acceleration.

Fig. 1. Fragmented algorithm of IADE-RB-CG method (a) and fragmented algorithm
of “solve” code fragment (b)

Code fragment “compute” performs one iteration of IADE-RB-CG method
(Fig. 2). Notice that circles here are sets of m data fragments corresponding
to m subdomains. Rectangles consequently correspond to sets of fragments of
computation. Thus rectangle labeled “iadeR” denotes a set of m fragments of
computation, implemented by the same code fragment called “iadeR”. The j-th
fragment of computation gets j-th data fragments from the sets of input data
fragments and produce j-th data fragments from the sets of output data frag-
ments without interaction between subdomains. The same goes for the “iadeB”,
“cgR”, and “cgB”. This property allows parallel execution of these fragments of
computation in the case of necessary resources availability.

The only interaction between subdomains occurs in the code fragments “left”
and “right” where boundaries exchange is performed (Fig. 3). Since all subdo-
mains (except the last one) has an even number of elements, only the Red ele-
ments on exchange go to the right subdomain (Fig. 3a), and only the Black
elements go to the left subdomain (Fig. 3b).

Fragmentation of IADE Method Using LuNA System 89

Fig. 2. Fragmented algorithm for i-th iteration of IADE-RB-CG method

Fig. 3. Fragmented algorithms of boundaries exchange: right (a) and left (b)

5 Fragmented Algorithm Implementation Using LuNA
Language

The fragmented algorithm was implemented with LuNA fragmented program-
ming system using LuNA language. LuNA stands for Language for Numerical
Algorithms. LuNA program is just a textual representation of a bipartite data-
flow graph of an algorithm. Here, an example of LuNA subroutine corresponding
to the algorithms on Fig. 3a is presented.

90 N. Alias and S. Kireev

sub send_right(#in int m, name sizeR, name zR_in, #out name zR_out)

{ df r;

for j=0..m-2

get_R_right_border(#in sizeR[j],zR_in[j], #out r[j]);

copy(#in zR_in[0], #out zR_out[0]);

for j=1..m-1

set_R_left_border(#in sizeR[j],zR_in[j],r[j-1], #out zR_out[j]);

}

get R right border, copy and set R left border denote fragments of com-
putation with input and output data fragments shown in parenthesis. The key-
word for defines a set (unordered) of fragments of computation for a given range
of values of index variable (j).

6 Performance Evaluation

Having such a fragmented algorithm, as presented in Sect. 4, resource allocation
and execution order control can be done automatically during execution and
dynamically adjusted to available resources. Dataflow-based parallel program-
ming systems, such as LuNA, often lack efficiency due to a high degree of non-
determinism of a parallel program execution and execution overhead it causes. It
is a price that is paid for the ability to avoid writing a parallel program manually
and for obtaining dynamical properties of parallel execution automatically. To
evaluate the performance of LuNA system a series of tests was made.

Each test run is an execution of 20 time steps of IADE-RB-CG algorithm
(more than 100 executions of “compute” fragment). Average execution time of
one “compute” fragment was taken as a result. Task parameters are: M - solution
vector size, m - number of subdomains. Cluster MVS-10P [10] was used for the
tests. Each cluster node contains 2 × 8-core Intel Xeon E5-2690 2.9 GHz (16 cores
per node), 64 GB RAM, and 2× MIC accelerators (not used in tests).

The first test evaluates the performance characteristics of LuNA runtime
system depending on problem size and number of processor cores used. Currently,
the LuNA runtime system is implemented as a set of MPI processes each running
one or more working threads. Two variants of execution were compared:

– “Processes” - number of MPI processes is equal to the total number of proces-
sor cores used, each process running only one working thread,

– “Threads” - number of MPI processes is equal to the number of cluster nodes,
each process running the same number of working threads as the processor
cores used per node.

The number of subdomains here is equal to the total number of cores used. The
results (Fig. 4) show that the variant “Threads” runs faster, so it will be used in
the following experiments. One can also see that with the current implementa-
tion of LuNA runtime system the execution time grows rapidly with increasing
number of cluster nodes due to the execution overhead. The overhead is expected
to be reduced in future LuNA system releases.

Fragmentation of IADE Method Using LuNA System 91

Fig. 4. LuNA runtime performance characteristics

The performance of a parallel program depends largely on the availability
of work for the available computational resources, which in turn depends on
the degree of algorithm fragmentation. The second test demonstrates how the
execution time depends on the number of subdomains. It is known that the
resulting graph should be a U-shaped with an optimal fragmentation degree giv-
ing minimal execution time [2]. Results in Fig. 5 correspond to that and show
optimal fragmentation degrees for different problem sizes and different comput-
ing resources.

The last test compares three different implementation of the IADE-RB-CG
fragmented algorithm with different degrees of the automation of parallel exe-
cution.

– “LuNA” is implementation of the algorithm in LuNA system using execution
parameters from previous tests that give the best execution time for given
resources. It is the most automated implementation since the LuNA runtime
system makes most decisions on fragmented algorithm execution dynamically.

– “LuNA-fw” is a semi-automated implementation of the fragmented algorithm
using a simple event-driven MPI-based runtime system with manually written
control program. By means of the control program the programmer specifies
resource allocation and data fragments’ management.

– “MPI” is a manual MPI implementation of the fragmented algorithm with
the least execution automation.

Results on Fig. 6 show that the “LuNA” implementation has a considerable
execution overhead when using several cluster nodes, and shows performance
close to “LuNA-fw” implementation within one node. “LuNA” and “LuNA-
fw” implementations both have a noticeable overhead compared to the “MPI”
implementation due to necessity to maintain single-assignment data fragments,
which leads to redundant memory usage and hence worse cache usage.

92 N. Alias and S. Kireev

Fig. 5. The dependence of the execution time of the algorithm on the degree of frag-
mentation: using one cluster node and different number of threads (a), using different
number of nodes with 16 threads each (b)

Fig. 6. Comparison of different implementations of the IADE-RB-CG fragmented algo-
rithm

Fragmentation of IADE Method Using LuNA System 93

7 Conclusion

Fragmented Programming Technology (FPT) is a promising approach leading to
accumulation of numerical algorithms in a portable and tunable form. A solution
of a 1D problem by IADE-RB-CG method using LuNA fragmented programming
system was presented as an example of FPT application. A fragmented algorithm
for the considered problem is proposed.

The performance comparison of different fragmented algorithm implemen-
tations shows that LuNA system has a considerable execution overhead when
using several cluster nodes, while the LuNA-fw implementation based on event-
driven control program has much lower overhead. Thus, a promising direction for
the future development and optimization of the LuNA system is an automated
generation of a LuNA-fw-like control program.

References

1. Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of
numerical models on MIMD-multicomputers. Int. J. Future Gener. Comput. Syst.
17(6), 755–765 (2001). Elsevier Science, NH

2. Kireev, S., Malyshkin, V.: Fragmentation of numerical algorithms for parallel sub-
routines library. J. Supercomput. 57(2), 161–171 (2011)

3. Kireev, S., Malyshkin, V., Fujita, H.: The LuNA library of parallel numerical frag-
mented subroutines. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp.
290–301. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23178-0 26

4. Sahimi, M.S., Ahmad, A., Bakar, A.A.: The Iterative Alternating Decomposition
Explicit (IADE) method to solve the heat conduction equation. Int. J. Comput.
Math. 47, 219–229 (1993)

5. Malyshkin, V.E., Perepelkin, V.A.: LuNA fragmented programming system, main
functions and peculiarities of run-time subsystem. In: Malyshkin, V. (ed.) PaCT
2011. LNCS, vol. 6873, pp. 53–61. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23178-0 5

6. Malyshkin, V., Perepelkin, V.: Optimization methods of parallel execution of
numerical programs in the LuNA fragmented programming system. J. Supercom-
put. 61(1), 235–248 (2012)

7. Malyshkin, V., Perepelkin, V.: The PIC implementation in LuNA system of frag-
mented programming. J. Supercomput. 69(1), 89–97 (2014)

8. Mansor, N.A., Zulkifle, A.K., Alias, N., Hasan, M.K., Boyce, M.J.N.: The higher
accuracy fourth-order IADE algorithm. J. Appl. Math. 2013, 1–13 (2013)

9. Alias, N., Sahimi, M.S., Abdullah, A.R.: Parallel strategies for the iterative alter-
nating decomposition explicit interpolation-conjugate gradient method in solving
heat conductor equation on a distributed parallel computer systems. In: Proceed-
ings of the 3rd International Conference on Numerical Analysis in Engineering,
vol. 3, pp. 31–38 (2003)

10. Joint Supercomputer Center of the Russian Academy of Sciences. http://www.
jscc.ru/eng/index.shtml. Accessed 12 May 2017

http://dx.doi.org/10.1007/978-3-642-23178-0_26
http://dx.doi.org/10.1007/978-3-642-23178-0_5
http://dx.doi.org/10.1007/978-3-642-23178-0_5
http://www.jscc.ru/eng/index.shtml
http://www.jscc.ru/eng/index.shtml

Performance Aspects of Collocated
and Staggered Grids for Particle-in-Cell

Plasma Simulation

Sergey Bastrakov1, Igor Surmin1, Evgeny Efimenko1,2, Arkady Gonoskov1,2,3,
and Iosif Meyerov1(B)

1 Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
meerov@vmk.unn.ru

2 Institute of Applied Physics of the Russian Academy of Sciences,
Nizhni Novgorod, Russia

3 Chalmers University of Technology, Gothenburg, Sweden

Abstract. We present a computational comparison of collocated and
staggered uniform grids for particle-in-cell plasma simulation. Both types
of grids are widely used, and numerical properties of the corresponding
solvers are well-studied. However, for large-scale simulations performance
is also an important factor, which is the focus of this paper. We start with
a baseline implementation, apply widely-used techniques for performance
optimization and measure their efficacy for both grids on a high-end Xeon
CPU and a second-generation Xeon Phi processor. For the optimized
version the collocated grid outperforms the staggered one by about 1.5 x
on both Xeon and Xeon Phi. The speedup on the Xeon Phi processor
compared to Xeon is about 1.9 x.

Keywords: Performance optimization · Xeon Phi · SIMD · Plasma
simulation · Particle-in-cell

1 Introduction

Various studies in theoretical and applied physics employ numerical simulation
of plasmas based on the particle-in-cell method. Large-scale 3D simulations are
typically performed on clusters and supercomputers using specialized parallel
codes. There are well-established approaches to implementation of the particle-
in-cell method on shared and distributed memory parallel systems with excellent
scaling up to at least tens of thousands of cores, including issues of domain
decomposition and load balancing [1–5].

The rise of manycore architectures, most notably GPUs and Intel Xeon Phi,
has created new challenges for efficient implementation of computational kernels.
Due to the increased number of cores, greater parallelism is required to take full
advantage of the manycore architectures. Additionally, such systems are typi-
cally more fastidious about memory access pattern because of lesser memory

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 94–100, 2017.
DOI: 10.1007/978-3-319-62932-2 8

Performance Aspects of Collocated and Staggered Grids 95

throughput per core and, sometimes, other limitations. Finally, achieving opti-
mum performance on modern architectures requires SIMD-level parallelism.

There is a fairly widely used approach to efficient implementation of the
particle-in-cell method on GPUs [6,7]. As for Xeon Phi, several implementa-
tions, including our previous work, has demonstrated a moderate speedup over
a multicore CPU [8–10]. As pointed out in several studies [1,9,11], the main issue
for implementations of the particle-in-cell method on both CPUs and Xeon Phi
currently seems to be efficient utilization of SIMD-level parallelism.

Particle-in-cell simulations are performed using various combinations of grids,
Maxwell’s solvers and numerical schemes. Numerical properties of widely used
solvers are rather well-studied [12,13], which allows to choose a scheme suit-
able for the problem at hand. However, for large-scale simulations performance
is also an important factor, particularly on manycore architectures. A typical
combination for simulations of laser-driven particle acceleration seems to be
either a finite-difference Maxwell’s solver on a uniform staggered grid [14,15] or
a pseudo-spectral solver on a uniform collocated grid [16,17], both providing a
good balance between accuracy and speed.

This paper presents a computational comparison of uniform collocated and
staggered grids in the particle-in-cell method in terms of performance. We do not
consider numerical properties and instead focus solely on performance aspects of
particle–grid operations, which are usually the most time-consuming part of the
method. The implementation is done using the particle-in-cell code PICADOR
[9]. We evaluate results on a multicore Intel Xeon CPU and an Intel Xeon Phi
processor of the Knight’s Landing generation. This study could allow getting
a better trade-off between accuracy and speed when choosing a configuration
for other simulations. Additionally, this paper presents new performance data
on a second-generation Xeon Phi processor, which, together with our previous
work [10], is among the first published performance results for particle-in-cell
simulations on this kind of hardware.

2 Overview of the Particle-in-Cell Method

The particle-in-cell method [18] is widely used for numerical simulation of plas-
mas. The method operates on two major sets of data: a set of charged particles
and the electromagnetic field defined on a spatial grid. Each particle in a sim-
ulation, often called a macro-particle, represents a cloud of real particles, such
as electrons or ions, of the same kind and has their combined charge and mass.
Charge distribution inside a cloud is defined by a particle form factor; there
are several widely used options [19]. In this paper we use the cloud-in-cell form
factor, which corresponds to the constant charge density inside a cloud. For the
rest of the paper we write particles instead of macro-particles for brevity.

Particles in the electromagnetic field are affected by the Lorenz force. Com-
putation of the Lorenz force for each particle involves interpolation of the elec-
tromagnetic field based on several nearest grid values, depending on the form
factor being used. The dynamic of particles is governed by the relativistic equa-
tions of motion. A feature of the particle-in-cell method is that the particles do

96 S. Bastrakov et al.

not interact with one another directly, there are only particle–grid interactions.
Grid values of the current density created by particles’ movement are computed
and, later, used to update the electromagnetic field. The computational loop of
the method consists of four basic stages: interpolation of grid values of the field
to particles’ positions, integrating equations of motion, computing grid values
of the current density, updating grid values of the electromagnetic field by inte-
grating the Maxwell’s equations. A more detailed description of the method is
given, for example, in [19].

There are two widely used approaches to solving the Maxwell’s equations
in the context of the particle-in-cell method using uniform Cartesian grids. The
finite-difference methods [15] employ finite-difference approximations of time and
spatial derivatives in the Maxwell’s equations. The most popular method of this
group is the Yee solver [14,15]. It employs staggering of the components of the
field in space and time to achieve the second-order approximation. Using pseudo-
spectral methods [16,17] for a particle-in-cell simulation typically involves two
grids: one in the coordinate (original) space and another in the Fourier space.
In this case field interpolation, particle movement and current deposition are
performed in the coordinate space, while the Maxwell’s equations are solved in
the Fourier space and the updated values of the field transformed back. In this
case there is no need for staggering in space and a collocated spatial grid is
typically employed. Numerical properties of both finite-difference and pseudo-
spectral methods are well-studied [12,13] and are out of the scope of this paper.
Instead, we focus on the issues of implementation and performance.

3 Computational Evaluation

3.1 Test Problem

All computational experiments presented in this paper were performed for the
following test problem: 40×40×40 grid, 100 particles per cell, cloud-in-cell par-
ticle form factor, direct current deposition [19], finite-difference Maxwell’s solver,
double precision floating-point arithmetic. We used a node of the Intel Endeavor
cluster with an 18-core Intel Xeon E5-2697v4 CPU (codename Broadwell) and
a 68-core Intel Xeon Phi 7250 (codename Knight’s Landing). On Xeon we ran 1
MPI process with 36 OpenMP threads. Xeon Phi was used in Quadrant cluster
mode, flat MCDRAM mode, we ran 8 MPI processes with 34 OpenMP threads
per process, which had been previously found to be empirically best for our code
[10]. The code was compiled with the Intel C++ Compiler 17.0.

3.2 Baseline Implementation

This study was done using the PICADOR code for particle-in-cell plasma sim-
ulation on cluster systems with CPUs and Xeon Phi. In this subsection we
briefly describe the organization of the code on shared memory. A more detailed
description of PICADOR is given in our previous work [9,10].

Performance Aspects of Collocated and Staggered Grids 97

Particles are stored and processed separately for each cell. During the field
interpolation stage the grid values used for the particles of the current cell are
preloaded to a small local array. In a similar fashion, the computed values of
current density are first accumulated in local arrays and later written to the
global grid. OpenMP threads process particles in different cells in parallel. To
avoid explicit synchronization between threads, the processing is split into several
substages organized in the checkerboard order, so that during each substage there
is no intersection of the sets of grid values used by particles in different cells.

There is an important distinction between collocated and staggered grids in
terms of implementation of the particle–grid operations. For a collocated grid
field interpolation and current deposition operate on the same set of grid values
for every field component. Therefore, indexes and coefficients are computed once
for all field or current density components. On the contrary, for a staggered grid
each component of the field or current density is processed separately. In addi-
tion to performing more arithmetic operations, this involves a more complicated
memory access pattern, which could be detrimental to vectorization efficiency.

Performance results of the baseline version for the collocated and staggered
grids on Xeon and Xeon Phi are presented at Table 1. The ‘Particle push’
stage corresponds to field interpolation and integration of particles’ equations
of motion; solving Maxwell’s equations and applying boundary conditions is
denoted as ‘Other’. As pointed out earlier, the collocated grid is a little faster
compared to the staggered grid. Speedup on Xeon Phi compared to Xeon is
1.83 x on the collocated grid and 1.44 x on the staggered grid.

Table 1. Run time of the baseline version. Time is given in seconds.

Stage Collocated grid Staggered grid

Xeon Xeon Phi Xeon Xeon Phi

Particle push 30.13 15.90 26.18 15.93

Current deposition 11.43 6.73 16.72 13.63

Other 0.27 0.27 0.19 0.27

Overall 41.83 22.90 43.09 29.83

3.3 Supercells

A widely used approach to improve efficiency of computational kernels is data
blocking to fit caches. In terms of the particle-in-cell method, cells can be grouped
into supercells. This idea was originally introduced for GPU-based implementa-
tions [6], but recently was demonstrated to be potentially beneficial for CPUs
as well [11]. Table 2 presents results of the version with supercells. For each con-
figuration we picked the empirically best supercell size. Using supercells yields
a 1.09 x to 1.17 x overall speedup on the staggered grid. For the collocated grid
the effect of supercells is a bit more clear, with the speedups between 1.23 x and
1.28x.

98 S. Bastrakov et al.

Table 2. Run time of the version with supercells. For each configuration the empirically
best supercell size is used. Time is given in seconds.

Stage Collocated grid Staggered grid

Xeon Xeon Phi Xeon Xeon Phi

Particle push 20.92 11.42 25.27 14.17

Current deposition 11.46 6.89 13.91 11.03

Other 0.26 0.27 0.18 0.26

Overall 32.64 18.58 39.36 25.46

3.4 Vectorization

In the previous versions the integration of particles’ equation of motion and the
finite-difference Maxwell’s solver are auto-vectorized by the compiler. However,
the field interpolation and current deposition stages are not vectorized, since it
has been inefficient in our earlier experience [9]. A probable cause is that the
data which needed to be operated in a vector register is not located sequentially
in the memory. The resulting complicated memory pattern requires scatter and
gather operations, less efficient compared to the coalesced operations.

However, on the more modern system used in this study the #pragma simd
directive of the Intel C++ compiler yields some benefit for the field interpolation
stage. The current deposition stage cannot be vectorized as easily because of
data dependencies. Instead, we employ a scheme inspired by [11]. The results
of this version are presented at Table 3. On the collocated grid the speedups on
Xeon and Xeon Phi are 1.26 x and 1.34 x, respectively. On the staggered grid the
speedup on Xeon Phi is 1.24 x, there is no speedup on Xeon. The larger speedups
on the collocated grid are due to the more regular memory access pattern.

Table 3. Run time of the version with vectorization. Time is given in seconds.

Stage Collocated grid Staggered grid

Xeon Xeon Phi Xeon Xeon Phi

Particle push 17.40 9.98 24.98 9.17

Current deposition 8.19 3.62 13.91 11.04

Other 0.24 0.26 0.18 0.25

Overall 25.83 13.86 39.07 20.46

4 Summary

This paper presents a computational comparison of performance of collocated
and staggered grids in the particle-in-cell method on CPU and Xeon Phi. We
start with the baseline implementation, for which the collocated grid slightly

Performance Aspects of Collocated and Staggered Grids 99

outperforms the staggered one, mainly due to lesser number of arithmetic oper-
ations required. Then we apply the supercell modification to improve cache local-
ity, which turns out to be a bit more beneficial for the collocated grid. Finally,
we consider a vectorized version, which again yields more speedup on the collo-
cated grid due to a more regular memory access pattern. For the final version the
speedup on the collocated grid compared to the staggered one is about 1.5 x on
both Xeon and Xeon Phi. The speedup on Xeon Phi compared to Xeon is about
1.9 x. We have also tried other approaches to vectorization, such as to process
components of the fields in SIMD fashion, or even to vectorize computations
inside a component, but these did not yield any speedup.

Our results show that using supercells is beneficial for both collocated and
staggered grids on Xeon and Xeon Phi. The collocated grid makes vectorization
easier and more efficient compared to the staggered one. This could be relevant in
the context of increasing the width of SIMD registers in modern hardware, given
the growing popularity of spectral solvers for particle-in-cell simulation. Our
future work includes applying the presented approach to optimize performance
of the ELMIS spectral particle-in-cell code [20].

Acknowledgements. The authors (E.E., A.G.) acknowledge the support from the
Russian Science Foundation project No. 16-12-10486. The authors are grateful to Intel
Corporation for access to the system used for performing computational experiments
presented in this paper. We are also grateful to A. Bobyr, S. Egorov, I. Lopatin, and
Z. Matveev from Intel Corporation for technical consultations.

References

1. Fonseca, R.A., Vieira, J., Fiuza, F., Davidson, A., Tsung, F.S., Mori, W.B., Silva,
L.O.: Exploiting multi-scale parallelism for large scale numerical modelling of laser
wakefield accelerators. Plasma Phys. Control. Fusion. 55(12), 124011 (2013)

2. Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Kwan, T.J.T.: Ultrahigh per-
formance three-dimensional electromagnetic relativistic kinetic plasma simulation.
Phys. Plasmas 15(5), 055703 (2008)

3. Vay, J.-L., Bruhwiler, D.L., Geddes, C.G.R., Fawley, W.M., Martins, S.F., Cary,
J.R., Cormier-Michel, E., Cowan, B., Fonseca, R.A., Furman, M.A., Lu, W., Mori,
W.B., Silva, L.O.: Simulating relativistic beam and plasma systems using an opti-
mal boosted frame. J. Phys. Conf. Ser. 180(1), 012006 (2009)

4. Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of
numerical models on MIMD-multicomputers. Future Gener. Comp. Syst. 17, 755–
765 (2001)

5. Bastrakov, S., Donchenko, R., Gonoskov, A., Efimenko, E., Malyshev, A., Meyerov,
I., Surmin, I.: Particle-in-cell plasma simulation on heterogeneous cluster systems.
J. Comput. Sci. 3, 474–479 (2012)

6. Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm,
U., Cowan, T.E., Sauerbrey, R., Bussmann, M.: PIConGPU: a fully relativistic
particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 38(10), 2831–
2839 (2010)

7. Decyk, V.K., Singh, T.V.: Particle-in-cell algorithms for emerging computer archi-
tectures. Comput. Phys. Commun. 185(3), 708–719 (2014)

100 S. Bastrakov et al.

8. Nakashima, H.: Manycore challenge in particle-in-cell simulation: how to exploit 1
TFlops peak performance for simulation codes with irregular computation. Com-
put. Electr. Eng. 46, 81–94 (2015)

9. Surmin, I.A., Bastrakov, S.I., Efimenko, E.S., Gonoskov, A.A., Korzhimanov, A.V.,
Meyerov, I.B.: Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors.
Comput. Phys. Commun. 202, 204–210 (2016)

10. Surmin, I., Bastrakov, S., Matveev, Z., Efimenko, E., Gonoskov, A., Meyerov, I.:
Co-design of a Particle-in-Cell plasma simulation code for Intel Xeon Phi: a first
look at knights landing. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol.
10049, pp. 319–329. Springer, Cham (2016). doi:10.1007/978-3-319-49956-7 25

11. Vincenti, H., Lehe, R., Sasanka, R., Vay, J.-L.: An efficient and portable SIMD
algorithm for charge/current deposition in Particle-In-Cell codes. Comput. Phys.
Commun. 210, 145–154 (2017)

12. Godfrey, B.B., Vay, J.-L., Haber, I.: Numerical stability analysis of the pseudo-
spectral analytical time-domain PIC algorithm. J. Comput. Phys. 258, 689–704
(2014)

13. Vincenti, H., Vay, J.-L.: Detailed analysis of the effects of stencil spatial variations
with arbitrary high-order finite-difference Maxwell solver. Comput. Phys. Com-
mun. 200, 147–167 (2016)

14. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

15. Taflove, A.: Computational Electrodynamics: The Finite-Difference Time-Domain
Method. Artech House, London (1995)

16. Haber, I., Lee, R., Klein, H., Boris, J.: Advances in electromagnetic simulation
techniques. In: Proceedings of the Sixth Conference on Numerical Simulation of
Plasmas, pp. 46–48 (1973)

17. Liu, Q.: The Pstd algorithm: a time-domain method requiring only two cells per
wavelength. Microw. Opt. Technol. Lett. 15(3), 158–165 (1997)

18. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. McGraw-
Hill, New York (1981)

19. Birdsal, C., Langdon, A.: Plasma Physics via Computer Simulation. Taylor &
Francis Group, New York (2005)

20. Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov,
I., Muraviev, A., Sergeev, A., Surmin, I., Wallin, E.: Extended Particle-in-Cell
schemes for physics in ultrastrong laser fields: review and developments. Phys.
Rev. E 92, 023305 (2015)

http://dx.doi.org/10.1007/978-3-319-49956-7_25

Technological Aspects of the Hybrid
Parallelization with OpenMP and MPI

Oleg Bessonov(B)

Institute for Problems in Mechanics of the Russian Academy of Sciences,
101, Vernadsky ave., 119526 Moscow, Russia

bess@ipmnet.ru

Abstract. In this paper we present practical parallelization techniques
for different explicit and implicit numerical algorithms. These algorithms
are considered on the base of the analysis of characteristics of modern
computer systems and the nature of modeled physical processes. Limits
of applicability of methods and parallelization techniques are determined
in terms of practical implementation. Finally, the unified parallelization
approach for OpenMP and MPI for solving a CFD problem in a regular
domain is presented and discussed.

1 Introduction

Previously, only distributed memory computer systems (clusters) were available
for parallel computations, and the only practical way of parallelization was the
MPI distributed-memory approach (provided a user was privileged enough to
have an access to such a system). Currently multicore processors have become
widely available, and parallelization is no more an option as before. Users have
to parallelize their codes because there is no other way to fully utilize the com-
putational potential of a processor. Besides, cluster nodes are now built on mul-
ticore processors too. Thus, the shared-memory OpenMP approach as well as
the hybrid OpenMP/MPI model become important and popular.

The progress in the computer development can be illustrated by comparing
solution times of the CFD problem [1] with 106 grid points and 106 time-steps:

– 2005, 1-core processor – 280 h;
– 2009, 4-core processor – 30 h;
– 2011, cluster node with two 6-core processors – 11 h;
– 2013, cluster node with two 10-core processors – 4.5 h;
– 2015, 4 cluster nodes with two 10-core processors – 1.5 h.

We can see the acceleration by two orders of magnitude. This has become
possible both due to the development of computers and implementation of new
parallel methods and approaches.

In previous papers [1–3] we have analyzed parallelization methods from the
mathematical, convergence and efficiency points of view. In this work we will
consider practical parallelization techniques taking into account characteristics
and limitations of modern computer systems as well as essential properties of
modeled physical processes.
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 101–113, 2017.
DOI: 10.1007/978-3-319-62932-2 9

102 O. Bessonov

2 Parallel Performance of Modern Multicore Processors

Modern multicore microprocessors belong to the class of throughput-oriented
processors. Their performance is achieved in cooperative work of processor cores
and depends both on the computational speed of cores and on the throughput
of the memory subsystem. The latter is determined by the configuration of inte-
grated memory controllers, memory access speed, characteristics of the cache
memory hierarchy and capacity of intercore or interprocessor communications.

For example, a typical high-performance processor used for scientific or tech-
nological computations has the following characteristics:

– 6 to 12 computational cores, with frequencies between 2.5 and 3.5 GHz;
– peak floating point arithmetic performance 300–500 GFLOPS (64-bit);
– 4 channels of DDR4-2133/2400 memory with peak access rate 68–77 GB/s;
– hierarchy of cache memories (common L3-cache, separate L2 and L1);
– ability to execute two threads in each core (hyperthreading).

Many scientific or technological application programs belong to the memory-
bound class, i.e. their computational speed is limited by the performance of the
memory subsystem. Thus, with increasing the number of cores, it is necessary
to make the memory faster (frequency) and/or wider (number of chsannels).

Importance of the memory subsystem can be illustrated by running several
applications on computers with different configurations (Fig. 1): 8-core (3.0 GHz)
and 6-core (3.5 GHz) processors with 4 memory channels (68 GB/s), and 6-core
processor with 2 channels (34 GB/s). All processors belong to the same family
Intel Core i7-5900 (Haswell-E). The first computer system has faster memory
than two others. Application programs used in the comparison are the following:

– Cylflow: Navier-Stokes CFD code [1] (regular grid, 1.5 M grid points);
– CG AMG: Conjugate gradient solver with the multigrid preconditioner [2]

(Cartesian grid in the arbitrary domain, sparse matrix, 2 M grid points);
– CG Jacobi: Conjugate gradient solver with the explicit Jacobi precondi-

tioner [2] (the same grid).

It is seen from Fig. 1 that there is the saturation of the memory subsystem in
all cases. For the CFD code, it is less visible: 4-channel computers look similarly,
while the 2-channel system is 1.3 times slower. For the multigrid solver, some
difference between first two systems appears, and the third one is about two times
slower. For the explicit solver, effect is more significant: the 8-core computer
additionally gains owing to its faster memory and larger cache, while the 2-
channel system additionally loses. The maximum of performance is achieved in
this case if only part of processor cores are active (5, 4 and 3 cores, respectively).

On two-processor configurations, the number of memory channels and their
integral capacity is doubled. Due to this, performance of most memory-bound
programs can be almost doubled (see example of 1.95-times increase in [3]).

On the other hand, hyperthreading usually doesn’t help to such programs.
In fact, for the above applications, running twice the number of threads with
the active hyperthreading reduces performance by about 10%.

Technological Aspects of the Hybrid Parallelization with OpenMP and MPI 103

 0

 8

 16

 24

 0 2 4 6 8

Cylflow

8c 4ch
6c 4ch
6c 2ch

 0

 10

 20

 30

 0 2 4 6 8

CG AMG

8c 4ch
6c 4ch
6c 2ch

 0

 20

 40

 60

 80

 0 2 4 6 8

CG Jacobi

8c 4ch
6c 4ch
6c 2ch

Fig. 1. Parallel performance of application programs (iterations per second) as a func-
tion of the number of threads on computers with different memory configurations

3 Properties of Explicit and Implicit Algorithms

There are two main classes of computational algorithms: explicit, with computa-
tions like x = Ay (multiplication of a matrix by a vector), and implicit, that look
as Ax = y or Ax ≈ y (exact or approximate solution of a linear system). Here
vectors x and y represent some physical quantities in the discretized domain,
and matrix A corresponds to the discretization stencils applied to them.

In the analysis of explicit and implicit algorithms we will consider the lowest
level of the computational method. For example, the explicit time integration
scheme is an explicit algorithm per se, while the implicit integration scheme may
be either resolved by an immediate implicit method, or solved by means of some
iterative method employing any sort of the iterative scheme at the lower level.

Explicit algorithms act locally by stencils of the limited size and propagate
information with low speed (one grid distance per iteration). Thus, they require
O(n) iterations for full convergence where n is the diameter of the domain (in
terms of grid distances). On the other hand, implicit algorithms operate globally
and propagate information much faster (approximate methods) or even instantly
(direct solvers). For example, the Conjugate gradient method with the Modified
Incomplete LU decomposition as a preconditioner needs O(

√
n) iterations [4].

Applicability of the methods depends on the nature of underlying physical
processes. For example, incompressible viscous fluid flows are driven by three
principal mechanisms with different information propagation speeds:

– convection: slow propagation, Courant condition can be applied CFL = O(1)
(one or few grid distances per time-step); using an explicit time integration
scheme or an iterative solver with few iterations;

– diffusion: faster propagation (tens grid distances per time-step), well-condi-
tioned linear system; using an iterative solver with explicit iterations or an
Alternating direction implicit (ADI) solver;

– pressure: instant propagation, ill-conditioned linear system; using an iterative
solver with implicit iterations or multigrid or a direct solver.

Parallel properties of computational methods strongly depend on how
information is propagated. Iterations of explicit algorithms can be computed

104 O. Bessonov

independently, in any order, thus giving the freedom in parallelization. In con-
trast, implicit iterations have the recursive nature and can’t be easily paral-
lelized.

Below we will consider parallelization approaches for several variants of com-
putational algorithms of the explicit, implicit and mixed type.

3.1 Natural Parallelization of Explicit Algorithms

The simplest way of parallelizing an explicit method is to divide a computational
domain (geometric splitting) or a matrix A (algebraic splitting) into several parts
for execution in different threads. It can be easily implemented in Fortran with
the OpenMP extension. For example, one-dimensional geometric splitting by the
last spatial dimension can be programmed with the use of !$OMP DO statement.

This sort of parallelization is very convenient and is almost automatic. How-
ever, it has a natural limitation: with larger number of threads, subdomains
become narrow. This can increase parallelization overheads due to load disbal-
ances and increased costs of accesses to remote caches across subdomain bound-
aries.

For this reason, two-dimensional splitting may become attractive. OpenMP
has no natural mechanism for such splitting. Nevertheless, the nested loops can
be easily reorganized by the appropriate remap of control variables of two outer
loops (Fig. 2). Here, all changes of the original code are shown by capital letters.

The difference between one- and two-dimensional splittings is the placement
of data belonging to subdomains. In the first case, each part of data is a single
continuous 3-dimensional array. In the second case, data look as a set of 2D
arrays, decoupled from each other. The size of each array is N ×M/P , where N
and M are dimensions, and P is the splitting factor in the second dimension. For
N = M = 100 and P = 4 this corresponds to 2500 data elements, or 20 KBytes.

!$OMP DO PRIVATE(IR,IZ)
DO IP=0,15

IR=IP/4+1
IZ=IP-IR*4+1
do k=NR(IR),MR(IR)

do j=NZ(IZ),MZ(IZ)
do i=1,nx

w3(i,j,k)= . . .
enddo i

enddo j
enddo k

ENDDO IP
!$OMP END DO

z
ϕ

r

0

1

2

3

4

5

7

8

9

10

11

12

13

14

15

6

Fig. 2. Parallelization with the two-dimensional splitting

The main problem of split data is associated with the streamlined prefetch:
this mechanism is efficient if arrays are long and continuous, and in the case

Technological Aspects of the Hybrid Parallelization with OpenMP and MPI 105

of piecewise-continuous arrays it stops after the end of each piece of data thus
taking additional time for restart and reducing the overall efficiency of prefetch.

For the same reasons, it is not possible to efficiently implement 3-dimensional
splitting by the similar way: the size of each piece of data would be N/P , or
only 200 Bytes (for the above parameters).

Additional problem appears in the case of a Non-uniform memory computer
(NUMA), consisting of two or more processor interconnected by the special
links. Each processor controls its own part of memory. Logically, each thread
can transparently access any memory location in a system, but remote accesses
are much slower than local ones. For this reason, all data should be divided
between processors as accurately as possible.

However, data are allocated in a particular processor’s memory by pages of
the typical size 4 KBytes. Therefore, some data on a boundary between subdo-
mains always fall into the remote memory area (on average, half the page size).
For the 1D splitting, this is much less than the size of a boundary array (N ×M ,
or 80 KBytes for the above parameters). In case of the 2D splitting, most bound-
ary arrays are of the size N (only 800 Bytes). Thus, a significant part of each
array would fall into the remote memory.

Therefore, for NUMA, splitting should be arranges such that interprocessor
communications occur only across boundaries in the last spatial dimension. For
the same reason it is not reasonable to use large pages (2 MBytes).

3.2 Parallelization Properties of Implicit Algorithms

Most often implicit algorithms are used as preconditioners for the Conjugate
gradient (CG) method [3]. Typically, such preconditioners are built upon variants
of the Incomplete LU decomposition (ILU) applied to sparse matrices. This
decomposition looks as a simplified form of the Gauss elimination when fill-in of
zero elements is restricted or prohibited.

Within the CG algorithm, this preconditioner is applied at each iteration in
the form of the solution of a linear system LUx = y , that falls into two steps:
Lz = y and Ux = z .

These steps are recursive by their nature. There is no universal and efficient
method for parallelizing ILU. One well-known approach is the class of domain
decomposition methods [5], where the solution of the original global linear system
is replaced with the independent solutions of smaller systems within subdomains,
with further iterative coupling of partial results. However, this approach is not
enough efficient because it makes the convergence slower or impossible at all.

For ill-conditioned linear systems associated with the action of pressure in
the incompressible fluid it is important to retain convergence properties of the
preconditioning procedure. This can be achieved by finding some sort of paral-
lelization potential, either geometric or algebraic.

For domains of regular shape it is natural to discover a sort of the geomet-
ric parallelization. For example, Cartesian discretization in a parallelepiped pro-
duces a 7-diagonal matrix, that looks as a specific composition of three 3-diagonal
matrices corresponding to three directions. It can be seen that the procedure of

106 O. Bessonov

twisted factorization of a 3-diagonal system can be naturally generalized to two
or three dimensions [4]. Figure 3(a, b) shows factors of the LU-decomposition of
a 5-diagonal matrix that corresponds to a 2D domain. Illustration of the com-
putational scheme for three dimensions is shown on Fig. 3(c): the domain is split
into 8 octants, and in each octant elimination of non-zero elements for the first
step Lz = y is performed from the corner in the direction inwards. For the
second step Ux = z data within octants are processed in the reverse order.

Thus, LU-decomposition in a 3D parallelepipedic domain can by parallelized
by 8 threads with small amount of inter-thread communications and without
sacrifying convergence properties of the iterative procedure.

Additional parallelization within octants can be achieved by applying the
staircase (pipelined) method [6,7]. Here, each octant is split into two halves in
the direction j (Fig. 3, d), and data in each half are processed simultaneously for
different values of the index in the direction k (this looks like a step on stairs).

This method needs more synchronizations between threads, and its applica-
tion is limited by the factor of 2 or (at most) 4. Thus the resulting parallelization
potential for a parallelepipedic domain is limited by 16 or 32 threads.

0 1
4 5 1 3

5 7

4 5
6 7 k

j

0 1 3 2
8 9 11 10 2 6

10
14

8 9 11 10
12 13 15 14

a b c d

Fig. 3. Nested twisted factorization: factors of a 2D LU-decomposition (a, b); example
of the parallel elimination of non-zero elements in a 3D domain (c); illustration of the
staircase method (d)

For general domains and non-structured grids there is no more geometric
symmetry. Thus the only way of parallelization is to find an algebraic potential.
The idea is again to use twisted factorization. Figure 4 (left, center) shows factors
of the LU-decomposition of a banded sparse matrix. Each factor consists of two
parts, and most calculations in each part can be performed in parallel.

Unfortunately, this way allows to parallelize the solution for only two threads.
Additional parallelization can be achieved by applying a variant of the pipelined
approach, namely the block-pipelined method [8]. The idea of the approach is
to split each part of a factor into pairs of adjacent trapezoidal blocks that have
no mutual data dependences and can be processed in parallel (Fig. 4, right). As
a result, parallelization of the Gauss elimination will be extended to 4 threads.

Performance of the block-pipelined method depends on the sparsity pattern
of a matrix. If the matrix contains too few non-zero elements, the overall effect
of the splitting may happen to be low because of synchronization overheads.

Technological Aspects of the Hybrid Parallelization with OpenMP and MPI 107

Fig. 4. Twisted factorization of a sparse matrix (left, center); splitting of a subdiagonal
part of a factored matrix into pairs of blocks in the block-pipelined method (right)

The above examples demonstrate complexity of parallelization of implicit
algorithms that strongly depend on the property of fast propagation of informa-
tion in underlying physical processes.

3.3 Peculiarities of the Multigrid

There exists a separate class of implicit methods, multigrid, which possess very
good convergence and parallelization properties. Multigrid solves differential
equations using a hierarchy of discretizations. At each level, it uses a simple
smoothing procedure to reduce corresponding error components.

In a single multigrid cycle (V-cycle, Fig. 5), both short-range and long-range
components are smoothed, thus information is instantly transmitted throughout
the domain. As a result, this method becomes very efficient for elliptic problems
that propagate physical information infinitely fast.

1 Pre-smooth x1 = S1 (x0, b)
2 Residual b1 = b − Ax1

3 Restriction b̃1 = R b1
4 Next level Ãx̃2 ≈ b̃1
5 Prolongation x2 = P x̃2

6 Correction x3 = x1 + x2

7 Post-smooth x0 = S2 (x3, b)

1

2

3

...

last

1 2 3

1 2 3

1 2 3

1 2 3

4

4

4

4

exact

5 6 7

5 6 7

5 6 7

5 6 7V-cycle

Fig. 5. Multigrid algorithm (left) and illustration of V-cycle (right) (Color figure
online)

At the same time, multigrid can be efficiently and massively parallelized
because processing at each grid level is performed in the explicit manner, and
data exchanges between subdomains are needed only at the end of a cycle.

Here we consider the Algebraic multigrid (AMG) approach [2,9] which is
based on matrix coefficients rather than on geometric parameters of a domain.
This approach is applied in frame of Cartesian discretization in the arbitrary

108 O. Bessonov

domain. The resulting sparse matrices are stored in the Compressed Diagonal
Storage (CDS) format [2] that is more efficient for processing on modern through-
put processors than the traditional Compressed Row Storage (CRS).

The main computational operations in an AMG cycle are smoothing (itera-
tion of the Gauss-Seidel or SOR method), restriction (fine-to-coarse grid conver-
sion by averaging) and prolongation (coarse-to-fine conversion by interpolation).

Formally, iteration of the Gauss-Seidel method looks as an implicit procedure:
(D + L)xk+1 = b − Uxk (here D, L and U are diagonal, subdiagonal and
superdiagonal parts of the matrix A in the equation Ax = b). In order to
avoid recursive dependences, the multicolor grid partitioning can be applied.
For discretizations with 7-point stencils, two-color scheme is sufficient (red-black
partitioning). With this scheme, the original procedure falls into two explicit
steps: D(1)x

(1)
k+1 = b(1) − Ux

(2)
k and D(2)x

(2)
k+1 = b(2) − Lx

(1)
k+1 (superscripts (1)

and (2) refer to red-colored and black-colored grid points, respectively).
To ensure consecutive access to data elements, it is necessary to reorganize all

arrays, i.e. to split them into “red” and “black” parts. After that, any appropriate
parallelization can be applied, either geometric or algebraic. In particular, the
algebraic splitting by more than 200 threads was implemented for Intel Xeon
Phi manycore processor [2].

Similarly, the restriction (averaging) procedure can be parallelized. Imple-
mentation of the prolongation procedure is more difficult because different inter-
polation operators should be applied to different points of the fine grid depending
on their location relative to the coarse grid points.

The above considerations are applied to the first (finest) level of the multigrid
algorithm. Starting from the second levels, all discretization stencils have 27
points, and 8-color scheme becomes necessary. As a result, computations become
less straightforward, with a proportion of indirect accesses.

On coarser levels of the algorithm, the number of grid points becomes not
sufficient for efficient parallelization on large number of threads. This effect is
most expressed at the last level. Usually, the LU-decomposition or the Conju-
gate gradient is applied at this level. However, these methods either can’t be
parallelized or involve very large synchronization overheads.

To avoid this problem, a solver based on the matrix inversion can be used.
Here, the original last-level sparse matrix is explicitly inverted by the Gauss-
Jordan method at the initialization phase. The resulting full matrix is used at
the execution phase in the simple algorithm of matrix-vector multiplication. This
algorithm is perfectly parallelized and doesn’t require synchronizations.

Efficiency and robustness of the multigrid algorithm is higher if it is used
as a preconditioner in the Conjugate gradient method. In this case, it becomes
possible to use the single-precision arithmetic for the multigrid part of the algo-
rithm without loosing the overall accuracy. Due to this, the computational cost
of the algorithm can be additionally decreased because of reduced sizes of arrays
with floating point data and corresponding reduction of the memory traffic.

Thereby, the multigrid method is very efficient and convenient for paralleliza-
tion. However, it is very complicated and difficult for implementation, especially

Technological Aspects of the Hybrid Parallelization with OpenMP and MPI 109

for non-structured grids. Its convergence is not satisfactory in case of regular
anisotropic grids (though it can be overcome by so-called semi-coarsening [9]
when the grid becomes non-structured). In some cases, the behaviour of the
method becomes uncertain. Finally, there is no reliable theory and procedure
for systems of equations. Thus it is not a universal solution, and applicability of
traditional methods remains wide.

3.4 Methods of Separation of Variables and ADI

For solving well-conditioned linear systems, the Alternating direction implicit
(ADI) method can be used. If the original matrix is presented as A = I+L, where
I is the unit matrix and ||L|| � 1, then it can be approximately decomposed as
(I + L) ≈ (I + Lx)(I + Ly)(I + Lz). The final procedure looks as the solution of
several 3-diagonal systems. Also, 3-diagonal systems appear in the direct method
of separation of variables for solving the pressure Poisson equation [1].

Parallelization of the solution of a 3-diagonal linear system can be done by
applying the twisted factorization for 2 threads, or two-way parallel partition [1]
for 4 threads (Fig. 6, left). In the latter method, twisted factorization is applied
separately to the first and second halves of a matrix. After two passes (forward
and backward) the matrix has only the main diagonal and the column formed
due to fill-in. To resolve this system, additional substitution pass is needed.

0

1

2

3

0

1

2

3

0

1

2

3

4

5

6

7

Fig. 6. Illustration of the two-way parallel partition method: matrix view for 4 threads
(after the first and the second passes) and for 8 threads (after the second pass)

The two-way parallel partition method can be naturally extended for 8
threads (Fig. 6, right). After two passes of the twisted factorization, the matrix
has in this case more complicated structure with 3 partially filled columns. Three
equations of the matrix form the reduced linear system (its elements are shown
by bold points) that should be resolved before the substitution pass.

110 O. Bessonov

20 21 22 23

20
21
22
23

Fig. 7. Two variants of the splitting of a computational domain: 4 × 16 and 16 × 4

Computational expenses of this method increase rapidly with the number of
threads. Also, there is the sharp increase of the number of exchanges in case of
the distributed memory (MPI) parallelization. Therefore, the reasonable level of
parallelization for 3-diagonal matrices is limited by 4 or (at most) by 8 threads.

Such limitations can restrict the total level of parallelization. If it is necessary
to solve 3-diagonal linear systems in two outer directions with the limit of 4
threads (in each direction), then the total limit will be 4 × 4 = 16. To override
this, we can use different splittings for different parts of the algorithm. For
example, if the splitting of a computational domain is 4 × 16, all parts of the
algorithm can be parallelized except the 3-diagonal systems in the last direction
(Fig. 7, left). For solving them, we will use another splitting 16×4 (Fig. 7, right).

For both variants of splitting in this example, there are groups of 4 threads
that share the same data (as indicated by shaded rectangles on Fig. 7). Switching
from the first splitting to the second one looks like a transposition of data.
For the shared memory environment, no real transposition occurs and data are
simply accessed in another order. However, for the distributed memory, costly
data transfers would take place. For this reason, such groups of subdomains
should never be split between cluster nodes. As a consequence, the level of the
distributed memory parallelization is limited by the level of parallelization of a
3-diagonal linear system in the last direction, i.e. by 4 or 8 cluster nodes.

The maximal reasonable level of parallelization of the above approach for
two-dimensional splitting is between 32 × 4 = 128 and 32 × 8 = 256, depending
on the parallelization scheme for 3-diagonal systems and taking into account the
reasonable limitation of 32 threads for each direction.

4 Unified ParallelizationApproach for OpenMP and MPI

In the comparison of parallelization environments, it is important to pay atten-
tion on the basic characteristics of a distributed memory computer system:

– internode communication speed: O(1) GB/s;
– memory access rate: O(10) GB/s;
– computational speed: O(102) GFLOPS, or O(103) GB/s.

Technological Aspects of the Hybrid Parallelization with OpenMP and MPI 111

In fact, not all computations require memory accesses, thus the computa-
tional speed expressed in memory units is close to O(102) GB/s. Nevertheless, it
is clear that the memory subsystem is one order of magnitude slower than the
processor, and communications are two orders of magnitude slower.

Therefore exchanges in the MPI model should be kept to a minimum and
allowed only on boundaries between subdomains. This applies also to the use of
MPI in a shared memory (or multicore) computer though to the less extent. It
means that transmission of full (3D) data arrays by MPI should be avoided.

For clusters, it is optimal to use the hybrid parallelization with OpenMP and
MPI. Programming with MPI requires serious reorganization of the code: it is
necessary to change the natural allocation of data, replacing each monolithic data
array with several subarrays in accordance with the splitting and re-adjusting the
addressing scheme. These subarrays should be logically overlapped, i.e. contain
additional layers (e.g. ghost elements for calculating derivatives). Such complica-
tions, together with the need to organize explicit data exchanges between cluster
nodes, make development and debug of a code much more difficult. At last, it
may become necessary to develop and support two (or more) versions of a code.

These complications can be partly avoided if the splitting between cluster
nodes is done only by the last spatial direction. Then, only the numeration in this
direction has to be changed. For example, if a 3D domain of the size L×M ×N
is split into 4 subdomains by the last dimension such as K = N/4, each MPI
process will have to allocate data arrays of the dimensions (L,M,0:K+1). Here,
bounds of the last index are expanded to support overlap in such a way, that the
slice K of the array in a process corresponds to the slice 0 in the next process,
and the same applies to the slices K+1 and 1 in these processes (Fig. 8, left).

0

1

2

3

0 1 2 3

Fig. 8. Illustration of the allocation of a data array in MPI processes: independent
subarrays with overlapped areas (left); subsets in the unified address space (right)

As a next step, we can organize the unified address space for the MPI-
parallelized program. The simple way is to logically allocate full data array in
each MPI process rather than its selected part as in the above example (Fig. 8).
This will not lead to the unnecessary occupation of memory because in modern
processors only those memory pages are physically allocated which are accessed
in a program. In this scheme, addressing of array elements remains unchanged.

In case of dynamic memory allocation, we can avoid logical allocation of
full arrays: in Fortran it is possible to allocate an array in a particular process

112 O. Bessonov

indicating exact bounds of the last index, e.g. ALLOCATE (X(L,M,2*K:3*K+1)).
This example corresponds to the process 2 on Fig. 8 (right).

With unified address space, character of the two-dimensional splitting of the
computational domain and structure of DO-loops in the hybrid OpenMP/MPI
parallelization become very similar to those of the pure OpenMP approach: it
is enough to remap bounds of control variables of two outer loops (as shown
on Fig. 2) and, after completion of loops, perform exchanges with neighbour
processes for sending (receiving) boundary elements of data arrays. Thus, the
only difference is that some subdomain boundaries by the last spacial direction
become the internode boundaries that require MPI communications.

In order to simplify and unify the computational code, it is worth to orga-
nize special “high level” routines for doing exchanges rather than to calls MPI
functions directly. Depending on a process number, these routines can determine
addresses of data to be transmitted and directions of transmissions. Depending
on the total number of MPI processes, they can decide whether the particular
data transmission should take place at all. Thus, the code becomes invariant
with respect to the number of processes and to the fact of the use of MPI itself.

By avoiding explicit calls of MPI functions, the principal parts of a program
become MPI-independent and it becomes possible to compile these parts by any
compiler which is not necessarily integrated into an MPI environment. Only a
collection the above “high level” routines (grouped into a separate file) works
with MPI and should be compiled in the appropriate environment. For conve-
nience, several variants of a file with these routines can be made (for a single-node
run without MPI, for 2 nodes, for 4 nodes etc.). By this way, the unified approach
for pure OpenMP and for hybrid OpenMP/MPI model is established.

This approach was used for the hybrid parallelization of the CFD code for
modeling incompressible viscous flows in cylindrical domains (see [1] for the
OpenMP-only version). Below are parameters of a problem for solving on four
cluster nodes with two 10-core processors each, 80 cores (threads) total:

– problem size 192 × 160 × 160 (ϕ, z, r);
– general splitting 4 × 20 (z, r), size of a subdomain 192 × 40 × 8;
– specific splitting 20 × 4 (for solving 3-diagonal systems in the last direction),

size of a subdomain 192 × 8 × 40.

These splitting parameters correspond to the requirements set out in
Subsects. 3.1 and 3.4.

In order to run the above problem correctly, all necessary MPI and OpenMP
parameters should be set, such as OMP NUM THREADS environment variable
for parallelization within a cluster node, number of nodes and their list in the
“mpirun” directive, appropriate binding of threads to processor cores in the
“taskset” utility etc.

5 Conclusion

In this paper we have considered different practical and technological questions
of the parallelization for shared and distributed memory environments. Most

Technological Aspects of the Hybrid Parallelization with OpenMP and MPI 113

examples were done for the geometric approach of parallelization but in many
cases they can be extended to the algebraic and other sorts of decomposition.

Special attention was paid on methods with limited parallelization poten-
tial that is associated with the essential properties of underlying processes,
namely fast propagation of physical information relative to the temporal scale of
a numerical method. It is clear that explicit methods while possessing good par-
allelization properties are not enough efficient for solving such problems. Thus
implicit methods remain very important despite they are not always convenient
for optimization in general and for parallelization in particular. For this reason,
approaches for low and medium scale parallelization are still in demand.

Acknowledgements. This work was supported by the Russian Foundation for Basic
Research (projects 15-01-06363, 15-01-02012). The work was granted access to the
HPC resources of Aix-Marseille Université financed by the project Equip@Meso (ANR-
10-EQPX-29-01) of the program Investissements d’Avenir supervised by the Agence
Nationale pour la Recherche (France).

References

1. Bessonov, O.: OpenMP parallelization of a CFD code for multicore computers:
analysis and comparison. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp.
13–22. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23178-0 2

2. Bessonov, O.: Highly parallel multigrid solvers for multicore and manycore proces-
sors. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 10–20. Springer,
Cham (2015). doi:10.1007/978-3-319-21909-7 2

3. Bessonov, O.: Parallelization properties of preconditioners for the conjugate gradient
methods. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 26–36. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39958-9 3

4. Accary, G., Bessonov, O., Fougère, D., Gavrilov, K., Meradji, S., Morvan, D.:
Efficient parallelization of the preconditioned conjugate gradient method. In:
Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 60–72. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03275-2 7

5. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston
(2000)

6. Bastian, P., Horton, G.: Parallelization of robust multi-grid methods: ILU-
factorization and frequency decomposition method. SIAM J. Stat. Comput. 12,
1457–1470 (1991)

7. Elizarova, T., Chetverushkin, B.: Implementation of multiprocessor transputer sys-
tem for computer simulation of computational physics problems (in Russian). Math.
Model. 4(11), 75–100 (1992)

8. Bessonov, O., Fedoseyev, A.: Parallelization of the preconditioned IDR solver for
modern multicore computer systems. In: Application of Mathematics in Technical
and Natural Sciences: 4th International Conference. AIP Conference Proceedings,
vol. 1487, pp. 314–321 (2012)

9. Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128, 281–309
(2001)

http://dx.doi.org/10.1007/978-3-642-23178-0_2
http://dx.doi.org/10.1007/978-3-319-21909-7_2
http://dx.doi.org/10.1007/978-3-642-39958-9_3
http://dx.doi.org/10.1007/978-3-642-03275-2_7

Application of Graph Models to the Parallel
Algorithms Design for the Motion Simulation

of Tethered Satellite Systems

A.N. Kovartsev and V.V. Zhidchenko(&)

Samara National Research University, Samara, Russia
kovr_ssau@mail.ru, vzhidchenko@yandex.ru

Abstract. Tethered satellite systems (TSS) are characterized by ununiform
distribution of mass characteristics of the system and the environment param-
eters in space, which necessitates the use of mathematical models with dis-
tributed parameters. Simulation of such systems is performed with the use of
partial differential equations with complex boundary conditions. The complexity
of the boundary conditions is caused by the presence of the end-bodies that
perform spatial fluctuations, and by the variable length of the tether. As a result
computer simulation of TSS motion takes a long time. This paper presents a
parallel algorithm for motion simulation of the TSS and representation of this
algorithm in the form of a graph model in graph-symbolic programming tech-
nology. The main characteristics of the proposed algorithm and the advantages
of using graph models of algorithms for modeling the motion of the TSS are
discussed.

Keywords: Tethered satellite systems � Parallel computing � Visual
programming � Graph models

1 Introduction

Application of tethered satellite systems (TSS) opens up new possibilities in the use of
outer space: the creation of artificial gravity, transport operations in space, returning
payloads from orbit, the launch of small satellites from the main spacecraft, the use of
the Earth’s geomagnetic field for orbital maneuvers, creating orbiting power stations,
atmospheric probing, study of geomagnetic and gravitational fields, removal of space
debris, etc. [1].

Despite of the presence of a large number of works, which deal with various aspects
of the space tether systems design, at the present time there is a certain lack of research
on the development of methods of analysis and synthesis of controlled and free
movement of space tethers of great length. Long tethers are characterized by ununiform
distribution of mass characteristics of the system and the parameters of the environment
in space. It determines the use of mathematical models with distributed parameters. The
apparatus of partial differential equations is used with complex boundary conditions.
The complexity of the boundary conditions is caused by the presence of the end-bodies
that perform spatial fluctuations, and by the variable length of the tether. All this leads

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 114–123, 2017.
DOI: 10.1007/978-3-319-62932-2_10

to considerable time needed for the mathematical modeling of tethered system on the
computer. Large systems of ordinary differential equations (ODE) are used for mod-
eling. The number of equations is measured in tens of thousands. Direct numerical
solution of such systems is difficult, even for the up to date computing resources.

Existing approaches to the solution of large systems of equations can be divided
into two main classes. The first class focuses on parallelization of the known numerical
methods (often without changing the methods themselves). However, the results of
solving ODE systems using this method on cluster systems are not impressive, because
they do not take into account the features of the problem to be solved.

The second class comprises the methods that reduce the computational costs due to
special heuristic techniques, which usually use the physical features of the problem.
The accuracy of the solution is given less attention. The improvement of the calculation
speed is gained by decrease in the accuracy of numerical methods without lowering the
quality of the results.

We will consider the application of these approaches to the problem of motion
simulation of space tether systems.

2 Mathematical Model of Tether Dynamics in Space

The widely used mathematical model of tethered system motion is a model in which
tether is described by a system of partial differential equations. In this case, the
mathematical models of continuum mechanics are used to describe the motion of tether
in which the tether is considered as extensible (or inextensible) slim body, most often
of great length [1]. Derivation of equations of motion of such a system is quite simple.
It involves the consideration of the stretched differential element of the tether with the
length DS and the application of Newton’s second law to it:

qðSÞ @
2~r

@t2
¼ @~T

@S
þ~q ð1Þ

where qðSÞ is the linear mass density of the tether, ~r is the position of the stretched
differential element, t is the time,~T is the tension force,~q is the resultant force acting on
the differential element divided to the length of the element.

For a flexible tether, which does not accept transverse loads, tension force is
directed tangentially to the tether line, so

~T ¼ T~s; ~s ¼ 1
c
@~r
@S

; ð2Þ

where~s is tangent unit vector, c ¼ @~r
@S

�
�

�
�.

The tether tension in the simplest case obeys Hooke’s law

TðcÞ ¼ EAðc� 1Þ ; ð3Þ

Application of Graph Models to the Parallel Algorithms Design 115

where E is the modulus of elasticity, A is the cross-sectional area of tether, c� 1 is the
elongation.

The equation of motion of the flexible tether (1), taking into account the Eqs. (2),
(3) is a partial differential equation, which is solved with given boundary and initial
conditions of motion.

To integrate the equation of motion (1) conventional numerical methods for solving
partial differential equations of the wave type can be used: finite difference method, the
method of separation of variables, etc. The solution of partial differential Eq. (1) can be
reduced to the solution of a large number of ordinary differential equations. In this case,
discretization of (1) is performed along the length of the tether. Then the system of
ordinary differential equations is numerically solved to calculate the movement in time
of the points for which the tether is broken for.

Integration over time of the initial system of equations arises a computationally
intensive task. In order to solve it adequately one should carefully choose the
parameters of the numerical methods.

A discrete analogue of the Eq. (1) is a mechanical system consisting of a set of N
material points connected by elastic weightless connections (Fig. 1).

Various modifications to this model were used by many authors [2–4]. Within the
framework of this model the main effects of the TSS motion are taken into account:
tether elasticity, spread of longitudinal and transverse vibrations, power dissipation, etc.
The boundary and initial conditions of TSS motion are rather simply defined through
the definition of corresponding conditions for the end points. As the end-bodies the
material points can be considered as well as the bodies of finite size. In the latter case, if
necessary, the common equations of rotational motion are considered (dynamic and
kinematic Euler’s equations).

The equations of motion of M material points with elastic constraints are written as
a system of ordinary differential equations

d~rk
dt

¼ ~Vk; mk
d~Vk

dt
¼ ~Fk ; ð4Þ

where~rk, ~Vk, mk are the position, velocity and mass of the point k respectively. ~Fk is the
resultant of the forces acting on the material points k ¼ 1; 2; . . .;M.

The tension force of a tether is determined in the simplest case by the Hooke’s law,
assuming a linear dependence of the force from the tension. If the tether length
becomes smaller than its length in the undeformed state, the tension force is assumed to
be zero, because a thin tether does not support compression stress.

Spacecraft
PayloadTi Ti+1

i

Fig. 1. Discrete model of the tethered satellite system

116 A.N. Kovartsev and V.V. Zhidchenko

3 Numerical Simulation of the Tethered System Motion

Consider some features of the numerical simulation of the TSS as a system with
distributed parameters. To do this, we shall use the multi-point model of TSS (Fig. 1).
Representation of the tether as a set of material points reduces the problem of inte-
gration of the partial differential Eq. (1) to the integration of the system of ordinary
differential equations of high order. This problem is a classic Cauchy problem

dX
dt

¼ FðX; tÞ; ð5Þ

where X ¼ ðxijÞ 2 RM�n is the phase coordinates matrix for each point of the TSS, n is
the number of variables that represent the state of the system, M is the number of points
in discrete model of the tether, including the end-bodies (spacecraft and payload),
F ¼ ðfijðX; tÞÞ 2 RM�n. Initial conditions are described by the matrix Xðt0Þ ¼ X0 and
the simulation is considered on the time interval t 2 ½t0; tK �.

Numerical solution of the Eq. (5) is usually computed using the Runge-Kutta
fourth-order method. In this case the phase coordinates are calculated as follows:

Xðrþ 1Þ ¼ XðrÞ þ h
6
ðK1 þ 2K2 þ 2K3 þK4Þ; ð6Þ

where K1;K2;K3;K4 are matrices of Runge-Kutta coefficients.

4 Parallel Algorithm for the Motion Simulation of Tethered
Satellite Systems

It is obvious that more accurate solution of the system (5) is possible through the
increase of the number of points that describe the tether. When M ! 1 the discrete
analogue of the tether is converted into a continuous model. However, a large number
of points significantly increases the complexity of the problem of motion simulation.
Therefore, it is necessary to parallelize the algorithm and use the multiprocessor
computing system. This raises a number of difficulties. Firstly, the impact of the links
of each point with its right and left neighbors has to be taken into account to consider
the cable tension forces (from the point of view of the influence of gravitational and
inertial forces the points are independent of each other). Second, matrices
K1;K2;K3;K4 can not be calculated independently of each other, but only sequentially
in order of increasing index.

Let X ¼ XðrÞ be the matrix of initial coordinates. In the first phase for each point of
the cable with the number j the matrix K1 is calculated according to the formula

k j
1 ¼ fjðxj�1; xj; xjþ 1Þ; ð7Þ

Application of Graph Models to the Parallel Algorithms Design 117

where k j
1; fjð Þ; xj�1; xj; xjþ 1 are the rows of the corresponding matrices K1; F; X.

The new value of the phase coordinates which is necessary for the calculation of matrix
K2 can be represented in matrix form

~X ¼ Xþ hK1=2: ð8Þ

Similarly to (7) and (8) the Runge-Kutta formulas for phases 2, 3 and 4 may be
represented by the following formulas:

k j
2 ¼ fjð~xj�1;~xj;~xjþ 1Þ; ~~X ¼ X þ hK2=2 ; ð9Þ

k j
3 ¼ fjð~~xj�1;~~xj;~~xjþ 1Þ; ~~~X ¼ Xþ hK3

; ð10Þ

k j
4 ¼ fjð~~~xj�1;

~~~xj;
~~~xjþ 1Þ; ð11Þ

together with (6), for the fourth phase.
Let’s split the tether into p segments. Suppose that the number of points M is

divisible by p, so that m ¼ M=p. Each tether segment includes m points (Fig. 2).

Next we will split the matrix X by rows into p submatrices Xk ¼ ðxkijÞ 2 Rm�n,

where k ¼ 1; . . .; p and X ¼ S
Xk . The matrix Fk can be defined the similar way. Now

the tether coordinates can be calculated on each of the p processors relatively
independently.

To make the parallel algorithm correct it is necessary to supply each processor
(tether segment) with the information about the last point of the preceding segment and
the first point of the next segment. For this purpose the processor number k must have
access to the matrix Dk that stores the phase coordinates of the corresponding points:

Dk ¼ xk�1
m;1 xk�1

m;2 . . .x
k�1
m;n

xkþ 1
1;1 xkþ 1

1;2 . . .xkþ 1
1;n

�
�
�
�
�

�
�
�
�
�

ð12Þ

In the case where the parallel program is created for shared memory systems, the
data for the matrix Dk can be obtained directly from the matrix X. It is only necessary to
provide synchronization between the processors so that each processor could receive
the coordinates of points from the neighbor segment, calculated by another processor,

Spacecraft Payload
Ti Ti+1

i

Processor 1 Processor 2 Processor p

Fig. 2. Splitting the set of tether points into segments

118 A.N. Kovartsev and V.V. Zhidchenko

at the right time. For the problem under consideration it is convenient to choose the
barrier synchronization setting the barrier after calculating each matrix Ki. Since the
matrices K1;K2;K3;K4 must be calculated sequentially, the parallel algorithm can be
represented as a sequence of four phases of parallel calculations. At each phase Ki is
computed in parallel. The processor number k calculates the rows of the matrix Ki that
correspond to the points of its tether segment. To do this it uses the matrices Xk and Fk.
After the end of the calculation of phase Ki the processes arrive to the barrier to get new

phase coordinates ~X; ~~X;
~~~X from the matrices Dk required for the calculation of Kiþ 1.

If the parallel program is created for distributed memory systems, the processes
must form the matrices Dk from the messages received from other processes.

5 Graph Model of the Parallel Algorithm

We represent the parallel algorithm graphically. To do this we will use the notation of
graph-symbolic programming technology (GSP) [5, 6]. The GSP technology allows to
describe the algorithm as a set of control flow diagrams. The program that implements
the algorithm is compiled and run automatically. Control flow diagram is a directed
graph, where the nodes represent the actions performed on the data, and the arcs
represent the sequence of execution of these actions. If some node has several outgoing
arcs, then depending on the type of the arc either one or multiple adjacent nodes
simultaneously may execute. The arcs of different types have different graphical rep-
resentations. The advantage of the control flow diagrams is a visual representation of
the sequence of computations in the program. The disadvantage is the lack of visibility
of data dependencies between the nodes. Figure 3 displays the parallel algorithm for
calculating the coefficients of the Runge-Kutta method described above.

On Fig. 3 the arcs, which are marked with the circle in the beginning, represent a
transfer of control to the new process. The arcs, the beginning of which is marked by a
slash, depict the return of control from another process. At each phase of calculations
four processes are used to calculate the different tether segments. The graph nodes in
GSP technology can be marked with text or images. For clarity, in Fig. 3 some nodes
are labeled with the icons depicting simplified image of a tethered satellite system and
calculation phase number. These nodes represent the subprograms for calculation of the
individual tether segments. Thus, the graph of the algorithm in Fig. 3 is hierarchical.
The nodes marked with images actually represent other graphs that consist of three
nodes. The content of one of these graphs is depicted in the right part of the figure.
Hierarchical construction of graphs in GSP technology allows you to hide unimportant
details of the implementation of various parts of the algorithm. On each level of
hierarchy the nodes on the graph describe important elements that help to understand
the structure of the algorithm.

Application of Graph Models to the Parallel Algorithms Design 119



6 Evaluation of Speedup of the Parallel Program
for Numerical Simulation of the Tethered System Motion

We estimate the speedup of the parallel program that implements the algorithm
described above. The calculation of Ki for one point of tether in accordance with
formula (7) reduces to computing the value of the function f. This function in the
problem under consideration includes about 160 mathematical operations. Let s be the
duration of execution of a single mathematical operation. The calculation of Ki takes
a ¼ 160 � s. The time consumed by the sequential program, which calculates the phase
coordinates for M tether points in Nt time steps, in accordance with the formula (6) can
be estimated by the following expression:

Tsum
1 � 4 � a �M � Nt ð13Þ

Let’s estimate the duration of the parallel program execution. In the parallel
algorithm discussed above in each phase of the calculation Ki is computed indepen-
dently on p processors. The duration of each phase is p times smaller compared with
the sequential program. The total time needed for the parallel program execution for
calculating the phase coordinates ofM points in one time step is the sum of the duration
of four calculation phases and the duration of data exchange between the segments:

Fig. 3. Graph model of the parallel algorithm for calculating the coefficients of the Runge-Kutta
method

120 A.N. Kovartsev and V.V. Zhidchenko



send ð14Þ

In programs for the shared memory systems the data exchange time can be
neglected. Calculation of the phase coordinates for different time steps is performed
sequentially, so the total time consumed by the parallel program is:

Tsum
jjshared �

4 � a �M
p

� Nt ð15Þ

Parallel program speedup for the shared memory systems will be the following:

Sshared ¼ Tsum
1

Tsum
jjshared

¼ p ð16Þ

On the distributed memory systems, at the beginning of the first phase of calcu-
lations each process must receive the initial data (matrices Xk and Fk). Between the
phases the processes must exchange the messages that contain the matrices Dk . As an
example, consider a parallel program that uses the Message Passing Interface (MPI) for
exchanging data between the processes. The main process of the program that performs
input-output of matrices X and F, must send the bands of these matrices to other
processes. Let b is the time required to transfer 1 byte of data. Then, to transfer X and F
the main process will spend

T0
send ¼ ð20þ nÞ � sizeof ðxiÞ �M � b

p
� p ¼ ð20þ nÞ � sizeof ðxiÞ �M � b ð17Þ

Expression (17) assumes that every point is described by n phase coordinates, and
each element of the matrix Fk contains 20 parameters. The sizeof(xi) function returns
the size of the data type, which presents the phase coordinate.

Consider the common case where n = 4 and sizeof(xi) = 8. As on distributed
memory systems, such as clusters, b is much greater than s, the transfer of initial data
takes comparable or larger time than the calculation of all tether points in one time step
(see (13)). Therefore, on cluster we should send initial data once, before the
calculations.

Data exchange between the phases is as follows. At the beginning of each phase the
main process sends the messages containing matrices Dk to other processes. At the end
of each phase the processes send the messages containing the new values of the
coordinates to the main process. Since the matrix Dk comprises 2 � n elements the total
time needed to exchange matrices sequentially in four phases is:

TDk
send ¼ ð2 � n � sizeof ðxiÞ � b � pÞ � 4 � 2 ¼ 16 � n � sizeof ðxiÞ � b � p ð18Þ

Taking into account expressions (13), (14), (17), (18), we get the following esti-
mation for the parallel program speedup in case of distributed memory system:

Application of Graph Models to the Parallel Algorithms Design 121



Sdistr ¼ Tsum
1

Tsum
jjdistr

¼ p

1þ ð20þ nÞ�sizeof ðxiÞ�b
4�a�Nt þ 4�n�sizeof ðxiÞ�b�p2

a�M
ð19Þ

Table 1 shows the results of experiments made on computing cluster of Samara
University which consists of 180 nodes with 360 Intel Xeon 2.8 GHz processors.

The calculations were made for 90000 tether points and 400 time steps. The results
show the maximum speedup in case of about 100 processes. Further increase of
number of processes increases the amount of data being transferred between the cal-
culation phases and decreases the overall speedup. The estimation of speedup calcu-
lated in accordance to the expression (19) is close to the experimental data. Expression
(19) provides the way to estimate the optimum number of processors for execution of
parallel program for motion simulation of the TSS.

7 Conclusion

The paper considers the problem of numerical simulation of the motion of tethered
satellite systems using high-performance computing systems. The features of the
problem are indicated that affect the possibility of parallelization. A parallel algorithm
is proposed for the implementation of the Runge-Kutta method according to the fea-
tures of the problem. Estimation of speedup of the parallel program that implements the
proposed algorithm is given, for the cases of shared and distributed memory systems.
The proposed algorithm is described in the form of graphic model with the help of the
graph-symbolic programming technology, which provides automatic synthesis of a
parallel program based on the model of the algorithm. Graphic model simplifies the
analysis of the algorithm and its modification. It contributes to the development of new
algorithms and research development in the field of modeling the motion of tethered
satellite systems.

Acknowledgements. The work was partially funded by the Russian Federation Ministry of
Education and Science and Russian Foundation of Basic Research. Grant #16-41-630637.

Table 1. Experimental results

Number of processes Duration of calculations, sec Actual speedup Estimation of speedup

1 60.000 – –

5 15.726 3.815 4.314
10 12.986 4.620 7.488
30 6.122 9.800 13.514
100 4.935 12.159 13.235
180 8.062 7.443 10.045
360 13.579 4.419 6.220
450 17.664 3.397 5.202

122 A.N. Kovartsev and V.V. Zhidchenko



References

1. Beletsky, V.V., Levin, E.M.: Dynamics of Space Tether Systems. Univelt, San Diego (1993)
2. Dignat, F., Shilen, V.: Variations control of orbital tethered system (in Russian). J. Appl.

Math. Mech. T.64 5, 747–754 (2000)
3. Zabolotnov, Y.M., Fefelov, D.I.: Motion of light capsule with the tether in the

extra-atmospheric section of deorbit (in Russian). In: Proceedings of the Samara Scientific
Center of the Russian Academy of Sciences, T.8, #3, pp. 841–848 (2006)

4. Zabolotnov, Y.M., Elenev, D.V.: Stability of motion of two rigid bodies connected by a cable
in the atmosphere. Mech. Solids 48(2), 156–164 (2013)

5. Kovartsev, A.N., Zhidchenko, V.V., Popova-Kovartseva, D.A., Abolmasov, P.V.: The basic
principles of graph-symbolic programming technology (in Russian). In: Open Semantic
Technologies for Intelligent Systems, pp. 195–204 (2013)

6. Egorova, D., Zhidchenko, V.: Visual Parallel Programming as PaaS cloud service with
Graph-Symbolic Programming Technology. Proc. Inst. Syst. Program. 27(3), 47–56 (2015).
doi:10.15514/ISPRAS-2015-27(3)-3

Application of Graph Models to the Parallel Algorithms Design 123

http://dx.doi.org/10.15514/ISPRAS-2015-27(3)-3


The DiamondTetris Algorithm for Maximum
Performance Vectorized Stencil Computation

Vadim Levchenko and Anastasia Perepelkina(B)

Keldysh Institute of Applied Mathematics RAS,
Miusskaya sq., 4, Moscow, Russia
lev@keldysh.ru, mogmi@narod.ru

Abstract. An algorithm from the LRnLA family, DiamondTetris, for
stencil computation is constructed. It is aimed for Many-Integrated-Core
processors of the Xeon Phi family. The algorithm and its implementation
is described for the wave equation based simulation. Its strong points
are locality, efficient use of memory hierarchy, and, most importantly,
seamless vectorization. Specifically, only 1 vector rearrange operation is
necessary per cell value update. The performance is estimated with the
roofline model. The algorithm is implemented in code and tested on Xeon
and Xeon Phi machines.

1 Introduction

The main purpose of supercomputer advancement is scientific computing appli-
cation, among which stencil schemes are widely used.

The efficient use of all levels of parallelism of a hybrid hardware is essential,
yet insufficient to achieve the maximum performance. Since the stencil compu-
tation is a memory bound problem, one of the algorithmic challenges lies in
mitigating the bottleneck posed by the memory bandwidth to floating point
performance ratio.

The most common strategy of the solution of a stencil problem is the stepwise
advancement, when the next layer in time is computed only after the previous
time iteration has been computed completely. This convention arises from the
natural concept of time, but sets an artificial limit on locality of data reference,
and data reuse.

The techniques of time-space approach have been introduced decades ago [12].
Some of these are known as temporal tiling, split-tiling [5] (trapezoidal [3],
hexagonal [4], diamond [1]), temporal blocking [10], time-skewing [8], wave-front
tiling [13]. With the advancement of the new computer hardware, the interest in
such techniques increases even more.

The loop optimization in 4 dimensions leads to higher performance, but intro-
duces several complications.

Data dependencies should be traced to ensure the correctness of computa-
tions. With the wavefront approach the correctness is apparent, but it limits the
optimization freedom.

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 124–135, 2017.
DOI: 10.1007/978-3-319-62932-2 11



The DiamondTetris Algorithm 125

Diamond blocking offers more locality and parallelization possibilities, but
often discarded as complex. The limit here is not only the difficulty of program-
mers perception of 4D space, but also the overhead in the instruction count.

Another complication is in the programming the algorithm. While the step-
wise algorithm may be implemented by several nested “for” loops that are
offered by every relevant programming language, temporal blocking with a sten-
cil scheme require much more lines of code. Code generation techniques [9] are
developed to negate the undesirable complication and make the visible code
human-friendly.

Temporal blocking algorithms rely on the notion of the data locality and
reuse, but under the given restrictions there exist a vast number of ways to
block the time-space domain.

The search of four-dimensional traversal rule that is optimal for each specific
system is an open challenge.

Locally Recursive non-Locally Asynchronous (LRnLA) [7] approach shares
similarities with temporal blocking, but evolved separately from the mentioned
research. It addressed the following objectives in algorithm optimization:

– Systematize the description of high-dimensional blocking.
– Make a quantititaive measure of algorithm efficiency, which can be used for

estimating the resulting performance ona given hardware.
– Maximize the spacial and temporal data locality.

DiamondTetris, the most recent LRnLA algorithm, is introduced in this
paper. It is built as an upgrade of a DiamondTorre algorithm for solution of
the finite difference cross stencil problems on multicore processors. Specifically,
Intel Xeon Phi Knights Landing architecture is chosen for consideration as it
becomes the base processing power in the emerging supercomputers.

DiamondTetris features higher locality than DiamondTorre due to the full
4D decomposition in time and space, and higher locality than ConeFold, the
previous LRnLA algorithm for CPU, since it takes into account not only the
locality, but also the cross shape of the stencil.

The algorithm is built with account for all available levels of parallelism,
and uses all levels of memory hierarchy. Among these, when programming for
Xeon Phi architecture, it is gravely important to make full use of the vector
processing. DiamondTetris solves the problem of vectorizing the computation in
stencil scheme by using the minimal vector reshuffle operations.

2 Wave Equation

The wave equation is chosen for a simple illustration of the method

∂2f

∂t2
= c2�f . (1)

Partial differential with respect to time is approximated by the second order
finite difference:

f+ − 2f0 + f−

Δt2
= c2�f0 . (2)



126 V. Levchenko and A. Perepelkina

Here Δt is the time step. To calculate a new value of f the values on the two
previous time steps are necessary:

f+ = 2f0 − f− + c2Δt2�f0. (3)

The computation is conducted as the update of the mesh values. To ensure that
for each step we have necessary data, two data arrays are used. f is defined on
the even time steps; g is defined on the odd ones. They are updated in turns:

f = 2g − f + c2Δt2�g,

g = 2f − g + c2Δt2�f.

Though the size of the stencil is an adjustable parameter, the discussion here
is provided for the specific case. 13-point 4-th order 3D stencil is used for the
approximation of the laplacian. The choice is justified by the previous experience
in applied computing. For wave simulation 7 points per wavelength is enough
for desired accuracy, with little more operations compared to the simplest 2nd
order stencil.

We define ShS (Stencil half Size) parameter, which is equals 2 for the chosen
stencil. The stencil is cross-shaped. By applying the stencil to a point, then to
all the points in the stencil dependencies, and so on, an octahedron is generated.

3 Algorithm

The construction of the algorithm is made by the usual LRnLA principles. We
have previously described DiamondTorre construction in x–y–t in [6]. The new
algorithm DiamondTetris is based on a time-space decomposition in 4D.

On the t = 0 time layer the base form is chosen as a prism (Fig. 1). The
faces, that are perpendicular to z-axis are diamond-shaped. The left point of the
top face projects on the right point of the bottom face. The incline angle of the
prism is π/4. This shape is chosen so as to adhere to the following criteria: 1.
Closely circumscribes the octahedron (in fact, it consists of an octahedron, two
half-octahedra (pyramids), 4 tetrahedra to fill the space between them). 2. The
simulation domain may be tiled by this shape with no overlaps or gaps This
3D prism in x–y–z is called DiamondTile. It is associated with an algorithm in
which all mesh points that are inside the shape are updated once.

Its size is a parameter. For uniformity of description, it is a factor of ShS.
We call the scaling factor DTS — Diamond Tile Size. The base of DiamondTile
is a diamond that has 2ShS · DTS points along x diagonal, (2ShS · DTS − 1)
points along y diagonal. DiamondTile is 2ShS · DTS points high in z direction.

The second base is a similar shape on the time layer t = NT · 2 · DTS · Δt,
and 2 · NT · DTS · ShS mesh steps lower along z axis, where NT is an integer
parameter.

The intersection of the dependency cone of the former and the influence cone
of the latter is a 4D shape, which can be described by its x–y–z slices. On the
it time step its slice is the similar DiamondTile it · ShSΔt mesh steps lower in



The DiamondTetris Algorithm 127

Fig. 1. DiamondTile (left). Its 2D projections (center). DiamondTetris (right). Since
the image of the overlapping 3D shapes may be confusing, only the central slice of the
falling DiamondTile is depicted. Green (f values computations) and blue (g values)
are interchanging. Refer to the electronic version of the paper for colors (Color figure
online)

the z axis. It may be associated with the DiamondTile 3D shape ‘falling’ down
along the z axis. So the described 4D shape and the algorithm corresponding to
it are named DiamondTetris.

As an algorithm, DiamondTetris for the given equation is described as follows
(see (2)):

1. perform stencil calculation for all f values 3D points inside the DiamondTile
shape;

2. perform calculation for all g values inside the DiamondTile, shifted by ShS
mesh points down in z axis;

3. repeat steps 1–2 (NT · DTS) times, each time the DiamondTile is shifted
down by ShS.

The construction of the algorithm as an intersection of the influence cone
and the dependency cone guarantees that these shapes, tiled in x–y–z–t, have
either unilateral data dependencies, or none at all.

DiamondTiles, that are adjacent in x, z or t direction have unilateral depen-
dencies (Fig. 2). A row of DiamondTetrises with the same x, z and t coordinate
are asynchronous. They have no data dependencies between each other and may
be processed in parallel.

The row along the y axis may be computed concurrently (red in Fig. 2). The
computation will be valid in terms of data dependencies, if all DiamondTetrises
below and to the right of it are processed. Some closest of them are pictured
yellow on Fig. 2. Alternatively, this (red) row may be the first one in the compu-
tation, if it intersects the boundary. In this case, computation may differ if the
boundary condition applies.

After it is computed, the row shifted by z = 2ShS ·DTS and x = DTS ·ShS
(purple), or by x = −ShS · DTS and y = ShS · DTS (blue) may be processed.
Purple and blue row are asynchronous and may be computed independently.

The DiamondTetris 4D shape is a natural generalization of a 3D Diamond-
Torre shape in [6,14]. In DiamondTorre a 2D diamond progresses to the right in
x direction; in DiamondTetris a 3D DiamondTile progresses down in z direction.



128 V. Levchenko and A. Perepelkina

Fig. 2. Starting positions of DiamondTetrises. A row of DiamondTetrises along y axis
is asynchronous (red). It may be started when all DiamondTetrises below (yellow, only
some are shown) are processed. After it, the next row to the left (blue) and the next
row above (purple) may be started. Refer to the electronic version of the paper for
colors (Color figure online)

4 Implementation

4.1 Data Structure

The data structure for field storage is optimized with account for uniformity and
locality of data access. We define (Fig. 3)

an element as 4ShS3 mesh points, situated in a small DiamondTile shape;
an element block as DTS3 elements;
a cell as 2 blocks with f field data and 2 blocks with g field data.

These data structures are used for storage. Cells are stored in a 3D array. An
element size is 256B (double precision).

Fig. 3. Element. Element block. Pairs of blocks in a rectangular array.

For computation of DiamondTetris we define (Fig. 4):

A vector as 2DTS · ShS points, combined in one data structure. These points
are situated diagonally in the x–z slice. Each vector consists of 2ShS SIMD
vectors.

A vector element as 2ShS2 vectors of 2DTS · ShS points. It is constructed
from DTS elements, standing on top of each other.



The DiamondTetris Algorithm 129

A vector block as (DTS+1)2 vector elements comprising a shape that is close
to a DiamonTile, but wider.

These data structures are used for computation. For 1 DiamondTetris we need
2 vector blocks at a time: one for the f field, and one for the g field.

Fig. 4. Vector element in x–z. Vector block in x–y. Vector block data ‘falls’ in the cell
block array

4.2 Computation Flow

Processing flow of 1 DiamondTetris is as follows (Fig. 5):

1. Load cell data to the two (f and g) vectors blocks.
2. With the loaded data, perform all possible calculation for the DTS2 vector

blocks with f values (green color area on Fig. 5). Some stencil points cannot
be accessible now due to the deficiency of data in the g vector block.

3. Vector shift: vector elements are updated. The top 2 · ShS points of each
vector are saved to memory and discarded from the vector block strusture.
2 · ShS points below are loaded from memory.

4. The remaining computation for the f values is conducted.
5. Data from the leftmost g field vector elements (a ‘hood’) are saved to memory

and discarded from the vector block. The data from right of the vector block
are loaded from memory to take its place.

6. At this point the vector block positions are analogous to the initial one,
with f and g swapped. The 2–5 steps are repeated for g computation and f
load/save.

7. 2–6 are repeated NT · DTS times.
8. The computed data from the vector blocks that weren’t saved before are saved

to the memory.

At this point we choose the optimal DTS. At each calculation 2 vectors
blocks (f and g) are needed. With DTS = 8 the data of two vector blocks
(double precision) fits L2 cache.

The choice of DTS = 8 is especially convenient now, since 8 double precision
values may fit into a 512-bit vector of Xeon Phi. 8 single precision values fit into
a 256-bit vector of AVX2 instruction set. of a target platform.



130 V. Levchenko and A. Perepelkina

Fig. 5. DiamondTetris computation flow, DTS = 4. Left: Data is loaded, f (green filled
area) is partially computed. Refer to the electronic version of the paper for colors. Cen-
ter: vector shift, the remaining computation of f is possible. Right: load/save ‘hood’.
Return to the initial position with f and g switched. Notice that f vector position
stays the same. (Color figure online)

4.3 Vector Computation

The computation with SIMD vectors is implemented so as to minimize vector
rearranging operations. Specifically, vector rearrange operations exist only on
step 3.

Figure 6 represents the two states of the computation of the each f vector:
before and after the shift.

Fig. 6. f (blue circles) and g (green squares) vector positions before (left) and after
(right) shift. Refer to the electronic version of the paper for colors. In one vector the
shapes with the same filling belong to one SIMD vector. For simplicity of depiction,
the vectors are shorter (DTS = 2 instead of 8). Only those vectors that are relevant
for the computation of 1 f vector are shown, x–z projection. (Color figure online)

One f (green lines) or g (blue lines) vector consists of 4 SIMD vectors. Data
belonging to the different SIMD vectors inside one vector are shown by different
fill color.

The g value data in the each point of the stencil should be summed with a
specific coefficient to calculate the correct update for the f value.



The DiamondTetris Algorithm 131

Table 1. Reference for vector summation. Refer to the electronic version of the paper
for colors

+2Δz +Δz 0 −Δz −2Δz

f g g g g g (shifted)
f g g g g (shifted) g (shifted)
f g g g (shifted) g (shifted) g (shifted)
f g g (shifted) g (shifted) g (shifted) g (shifted)

At +2Δz the cross stencil has one point. For each point in the f vector this
data is accessible in the vector block before the shift. At +Δz the stencil also has
just one point. For SIMD vectors shown by magenta, yellow, white color fill this
point is accessible before the shift, for cyan colored SIMD vector all data may be
reached after the shift. Each time the summation is a direct vector summation.

At +0Δz layer the stencil has 9 points that comprise the finite differences in
the x and y directions. These can be computed for SIMD vectors shown by cyan
and magenta before the shift, and for the rest after the shift.

The Table 1 shows which vectors at what point are ready for the summation.
Not shifted values are summed before the shift (step 2 above), shifted SIMD
vectors are added after the shift (step 4 from above).

4.4 Boundary Conditions and Initial Values

The boundary condition that is the most simple to implement is periodicity. It
is implemented in the y-axis direction.

However this condition cannot be valid with the DiamondTetris algorithm in
x and z direction. In case when the data on different sides of the domain exists
on different time steps, Bloch boundary condition is an obvious generalization
of the periodicity, and works perfectly in this framework.

For example, to compute the data on the left side in the x direction, 2 left
points of the stencil lie outside of the domain. Instead the points from the right
side of the domain can be taken. Let f(x, t) be the value of unknown point, and
let f(x + Lx, t + τ) be the value on the right side of the domain. It is shifted
by the domain x size Lx in space, and, in the moment when the leftmost data
is calculated at the time t, the rightmost data has already progressed to time
t + τ , τ = 2 · DTS · NT · dt.

The simulated waves should satisfy:

kxLx = ωτ + 2πn, n = . . . − 2,−1, 0, 1, 2 . . . (4)

The Bloch boundaries in the current implementation are ridged, since they
follow the blocks of the data structure.

Same applies to the boundary in the z direction.
Due to the inclined shape of DiamondTetris, the starting row of Dia-

mondTetrises should ‘sit’ on the rows below and to the right of it. Their data are



132 V. Levchenko and A. Perepelkina

initialized to satisfy this assumption. So, the initial values are set on the range
of time steps from 0 to 2 · DTS. The example configuration of the initial state
is shown on Fig. 7.

Fig. 7. The example of the initial state for the computation. In 3 2D slices of the 3D
domain color shows the time step on which the f and g fields are initialized. White:
no data, green to light blue: t = 0 to t = 16. DTS = 8, NT = 1, 8× 4× 9 cells in data
array. The 2 bases of DiamondTetris that may be initially computed are depicted on
the x–z slice. (Color figure online)

The snapshot of wave propagation is shown on Fig. 8.

5 Results and Conclusions

The constructed algorithm has several advantages over the state of art effort in
the field of stencil implementation for the Intel Xeon Phi architecture [13].

Firstly, it requires less vector rearranging operations in-between SIMD arith-
metics, which leads to the more efficient use of SIMD parallelism. 1 vector shift
per value update is performed.

The algorithm is tuned to fit L2 cache. One DiamondTetris data (two vector
blocks) always fit L2 cache. The data that is to be loaded from memory satisfies
the locality requirements since the data structure conforms with the algorithm
shape. Furthermore, the computation of 1 vector element (with all 4 vector
elements it depends on) fits the L1 cache.



The DiamondTetris Algorithm 133

Fig. 8. Computation snapshot of the plain wave propagation. Time steps differ by 16
across the domain

Fig. 9. Roofline model for KNL with stencil algorithm performance estimations

4D temporal blocking provides more asynchronous blocks than wavefront
tiling, allowing the use of many parallel levels. The clear distinction between
asynchronous and sequential DiamondTetrises allows effortless parallelization
between cores. For inter-node parallelism the “Computation window” approach
may be used like in [14]. Data transfers between nodes may be concealed by
adjusting the NT parameter, so efficient scaling on many-node cluster may be
anticipated.



134 V. Levchenko and A. Perepelkina

We can estimate the algorithm performance using the roofline model [2,11].
On Fig. 9 Xeon Phi KNL roofline is plotted, with the estimated positions of
the stencil code algorithms. “Naive” refers to the algorithm where each stencil
application requires loads and stores of all its data. “The best of stepwise” refers
to the maximum reuse of data due to stencil overlap. Since these data cannot
fit the cache memory, we estimate that the performance is limited by the DDR
bandwidth.

On the other hand, DiamondTetris is designed to fit memory levels. The
computation of 1 vector element fits L1 cache, and the computation of whole
DiamondTetris fits L2 cache. According to the model, it is possible to promote
stencil problems to the compute-bound class.

The described algorithm is implemented in code. Two versions of code may
run: double precision with AVX-512 instruction set (for use on Xeon Phi Many-
Integrated-Core processors); single precision with AVX2 vectorization (for tests
on the other modern CPU). The preliminary performance results reach ∼1/7
from the theoretical peak performance and do not depend on the problem size
(as long as the data size fits DDR memory).

Acknowledgments. The access to the computing resources with Intel Xeon Phi KNL
has been provided by Colfax Research (colfaxresearch.com) in the course of “Deep
Dive” HOW series.

References

1. Bertolacci, I.J., Olschanowsky, C., Harshbarger, B., Chamberlain, B.L.,
Wonnacott, D.G., Strout, M.M.: Parameterized diamond tiling for stencil compu-
tations with chapel parallel iterators. In: Proceedings of the 29th ACM on Inter-
national Conference on Supercomputing, ICS 2015, pp. 197–206. ACM, New York
(2015). http://doi.acm.org/10.1145/2751205.2751226

2. Doerfler, D., Deslippe, J., Williams, S., Oliker, L., Cook, B., Kurth, T., Lobet, M.,
Malas, T., Vay, J.-L., Vincenti, H.: Applying the roofline performance model to
the Intel Xeon Phi knights landing processor. In: Taufer, M., Mohr, B., Kunkel,
J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 339–353. Springer,
Cham (2016). doi:10.1007/978-3-319-46079-6 24

3. Frigo, M., Strumpen, V.: The memory behavior of cache oblivious stencil compu-
tations. J. Supercomput. 39(2), 93–112 (2007)

4. Grosser, T., Cohen, A., Holewinski, J., Sadayappan, P., Verdoolaege, S.: Hybrid
hexagonal/classical tiling for gpus. In: Proceedings of Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO 2014, pp. 66:66–
66:75. ACM, New York (2014). http://doi.acm.org/10.1145/2544137.2544160

5. Henretty, T., Veras, R., Franchetti, F., Pouchet, L.N., Ramanujam, J.,
Sadayappan, P.: A stencil compiler for short-vector simd architectures. In: Pro-
ceedings of the 27th International ACM Conference on International Conference
on Supercomputing, ICS 2013, pp. 13–24. ACM, New York (2013). http://doi.acm.
org/10.1145/2464996.2467268

6. Levchenko, V., Perepelkina, A., Zakirov, A.: Diamondtorre algorithm for high-
performance wave modeling. Computation 4(3), 29 (2016). http://www.mdpi.com/
2079-3197/4/3/29

http://colfaxresearch.com
http://doi.acm.org/10.1145/2751205.2751226
http://dx.doi.org/10.1007/978-3-319-46079-6_24
http://doi.acm.org/10.1145/2544137.2544160
http://doi.acm.org/10.1145/2464996.2467268
http://doi.acm.org/10.1145/2464996.2467268
http://www.mdpi.com/2079-3197/4/3/29
http://www.mdpi.com/2079-3197/4/3/29


The DiamondTetris Algorithm 135

7. Levchenko, V.: Asynchronous parallel algorithms as a way to archive effectiveness
of computations. J. Inf. Technol. Comput. Syst. (1), 68 (2005). (in Russian)

8. McCalpin, J., Wonnacott, D.: Time skewing: a value-based approach to optimiz-
ing for memory locality. Technical report (1999). http://www.haverford.edu/cmsc/
davew/cache-opt/cache-opt.html

9. Muranushi, T., Makino, J., Hosono, N., Inoue, H., Nishizawa, S., Tomita, H.,
Nitadori, K., Iwasawa, M., Maruyama, Y., Yashiro, H., Nakamura, Y., Hotta, H.:
Automatic generation of efficient codes from mathematical descriptions of sten-
cil computation. In: Proceedings of the 5th International Workshop on Functional
High-Performance Computing, FHPC 2016. Association for Computing Machinery
(ACM) (2016). https://doi.org/10.1145/2F2975991.2975994

10. Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5DD blocking opti-
mization for stencil computations on modern CPUs and GPUs. In: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2010, pp. 1–13 (2010). http://dx.doi.org/
10.1109/SC.2010.2

11. Williams, S., Waterman, A., Patterson, D.A.: Roofline: an insightful visual per-
formance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
http://dblp.uni-trier.de/db/journals/cacm/cacm52.html#WilliamsWP09

12. Wolfe, M.: More iteration space tiling. In: Proceedings of the 1989 ACM/IEEE
Conference on Supercomputing, Supercomputing 1989. ACM, New York (1989).
http://doi.acm.org/10.1145/76263.76337

13. Yount, C., Duran, A.: Effective use of large high-bandwidth memory caches in
hpc stencil computation via temporal wave-front tiling. In: Proceedings of the 7th
International Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computing Systems, PMBS 2016, pp. 65–75. IEEE Press,
Piscataway (2016). https://doi.org/10.1109/PMBS.2016.12

14. Zakirov, A., Levchenko, V.D., Perepelkina, A., Yasunari, Z.: High performance
fdtd code implementation for gpgpu supercomputers. Keldysh Institute Preprints
(44), 22 pages (2016). http://library.keldysh.ru/preprint.asp?id=2016-44

http://www.haverford.edu/cmsc/davew/cache-opt/cache-opt.html
http://www.haverford.edu/cmsc/davew/cache-opt/cache-opt.html
https://doi.org/10.1145/2F2975991.2975994
http://dx.doi.org/10.1109/SC.2010.2
http://dx.doi.org/10.1109/SC.2010.2
http://dblp.uni-trier.de/db/journals/cacm/cacm52.html#WilliamsWP09
http://doi.acm.org/10.1145/76263.76337
https://doi.org/10.1109/PMBS.2016.12
http://library.keldysh.ru/preprint.asp?id=2016-44


A Parallel Locally-Adaptive 3D Model on Cartesian
Nested-Type Grids

Igor Menshov1,2(✉) and Viktor Sheverdin2

1 Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, Moscow, Russia
menshov@kiam.ru

2 VNIIA, Moscow, Russia

Abstract. The paper addresses the 3D extension of the Cartesian multilevel
nested-type grid methodology and its software implementation in an application
library written in C++ object-oriented language with the application program
interface OpenMP for parallelizing calculations on shared memory. The library
accounts for the specifics of multithread calculations of 3D problems on Cartesian
grids, which makes it possible to substantially minimize the loaded memory via
non-storing the grid information. The loop order over cells is represented by a
special list that remarkably simplifies parallel realization with the OpenMP direc‐
tives. Test results show high effectiveness of dynamical local adaptation of Carte‐
sian grids, and increasing of this effectiveness while the number of adaptation
levels becomes larger.

Keywords: Locally-adaptive nested-type Cartesian grid · Shared memory
parallel calculation · Gas dynamics equations

1 Introduction

Dynamic adaptation of the computational grid via local subdividing cells with the aim
to increase accuracy of numerical solutions has been being studied for already more than
thirty years [1–6]. However, with the development of modern supercomputers, such grid
technology assumes additional specifics that require to design new approaches. The
algorithm implementation on high performance parallel multi-core computer systems
presents several difficulties and special aspects in organizing calculations and data
transfers. For example, using GPUs leads to necessity of searching simple computational
algorithms with small local computational stencils.

Cartesian grids are most appropriate for multi-core parallel computer systems due
to simplicity in programming directional splitting methods, regular stencils of memory
access, simple grid parameters as face normal, volume, face area, and so on. On the other
hand, using structured regular Cartesian grids to obtain high quality results requires so
many computational cells that the problem execution with even a modern supercomputer
may take inadmissibly much time.

Commonly, high spatial resolution is required only in small subdomains where the
solution has steep gradients. Using a large grid to be fine in all the computational domain
seems to be not rational; it is more reasonable to employ grids with the option of refining

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 136–142, 2017.
DOI: 10.1007/978-3-319-62932-2_12



grid elements (by dividing the cell in smaller subcells) only locally in accordance with
some criteria. In this way we obtain a grid that is referred to as locally adaptive (LA) of
the nested-type structure.

The technology of LA grids causes several problems related with its software imple‐
mentation. The first is the data format on LA grids. This format must maintain the
homogeneity of memory access, minimize resources used for calculation, and be suffi‐
ciently complete to realize basic solver functions (as, e.g., searching neighboring
elements). Parallelizing algorithms on LA grids is another problem. For shared memory
systems, issues of optimal data design and cell loop order require special consideration.
Dynamic balancing work between nodes is very crucial for the distributed memory
systems. The geometry representation and treatment of the boundary conditions on LA
Cartesian grids is also an important issue.

The present paper addresses the above issues of Cartesian LA grids. We describe an
application library written in C++ object-oriented language with the application
program interface OpenMP for parallelizing calculations on the shared memory. The
library accounts for the specifics of multithread calculations of 3D problems on Cartesian
grids, which makes it possible to substantially minimize the loaded memory of the
computer via non-storing the grid information. The loop order over cells is represented
by a special list that remarkably simplifies parallel realization with the OpenMP direc‐
tives. To treat the geometry, we implement local adaptation of the grid to the geometry
with subsequent treatment of the boundary conditions by means of the free boundary
method [7, 8].

2 Representation of Cartesian LA Grid in Computer Memory

We use an octree data format to represent the discrete solution on the Cartesian LA grid.
A computational cell is allowed to split into eight equal subcells (child cells) by dividing
the cell in two along each coordinate direction. As the base grid, a Cartesian structured
grid of a size of M × N × K cells is taken; the zero-level of adaptation is assigned to
base cells.

Each cell of the LA grid is completely described by its level of adaptation lvl (indi‐
cates the number of divisions) and by the triple index (i, j, k) that shows the cell location
in the virtual structured grid corresponding to lvl level (when all cells of the base grid
recursively divided lvl times). Thus, the grid cells are represented by the octree network.
Each node of this tree has a flag that shows whether the corresponding cell is divided or
not. If the flag equals 1, the cell has 8 child cells and stores 8 pointers to these cells. The
leaf cells (with no more subdivisions) have flags equal 0. These cells are computational,
which are assigned by pointers to vertex coordinates and the solution parameters. The
adaptation is ruled by the 1:2 principle that admits neighborhood of only cells with
difference in the level of adaptation not more than 1.

The octree format with the 1:2 limitation has useful properties that allows us to
effectively perform the operation of searching neighbors to a current cell. These prop‐
erties are as follows. The parent cell for a cell (lvl, i, j, k) has corresponding coordinates
(lvl − 1, [i/2],[j/2],[k/2]), where [./.]) is integer division, and index starts from 0,

A Parallel Locally-Adaptive 3D Model 137



i = 0, M − 1; j = 0, N − 1; k = 0, K − 1. Let the virtual coordinates (i, j, k) at the level
lvl of a cell be written binary so that the number of digits equals lvl. Then, the integers
in the s position in these binary notations of the (i, j, k) index indicates the position of
the s ancestor (s < lvl) in the s − 1 ancestor. For example, if the integers are (0,0,0), then
the s ancestor is the bottom-left-front subcell of the s − 1 ancestor, (1,0,0) corresponds
to the upper-left-front cell, (0,1,0) is the bottom-right-front subcell, (1,0,1) is the upper-
left-rear subcell, and so on.

To this end, ordinary sweep over cells of the LA grid is performed as follows. We
do program loop over cells of the base grid. If the current cell is found to be leave (with
no subdivisions), we move to another cell. Otherwise, we recursively sweep the child
cells from level to level until the leaf cell (with the flag 0) is found. To do the sweep
over neighbors, we have to find all leaf neighbors for a current leaf cell. Let us consider
a current cell that has coordinates (lvl, i, j, k), and try to find leaf neighbors adjoin the
cell from the right (i-direction). We take the cell with coordinates (lvl, i + 1, j, k), and
search such a cell in the octree network by using the above properties. This searching
results in the following 3 situations: (1) the cell (lvl, i + 1, j, k) is found and it is leaf
(flag = 0), (2) the cell (lvl, i + 1, j, k) is found and its flag equals 1, and (3) the cell (lvl,
i + 1, j, k) is not found because the searching procedure terminates at a cell of the level
lvl − 1. The case (1) corresponds the neighbor cell of the same level as the current cell,
in (2) we have 4 neighbors that are child cells to the (lvl, i + 1, j, k) cell, and in (3) we
have one neighbor cell found at a lower lvl − 1 level.

3 Discrete Model

We consider numerical solution of the non-stationary 3D Euler equations that describe
compressible fluid flows. The discrete model on Cartesian LA grids is developed on the
base of the numerical method on a structured Cartesian grid [8, 9]. Spatial discretization
of the system of governing equations is performed with the finite volume method, which
determines the cell-centered solution through the numerical fluxes of mass, momentum,
and energy across the cell faces bordering the cell. The Godunov method [10] is imple‐
mented to calculate the numerical flux in terms of the exact solution to the Riemann
problem stated at the cell interface. To increase the accuracy of the numerical scheme,
a high-order subcell reconstruction of the solution is used, which provides interpolated
solution values on the both sides of the cell interface. In the present discrete model, we
use a linear subcell reconstruction based on the MUSCL (Monotone Upstream-Centered
Scheme for Conservation Laws) interpolation [11]. Time integration of the semi-discrete
system of equations is performed with the explicit two-stage predictor-corrector scheme
that is stable under the CFL condition on the time step. Details of the scheme can be
seen in [8].

Treatment of the boundary conditions on the Cartesian LA grid that does not fit the
geometry of flow domain is carried out with the method of free boundaries [7, 8]. A key
point of this method is an alternative mathematical statement of the problem which
allows us to replace the solution of the boundary value problem in a part of the space
with the solution of an initial value problem in the whole space. We modify the original

138 I. Menshov and V. Sheverdin



system of Euler equations by adding in the right-hand side a vector-function that we
refer to as compensating flux. The modified equations are then solved in the whole
computational domain that encompasses the geometry. The compensating flux is defined
so that the solution to the modified problem off the geometry exactly matches the solution
to the original boundary value problem.

Extending the numerical method to the case of unstructured Cartesian LA grids we
need, first of all, reconsider calculation of numerical fluxes at cell interfaces. This calcu‐
lation procedure must take into account possibility of non-conformal (not face-to-face)
neighborhood of grid cells when the cell face is adjoined by 4 cells of the lower adap‐
tation level or the neighborhood is a cell of the upper level. In the first case, the numerical
flux to the current cell is determined by means of averaging of 4 numerical fluxes calcu‐
lated between the current cell and the 4 neighboring cells. In doing so, the current cell
solution is interpolated at the sub-faces centers with the MUSCL interpolation. If the
neighborhood is one level higher cell then the current cell, the neighbor cell solution is
MUSCL-interpolated at the face center of the current cell, and the flux is calculated in
the standard way as in the base scheme.

4 Application Library for Cartesian LA Grid Operation

The discrete model described above is realized in an application library. This library
operates with 3D Cartesian LA nested-type grids, and encompasses functions of grid
generation, grid refinement and coarsening, searching neighborhoods, and also others
which are required to generate the numerical code. There are two types of grid functions
in the library, which conventionally referred to as geometrical and physical. The
geometrical grid function serves for generating geometry grid elements by means of
surfaces determined parametrically or with polygons. The physical grid function repre‐
sents the vector of numerical solution on the grid considered.

The library is organized with templates, which make it possible to easy set up the
size of physical vectors. To do this, we need only assign the number of components of
the solution vector, the numerical flux, and the number of adaptation coefficients:
TPhysGrid<5,4,2>. Refinement of a grid element is performed with the function
Divide(), coarsening (merging child cells into one) with Merge(). Searching
neighborhoods is implemented with the function FoundNeights(). There are several
other functions and procedures used in the numerical code that will be described below.

The software library is implemented in five basic parts: BasicLib, MathLib,
GeometryLib, GridLib, DrawLib. Each of them is a dynamically linked appli‐
cation library in C++. The BasicLib library includes basic components for operating
with strings, arrays, lists, pointers, and other similar structures. It encompasses base
function and subroutines which are used in other libraries.

The MathLib library consists of subroutines for work with mathematical objects
such as matrix, vector, normal, basis, angle, etc. GeometryLib includes classes and
functions for work with 2D surfaces in 3D space. Basically, we use triangulation for
representing the surface, but representation with simple primitive is also available.
Subroutines for manipulating 3D locally adaptive grids are assembled in GridLib

A Parallel Locally-Adaptive 3D Model 139



library. DrawLib serves for visualizing geometry, grid, and results of calculations by
means of OpenGL.

The LA Cartesian grid represents a multilevel structure of recursively embedded
Cartesian subgrids. The structure of a grid cell can be written in pseudo-language as

where (level, xNum, yNum, zNum) are coordinates of the cell (Sect. 2). Each cell have
different data depending on its type. For example, fluid cells involve the vector of phys‐
ical parameters, border cells must include the data of boundary conditions, and cut cells
must have also the data about volume of fluid and area of the geometry inside the cell, and
the coordinates of the outer unit normal to accomplish discretization of the equations. One
way to realize this in the code is to store all the data uniformly for all types of cell, but this
might result in consuming large memory resources. Therefore, we store these data dynam‐
ically as pointers to the type void, for example. We use the mechanism of virtual functions
in the library. In the pseudo code the additional data are defined as

The above description roughly represents set-up and functioning of the library. For
searching and sweeping the neighborhoods, dynamical cell refinement and coarsening,
the structures of dynamic storage management such as array, list, wordindex, set are
implemented. Mathematical objects as matrix and vectors are used to describe geomet‐
rical and solution parameters, the objects polygon, surface, primitives (sphere, paralle‐
lepiped, cylinder) - to represent the geometry, there are special function included in the
library to visualize computed results. More detail description of all these structures is
given in [12].

5 Numerical Results

In this section we present results of numerical experiments aimed at verification of the
method and testing the application library. The problem of propagation of the 3D blast
wave in a closed domain bounded by rigid walls is considered as the test problem. The
initial data for this calculation correspond to an initial stage of the self-similar 1D blast
wave problem [13] (for details of calculations see [12]). The Intel Core I5-6600,
3.3 GHz, 3.2 Gb Quad-Core processor is used for these calculations.

Figure 1 shows numerical results. One can see that the grid adaptation well captures
the shock front in a narrow zone with enhanced grid resolution. On the other hand the
grid becomes rather coarse off these zones. The effect of shock interference is clear seen
on side walls of the computational domain (left figure). The top view (right figure)
demonstrates the shock reflection process.

140 I. Menshov and V. Sheverdin



Fig. 1. The grid and density distribution, time = 1, 7 levels of adaptation: top view (left), bottom
view (right).

Effectiveness of the adaptive grid can be expressed via the parameter of adaptation
effectivity P = Nc/8L, where Nc is the total number of computational cells of the Cartesian
LA grid, and L is the number of levels of adaptation. Figure 2 shows plots of P versus
number of time steps T. The rate of effectiveness in average amounts to 18.6% for L = 6,
and 8.7% for L = 7.

Fig. 2. Effectiveness (P) vs time (T): 6 levels (left), 7 levels (right).

Table 1 demonstrates effectiveness of the OpenMP parallelization. The speedup
parameter An shows the ratio of the computational times in 1CPU and nCPUs calcula‐
tions, respectively. Effectiveness of parallelization is defined as En = (1 + An)/n.

Table 1. Effectiveness of the OpenMP parallelization; 6 levels of adaptation.

CPU Time, c Speedup, An Effectiveness, En

1 5724 – 100%
2 3597.5 59.1% 79.6%
4 2957.8 93.5% 48.4%

6 Conclusions

A numerical method of using locally adaptive nested-type Cartesian grids in numerical
simulations of 3D gas dynamics problems has been presented along with its software

A Parallel Locally-Adaptive 3D Model 141



implementation in an application library written in C++ object-oriented language with
the application program interface OpenMP for parallelizing calculations on shared
memory. Results of numerical experiments have shown high effectiveness of dynamical
grid adaptation with the use of multilevel nested-type Cartesian grids, which becomes
more profound as the number of adaptation levels increases because local grid refining
in vicinity of two-dimensional manifolds results in the increase of computational cells
that is one order less with comparison to equivalent global grid refinement.

Acknowledgments. This research was supported by the grant No 17-71-30014 from Russian
Scientific Fund.

References

1. Bramkamp, F., Lamby, P.H., Mueller, S.: An adaptive multiscale finite volume solver for
unsteady and steady state flow computations. J. Comput. Phys. 197(2), 460–490 (2004)

2. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation
laws. Comm. Pure Appl. Math. 48(12), 1305–1342 (1995)

3. Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer.
Anal 33(3), 1205–1256 (1996)

4. Zumbusch, G.: Parallel Multilevel Methods: Adaptive Mesh Refinement and Load Balancing.
Advances in Numerical Mathematics. Teubner, Wiesbaden (2003)

5. Osher, S., Sanders, R.: Numerical approximations to nonlinear conservation laws with locally
varying time and space grids. Math. Comp. 41, 321–336 (1983)

6. Vasilyev, O.V.: Solving multi-dimensional evolution problems with localized structures using
second generation wavelets. Int. J. Comp. Fluid Dyn. 17, 151–168 (2003)

7. Menshov, I.S., Kornev, M.A.: Free_boundary method for the numerical solution of
gas_dynamic equations in domains with varying geometry. Math. Models Comput. Simul.
6(6), 612–621 (2014)

8. Menshov, I.S., Pavlukhin, P.V.: Efficient parallel shock-capturing method for aerodynamics
simulations on body-unfitted cartesian grids. Comput. Math. Math. Phys. 56(9), 1651–1664
(2016)

9. Menshov, I.S., Pavlukhin, P.V.: Highly scalable implementation of an implicit matrix-free
solver for gas dynamics on GPU-accelerated clusters. J. Supercomput. 73, 631–638 (2017)

10. Godunov, S.K.: Difference method for computing discontinuous solutions of fluid dynamics
equations. Mat. Sb. 47(3), 271–306 (1959)

11. Van Leer, B.: Towards the ultimate conservative difference scheme: V. A second-order sequel
to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

12. Menshov, I.S., Nikitin, V.S., Sheverdin, V.V.: Parallel three-dimensional LAD model on
Cartesian grids of nested structure. Keldysh Inst. Prepr. 118, 1–32 (2016)

13. Sedov, L.I.: Propagation of strong shock waves. J. Appl. Math. Mech. 10, 241–250 (1946)

142 I. Menshov and V. Sheverdin



Auto-Vectorization of Loops on Intel 64
and Intel Xeon Phi: Analysis and Evaluation

Olga V. Moldovanova(B) and Mikhail G. Kurnosov

Rzhanov Institute of Semiconductor Physics,
Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia

{ovm,mkurnosov}@isp.nsc.ru

Abstract. This paper evaluates auto-vectorizing capabilities of modern
optimizing compilers Intel C/C++, GCC C/C++, LLVM/Clang and
PGI C/C++ on Intel 64 and Intel Xeon Phi architectures. We use the
Extended Test Suite for Vectorizing Compilers consisting of 151 loops. In
this work, we estimate speedup by running the loops in scalar and vector
modes for different data types and determine loop classes which the
compilers used in the study fail to vectorize. We use the dual CPU system
(NUMA, 2 x Intel Xeon E5-2620v4, Intel Broadwell microarchitecture)
with the Intel Xeon Phi 3120A co-processor for our experiments.

1 Introduction

Modern high-performance computer systems are multiarchitectural systems and
implement several levels of parallelism: process level parallelism, thread level
parallelism, instruction level parallelism, and data level parallelism. Processor
vendors pay great attention to the development of vector extensions. In particu-
lar, Fujitsu announced in its future version of the exascale K Computer system a
transition to processors with the ARMv8-A architecture, which implements scal-
able vector extensions. And Intel extensively develops AVX-512 vector extension.
That is why problem definitions and works on automatic vectorizing compilers
have given the new stage in development in recent decades.

In this work, we studied the effectiveness of auto-vectorizing capabilities of
modern compilers: Intel C/C++, GCC C/C++, LLVM/Clang, PGI C/C++.
The main goal is to identify classes of problem loops.

Since there was no information about vectorizing methods implemented in
the commercial compilers, the evaluation was implemented by the “black box”
method. We used the Extended Test Suite for Vectorizing Compilers [1–4] as a
benchmark for our experiments. We determined classes of typical loops that the
compilers used in this study failed to vectorize and evaluated them.

The rest of this paper is organized as follows: Sect. 2 discusses the main issues
that explain effectiveness of vectorization; Sect. 3 describes the benchmark we
used; Sect. 4 presents results of our experiments; and finally Sect. 5 concludes.

This work is supported by Russian Foundation for Basic Research (projects 15-07-
00048, 16-07-00712).

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 143–150, 2017.
DOI: 10.1007/978-3-319-62932-2 13



144 O.V. Moldovanova and M.G. Kurnosov

2 Vector Instruction Sets

Instruction sets of almost all modern processor architectures include vector
extensions. Processors implementing vector extensions contain one or several
vector arithmetic logic units (ALU) functioning in parallel and several vector
registers.

The main application of the vector extensions consists in decreasing of time of
one-dimensional arrays processing. As a rule, a speedup achieved using the vector
extensions is primarily determined by the number of array elements that can be
loaded into a vector register. To achieve a maximum speedup during vector
processing it is necessary to consider the microarchitectural system parameters.
One of the most important of them is an alignment of array initial addresses.
Effectiveness decreasing can also be caused by a mixed usage of SSE and AVX
vector extensions [5].

When vector instructions are used, the achieved speedup can exceed the
expected one due to the processor overhead decreases and parallel execution of
vector instructions by several vector ALUs. Thus, an efficiently vectorized pro-
gram overloads subsystems of a superscalar pipelined processor in a less degree.
This is the reason of less processor energy consumption during execution of a
vectorized program as compared to its scalar version [6].

Application developers have different opportunities to use vector instruc-
tions: inline assembler, intrinsics, SIMD directives of compilers (OpenMP and
OpenACC standards), automatic vectorizing compilers.

In this work, we study the last approach, since it does not require large code
modification and provides its portability between different processor architec-
tures.

3 Benchmark

We used the Extended Test Suite for Vectorizing Compilers (ETSVC) [2] as
a benchmark containing main loop classes, typical for scientific applications in
C language. The original package version was developed in the late 1980s by
the J. Dongarra’s group and contained 122 loops in Fortran to test the analysis
capabilities of automatic vectorizing compilers for vector computer systems [3,4].
In 2011 the D. Padua’s group translated the TSVC suite into C and added to it
new loops [1]. The extended version of the package contains 151 loops. The loops
are divided into categories: dependence analysis (36 loops), vectorization (52
loops), idiom recognition (27 loops), language completeness (23 loops). Besides
that, the test suite contains 13 “control” loops, trivial loops that are expected
to be vectorized by every vectorizing compiler.

The loops operate on one- and two-dimensional 16-byte aligned global arrays.
The one-dimensional arrays contain 125 · 1024/sizeof(TYPE) elements of the
given type TYPE, and the two-dimensional ones contain 256 elements by each
dimension.

Each loop is contained in a separate function. In the init function an array
is initialized by individual for this test values before loop execution. The outer



Auto-Vectorization of Loops on Intel 64 and Intel Xeon Phi 145

loop is used to increase the test execution time (for statistics issues). A call to
an empty dummy function is used in each iteration of the outer loop so that,
in case where the inner loop is invariant with respect to the outer loop, the
compiler is still required to execute each iteration rather than just recognizing
that the calculation needs to be done only once [4]. After execution of the loop
is complete, a checksum is computed by using elements of the resulting array
and is displayed.

4 Results of Experiments

We used two systems for our experiments. The first system was a server based on
two Intel Xeon E5-2620 v4 CPUs (Intel 64 architecture, Broadwell microarchitec-
ture, 8 cores, Hyper-Threading was on, AVX 2.0 support), 64 GB RAM DDR4,
GNU/Linux CentOS 7.3× 86-64 operating system (linux 3.10.0-514.2.2.el7 ker-
nel). The second system was Intel Xeon Phi 3120A co-processor (Knights Corner
microarchitecture, 57 cores, AVX-512 support, 6 GB RAM, MPSS 3.8) installed
in the server.

The compilers evaluated in these experiments were Intel C/C++ Compiler
17.0; GCC C/C++ 6.3.0; LLVM/Clang 3.9.1; and PGI C/C++ 16.10. The vec-
torized version of the ETSVC benchmark was compiled with the command line
options shown in Table 1 (column 2). To generate the scalar version of the test
suite the optimization options were used with the disabled compilers vectorizer
(column 3, Table 1).

32-byte aligned global arrays were used for the Intel Xeon processor, and
64-byte aligned global arrays were used for the Intel Xeon Phi processor. We
used arrays with elements of double, float, int and short data types for our
evaluation.

Table 1. Compilers options

Compiler Compilers options Disabling vectorizer

Intel C/C++ 17.0 -O3 -xHost -qopt-report3

-qopt-report-phase=vec,loop

-qopt-report-embed

-no-vec

GCC C/C++ 6.3.0 -O3 -ffast-math -fivopts

-march=native -fopt-info-vec

-fopt-info-vec-missed

-fno-tree-vectorize

-fno-tree-vectorize

LLVM/Clang 3.9.1 -O3 -ffast-math -fvectorize

-Rpass=loop-vectorize

-Rpass-missed=loop-vectorize

-Rpass-analysis=loop-vectorize

-fno-vectorize

PGI C/C++ 16.10 -O3 -Mvect -Minfo=loop,vect

-Mneginfo=loop,vect

-Mnovect



146 O.V. Moldovanova and M.G. Kurnosov

The following results were obtained for the double data type on the Intel 64
architecture (Intel Xeon Broadwell processor). The Intel C/C++ vectorized 95
loops in total, 7 from which were vectorized by it alone. For GCC C/C++ the
total amount of vectorized loops was 79. But herewith there was no loop that
was vectorized only by this compiler. The PGI C/C++ vectorized the largest
number of loops, 100, 13 from them were vectorized by it alone. The minimum
number of loops was vectorized by the LLVM/Clang compiler, 52, 4 from which
were vectorized only by it. The number of loops unvectorized by any compiler
was equal to 28.

The similar results were obtained for arrays with elements of the float and
int types by all compilers. The consistent results were obtained for the short
type when Intel C/C++, GCC C/C++ and LLVM/Clang were used. The excep-
tion to this rule was the PGI C/C++ compiler that vectorized no loops process-
ing data of this type.

Figure 1 shows the results of loop vectorization for the double data type
on the Intel 64 architecture. Abbreviated notations of the vectorization results
are shown in the table cells. They were obtained from vectorization reports of
compilers for all 151 loops. The full form of these notations is shown in Table 2.
The similar results were obtained for other data types.

Fig. 1. Results of loops vectorization (Intel 64 architecture, double data type)

In the “Dependence analysis” category 9 loops were not vectorized by any
compiler for the double data type. The compilers used in this study failed to
vectorize loops with linear data dependences, induction variables together with
conditional and unconditional branches, loop nesting and variable values of lower
and/or upper loop bounds and/or iteration step.

In the “Vectorization” category the compilers failed to vectorize 11 loops.
These loops required transformations as follows: loop fission, loop interchange,
node splitting (to avoid cycles in data dependence graphs and output and anti-
dependences [7]) and array expansions. Among causes of problems were interde-
pendence of iteration counts of nested loops; linear data dependences in a loop
body; conditional and unconditional branches in a loop body.



Auto-Vectorization of Loops on Intel 64 and Intel Xeon Phi 147

Table 2. Abbreviated notations of vectorization results

V Loop is vectorized

PV Partial loop is vectorized

RV Remainder is not vectorized

IF Vectorization is possible but seems inefficient

D Vector dependence prevents vectorization (supposed data dependence in a
loop)

M Loop is multiversioned (multiple loop versions are generated)

BO Bad operation or unsupported loop bound (sinf or cosf function is used)

AP Complicated access pattern (e.g., value of iteration count is more than 1)

R Value that could not be identified as reduction is used outside the loop
(induction variables are present in a loop)

IL Inner-loop count not invariant (iteration count of inner loop depends on
iteration count of outer loop)

NI Number of iterations cannot be computed (lower and/or upper loop
bounds are set by function’s arguments)

CF Control flow cannot be substituted for a select (conditional branches
inside a loop)

SS Loop is not suitable for scatter store (in case of packing a
two-dimensional array into a one-dimensional array)

ME Loop with multiple exits cannot be vectorized (break or exit are present
inside a loop)

FC Loop contains function calls or data references that cannot be analyzed

OL Value cannot be used outside the loop (scalar expansion or mixed usage
of one- and two-dimensional arrays in one loop)

UV Loop control flow is not understood by vectorizer (conditional branches
inside a loop)

SW Loop contains a switch statement

US Unsupported use in statement (scalar expansion, wraparound variables
recognition)

GS No grouped stores in basic block (unrolled scalar product)

The following idioms (6 loops) from the “Idiom recognition” category were
not vectorized by the compilers used: 1st and 2nd order recurrences, array search-
ing, loop rerolling (for loops that were unrolled by hand before vectorization [8])
and reduction with function calls.

The “Language completeness” category contains 2 loops unvectorized by any
compiler. The problem of both loops consisted in breaking loop computations
(exit in the first case and break in the second case). Compiler vectorizers could
not analyze control flow in these loops.

A median value and maximum speedups of vectorized loops are shown in
Figs. 2 and 3. The maximum speedup obtained on the Intel 64 architecture by



148 O.V. Moldovanova and M.G. Kurnosov

1.83

3.48
2.91

6.13

1.57

2.442.282.42

1.42

2.58
2.23

4.56

2.22

3.62
3.26

6.84

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

(
eulav naide

m
)

ICC

PGI

LLVM/Clang

GCC

Fig. 2. Median value of speedup for vectorized loops on Intel Xeon E5-2620 v4 CPU

6.96

13.8912.39

25.21

14.6

22.74

34.00

68.00

5.12
10.22

4.55

14.57

4.06
8.10

12.01

24.48

0

10

20

30

40

50

60

70

80

ICC

PGI

LLVM/Clang

GCC

Sp
ee

du
p

(m
ax

im
um

)

Fig. 3. Maximum speedup for vectorized loops on Intel Xeon E5-2620 v4 CPU

the Intel C/C++ was 6.96 for the double data type, 13.89 for the float data
type, 2.39 for int and 25.21 for short int. The maximum speedup obtained
by GCC C/C++ was equal to 4.06, 8.1, 12.01 and 24.48 for types double,
float, int and short int, correspondingly. The LLVM/Clang obtained results
as follows: 5.12 (double), 10.22 (float), 4.55 (int) and 14.57 (short int). For
PGI C/C++ these values were 14.6, 22.74, 34.0 and 68.0, correspondingly. The
speedup is the ratio of the running time of the scalar code over the running time
of the vectorized code.

As our evaluation showed maximum speedups for Intel C/C++, GCC
C/C++ and LLVM/Clang correspond to the loops executing reduction opera-
tions with elements of one-dimensional arrays of all data types. For PGI C/C++
maximum speedup was achieved for the loop calculating an identity matrix for



Auto-Vectorization of Loops on Intel 64 and Intel Xeon Phi 149

the double and float data types. And for int and short this value was obtained
in the loop calculating product reduction. However, the speedup value 68.0 for
the short data type can be explained by the fact that calculations in a loop are
not executed at all because of the compiler optimization.

On the Intel Xeon Phi architecture we studied vectorizing capabilities of the
Intel C/C++ Compiler 17.0. The -mmic command line option was used instead of
the -xHost during compilation. The compiler could vectorize 99 loops processing
data of the double type and 102 of the float type. Supposed data dependences
(28 loops for the double type and 27 for the float type) were the main reason
of loop vectorization failing. 12 loops were partially vectorized for both data
types. Similar results were obtained for the int and short types. In this case
the maximum speedup for the double type was 13.7, for float – 19.43, int –
30.84, and short – 46.3. For float and short maximum speedups were obtained
for loops executing reduction operations for elements of one-dimensional arrays.
For the double data type sinf and cosf functions were used in a loop. In the
case with int it was a “control” loop vbor calculating a scalar product of six
one-dimensional arrays.

5 Conclusion

In this work we studied auto-vectorizing capabilities of modern optimizing com-
pilers Intel C/C++, GCC C/C++, LLVM/Clang, PGI C/C++ on the Intel 64
and Intel Xeon Phi architectures. Our study shows that the compilers evaluated
could vectorize 39–77 % of the total number of loops in the ETSVC package.
The best results were shown by the Intel C/C++, and the worst ones – by the
LLVM/Clang. The compilers failed to vectorize loops containing conditional and
unconditional branches, function calls, induction variables, variable loop bounds
and iteration count, as well as such idioms as 1st or 2nd order recurrences, search
loops and loop rerolling.

The future work will consist of evaluation and development of efficient vector-
izing methods for the obtained class of challenging loops, applicability analysis
of JIT compilation [9] and profile-guided optimization.

References

1. Maleki, S., Gao, Y., Garzaran, M.J., Wong, T., Padua, D.A.: An evaluation of
vectorizing compilers. In: Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, pp. 372–382 (2011)

2. Extended Test Suite for Vectorizing Compilers. http://polaris.cs.uiuc.edu/
∼maleki1/TSVC.tar.gz

3. Callahan, D., Dongarra, J., Levine, D.: Vectorizing compilers: a test suite and
results. In: Proceedings of the ACM/IEEE Conference on Supercomputing, pp. 98–
105 (1988)

4. Levine, D., Callahan, D., Dongarra, J.: A comparative study of automatic vectoriz-
ing compilers. J. Parallel Comput. 17, 1223–1244 (1991)

http://polaris.cs.uiuc.edu/~maleki1/TSVC.tar.gz
http://polaris.cs.uiuc.edu/~maleki1/TSVC.tar.gz


150 O.V. Moldovanova and M.G. Kurnosov

5. Konsor, P.: Avoiding AVX-SSE transition penalties. https://software.intel.com/
en-us/articles/avoiding-avx-sse-transition-penalties

6. Jibaja, I., Jensen, P., Hu, N., Haghighat, M., McCutchan, J., Gohman, D.,
Blackburn, S., McKinley, K.: Vector parallelism in JavaScript: language and com-
piler support for SIMD. In: Proceedings of the International Conference on Parallel
Architecture and Compilation, Techniques, pp. 407–418 (2015)

7. Program Vectorization: Theory, Methods, Implementation (1991)
8. Metzger, R.C., Wen, Z.: Automatic Algorithm Recognition and Replacement: A

New Approach to Program Optimization. MIT Press, Cambridge (2000)
9. Rohou, E., Williams, K., Yuste, D.: Vectorization technology to improve interpreter

performance. ACM Trans. Archit. Code Optim. 9(4), 26: 1–26: 22 (2013)

https://software.intel.com/en-us/articles/avoiding-avx-sse-transition-penalties
https://software.intel.com/en-us/articles/avoiding-avx-sse-transition-penalties


Parallel Algorithms for an Implicit CFD Solver
on Tree-Based Grids

Pavel Pavlukhin1,2(B) and Igor Menshov1

1 Keldysh Institute of Applied Mathematics, Moscow 125047, Russia
{pavelpavlukhin,menshov}@kiam.ru

2 Research and Development Institute “Kvant”, Moscow 125438, Russia

Abstract. Parallel implementation of the implicit LU-SGS solver is con-
sidered. It leads to the graph coloring problem. A novel recursive graph
coloring algorithm has been proposed that requires only three colors on
2:1 balanced quadtree-based meshes. The algorithm has been shown to
allow simple parallel implementations, including GPU architectures, and
is fully coherent with local grid coarsing/refining procedures resulting in
highly effective co-execution with local grid adaptation.

Keywords: CFD · CUDA · LU-SGS · Implicit schemes · Parallel algo-
rithms · Tree-based grids · AMR

1 Introduction

Highly scalable implementations of CFD solvers for large massively-parallel com-
puting systems is a big challenge. It involves several problems one of which
is discretization of the computational domain. In case of complex geometries
unstructured meshes are commonly used. However dynamic load balancing for
this type of grids leads to large communication overheads and therefore is hard
to realize.

Conversely, Cartesian grid methods well fit requirements of highly scalable
parallel algorithms. To treat geometries on Cartesian grids we can employ the
free boundary method (FBM) [1]. This method allows us to solve the problem in
domains with complex geometry on Cartesian grids with only minor modifica-
tions of the baseline method without geometry. The modification is just addition
of special terms (referred to as compensating fluxes) to the right-hand side of
the gas dynamics equations:

∂q

∂t
+

∂f i

∂xi
= −Fw. (1)

Implicit time integration scheme is applied to these equations after spatial
discretization by the finite volume method. The resulting system of discrete
equations is then solved with Newtonian iterations represented as a linear system
with a sparse block matrix, Aδq = R, where δq is the iterative residual. Solution

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 151–158, 2017.
DOI: 10.1007/978-3-319-62932-2 14



152 P. Pavlukhin and I. Menshov

for this linear system is found by the matrix-free Lower-Upper Symmetric Gauss-
Seidel (LU-SGS) approximate factorization method [2–4]. The matrix A is split
into diagonal, low-, and upper-triangle parts, A = D + L + U , and then is
replaced by approximate factorization A ≈ (D + L)D−1(D + U) what finally
leads to solving the following systems (by corresponding forward and backward
sweeps): {

(D + L)δq∗
i = −Rn+1

i

(D + U)δq i = Dδq∗
i .

(2)

Cartesian grids limitations and possible substitutions for FBM are dis-
cussed in Sect. 2. LU-SGS parallelization on octree-based meshes (as alterna-
tive to Cartesian ones) and involved graph coloring problem are considered
in Sects. 3 and 4, respectively. Parallel implementation details of the proposed
recursive coloring algorithm and its properties are described in Sect. 5. Conclu-
sions are presented in final Section.

2 Choosing an Adaptive Mesh Refinement Approach

For better geometry representation in computational aerodynamics, it is nec-
essary to increase grid resolution near solid inclusions in the computational
domain. This is even more required when we need to resolve boundary layers on
the surfaces of solid inclusions for taking into account viscous effects. At regimes
with high Reynolds numbers, fluid flow forms very thin boundary layer near the
solid body where the effect of viscosity is significant, and high grid resolution
must be used for tracking this layer. Consequently, it is worth to employ one
of the adaptive mesh refinement (AMR) aproaches. These approaches can be
divided into three types which are considered in what follows.

The first is the block-structured AMR which is based on coarsening the grid
by cells merge in appropriate domains. Since such patches of different resolutions
can be overlapped, the block-structured AMR increases numerical complexity
and leads to difficulties in extending to high-order discretizations to complex
geometries. Moreover, this type of AMR is hard to implement on massively-
parallel architectures like multi-GPU clusters. For example, strong scaling of
the GPU-aware framework described in [5] is limited by 8 GPU on 6.4 million
zone problem.

The second type is unstructured AMR (for example, [6]). This approach
can treat geometries of different complexities. A problem associated with this
type of AMR is maintaining element quality in the process of mesh coarsening
and refining. Another problem is dynamic load balancing in computing systems
with distributed memory which generally involves considerable communication
overhead.

Block-structured and unstructured AMR methods, except difficulties men-
tioned above, are not appropriate for using with the FBM. These types of AMR
are supposed to work with conforming (to geometry domain surfaces) grids while



Parallel Algorithms for an Implicit CFD Solver on Tree-Based Grids 153

the FBM works with non-conforming grids consisted of simple, rectangular com-
putational cells. Therefore, natural choice for the free boundary method is tree-
based AMR. For this AMR type, each grid cell of the initial base Cartesian grid
can be recursively divided in 8 subcells (4 subcells in the 2D case). The resulting
grid can be represented as the octree graph (each internal node in such tree has
exactly eight children, Fig. 1). With a space-filling curve connecting elements of
this graph, the data on such adapted grid can be arranged in line which enables
simple partitioning and dynamic load balancing.

Fig. 1. Octree-based grid (left) and corresponding graph representation with space-
filling curve (right).

3 LU-SGS Method on Octree-Based Grids

Besides developing of GPU-aware AMR handling, there is one problem which
is directly related to the solver used in free boundary method. If an explicit
scheme is used then parallelization is quite simple since all grid cells can be com-
puted simultaneously. The weakness of this type of schemes is stability restric-
tion: smaller cells in the adaptive mesh limit the global time step resulting in
unreasonable computational costs. Conversely, the implicit scheme based on the
LU-SGS method [2–4] haven’t this disadvantage but their implementation on
massively-parallel architectures is complicated since data dependency between
neighbor grid cells (separated with common face) arises [7,8]. The solution algo-
rithm of (2) in the LU-SGS is represented as forward and backward sweeps over
all grid cells, and data dependency has local nature and is only defined by the
sweep order over all geometrical neighbors relative to the current cell. In other
words, different computations are performed depending on the neighbor posi-
tion in relation to the current cell (“before” or “after”). The sweep order can be
chosen in different ways based not only on cell geometry neighborhood. Hence,
executing simultaneous calculations in the grid cells is realized if only these cells
are not geometrical neighbors, and therefore developing a parallel algorithm for
the LU-SGS method leads to the problem of graph coloring. The problem is
to color the grid cells so that any two neighbor grid cells (with the common
face) would have different colors. In case of structured, for example, Cartesian
grids, there is a simple solution which requires only two colors. This leads to the
“chessboard” cells sweep when calculations are fist performed for the all “black”
cells (simultaneously), and then over all “white” cells (simultaneously).



154 P. Pavlukhin and I. Menshov

There are several graph coloring algorithms that can be applied to color cells
of the unstructured grid. However most of these algorithms have drawbacks.
The widely used greedy Multi-Coloring algorithm is a strictly sequential. Paral-
lel coloring algorithms produce partitions with overestimated number of colors
and have limited scalability [9,10]. On the other hand, octree-based grids are
not quite unstructured, rather they mimic Cartesian structured grids because of
partially ordered recursive subcell nature. Because of this reason, definite moti-
vation appears to develop a new graph coloring algorithm which exploits the
tree-like structure of the AMR grid. The description of such an algorithm is
given in the next section.

4 Graph Coloring Algorithm for Octree-Based Grids

For the sake of simplicity, let us consider the case of two-dimensional grids. The
extension to the 3D case is straightforward.

Among variety of octree/quadtree-based grids, it is worth to distinguish those
which meet the so called 2:1 balance property. This property says that each
grid cell has to have no more than two neighbors over any its face (Fig. 2).
Such meshes considerably simplify cell-to-cell solver interface, and many numer-
ical methods essentially utilize this property. Therefore we develop the coloring
algorithm for AMR Cartesian grids with the 2:1 balance property. Hereafter this
property is assumed unless mentioned otherwise.

Fig. 2. 2:1 balance status for a 2D quadtree mesh: unbalanced (left) and face bal-
anced (right).

What is the minimal number of colors which must be used to partition the
cells of the quadtree-based Cartesian grid? Obviously, 2-color “chessboard” par-
titioning used for Cartesian meshes becomes insufficient and consequently at
least 3 colors are needed. The four color theorem states that for 2-dimensional
unstructured grids no more than 4 colors are needed. In general, reduction of
the number of colors used to partition grid cells increases effectiveness of multi-
threaded computations on GPU since more cells of the same color can be com-
puted simultaneously. The algorithm we propose satisfies this favorable property
and involves only 3 colors referenced to as “black”, “white”, and “red”.

First, we introduce the algorithm in step-by-step way, and then generalize its
description. As it was mentioned above, specifics of the tree-like grid structure
is exploited. The construction is recursive. The algorithm starts with coloring
the cells of the top level (according to tree graph). These cells form the reg-
ular Cartesian grid, and therefore the 2-color “chessboard” scheme is applied
(Fig. 3(a)).



Parallel Algorithms for an Implicit CFD Solver on Tree-Based Grids 155

(a) (b) (c)

Fig. 3. The graph coloring algorithm: (a) 1st tree layer coloring; (b) recoloring rules;
(b) 2nd tree layer coloring. (Color figure online)

Next, for all cells having four recursive subcells the following recoloring oper-
ation is performed. As can be seen, there are two templates of neighborhood
at the current step for which specific recoloring rules are applied as shown in
Fig. 3(b). In other words, depending on the color of the current cell and its neigh-
bors corresponding color conversion is executed. The resulting grid coloring is
shown on Fig. 3(c).

Then, all cells with child subcells at the successive third layer are considered.
Four more templates of neighborhood appear in this step (in addition to 2 pre-
vious ones) which are associated with corresponding recoloring rules as shown in
Fig. 4(a). After applying these rules, we obtain the grid coloring which is shown
in Fig. 4(b).

(a) (b)

Fig. 4. The graph coloring algorithm: (a) additional recoloring rules; (b) 3rd tree layer
coloring.

The next recursive steps (up to the latest tree layer) are performed in the
same manner which actually can produce nine additional templates of neigh-
borhood at most so the total number of different templates is fifteen. It is not
difficult to see that all these templates can be represented by means of two color-
generalized templates shown in (Fig. 5) and referred to as T1 (two-color) and
T2 (three-color). Here “×”, “◦” and “�” mean mutually exclusive values of the
three colors. It can be also noted that all the recoloring rules are accordingly
expressed in only two generalized ones as in Fig. 5.

Nontrivial (and actually most substantial) statement is that the described
above algorithm provides the solution to the graph coloring problem for any 2-
dimensional quadtree-based, 2:1 balanced grid. To prove this, let us suppose that



156 P. Pavlukhin and I. Menshov

Fig. 5. Generalized templates of neighborhood (T1 and T2) and corresponding recol-
oring rules.

at a certain recursive step each cell of the grid matches the generic template T1
or T2, and the mentioned above recoloring procedure is being applied. Hence,
there are two kind of neighborhood appear (with corresponding templates) across
each face depending on the cell template which are shown in Fig. 6. Each grid
cell either remains the same or is divided into four recolored (in accordance to
the above rules) subcells so that all possible situations of neighboring cells (after
recoloring) can be displayed as in Fig. 7. From this figure, it is not difficult to
see that the following statements are true (at the end of the current step):

1. There are no conflicts between any neighboring cells, i.e., they are always of
different colors.

2. All templates of neighborhood match T1 or T2.

Fig. 6. All possible neighbors combinations with related templates of neighborhood at
the beginning of the recursive algorithm step (generic form).

Consequently, in the next recursive step of the algorithm the grid will be
properly colored and each cell can be recolored by the same old rules. This
proves full correctness of the proposed coloring algorithm for quadtree-based
grids.

5 Parallel Implementations of the Graph Coloring
Algorithm

As we could see in the above considerations, each grid cell at a current step of
the algorithm can be recolored independently of others, providing that current
colors of its neighbors are available. Therefore, on systems with shared memory



Parallel Algorithms for an Implicit CFD Solver on Tree-Based Grids 157

Fig. 7. All possible combinations of any grid cell (in grey rectangle) with its neighbors
at the end of recursive algorithm step (generic form).

like GPU and multi-core CPU, all cells are recolored simultaneously with only
synchronization between recursive steps. In the case of implementation for GPU,
the algorithm is represented as consecutive running of kernels which perform
recoloring at corresponding tree layer.

For systems with distributed memory one needs to perform exchange data
in border cells of grid partitions. However, such communications are reduced to
minimum since two of four cell neighbors are only needed for choosing proper
recoloring rule. As a matter of fact, the recoloring rule applied (Fig. 5) depends
only on the type of the generic template of neighborhood. To recognize this
template, we need only the two neighbors which form the right angle with the
current cell. If these neighbors are of the same color, then the template is T1 else
T2 (Fig. 5). Since quadtree-based grids partitioning based on space-filling curves
generally leads to simply connected regions (partitions) with vast majority of
inner cells, the number of border cells for which the template of neighborhood is
identified only by local neighbors (within partition) is dominating. Hence, only
a small fraction of border cells requires neighbors from other partitions. Thus,
the implementation of the algorithm for distributed memory parallel systems is
expected to have good scalability because only negligible data exchange between
partitions will need to do before each recursive step of the algorithm.

A very important property of the algorithm proposed is its full coherence with
grid local adaptation procedures. In other words, recoloring is performed locally
only in having changed cells after grid coarsing/refining with the rules of Fig. 5.
In coarsed cells, reverted recoloring is applied since the rules (Fig. 5) actually
state one-to-one correspondence between cell and its subcells. After any grid
modification, updated coloring will be fully valid. The only required condition
for the coloring algorithm is the 2:1 grid balancing property. The algorithm is
fully conjugated with dynamic grid adaptation and possesses low overhead due
to parallel recoloring performing only in modified cells.

6 Conclusions

It has been shown that octree-based adaptive Cartesian grids are most suit-
able for further development of the free boundary method. Parallelization of
the implicit LU-SGS solver with the free boundary method leads to the graph
coloring problem. A novel recursive graph coloring algorithm has been proposed



158 P. Pavlukhin and I. Menshov

that requires only three colors on 2:1 balanced quadtree-based meshes. The algo-
rithm has been shown to allow simple parallel implementations, in particular for
GPU architectures, and is fully coherent with local grid coarsing/refining proce-
dures resulting in highly effective co-execution with local grid adaptation. The
implementation of this algorithm for multi-GPU systems is in progress.

Acknowledgement. This research was supported by the Grant No. 17-71-30014 from
the Russian Scientific Fund.

References

1. Menshov, I.S., Pavlukhin, P.V.: Efficient parallel shock-capturing method for aero-
dynamics simulations on body-unfitted cartesian grids. Comput. Math. Math.
Phys. 56(9), 1651–1664 (2016)

2. Menshov, I., Nakamura, Y.: Hybrid explicit-implicit, unconditionally stable scheme
for unsteady compressible flows. AIAA J. 42(3), 551–559 (2004)

3. Jameson, A., Turkel, E.: Implicit schemes and LU decomposition. Math. Comp.
37, 385–397 (1981)

4. Menshov, I., Nakamura, Y.: On implicit Godunov’s method with exactly linearized
numerical flux. Comput. Fluids 29(6), 595–616 (2000)

5. Beckingsale, D., Gaudin, W., Herdman, A., Jarvis, S.: Resident block-structured
adaptive mesh refinement on thousands of graphics processing units. In: 2015 44th
International Conference on Parallel Processing Parallel Processing (ICPP), pp.
61–70. IEEE (2015)

6. Lawlor, O.S., Chakravorty, S., Wilmarth, T.L., Choudhury, N., Dooley, I., Zheng,
G., Kal, L.V.: ParFUM: a parallel framework for unstructured meshes for scalable
dynamic physics applications. Eng. Comput. 22(3–4), 215–235 (2006)

7. Pavlukhin, P.: Parallel LU-SGS numerical method implementation for gas dynam-
ics problems on GPU-accelerated computer systems. Vestn. Lobachevsky State
Univ. Nizhni Novgorod 1, 213–218 (2013)

8. Pavlukhin, P., Menshov, I.: On implementation high-scalable CFD solvers for
hybrid clusters with massively-parallel architectures. In: Malyshkin, V. (ed.)
PaCT 2015. LNCS, vol. 9251, pp. 436–444. Springer, Cham (2015). doi:10.1007/
978-3-319-21909-7 42

9. Bozdag, D., Gebremedhin, A.H., Manne, F., Boman, E.G., Catalyurek, U.V.: A
framework for scalable greedy coloring on distributed-memory parallel computers.
J. Parallel Distrib. Comput. 68(4), 515–535 (2008)

10. Boman, E.G., Bozdağ, D., Catalyurek, U., Gebremedhin, A.H., Manne, F.: A
scalable parallel graph coloring algorithm for distributed memory computers. In:
Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 241–251.
Springer, Heidelberg (2005). doi:10.1007/11549468 29

http://dx.doi.org/10.1007/978-3-319-21909-7_42
http://dx.doi.org/10.1007/978-3-319-21909-7_42
http://dx.doi.org/10.1007/11549468_29


Software Implementation of Mathematical
Model of Thermodynamic Processes in a Steam

Turbine on High-Performance System

Aleksandr Sukhinov1, Aleksandr Chistyakov1(B), Alla Nikitina1,
Irina Yakovenko2, Vladimir Parshukov3, Nikolay Efimov3, Vadim Kopitsa3,

and Dmitriy Stepovoy4

1 Don State Technical University, Rostov-on-Don, Russia
sukhinov@gmail.com, cheese 05@mail.ru, nikitina.vm@gmail.com

2 Taganrog University, Named After A.P. Chekov – Branch of Rostov State
University of Economics, Taganrog, Russia

3 RPE “Donskie Technologii” Ltd., Novocherkassk, Russia
4 Azov-Black Sea Engineering Institute, Don State Agrarian University,

Zernograd, Russia

Abstract. The aim of this paper is the development of the mathemat-
ical model of thermal processes in steam turbine based on the modern
information technologies and computational methods, with help of which
the accuracy of calculations of thermal modes. The practical significance
of the paper are: the model of thermal processes in steam turbine is pro-
posed and implemented, the information about the temperature modes
of the steam turbine is derived, limits and prospects of the proposed
mathematical model is defined. The thermal processes in the turbine are
characterized by a strong non-uniformity of the heat flow, which has sig-
nificantly influence to the reliability and efficiency of the facility. As a
rule, it the influence of these parameters on the geometry is not consid-
ered in the designing of the system that results in premature wear of the
machine. The developed model takes into account the complex geome-
try of the steam turbine, does not require the significant changes in the
processing of the design features and can be used to calculate the ther-
mal processes other construction such as turbines. Software solution was
developed for two-dimensional simulation of thermal processes in steam
turbine that takes into account the occupancy control volumes.

Keywords: Steam turbine · Thermal conductivity · Mathematical
model · Computational experiments

The paper is performed under an agreement with the Ministry of Education and
Science of the Russian Federation No. 14.579.21.0123 about the granting subsidies
from 10.27.2015. The theme: The development of high-efficiently steam turbine tech-
nology for processing liquid and solid organic wastes in the energy production for the
small-scale distributed energy, the federal target program Research and development
in priority areas of Russian scientific and technological complex for 2014–2020. The
unique identifier of the applied scientific researches (project) RFMEFI57915X0123.

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 159–171, 2017.
DOI: 10.1007/978-3-319-62932-2 15



160 A. Sukhinov et al.

1 Introduction

The question about the optimization problem of installation and exploitation
of steam turbines is the actual. The strict requirements are presented with the
development of modern technology and industry needs to operate the turbines
associated with the reliability and efficiency of their operation. A large number
of existing turbines is practically close to the elaboration its resource. So, the
introduction of more modern units is required. The fundamentals of the theory
of heat transfer and analysis results of transfer processes are required to assess
the reliability and efficiency of the facility. Therefore, these data should be taken
into account in designing of steam turbines. Thermal systems modeling include
the problems of optimal control of thermal modes, due to we can choose the best
from different implementations. The optimization of thermal modes is reduced
to the solution of heat conduction problem. Mathematical modeling of thermal
processes in technogenic systems is relevant at the present. Due to it, we can
check the correctness of engineering ideas and correct errors at the stage of
designing by the simple, low-cost means. The developed mathematical model is
represented by the scheme model – algorithm – program, and must contain the
structure, characteristic features of the process and described by equation system
or functional relations [1]. After the design stage, it is necessary to determine the
real values of temperature at significant points of the steam facility and analyze
the compliance with required values.

2 Problem Statement

Thermal processes in turbine Ḡ was described by the heat conduction equation:

c ρ
∂T

∂t
=

∂

∂x

(
λ

∂T

∂x

)
+

∂

∂y

(
λ

∂T

∂y

)
+

∂

∂z

(
λ

∂T

∂z

)
+ qv, (1)

which in the case of axial symmetry can be written as:

ρcrT ′
t = r (λT ′

x)
′

x + (λrT ′
r)

′

r + rf. (2)

In the system (1) and (2) T is the temperature, ◦K; λ is the conductivity
of water; ρ is the metal density; c is the heat capacity of metal; r is the polar
radius; qv is the source function.

We will consider the Eq. (2) with the boundary conditions of third kind:

T ′
n(x, r, t) = αnT + βn , (3)

where n is the normal vector to the Ḡ.
An initial condition were added to (2):

T (x, r, 0) = T0(x, r), (x, r) ∈ Ḡ. (4)

We will describe an algorithm for defining the coefficient of the water and
water steam thermal conductivity.



Software Implementation of Mathematical Model 161

3 Thermal Conductivity Coefficient

The equation for determining the conductivity coefficient of water and water
steam in the international practice has the following form:

λ = λ0(τ) + λ1(δ) + λ2(τ, δ), (5)

where λ is the thermal conductivity, W/(m·K); τ = T/T* ; T is an absolute
temperature, ◦K (ITS - 90); T* = 647.256 ◦K; δ = ρ/ρ*; ρ is a density, kg/m3;
ρ* = 317.7 kg/m3. The water vapor thermal conductivity in ideal gas state is
determined by the equation:

λ0(τ) = τ0.5
3∑

k:=0

akτk,

where a0 = 0.0102811; a1 = 0.0299621; a2 = 0.0156146; a3 = −0.00422464.
The function λ1(δ) is defined as:

λ1(δ) = b0 + b1δ + b2 exp
{
B1(δ + B2)2

}
,

where b0 = −0.397070; b1 = 0.400302; b2 = 1.06000; B1 = −0.171587; B2 =
2.392190, and the function λ2(τ, δ) has the form:

λ2(τ, δ) =
(

d1
10

+ d2

)
δ9/5 exp

[
C1(1 − δ14/5)

]

+ d3SδQ exp
[(

Q

1 + Q

)
(1 − δ1+Q)

]
+ d4 exp

(
C2τ

3/2 +
C3

δ5

)
,

where Q and S are functions of argument Δτ = |τ − 1| + C4:

Q = 2 + C5/Δτ0.6;S =
{

1/Δτ for τ ≥ 1;
C6/Δτ0.6 for τ < 1.

Coefficients di and Ci have the following values:
d1 = 0.0701309; d2 = 0.0118520; d3 = 0.00169937; d4 = −1.0200; C1 =

0.642857; C2 = −4.11717; C3 = −6.17937; C4 = 0.00308976; C5 = 0.0822994;
C6 = 10.0932.

The Eq. (5) is applicable with the following values of temperatures and pres-
sures: p ≤ 100 MPa for 0 ◦C ≤ T ≤ 500 ◦C; p ≤ 70 MPa for 500 ◦C < T ≤ 650 ◦C;
p ≤ 40 MPa for 650 ◦C < T ≤ 800 ◦C.

The error values in liquid at temperatures of 25–200 ◦C and pressures up to
5 MPa is equaled to the 1.5% in the calculations, at higher temperatures up to
300 ◦C – 2%. The error is equaled to the 1.5% for water vapor at temperatures
up to 550 ◦C at a pressure of 0.1 MPa, at pressures up to 40 MPa – 3%.

The Eq. (5), in comparison with the theoretical conclusions, determines the
not infinite, and the final coefficient of conductivity at the critical point, which
does not allow estimating the error value near its critical point.



162 A. Sukhinov et al.

4 Discrete Model

The estimated domain inscribed in a rectangle. A uniform mesh is introduced
for the numerical realization of the discrete mathematical model of the problem
in the form:

wh = {tn = nht; xi = ihx, rj = jhr; n = 0, Nt; i = 0, Nx; j = 0, Nr;

Ntht = lt; Nxhx = lx;Nrhr = lr} , (6)

where ht is the time step; hx, hr are space steps; Nt is the upper time bound;
Nx, Nr are space bounds.

To improve the discrete “smoothness” solution we assume that the cell
are not completely filled. The domain Ωxr is the filled part of the domain
Dxr :

{
x ∈ [

xi−1/2, xi+1/2

]
, r ∈ [

rj−1/2, rj+1/2

]}
. In addition, we introduce the

notation for the following domains:

D1 :
{
x ∈ [

xi, xi+1/2

]
, r ∈ [

rj−1/2, rj+1/2

]}
;

D2 :
{
x ∈ [

xi−1/2, xi

]
, r ∈ [

rj−1/2, rj+1/2

]}
;

D3 :
{
x ∈ [

xi−1/2, xi+1/2

]
, r ∈ [

rj , rj+1/2

]}
;

D4 :
{
x ∈ [

xi−1/2, xi+1/2

]
, r ∈ [

rj−1/2, rj

]}
.

The occupancy coefficients q0, q1, q2, q3, q4 for the domains Dxr,D1,D2,D3,D4

are introduced as the following: q0 = SDxr
/SΩxr

, qi = SDi
/SΩi

, i = 1, 4, where S
is an area of the corresponding domain part, Ωi is a filled part of the domain Di.

The discrete analogue of the heat equation written in cylindrical coordinates
with boundary conditions of the third kind has the form:

(q0)i, j ρi, jci, jrj
T̂i,j − Ti,j

ht
= (q1)i, j λi+1/2, jrj

T̄i+1, j − T̄i, j

h2
x

− (q2)i, j λi−1/2,jrj
T̄i, j − T̄i−1, j

h2
x

−
∣∣∣(q1)i, j − (q2)i, j

∣∣∣ λi, jrj
αxT̄i, j + βx

hx

+ (q3)i, j λi, j+1/2rj+1/2
T̄i, j+1 − T̄i, j

h2
r

− (q4)i, j λi,j−1/2rj−1/2
T̄i, j − T̄i, j−1

h2
r

−
∣∣∣(q3)i, j − (q4)i, j

∣∣∣ λi, jrj
αrT̄i, j + βr

hr
+ (q0)i, j rjfi,j , i = 1, 4, (7)

where T̂ ≡ Tn+1, T ≡ Tn, T̄ = σT̂ + (1 − σ)T, σ ∈ [0, 1] is the scheme weight.



Software Implementation of Mathematical Model 163

5 Discrete Model Research

Let’s research the discrete model (7). Error magnitude orders were defined for
the proposed approximations:

λi+1/2, j
Ti+1, j − Ti, j

h2
x

− λi−1/2,j
Ti, j − Ti−1, j

h2
x

=
(
λi, j (Ti, j)

′

x

)′

x
+ O

(
h2

x

)
,

λi, j+1/2rj+1/2
Ti, j+1 − Ti, j

h2
r

− λi,j−1/2rj−1/2
Ti, j − Ti, j−1

h2
r

=
(
λi, jrj (Ti, j)

′

r

)′

r
+ O

(
h2

r

)
. (8)

The estimation for the discrete heat equation:

∥∥Tn+1
∥∥

c
≤ ∥∥T 0

∥∥
c
+ τ

n∑
k=0

∥∥fk
∥∥

c

+

∥∥∥∥∥
|q1 (P ) − q2 (P )| βx

hx
+ |q3 (P ) − q4 (P )| βr

hr

|q1 (P ) − q2 (P )| αx

hx
+ |q3 (P ) − q4 (P )| αr

hr

∥∥∥∥∥
c

. (9)

The verification of the conservatism of the scheme (7):
∑
i,j

(q0)i, j ci,jρi,jrj T̂i,j =
∑
i,j

(q0)i, j ci,jρi,jrjTi,j

+ τ
∑
i,j

(q0)i, j rjfi,j − τ
∑
i,j

rjλi, j

(∣∣∣(q1)i, j − (q2)i, j

∣∣∣ αxT̄i, j + βx

hx

)

+ τ
∑
i,j

rjλi, j

(∣∣∣(q3)i, j − (q4)i, j

∣∣∣ αrT̄i, j + βr

hr

)
, (10)

where i ∈ [1, Nx − 1] , j ∈ [1, Nr − 1].
The verification of balance relations for discrete model (7) showed that the

quantity of heat at the next time layer is equaled to the total quantity of heat
and the thermal energy emitted by the internal and boundary sources (drains).

6 Weight Scheme Optimization

The error estimation for the numerical solution of problem (1)–(3):

φ = max
χ∈[0,hτ ]

∣∣∣∣
((

1 − χ

1 + χσ

)
− e−χ

)
1 + χσ

χ

∣∣∣∣ , (11)

where χ = λi

λmax
hτ , hτ = ht

λmax
, t = λmaxτ , λi are eigenvalues of operator, σ is

the scheme weight.



164 A. Sukhinov et al.

Table 1. Optimal proportion values of error φ, grid step hτ and weight σ.

φ hτ σ φ hτ σ

0.0001 0.08468 0.5058 0.006 0.7203 0.5478

0.0003 0.148 0.5102 0.008 0.8476 0.5558

0.0005 0.1924 0.5132 0.01 0.9642 0.563

0.0008 0.2452 0.5167 0.04 2.374 0.6373

0.001 0.2754 0.5188 0.06 3.333 0.6748

0.002 0.3964 0.5268 0.07 3.882 0.692

0.003 0.4925 0.5332 0.08 4.508 0.7084

0.005 0.6508 0.5434 0.1 6.166 0.7397

The optimum parameter σ∗ is defined from the condition:

σ∗ = arg min
[

max
χ∈( 0,hτ ]

∣∣∣∣
((

1 − χ

1 + χσ

)
− e−χ

)
1 + χσ

χ

∣∣∣∣
]

. (12)

Values of the optimal weights depending on the time step variable are given
in the Table 1.

We obtained that the use of optimized schemes for the solution of the problem
(2)–(4) are reduced the computational labor expenditures in 2.5–3 times.

7 Solution Method of Grid Equations

We describe a solution method of grid equations occurred in the discretization
(7) of difference equations. For this, we consider the problem of solution of the
operator equation:

Ax = f,A : H → H, (13)

where A is the linear, self-adjoint (A = A∗), positive definite operator (A > 0).
We use the implicit two-layer iterative process for the solution of the problem
(13):

B
xm+1 − xm

τ
+ Axm = f,B : H → H. (14)

In the Eq. (14) m is an iteration number, τ > 0 is an iterative parameter and
B is a preconditioner. We assume the additive decomposition of the operator in
the construction of B :

A = A1 + A2, A
∗
1 = A2. (15)

In view in the Eq. (14): (Ay,A) = 2(A1y, y) = 2(A2y, y). Therefore, A1 >
0, A2 > 0 in the Eq. (14). Let in the Eq. (13):

B = (D + ωR1) D−1 (D + ωR2) , (16)



Software Implementation of Mathematical Model 165

where A is an operator of grid equation, D is a diagonal part of operator A,
ω is an iterative parameter, R1, R2 are upper and lower triangular parts of an
operator A.

Since A = A∗ > 0, this gives B = B∗ > 0 with the Eq. (15). The rela-
tions (14)–(16) are defined the modified alternating triangular iterative method
(MATM) [2–4] of the problem solution (13). The algorithm of the adaptive
modified alternating triangular iterative method of steepest descent is in the
form [5,6]:

rm = Axm − f,B(ωm)wm = rm,
�
ωm= 2 ‖wm‖ / ‖Awm‖ ,

τm+1 =
�
ωm + 2 ‖wm‖2 /(Awm, wm), xm+1 = xm − τm+1w

m, ωm+1 =
�
ωm,

where xm is a solution vector; wm is a correction vector; rm is a residual vector;
f is a right part of the grid equation.

8 Parallel Implementation of the Modified Alternating
Triangular Iterative Method

The scheme of two-layer iterative modified alternating triangular method [7,8]
is in the form:

xm+1 = xm − τm+1w
m, (D + ωR1) D−1 (D + ωR2) wm = rm, rm = Axm − f.

For the methods of the domain decomposition in one direction were used for par-
allel implementation of adaptive MATM method. The most laborious calculation
from the point of view the development of parallel software implementation is
the calculation of the amendment vector, which is performed in two steps [9–11]:

(1) (D + ωR1) ym = rm; (2) (D + ωR2)wm = Dym.

At the first step, the elements of the auxiliary vector ym are calculated bottom
up, and then, knowing it, at the second step the elements of the correction vector
wm are calculated top-down.

The schemes of the calculation of the auxiliary vector and correction vector
are given in Fig. 1 (the arrows indicate the directions of calculation and transfer
between processors of multiprocessor computer system).

The adaptive modified alternating triangular method (MATM) of minimal
corrections was used for solving the heat transport problem (2)–(4) on the multi-
processor computer system (MCS). The decomposition methods of grid domains
were used for computational laborious problems diffusion-convection in parallel
implementation, taking into account the architecture and parameters of MCS.
Maximum performance of MCS is 18.8 teraflops. The 512 uniform 16-core HP
ProLiant BL685c Blade servers are used as computational nodes, each of which
is equipped the four Quad-core AMD Opteron 8356 2.3 GHz processors and the
operative memory in volume of 32 GB. The time costs for performing the one iter-
ation of the MATM method on various grids and values of acceleration and effi-
ciency for different numbers of computational cores are given in Table 2 [12–17].



166 A. Sukhinov et al.

Fig. 1. Calculation schemes: (a) the auxiliary vector ym; (b) the correction vector wm.

Table 2. The acceleration and efficiency of MATM parallel version.

100× 100 200× 200 500× 500 1000× 1000 2000× 2000 5000× 5000

1 Time 0.001183 0.010633 0.026031 0.10584 0.381988 3.700073

Acceleration 1 1 1 1 1 1

Efficiency 1 1 1 1 1 1

4 Time 0.000232 0.00106 0.005755 0.026683 0.132585 1.2655

Acceleration 5.099 10.031 4.523 3.967 2.881 2.924

Efficiency 1.275 2.508 1.131 0.992 0.72 0.731

16 Time 0.000231 0.000407 0.001869 0.013105 0.085056 0.472151

Acceleration 5.121 26.125 13.928 8.076 4.491 7.837

Efficiency 0.32 1.633 0.87 0.505 0.281 0.49

64 Time 0.000642 0.000748 0.001557 0.004189 0.026844 0.182296

Acceleration 1.843 14.215 16.719 25.266 14.23 20.297

Efficiency 0.029 0.222 0.261 0.395 0.222 0.317

128 Time - 0.001612 0.002064 0.003442 0.016437 0.076545

Acceleration - 6.596 12.612 30.75 23.24 48.338

Efficiency - 0.052 0.099 0.24 0.182 0.378

512 Time - - - 0.009793 0.012362 0.058805

Acceleration - - - 10.808 30.9 62.921

Efficiency - - - 0.021 0.06 0.123

According to the Table 2, the acceleration takes the highest value at the
certain value of calculators and the decreases at further increasing of the number
of cores for each of the computational grids. This is due to the time costs for
data exchange between the calculaters [18–21].

The initial parameters of the turbine were the values of temperatures
and conductivity of the environment and in the internal turbine cam-
eras. Environmental temperature was specified of 20 ◦C, the thermal con-
ductivity coefficient 0.022 W/(m·K). For the first camera the temperature
was specified of 500 ◦C, the thermal conductivity coefficient 0.099 W/(m·K).
For the second cameras temperature was specified of 337.7 ◦C, the thermal



Software Implementation of Mathematical Model 167

conductivity coefficient 0.0555 W/(m·K). For the third cameras the temperature
was specified of 200.4 ◦C, the thermal conductivity coefficient 0.0361 W/(m·K).
For the fourth cameras the temperature was specified of 104 ◦C, the thermal con-
ductivity coefficient 0.0257 W/(m·K). The initial surface temperature is equal to
20 ◦C, the thermal conductivity coefficient 92 W/(m·K).

The initial data for modeling were: steps at the spatial coordinates hx =
0.0164 m, hy = 0.0164 m, and the time step ht = 1 s; the time interval lt = 3600;
the optimal scheme weight, corresponding to the given time step, sigma = 0.563.

Fig. 2. Thermal field in the area of the left bearing.

The numerical experiment described the thermal modes in the main func-
tional points of the steam turbine: 1–3–points, located on the impellers and tur-
bine blades; 4–6–on the surface material; 7–8–on bearings. The location shows
of points, in which the temperature field was determined, is given in Fig. 2. The
results of numerical experiments of modeling the thermal processes in the steam
turbine are given in Figs. 3, 4 and 5.

Fig. 3. Thermal field at points on the impellers of the turbine.



168 A. Sukhinov et al.

The graphs of the temperature fields at points 1–3, located on the working
wheels of steam turbines, are given in Fig. 3. The calculation period was equaled
to the 1 h.

According to the graph, presented in Fig. 3, the temperature at point 1 is
changing rapidly during the first 15 min from 25 ◦C to 250 ◦C and then saves
the achieved value. The temperature increases from 25 ◦C to 200 ◦C during the
period 1–25 min at points 2 and 3 and 150 ◦C respectively, and after saves the
value over time.

The graphs of the temperature fields at points 4–6, located on the surface of
the steam turbine, are given in Fig. 4.

Fig. 4. Thermal field at points on the turbine surface.

According to the graph, presented in Fig. 4, the temperature at point 4 is
changing rapidly during the first 15 min from 25 ◦C to 240 ◦C, and then from
15 min to 25 min the value is equaled to the 250 ◦C and saved it over time.
the temperature is abruptly equaled to the value from 25 ◦C to 190 ◦C at point
5 during 1–20 min, then increased to 200 ◦C during from 20 min to 35 min and
proceeded to the stationary state. At point 6 in the first 20 min, the temperature
rapidly increases from 25 ◦C to 140 ◦C, the temperature is equaled to the 140 ◦C
within the next 10 min and saved this value over time.

The graphs of the temperature fields at points 7–8, located on the bearings
of the steam turbine, are given in Fig. 5.

According to the graph, presented in Fig. 5, the temperature at point 7 is
changing rapidly during the first 20 min from 25 ◦C to 120 ◦C, the value is equaled
to the 130 ◦C during the next 15 min and saved it over time. The temperature
is gradually increased in period 1–35 min at point 8, the temperature increases
from 25 ◦C to 70 ◦C during the 1–35 min and proceeds to the stationary state.

According to all graphs, any leaps or sudden changes of temperature are not
observed in any researched points over the range from 20 min to 60 min.

The thermal field on the surface of the steam turbine and the left and right
bearings through 10, 20 and 30 min after starting respectively is given in Fig. 6.

The data of the above graphs (Figs. 3, 4 and 5) is corresponded to the heat
pattern shown in Fig. 6.



Software Implementation of Mathematical Model 169

Fig. 5. Thermal field at points on the turbine bearings.

Fig. 6. Thermal field in the turbine surface and in areas of the left and right bearings
through 10, 20 and 30 min after starting.

9 Conclusion

The heat transport mathematical model in the steam turbine was proposed
in this paper. The finite-difference analogues of the diffusion transport oper-
ator were obtained in the polar coordinate system. The occupancy degree of
the cells was taken into account in the construction of difference schemes. The
schemes with optimal weights were used to discretize the model. The use of
optimized schemes are reduced the computational labour input in 2.5–3 times.
It is shown that the proposed approximations have the second order of error
in the spatial variable. The stability of the proposed difference schemes are
checked on the basis of discrete maximum principle. The condition of applica-
bility of the discrete maximum principle was obtained, and the stability of the
proposed difference schemes was proved for the initial data, boundary condi-
tions and right part. The main balance ratios were checked for mathematical
model describing the thermal processes on the surface of the steam turbine.



170 A. Sukhinov et al.

Software implementation of problem was performed, and the results of numeri-
cal calculations were obtained for heat transport modeling of heat transport on
the surface of the gas turbine.

References

1. Samarsky, A.A., Nikolaev, E.S.: Methods of Solving Grid Equations, p. 588.
Science, Moscow (1978). (in Russian)

2. Sukhinov, A.I., Chistyakov, A.E.: Adaptive modified alternating triangular iter-
ative method for solving grid equations with non-selfadjoint operator. J. Math.
Model. 24(1), 3–20 (2012). (in Russian)

3. Konovalov, A.N.: The method of steepest descent with adaptive alternately-
triangular preamplification. J. Differ. Equ. 40(7), 953 (2004). (in Russian)

4. Konovalov, A.N.: The theory of alternating-triangular iterative method. J. Siberian
Math. J. 43(3), 552 (2002). (in Russian)

5. Sukhinov, A.I., Chistyakov, A.E., Shishenya, A.V.: Error estimate of the solution
of the diffusion equation on the basis of the schemes with weights. J. Math. Model.
25(11), 53–64 (2013). (in Russian)

6. Sukhinov, A.I., Chistyakov, A.E., Fomenko, N.A.: Methods of constructing differ-
ence schemes for the problem of diffusion-convection-reaction, taking into account
the occupancy level of the control cells. J. Izv. SFedU Eng. Sci. 4, 87–98 (2013).
(in Russian)

7. Samarskiy, A.A.: Theory of Difference Schemes. Nauka, Moscow (1989). (in
Russian)

8. Samarskiy, A.A., Gulin, A.V.: Numerical Methods. Nauka, Moscow (1989). (in
Russian)

9. Beklemishev, K.A., Petrov, I.B., Favorsky, A.V.: Numerical simulation of processes
in rigid deformable media in the presence of dynamic contacts using grid-
characteristic method. J. Math. Model. 25(11), 3–16 (2013). (in Russian)

10. Petrov, I.B., Favorsky, A.V., Sannikov, A.V., Kvasov, I.E.: Grid-characteristic
method using high order interpolation on tetrahedral hierarchical meshes with
a multiple time step. J. Math. Model. 25(2), 42–52 (2013). (in Russian)

11. Sukhinov, A.I., Chistyakov, A.E., Semenyakina, A.A., Nikitina, A.V.: Parallel real-
ization of the tasks of the transport of substances and recovery of the bottom sur-
face on the basis of schemes of high order of accuracy. J. Comput. Meth. Program.
New Comput. Technol. 16(2), 256–267 (2015). (in Russian)

12. Nikitina, A.V., Semenyakina, A.A., Chistyakov, A.E., Protsenko, E.A., Yakovenko,
I.V.: Application of schemes of increased order of accuracy for solving problems
of biological kinetics in a multiprocessor computer system. J. Fundam. Res. 12–3,
500–504 (2015). (in Russian)

13. Chistyakov, A.E., Hachunts, D.S., Nikitina, A.V., Protsenko, E.A., Kuznetsova, I.:
Parallel library of iterative methods of the SLAE solvers for problem of convection-
diffusion-based decomposition in one spatial direction. J. Mod. Prob. Sci. Educ.
1(1), 1786 (2015). (in Russian)

14. Sukhinov, A.I., Nikitina, A.V., Semenyakina, A.A., Protsenko, E.A.: Complex pro-
grams and algorithms to calculate sediment transport and multi-component sus-
pensions on a multiprocessor computer system. J. Eng. J. Don 38(4), 52 (2015).
(in Russian)



Software Implementation of Mathematical Model 171

15. Nikitina, A.V., Abramenko, Y.A., Chistyakov, A.E.: Mathematical modeling of oil
spill in shallow waters. J. Inform. Comput. Sci. Eng. Educ. 3(23), 49–55 (2015).
(in Russian)

16. Chistyakov, A.E., Nikitina, A.V., Ougolnitsky, G.A., Puchkin, V.M., Semenov, I.S.,
Sukhinov, A.I., Usov, A.B.: A differential game model of preventing fish kills in
shallow waterbodies. J. Game Theory Appl. 17, 37–48 (2015)

17. Sukhinov, A.I., Nikitina, A.V., Semenyakina, A.A., Chistyakov, A.E.: A set of mod-
els, explicit regularized schemes of high order of accuracy and programs for predic-
tive modeling of consequences of emergency oil spill. In: Proceedings of the Inter-
national Scientific Conference Parallel Computational Technologies (PCT 2016),
pp. 308–319 (2016). (in Russian)

18. Chistyakov, A.E., Nikitina, A.V., Sumbaev, V.V.: Solution of the Poisson problem
based on the multigrid method. J. Herald Comput. Inf. Technol. 8(146), 3–7 (2016).
(in Russian)

19. Nikitina, A.V., Semenyakina, A.A., Chistyakov, A.E.: Parallel implementation of
the tasks of diffusion-convection-based schemes of high order of accuracy. J. Herald
Comput. Inf. Technol. 7(145), 3–8 (2016). (in Russian)

20. Sukhinov, A.I., Chistyakov, A.E., Semenyakina, A.A., Nikitina, A.V.: Numerical
modeling of an ecological condition of the Sea of Azov with application of schemes
of the raised accuracy order on the multiprocessor computing system. J. Comput.
Res. Model. 8(1), 151–168 (2016). (in Russian)

21. Sukhinov, A.I., Nikitina, A.V., Semenyakina, A.A., Chistyakov, A.E.: Complex of
models, explicit regularized schemes of high-order of accuracy and applications for
predictive modeling of after-math of emergency oil spill. In: 10th Annual Inter-
national Scientific Conference on Parallel Computing Technologies, PCT 2016,
Arkhangelsk, Russian Federation, 29–31 March 2016, Code 121197. CEUR Work-
shop Proceedings, vol. 1576, pp. 308–319 (2016). (in Russian)



Predictive Modeling of Suffocation in Shallow
Waters on a Multiprocessor Computer System

Aleksandr Sukhinov1, Alla Nikitina1(B), Aleksandr Chistyakov1,
Vladimir Sumbaev1,2, Maksim Abramov1, and Alena Semenyakina3

1 Don State Technical University, Rostov-on-Don, Russia
sukhinov@gmail.com, nikitina.vm@gmail.com, cheese 05@mail.ru,

maxim-abramov@yandex.ru
2 South Federal University, Rostov-on-Don, Russia

valdec4813@mail.ru
3 Kalyaev Scientific Research Institute of Multiprocessor Computer Systems,

Southern Federal University, Taganrog, Russia
j.a.s.s.y@mail.ru

Abstract. The model of the algal bloom, causing suffocations in shallow
waters takes into account the follows: the transport of water environment;
microturbulent diffusion; gravitational sedimentation of pollutants and
plankton; nonlinear interaction of plankton populations; biogenic, tem-
perature and oxygen regimes; influence of salinity. The computational
accuracy is significantly increased and computational time is decreased
at using schemes of high order of accuracy for discretization of the model.
The practical significance is the software implementation of the proposed
model, the limits and prospects of it practical use are defined. Experi-
mental software was developed based on multiprocessor computer system
and intended for mathematical modeling of possible progress scenarios
of shallow waters ecosystems on the example of the Azov Sea in the case
of suffocation. We used decomposition methods of grid domains in par-
allel implementation for computationally laborious convection-diffusion
problems, taking into account the architecture and parameters of multi-
processor computer system. The advantage of the developed software is
also the use of hydrodynamical model including the motion equations in
the three coordinate directions.

Keywords: Multiprocessor computer system · Water bloom · Mathe-
matical model · Suffocation · Phytoplankton · Computational experi-
ments

1 Introduction

Shallow waters like the Azov Sea are suffered the great anthropogenic influence.
However, most of them is the unique ecological systems of fish productivity.

This paper was partially supported by the grant No. 17-11-01286 of the Russian
Science Foundation, the program of fundamental researches of the Presidium of
RAS No. 43 Fundamental problems of mathematical modeling, and partial financial
support of RFFR for projects No. 15-01-08619, No. 15-07-08626, No. 15-07-08408.

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 172–180, 2017.
DOI: 10.1007/978-3-319-62932-2 16



Predictive Modeling of Suffocation in Shallow Waters 173

The biogenic matters are entered in the shallow waters with the river flows which
causing the growth of the algae – water bloom. The suffocation periodically
occurs in shallow waters in summer. Because there is the significant decrease
of dissolved oxygen in them, consumed in the decomposition of organic matter,
due to the high temperature. The fish is suffering the oxygen starvation and the
mass dying of suffocation.

Fig. 1. The wide areas of the water bloom in the Azov Sea.

The results of satellite monitoring of the Earth are used in this paper to con-
trol the quality modeling of processes of hydrodynamics and biological kinetics
[1,2]. The satellite monitoring data of the Azov Sea, obtained by SRC Planeta,
are given in Fig. 1 [3]. The analysis of satellite data reveals the water areas of
suffocations.

2 Hydrodynamic Mathematical Model

The Navier-Stokes motion equations are initial equations of hydrodynamics of
shallow water:

u′
t +uu′

x +vu′
y +wu′

z = −1
ρ
p′

x +(μu′
x)

′

x +
(
μu′

y

)′

y
+(νu′

z)
′

z +2Ω(v sin θ−w cos θ),

v′
t + uv′

x + vv′
y + wv′

z = −1
ρ
p′

y + (μv′
x)

′

x +
(
μv′

y

)′

y
+ (νv′

z)
′

z − 2Ωu sin θ, (1)

w′
t + uw′

x + vw′
y + ww′

z = −1

ρ
p′
z +
(
μw′

x

)′
x
+
(
μw′

y

)′
y
+
(
νw′

z

)′
z
+ 2Ωu cos θ + g (ρ0/ρ − 1) ;

– continuity equation was written for the case of variable density:

ρ
′
t + (ρu)

′

x + (ρv)
′

y + (ρw)
′

z = 0, (2)



174 A. Sukhinov et al.

where u = {u, v, w} are velocity vector components; p is an excess pressure above
the undisturbed fluid hydrostatic pressure; ρ is a density; Ω is an Earth’s angular
velocity; θ is an angle between the angular velocity vector and the vertical vector;
μ,ν are horizontal and vertical components of turbulent exchange coefficient.

Tangential stress components for bottom are in the form:

τx = ρCp (|u|) u |u| , τy = ρCp (|u|) v |u| .
We can define the coefficient of the vertical turbulent exchange with inho-

mogeneous depth on the basic of the measured velocity pulsation:

ν = C2
s Δ2 1

2

√(
∂u

∂z

)2

+
(

∂v

∂z

)2

, (3)

where Δ is a grid scale; Cs is a non-dimensional empirical constant, defined on
the basis of attenuation process calculation of homogeneous isotropic turbulence.

Grid method was used for solving the problem (1)–(2) [4]. The approximation
of equations by time variable was performed on the basis of splitting schemes
into physical processes [5–7] in the form of the pressure correction method.

3 Mathematical Model of Water Bloom Processes
of Shallow Waters

The spatially heterogeneous model of water bloom (WB) is described by equa-
tions:

Si,t + u
∂Si

∂x
+ v

∂Si

∂ y
+ (w − wgi)

∂Si

∂x
= μiΔSi +

∂

∂ z

(
νi

∂Si

∂ z

)
+ ψi. (4)

(4) are equations of changes the concentration of impurities, index i indicates
the substance type, Si is the concentration of i -th impurity, i = 1, 6; 1 is the
total organic nitrogen (N); 2 are phosphates (PO4); 3 is a phytoplankton; 4 is a
zooplankton; 5 is a dissolved oxygen (O2); 6 is a hydrogen sulfide (H2S); u, v, w
are components of water flow velocity vector; ψi is a chemical-biological source
(drain) or a summand that describes the aggregation (clumping-declumping) if
the corresponding component is a suspension.

The WB model takes into account the transport of water flow; microturbu-
lent diffusion; gravitational sedimentation of pollutants and plankton; nonlinear
interaction of planktonic populations; nutrient, temperature and oxygen regimes;
influence of salinity.

Computational domain Ḡ is a closed area, limited by the undisturbed water
surface Σ0, bottom ΣH = ΣH(x, y), and the cylindrical surface, the undisturbed
surface σ for 0 < t ≤ T0.

∑
=

∑
0 ∪∑

H ∪σ – the sectionally smooth boundary
of the domain G [8–10].

We consider the system (4) with the following boundary conditions:

Si = 0 on σ, if Un < 0; ∂Si

∂n = 0 on σ, if Un ≥ 0;
S′

i,z = φ(Si) on Σ0;S′
i,z = −εiSi on ΣH ,

(5)



Predictive Modeling of Suffocation in Shallow Waters 175

where εi is the absorption coefficient of the i -th component by the bottom
material.

We has to add the following initial conditions to (4):

Si|t=0 = Si0(x, y, z), i = 1, 6. (6)

Water flow velocity fields, calculated according to the model (1)–(2), are used
as input data for the model (4)–(6). The discretization of models (1)–(2), (4)–(6)
was performed on the basis of the high-resolution schemes which are described
in [11].

4 Parallel Implementation of the Modified Alternating
Triangular Method (MATM)

We describe the parallel algorithms, which are used for solving the problems
(1)–(2), (4)–(6), with different types of domain decomposition.

Algorithm 1. Each processor is received its computational domain after the
partition of the initial computational domain into two coordinate directions. The
adjacent domains overlap by two layers of nodes in the perpendicular direction
to the plane of the partition.

The residual vector and it uniform norm are calculated after that as each
processor will receive the information for its part of the domain. Then, each
processor determines the maximum element in module of the residual vector
and transmits its value to all remaining calculators. Now receiving the maximum
element on each processor is enough to calculate the uniform norm of the residual
vector.

The parallel algorithm for calculating the correction vector is in the form:

(D + ωmR1)D−1(D + ωmR2)wm = rm,

where R1 is the lower-triangular matrix, and R2 is the upper-triangular matrix.
We should solve consistently the next two equations for calculating the correction
vector:

(D + ωmR1)ym = rm, (D + ωmR2)wm = Dym.

At first, the vector ym is calculated, and the calculation is started in the
lower left corner. Then, the correction vector wm is calculated from the upper
right corner. The calculation scheme of the vector ym is given in Fig. 2 (the
transferring elements after the calculation of two layers by the first processor is
presented).

In the first step of calculating the first processor work on with the top layer.
Then the transfer of overlapping elements is occurred to the adjacent proces-
sors. In the next step the first processor work on with the second layer, and
its neighbors – the first. The transfer of elements after calculating two layers
by the first processor is given in Fig. 2. In the scheme for the calculation of the
vector ym only the first processor does not require additional information and



176 A. Sukhinov et al.

can independently work on with its part of the domain. Other processors are
waiting the results from the previous processor, while it transfers the calculated
values of the grid functions for the grid nodes, located in the preceding positions
of this line. The process continues until all the layers will be calculated. Sim-
ilarly, we can solve the systems of linear algebraic equations (SLAE) with the
upper-triangular matrix for calculating the correction vector. Further, the scalar
products are calculated, and the transition is proceeded to the next iteration
layer.

Fig. 2. Scheme of calculation the vector ym.

We constructed the theoretical estimate of the time. It’s required to perform
the MATM step for SLAE with seven-diagonal matrix with using decomposition
in two spatial directions on a cluster of distributed calculations.

We considered the case of the problem solution with the rectangular domain.
The domain has a complex shape in the case of real water. At the same time
the real acceleration is less than its theoretical estimation. The dependence of
the acceleration, obtained in the theoretical estimates, can be used as the upper
estimate of the acceleration for parallel implementation of the MATM algorithm
by the domain decomposition in two spatial directions.

We describe the domain decomposition in two spatial directions with using
the k-means algorithm.

Algorithm 2. The algorithm of k-means method.

(1) The initial centers of subdomains are selected with using maximum
algorithm.

(2) All calculated nodes are divided into m Voronoi’s cells by the method of
the nearest neighbor, i.e. the current calculated grid node x ∈ Xc, where
Xc is a subdomain, which is chosen according to the condition ‖x − sc‖ =
min

1≤i≤m
‖x − si‖, where the sc is the center of the subdomain Xc.

(3) New centers are calculated by the formula: s
(k+1)
c = 1∣

∣
∣X

(k)
i

∣
∣
∣

∑
x∈X

(k)
i

x.



Predictive Modeling of Suffocation in Shallow Waters 177

(4) The condition of the stop is checked s
(k+1)
c = s

(k)
c , k = 1, ...,m. If the

condition of the stop is not performed, then the transition is proceeded to
the item 2 of the algorithm.

The result of the k-means method for model domains is given in Fig. 3 (arrows
are indicated exchanges between subdomains). All points in the boundary of
each subdomains are required to data exchange in the computational process.
The Jarvis’s algorithm was used for this aim (the task of constructing the convex
hull). The list of the neighboring subdomains for each subdomain was created,
and an algorithm was developed for data transfer between subdomains.

Fig. 3. Domain decomposition.

The comparison of the developed parallel algorithms 1 and 2 for the solution
(1)–(2), (4)–(6) was performed. The results are given in the Table 1.

In Table 1: n is the number of processors; t(k), S(k), E(k) are the processing
time, the acceleration and efficiency of the k-th algorithm; St

(k), E
t
(k) are the

theoretical estimates of the efficiency and acceleration of the k-th algorithm,
k = {1, 2} .

According to the Table 1 we can conclude that the developed algorithms
based on the decomposition method in two spatial directions and k-means
method can be effectively used for solving hydrodynamics problems in the case
the sufficiently large number of computational nodes.



178 A. Sukhinov et al.

Table 1. Comparison of acceleration and efficiency of algorithms

n t(1) St
(1) S(1) t(2) Et

(2) E(2)

1 7.491 1.0 1.0 6.073 1.0 1.0

2 4.152 1.654 1.804 3.121 1.181 1.946

4 2.549 3.256 2.938 1.811 2.326 3.354

8 1.450 6.318 5.165 0.997 4.513 6.093

16 0.882 11.928 8.489 0.619 8.520 9.805

32 0.458 21.482 16.352 0.317 15.344 19.147

64 0.266 35.955 28.184 0.184 25.682 33.018

128 0.172 54.618 43.668 0.117 39.013 51.933

The estimation is used for comparison the performance values of the algo-
rithms 1 and 2, obtained practically:

δ =

√√
√
√

n∑

k=1

(
E(2)k − E(1)k

)2

/

√√
√
√

n∑

k=1

E2
(2)k. (7)

On the basis the data, presented in the Table 1, the comparison of the devel-
oped algorithms is shown that the use of the algorithm 2 increased the efficiency
for the problem (1)–(2) on 15%.

5 Results of Numerical Experiments

A series of numerical experiments of the modeling the water bloom processes was
performed in the Azov Sea for the period from April 1 to October 31, 2013. The
results of the numerical experiment for reconstruction of the suffocation caused
by the phytoplankton bloom in July 2013 is given in Fig. 4.

Fig. 4. Phytoplankton concentration change in Azov Sea.



Predictive Modeling of Suffocation in Shallow Waters 179

The comparison of the developed software complex that implements the
designed scenarios for the changing of ecological situation in the Azov Sea using
the numerical realization of model plankton evolution problems of the biological
kinetics use with the similar works in the mathematical modeling of hydro-
biological processes.

The verification criterion of the developed models (1)–(2), (4)–(6) was an
estimate of the error modeling taking into account the available field data mea-
surements at the same time, calculated according to the formula:

δ =

√√
√
√

n∑

k=1

(Sk nat − Sk)2/

√√
√
√

n∑

k=1

S2
k nat,

where Sk nat – the value of the harmful algae concentration, obtained through
field measurements; Sk – the value of the harmful algae concentration, calculated
by the model (1)–(2). The concentrations of pollutants and plankton calculated
for different wind situations were taken into consideration, if the relative error
did not exceed 30%.

The analysis of the same software complexes for shallow waters has shown
that the accuracy of the predictive changes in pollutant concentrations of plank-
ton in shallow waters has been increased at 10–15% depending on the chosen
problem of the biological kinetics.

6 Conclusion

The model of hydrodynamics and water bloom were proposed in this paper.
They used for the reconstruction of suffocation, occurred on July 16, 2013 in the
south-eastern part of the Azov Sea. The numerical implementation of the devel-
oped models was performed on the multiprocessor computer system with distrib-
uted memory. The theoretical values of the acceleration and efficiency of parallel
algorithms was calculated. The developed experimental software is designed for
mathematical modeling of possible scenarios of development of ecosystems of
shallow waters on the example of Azov-Black Sea basin. The decomposition
methods of grid domains were used in parallel implementation for computation-
ally laborious convection-diffusion problems, taking into account the architecture
and parameters of multiprocessor computer system. The maximum acceleration
value was achieved with using 128 computational nodes and equaled to 43 times.
Two algorithms, including the algorithm, had been developed in the parallel
algorithm implementation for solving the problem on the MCS and the data
distribution between the processors. Using k-means method, the algorithm effi-
ciency of the problem was increased at 15% compared with the algorithm, based
on a standard partition the computational domain.



180 A. Sukhinov et al.

References

1. Samarsky, A.A., Nikolaev, E.S.: Methods of Solving Grid Equations, p. 588.
Science, Moscow (1978). (in Russian)

2. Sukhinov, A.I., Chistyakov, A.E.: Adaptive modified alternating triangular itera-
tive method for solving grid equations with non-selfadjoint operator. Math. Model.
24(1), 3–20 (2012). (in Russian)

3. State Research Center Planeta. http://planet.iitp.ru/english/index eng.htm
4. Samarskiy, A.A.: Theory of Difference Schemes. Nauka, Moscow (1989). (in

Russian)
5. Konovalov, A.N.: The method of steepest descent with adaptive alternately-

triangular preamplification. Differ. Equ. 40(7), 953 (2004). (in Russian)
6. Konovalov, A.N.: The theory of alternating-triangular iterative method. Siberian

Math. J. 43(3), 552 (2002). (in Russian)
7. Sukhinov, A.I., Chistyakov, A.E., Shishenya, A.V.: Error estimate of the solution

of the diffusion equation on the basis of the schemes with weights. Math. Model.
25(11), 53–64 (2013). (in Russian)

8. Sukhinov, A.I., Chistyakov, A.E., Semenyakina, A.A., Nikitina, A.V.: Parallel real-
ization of the tasks of the transport of substances and recovery of the bottom
surface on the basis of high-resolution schemes. Comput. Meth. Program. New
Comput. Technol. 16(2), 256–267 (2015). (in Russian)

9. Chistyakov, A.E., Hachunts, D.S., Nikitina, A.V., Protsenko, E.A., Kuznetsova, I.:
Parallel library of iterative methods of the SLAE solvers for problem of convection-
diffusion-based decomposition in one spatial direction. Mod. Probl. Sci. Educ. 1(1),
1786 (2015). (in Russian)

10. Sukhinov, A.I., Nikitina, A.V., Semenyakina, A.A., Protsenko, E.A.: Complex pro-
grams and algorithms to calculate sediment transport and multi-component sus-
pensions on a multiprocessor computer system. Eng. J. Don 38(4), 52 (2015). (in
Russian)

11. Sukhinov, A.I., Nikitina, A.V., Semenyakina, A.A., Chistyakov, A.E.: A set of
models, explicit regularized high-resolution schemes and programs for predictive
modeling of consequences of emergency oil spill. In: Proceedings of the Interna-
tional Scientific Conference Parallel Computational Technologies (PCT 2016), pp.
308–319 (2016). (in Russian)

http://planet.iitp.ru/english/index_eng.htm


Cellular Automata and Discrete Event
Systems



Finite and Infinite Computations
and a Classification of Two-Dimensional Cellular

Automata Using Infinite Computations

Louis D’Alotto1,2(B)

1 Department of Mathematics and Computer Science,
York College/City University of New York, Jamaica, New York 11451, USA

2 The Doctoral Program in Computer Science, CUNY Graduate Center,
New York, USA

ldalotto@gc.cuny.edu

Abstract. This paper proposes an application of the Infinite Unit
Axiom and grossone, introduced by Yaroslav Sergeyev (see [19–23]), to
the development and classification of two-dimensional cellular automata.
This application establishes, by the application of grossone, a new and
more precise nonarchimedean metric on the space of definition for two-
dimensional cellular automata, whereby the accuracy of computations is
increased. Using this new metric, open disks are defined and the num-
ber of points in each disk computed. The forward dynamics of a cel-
lular automaton map are also studied by defined sets. It is also shown
that using the Infinite Unit Axiom, the number of configurations that
follow a given configuration, under the forward iterations of the cellular
automaton map, can now be computed and hence a classification scheme
developed based on this computation.

Keywords: Cellular automata · Infinite Unit Axiom · Grossone ·
Nonarchimedean metric · Dynamical systems

1 Introduction

Cellular automata, originally developed by von Neuman and Ulam in the 1940’s
to model biological systems, are discrete dynamical systems that are known for
their strong modeling and self-organizational dynamical properties (for examples
of some of these properties see [1,3,4,8,26–28,30]). Cellular automata are defined
on an infinite lattice and can be defined for all dimensions. In the one-dimensional
case the integer lattice Z is used. In the two-dimensional case, Z×Z. An example
of a two-dimensional cellular automaton is John Conway’s ever popular “Game
of Life” (for a complete description of “The Game of Life”, including some of the
more interesting structures that emerge, see [2], Chap. 25). Probably the most
interesting aspect about cellular automata is that which seems to conflict our
physical systems. While physical systems tend to maximal entropy, even starting

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 183–195, 2017.
DOI: 10.1007/978-3-319-62932-2 17



184 L. D’Alotto

with complete disorder, forward evolution of cellular automata can generate
highly organized structure.

As with all dynamical systems, it is important and interesting to understand
their long term behavior under forward time evolution and achieve an under-
standing or hopefully a classification of the system. The concept of classifying
cellular automata was initiated by Stephen Wolfram in the early 1980’s, see
[29,30]. Wolfram classified one-dimensional cellular automata through numer-
ous computer simulations. He actually noticed that if an initial configuration
(sequence) was chosen at random then the probability is high that the cellular
automaton rule will fall within one of four classes. Later, R. Gilman (see [10])
produced his measure theoretic/probabilistic classification of one-dimensional
cellular automata and partitioned them into three classes. This was a more rig-
orous classification of cellular automata and based on the probability of choosing
a configuration that will stay arbitrarily close to a given initial configuration
under forward iteration of the map. To accomplish this Gilman used a metric
that considers the central window where two configurations agree and continue
to agree upon forward iterations. For an overview and a comparison of classifi-
cations of one-dimensional cellular automata see [7,15]. However, This paper is
concerned with the classification of two-dimensional cellular automata. Gilman
and Wolfram’s results have not been formally extended to the two-dimensional
case, however, presented herein is a new approach to a classification of two-
dimensional cellular automata.

2 The Infinite Unit Axiom

The new methodology of computation, initiated by Sergeyev (see [19–22]), pro-
vides a new way of computing with infinities and infinitesimals. Indeed, Sergeyev
uses concepts and observations from physics (and other sciences) to set the basis
for this new methodology. This basis is philosophically founded on three postu-
lates:

Postulate 1. “We postulate the existence of infinite and infinitesimal objects
but accept that human beings and machines are able to execute only a finite
number of operations.”

Postulate 2. “We shall not tell what are the mathematical objects we deal with.
Instead, we shall construct more powerful tools that will allow us to improve our
capacities to observe and to describe properties of mathematical objects.”

Postulate 3. “We adopt the principle: ‘The part is less than the whole’, and
apply it to all numbers, be they finite, infinite, or infinitesimal, and to all sets
and processes, finite or infinite.”

These postulates set the basis for a new way of looking at and measuring
mathematical objects. The postulates are actually important philosophical real-
izations that we live in a finite world (i.e. that we, and machines, are incapable of



Finite and Infinite Computations 185

infinite or infinitesimal computations). All the postulates are important in the
application presented herein, however Postulate 1 has a ready illustration. In
this paper we will deal with counting and hence representing infinite quantities
and measuring (by way of a metric) extremely small or infinitesimal quantities.
Postulate 2 also has a ready consequence herein. In the classification presented
in this paper, more powerful numeral representations will be constructed that
actually improve our capacity to observe, and describe, mathematical objects
and quantities. Postulate 3 culminates in the actual classification scheme pre-
sented in this paper. Indeed, the cellular automata classification presented here
is developed by partitioning the entire space into three classes. It is interesting
to note that the order of Postulates 1 – 3 seem to dictate the exposition and
order of results of this paper. It is important to note that the Postulates should
not be conceived as axioms in this new axiomatic system but rather set the
methodological basis for the new system (See [22], Sect. 2 and also [14], for a
more rigorous discussion of the Postulates and Axioms).

The Infinite Unit Axiom is formally stated in three parts below. This axiom
involves the idea of an infinite unit from finite to infinite. The infinite unit
of measure is expressed by the numeral ①, called grossone, and represents the
number of elements in the set N of natural numbers.

1. Infinity: For any finite natural number n, it follows that n < ①.
2. Identity: The following involve the identity elements 0 and 1

(a) 0 · ① = ① · 0 = 0
(b) ① − ① = 0
(c) ①

①
= 1

(d) ①0 = 1
(e) 1① = 1

3. Divisibility: For any finite natural number n, the numbers

①,
①

2
,

①

3
, ...,

①

n
, ...

are the number of elements of the nth part of N, see [22].

An important aspect of ① that will be used extensively in this paper is the
numeric representation of ①−i for i > 0 (note that i can be infinite as well).
These numbers are called infinitesimals. The simplest infinitesimal is ①−1 =
1

①
. It is noted that ①−1 is the multiplicative inverse element for ①. That is,

①−1 · ① = ① · ①−1 = 1. It is also important (and essential in this paper) to note
that all infinitesimals are not equal to 0. In particular, 1

①
> 0. In [19,21] this is

also shown as a limiting process. That is,

lim
n→①

1
n

=
1
①

�= 0.

As noted above, the set of natural numbers is represented by

N = {1, 2, 3, ..., ① − 2, ① − 1, ①}



186 L. D’Alotto

and the set of integers, with the new grossone methodology, is represented by

Z = {−①,−① + 1,−① + 2, ...,−3,−2,−1, 0, 1, 2, 3, ..., ① − 2, ① − 1, ①}

However, since we will be working with the set SZ as the domain of definition for
cellular automata maps, we will need to make use of the set of extended natural
numbers by applying the arithmetical operations with grossone and other infinite
numbers (see [19,22] for a complete description on the formation of these sets).

N̂ = {1, 2, 3, ..., ① − 2, ① − 1, ①, ① + 1, ..., ①n, ..., 2①, ..., ①①, ...}

Where
1 < 2 < 3 < ... < ① − 1 < ① < ① + 1 <

... < ①10 < ... < 2① < ... < ①① < ...

and hence the infinitesimals

0 < ... < 1

①①
< ... < 1

2①
< ... < 1

①10 < ... < 1

①
< ...

The extended natural numbers will be used to represent the number of elements
in a set and their reciprocals used for infinitesimal quantities. The sequence of
forward iterates of an automaton map will only go up to ①, as the maximum
number of elements in a sequence cannot be more than grossone, see [22] for a
complete discussion. Cellular automata are important models of computation,
namely parallel computation. However, the theory of grossone has already been
successfully applied to studying other models of computation, see [24,25].

Herein it is important to note the number of elements in a set, especially an
infinite set.

Theorem 1. The number of elements in the set Z of integers is 2① + 1

Proof. See [22].

Theorem 2. The number of elements in the setZ×Z is |Z×Z| = (2①+1)(2①+1).

Proof. The number of elements in the set Z of integers is |Z| = 2① + 1, see
[22]. For any ordered pair (a, b), with a and b both belonging to the set Z, there
are 2① + 1 possibilities for a and 2① + 1 possibilities for b. Hence the product
(2① + 1)(2① + 1) = 4①2 + 4① + 1 for the total number of possibilities.

Theorem 3. The number of elements in the set N×Z is |N×Z| = ①(2①+1) =
2①2 + ①.

Proof. The proof is similar to Theorem 2 and hence omitted.



Finite and Infinite Computations 187

3 Two-Dimensional Cellular Automata

Let S be a finite alphabet of size s such that 2 ≤ s and let X = SZ×Z, i.e. the
set of all maps from the two-dimensional lattice Z × Z to the set S. That is,
for x ∈ X, x : Z × Z → S. Two-dimensional cellular automata are induced by
arbitrary (local) maps:

F : S(2r+1)2 −→ S

We will call these local maps local rules or block maps. Let N denote the set
of natural numbers, the value r ∈ N ∪ {0} is called the range of the map. The
automaton map f induced by F is defined by f(x) = y with

y(i, j) = F [x(i−r, j−r), ..., x(i+r, i−r), x(i−r, j−r+1), ..., x(i+r, j−r+1), ...,

x(i − r, j + r), ..., x(i + r, j + r)]

To illustrate the importance of discrete time steps in the forward evolution of
the automaton, we will use the following formula, where t represents time.

y(i, j)t+1 = F [x(i−r, j−r)t, ..., x(i+r, i−r)t, x(i−r, j−r+1)t, ..., x(i+r, j−r+1)t, ...,

x(i− r, j + r)t, ..., x(i + r, j + r)t]

This is usually called the Moore neighborhood (r = 1), or the extended Moore
neighborhood (r > 1) in the literature. The restriction of x ∈ X to a non-empty
region [m,n] × [p, q] of Z × Z, where −① ≤ m ≤ n ≤ ① and −① ≤ p ≤ q ≤ ① is
called a configuration. Configurations are written x([m,n] × [p, q]).

Denote by Rn the square region in Z × Z bounded by n. The notation f |Rn

denotes the restriction of f to the region Rn. Define:

ρ(f, g) =
{∏

(i,j)∈Rn
λi,j if f |Rn

= g|Rn
but f |Rn+1 �= g|Rn+1

1 if f(0, 0) �= g(0, 0)

Where λ is any real-valued function defined on S and taking values in the open
interval (0, 1), i.e. λ : S → (0, 1) where λi,j = λ(f(i, j)) for each f(i, j) ∈ S and
not infinitesimal, hence each 0 < λi,j < 1. The metric is defined for f , g ∈ X as
follows:

d(f, g) =
{

0 if f = g
ρ(f, g) otherwise

The metric just defined will be called the two-dimensional Kolmogorov metric
and satisfies the nonarchimedean (ultra metric) property,

d(x, y) ≤ max{d(x, z), d(z, y)}.

An example of the use of this metric is given in the following example.



188 L. D’Alotto

Example 1. Given the alphabet S = {0, 1}, the following configuration x con-
sisting of all 1’s, and for simplicity choose λ(1) = λ(0) = 1/2

(−①,①)︷︸︸︷
...

...
...

...
...

...
...

...

(①,①)︷︸︸︷
...

1 . . . 1 1 1 1 1 . . . 1
1 . . . 1 1 1 1 1 . . . 1

(−①, 0) −→ 1 . . . 1 1 〈1〉 1 1 . . . 1 ←− (①, 0)
1 . . . 1 1 1 1 1 . . . 1
1 . . . 1 1 1 1 1 . . . 1
...︸︷︷︸

(−①,−①)

...
...

...
...

...
...

...
...︸︷︷︸

(①,−①)

The brackets 〈 and 〉 represent the (0, 0) position. Then the configuration
below, call it y, is identical to the one above, except for the 0 in the (2, 1)
position.

(−①,①)︷︸︸︷
...

...
...

...
...

...
...

...

(①,①)︷︸︸︷
...

1 . . . 1 1 1 1 1 . . . 1
1 . . . 1 1 1 1 0 . . . 1

(−①, 0) −→ 1 . . . 1 1 〈1〉 1 1 . . . 1 ←− (①, 0)
1 . . . 1 1 1 1 1 . . . 1
1 . . . 1 1 1 1 1 . . . 1
...︸︷︷︸

(−①,−①)

...
...

...
...

...
...

...
...︸︷︷︸

(①,−①)

Hence the center region is denoted R1 and we can compute the distance of
the two configurations as follows.

ρ(x, y) =
∏

(i,j)∈R1

λi,j =
(

1
2

)9

=
1

512
= d(x, y)

Under the usual product topology, a two-dimensional cylinder is a set C(i, j, w) =
{x ∈ X|x([i, j] × [i, j]) = w}, where |w| = (j − i + 1)2. We define the open disk
of radius ε around x to be Cn(x) = C(−n, n, x([−n, n] × [−n, n])). Here, it is
important to note, ε > 0 and that ε can be infinitesimal. It should be clarified
that ε must be computed with respect to the metric defined above but first with
the respective values of λ chosen. As the following example illustrates.

Example 2. Given the alphabet S = {0, 1} and λ(0) = λ(1) = 1/2, then the disk
centered at x and of radius ε = 1/512 is denoted by C1(x). We also take the
convention, once the λ values are fixed, to denote C1/512(x) as the disk of radius



Finite and Infinite Computations 189

1/512. For instance, if x is the configuration of all 1’s and given the λ values
λ(0) = λ(1) = 1/2, The open disk C1/512(x) is illustrated.

(−①,①)︷︸︸︷
...

...
...

...
...

...
...

...

(①,①)︷︸︸︷
...

1 . . . 1 1 1 1 1 . . . 1
1 . . . 1 1 1 1 1 . . . 1

(−①, 0) −→ 1 . . . 1 1 〈1〉 1 1 . . . 1 ←− (①, 0)
1 . . . 1 1 1 1 1 . . . 1
1 . . . 1 1 1 1 1 . . . 1
...︸︷︷︸

(−①,−①)

...
...

...
...

...
...

...
...︸︷︷︸

(①,−①)

The brackets 〈 and 〉 represent the (0, 0) position. Then any other configura-
tion in the disk C1/512(x) would have to be of the form with the center Moore
neighborhood consisting of all 1’s.

(−①,①)︷︸︸︷
...

...
...

...
...

...
...

...

(①,①)︷︸︸︷
...

∗ . . . ∗ ∗ ∗ ∗ ∗ . . . ∗
∗ . . . ∗ 1 1 1 ∗ . . . ∗

(−①, 0) −→ ∗ · · · ∗ 1 〈1〉 1 ∗ · · · ∗ ←− (①, 0)
∗ . . . ∗ 1 1 1 ∗ . . . ∗
∗ . . . ∗ ∗ ∗ ∗ ∗ . . . ∗
...︸︷︷︸

(−①,−①)

...
...

...
...

...
...

...
...︸︷︷︸

(①,−①)

where ∗ is a “wildcard” and can represent either a 0 or 1.

Since the metric is nonarchimedean, given any two disks Cε(f), Cα(y), either
Cε(f)∩ Cα(y) = ∅ or one contains the other. In this topology, the Cε sets are
also closed. For fixed ε > 0, the relation f ∼ y if d(f, y) ≤ ε is an equivalence
relation with equivalence classes {Cε(f)}.

It should be noted, with the given definitions and the Infinite Unit Axiom, it
is possible to define an open disk of infinitesimal radius. A disk of infinitesimal
radius is an open disk around an infinite square configuration. For example, the
disk C①−2

(x) is a disk of such radius.

Theorem 4. Given the space SZ×Z of two-dimensional bi-infinite configura-
tions, the number of elements x ∈ SZ×Z is equal to

|S|(4①
2
+4①+1)



190 L. D’Alotto

Proof. By Theorem 2 there are (2① + 1)(2① + 1) elements (or places) in the
two-dimensional lattice Z × Z and each lattice point can hold a value from the
finite alphabet S. Hence there are

|S|(2①+1)(2①+1) = |S|(4①
2
+4①+1)

distinct configurations.

Corollary 1. The open disk Cn(x), for finite or infinite n, around x contains

|S|(4①
2
+4①−4n2−4n) elements.

Proof. An open disk Cn(x) around x must have a fixed square center where a
side equals 2n + 1. The number of possible configurations outside this square
center must be computed. Above the square there are |S|(2①+1)(①−n) possible
configurations. Below the square, the same. To the right of the square, there
are |S|(2n+1)(①−n) possible configurations and the same to the left of the center
square. Hence the total number of possible configurations (elements in the open
disk Cn(x)) are given by the following computation.

|S|(2①+1)(①−n) · |S|(2①+1)(①−n) · |S|(2n+1)(①−n) · |S|(2n+1)(①−n)

= |S|2(2①+1)(①−n) · |S|2(2n+1)(①−n)

= |S|(4①
2
+4①−4n2−4n)

Example 3. For n = ①−1, C①−1
(x) is a disk of infinitesimal radius and contains

|S|(4①
2
+4①−4(①−1)2−4(①−1) = |S|8①

points.

As shown in the previous example, disks of infinitesimal radius contain, although
still infinite, many fewer points than disks of finite radius. This is in contrast to
the one-dimensional case (see [6]) where there are only finitely many elements
in a disk of infinitesimal radius.

The study of dynamical systems, in this case discrete dynamical systems,
endeavors to understand the forward evolution (or forward iterations) of the
system map, in this case the automaton rule. For t ∈ N ∪ {0}, f t(x) is used to
represent the tth iterate of the automaton map f . That is,

f t(x) = f ◦ f ◦ f · · · ◦f(x)

where 0 ≤ t ≤ ①.
To understand the dynamics of two-dimensional cellular automata it is nec-

essary to study the forward iterates of configurations that equal or match those
of a given configuration, call it “x”, on a given region of Z×Z. Here the relation



Finite and Infinite Computations 191

x ∼ y iff ∀i ∈ N ∪ {0}, (f i(y))([m,n] × [p, q]) = (f i(x))([m,n] × [p, q]) forms an
equivalence relation with equivalence classes denoted by Bm,n,p,q(x). That is,

Bm,n,p,q(x) = {y | (f i(y))([m,n]× [p, q]) = (f i(x))([m,n]× [p, q]) ∀i ∈ N∪{0}}.
Bm,n,p,q(x) is the set of y for which (f i(y))([m,n] × [p, q]) = (f i(x))([m,n] ×
[p, q]), for m ≤ 0 ≤ n and p ≤ 0 ≤ q, under forward iterations of the cellular
automaton function. That is, ∀i ∈ N0. Recall, (f i(y))([m,n] × [p, q]) represents
configurations and that the cellular automaton function, f is first applied to the
entire configuration x (or y), and then restricted to the region [m,n] × [p, q].
Note that m and/or p can equal −① + k and n and/or q can equal ① − k, for
some finite integer k ≥ 0. In those cases the configurations are left-sided, right-
sided or both sided infinite. Hence elements in the Bm,n,p,q(x) classes will agree
with x([m,n] × [p, q]) and all forward iterations of x([m,n] × [p, q]) under the
automaton map f . This will form the effect of an infinite vertical rectangular
prism, not necessarily symmetric, around the central window.

The dynamical analysis of cellular automata presented herein is based on
counting the number of elements in the entire domain space, X. Hence, in this
section we will use ① to count the number of elements in the class Bm,n,p,q(x)
whose forward iterates match those of x in some window containing the cen-
ter and develop a simple classification of two-dimensional cellular automata
based on this count. Similar to the one-dimensional case, two-dimensional cellu-
lar automata rules are thus partitioned into three classes.

Definition 1. Define the classes of two-dimensional cellular automata, f , as
follows:

1. f ∈ A if there is a Bm,n,p,q(x) that contains at least |S|4(①2
+①)−k elements,

for some finite integer k ≥ 0.
2. f ∈ B if there is a Bm,n,p,q(x) that contains at least |S|α①2

+β①)−k elements,
for some finite integer k ≥ 0, 0 < α ≤ 4, α not infinitesimal and 0 < β < 4,
but f does not belong to class A.

3. f ∈ C otherwise.

Class C is the most chaotic class of automata. Indeed, in this class there may
only be finitely many elements or simple infinitely many elements in any Bm,n(x)
class. Hence, beginning with an initial configuration, most other configurations
will diverge away from the initial configuration. Automata in class A are the
least chaotic and most elements will equal an initial configuration upon repeated
applications (iterations) of the automata rule on the infinite strip. The follow-
ing theorem shows the relationship between an open disk and the number of
configurations in a Bm,n,p,q(x) class.

Theorem 5. If there exists a Bm,n,p,q(x), for cellular automaton f , that con-
tains an open disk of non-infinitesimal radius, then f ∈ A.

Proof. If there is a Bm,n,p,q(x), for cellular automaton f that contains an open

disk Cn(x) of non-infinitesimal radius, then Cn(x) contains |S|(4①2
+4①−4n2−4n)



192 L. D’Alotto

elements. Therefore Bm,n,p,q(x) contains at least |S|(4①2
+4①−4n2−4n) elements.

Since n is finite, take finite k = 4n2 − 4n and by Definition 1 the theorem is
proved.

The following example shows a class A two-dimensional automaton of range
r = 1.

Example 4. For simplicity we use the binary alphabet. Let S = {0, 1}, and
define the two-dimensional automaton function, F , on the Moore neighborhood
as follows.

F (a, b, c, d, e, f, g, h, i) =
{

1 if a = b = c = d = e = f = g = h = i = 1
0 otherwise

That is, all configurations go to 0 except the configuration of all 1’s. Hence it
is easily seen there is a Bm,n,p,q(x), except in the case x is the configuration of
all 1’s, that contains an open disk. Therefore by Theorem5 this automaton is of
class A.

The next example is a cellular automaton map that belongs to class B and
shows the new computational power of the Infinite Unit Axiom and grossone.

Example 5. Again, for simplicity, we use the binary alphabet S = {0, 1}. We can
define the cellular automaton on either the Von Neuman or Moore neighborhood
and use coordinates.

σ(x(i, j)) = x(i + 1, j).

This is the simple horizontal left shift map and illustrated by the following.

...
...

...
...

...
...

... . . .
...

1 0 1 1 0 1 1 . . . 1
0 0 1 0 1 1 1 . . . 1
0 〈1〉 1 1 0 1 1 . . . 1
1 1 1 0 1 1 1 . . . 1
0 1 0 0 1 1 1 . . . 1
...

...
...

...
...

...
... . . .

...

where the brackets 〈 and 〉 represent the (0, 0) position. The next iteration yields,

...
...

...
...

...
...

... . . .
...

0 1 1 0 1 1 1 . . . 1
0 1 0 1 1 1 1 . . . 1
1 〈1〉 1 0 1 1 1 . . . 1
1 1 0 1 1 1 1 . . . 1
1 0 0 1 1 1 1 . . . 1
...

...
...

...
...

...
... . . .

...



Finite and Infinite Computations 193

Hence any other configuration, y, in Bm,n,p,q(x) would have to agree on the right
of the center square out to ①. Hence there are at most

|S|①·(2①+1) · |S|①(2①+1) · |S|① = |S|4①
2
+3①

and clearly by Definition 1 the left shift, σ(x(i, j)) = x(i + 1, j), belongs in B.

4 Discussion and Conclusion

In this paper a classification scheme for two-dimensional cellular automata, based
on the Infinite Unit Axiom and grossone, has been presented. The entire domain
space of two-dimensional automata, X = SZ×Z, contains |S|(2①+1)(2①+1) con-
figurations. This puts an upper bound representation on the number of elements
in the entire space, hence we sub-divided the space into three components and
used this to build a classification on the number of configurations whose forward
evolution, under a cellular automaton, equal those (on a central window) of a
given initial configuration.

This classification is based on a numeric representation of counting elements
in a set. Automata in class A are the least chaotic, having a very large num-
ber of configurations equaling those of a given configuration, on some central
window (given the definition of the metric, it is allowable to say “staying close
together” upon forward iterations), upon forward iterations of the automaton
map. Automata in class B, such as the left shift automaton, are more chaotic
than those in class A. However, it seems that they can still be described without
too much complexity. Automata in class C are more difficult to find and are the
most chaotic in the respect that there are relatively very few other configurations
that will follow and stay close to a given. Indeed, the number of configurations
that equal a given initial configuration, upon forward iterations, is much less
than the other classes and may be simple infinite (either ①, or ①2, ...., or ①n,
or some part thereof), finite or a single configuration. Conway’s Game of Life
has been shown to be capable of universal computation. Due to the nature of
universal computation, some of these automata can fall into class C. It is left as
an open problem to prove or disprove this. It is noted that the presented classi-
fication would be stronger if there was an algorithm to determine membership
in the different classes and it is also posed as an open problem.

References

1. Baetens, J.M., Gravner, J.: Stability of cellular automata trajectories revisited:
branching walks and Lyapunov profiles. J. Nonlinear Sci. 26, 1329–1367 (2016)

2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical
Plays, vol. 4, 2nd edn. A. K. Peters, Wellesley (2004)

3. Calidonna, C.R., Naddeo, A., Trunfio, G.A., Di Gregorio, S.: From classical infinite
space-time CA to a hybrid CA model for natural sciences modeling. Appl. Math.
Comput. 218(16), 8137–8150 (2012)



194 L. D’Alotto

4. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems.
Cambridge University Press, Cambridge (1998)

5. D’Alotto, L.: Cellular automata using infinite computations. Appl. Math. Comput.
218(16), 8077–8082 (2012)

6. D’Alotto, L.: A classification of one-dimensional cellular automata
using infinite computations. Appl. Math. Comput. 255, 15–24 (2014).
http://dx.doi.org/10.1016/j.amc.2014.06.087

7. D’Alotto, L., Pizzuti, C.: Characterization of one-dimensional cellular automata
rules through topological network features. In: Numerical Computations The-
ory and Algorithms 2016, AIP Conference Proceedings, vol. 1776, pp. 090048-
1–090048-4 (2016)

8. D’Ambrosio, D., Filippone, G., Marocco, D., Rongo, R., Spataro, W.: Efficient
application of GPGPU for lava flow hazard mapping. J. Supercomput. 65(2), 630–
644 (2013)

9. De Cosmis, S., De Leone, R.: The use of grossone in mathematical programming
and operations research. Appl. Math. Comput. 218(16), 8029–8038 (2012)

10. Gilman, R.: Classes of linear automata. Ergod. Theor. Dyn. Syst. 7, 105–118 (1987)
11. Hedlund, G.A.: Edomorphisms and automorphisms of the shift dynamical system.

Math. Syst. Theor. 3, 51–59 (1969)
12. Iudin, D.I., Sergeyev, Y.D., Hayakawa, M.: Interpretation of percolation in terms

of infinity computations. Appl. Math. Comput. 218(16), 8099–8111 (2012)
13. Lolli, G.: Infinitesimals and infinities in the history of mathematics: a brief survey.

Appl. Math. Comput. 218(16), 7979–7988 (2012)
14. Lolli, G., Metamathematical Investigations on the Theory of Grossone, Preprint,

Applied Mathematics and Computation. Elsevier (submitted and accepted for pub-
lication)

15. Mart’nez, G.J.: A note on elementary cellular automata classification. J. Cell.
Automata 8, 233–259 (2013)

16. Margenstern, M.: Using grossone to count the number of elements of infinite sets
and the connection with bijections. p-Adic Numbers Ultrametric Anal. Appl. 3(3),
196–204 (2011)

17. Margenstern, M.: An application of grossone to the study of a family of tilings of
the hyperbolic plane. Appl. Math. Comput. 218(16), 8005–8018 (2012)

18. Narici, L., Beckenstein, E., Bachman, G.: Functional Analysis and Valuation The-
ory. Marcel Dekker Inc., New York (1971)

19. Sergeyev, Y.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, Italy (2003)
20. Sergeyev, Y.D.: Numerical Point of view on calculus for functions assuming finite,

infinite, and infinitesimal values over finite, infinite, and infinitesimal domains.
Nonlinear Anal. Ser. A Theor. Methods Appl. 71(12), e1688–e1707 (2009)

21. Sergeyev, Y.D.: Numerical computations with infinite and infinitesimal numbers:
theory and applications. In: Sorokin, A., Pardalos, P.M. (eds.) Dynamics of Infor-
mation Systems: Algorithmic Approaches, pp. 1–66. Springer, New York (2013)

22. Sergeyev, Y.D.: A new applied approach for executing computations with infinite
and infinitesimal quantities. Informatica 19(4), 567–596 (2008)

23. Sergeyev, Y.D.: Measuring fractals by infinite and infinitesimal numbers. Math.
Methods Phys. Methods Simul. Sci. Technol. 1(1), 217–237 (2008)

24. Sergeyev, Y.D., Garro, A.: Observability of turing machines: a refinement of the
theory of computation. Informatica 21(3), 425–454 (2010)

25. Sergeyev, Y.D., Garro, A.: Single-tape and multi-tape turing machines through the
lens of grossone methodology. J. Supercomput. 65(2), 645–663 (2013)

http://dx.doi.org/10.1016/j.amc.2014.06.087


Finite and Infinite Computations 195

26. Sirakoulis, G.C., Krafyllidis, I., Spataro, W.: A computational intelligent oxida-
tion process model and its VLSI implementation. In: International Conference on
Scientific Computing Proceedings, pp. 329–335 (2009)

27. Trunfio, G.A.: Predicting wildfire spreading through a hexagonal cellular
automata model. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI
2004. LNCS, vol. 3305, pp. 385–394. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30479-1 40

28. Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A new
algorithm for simulating wilfire spread through cellular automata. ACM Trans.
Model. Comput. Simul. 22, 1–26 (2011)

29. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3),
601–644 (1983)

30. Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002)
31. Wolfram, S.: Universality and complexity in cellular automata. Phys. D 10, 1–35

(1984)
32. Zhigljavsky, A.: Computing sums of conditionally convergent and divergent series

using the concept of grossone. Appl. Math. Comput. 218(16), 8064–8076 (2012)

http://dx.doi.org/10.1007/978-3-540-30479-1_40
http://dx.doi.org/10.1007/978-3-540-30479-1_40


Multiple-Precision Residue-Based Arithmetic
Library for Parallel CPU-GPU Architectures:

Data Types and Features

Konstantin Isupov(B), Alexander Kuvaev, Mikhail Popov,
and Anton Zaviyalov

Department of Electronic Computing Machines, Vyatka State University,
Kirov 610000, Russia

{ks isupov,mv popov}@vyatsu.ru, kyvaevy@gmail.com,

antonzaviyalov@gmail.com

Abstract. In this paper a new software library for multiple-precision
(integer and floating-point) and extended-range computations is consid-
ered. The library is targeted at heterogeneous CPU-GPU architectures.
The use of residue number system (RNS), enabling effective paralleliza-
tion of arithmetic operations, lies in the basis of library multiple-precision
modules. The paper deals with the supported number formats and the
library features. An algorithm for the selection of an RNS moduli set for
a given precision of computations are also presented.

Keywords: Multiple-precision computations · Extended-range compu-
tations · Parallel processing · GPGPU · Residue number system

1 Introduction

Numerous recent scientific applications have involved processing multiple-
precision numbers, i.e. numbers where precision exceeds IEEE 754 double format.
Such applications include, for example, satellite collision simulation without the
availability of complete data about their trajectories [9], the use of complete ellip-
tic integrals for solving the Hertzian elliptical contact problems [8], and applying
inverse Laplace transforms for solutions of fractional order differential equations
[3]. Due to the large amount of computations, performance is considered to be
one of the most important non-functional requirements in such applications.
This leads to the necessity of using modern parallel computing systems, where
multicore processors (CPUs) are often used alongside with graphics processing
units (GPUs). Due to its massively parallel architecture and relatively low power
consumption, modern GPUs are very powerful and cost-effective for resource-
intensive computing. The NVIDIA CUDA platform allows software developers
to simply and effectively use GPU for general purpose computing.

At the same time, the maximum performance of multiple-precision compu-
tations on modern massively parallel architectures needs the algorithms which

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 196–204, 2017.
DOI: 10.1007/978-3-319-62932-2 18



Multiple-Precision Residue-Based Arithmetic Library 197

would allow effective parallelization of arithmetic operations. However this can-
not be achieved by the most common way to represent multiple-precision num-
bers, namely a dense representation in a fixed base [2,5].

In this regard, the attention of researchers has recently been attracted to the
alternative ways of representing multiple-precision numbers. The use of residue
number system (RNS) is one of such ways [15,16]. Due to the non-positional
nature of RNS, operations on multiple-precision numbers can be split into several
reduced-precision operations executed in parallel. This enables the achievement
of the maximum efficiency while using the resources of parallel architectures.

The article focuses on the implementation concept of a new RNS-based soft-
ware library MPRES (Multiple-Precision Residue-based Arithmetic Library) for
multiple-precision computations on CPUs and CUDA compatible GPUs.

2 Background of RNS

An RNS is defined by a set of moduli {m1,m2, . . . ,mn} that are coprime integers.
In RNS, an integer X is represented by an n-tuple 〈x1, x2, . . . , xn〉, where xi =
|X|mi

is the least non-negative remainder of X divided by mi. The digit xi is
called the residue of X (mod mi). Such a representation is unique for any integer
X ∈ [0,M − 1], where M =

∏n
i=1 mi is the dynamic range of an RNS.

RNS is traditionally used as the basis for high-performance hardware in such
applications as digital signal processing [1] and cryptography [6]. At the same
time, the development of general purpose parallel architectures enables efficient
use of RNS in software, particularly for the implementation of parallel multiple-
precision arithmetic. In RNS, multiple-precision operations such as addition, sub-
traction and multiplication are naturally divided into groups of reduced-precision
operations on residues, performed in parallel and without carry propagation.

However, the effective use of RNS is limited by the complexity of operations,
requiring estimation of the number magnitudes, such as comparison and over-
flow detection. In large dynamic ranges, the classical method to perform these
operations, which is based on the Chinese Remainder Theorem, becomes slow.
An alternative method, targeted at large dynamic ranges, is based on compu-
tation of interval floating-point characteristic (IFC) of the RNS number [10].
IFC is denoted by I(X/M) = [X/M,X/M ] and represents an interval with
floating-point bounds, which localize the value of X, scaled with respect to M ,
that is: X/M ≤ X/M ≤ X/M . IFC bounds are machine-precision numbers and
are computed using directed roundings. The average-case complexity of serial
and parallel IFC computation is a linear and logarithmic function of the size of
the moduli set, respectively. IFC computation requires only small integer opera-
tions and standard floating-point operations (no residue-to-binary conversion is
required). The modern computing platforms, including CPU, GPU, FPGA and
ASIC, allow for the efficient execution of both these types of operations, while
compatibility with the IEEE 754 standard allows to estimate the IFC accuracy.



198 K. Isupov et al.

3 Moduli Set Selection

The choice of an optimal moduli set significantly influences calculation efficiency
in the RNS. For example, the well-known three-moduli set {2n − 1, 2n, 2n + 1}
provides fast implementations of many operations in RNS, such as scaling, sign
detection and magnitude comparison [4,17]. However, this moduli set is not
suitable when large dynamic ranges are required.

In the RNS with the moduli set {m1,m2, . . . ,mn}, the numbers range from
0 to M − 1. Therefore, satisfying the inequality log2 M ≥ p means that all p-bit
nonnegative integers are representable in this RNS. The following is a moduli
set generation algorithm, which can be used to implement multiple-precision
arithmetic in RNS.

Algorithm 1. Moduli Set Generation
Require: p (precision), k (bit size of the most significant modulus m1)
Ensure: n, {m1,m2, . . . ,mn} such that log2

∏n
i=1 mi ≥ p

1: i ← 1; M ← m1 ← 2k − 1
2: while log2 M < p do
3: A ← {a ∈ Z

+
∣
∣ a < mi ∧ a (mod 2) ≡ 1 ∧ gcd(a,mj) = 1, for all 1 ≤ j ≤ i

}

4: if A �= ∅ then
5: i ← i + 1
6: mi ← maxA
7: M ← M · mi

8: else Raise exception: impossible to generate a moduli set for the given p and k
9: end if

10: end while
11: n ← i
12: return n, {m1,m2, . . . ,mn}

An alternative algorithm, which performs generation of the moduli set start-
ing from the least significant modulus, is presented in [13]. The above presented
algorithm is preferable from the viewpoint of reducing the size of the moduli set
and memory overhead for the software implementation of the computations.

4 Extended-Range and Multiple-Precision Data Formats

The MPRES library supports three data types, which are based on the fol-
lowing numeric formats: (1) extended-range floating-point format; (2) multiple-
precision modular integer format; (3) modular-positional floating-point format.
Operations on numbers in these formats makes up the arithmetic level of the
library (Fig. 1). The following is a consideration of each of these formats.

Extended-Range Floating-Point. This format (hereafter ER-format) is intended
to represent machine-precision floats with extended exponent. It does not
increase the accuracy and precision of computations, but in MPRES it is involved



Multiple-Precision Residue-Based Arithmetic Library 199

High-Level Utilities and User Applications

Multiple-Precision Integer 
Arithmetic Routines

Extended-Range Floating-
Point Routines

Multiple-Precision Floating-Point 
Arithmetic Routines

Floating-Point 
Arithmetic Rules

Interval Floating-Point 
CharacteristicResidue Number System

Extended-Range 
Floating-Point Format

f e

Multiple-Precision 
Modular Integer Format

s x1 ... xn

Modular-Positional Floating-
Point Format

s x1 ... xn /X M/X Me/X M /X M

Fig. 1. Arithmetic level of the MPRES library

in the formation of two other multiple-precision formats. ER-format is con-
structed by pairing a machine integer e with an ordinary machine floating-point
number f . This pair is considered as the number f ×Be, where B is a predeter-
mined constant that is a power of the floating-point base (radix) [7].

Multiple-Precision Modular Integer. This format (hereafter MI-format) is
intended to represent arbitrary precision integers. A number x in this format
is represented by a sign s ∈ {0, 1}, a significand in RNS X and an IFC I(X/M)
of the significand. If x ≥ 0, then s = 0, otherwise s = 1. Significand X expresses
the absolute value of the number and is represented by the tuple of residues
〈x1, x2, . . . , xn〉 with respect to the moduli set {m1,m2, . . . ,mn}. The residues
are represented by machine integers. The significand is interpreted as an inte-
ger in the interval [0,M − 1]. The precision of x in bits, represented in the
described way, is defined by the value �log2 M�. IFC bounds X/M and X/M
are represented in the ER-format thus enabling the use of IFC without any
restrictions for M . Notation x → {s,X, I(X/M)}, which expresses the value
x = (−1)s × ∣

∣
∑n

i=1 xi

∣
∣M−1

i

∣
∣
mi

Mi

∣
∣
M

, is used for numbers represented in the
MI-format. Here Mi = M/mi and

∣
∣M−1

i

∣
∣
mi

are RNS constants.

Modular-Positional Floating-Point. This format (hereafter MF-format) extends
the above-described MI-format by adding the unbiased exponent e, which is
a signed integer. The format name results from the fact that the RNS signif-
icand represents the modular part of a number, and the binary exponent —
the positional part. Notation x → {s,X, e, I(X/M)}, which expresses the value

x = (−1)s × ∣
∣

n∑

i=1

xi

∣
∣M−1

i

∣
∣
mi

Mi

∣
∣
M

× 2e, is used for numbers in the MF-format.



200 K. Isupov et al.

5 Computations with MPRES

The data types supported by MPRES are the same for CPUs and GPUs. This
allows to exchange data between the host and the device by calling the standard
CUDA Runtime API functions. Since MPRES currently provides only basic
arithmetic and mathematical operations, the distribution of tasks among CPU
cores and GPU accelerators is performed by application programmer. Depending
on the problem being solved, the multiple-precision CUDA-functions can be run
from one or more threads on a host or device, in parallel with other functions.

The RNS moduli, IFC accuracy and other parameters are the same for the
CPU and GPU parts of the library. Thanks to this, the results obtained from
CPU and GPU are found to be in agreement with each other. In addition, the
results obtained on one system can be used on another system. This makes it
possible to more flexibly distribute the computations among CPUs and GPUs.

Functions for converting numbers from standard data types, (e.g. long, dou-
ble) to the data types supported by MPRES are implemented for both CPU
and GPU, so if source data are represented with standard data types, they can
be transferred to the GPU memory without any additional conversion. There
are also special functions (only for CPU) that provide interaction with the
well-known multiple-precision libraries, GMP and MPFR. Functions that con-
vert computational results from MI- and MF-formats to binary system require
multiple-precision binary arithmetic and are implemented only for CPU.

Extended-Range Computations. The algorithms for handling extended-range
numbers are well-known and easy to implement [7]. The following CPU- and
CUDA-functions are implemented in MPRES for computations in the ER-
format: addition, subtraction, multiplication and division, supporting four IEEE
754 rounding modes; floor and ceiling functions, computation of the fractional
part, as well as comparison functions; a number of mathematical functions: exp,
fact, pow, sqrt, sin, cos, ceil, floor, etc. Some of the algorithms implemented in
MPRES are described in [14]. CUDA-implementation of extended-range arith-
metic enables the use of the GPU for the tasks, associated with processing
extremely large or small quantities. In particular, the implemented routines are
used to calculate normalized associated Legendre polynomials with very high
degrees [14].

Multiple-Precision Computations. The algorithms for multiple-precision compu-
tations in MF- and MI-formats are described in [11,12], respectively. In general,
an algorithm for performing a multiple-precision arithmetic operation in MPRES
consists of the following steps:

1. Magnitudes of the significands of the operands are preliminary estimated by
means of IFCs analysis.

2. The exponent (for the MF-format) and the sign of the result are determined.
3. The multiple-precision significand is computed in RNS. All of the computa-

tions are performed separately for each modulus.
4. The IFC of the result is calculated.



Multiple-Precision Residue-Based Arithmetic Library 201

Currently MPRES supports four basic arithmetic operations over MF- and
MI-formats. The representation of multiple-precision significands in RNS makes
it possible to eliminate the carry propagation. This simplifies the execution of
arithmetic operations and allows to process all digits of significands in parallel.

IFC that provides information about the magnitude of the significand is used
to control the overflow of the range, determine the sign of the difference, compare
numbers, determine the need for rounding, and for other operations. Since IFC
is included in the multiple-precision representation and stored in memory, it
eliminates the need for its full recalculation after performing each operation on
the significand. In general, computations with IFCs are performed using interval
arithmetic. After performing a lot of computations, the IFC widens, thereby
becoming less informative. Therefore, it needs to be refreshed periodically, i.e.,
recalculated on the basis of the residues of the significand.

For CPU computing, processing of the significand and IFC is vectorized using
SIMD extensions. In the future, support for multi-threaded OpenMP implemen-
tations is planned, which may be expedient at very high precision of computa-
tions and large size of the RNS moduli set.

For GPU computing, two sets of CUDA functions are implemented:

1. Serial device functions which can be called from the main CUDA kernel
and used on any CUDA compatible GPU cards.

2. Parallel global functions designed to be run on devices that support
CUDA dynamic parallelism (Fig. 2). In such functions, n child threads are
running, where n is the size of the moduli set. Each i-th child thread per-
forms operations modulo mi. After performing the arithmetic operation, the
control flow returns back to the to the calling function. It is worth noting
that global MPRES functions can be called both from GPU and CPU.

Input Data 
(X1,X2, ,XK)

CPU
Thread

Converting 
Data to MI 

(MF) Format

Transfer 
to GPU CPU Computations

X1

...

Parent GPU Grid

T
h

re
a

d 
S

yn
c

CPU
Thread

Converting 
Data to MI 

(MF) Format

Transfer 
to GPU

...

.

.

.

Parent Grid Thread
X2
X3

XK

Modulo m1 Computations

Modulo mn Computations

Child GPU Grid

...
Modulo m2 Computations

Routine
Complete

Calling an 
MPRES 
Routine

Child GPU Grid for multiple-
precision processing XK

...

...

...
Parent GPU 
Grid Launch

Parent GPU 
Grid Complete

Transfer 
to RAM

Fig. 2. Parallel multiple-precision calculations with MPRES



202 K. Isupov et al.

6 Memory Overhead Evaluation

The use of MI- and MF-formats is associated with memory overhead, which
consists of two parts:

1. Overheads, associated with the necessity of storing IFC, which is not involved
in the formation of a number value. These overheads are fixed and do not
depend on the precision of computations.

2. Overheads, associated with the fact that the RNS moduli must be coprime
numbers, and their product M is not a power of two. These overheads depend
on the precision of computations.

Figure 3 shows the calculation results for the size of a number represented in
the MI-format and total memory overhead. In order to generate the moduli set
Algorithm 1 was used. The bit size of each modulus was assumed to be 16 bits,
and it was assumed that the IFC bounds are ER-numbers with 64-bit significands
and 16-bit exponents (thus, storing one IFC requires 80 bits). The results show
that the memory overhead, associated with the use of MI-format, is insignificant
when the precision is more than 256 bits. Memory overhead assessment for the
MF-format will be very similar to the presented estimates.

Fig. 3. The size of a number in the MI-format and total memory overhead

7 Conclusion

This article describes data types and main features of a new software library
for multiple-precision and extended-range computations on hybrid CPU-GPU
systems. The use of RNS to represent multiple-precision significands enables
effective parallelization of arithmetic operations without any carry propagation.



Multiple-Precision Residue-Based Arithmetic Library 203

By changing the RNS moduli set it is possible to set arbitrary precision of
computations. All the library functions are presented in the CPU- and CUDA-
implementations, which can be used in parallel. All procedures are thread-safe,
thus allowing parallelization of the computation process on the application level.

Currently, a limitation of the integer arithmetic in the MI-format lies in
the inability to dynamically increase precision of computations. This causes the
need to analyze the whole computational process and assign a large number of
RNS moduli, excluding the range overflow. In order to overcome this drawback,
efficient RNS base extension algorithms are required.

Acknowledgement. This work is supported by the Russian Foundation for Basic
Research (project no. 16-37-60003 mol a dk) and FASIE UMNIK grant.

References

1. Albicocco, P., Cardarilli, G., Nannarelli, A., Re, M.: Twenty years of research on
RNS for DSP: lessons learned and future perspectives. In: Proceedings of 14th
International Symposium on Integrated Circuits (ISIC), Singapore, pp. 436–439,
December 2014

2. Brent, R., Zimmermann, P.: Modern Computer Arithmetic. Cambridge University
Press, New York (2010)

3. Brzeziński, D.W., Ostalczyk, P.: Numerical calculations accuracy comparison of the
inverse Laplace transform algorithms for solutions of fractional order differential
equations. Nonlinear Dyn. 84(1), 65–77 (2016)

4. Chang, C.H., Low, J.Y.S.: Simple, fast, and exact RNS scaler for the three-moduli
set {2n − 1, 2n, 2n + 1}. IEEE Trans. Circ. Syst. I Regul. Pap. 58(11), 2686–2697
(2011)

5. Defour, D., de Dinechin, F.: Software carry-safe for fast multiple-precision algo-
rithms. In: Proceedings of 1st International Congress of Mathematical Software,
Beijing, China, pp. 29–39, August 2002

6. Esmaeildoust, M., Schinianakis, D., Javashi, H., Stouraitis, T., Navi, K.: Efficient
RNS implementation of elliptic curve point multiplication over GF(p). IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 21(8), 1545–1549 (2013)

7. Hauser, J.R.: Handling floating-point exceptions in numeric programs. ACM Trans.
Program. Lang. Syst. 18(2), 139–174 (1996)

8. He, K., Zhou, X., Lin, Q.: High accuracy complete elliptic integrals for solving the
Hertzian elliptical contact problems. Comput. Math. Appl. 73(1), 122–128 (2017)

9. Hemenway, B., Lu, S., Ostrovsky, R., Welser IV, W.: High-precision secure com-
putation of satellite collision probabilities. In: Zikas, V., De Prisco, R. (eds.)
SCN 2016. LNCS, vol. 9841, pp. 169–187. Springer, Cham (2016). doi:10.1007/
978-3-319-44618-9 9

10. Isupov, K., Knyazkov, V.: Non-modular Computations in Residue Number Systems
Using Interval Floating-Point Characteristics. Deposited in VINITI, No. 61-B2015
(2015). (in Russian)

11. Isupov, K., Knyazkov, V.: Parallel multiple-precision arithmetic based on residue
number system. Program Syst. Theor. Appl. 7(1), 61–97 (2016). (in Russian)

12. Isupov, K., Knyazkov, V.: RNS-based data representation for handling multiple-
precision integers on parallel architectures. In: Proceedings of the 2016 Interna-
tional Conference on Engineering and Telecommunication (EnT 2016), Moscow,
pp. 76–79, November 2016

http://dx.doi.org/10.1007/978-3-319-44618-9_9
http://dx.doi.org/10.1007/978-3-319-44618-9_9


204 K. Isupov et al.

13. Isupov, K., Knyazkov, V., Kuvaev, A., Popov, M.: Development of high-precision
arithmetic package for supercomputers with graphics processing units. Programm-
naya Ingeneria 7(9), 387–394 (2016). (in Russian)

14. Isupov, K., Knyazkov, V., Kuvaev, A., Popov, M.: Parallel computation of nor-
malized legendre polynomials using graphics processors. In: Voevodin, V. (ed.)
Russian Supercomputing Days 2016. CCIS, vol. 687. Springer International Pub-
lishing, Cham (2017)

15. Mohan, P.V.A.: Residue Number Systems: Theory and Applications. Birkhäuser,
Basel (2016)

16. Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and its Application to Computer
Technology. McGraw-Hill, New York (1967)

17. Tomczak, T.: Fast sign detection for RNS {2n − 1, 2n, 2n + 1}. IEEE Trans. Circ.
Syst. I Regul. Pap. 55(6), 1502–1511 (2008)



Parallel Implementation of Cellular Automaton
Model of the Carbon Corrosion Under

the Influence of the Electrochemical Oxidation

A.E. Kireeva1(B), K.K. Sabelfeld1,2, N.V. Maltseva3, and E.N. Gribov2,3

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Pr. Lavrentjeva 6, Novosibirsk, Russia

kireeva@ssd.sscc.ru, karl@osmf.sscc.ru
2 Novosibirsk State University, Pirogova str., 2, Novosibirsk, Russia

gribov@catalysis.ru
3 Boreskov Institute of Catalysis, pr. Lavrentieva, 5, Novosibirsk, Russia

maltseva.n.v@catalysis.ru

Abstract. In the paper we present a cellular automaton model of elec-
trochemical oxidation of the carbon. A two-dimensional sample of the
electro-conductive carbon black “Ketjenblack ES DJ 600” is simulated.
In the model the sample consists of a ring-formed granules of carbon. The
carbon granules under the influence of the electrochemical oxidation are
destroyed through a few successive stages. The rates of these oxidation
stages are chosen to fit the simulation result with the experiment. In
result of a computer simulation of carbon electrochemical oxidation the
portions of surface atoms and atoms with different degree of oxidation
were calculated and compared with the experimental data. In addition, a
parallel implementation of the cellular automaton simulating the carbon
corrosion is developed and efficiency of the parallel code is analyzed.

Keywords: Cellular automaton · Parallel implementation · Domain
decomposition · Electrochemical oxidation · Carbon corrosion

1 Introduction

The cellular automata (CA) approach is useful method for simulation of non-
linear spatially inhomogeneous phenomena in physics and chemistry. Cellular
automaton is a discrete dynamical system consisting of a set of cells [1]. Cells
have states corresponding to the elements of the system under study. The states
are changed with the time according to the local rules imitating the system
behavior. Locality of the rules allows to describe complex dynamically changing
spacial structures. Such a problem arises in simulation of a degradation of parti-
cles of some substance decomposing during the chemical reaction. For example,
the carbon corrosion under the influence of the electrochemical oxidation is a

Supported by Russian Science Foundation under Grant 14-11-00083.

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 205–214, 2017.
DOI: 10.1007/978-3-319-62932-2 19



206 A.E. Kireeva et al.

problem with boundary constantly changing during the system evolution. This
problem cannot be solved by the conventional finite-difference or finite-element
methods. However, the carbon corrosion can be effectively simulated by the CA
approach. CA algorithms can also be treated as the Monte Carlo method with
discrete space and time. The application of a Monte Carlo method to the simu-
lation of chemical reactions is well developed (e.g., see [2–4]).

The study of the proton exchange membrane fuel cells is attracting increas-
ing attention since they are considered as clean power sources with high energy
efficiency, suitable for many applications including automobile engines [5]. The
carbon supported platinum catalyst is typically used for anode and cathode in
the fuel cells. Conductive carbon black “Vulcan” and “Ketjenblack” are currently
widely used as a support for catalyst [6]. One of the main problems in the fuel
cells commercialization is the degradation of Pt/C catalysts [6–8], which resulted
mainly from the low corrosion stability of carbon support [9,10]. Carbon corro-
sion leads to detachment of large pieces of the support materials on which Pt
is loaded. The mathematical models of carbon and Pt electrochemical oxidation
in the fuel cell are developed [11–13] and investigated. However, these models
are based on the ordinary differential equations or one-dimensional partial dif-
ferential equations [14]. The main disadvantages of these models is that many
reaction steps are considered which can hardly be verified by other methods.

Recently, the model of carbon corrosion was suggested and the electrochem-
ical stabilities of different carbon supports were analyzed [15,16]. In this paper
a two-dimensional CA model is developed based on the mechanism of carbon
corrosion supposed by our group, which can be described by gradual carbon sur-
face degradation through successive electrooxidation stages. The advantage of
CA approach for simulation of the carbon corrosion is the possibility to study in
details the spatial distribution of carbon atoms with different oxidation degree
progressing in time.

Simulation of electrochemical oxidation of carbon sample of real physical
size is a highly challenging problem because a huge number of atoms for a long
time is desired to simulate. Moreover, since stochastic processes are involved,
the averaging over an ensemble of initial distributions of atoms is required to
obtain reliable values of integral characteristics. Therefore in this paper, a par-
allel implementation of CA model of the carbon corrosion is developed, and its
efficiency is estimated. Using this parallel code, an evolution of CA simulating
the electrochemical oxidation of carbon is obtained for chemically meaningful
values of the parameters. The calculated values of the integral characteristics
are compared with the chemical experimental data.

2 The Cellular Automaton Model of Carbon Corrosion

The corrosion experiments were performed in three-electrode electrochemical
cell which can roughly be represented as in Fig. 1. The carbon sample (2) was
deposited on polished glass carbon rod (1) and served as working electrode. The
thickness of a carbon layer (∼ 1 µm) was significantly lower than the diameter of



Parallel Implementation of Cellular Automaton Model 207

Fig. 1. Scheme of the chemical experiments: 1 - glass carbon electrode, 2 - carbon
sample film, 3 - electrolyte (0.1 M HClO4 aqueous solution)

sample (7 mm), so in the mathematical model carbon sample can be represented
as a thin layer.

The glass carbon rod is non-porous electroconductive material, which degra-
dation can be neglected. The porous carbon sample is fixed on the surface of glass
carbon rod and immersed in 0.1 M HClO4 solution as a background electrolyte.
The detailed experimental description can be found in [15,17]. The electrooxi-
dation of carbon occurs throughout the surface according to overall equation:

C + 2H2O = CO2 + 4H+ + 4e− (1)

Commercial carbon black “Ketjenblack EC 600 DJ” is well studied in [8,9],
therefore, this material is chosen for investigation in the current paper. The
following estimations were suggested using the data obtained by low temperature
nitrogen adsorption and the transmission electron microscopy [8–10,18]. The
“Ketjenblack” consists of hollow nanospheres-granules of carbon atoms. The
surface area is SBET = 1420 m2/g, the total pore volume is Vpores = 3 cm3/g,
the average diameter of carbon grains is ∼ 30 nm. The percentage of surface
atoms, including atoms within the spheres, to the total number of atoms is
Psurf = 36%. The porosity of “Ketjenblack” is Por = 84%.

The mechanism of corrosion proposed in this work [15] is based on a simple
suggestion that in the first approximation the carbon oxidation rate depends on
the number of covalent bonds with oxygen only. So we denote “C” as pure surface
carbon, “COH” as surface carbon having a single bond, “COOH” as surface
carbon with two and three bonds. The carbon corrosion proceeds through the
following oxidation stages:

“C” + H2O
k1→ “COH” + H+,

“COH” + H2O
k2→ “COOH” + 2H+,

“COOH” + H2O
k3→ CO2(gas) + 2H+

(2)

where “C” denotes the carbon atom, “COH” and “COOH” are oxidized carbon
atoms, CO2 is a carbon dioxide that is formed after the final destruction of the
carbon atom and desorbs into the gas. The coefficients k1, k2, k3 are oxidation
probabilities for each stage.

Based on this mechanism and definition of cellular automaton (CA) [19],
the CA model of carbon corrosion can be determined by the following notion:



208 A.E. Kireeva et al.

ℵ = 〈A,X,Θ, μ〉, where A = {C0,C,COH,COOH, ∅} is an alphabet of admissi-
ble in the model states. Symbol “C0” denotes a carbon atom inside the sample
volume, “C” is an outer atom on the sample surface, “COH” and “COOH” are
surface carbon atoms with different oxidation degree, symbol “∅” corresponds
to a place without any carbon atom. The set of names “X” defines the set of
coordinates of atoms, here X = {m = (i, j) : i = 0, ..., N, j = 0, ...,M} is a
two-dimensional Cartesian lattice. The set of cells with names m ∈ X is called
a cellular array.

The set of rules updating states of cells are defined by the operator Θ. Here,
Θ is a sequential composition of two operators Θoxid and Θsurf [20].

The operator Θoxid simulates the oxidation stages (2) and being a sequential
composition of three local operators:

θ1(m) : {(C,m)} k1→ {(COH,m)},

θ2(m) : {(COH,m)} k2→ {(COOH,m)},

θ3(m) : {(COOH,m)} k3→ {(∅,m)}.

(3)

The CA model assumes that the water is everywhere in large quantities, so the
water atoms are not simulated, it is believed that they are always available. The
application of Θoxid to cell m consists in a choosing the local operator θi, whose
left-hand side coincides with the state of the cell m, and replacement this state
by the state of the right side of the selected operator θi with probability ki.

The operator Θsurf finds the new surface carbon atoms, i.e. inner carbon
atoms that after application of Θoxid have become an outer one.

θsurf (m) : {(C0,m), (∅, ϕ(m))} → {(C,m)},

where ϕ(m) = ϕ(i, j), ϕ(i, j) ∈ T4(i, j),
T4(i, j) = {(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)},

(4)

where ϕ(m) is a neighbor of cell m selected by the template T4(m), being a cross
with a center in the cell m. The operator Θsurf replaces the cell state “inner
atom” C0 to state “outer atom” C, if the cell has at least one neighboring cell
without any carbon atom (∅).

The mode μ of application of the operator Θ to cells m ∈ X is the synchro-
nous. This mode prescribes the operator to be applied to all cells of a cellular
array, all being updated simultaneously. The application of the operator Θ to
all cells m ∈ X is called an iteration.

Based on the geometry of the fuel cell (Fig. 1), in the CA model it is supposed
that the carbon is fixed from above. The carbon pieces unconnected with the
upper atoms are considered as detached and hence disappear. Therefore, after
each iteration it is necessary to find and remove the detached carbon atoms. To
this end, all atoms connected with upper atoms are marked by “one scan con-
nected component labeling technique” [21]. The atoms not marked as connected
are removed, i.e., states of these cells are replaced by ∅.

The initial state of cellular array in the CA model is constructed based on
the characteristics of the “Ketjenblack”, consisting of the hollow nanospheres-
granules of carbon atoms. In the two-dimensional CA model these granules are



Parallel Implementation of Cellular Automaton Model 209

Fig. 2. The initial state of cellular array generated according to the carbon black
“Ketjenblack” characteristics

represented by rings formed from cells with states corresponding to the carbon
atoms. A ring is formed by cells lying between two circles: outer circle with
radius Rout and nested inner circle with radius Rin. A cell belongs to a ring if
the distance r from the center of the ring to the center of this cell satisfies the
condition: Rin ≤ r ≤ Rout. The radii of the outer Rout and inner Rin circles
are selected in such a way that the percentage of cells with state “C” (surface
atom) is equal to Psurf = 36%. The rings with the calculated radii are randomly
distributed in the cellular array until the ratio of the number of cells with states
“C0” and “C” to the carbon sample size is equal to 0.16. The rings may overlap
no more than 5%. In Fig. 2 one of the generated initial states is presented. The
obtained sample consists of 5 rows by 50 columns of carbon granules, each being
a ring with Rout = 29.7 and Rin = 25.2.

During the simulation the following characteristics are calculated after each
iteration: the number of surface carbon atoms NC, the number of oxidized
carbon atoms NCOH, NCOOH and the total number of surface atoms Nb =
NC + NCOH + NCOOH. These characteristics are computed as the number of
cells with corresponding state.

The initial states of cellular array are random, and the local operators θi
are probabilistic, so the carbon corrosion should be considered as a stochas-
tic process. Therefore, to obtain reliable values of statistical characteristics, an
averaging over a large ensemble of initial states is required.

For the initial state shown on Fig. 2, CA simulation of carbon corrosion is
performed for values of probabilities k1 = 0.01, k2 = k3 = 0.005. The values
of NC, NCOH, NCOOH and Nb averaged over 500 different initial values of the
random number generator are presented in Fig. 3.

Fig. 3. The averaged values of characteristics obtained by the CA model ℵ of the
carbon corrosion



210 A.E. Kireeva et al.

3 Parallel Implementation of CA Model of Carbon
Corrosion

To simulate oxidation of a large carbon sample a parallel implementation of
the CA model ℵ is developed. Parallel implementation of the CA model of car-
bon corrosion is performed using MPI library by a decomposition of a cellular
array into subdomains. The cellular array is divided horizontally into n domains
(Ωk, k = 1, . . . , n) according to the number of available computational cores.
Due to synchronous mode, for application of the operator Θ it is sufficient to per-
form data exchange once per iteration. Here, data exchange means the exchange
of boundary column values of domains of neighboring MPI processes.

Labeling of all atoms connected with the upper ones may require n data
exchanges, because the whole carbon sample can be attached to the top only
in the cellular array part, belonging to the domain Ωk. In this case, in other
domains atoms connected, possibly through several other domains, with labeled
atoms of the domain Ωk should be found. The search of connected components
is performed until the sum of the new labeled atoms in all domains is equal to
zero.

Thus, on each iteration each MPI process applies the operator Θ to all cells
of its domain. Then it finds the connected components including needed data
exchanges, removes detached atoms. Finally, it exchanges new values of bound-
ary cells with neighboring processes. In addition, each process calculates the
characteristic values for its domain’s cells and summarizes the values obtained
for the same iteration for different initial values of the random number gen-
erator. After all iterations, the process with rank equal to 0 summarizes the
characteristic values calculated by all processes.

To estimate the efficiency of the parallel implementation of the CA model
of carbon corrosion, computing experiments have been performed for the initial
states generated for 5 × 50 carbon granules with Rout = 29.7, Rin = 25.2, for
probability values k1 = 0.01, k2 = k3 = 0.005 and for 50 different initial values
of the random number generator. In the calculations, the cluster “MVS-10P” of
the Joint Supercomputer Center of the Russian Academy of Sciences1 is used.
Each computational node of “MVS-10P” consists of two processors with 8 cores.

Figure 4 presents a computation time T (n) obtained for using different num-
ber n of cores, speed-up S(n) = T (1)/T (n), and a strong scaling efficiency
Q(n) = T (1)/(T (n) · n) of the parallel implementation of ℵ.

The computation time of the parallel code decreases and the speed-up
increases when using up to 64 cores. Further increasing of the core numbers
leads to the time growth and sharp drop of the speed-up. However, the effi-
ciency of the ℵ parallel implementation is significantly reduced already within
a single node, i.e. for 16 cores. This can be explained by the fact that within a
single cluster node, when the number of MPI processes increase, memory access
conflicts occur. The calculations performed by the operator Θ for each cell are
very simple, so the memory access time is the main limiting factor.

1 The website of the JSCC RAS is http://www.jscc.ru/.

http://www.jscc.ru/


Parallel Implementation of Cellular Automaton Model 211

Fig. 4. The values of characteristics of the ℵ parallel implementation: (a) computation
time, (b) speed-up and (c) efficiency

The drop of the efficiency and the speed-up when using several nodes (n > 16)
is associated with a large number of data exchanges on each iteration. After every
recalculation of the cellular array states the connected components labeling is
performed. It requires l ≥ 1 interprocess data exchanges in addition to the
boundary exchanges.

Despite the low efficiency of the parallel code, it allows us to accelerate the
calculation in 8 times for 64 cores and can be used to simulate the corrosion of
a large carbon sample.

4 Results of Simulation of a Large Carbon Sample

In the chemical experiments [17] the oxidation stability of “Ketjenblack” carbon
have been estimated by changes of an electrochemical capacity upon electro-
chemical potential cycling. According to [17], the specific capacity CΣ (F/m2)
of the sample obtained by cyclic voltammetry method at scan rate of 50 mV/s
depends linearly on the number of surface carbon (NC) and oxidized carbon
(NO) atoms:

CΣ = NO · CO + NC · CC, (5)

where CO = 0.799 F/m2 and CC = 0.012 F/m2 are specific capacity of a single
oxidized and “pure” carbon atoms on the surface.

To compare CA simulation results with the experimental data the specific
capacity (5) is calculated for the values NO and NC obtained using the parallel
implementation of the CA model ℵ. The carbon corrosion is simulated for the
sample consisting of 5 × 500 carbon granules with Rout = 29.7 and Rin = 25.2.
It corresponds to the cellular array size |X| = 296× 29699 cells. The probability
values are taken equal to k1 = 0.1, k2 = 0.005, k3 = 0.00005.

In Fig. 5 the result of CA simulation and the capacity obtained by the chem-
ical experiment are presented. The portion of “pure” and oxidized carbon atoms
is computed by ℵ. The portion of atoms in question is calculated as ratio of
the number of cells with state corresponding to this atom to the cellular array
size: ρC = NC/|X|, ρCOH = NCOH/|X|, ρCOOH = NCOOH/|X|, ρb = Nb/|X|.



212 A.E. Kireeva et al.

The graph shown in Fig. 5b is taken from [17]. It presents the specific capacity
for the samples of “Ketjenblack” carbon (KB) and KB activated at 600 ◦C in
air during 10 (KB-10), 20 (KB-20) and 30 (KB-30) min. The capacity calculated
using the CA model ℵ is qualitatively similar to that experimentally obtained
for the initially oxidized sample “KB-20”.

Fig. 5. The characteristic values computed by the CA model ℵ (a) and the specific
capacity measured by the chemical experiment (b)

Figure 6 shows a part of the carbon sample obtained by the CA model with
the parameter values given above. At the initial time the carbon sample consists
of “pure” atoms. Then surface carbon atoms are gradually oxidized. The shape of
the sample remains practically unchanged up to 10000 iterations. When almost
all atoms are converted to “COOH”, the process of their destruction begins
and, consequently, the degradation of the granules happens. The qualitative
coincidence of the experimental and calculation results indicates the feasibility
of the suggested corrosion model.

Fig. 6. A part of the carbon sample obtained by the CA model for k1 = 0.1, k2 =
0.005, k3 = 0.00005



Parallel Implementation of Cellular Automaton Model 213

5 Conclusion

Two-dimensional CA model of the carbon corrosion is developed and investi-
gated. The model allows us to directly observe the time evolution of the spatial
structures of “pure” and oxidized carbon atoms and calculate integral charac-
teristics of the sample: portion of different atoms and estimation of capacity.
Choosing the modeling parameters: the probability values, initial porosity of the
sample, and portion of surface atoms, we have obtained the specific capacity
qualitatively similar to the one measured experimentally. For the better quanti-
tative description of the carbon corrosion, we plan to extend the developed CA
model to the three-dimensional case.

To simulate the large carbon sample, the parallel implementation of the CA
model of carbon oxidation has been performed using the domain decomposition
technique. The parallel code allows us to accelerate the calculation 8 times for
64 cores on the cluster “MVS-10P” JSCC of RAS, compared to the sequential
code. However, the parallel code efficiency is significantly reduced for several
cluster nodes. Therefore, in the future work it is planned to improve the parallel
implementation of the CA model ℵ by modification of the parallel connected
components labeling algorithm.

References

1. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for
Modeling, p. 259. MIT Press, USA (1987)

2. Sabelfeld, K.K., Brandt, O., Kaganer, V.M.: Stochastic model for the fluctuation-
limited reaction-diffusion kinetics in inhomogeneous media based on the nonlinear
Smoluchowski equations. J. Math. Chem. 53(2), 651–669 (2015)

3. Karasev, V.V., Onischuk, A.A., Glotov, O.G., Baklanov, A.M., Maryasov, A.G.,
Zarko, V.E., Panlov, V.N., Levykin, A.I., Sabelfeld, K.K.: Formation of charged
aggregates of Al2O3 nanoparticles by combustion of aluminum droplets in air.
Combust. Flame 138, 40–54 (2004)

4. Gillespie, D.T.: A diffusional bimolecular propensity function. J. Chem. Phys.
131(16), 164109-1–164109-13 (2009)

5. DOE The US Department of Energy (DOE). Energy Efficiency and Renewable
Energy. http://www.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel Cells.
pdf and the US DRIVE Fuel Cell Technical Team Technology Roadmap. www.
uscar.org/guest/teams/17/Fuel-Cell-Tech-Team

6. Li, L., Hu, L., Li, J., Wei, Z.: Enhanced stability of Pt nanoparticle electrocatalysts
for fuel cells. Nano Res. 8(2), 418–440 (2015)

7. Capelo, A., de Esteves, M.A., de Sá, A.I., Silva, R.A., Cangueiro, L., Almeida, A.,
et al.: Stability and durability under potential cycling of Pt/C catalyst with new
surface-functionalized carbon support. Int. J. Hydrog. Energy 41(30), 12962–12975
(2016)

8. Gribov, E.N., Kuznetzov, A.N., Golovin, V.A., Voropaev, I.N., Romanenko, A.V.,
Okunev, A.G.: Degradation of Pt/C catalysts in start-stop cycling tests. Russian
J. Electrochem. 50(7), 700–711 (2014)

http://www.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_Cells.pdf
http://www.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_Cells.pdf
www.uscar.org/guest/teams/17/Fuel-Cell-Tech-Team
www.uscar.org/guest/teams/17/Fuel-Cell-Tech-Team


214 A.E. Kireeva et al.

9. Gribov, E.N., Kuznetsov, A.N., Voropaev, I.N., Golovin, V.A., Simonov, P.A.,
Romanenko, A.V., et al.: Analysis of the corrosion kinetic of Pt/C catalysts pre-
pared on different carbon supports under the Start-Stop cycling. Electrocatalysis
7, 159–73 (2016)

10. Shrestha, S., Liu, Y., Mustain, W.E.: Electrocatalytic activity and stability of Pt
clusters on state-of-the-art supports: a review. Catal. Rev. Sci. Eng. 53, 256–336
(2011)

11. Meyers, J.P., Darling, R.M.: Model of carbon corrosion in PEM fuel cells. J. Elec-
trochem. Soc. 153(8), A1432–A1442 (2006)

12. Pandy, A., Yang, Z., Gummalla, M., Atrazhev, V.V., Kuzminyh, N., Vadim, I.S.,
Burlatsky, S.F.: A carbon corrosion model to evaluate the effect of steady state and
transient operation of a polymer electrolyte membrane fuel cell. J. Electrochem.
Soci. 160(9), F972–F979 (2013). arXiv:1401.4285 [physics.chem-ph]. doi:10.1149/
2.036309jes

13. Chen, J., Siegel, J.B., Matsuura, T., Stefanopoulou, A.G.: Carbon corrosion in
PEM fuel cell dead-ended anode operations. J. Electrochem. Soc. 158(9), B1164–
B1174 (2011)

14. Gallagher, K.G., Fuller, T.F.: Kinetic model of the electrochemical oxidation of
graphitic carbon in acidic environments. Phys. Chem. Chem. Phys. 11, 11557–
11567 (2009)

15. Gribov, E.N., Maltseva, N.V., Golovin, V.A., Okunev, A.G.: A simple method for
estimating the electrochemical stability of the carbon materials. Int. J. Hydrog.
Energy 41, 18207–18213 (2016)

16. Golovin, V.A., Maltseva, N.V., Gribov, E.N., Okunev, A.G.: New nitrogen-
containing carbon supports with improved corrosion resistance for proton exchange
membrane fuel cells. Int. J. Hydrog. Energy (in press). doi:10.1016/j.ijhydene.2017.
02.117

17. Maltseva, N.V., Golovin, V.A., Chikunova, Y., Gribov, E.N.: Influence of the num-
ber of surface oxygen on the electrochemical capacity and stability of high surface
Ketjen Black ES 600 DJ. Submitted in Russ. J. Electrochem

18. Meier, J.C., Katsounaros, I., Galeano, C., Bongard, H.J., Topalov, A.A., Kostka,
A., et al.: Stability investigations of electrocatalysts on the nanoscale. Energy Env-
iron. Sci. 5, 9319–9330 (2012)

19. Bandman, O.L.: Mapping physical phenomena onto CA-models, AUTOMATA-
2008. In: Adamatzky, A., Alonso-Sanz, R., Lawniczak, A., Martinez, G.J., Morita,
K., Worsch, T. (eds.) Theory and Applications of Cellular Automata, pp. 381–397.
Luniver Press, UK (2008)

20. Bandman, O.L.: Cellular automata composition techniques for spatial dynamics
simulation. In: Hoekstra, A.G., et al. (eds.) Simulating Complex Systems by Cel-
lular Automata. Understanding Complex Systems, Berlin, pp. 81–115 (2010)

21. Abubaker, A., Qahwaji, R., Ipson, S., Saleh, M.: One scan connected component
labeling technique, signal processing and communications. In: IEEE International
Conference on ICSPC 2007, pp. 1283–1286 (2007)

http://arxiv.org/abs/1401.4285
http://dx.doi.org/10.1149/2.036309jes
http://dx.doi.org/10.1149/2.036309jes
http://dx.doi.org/10.1016/j.ijhydene.2017.02.117
http://dx.doi.org/10.1016/j.ijhydene.2017.02.117


A Fine-Grained Parallel Particle Swarm
Optimization on Many-core and Multi-core

Architectures

Nadia Nedjah1(B), Rogério de Moraes Calazan2,
and Luiza de Macedo Mourelle3

1 Department of Electronics Engineering and Telecommunications,
State University of Rio de Janeiro, Rio de Janeiro, Brazil

nadia@eng.uerj.br
2 Center of Electronics, Communications and Information Technology,

Brazilian Navy, Rio de Janeiro, Brazil
rgc.moraes@gmail.br

3 Department of Systems Engineering and Computation,
State University of Rio de Janeiro, Rio de Janeiro, Brazil

ldmm@eng.uerj.br

Abstract. Particle Swarm Optimization (PSO) is a stochastic meta-
heuristics yet very robust. Real-world optimizations require a high com-
putational effort to converge to a viable solution. In general, parallel
PSO implementations provide good performance, but this depends on
the parallelization strategy as well as the number and/or characteris-
tics of the exploited processors. In this paper, we propose a fine-grained
paralellization strategy that focuses on the work done w.r.t. each of the
problem dimensions and does it in parallel. Moreover, all particles act in
parallel. This strategy is useful in computationally demanding optimiza-
tion problems wherein the objective function has a very large number of
dimensions. We map the computation onto three different parallel high-
performance multiprocessor architectures, which are based on many and
multi-core architectures. The performance of the proposed strategy is
evaluated for four well-known benchmarks with high-dimension and dif-
ferent complexity. The obtained speedups are very promising.

1 Introduction

Parallel processing is a strategy used in computing to solve complex computa-
tional problems faster by splitting them into sub-tasks that will be allocated
on multiple processors to run concurrently [9]. These processors communicate so
there is synchronization or information exchange. The methodology for designing
parallel algorithms comprises four distinct stages [7]: partitioning, communica-
tion, aggregation and mapping.

A multi-core processor is typically a single computing machine composed of
up of 2 to 8 independent processor cores in the same silicon circuit die connected
through an on-chip bus. All included cores communicate with each other, with
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 215–224, 2017.
DOI: 10.1007/978-3-319-62932-2 20



216 N. Nedjah et al.

the memory and I/O peripherals via this internal bus. The multi-core processor
executes multiple threads concurrently, typically to boost performance in com-
pute intensive processes. However as more cores are added to the processor, the
information traffic that flows along the on-chip bus, increases as all the data must
travel through the same path. This limits the benefits of a multi-core processor.

A many-core also known as a massively multi-core processors are simply
multi-core processors with an especially high number of cores, ranging from 10
to 100 cores. Of course, in this multi-processors communication infrastructure
between the included cores must be upgraded to a sophisticated interconnection
network to cope with the amount of data exchanged by the cores. Furthermore,
cores are coupled with private and local memories to reduce data traffic on the
main interconnection network.

Particle Swarm Optimization (PSO) was introduced by Kennedy and
Eberhart [8] and is based on collective behavior, social influence and learning.
It imitates the social behavior of a flock of birds. If one element of the group
discovers a way where there is easy to find food, the other group members tend
instantly, to follow same way. Many successful applications of PSO have been
reported, in which this algorithm has shown many advantages over other algo-
rithms based on swarm intelligence, mainly due to its robustness, efficiency and
simplicity. Moreover, it usually requires less computational effort when compared
to other stochastic algorithms [6,11]. The PSO algorithm maintains a swarm of
particles, each of which represents a potential solution. In analogy with evo-
lutionary computation, a swarm can be identified as the population, while a
particle with an individual. In general terms, the particle flows through a multi-
dimensional search space, and the corresponding position is adjusted according
to its own experience and that of its neighbors [6].

Several works show that PSO implementation on dedicated hardware [3,4]
and GPUs [1,12–14] provide a better performance than CPU-based implemen-
tations. However, these implementations take advantage of the parallelization
only within the loop of particles processing and also the stopping condition
used in those works is always based on the total number of iterations. It is
worth noting that the number of iterations required to reach a good solution is
problem-dependent. Few iterations may terminate the search prematurely and
large number of iterations has the consequence of unnecessary added computa-
tional effort. In contrast, the purpose of this paper is to implement a massively
parallel algorithm of PSO in many and multi-core and compare with a serial
implementation using the stopping condition that depends on the acceptabil-
ity of the solution that has been found so far. We investigate the impact of
fine-grained parallelism on the convergence time of high-dimension optimization
problems and also analyze the efficiency of the process to reach the solution.

In order to take full advantage of the massively parallel in multi-cores archi-
tectures, in this paper, we explore a new strategy for fine-grained parallelism,
which focuses on the work done for each of the problem dimension and does it
in parallel. Throughout this paper, the strategy is termed Fine-Grained Parallel
PSO — FGP-PSO. We implement the strategy using OpenMP and OpenMP



A Fine-Grained Parallel Particle Swarm Optimization 217

with MPI. Both implementations are executed on a cluster of multi-core
processors.

This paper is organized as follows: First, in Sect. 2, we sketch briefly the
PSO process and the sequential version of the algorithm; Then, in Sect. 3, we
describe the FGP-PSO strategy. Thereafter, in Sect. 4, we present some issues for
the implementation of the FGP-PSO on a shared memory multi-core processor
architecture using OpenMP; Subsequently, in Sect. 5, we report on the imple-
mentation of FGP-PSO on a cluster of multi-core shared memory processor
combining the use of OpenMP and MPI; Note that the implementation of this
strategy on many-core architectures (GPUs) is detailed in [2], and its perfor-
mance is used in the comparison presented in this paper. It is also noteworthy
to point out that interested reader can find answers to how communications are
performed and how the data structures are mapped on the GPU in that publi-
cation. There follows, in Sect. 6, a thorough analysis of the obtained results for a
set of benchmark functions is given; Finally, in Sect. 7, we draw some conclusions
and point out some directions for future work.

2 Particle Swarm Optimization

The main steps of the PSO algorithm are described in Algorithm 1. Note that,
in this specification, the computations are planned to be executed sequentially.
In this algorithm, each particle has a velocity and an adaptive direction [8]
that determine its next movement within the search space. The particle is also
endowed with a memory that makes it able to remember the best previous posi-
tion it passed by. In Algorithm 1, as well as in the remainder of this paper, we
denote by Pbest[i] the best fitness particle i has achieved so far and Pbestx[i] the
coordinates of the position that yielded it. In the same way, we denote Sbest[i]
the swarm best fitness particle i and its neighbors have achieved so far and
Sbestx[i] the coordinates of the corresponding position in the search space.

The PSO uses a set of particles, where each is a potential solution to the
problem, having position coordinates in a space of d-dimensional search. Thus,
each particle has a position vector with the corresponding fitness, a vector keep-
ing the coordinates of the best position reached by the particle so far and one
field to fitness and another to better fitness. To update the position of each
particle i of the PSO algorithm is a set velocity for each dimension j of this
position. The velocity is the element that promotes the ability of movement of
the particles.

In the implemented variation of the PSO algorithm, a ring topology is used
as a social network topology where smaller neighborhoods are defined for each
particle. The social component, denominated local best, reflects the information
exchanged within the neighborhood of the particle [6]. The Local Best PSO is
less susceptible to being trapped into a local minimum and also the ring topol-
ogy used improves performance. The velocity is the component that promotes
the capacity of particle locomotion and can be computed as described in [6,8],
wherein ω is called inertia weight, r1 and r2 are random numbers in [0,1],



218 N. Nedjah et al.

Algorithm 1. Local Best PSO
1: for i = 1 to η do
2: initialize the position and velocity of particle i
3: end for
4: repeat
5: for i = 1 → η do
6: compute fitness[i]
7: if fitness[i] ≤ Pbest[i] then
8: update Pbestx[i] using position of particle i
9: end if

10: if Pbest[i] ≤ Sbest[i] then
11: update Sbestx[i] using the Pbestx[i]
12: end if
13: end for
14: for i = 1 to η do
15: update velocity and position of particle i
16: end for
17: until stopping criterion
18: return Sbest[i] and Sbestx[i]

φ1 and φ2 are positive constants, yij is the particle best position Pbest found by
particle i so far, regarding dimension j, and lij is the local best position Lbest
found by all the particles in the neighborhood of particle i, regarding dimension
j. The position of each particle is updated at each iteration [6]. Note that x

(t+1)
i,j

is the current position and x
(t)
i,j is the previous position.

3 The Fine-Grained Parallel PSO

Parallelization of the PSO computation can be done in many ways. The most
evident approach consists of doing the particle’s work in parallel. Another app-
roach could be dividing the optimization of a problem that involves d dimensions
into k sub-problems of d/k dimensions each. Each sub-problem is optimized by
a group of particles that form a sub-swarm of the overall acting swarm. A sub-
swarm is responsible of optimizing the original problem only with respect to
the corresponding d/k dimensions. Within a given sub-swarm, the computation
done by the particles can thus be performed in parallel. Note that this paral-
lelization strategy can be seen as coarse-grained [2]. In contrast, the proposed
parallelization approach FGP-PSO considers the fact that in some computation-
ally demanding optimization problems, the objective function has a large number
of dimensions. Here, we are talking about more than 512 different dimensions
and can even reach more than a thousand different dimensions. In this approach,
the parallelism is fine-grained as it is associated with the problem dimensions.
For instance, if the number of the problem dimensions is 1024, using the simple
strategy that does the particle work in parallel would require 1,024 iterations
to compute the fitness value. In contrast, the proposed approach requires only



A Fine-Grained Parallel Particle Swarm Optimization 219

one single iteration to yield the fitness value for a given dimension, as all 1024
computations are done in parallel, followed by 10 iterations to compute the inter-
mediate fitness values and thus obtaining the final fitness value. This process is
called fitness reduction, and will be explained in more details later in this section.

4 FGP-PSO on Shared Memory Multi-core Processors

Algorithm 2 presents an overview of the implementation of FGP-PSO using
OpenMP. The objective function to be optimized has d dimensions. The swarm
is composed of n particles. In this approach, a particle is mapped to a block of
threads wherein the computation with respect to a given dimension is handled
by a thread of the block. Given the considered ring neighborhood topology, the
procedure used to update the neighborhood best, namely Lbest.

Algorithm 2. FGP-PSO implemented using OpenMP
1: Let nt = number of threads
2: #pragma omp parallel
3: Begin parallel region
4: tid := omp get thread num(); srand(seed + tid)
5: #pragma omp for schedule(static)
6: for i := 0 → n do
7: initialize particle i
8: end for
9: repeat

10: #pragma omp for schedule(static)
11: for i := 0 → n do
12: #pragma omp parallel for schedule(static)
13: update vij e xij ; compute fitnessij ; update Pbesti

14: end for
15: #pragma omp for schedule(static)
16: for i := 0 → n do
17: update Lbest()
18: if (Lbesti < Besttid) then
19: update Besttid

20: end if
21: end for
22: if tid = Master then
23: for t := 0 → nt − 1 do
24: get the smallest value in Bestt

25: end for
26: end if
27: synchronize threads
28: until stopping condition
29: End parallel region
30: return result and position



220 N. Nedjah et al.

After the beginning of the parallel region, the threads initialize the velocity
and coordinates of the particles. Then, each thread initializes the context of
vector, at the position indicated by the thread index, using the coordinated of
particle 0 of the respective sub-swarm. After this procedure, the threads are
synchronized in order to prevent copying of uninitialized context vector for the
local memory of the thread.

Additionally, a second parallel region is created to divide the dimensions
into groups to be run by the threads of this region. This new parallel region
is implemented using nested parallelism [5] OpenMP. In nested parallelism, if
a thread that belongs to a group of threads running a parallel region comes
across directive to create another parallel region, the thread creates a new group
and becomes the master thread of this new group. The procedures for fitness
calculation, and velocity and position update were implemented with nested par-
allelism. The updates regarding Pbest and Lbest were kept only with parallelism
in the loop of the particles since the creation of parallel regions for upgrading
the positions did not improve the performance of the algorithm.

5 FGP-PSO on Clusters of Multi-core Shared Memory
Processors

Algorithm 3 sketches the FGP-PSO algorithm implemented in OpenMP with
MPICH (OpenMPI). Each particle is mapped as a MPI process while the loop
regarding the dimensions is parallelized via the OpenMP for constructor. The
pseudo-random number generators are initialized in the same manner as before.
In order to compute the fitness value, the OpenMP reduction operation is used
for synthesize the partial values of fitness obtained by each thread with respect
to the considered dimension. At the end of dimensions loop, the threads, which
executed this region, will compute the value of the result to the thread with
index equal to 0 (i.e. identifying the master thread) using the informed operator
depending on the objective function. Then, Pbest is updated and its value and
position are sent by the master thread to process (rank+1) mod n and (rank−
1) mod n. After the update of Lbest, all the processes send messages including
the value and the position of their respective Lbest to the master process.

The master process then checks whether, among the obtained results, there
some result that satisfies the stopping condition. The other threads remain wait-
ing in the synchronization barrier (line 28 of Algorithm 3). If so, the mas-
ter process sets the exit flag and sends a message to all processes (line 26 of
Algorithm 3). With this flag enabled, the processes halt the optimization and
the master process returns the achieved fitness value and corresponding position.

6 Performance Results

In order to evaluate the performance of the parallelization strategy, two alter-
native implementations were explored: (i) the first implementation is based on



A Fine-Grained Parallel Particle Swarm Optimization 221

Algorithm 3. FGP-PSO implemented using OpenMPI
1: let p = number of processes (particles)
2: let d = number of dimensions
3: MPI Init()
4: #pragma omp parallel
5: Begin of an OpenMP parallel region
6: initialize particlerank

7: repeat
8: #pragma omp for schedule(static)
9: for j := 0 → d do

10: update xj e vj

11: end for
12: #pragma omp for schedule(static) reduction(operator : result)
13: for j := 0 → d do
14: compute fitnessj

15: end for
16: fitness: = result
17: if tid = Master then
18: update Pbest; send Pbest to process (rank + 1) mod n; update Lbest
19: send Lbest to process Master
20: if rank = Master then
21: if Lbestrank ≤ error then
22: activate the exit flag
23: end if
24: end if
25: Master sends exit flag to all process
26: end if
27: synchronize threads
28: until flag activated
29: End parallel region OpenMP
30: MPI Finalize()
31: return result & corresponding position

OpenMP; (ii) the second one uses both OpenMP and MPI. The proposed multi-
core implementations were run on an SGI Octane III cluster. Each cluster node
has two 2.4 GHz Intel Xeon processors, which include 4 HT cores each, hence
a total of 16 cores. The results about a GPU-based implementations are taken
from [10]. The many-core implementation was run on an NVIDIA GeForce GTX
460 GPU to run the CUDA implementation. The GPU includes 7 SMs with 48
CUDA cores of 1.3 GHz each, hence a total of 336 cores. Two classical bench-
mark functions, as listed in Table 1, were used to evaluate the performance of
the proposed implementations.

We run the compared implementations using the same configuration para-
meters as defined in Table 2. These are the number of dimensions in the original
problem d and the total number of particles n. All charts horizontal axes are
represented in terms of n × d as computed in the last row of Table 2. The opti-
mization processes were repeated 50 times with different seeds to guarantee the



222 N. Nedjah et al.

Table 1. Objective functions used as benchmarks

Function Domain f∗

f2(x) = 418.9829δ −
δ∑

i=1

xisin
(√|xi|

)
[−500, 500]δ 0.0

f4(x) =
δ∑

i=1

(x2
i − 10cos(2πxi) + 10) [−5.12, 5.12]δ 0.0

robustness of the obtained results. The PSO basic parameters were set up as fol-
lows: inertial coefficient ω initialized at 0.99 and decreased linearly as far as 0.2;
vmax computed using δ of 0.2 and the stopping condition adopted was either
achieving at most an error of 10−4 or 6,000 iterations.

Table 2. Arrangements of particles and dimensions for the evaluations

Case C1 C2 C3 C4 C5 C6 C7 C8

d 2 4 8 16 32 64 128 256

n 8 16 32 64 128 256 512 1024

n × d 4, 096 16, 384 65, 536 26, 2144 4, 096 16, 384 65, 536 26, 2144

The charts of Fig. 1 show the convergence times of benchmark functions
using the serial implementation vs. the three implementations of the FGP-PSO
proposed parallelization strategy.

Serial OpenMP OpenMPI CUDA

100

104

108

C1 C2 C3 C4

C5 C6 C7 C8

(a) f1

Serial OpenMP OpenMPI CUDA

100

102

104

C1 C2 C3 C4

C5 C6 C7 C8

(b) f2

Fig. 1. Optimization time comparison for the benchmark functions

In order to make an assessment of the impact of the FGP-PSO paralleliza-
tion strategy and the three alternative implementations on different parallel
architectures, we compare the execution time of the proposed implementation
to that obtained by a the sequential implementation of the PSO. The charts of



A Fine-Grained Parallel Particle Swarm Optimization 223

Fig. 2 show the speedups achieved during the minimization of benchmark func-
tions using the three compared implementations of FGP-PSO. In all cases, the
speedup is computed with respect to the sequential implementation of the PSO
running on a single core of the Xeon processor.

OpenMP OpenMPI CUDA

100

102

C1 C2 C3 C4

C5 C6 C7 C8

(a) f1

OpenMP OpenMPI CUDA

100

102

C1 C2 C3 C4

C5 C6 C7 C8

(b) f2

Fig. 2. Speedup comparison for the benchmark functions

When compared with the PSO serial implementation, the FGP-PSO
OpenMP implementation achieved almost no speedup for the benchmark func-
tions. The OpenMP with MPI implementation achieved speedups of up to 2.09×
for function f1 and 2.4× for function f2. In contrast, the CUDA implementation
occasioned speedups of up to 53.81× for function f1 and 48.03× for function f2.
It can easily be observed that, in general, the speedup yielded by the alternative
implementations increases with the complexity of the optimized problem.

7 Conclusion

This paper investigates the implementation of a fine-grained strategy to paral-
lelize the particle swarm optimization algorithm, aiming an efficient implemen-
tation on multi-core and many-core architectures. The parallelization strategy
divides the optimization workload among the swarm particles that run in par-
allel. Moreover, the workload of a given particle is distributed among many
threads that execute the required computation regarding one given dimension
of the problem.

As a interesting future work, we intend to use the parallel implementations
as proposed in this work to solve an engineering problem to prove its viability
and efficiency in real-world applications.

References

1. Cádenas-Montes, M., Vega-Rodŕıguez, M.A., Rodŕıguez-Vázquez, J.J., Gómez-
Iglesias, A.: Accelerating particle swarm algorithm with GPGPU. In: Proceed-
ings of the 19th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, pp. 560–564. IEEE Press (2011)



224 N. Nedjah et al.

2. Calazan, R.M., Nedjah, N., Mourelle, L.M.: Swarm grid: a proposal for high per-
formance of parallel particle swarm optimization using GPGPU. In: Proceedings of
the 4th International Symposium of IEEE Circuits and Systems in Latin America
(LASCAS 2013), Cuzco, Peru. IEEE Computer Press, Los Alamitos (2013)

3. Calazan, R.M., Nedjah, N., Mourelle, L.M.: A massively parallel reconfigurable
co-processor for computationally demanding particle swarm optimization. In: Pro-
ceedings of the 3rd International Symposium of IEEE Circuits and Systems in Latin
America (LASCAS 2012), Cancun, Mexico. IEEE Computer Press, Los Alamitos
(2012)

4. Calazan, R.M., Nedjah, N., Mourelle, L.M.: Parallel co-processor for PSO. Int. J.
High Perform. Syst. Archit. 3(4), 233–240 (2011)

5. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: Portable Shared Memory
Parallel Programming, vol. 10. MIT Press, England (2008)

6. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley,
New Jersey (2005)

7. Foster, I.: Designing and Building Parallel Programs, vol. 95. Addison-Wesley,
Reading (1995)

8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Network, pp. 1942–1948. IEEE Press, Australia
(1995)

9. Kirk, D.J., Hwu, W.: Programming Massively Parallel Processors. Morgan Kauf-
mann, San Francisco (2010)

10. Nedjah, N., Calazan, R.M., Mourelle, L.M.: Particle, dimension and cooperation-
oriented PSO parallelization strategies for efficient high-dimension problem opti-
mizations on graphics processing units. Comput. J. Sect. C: Comput. Intell. Mach.
Learn. Data Anal. (2015). doi:10.1093/comjnl/bxu153

11. Nedjah, N., Coelho, L.S., Mourelle, L.M.: Multi-Objective Swarm Intelligent Sys-
tems – Theory & Experiences. Springer, Berlin (2010)

12. Papadakis, S.E., Bakrtzis, A.G.: A GPU accelerated PSO with application to eco-
nomic dispatch problem. In: 16th International Conference on Intelligent System
Application to Power Systems (ISAP), pp. 1–6. IEEE Press (2011)

13. Veronese, L., Krohling, R.A.: Swarm’s flight: accelerating the particles using C-
CUDA. In: 11th IEEE Congress on Evolutionary Computation, pp. 3264–3270.
IEEE Press, Trondheim (2009)

14. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: 11th IEEE
Congress on Evolutionary Computation (CEC 2009), pp. 1493–1500. IEEE Press,
Trondheim (2009)

http://dx.doi.org/10.1093/comjnl/bxu153


The Implementation of Cellular Automata Interference
of Two Waves in LuNA Fragmented Programming System

V.P. Markova1,2,3 and M.B. Ostapkevich1,2(✉)

1 The Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia

{markova,ostap}@ssd.sscc.ru
2 The Novosibirsk State Technical University, Novosibirsk, Russia

3 The Novosibirsk National Research State University, Novosibirsk, Russia

Abstract. In this paper, a parallel implementation of the cellular-automata inter‐
ference algorithm for two waves using the fragmented programming technology
and LuNA system based on it is proposed. The technology is based on a strategy
of data flow control. Unlike existing systems and technologies, LuNA provides
a unified technology for implementing parallel programs on a heterogeneous
multicomputer. The LuNA program contains a description of data fragments,
computational fragments, and information dependencies between them. In the
work, the LuNA program was executed on a computational cluster with homo‐
geneous nodes. The results of comparison of the LuNA and MPI implementations
showed that the execution time of the LuNA program exceeded that of the MPI
program. This is due to the peculiarities of algorithms used for the distribution,
search and transfer of data and computation fragments between the nodes of a
cluster. The complexity of writing the LuNA program is much lower than for the
MPI program.

Keywords: Parallel programming · Fragmented programming · Graph of
information dependencies · LuNA system · Cellular automata

1 Introduction

With the advent of computers with heterogeneous nodes, the parallelization became
complicated, because different computing devices in such a node have different archi‐
tectures and each of them is programmed using a separate interface (technology). The
implementation of an efficient program for such computers is done in two ways. The
first way is to use MPI for inter-node parallelism, and a set of versatile technologies,
such as OpenMP, OpenCL, CUDA, and HLS for intra-node parallelism.

The second way implies use of a single technology for implementation of parallel
programs on a heterogeneous multicomputer. The examples of such technologies are
StreamIt [1, 2] and Lift [3]. Within the framework of the second approach, the

The work is supported by the projects of Presidium RAS 14.1, 15.4.

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 225–231, 2017.
DOI: 10.1007/978-3-319-62932-2_21

http://orcid.org/0000-0003-4646-3193


technology of fragmented programming [4], which is based on a strategy of data flow,
was implemented at ICMMG SB RAS. The LuNA (Language for Numerical Algo‐
rithms) programming system was built on its basis.

The implementations of cellular automata wave interference are examined in the
paper. The first implementation is built using MPI, while the second one is based on
LuNA. The comparison between the two implementations is drawn and the advantages
of LuNA technologies are outlined.

2 The Main Definitions and Characteristics of the LuNA System

The LuNA system is a tool for building parallel programs based on fragmented program‐
ming technology. The LuNA system consists of a fragmented program compiler and a
subsystem of fragmented program execution (executive subsystem).

The basic concepts in the system are data fragments, code fragments and fragments
of computations.

A data fragment is a set of a given size of neighboring sites in a cellular array.
A code fragment is a function that takes the values of some input data fragments and

computes the values of the output data fragments from them. When constructing frag‐
mented programs, two types of code fragments are used: atomic and structured. Atomic
fragments of code in the system are represented as functions of C programs. Structured
code fragments contain an assembly of fragments of computations.

A fragment of computations is a call to a code fragment with the specified names of
all the input and output data fragments.

The construction of the LuNA program by an existing sequential C/C++ program
consists of the following steps.

• In a given sequential C/C++ program in the code sections that are responsible for
the computation are extracted. In these sections of the code, the processing of arbi‐
trary data objects is replaced by the processing of data fragments, and the sections
themselves are formalized as atomic code fragments.

• Structured code fragments and information dependencies between computational
fragments and data fragments are described in the LuNA language. Unlike the MPI
program, in the fragmented program (this is a synonym for the LuNA program), there
is no need to specify the strict order of computations, control the allocation of
resources, and program inter-node communications (see Table 1).

• The instructions are inserted that specify the release of memory occupied by data
fragments that are no longer used.

• The sizes of data fragments are determined, in which the execution time is minimal.

The programming experience in the LuNA system allows us to formulate its advan‐
tages in comparison with MPI.

• The absence of rigid binding of data fragments in LuNA to MPI processes allows the
LuNA program to adapt to available resources of the computer system. Currently it
is possible when the program is starting. Later is will also be possible during its
execution, when the set of available resources changes.

226 V.P. Markova and M.B. Ostapkevich



• A rather small size of data fragments provides the balance of computational load both
on processes in different nodes of the computer system, and in separate threads within
nodes in automatic mode. In the MPI program, the load-balancing task is either not
solved at all, or is solved by the programmer.

• The description of information dependencies between fragments in LuNA is a
simpler task for the programmer than a description of the precise sequence of actions
in the MPI program, especially with a large number of them. The consequence of
this simplification is the reduction of the number of errors in the program associated
with the wrong sequence of actions. Such errors in parallel programs are difficult to
identify and correct.

Table 1. The implementation of system functions in MPI and LuNA

Function MPI LuNA
Order of computations Hardcoded by the

programmer, fixed at the
moment of execution

The final order is determined
already at execution, when
there is information about the
computational fragments for
which all the initial data is
ready and collected in one
node and which can be started

Management of resources in a
node

Implemented by the
programmer

Implemented by the LuNA
system

Data distribution to nodes Implemented by the
programmer

Executed by the system on the
basis of information about
available resources of the
computer system

Inter-node communications Explicitly coded by the
programmer

Activated by the execution
subsystem based on the
location information of the
requested data

Load balancing Not implemented at all or
implemented by the
programmer

Implemented by the LuNA
system

3 The Implementation of LuNA-Program for CA Interference
Algorithm

The single-particle nondeterministic Lattice Gas Cellular Automata (HPP1rp) [5] is used
for wave interference simulation. In contrast to the classical methods of modeling,
HPP1rp Cellular Automata (CA) method considers a physical phenomenon as a set of
hypothetical particles. They move on the lattice space with the speed of a finite set of
discrete velocities according to certain rules. These rules present phenomenon on micro-
level based on general laws of physics.

The Implementation of Cellular Automata Interference of Two Waves 227



3.1 Cellular Automata

Cellular Automata is defined on a 2D square lattice, periodically wrapped around. Each
node is connected to four neighbors by unit lattice links ei, i = 1,2, 3, 4 (e1 – up, e2 –
right, e3 – down, e4 – left). Each lattice node with name r is assigned to a cell with the
same name r. Two types of hypothetical particles (the moving and the rest particles) are
located at each cell at discrete time. The moving particles are indistinguishable: each
particle has unit mass and unit velocity. It is moving along one of the four links and
located at the cells at discrete time. Not more than one particle is to be found at a given
time and cell, moving in a given direction (exclusion principle). The rest particles have
velocity equal to zero and mass 2. The set of particles in the cell determines its state
s(r). The vector s(r) consists of 5 elements. The value of the first four elements of the
vector indicates the presence (si(r) = 1) or absence (si(r) = 0) of a moving particle with
velocity in a cell r the last element of the vector indicates the presence or absence of a
rest particle. A pair (s, r) is called a cell. The total sum of particle masses in a cell is
called the model density. For example, if a cell has the state s = (10101), this implies
that it contains one mass-2 rest particle and two moving particles with velocities in the
directions e1 and e3, the model density of this cell being 4. A set of cells in which all cells
have unique names forms a cellular array. A set of states of all cells of the array at a
moment of time is called the global state of the automaton. The change in the global
states of the automaton describes the evolution of CA.

The cellular automaton HPP1rp operates synchronously: all the cells of the autom‐
aton change their states simultaneously at each time step. The step consists of 2 phases:
collision and propagation.

In the collision phase, particles at each cell collide with each other in such a way that
the total particle mass and the total momentum are conserved at each cell. The collision
function creates or destroys moving particles with unit speed in the cell at the time and
depends only on its initial state at a given time. For example, a cell in the state (00101)
(5) in the collision phase changes it to 3 states: (01010) (10) with probability p5→10
(Fig. 1a), (10000) (16) with probability p5→10 (Fig. 1b) and remains in its state (00101)
(5) with probability p5→5 (Fig. 1c).

b) c)a)

Fig. 1. An example of a collision rule: (a) transition 5 → 10, (b) transition 5 → 16, (c) transition
5 → 5.

In the propagation phase, moving particles from each cell are shifted to the nearest
neighbors with unit velocity ci.

The set of probabilities of the transitions of the HPP1rp cells from one state to another
forms a matrix of transitions P of order 25

× 25. As a result of executing the iterative
step, automaton HPP1rp goes from one global state to another. It is shown in [6] that if
the matrix of transitions that implements the collision phase satisfies the semi-detailed

228 V.P. Markova and M.B. Ostapkevich



balance condition, then the evolution of the HPP1rp CA describes the dynamics of the
wave process.

3.2 Simulation of Interference of Two Waves

The interference of two waves is modeled by the evolution of a cellular automaton of
size 1400 × 1200 and the density of the cells of the medium 3.3. Two circular sources
of periodic waves are at a distance of four wavelengths (an integer number of wave‐
lengths is the condition for the existence of constructive interference [7]). Two similar
interference patterns of two waves that are obtained in different ways and at different
modeling steps are shown in Fig. 2. The first one is simulated in the traditional way at
the time step 100 (Fig. 2a), while the second is simulated in the cell-automaton way at
the 975th step of the evolution of the cellular automaton (Fig. 2b).

a) b)

Fig. 2. Interference of two waves: (a) simulated in the traditional way, (b) simulated in HPP1rp
model.

3.3 Description of the Fragmented Algorithm of CA Interference

In the implementation, the original cellular array is divided into data fragments with the
linear topology.

The main data fragments in the implementation are:

• a[t][x] – fragments that store the initial state of the cellular array at the simulation
step t,

• b[t][x] – fragments that store the state of the cellular array after computing the particle
collision at the simulation step t.

• bu[t][x], bd[t][x] – fragments for storage of shadow edges.

The upper line of the fragment b[t][x] is duplicated in the fragment bu[t][x]. The
lower line of the fragment b[t][x] is duplicated in the fragment bd[t][x]. The introduction
of data fragments bu[t][x], bd[t][x] allows to reduce the volume of transfers between
nodes, since their size is much smaller than that of the fragment b[t][x].

The Implementation of Cellular Automata Interference of Two Waves 229



Index x determines the position of the fragment in space. The value of x is 0 for the
fragment containing the uppermost rows of the cellular array. x for the fragment
containing the lowest rows of the array is equal to the number of fragments to which the
array is divided minus one.

The fragmented implementation of the CA interference algorithm is represented by
code fragments:

• init - initialization of the cellular array,
• collision - computation of the collision rule of particles in cells,
• propagation - the computation of the propagation of particles between cells,
• print - saving the simulation result to a file.

The LuNA program implements CA interference in a cellular array of the
4096 × 4096 size. The dependence of the execution time of this program on the size of
fragments is shown at Fig. 3. All measurements were made with the number of nodes 1
and 8 threads. The minimum time is observed with the size of fragments 256. As the
size of fragments decreases, their number increases and the overhead costs of their
processing by the system grow. As the fragment size increases, the number of fragments
processed by a thread becomes too small, and the system poorly balances the compu‐
tational load between threads.

0 

5 

10

15

20

25

30

35

8 16 32 64 128 256 512 1024 2048

tim
e,

 s

data fragment size

Fig. 3. Dependence of program execution time on fragment size

The first experiments and the analysis of the time complexity of the LuNA program
have shown that an improvement in the time complexity can be achieved by optimizing
the algorithms of distribution, searching and transferring data fragments between the
nodes of the multicomputers and memory allocation control algorithms for data frag‐
ments within the nodes.

230 V.P. Markova and M.B. Ostapkevich



4 Conclusion

Experience in the implementation of programs has shown that, although the current
version of LuNA has a bigger execution time than MPI, the LuNA technology has a
number of significant advantages over MPI.

For tasks with uneven computational load on nodes, using LuNA’s built-in dynamic
balancing gives similar performance results compared to manual implementation of
balancing in the MPI program. LuNA-programs do not have such dependence on the
architecture and available resources of the computer, as MPI-programs. Therefore,
LuNA programs have significantly higher portability.

The absence of the need to define the order of computations and program inter-node
communications greatly simplifies programming in LuNA as compared to MPI. Same
features of LuNA eliminate the appearance of some types of errors inherent in program‐
ming in MPI. The description of information dependencies between fragments has a
local character, in contrast to specifying the order of computations in MPI. This simpli‐
fies the debugging of LuNA programs. All this together reduces the development time
of parallel implementations of numerical algorithms in the LuNA system in comparison
with MPI.

References

1. StreamIt Project Homepage. http://groups.csail.mit.edu/cag/streamit/. Accessed 3 Jan 2017
2. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: a language for streaming applications.

In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196. Springer, Heidelberg (2002).
doi:10.1007/3-540-45937-5_14

3. Steuwer, M., Remmelg, T., Dubach, C: Lift: a functional data-parallel IR for high-performance
GPU code generation. In: Proceedings of the 2017 International Symposium on Code
Generation and Optimization, CGO 2017, pp. 74–85 (2017)

4. Malyshkin, V.: Active knowledge, LuNA and literacy for oncoming centuries. In: Bodei, C.,
Ferrari, G.-L., Priami, C. (eds.) Programming Languages with Applications to Biology and
Security. LNCS, vol. 9465, pp. 292–303. Springer, Cham (2015). doi:
10.1007/978-3-319-25527-9_19

5. Zhang, M., Cule, D., Shafai, L., Bridges, G., Simons, N.: Computing electromagnetic fields in
inhomogeneous media using lattice gas automata. In: Proceedings of 1998 Symposium on
Antenna Technology and Applied Electromagnetics, Ottawa, Canada, 14–16 August 1988

6. Markova, V.: Designing a collision matrix for a cellular automaton with rest particles for
simulation of wave processes. Bull. Nov. Comput. Center Comput. Sci. 36, 47–56 (2014). NCC
Publisher, Novosibirsk

7. Conditions for interference, http://physics.bu.edu/~duffy/sc545_notes09/interference_
conditions.html. Accessed 3 Jan 2017

The Implementation of Cellular Automata Interference of Two Waves 231

http://groups.csail.mit.edu/cag/streamit/
http://dx.doi.org/10.1007/3-540-45937-5_14
http://dx.doi.org/10.1007/978-3-319-25527-9_19
http://physics.bu.edu/%7eduffy/sc545_notes09/interference_conditions.html
http://physics.bu.edu/%7eduffy/sc545_notes09/interference_conditions.html


A New Class of the Smallest Four-State Partial
FSSP Solutions for One-Dimensional Ring

Cellular Automata

Hiroshi Umeo(B) and Naoki Kamikawa

University of Osaka Electro-Communication,
Hastu-cho, 18-8, Neyagawa-shi, Osaka 572-8530, Japan

{umeo,naoki}@osakac.ac.jp

Abstract. The synchronization in cellular automata has been known
as the firing squad synchronization problem (FSSP) since its develop-
ment, where the FSSP gives a finite-state protocol for synchronizing a
large scale of cellular automata. A quest for smaller state FSSP solutions
has been an interesting problem for a long time. Umeo, Kamikawa and
Yunès [9] answered partially by introducing a concept of partial FSSP
solutions and proposing a full list of the smallest four-state symmetric
powers-of-2 FSSP protocols that can synchronize any one-dimensional
(1D) ring cellular automata of length n = 2k for any positive integer
k ≥ 1. Afterwards, Ng [7] also added a list of asymmetric FSSP par-
tial solutions, thus completing the four-state powers-of-2 FSSP partial
solutions. The number four is the smallest one in the class of FSSP pro-
tocols proposed so far. A question remained is that “are there any other
four-state partial solutions?”. In this paper, we answer to the question
by proposing a new class of the smallest four-state FSSP protocols that
can synchronize any 1D ring of length n = 2k −1 for any positive integer
k ≥ 2. We show that the class includes a rich variety of FSSP proto-
cols that consists of 39 symmetric solutions and 132 asymmetric ones,
ranging from minimum-time to linear-time in synchronization steps. In
addition, we make an investigation into several interesting properties of
these partial solutions such as swapping general states, a duality between
them, inclusion of powers-of-2 solutions, reflected solutions and so on.

1 Introduction

We study a synchronization problem that gives a finite-state protocol for syn-
chronizing a large scale of cellular automata. The synchronization in cellular
automata has been known as the firing squad synchronization problem (FSSP)
since its development, in which it was originally proposed by J. Myhill in
Moore [6] to synchronize some/all parts of self-reproducing cellular automata.
The FSSP has been studied extensively for more than fifty years in [1–12].

The minimum-time (i.e., (2n − 2)-step ) FSSP algorithm was developed first
by Goto [4] for synchronizing any one-dimensional (1D) array of length n ≥ 2.
The algorithm needed many thousands of internal states for its realization.
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 232–245, 2017.
DOI: 10.1007/978-3-319-62932-2 22



A New Class of the Smallest Four-State Partial FSSP Solutions 233

Afterwards, Waksman [11], Balzer [1], Gerken [3] and Mazoyer [5] also developed
a minimum-time FSSP algorithm and reduced the number of states realizing the
algorithm, each with 16, 8, 7 and 6 states.

On the other hand, Balzer [1], Sanders [8] and Berthiaume et al. [2] have
shown that there exists no four-state synchronization algorithm. Thus, an exis-
tence or non-existence of five-state FSSP protocol has been an open problem
for a long time. Umeo and Yanagihara [10] gave the first 5-state FSSP solution
that can synchronize any array of length n = 2k(k ≥ 1) in 3n-3 steps. Umeo,
Kamikawa and Yunès [9] answered partially by introducing a concept of partial
versus full FSSP solutions and proposing a full list of the smallest four-state
symmetric powers-of-2 FSSP partial protocols that can synchronize any 1D ring
cellular automata of length n = 2k for any positive integer k ≥ 1. Afterwards,
Ng [7] also added a list of asymmetric FSSP partial solutions, thus completing
the four-state powers-of-2 FSSP partial solutions. A question remained is that
“are there any other four-state partial solutions?”.

In this paper, we answer to the question by proposing a new class of the
smallest four-state FSSP protocols that can synchronize any 1D ring of length
n = 2k − 1 for any positive integer k ≥ 2. We show that the class includes a
rich variety of FSSP protocols that consists of 39 symmetric solutions and 132
asymmetric ones, ranging from minimum-time to linear-time in synchronization
steps. In addition, we make an investigation into several interesting properties of
these partial solutions such as swapping general states, a duality between them,
inclusion of powers-of-2 solutions, reflected solutions and so on.

In Sect. 2 we give a description of the 1D FSSP on rings and review some
basic results on ring FSSP algorithms. Sections 3 and 4 present a new class of the
symmetric and asymmetric partial solutions for rings. Section 5 gives a summary
and discussions of the paper.

2 Firing Squad Synchronization Problem on Rings

2.1 Definition of the FSSP on Rings

The FSSP on rings is formalized in terms of the model of cellular automata.
Figure 1 shows a 1D ring cellular automaton consisting of n cells, denoted by Ci,
where 1 ≤ i ≤ n. All cells are identical finite state automata. The ring operates
in lock-step mode such that the next state of each cell is determined by both its
own present state and the present states of its right and left neighbors. All cells
(soldiers), except one cell, are initially in the quiescent state at time t = 0 and
have the property whereby the next state of a quiescent cell having quiescent
neighbors is the quiescent state. At time t = 0 the cell C1 (general) is in the
fire-when-ready state, which is an initiation signal to the ring.

The FSSP is stated as follows: given a ring of n identical cellular automata,
including a general cell which is activated at time t = 0, we want to give the
description (state set and next-state transition function) of the automata so
that, at some future time, all of the cells will simultaneously and, for the first
time, enter a special firing state. The set of states and the next-state transition



234 H. Umeo and N. Kamikawa

C3 Soldiers

General

C1

C2

Cn
Cn-1

Fig. 1. One-dimensional (1D) ring cellular automaton.

function must be independent of n. Without loss of generality, we assume n ≥ 2.
The tricky part of the problem is that the same kind of soldier having a fixed
number of states must be synchronized, regardless of the length n of the ring.

A formal definition of the FSSP on ring is as follows: a cellular automaton
M is a pair M = (Q, δ), where

1. Q is a finite set of states with three distinguished states G, Q, and F. G is an
initial general state, Q is a quiescent state, and F is a firing state, respectively.

2. δ is a next state function such that δ : Q3 → Q.
3. The quiescent state Q must satisfy the following conditions: δ(Q, Q, Q) = Q.

A ring cellular automaton Mn of length n, consisting of n copies of M, is
a 1D ring whose positions are numbered from 1 to n. Each M is referred to as
a cell and denoted by Ci, where 1 ≤ i ≤ n. We denote a state of Ci at time
(step) t by Sti, where t ≥ 0, 1 ≤ i ≤ n. A configuration of Mn at time t is a
function Ct : [1, n] → Q and denoted as St1S

t
2 .... Stn. A computation of Mn is a

sequence of configurations of Mn, C0, C1, C2, ...., Ct, ..., where C0 is a given initial
configuration. The configuration at time t+1, Ct+1, is computed by synchronous
applications of the next transition function δ to each cell of Mn in Ct such that:
St+1
1 = δ(Stn−1, S

t
1, S

t
2), S

t+1
i = δ(Sti−1, S

t
i, S

t
i+1), for any i, 2 ≤ i ≤ n − 1, and

St+1
n = δ(Stn−1, S

t
n, St1).

A synchronized configuration of Mn at time t is a configuration Ct, Sti = F, for
any 1 ≤ i ≤ n.

The FSSP is to obtain an M such that, for any n ≥ 2,

1. A synchronized configuration at time t = T (n), CT (n) =

n
︷ ︸︸ ︷

F, · · · , F can be

computed from an initial configuration C0 = G

n−1
︷ ︸︸ ︷

Q, · · · , Q.
2. For any t, i such that 1 ≤ t ≤ T (n) − 1, 1 ≤ i ≤ n, Sti �= F.

2.2 Full vs. Partial Solutions

One has to note that any solution in the original FSSP problem is to synchronize
any array of length n ≥ 2. We call it full solution. Berthiaume et al. [2] presented
an eight-state full solution for the ring. On the other hand, Umeo, Kamikawa,
and Yunès [9] and Ng [7] constructed a rich variety of 4-state protocols that can
synchronize some infinite set of rings, but not all. We call such protocol partial
solution. Here we summarize recent developments on small state solutions in the
ring FSSP.



A New Class of the Smallest Four-State Partial FSSP Solutions 235

Theorem 1. Berthiaume, Bittner, Perkovic, Settle, and Simon [2] (Time Lower
Bound) The minimum time in which the ring FSSP could occur is no earlier
than n steps for any ring of length n.

Theorem 2. Berthiaume, Bittner, Perkovic, Settle, and Simon [2] There is no 3-state
full solution to the ring FSSP.

Theorem 3. Berthiaume, Bittner, Perkovic, Settle, and Simon [2] There is no 4-state,
symmetric, minimal-time full solution to the ring FSSP.

Theorem 4. Umeo, Kamikawa, and Yunès [10] There exist 17 symmetric 4-state
partial solutions to the ring FSSP for the ring of length n = 2k for any positive
integer k ≥ 1.

Theorem 5. Ng [7] There exist 80 asymmetric 4-state partial solutions to the
ring FSSP for the ring of length n = 2k for any positive integer k ≥ 1.

2.3 A Quest for Four-State Partial Solutions for Rings

• Four-state ring cellular automata
Let M be a four-state ring cellular automaton M = {Q, δ}, where Q is an
internal state set Q = {A, F, G, Q} and δ is a transition function such that
δ : Q3 → Q. Without loss of generality, we assume that Q is a quiescent state
with a property δ(Q, Q, Q) = Q, G is a general state, A is an auxiliary state and

F is the firing state, respectively. The initial configuration is G

n−1
︷ ︸︸ ︷

QQ, ..., Q for
n ≥ 2. We say that an FSSP solution is symmetric if its transition table has a
property such that δ(x, y, z) = δ(z, y, x), for any state x, y, z in Q. Otherwise,
the FSSP solution is called asymmetric one.

• A computer investigation into four-state FSSP solutions for rings
Figure 2 is a four-state transition table, where a symbol • shows a possible
state in Q = {A, F, G, Q}. Note that we have totally 426 possible transition
rules. We make a computer investigation into the transition rule set that
might yield possible FSSP solutions. Our strategy is based on a backtracking
searching. A similar technique was employed in Ng [7]. Due to the space avail-
able we omit the details of the backtracking searching strategy. The outline
of those solutions will be described in the next section.

Fig. 2. Four-state transition table.



236 H. Umeo and N. Kamikawa

Fig. 3. Transition tables for 39 minimum-time, nearly minimum-time and non-
minimum-time symmetric solutions.



A New Class of the Smallest Four-State Partial FSSP Solutions 237

Fig. 4. Snapshots on 7 and 15 cells for symmetric solutions 2, 25, 38, and 39.

3 Four-State Symmetric Partial Solutions

In this section we will establish the following theorem with a help of computer
investigation.

Theorem 6. There exist 39 symmetric 4-state partial solutions to the ring
FSSP for the ring of length n = 2k − 1 for any positive integer k ≥ 2.

Let RS i, 1 ≤ i ≤ 39 be a transition table for symmetric solutions obtained in
this paper. We refer to the ith symmetric transition table as symmetric solution
i, where 1 ≤ i ≤ 39. The details are as follows:

Fig. 5. Synchronized configurations on 3, 7, and 15 cells with a general-state G (left)
and A (right), respectively, for the Solution 1.



238 H. Umeo and N. Kamikawa

• Symmetric Minimum-Time Solutions:
We have got 24 minimum-time symmetric partial solutions operating in
exactly T (n) = n steps. We show their transition rules RS i, 1 ≤ i ≤ 24
in Fig. 3.

• Symmetric Nearly Minimum-Time Solutions:
We have got 14 nearly minimum-time symmetric partial solutions operating
in T (n) = n+O(1) steps. Their transition rules RS i, 25 ≤ i ≤ 38 are given in
Fig. 3. Most of the solutions, that is, solutions 25–37 operate in T (n) = n+1
steps. The solution 38 operates in T (n) = n + 2 steps.

• Symmetric Non-Minimum-Time Solution:
It is seen that one non-minimum-time symmetric partial solution 39 exists.
Its time complexity is T (n) = (3n + 1)/2. The transition rule RS 39 is given
in Fig. 3.

In Table 1 we give the time complexity and number of transition rules for
each symmetric solution.

Table 1. Time complexity and number of transition rules for 39 symmetric partial
solutions.

Symmetric partial solutions Time complexity # of Transition rules

RS i, 1 ≤ i ≤ 24 T (n) = n 21 − 27

RS i, 25 ≤ i ≤ 37 T (n) = n+ 1 22 − 27

RS 38 T (n) = n+ 2 24

RS 39 T (n) = (3n+ 1)/2 25

Here we give some snapshots on 7 and 15 cells for minimum-time, nearly
minimum-time and non-minimum-time FSSP solutions, respectively, in Fig. 4.

Now, we give several interesting observations obtained for the rule set.

Observation 1 (Swapping General States). It is noted that some solutions
have a property that both of the states G and A can be an initial general state
without introducing any additional transition rules and yield successful synchro-
nizations from each general state. For example, solution 1 can synchronize any
ring of length n = 2k − 1, k ≥ 2 in T (n) = n steps from both an initial configu-

ration G

n−1
︷ ︸︸ ︷

Q, · · · , Q and A

n−1
︷ ︸︸ ︷

Q, · · · , Q, respectively. Let TG(n) and TA(n) be synchro-
nization steps staring from the state G and A, respectively, for rings of length n.
Then, we have TG(n) = TA(n) = n. In Fig. 5 we show some synchronized config-
urations on 3, 7, and 15 cells with a general G (left) and A (right), respectively,
for the solution 1. The observation doesn’t always hold for all symmetric rules.
For example, the solution 3 can synchronize any ring of length n = 2k − 1, k ≥ 2
in T (n) = n steps from the general state G, but not from the state A.



A New Class of the Smallest Four-State Partial FSSP Solutions 239

The Observation 1 yields the following duality relation among the four-state
rule sets.

Observation 2 (Duality). Let x and y be any four-state FSSP solution for
rings and x is obtained from y by swapping the states G and A in y and vice
versa. We say that the two rules x and y are dual concerning the states G and
A. The relation is denoted as x � y. For example, we have:

RS 1 � RS 14,RS 2 � RS 13.

4 Asymmetric Solutions

In this section we will establish the following theorem with a help of computer
investigation.

Theorem 7. There exist 132 asymmetric 4-state partial solutions to the ring
FSSP for the ring of length n = 2k − 1 for any positive integer k ≥ 2.

Let RAS i, 1 ≤ i ≤ 132 be a transition table for asymmetric solutions obtained
in this paper. We refer to the ith asymmetric transition table as asymmetric
solution i, where 1 ≤ i ≤ 132. Their breakdown is as follows:

• Asymmetric Minimum-Time Solutions:
We have got 60 minimum-time asymmetric partial solutions operating in
exactly T (n) = n steps. Their transition rule sets RAS i, 1 ≤ i ≤ 60, are given
in Figs. 6 and 7.

• Asymmetric Nearly Minimum-Time Solutions:
We have got 56 nearly minimum-time asymmetric partial solutions operating
in T (n) = n + O(1) steps. Transition rule sets RAS i, 61 ≤ i ≤ 116, shown in
Figs. 7 and 8, are the nearly minimum-time solutions obtained.

• Asymmetric Non-Minimum-Time Solutions:
We have got 16 non-minimum-time asymmetric partial solutions operating in
non-minimum-steps. Their transition rules are denoted by RAS i, 117 ≤ i ≤
132. Figure 8 shows those transition rules. Each solution in RS i, 117 ≤ i ≤ 124
operates in T (n) = 3n/2 ± O(1) steps, respectively. Each solution with the
rule set RS 125 and RS 130 operates in T (n) = 2n + O(1) steps, respectively.

In Table 2 we give the time complexity and number of transition rules for
each asymmetric solution.

Here we give some snapshots on 7 and 15 cells for minimum-time, nearly
minimum-time and non-minimum-time FSSP solutions, respectively, in Fig. 9.

Observation 3 (Swapping General States). It is noted that some asymetric
solutions have a property that both of the states G and A can be an initial general
state without introducing any additional transition rules and yield successful
synchronizations from each general state. For example, asymetric solution 1 can
synchronize any ring of length n = 2k − 1, k ≥ 2 in T (n) = n steps from

both an initial configuration G

n−1
︷ ︸︸ ︷

Q, · · · , Q and A

n−1
︷ ︸︸ ︷

Q, · · · , Q, respectively and we have
TG(n) = TA(n) = n.



240 H. Umeo and N. Kamikawa

Fig. 6. Transition tables RAS i, 1 ≤ i ≤ 40 for minimum-time asymmetric solutions.



A New Class of the Smallest Four-State Partial FSSP Solutions 241

Fig. 7. Transition tables RAS i, 41 ≤ i ≤ 80 for minimum-time and nearly-minimum-
time asymmetric solutions.



242 H. Umeo and N. Kamikawa

Fig. 8. Transition tables RAS i, 81 ≤ i ≤ 132 for nearly-minimum-time and non-
minimum-time asymmetric solutions.



A New Class of the Smallest Four-State Partial FSSP Solutions 243

Table 2. Time complexity and number of transition rules for 132 asymmetric solutions.

Asymmetric partial solutions Time complexity # of Transition rules

RAS i, 1 ≤ i ≤ 60 T (n) = n 22 – 26

RAS i, 61 ≤ i ≤ 116 T (n) = n+O(1) 25 – 27

RAS i, 117 ≤ i ≤ 124 T (n) = 3n/2 ± O(1) 24 – 27

RAS i, 125 ≤ i ≤ 132 T (n) = 2n+O(1) 24 – 27

Fig. 9. Snapshots on 7 and 15 cells for asymmetric solutions 1, 62, 123, and 132.

Observation 4 (Duality). A duality relation exists among the asymetric solu-
tions. For example, we have:

RAS 1 � RAS 4,RAS 2 � RAS 57.

Observation 5 (Inclusion of Powers-of-2 Rule). It is noted that some solu-
tions can synchronize not only rings of length 2k − 1, k ≥ 2 but also rings of
length 2k, k ≥ 1. For example, solution 130 can synchronize any ring of length
n = 2k − 1, k ≥ 2 in T (n) = 2n + 1 steps and simultaneously the solution can
synchronize any ring of length n = 2k, k ≥ 1 in T (n) = 2n − 1 steps. See the
snapshots given in Fig. 10 on 7, 8, 15, and 16 cells for the solution 130.A rela-
tively large number of solutions includes powers-of-2 solutions as a proper subset
of rules.



244 H. Umeo and N. Kamikawa

Fig. 10. Snapshots on 7, 8, 15, and 16 cells for asymmetric solutions 130.

Now we show a one to one correspondence between 4-state asymmetric solu-
tions. First, we establish the following property for the asymmetric FSSP solu-
tion for rings. Let x be any k-state transition table and xR be the k-state table
defined such that:

xR(i, j) = x(j, i), for any 1 ≤ i, j ≤ k.

The transition table xR is the reflected table concerning the principal diagonal
of the table x, which is obtained by transposition. Now we have:

Theorem 8. Let x be any k-state FSSP ring solution with time complexity
Tx(n). Then, xR is also an FSSP ring solution with time complexity TxR(n) =
Tx(n).

Observation 6 (Reflection Rule). For every asymmetric rule in RAS i, 1 ≤
i ≤ 132, the rule has a corresponding asymmetric rule in RAS i, 1 ≤ i ≤ 132.

For example, RAS 1 is the reflected rule of RAS 40 and vice versa.

5 Summary and Discussions

A quest for smaller state FSSP solutions has been an interesting problem for a
long time. We have answered to the question by proposing a new class of the
smallest four-state FSSP protocols that can synchronize any 1D ring of length
n = 2k − 1 for any positive integer k ≥ 2. We show that the class includes a
rich variety of FSSP protocols that consists of 39 symmetric solutions and 132
asymmetric ones, ranging from minimum-time to linear-time in synchronization
steps. Some interesting properties in the structure of 4-state partial solutions
have been discussed. We strongly believe that no smallest solutions exist other
than the ones proposed for length 2k rings in Umeo, Kamikawa and Yunès [9] and
Ng [7] and for rings of length 2k −1 in this paper. A question “how many 4-state
partial solutions exist for arrays (open-rings)?” remains open. We think that
there would be a large number of smallest 4-state partial solutions for arrays.



A New Class of the Smallest Four-State Partial FSSP Solutions 245

Its number would be larger than several thousands. The structure of the 4-state
partial array synchronizers is far more complex than the 4-state partial ring
synchronizers.

References

1. Balzer, R.: An 8-state minimal time solution to the firing squad synchronization
problem. Inf. Control 10, 22–42 (1967)

2. Berthiaume, A., Bittner, T., Perković, L., Settle, A., Simon, J.: Bounding the firing
synchronization problem on a ring. Theor. Comput. Sci. 320, 213–228 (2004)

3. Gerken, H.D.: Über Synchronisationsprobleme bei Zellularautomaten, pp. 1–50.
Diplomarbeit, Institut für Theoretische Informatik, Technische Universität Braun-
schweig (1987)

4. Goto, E.: A Minimal Time Solution of the Firing Squad Problem. Dittoed course
notes for Applied Mathematics 298 (with an illustration in color). Harvard Uni-
versity, Cambridge (1962)

5. Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization
problem. Theor. Comput. Sci. 50, 183–238 (1987)

6. Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.)
Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Reading MA
(1964)

7. Ng, W.L.: Partial Solutions for the Firing Squad Synchronization Problem on
Rings, pp. 1–363. ProQuest publications, Ann Arbor (2011)

8. Sanders, P.: Massively parallel search for transition-tables of polyautomata. In:
Jesshope, C., Jossifov, V., Wilhelmi, W. (eds.). Proceeding of the VI International
Workshop on Parallel Processing by Cellular Automata and Arrays, Akademie, pp.
99–108 (1994)

9. Umeo, H., Kamikawa, N., Yunès, J.-B.: A family of smallest symmetrical four-state
firing squad synchronization protocols for ring arrays. Parallel Process. Lett. 19(2),
299–313 (2009)

10. Umeo, H., Yanagihara, T.: A smallest five-state solution to the firing squad
synchronization problem. In: Durand-Lose, J., Margenstern, M. (eds.) MCU
2007. LNCS, vol. 4664, pp. 291–302. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74593-8 25

11. Waksman, A.: An optimum solution to the firing squad synchronization problem.
Inf. Control 9, 66–78 (1966)

12. Yunès, J.B.: A 4-states algebraic solution to linear cellular automata synchroniza-
tion. Inf. Process. Lett. 19(2), 71–75 (2008)

http://dx.doi.org/10.1007/978-3-540-74593-8_25
http://dx.doi.org/10.1007/978-3-540-74593-8_25


Properties of the Conservative Parallel Discrete
Event Simulation Algorithm

Liliia Ziganurova1,2(B) and Lev Shchur1,2,3

1 Scientific Center in Chernogolovka,
142432 Chernogolovka, Moscow Region, Russia
ziganurova@gmail.com, levshchur@gmail.com

2 National Research University Higher School of Economics,
101000 Moscow, Russia

3 Landau Institute for Theoretical Physics,
142432 Chernogolovka, Moscow Region, Russia

Abstract. We address question of synchronisation in parallel discrete
event simulation (PDES) algorithms. We study synchronisation in con-
servative PDES model adding long-range connections between processing
elements. We investigate how fraction of the random long-range connec-
tions in the synchronisation scheme influences the simulation time profile
of PDES. We found that small fraction of random distant connections
enhance synchronisation, namely, the width of the local virtual times
remains constant with increasing number of processing elements. At the
same time the conservative algorithm of PDES on small-world networks
remains free from deadlocks. We compare our results with the case-study
simulations.

Keywords: Parallel discrete event simulation · PDES · Conservative
algorithm · Small-world

1 Introduction

Modern high performance systems consist with hundreds of thousands of nodes,
which in turn may have many CPUs, cores, and numerical accelerators. The
development of hardware architecture influences on the development environ-
ments (programming models, frameworks, compilers, libraries, etc.). They now
need to deal with a high level of parallelism and can solve difficulties arising
from system heterogeneity [1].

In the paper we discuss synchronisation in one of the methods of large-
scale simulation known as parallel discrete event simulation (PDES) [2]. The
method is widely used in physics and computer science, as well as in economics,
engineering, and society. The first ideas come about 40 years ago in order to
overcome limitation of memory/time resources, and revising of the method is still
important nowadays. PDES has a property of good scalability with the physical
system size (number of objects) as well as with the hardware size (number of
nodes, cores, and level of the hyper-threadings).
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 246–253, 2017.
DOI: 10.1007/978-3-319-62932-2 23



Properties of the Conservative Parallel Discrete Event Simulation Algorithm 247

PDES allows to run one single discrete event simulation task on the num-
ber of processing elements (PE), which physically can be nodes, or CPUs, or
cores, or threads depending on the particular system architecture. The system
being simulated is divided into subsystems which are mapped onto programming
objects, or logical processes (LPs). Logical process is a sequential subprogram
executed by some PE.

The system changes its state at some discrete moments of time, which are
usually Poisson arrivals. The changes are called discrete events. The events gen-
erates messages with timestamps which are saved in the output queue and sent
to other LPs. Received messages are stored by LPs in their input queues. LPs
during the simulation maintain a loop, sequentially taking the event with the
lowest timestamp from the input queue, executing it, and communicating with
other LPs if necessary. The communication between LPs goes exclusively via
time-stamped messages. It is important that LPs do not use any shared mem-
ory. Synchronisation process is done locally by the analysis of the values of
timestamps of messages in the queue. When LP processes an event, it updates
its own local virtual time (LVT) to the time of the processed event. Each LP
evolves independently in time and there is no global synchronisation in the simu-
lation process. Since the dynamic is asynchronous some synchronisation protocol
is required. There are three groups of such protocols: conservative, optimistic and
FaS [2–4].

In the paper we investigate the performance and scalability properties of
the conservative PDES algorithm. In conservative algorithm it is assumed that
all dependencies between LPs must be checked before every portion of compu-
tations in order to preserve causality of the computations. The performance of
conservative algorithm depends on the communication network: the more depen-
dencies in the system the lower speed of the computation. We study the influence
of long-range communication links on the synchronisation and performance of
PDES conservative algorithm. We build a simplified model of the evolution of
LVT profile. The model allows to measure local time variance and average speed
of the utilisation of processing times by LPs. The observables are then mapped
onto synchronisation aspects of PDES scheme.

The paper is organised as follows. In the next section we describe a back-
ground of the problem. Section 3 provides detailed information about the model
under consideration. The results of our simulation are given in Sect. 4. The dis-
cussion and further work are presented in Sect. 5.

2 Models of Evolution of LVT Profile in PDES

In this section we describe the general approach to investigation of synchronisa-
tion in PDES algorithms and review main results in this area.

Conservative PDES model on regular networks. Model of evolution of times in
PDES conservative algorithm is proposed in [5]. Authors consider communi-
cation scheme with only nearest-neighbour interactions, which is equivalent to



248 L. Ziganurova and L. Shchur

one-dimensional system with periodic boundary conditions. It was found in sim-
ulation that evolution of time profile reminds the evolution of a growing surface
which is known from literature in physics does belong to Kardar-Parisi-Zhang-
like kinetic roughening [6]. This analogy provides a cross-disciplinary application
of well-known concepts from non-equilibrium statistical physics to our problem.
More details on the relation of PDES algorithms with physical models can be
found in [7,8].

Synchronisation of the parallel schemes can be described using this analogy.
Efficiency of parallel implementation can be defined as a fraction of the non-idle
processing elements. This fraction exactly coincides with the density of local
minima in the growing model. It is shown in [5] that in the worst-case scenario
the efficiency of the PDES algorithm remains nonzero as the number of PEs goes
to infinity.

Freeze-and-Shift PDES model. The conservative PDES is proved to be free from
deadlock, and efficiency is about 1/4, on average, i.e., at least one PE out of four
is working at any given time. In [4] an alternative synchronisation algorithm of
PDES was proposed. It is based on i) the extension of the PDES concept on the
hierarchical hardware architecture, including multi-core and hyper-threadings
and ii) using analogy of the evolution of time-profile interface with the physical
models of surface interface growth. In the late case classification of the bound-
ary conditions leads to the classification of possible PDES algorithms. Authors
give a way to increase utilisation by giving each node a large portion of LPs
which are processed by threads running on the same CPU. The LPs within one
CPU communicate conservatively, whereas LPs from different CPUs communi-
cate according to either conservative, or optimistic scheme, or scheme with fixed
LVT on the boundary LPs (those which can communicate with LP in the neigh-
bouring CPUs). In the last case CPUs do not communicate with other CPUs
for some time interval window (the frozen part of the algorithm), and after
that time the message exchange is implemented as part of the memory shifting
between CPUs (the shift part of the algorithm). The algorithm is therefore called
Freeze-and-Shift (FaS).

Optimistic PDES models on regular networks. Model of evolution of time pro-
file in optimistic PDES algorithm is introduced in [9]. Dynamical behaviour of
the optimistic PDES model is quite different from the conservative PDES model.
The optimistic model corresponds to another surface growing model and demon-
strates features of the roughening transition and directed percolation [10].

Conservative PDES models on small-world like networks. All models described
above consider PDES algorithms with short-range connections. The idea of
studying the model with other type of communication topology is proposed
in [11]. Authors investigate the behaviour of the local virtual time profile on a
small-world like network [12]. The network is build as a regular one-dimensional
lattice with additional long-range connections randomly wired above it. The
links are used dynamically, i.e. at each time step additional synchronisation
check between distant neighbours is made with some probability p. Small value



Properties of the Conservative Parallel Discrete Event Simulation Algorithm 249

of the p significantly improves synchronisation. Variance between local times
becomes finite, while utilisation decreases just slightly.

In present paper we revise the approach of [11], considering more realistic
topology, and compare with the result of [11]. In addition we compare our results
with the case-study [13].

3 Model Definition

We build a model of evolution of LVTs profile for analysis of the desynchro-
nisation processes in conservative PDES algorithm. The PEs are said to be
synchronised when the differences between LVTs stay finite with the simulation
process. The efficiency of the algorithm is measured as a number of PEs working
at a given moment of time. It reflects the load of the processing elements (CPU,
core, or thread). When the efficiency of the algorithm is strictly greater than
zero, one can say that the algorithm is deadlock free. These properties of the
synchronisation algorithm can be extracted from the analysis of the LVT profile.

The model is constructed on the small-world communication networks [12].
Long-range connections in addition to short-range reflect real systems prop-
erties. For example, computer networks, social networks, electric power grid,
and network of brain neurones are known to be small-world networks. Addi-
tional communication links between distant nodes also enhance synchronisation
of simulation.

First we build a communication topology. For simplicity of the model we
assume that each PE does process only one LP. Nodes in the communication
graph represent PEs, and edges represent dependencies between them. Each PE
has its local variable τ , which is the value of LVT. The set of all LVTs is stored
as an array. Two observables are computed: the efficiency 〈u〉 and the profile
width 〈w2〉. We run the simulation program with different set of parameters N
and p. Finally we take an average over multiple samples.

Topology. Denote number of processing elements as N . We build a small-world
topology of PEs using the parameter p – the fraction of random long-range
connections. First we connect all PEs into a regular one-dimensional lattice
(equivalent to the ring) and then add pN random long-range connections. Each
edge is chosen only once. The result is a communication graph of N nodes and
N(1 + p) edges stored as adjacency list.

Initialisation. We set the parameter p of the network to some value from 0.002
to 0.01, build a topology, and set all local times to zero: τi(0) = 0, i = 1..N .

Simulation. We are interested in evolution of LVTs profile in conservative algo-
rithm. We assume that only those PEs, whose current time is lower than the
time of their neighbours (i.e. the PEs which it is connected with), may proceed
with computations. These PEs are called active. Such scheme guarantees that
causality will be preserved [2].

In our model we implement an ideal scheme of message passing. At each time
step t every LP broadcasts the message with the time stamp equal to its LVT to



250 L. Ziganurova and L. Shchur

all LPs connected with it. We assume that time needed for message distribution
is negligibly small, so there is no difference between sending and receiving time.
The PEs who have received only messages with higher time stamp than their
LVT, may proceed. These PEs have minimal LVT among their neighbours.

At each simulation step t we find PEs with the lowest LVTs among their
neighbouring nodes and increment local time of those PEs by an exponentially
distributed random amount:

τi(t + 1) =

{
τi(t) + η if τi(t) ≤ τK(t),
τi(t) otherwise,

(1)

where η is a random value drawn from the Poisson distribution, K is a set of
all PEs which are connected to i-th PE by local or long-range communication
links, and i = 1..N .

After updating array of LVTs the observables are computed, and PDES goes
to the next simulation cycle.

Observables. We compute two essential features of the model: the efficiency 〈u〉,
which is equivalent to the average utilisation of the algorithm, and the width of
the profile 〈w2〉, i.e. the variance of local virtual times, which is associated to
the desynchronisation of PEs.

1. The efficiency (utilisation) of the algorithm is equivalent to the density of
local minima of the LVT profile. The efficiency shows how many PEs is work-
ing at a given moment of time. In basic conservative scheme on a ring topol-
ogy (when each PE is connected with exactly two neighbours) the efficiency
is approximately 1/4. The figure is derived analytically from the observation
of all possible combination of LVTs of neighbouring PEs. Numerical result
is equal to 0.24641(7) [5]. The number shows that only approximately one
quarter of all PEs are working at a given moment of time and other three
quarters are idling.
We calculate the efficiency of the algorithm 〈u〉 as an average fraction of active
PEs at each time step:

〈u〉 =
〈NactivePE〉

N
. (2)

The underlined average is taken over all time steps and 〈·〉 states for the
average over independent 1500 runs with fixed parameters N and p.

2. The width (variance) of the LVT profile shows the average spread between
local virtual times. If the width remains constant during the simulation, then
PEs are well synchronised. The increasing of the profile width corresponds to
the growing of the desynchronisation with simulation time.
The width of the LVT profile is calculated according the formula below:

〈w2(N, t)〉 =
〈 1
N

N∑
i=1

[τi(t) − τ(t)]2
〉
, (3)

where τ(t) = 1
N

∑N
i=1 τi(t) is the mean value of the time profile.



Properties of the Conservative Parallel Discrete Event Simulation Algorithm 251

In our simulation program we use random number generation library
RNGAVXLIB [14]. We run program on the Manticore cluster using MVA-
PICH2 [15].

4 Results

We are interested in scalability properties of the synchronisation of conservative
PDES model with the long-range connections. We perform simulation of con-
servative PDES model on the ring topology with long-range connections. We
simulate systems of size N (number of PEs) varying from N = 103 to N = 105,
and for number of values of fraction p for the long-range connections. Note that
p = 0 corresponds to the basic conservative model with only short-range con-
nections studied in [5].

The main results are: (1) efficiency of the algorithm remains finite and slightly
reduces with adding long-range connections p; (2) profile width for any p grows
with the system size; (3) profile width saturates for system sizes larger than 104;
(4) degree of desynchronisation depends logarithmically with p.

The efficiency. We observe that for any system size the average density of
local minima 〈u(t)〉 monotonically decreases as a function of time and approaches
a constant. The constant depends on the fraction of random connections p and
system size N . For small p the utilisation of events reduces slightly. The small-
world-synchronised simulation scheme maintains an average rate greater than
zero. For example, for p = 0.01 it is 〈u〉 = 0.22137(7), while for basic conservative
scheme 〈u0〉 = 0.24641(7) [5].

The efficiency 〈u〉 has nonlinear dependence on the parameter p. It is possible
to fit utilisation dependence on p by expression:

〈u(p)〉 = u0 − A(N)pB(N). (4)

The coefficient A and the exponent B depend on the system size, and can
be fit using logarithmic or exponential dependencies. Using logarithmic fit we
obtain A = 0.078(3) + 0.345(9)

log N and B = 0.092(3) + 1.26(1)
log N . Using power-law fit

we obtain A = 0.08(2)+ 0.253(5)
N0.12(3) and B = 0.24(1)+ 1.14(5)

N0.21(1) . We could not choose
which fit is better.

Finally, we found that as N goes to infinity, 〈u(p)〉 = u0 − 0.078(3)p0.092(3) if
we approximate A and B with logarithm, or 〈u(p)〉 = u0 − 0.08(2)p0.24(1) in the
case of the power-law approximation for the coefficients A and the exponent B.

The width. We observed that the profile width grows as 〈w2(t)〉 ∼ t2β and
saturates at some time t� reaching the value 〈w2

∞〉. We measured the growth
exponent β for each combination of the parameters N and p. For large systems
(N > 104) exponent β becomes almost constant. The asymptotic value of β is
found to behave logarithmically with p

β = −0.137(4) − 0.162(1) ln(p). (5)

We remind that without long-range connections (p = 0) it is β = 1/3.



252 L. Ziganurova and L. Shchur

It is interesting, that during the simulation on more then ten thousand PEs
the desynchronisation of PEs will grow equally fast for systems of any sizes.

For large systems synchronisation depends only on the amount of long-range
connections. The profile width approaches a constant value 〈w2

∞〉 with growing
system size. In contrary, in the basic short-range conservative scheme (p = 0)
the width is increasing with the system size as 〈w2

∞〉 ∼ N2α, α = 0.49(1).
The topology with additional distant connections allows the simulation of large
systems to preserve the same degree of synchronisation.

Since the small-world conservative PDES scheme progresses with positive
rate and the profile width becomes finite in the limit of infinitely many PEs,
one can say that the conservative algorithm with long-range connections is fully
scalable.

5 Discussion and Future Work

In the paper we present analysis of the synchronisation in conservative PDES
algorithm on the small-world networks.

Paper [13] presents detailed results of the case-study simulations of different
models. Two optimistic simulators were used: ROSS [16] and WARPED2 [17].
Simulation results of three models were reported: traffic model, wireless network
model, and epidemic model. Average utilisation 〈u〉 varied from 0.47 for epidemic
model to 0.0043 for traffic model, and down to 5·10−5 for wireless network model.

We guess that the results of case-study [13] can be explained in part by
the concept of small-world network with varying parameter p. To answer this
question in details it is necessary to perform case-studies of the mentioned models
measuring quantities, which can be mapped on the parameters of our model.

In addition, it is interesting to investigate properties of the optimistic algo-
rithm of PDES on small-world networks provided with the comparison with the
results of case-studies.

Acknowledgements. This work is supported by grant 14-21-00158 of the Russian
Science Foundation.

References

1. Bailey, D.H., David, H., Dongarra, J., Gao, G., Hoisie, A., Hollingsworth, J., Jeffer-
son, D., Kamath, C., Malony, A., Quinian, D.: Performance Technologies for Peta-
Scale Systems: A White Paper Prepared by the Performance Evaluation Research
Center and Collaborators. White paper, Lawrence Berkeley National Laboratories
(2003)

2. Fujimoto, R.M.: Parallel discrete event simulation. Commun. ACM 33, 30–53
(1990). doi:10.1145/84537.84545

3. Jefferson, D.R.: Virtual time. ACM Trans. Program. Lang. Syst. 7, 404–425 (1985).
doi:10.1145/3916.3988

4. Shchur, L.N., Novotny, M.A.: Evolution of time horizons in parallel and grid sim-
ulations. Phys. Rev. E 70, 026703 (2004). doi:10.1103/PhysRevE.70.026703

http://dx.doi.org/10.1145/84537.84545
http://dx.doi.org/10.1145/3916.3988
http://dx.doi.org/10.1103/PhysRevE.70.026703


Properties of the Conservative Parallel Discrete Event Simulation Algorithm 253

5. Korniss, G., Toroczkai, Z., Novotny, M.A., Rikvold, P.A.: From massively parallel
algorithms and fluctuating time horizons to nonequilibrium surface growth. Phys.
Rev. Lett. 84, 1351 (2000). doi:10.1103/PhysRevLett.84.1351

6. Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys.
Rev. Lett. 56, 889 (1986). doi:10.1103/PhysRevLett.56.889

7. Shchur, L.N., Shchur, L.V.: Relation of parallel discrete event simulation algo-
rithms with physical models. J. Phys: Conf. Ser. 640, 012065 (2015). doi:10.1088/
1742-6596/640/1/012065

8. Shchur, L., Shchur, L.: Parallel discrete event simulation as a paradigm for large
scale modeling experiments. Selected Papers of the XVII International Conference
on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL
2015), Obninsk, Russia, 13–16 October 2015, pp. 107–113, (2015). http://ceur-ws.
org/Vol-1536/

9. Ziganurova, L., Novotny, M.A., Shchur, L.N.: Model for the evolution of the time
profile in optimistic parallel discrete event simulations. J. Phys. Conf. Ser. 681,
012047 (2016). doi:10.1088/1742-6596/681/1/012047

10. Alon, U., Evans, M.R., Hinrichsen, H., Mukamel, D.: Roughening transition in a
one-dimensional growth process. Phys. Rev. Lett. 76, 2746 (1996). doi:10.1103/
PhysRevLett.76.2746

11. Guclu, H., Korniss, G., Novotny, M.A., Toroczkai, Z., Racz, Z.: Synchronization
landscapes in small-world-connected computer networks. Phys. Rev. E 73, 066115
(2006). doi:10.1103/PhysRevE.73.066115

12. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393, 440–442 (1998). doi:10.1038/30918

13. Wilsey, P.A.: Some properties of events executed in discrete-event simulation mod-
els. In: Proceedings of the 2016 annual ACM Conference on SIGSIM Principles of
Advanced Discrete Simulation, pp. 165–176. ACM, New York (2016). doi:10.1145/
2901378.2901400

14. Guskova, M.S., Barash, L.Y., Shchur, L.N.: RNGAVXLIB: Program library for
random number generation: AVX realization. Comput. Phys. Commun. 200, 402–
405 (2016). doi:10.1016/j.cpc.2015.11.001

15. MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE.
http://mvapich.cse.ohio-state.edu

16. Carothers, C.D., Bauer, D., Pearce, S.: ROSS: A high-performance, low-memory,
modular Time Warp system. J. Parallel Distrib. Comput. 62, 1648–1669 (2002).
doi:10.1016/S0743-7315(02)00004-7

17. Weber, D.: Time warp simulation on multi-core processors and clusters. Master’s
thesis, University of Cincinnati, Cincinnati, OH (2016)

http://dx.doi.org/10.1103/PhysRevLett.84.1351
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://dx.doi.org/10.1088/1742-6596/640/1/012065
http://dx.doi.org/10.1088/1742-6596/640/1/012065
http://ceur-ws.org/Vol-1536/
http://ceur-ws.org/Vol-1536/
http://dx.doi.org/10.1088/1742-6596/681/1/012047
http://dx.doi.org/10.1103/PhysRevLett.76.2746
http://dx.doi.org/10.1103/PhysRevLett.76.2746
http://dx.doi.org/10.1103/PhysRevE.73.066115
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1145/2901378.2901400
http://dx.doi.org/10.1145/2901378.2901400
http://dx.doi.org/10.1016/j.cpc.2015.11.001
http://mvapich.cse.ohio-state.edu
http://dx.doi.org/10.1016/S0743-7315(02)00004-7


Organization of Parallel Computation



Combining Parallelization with Overlaps
and Optimization of Cache Memory Usage

S.G. Ammaev, L.R. Gervich(B), and B.Y. Steinberg

Southern Federal University, Rostov-on-Don, Russian Federation
ammsaid@mail.ru, lgervith@gmail.com, borsteinb@mail.ru

Abstract. This paper allows L. Lamport hyperplane method modified
for improvement of the temporal data locality. Gauss-Seidel algorithm
optimized by modified hyperplane method is faster than non-optimized
in 2.5 times. This algorithm was paralleled by the technique of data
placement with overlaps and we have got the speedup in 28 times on 16
processors in comparison with the non-optimized sequential algorithm.

Keywords: Hyperplane method · Temporal data locality · Data place-
ment with overlaps · Optimization · Tiling

1 Introduction

The hyperplane method was published by L. Lamport 40 years ago [1]. This
method was subjected to many modifications and generalizations [2] etc. Some-
times, when there are no loops can be paralleled, the hyperplane method allows
parallelization of the perfect nested loop. Points from hyperplanes of iteration
space of nested loop can be executed concurrently. Many generations of comput-
ers were changed in 40 years of method existence. The execution time of data
processing was accelerated on 30% on average every year, but the execution time
of memory access on 9% [12]. It brought to the development of memory hierarchy
in processors, that is necessary to consider for fast program development [13].
For many cases, the direct application of hyperplane method doesn’t accelerate
program due to ineffective using of cache memory.

The hyperplane method is applied for parallelization. However, the modified
hyperplane method can improve data locality in iterative methods.

Improving the locality of data is an important approach for accelerating
programs. There are two types of techniques for improving data locality: data
access optimizations and data layout optimizations [3]. Data access optimizations
change the order in which iterations in a loop nest are executed. Loop fusion and
loop tiling [4] is data access optimizations [3]. There are more complex techniques
of data access optimization, such as chunking [5]. Data locality is also considered
in articles [6–10].

Data layout optimizations reorder the placement of original data in memory.
Such methods as array padding, array transpose is data layout optimization.
One of the effective data layout optimization is diamond tiling. Diamond tiling
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 257–264, 2017.
DOI: 10.1007/978-3-319-62932-2_24



258 S.G. Ammaev et al.

was applied to the wave equation together with vector optimizations and GPU
parallelization in [11].

2 The Iteration Space of Nested Loop and Hyperplane
Method

The perfect nest consisting of n loops has the following form.

for(I1=L1; I1<=R1; ++I1)
for(I2=L2; I2<=R2; ++I2)

for(In=Ln; In<=Rn; ++In)
{

LOOPBODY (I1,I2,...,In)
}

The set of all values of index vector I = (I1, I2, · · · , In) named the iteration
space of nested loop. If loop bounds are affinity-dependent on higher loop index,
the iteration space is a convex polyhedron. If loop bounds are constant, the
iteration space is multidimensional rectangular cuboid. Each point of iteration
space corresponds to a certain value of loop index vector I = (I1, I2, · · · , In). By
the execution of point of iteration space, we consider the execution of the nested
loop body for index values, that corresponds to this point of iteration space.

The idea of the hyperplane method is to divide the set of iteration space
points into subsets, placed on certain parallel hyperplanes. Herewith, the order
of computation of iteration space points is transformed to new nested loop. In the
new nested loop, the outer loop computes hyperplanes, and inner loops compute
points of each hyperplane. It is assumed that loops computing hyperplane points
are computed parallel.

3 Using the Hyperplane Method for Temporal Data
Locality in Iterative Algorithm

The hyperplane method can accelerate even without parallelization by improving
temporal data locality. We will present it on the Gauss-Seidel iterative method
for solving the Laplace’s equation of Dirichlet problem.

The Gauss-Seidel method consists in computing element u(i,j) of the array,
that is the original function, at numerical solving by the formula:

for (k=L1; k<=R1; ++k)
for (i=L2; i<=R2; ++i)

for (j=Ln; j<=Rn; ++j)
u(i, j) = ( u(i+1, j)+ u(i-1, j)+ u(i, j+1)+ u(i, j-1) ) / 4



Combining Parallelization with Overlaps and Optimization 259

The classic hyperplane method is applied to set of two innermost loops.
It leads to deceleration on modern computers, even at parallelization without
using transformation to blocking computations [14]. In a case of an iterative
algorithm for solving two-dimensional Dirichlet problem, the iteration space is
three-dimensional. Information dependencies in this iteration space are parallel
to the coordinate axes. The new nested loop has the following form.

Fig. 1. Hyperplane, that is orthogonal to the vector (1,1,1)

D = N + M - 1;
P = D + maxK - 1;
for (p = 1; p <= P; ++p) {

L = min( min(D,maxK) , min(p , P - p + 1) );
for (l = L; l > 0; --l) {

N1 = max(p-maxK, 0) + l;
R = min(min(D - N1 + 1, N1), min(N,M));
i = N1 - min(N1,M);
j = min(N1,M) + 1;
for (r = 1; r <= R; ++r) {



260 S.G. Ammaev et al.

++i;
--j;
x[i][j] = ( x[i-1][j] + x[i+1][j] + x[i][j-1] + x[i][j+1] ) / 4.0;

}
}

}

The idea of the method described in this section is to begin computations
of the next iteration without finishing of computation of the current iteration.
It allows to place computations with the same data near in program, that is to
improve temporal data locality. It is equivalent to using the hyperplane method
to the nest of all three loops. Herewith, the iteration space is partitioned to set of
points, placed on hyperplanes, that are orthogonal to the vector (1,1,1) (Fig. 1).

4 Decomposition of Iteration Space

It was found that at small sizes of the width or length of the matrix we get the
gain in execution speed for hyperplane method. However, the standard order of
execution is faster for large sizes of both the matrix parameters. This is due to
the fact that if both parameters are large then elements of hyperplane diagonal
don’t fit in cache memory and the speed of calculation falls on this diagonal.

To solve the described problem iteration space can be split into three-
dimensional tiles (Fig. 2).

It should be noted that these tiles are not rectangular parallelepipeds. These
tiles are straight prisms lying on the side. For each three-dimensional tile hyper-
plane method is applied separately. The number of iterations should be no greater
than the prism width of the tile (Fig. 2).

There were executed numerical experiments for different widths of prisms.
The results of these experiments are presented in Table 1.

Numerical experiments were executed on an Intel Core i7 processor - 4700HQ;
Frequency: 2400MHz; L3 cache size: 6MB. The dimension of the grid is 10000 *

Table 1. Dependence of the speedup of computations on the width of tiles (prisms)

Prism width 8 iterations Speedup 16 iterations Speedup 32 iterations Speedup

20 1.7 s 2.53 3.2 s 2.66 - -
30 1.6 s 2.65 3.2 s 2.66 - -
40 1.6 s 2.65 3.1 s 2.74 6.1 s 2.79
50 1.7 s 2.53 3.1 s 2.74 6.2 s 2.76
80 1.8 s 2.43 3.3 s 2.58 6.7 s 2.55
200 1.8 s 2.43 3.5 s 2.42 6.9 s 2.47
300 2.1 s 2.09 4.3 s 1.97 8.7 s 1.97
900 2.4 s 1.80 5.1 s 1.66 10.2 s 1.68



Combining Parallelization with Overlaps and Optimization 261

Fig. 2. Decomposition of iteration space into prisms

10000. The width of the strip is measured by the number of grid points, the
time is measured in milliseconds. Hyperplanes in each three-dimensional figure
are considered orthogonal to the vector (1, 1, 1). The normal calculation time
for 8 iterations is 4.3 s, for 16 iterations – 8.5 s, for 32 iterations – 17.1 s.

It can be seen from the table that this method gives an acceleration of about
2.6 times. The presented approach can be applied to iterative algorithms for the
numerical solution of other problems with other schemes in the basis (seven-point
templates, etc.).

5 Combining Parallelization and Usage of the Hyperplane
Method for Temporary Data Localization in Iterative
Algorithms

The next step is to increase speedup obtained by data localization by speedup
obtained by parallelization. The points of the iteration space lying on different
long figures can not always be executed in parallel. To apply parallel compu-
tations tiles considered in the previous section are divided into smaller pieces.
For parallelization on a cluster, the standard block allocation is not suitable
since such parallelization will allow using hyperplane method for only one step
of the iterative process. This is due to the fact that the tiles used (Fig. 2) are
not rectangular parallelepipeds. If we want to execute several steps of modi-
fied hyperplane method independently, then we need to duplicate elements lying
near the boundaries of the tile in neighboring processor elements. Therefore,
placement with overlaps [15,16] may be appropriate here.



262 S.G. Ammaev et al.

6 Placement with Overlaps for the Modified Hyperplane
Method

Placement with overlaps is a technique that allows reducing interprocessor
exchanges. This placement allows interprocessor transfers not after each iter-
ation, but after every k iterations. It assumes that distributed data divided into
tiles.

Placement with overlaps provides the storage of data lying near the bor-
der of tile also in neighboring processors (Fig. 3). This technique can give an
acceleration of 30–40% [15] in comparison with standard placement.

Consider the grid of the two-dimensional Dirichlet problem for the Laplace
equation. We map processor topology into two-dimensional topology, so the
processor rank is represented by two indexes (rank_p, rank_q), 0 <= rank_p <
p, 0 <= rank_q < q.

We will place the nodes of the original grid to the processor elements as
follows:

u(i, j) ∈ (rank_p, rank_q), i = [max(Np · (rank_p − 1) − m, 0),min(Np ·
(rank_p) + m,N)), j = [max(Nq · (rank_q − 1) − m, 0),min(Nq · (rank_q) +
m,N)),

Fig. 3. The set of elements of a two-dimensional array is distributed on 16 nodes of a
supercomputer. White lines divide the array into disjoint regions, each of which belongs
to its cluster node in a standard location. Gray color shaded part of the array belonging
to one of the nodes of the supercomputer when placed with overlapping. Other cluster
nodes have similar parts of the array. Some parts of the array belong to only one cluster
node, some to two, some to four.



Combining Parallelization with Overlaps and Optimization 263

where N is the dimension of the grid and m is the overlap size.
Then represent each tile in three-dimensional space, postponing a new dimen-

sion – the iterations of the Gauss-Seidel method. For each tile we start the hyper-
plane method for the number of iterations equal to m. On iterations multiples
of m we make interprocessor exchanges.

Numerical experiments (Table 2) were executed on the cluster «Angara-K1»
[17]. Note that without a use of overlaps the algorithm is processed in parallel
extremely inefficiently and works slower than sequential.

Table 2. Results of parallelizing Gauss-Seidel method using hyperplane method
and placement with overlaps (the dimension of the grid = 10000 * 10000, count of
iterations = 32, the overlap size = 8)

Method Processors count Time (sec) Speedup

Standard method 1 25.2 -
Modified hyperplane method 1 10.2 2.47
Parallel hyperplane method 2 6.3 3.98

4 3.5 7.3
8 1.7 14.5

16 0.9 28.1

7 Conclusion

We showed that the modified hyperplane method can improve temporal data
locality. It allowed to speed up Gauss-Seidel method in 2.5 times. However,
straightforward parallelization for the modified hyperplane method is not suit-
able due to data dependencies between elements of different tiles. Therefore, we
applied the technique of data placement with overlaps.

Through combining of data placement with overlaps and modified hyper-
plane method we got speedup that bigger than linear in 1.8 times (Table 2) in
comparison with the standard algorithm.

References

1. Lamport, L.: The parallel execution of DO loops. Commun. ACM 17(2), 83–93
(1974)

2. Fernandez, A., Llaberia, J.M., Valero-Garcia, M.: Loop transformation using
nonunimodal matrices. IEEE Trans. Parallel Distrib. Syst. 6(8), 832–840 (1995)

3. Kowarschik, M., Weiß, C.: An overview of cache optimization techniques and cache-
aware numerical algorithms. In: Meyer, U., Sanders, P., Sibeyn, J. (eds.) Algo-
rithms for Memory Hierarchies. LNCS, vol. 2625, pp. 213–232. Springer, Heidelberg
(2003). doi:10.1007/3-540-36574-5_10

http://dx.doi.org/10.1007/3-540-36574-5_10


264 S.G. Ammaev et al.

4. Wolfe, M.: More iteration space tiling. In: Proceedings of the 1989 ACM/IEEE
conference on Supercomputing (Supercomputing 1989), pp. 655–664. ACM, New
York (1989). https://doi.org/10.1145/76263.76337

5. Bastoul, C., Feautrier, P.: Improving data locality by chunking. In: Hedin, G. (ed.)
CC 2003. LNCS, vol. 2622, pp. 320–334. Springer, Heidelberg (2003). doi:10.1007/
3-540-36579-6_23

6. Likhoded, N.A.: Generalized tiling. Doklady NAN Belarusi, T. 55, N. 1, pp. 16–21
(2011). (in Russian)

7. Yurushkin, M.V.: Double block placement of data in RAM for solving the prob-
lem of matrix multiplication. Programmnaya inzheneriya, pp. 132–139 (2016). (in
Russian)

8. Gervich, L.R., Steinberg, B.Y., Yurushkin, M.V.: Development of parallel programs
with optimizing the use of memory structures. 120 p. Southern Federal University,
Rostov-on-Don (2014). (in Russian)

9. Lam, S.M.: A data locality optimizing algorithm. In: Proceedings of the ACM SIG-
PLAN 1991 Conference on Programming Language Design and Implementation,
pp. 30–44. ACM, New York (1991). ISBN:0-89791-428-7

10. Goto, K.: Anatomy of high-performance matrix multiplication. ACM Trans. Math.
Softw. 34(3), 1–25 (2008)

11. Perepelkina, A.Y., Levchenko, V.D.: DiamondTorre algorithm for high-
performance wave modeling. Keldysh Institute preprints, vol. 018, 20 p. (2015)

12. Graham, S.L., Snir, M., Patterson, C.A.: Getting Up To Speed: The Future Of
Supercomputing, p. 289. National Academies Press, Washington (2005)

13. Abu-Khalil, J., Guda, S., Steinberg, B.: Porting Parallel Programs Without Loss
of Efficiency. Open Syst. DBMS J. 23(4) (2015)

14. Steinberg, B.J., Abu-Khalil, J.M., Adigeyev, M.G., Bout, A.A., Kermanov, A.V.,
Pshenichnyy, E.A., Ramanchauskayte, G.V., Kroshkina, A.P., Gutnikov, A.V.,
Ponomareva, N.S., Panich, A.E., Shkurat, T.P.: A package of fast tools for genomic
sequence analysis. Int. J. Math. Models Methods Appl. Sci. 10, 42–50 (2016).
ISSN:1998-0140

15. Gervich, L.R., Kravchenko, E.N., Steinberg, B.Y., Yurushkin, M.V.: Automatic
program parallelization with block data distribution. Sib. Zh. Vychisl. Mat. 18(1),
41–53 (2015)

16. Gervich, L.R., Steinberg, B.Y., Yurushkin, M.V.: ExaScale Systems Programming.
Open Syst. J. 21(8) (2013)

17. Simonov, A.S.: High-speed Angara network: opportunities and prospects. PaVT
2016. http://omega.sp.susu.ru/books/conference/PaVT2016/talks/Simonov.pdf.
(in Russian)

https://doi.org/10.1145/76263.76337
http://dx.doi.org/10.1007/3-540-36579-6_23
http://dx.doi.org/10.1007/3-540-36579-6_23
http://omega.sp.susu.ru/books/conference/PaVT2016/talks/Simonov.pdf


Defining Order of Execution in Aspect
Programming Language

Sergey Arykov(&)

Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia

arykov@sscc.ru

Abstract. A fragmented approach to parallel programming and its implemen-
tation in the Aspect programming language are considered. Approach to define
order of execution of computation fragments in Aspect language is described
and illustrated by the example of matrix LU decomposition task.

Keywords: Parallel programming � Technology of fragmented programming �
Aspect programming language � Control schemes

1 Introduction

Attempts to increase the level of parallel programming, shifting most of the technical
problems to the programming system, are constantly being made both in Russia and
abroad. However, despite the abundance of projects, MPI and OpenMP (together with
specialized frameworks for specific architectures) remain the main tools for developing
effective applied parallel programs, and the problem of simple parallel programs
development and automatic use of new hardware capabilities is not solved, which is
because of a very high complexity of the task of increasing the level of parallel
programming.

The goal of the research is to develop a parallel programming system in which it is
possible to smoothly change the degree of nonprocedural representation of algorithms
through the explicit definition of information and control dependencies and provide the
user with higher level of programming environment.

2 A Fragmented Approach to Parallel Programming

The essence of the fragmented approach [1] is to represent an algorithm and its
implementing program as a set of data fragments and code fragments. In the course of
execution, the fragmented structure of a program is kept.

Each code fragment is supplied with a set of input data fragments (formal
parameters) used to compute output data fragments. The substitution of data fragments
as parameters into a code fragment is referred to as applying a code fragment to data
fragments (the same code fragment may be applied to different data fragments). The
code fragment with its input and output data fragments constitutes a computation

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 265–271, 2017.
DOI: 10.1007/978-3-319-62932-2_25



fragment. On the set of computation fragments, a partial order (control scheme) is
defined. The resulting program is created from such computation fragments, with
fragmentation of the program kept during the program execution.

Execution of a fragmented program is the execution of computation fragments in
any order that does not contradict to the defined control scheme. Each computation
fragment receives its resources during setting on execution, creates a new process of the
program and can migrate from one processor to another.

Consider an example of LU decomposition algorithm. The source matrix (a matrix
that should be factorized) is built out of the data fragments (sub-matrixes) and four
code fragments. The first code fragment will process the data located on the main
diagonal; the second code fragment – the data fragments to the right of the main
diagonal; the third code fragment – the data fragments below the main diagonal and the
fourth code fragment will calculate the rest data fragments.

Computations are performed through iterations. The first iteration is shown on
Fig. 1(left matrix). Each block represents data fragment and marked inside with the
name of computation fragment that will process that data fragment. Arrows indicate
dependencies between computation fragments.

On the first iteration, the data fragment with number 1 will be computed. After that,
the data fragments to the right and below with number 2 can be computed simulta-
neously. Finally, the internal matrix (data fragments with number 3) should be
recomputed. The next iteration will be applied only to the internal matrix recursively,
as shown on Fig. 1(right matrix).

It is important to notice that there is no necessity to wait until all computation
fragments on current iteration will be finished before moving to the next iteration. For
example, as soon as G4[0][1][1] is finished (iteration 1), it’s possible to start execution
of G1[1] (iteration 2). In other words, the fragmented algorithm of LU decomposition
has a high degree of nonprocedurality.

Fig. 1. Fragmentation of the matrix LU decomposition task

266 S. Arykov



3 Declarative Language Aspect

3.1 Language Fundamentals

The Aspect language [2, 3] allows representing algorithms in fragmented form with
high degree of nonprocedurality by defining dependencies between different compu-
tation fragments in declarative form. Computation fragments that do not have explicitly
specified dependencies are considered independent. Defining dependencies between
computation fragments is the main purpose of the language, it does not define any
computations – an imperative language (like C or C++) can be used to do that.

The Aspect language was created for numeric computation and therefore it is
focused on regular data structures and its main data type is array. Another key pecu-
liarity of the language is an ability to make several assignments to the same variable
(partial distribution of resources).

A typical Aspect program consists from the following sections: program – defines
name of the (sub)program; preface – constants declaration; data fragments – data frag-
ments declaration; code fragments – code fragments declaration; task data – assemble
program data from data fragments; task computation – defining computation fragments
by applying code fragments to data fragments; task control – defining dependencies
between computation fragments (and thus order of execution), i.e. control scheme.

A detailed description of Aspect programming language is out of the scope of this
paper, but the meaning of each section reflects fragmented approach directly and
self-illustrating in the example of matrix LU decomposition program (see text below).

3.2 Defining Control Scheme in Aspect Language

The most interesting thing in Aspect language is how the control scheme is defined, i.e.
“task control” section. The construction of control scheme is based on two key features:
strict partial order and explicit support of massive control schemes. By default, all
computation fragments can be executed simultaneously. That can be changed by
defining dependencies between computation fragments in task control section of
Aspect program (static control scheme).

The task control section consists from lines divided by semicolon. Each line defines
dependencies using the following syntax:

id1 expression½ �f g\ id2 expression½ �f g; id3 expression½ �f g; . . .f g

where id1 is the name of computation fragment that should be executed before com-
putation fragments with names id2, id3, etc. and symbol ‘<’ reflects strict order rela-
tion. For example,

means the execution of computation fragment A should be completed before compu-
tation fragments B or C can start execution. Symbol ‘<’ can be used to define

Defining Order of Execution in Aspect Programming Language 267



dependencies of two types (Aspect does not distinguish these types of dependencies
from each other):

• data dependency, when ‘A < B’ means A computes some data required by B to
proceed;

• control dependency, when ‘A < B’ means B doesn’t need data from A, but have to
be executed after A anyway because of other reason (resource allocation, perfor-
mance optimization, etc.).

Expressions are used to define massive control scheme. The format of allowed
expression is <index name> {+ <const>}. For example,

means each i-th computation fragment of code fragment S2 can be executed only after
i-th computation fragment of code fragment S1 has finished execution, and

means each (p,q) computation fragment S depends from its left and up neighbor.
By default, the massive control scheme applies to all range of definition of the

index where both computation fragments in ‘<’ relation are defined. That can be
changed using keyword where followed by logical expression for the index. In that
case, massive control scheme will be applicable only to those index values where
logical expression is true, e.g.

will apply only to even-valued index numbers.
Aspect language also permits to use logical operators to construct massive control

scheme. In the example below

i-th computation fragment S3 can be executed only when both S1[i] and S2[i] have
been finished. Similarly, in the control scheme

i-th computation fragment S3 can be executed when either S1[i] or S2[i] or both
have been finished.

268 S. Arykov



3.3 Example of Aspect Program

The main properties of Aspect language will be illustrated on task of matrix LU
decomposition. The solution of that task is shown below.

The meaning of most constructions of the program is obvious. Computations inside
the code fragments F1–F4 are defined using C++ language. In the section task com-
putations application of the code fragments F1–F4 to the task data are defined. Each of

Defining Order of Execution in Aspect Programming Language 269



the indices i, j, k goes through all values in the range defined after the index name; each
combination of (i, j) or (k, i, j) creates a separate computation fragment. In the section
task control, order of execution of different computation fragments (control scheme) is
defined according to syntax described in Sect. 3.2.

Program code for code fragments F2, F3 and F4 was omitted to reduce the length
of the program. It is similar to code of F1 with minor changes.

4 Results of Experiments

As a test platform, the computer with the following configuration was used: HP Pro-
Liant DL580 G5 (4 Intel Xeon X7350/256 GB RAM/Cent OS 5.3 64 bit/Intel C++
Compiler).

Test task is matrix LU decomposition. The size of the matrix is 5040 � 5040; all
entries are real numbers with double precision. The results are shown in Table 1 (the
time of computing is given in seconds).

The performance and scalability of fragmented approach is much better than the
same parameters of non-fragmented approach. That is because effective use of cache
memory and high degree of nonprocedurality.

5 Related Works

The closest work to Aspect is the Bars language [4]. Like Aspect, the Bars has
advanced capabilities of constructing control schemes, it separates definition of control
scheme from computations and allows writing expressions in a non-procedural form.
Massive operations can be implemented by infiltrating a unary operation into the data
of arbitrary structure (for example, arrays), and massive control schemes – by binary
infiltrate of C-formulas, but the mechanism for the formation of computational struc-
tures for such infiltration is not worked out. Currently, the project is not developing; a
working version for modern supercomputers is also missing.

Another attempt to create a fragmented programming system is LuNA project [5,
6], which is very high level implementation of fragmented approach to parallel pro-
gramming for distributed memory systems.

A large body of associated research is carried out in the field of producing
high-performance libraries for linear algebra, where the blocked algorithms that are
friendly to the cash-memory of processors are developed. Plasma project [7, 8] uses the
same fragmented programming approach, but introduce another term – “tiled” algo-
rithms. While the concept is the same, they do not provide full value programming

Table 1. LU decomposition program performance

Approach/Number of cores 1 2 4 8 16

Non-fragmented (C++/OpenMP) 267,14 139,10 90,53 67,27 67,29
Fragmented (Aspect) 31,01 15,6 7,93 4,13 2,35

270 S. Arykov



system, but program each “tiled” algorithm manually, because their goal is to create a
new high-performance successor of LAPACK.

6 Conclusion

The research of control schemes in numeric computations programs has important
practical application. When it becomes clear how many control schemes are exist in
that area and what is their essence, it will be possible to improve parallel programming
to a higher-level using high-quality control schemes implementation embedded in
parallel programming systems. Aspect programming system is a ready-made instru-
ment for such type of research.

References

1. Kireev, S., Malyshkin, V.: Fragmentation of numerical algorithms for parallel subroutines
library. J. Supercomput. 57, 161–171 (2011). doi:10.1007/s11227-010-0385-3

2. Arykov, S., Malyshkin, V.: Asynchronous language and system of numerical algorithms
fragmented programming. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 1–7.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03275-2_1

3. Arykov, S.: Asynchronous model of computation controlled by strict partial order. In: 10th
Annual International Scientific Conference on Parallel Computing Technologies (PCT-2016).
CEUR Workshop Proceedings, vol. 1576, pp. 54–67. CEUR-WS (2016)

4. Bystrov, A., Dudorov, N., Kotov, V.: About the core language. In: Languages and
Programming Systems (in Russian), pp. 85–106. CC SB AS USSR, Novosibirsk (1979)

5. Malyshkin, V., Perepelkin, V.: The PIC implementation in LuNA system of fragmented
programming. J. Supercomput. 69, 89–97 (2014). doi:10.1007/s11227-014-1216-8

6. Malyshkin, V., Perepelkin, V., Schukin, G.: Scalable distributed data allocation in LuNA
fragmented programming system. J. Supercomput. 73, 726–732 (2017). doi:10.1007/s11227-
016-1781-0

7. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra
algorithms for multicore architectures. Parallel Comput. 35, 38–53 (2009). doi:10.1016/j.
parco.2008.10.002. Elsevier, Amsterdam

8. YarKhan, A., Kurzak, J., Luszczek, P., Dongarra, J.: Porting the PLASMA numerical library
to the OpenMP standard. Int. J. Parallel Prog. 45, 1–22 (2016). doi:10.1007/s10766-016-
0441-6

Defining Order of Execution in Aspect Programming Language 271

http://dx.doi.org/10.1007/s11227-010-0385-3
http://dx.doi.org/10.1007/978-3-642-03275-2_1
http://dx.doi.org/10.1007/s11227-014-1216-8
http://dx.doi.org/10.1007/s11227-016-1781-0
http://dx.doi.org/10.1007/s11227-016-1781-0
http://dx.doi.org/10.1016/j.parco.2008.10.002
http://dx.doi.org/10.1016/j.parco.2008.10.002
http://dx.doi.org/10.1007/s10766-016-0441-6
http://dx.doi.org/10.1007/s10766-016-0441-6


Automated GPU Support in LuNA Fragmented
Programming System

Belyaev Nikolay1 and Vladislav Perepelkin1,2(✉)

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia

bl0ckzer01@gmail.com, perepelkin@ssd.sscc.ru
2 National Research University of Novosibirsk, Novosibirsk, Russia

Abstract. The paper is devoted to the problem of reduction of complexity of
development of numerical parallel programs for distributed memory computers
with hybrid (CPU+GPU) computing nodes. The basic idea is to employ a high-
level representation of an application algorithm to allow its automated execution
on multicomputers with hybrid nodes without a programmer having to do low-
level programming. LuNA is a programming system for numerical algorithms,
which implements the idea, but only for CPU. In the paper we propose a LuNA
language extension, as well as necessary run-time algorithms to support GPU
utilization. For that a user only has to provide a limited number of computational
GPU procedures using CUDA, while the system will take care of such associated
low-level problems, as jobs scheduling, CPU-GPU data transfer, network
communications and others. The algorithms developed and implemented take
advantage of concerning informational dependencies of an application and
support automated tuning to available hardware configuration and application
input data.

Keywords: Hybrid multicomputers · GPGPU · Parallel programming
automation · Fragmented programming · LuNA system

1 Introduction

When implementing large-scale numerical models on a supercomputer one can signif‐
icantly improve performance by utilizing both CPUs and GPUs available. Unfortu‐
nately, development of such a program is often problematic due to necessity to distribute
computational load between CPUs and GPUs, organize data transfer and computations’
synchronization. The distribution depends on relative performance of CPUs and GPUs,
RAM available, network topology and other architectural peculiarities of given hard‐
ware. Implementation of such a distribution is usually troublesome and requires skills
in system parallel programming, thus impeding numerical programs development.

Despite the fact that such system programming skills are not expected from appli‐
cation programmers, their involvement is still necessary, because efficient workload
distribution problem is far from being solved in general case. In particular, it requires
an understanding of application’s data and computations structure and sometimes even

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 272–277, 2017.
DOI: 10.1007/978-3-319-62932-2_26



understanding of peculiarities of the numerical model implemented (see [1] for an
example).

Automation of construction of numerical parallel programs, which efficiently utilize
available hardware, is a powerful way to hide the data distribution programming problem
from application programmers, thus simplifying numerical programs development.
Nowadays there are different systems and tools, aimed at simplifying GPU utilization.

OpenCL [2], for example, is an open standard and a library to support “kernel” devel‐
opment, which can be executed on CPU, GPU or FPGA. OpenCL employs a C-like
language to define a kernel. Computational device is selected automatically, based on
static analysis and profiling [3]. OpenCL is still a low-level programming tool, where a
programmer has to program control manually. OpenCL also does not concern data
locality of the application.

OpenACC [4] offers compiler directives to denote “GPU parts” and an API (Appli‐
cation Programmer Interface) to invoke them or transfer data. OpenACC does not
concern application data locality, does not balance workload and only supports shared
memory systems. DVMH [5] is similar to OpenACC, it allows tuning workload distri‐
bution for hybrid multicomputers, but does not provide dynamic load balancing.

Charm++ [6] is a platform-independent programming system with a compiler and
a run-time system. Charm++ program consists of “chares”, which can execute simul‐
taneously and interact with each other. A chare can be assigned to GPU or CPU by a
run-time system depending on the strategy, chosen by a programmer.

It can be concluded, that different systems provide some automation of GPU usage,
but either for a particular case, or at cost of a significant involvement of the programmer.
This is caused by peculiarities of models these systems employ.

A programming system LuNA [7] is being developed in Institute of Computational
Mathematics and Mathematical Geophysics SB RAS. LuNA is aimed at automation of
numerical parallel programs construction and consists of LuNA language, compiler and
a run-time system. LuNA system was chosen for this work, because it is designed for
automation of tuning program to hardware resources, which makes is useful to examine
algorithms of CPU-GPU load distribution algorithms. This paper is devoted to an
attempt to provide automated GPU support for LuNA system.

2 LuNA-Program

In LuNA an application program is represented as a set of computational fragments (CF)
and a set of data fragments (DF). Each DF is an aggregated immutable piece of data
(say, a subdomain of a numerical mesh at given time step or iteration). Each CF is an
operation on DFs, which takes a number of DFs as inputs and produces values of a
number of output DFs. Each CF is implemented by a conventional sequential procedure
without “side-effects”. LuNA-program consists of two parts: a number of sequential
procedures in C++ and a description of sets of CFs and DFs in LuNA language. LuNA
compiler translates programs into an internal representation, executable by LuNA run-
time system.

Automated GPU Support in LuNA Fragmented Programming System 273



3 CPU and GPU Workload Distribution Algorithm
with Automatic Data Refragmentation

The problem of workload distribution is formulated as follows. For each CF a device
(CPU or GPU) must be assigned to be executed on. The goal is to reduce overall appli‐
cation execution time, mainly by providing load balance of available devices and by
saving CPU-GPU data transfer “bottleneck.”

The proposed algorithm is based on the Rope-of Beads [8] (RoB) algorithm,
employed in LuNA system. In the RoB algorithm each CF and DF has a number n
assigned (0 ≤ n < L), where L is a parameter of the algorithm. Number n is called
coordinate on the [0; L) segment. More than one fragment can share the same coordinate.
The segment [0; L) is split into a number of sub-segments, one sub-segment for each
computational node. All the fragments, mapped to a sub-segment of a node, are consid‐
ered to be assigned to the node. Dynamic load balancing is possible through resplitting
the segment, causing CFs and DFs to migrate if their assignment has changed.

In the proposed algorithm an additional split within one node is proposed. A subseg‐
ment of a node is split into three new parts. The fist part corresponds to CPU(s) of the
node (the “CPU part”), the last part corresponds to GPU (the “GPU part”), and the middle
part corresponds to fragments, stored in CPU memory, but executed on GPU (the “drag-
through part”). For the drag-through part once a CF has to be executed, its input data
are copied to GPU, then the CF is executed, and its output DFs are transferred to CPU,
releasing occupied GPU memory (this allows running on GPU more CFs than fit in its
memory). DFs of GPU and CPU parts never leave their devices in order to optimize
CPU-GPU connection usage.

The reasoning behind this splitting a sub-segment into three parts is the following.
To save GPU-CPU traffic, each of the devices should have its part of computations (CPU
and GPU parts). In order to achieve load balance GPU may require more workload, than
its memory can hold. To handle this case the drag-through part of the sub-segment is
introduced. The drag-through workload occupies CPU memory, but is transferred in
smaller portions to GPU for computations (trading off CPU-GPU bandwidth against
CPU or GPU idle time). Although it is unclear, what proportions of parts 1, 2 and 3
would be the best for certain application and hardware, the optimum can be searched
for (in particular, one or two parts can degenerate).

To reduce run-time system overhead, bound with number of fragments, static data
refragmentation is suggested to be combined with the proposed algorithm. The refrag‐
mentation is performed as follows: All the GPU fragments (GPU part) are merged into
one, all the CPU fragments (CPU part) are resplit into a number of fragments equal (or
proportional) to the number of CPU cores, and the drag-through part is resplit into a
number of fragments (portion size), which is a parameter of the proposed algorithm.
Such refragmentation requires, that involved C++ procedures fit the “merge require‐
ments”, i.e. processed domain size must be a parameter of the procedures, which is
annotated in code by the programmer.

The proposed algorithm concerns informational dependencies and data structure of
the application algorithm (this is inherited from the original RoB algorithm). It can be
tuned to properties of an application and hardware configuration using the parameters

274 B. Nikolay and V. Perepelkin



of the proposed algorithm. The parameters can be defined automatically on the basis of
static analysis, hardware benchmarking and/or application profiling, but this is out of
scope of the paper. The drawback of the proposed algorithm is the 1D refragmentable
decomposition requirement.

4 Testing

The proposed algorithm was implemented as a part of LuNA programming system. To
study performance characteristics of the algorithm a number of tests was performed. All
the tests were conducted on single computing node with 2 × Xeon 5670 (3 GHz) CPUs
and GPU Nvidia Tesla M 2090. The application tested is a model finite scheme solver,
where the number of computations per single data unit is a parameter. This parameter
(called load) is used to represent different application classes with different volume of
computations per data, which is one of the key properties of an algorithm.

The first test is devoted to finding an optimal CPU/GPU workload proportion (CPU
workload percentage is the X axis). The drag-through parameter is degenerated to zero.
It can be seen in Fig. 1, the optimal time is achieved when both CPU and GPU are used,
despite the fact, that such execution requires extra CPU-GPU communications, as
compared to CPU-only or GPU-only execution. Note, that the optimal proportion is
different for different load value.

Fig. 1. Program execution time dependency on the amount of computations, assigned to CPU,
for different computation-per-data intensity

The second test is devoted to obtaining optimal value of the drag-through parameter.
The X axis corresponds to different value of the parameter. It can be seen from Fig. 2
that optimal drag-through parameter is non-zero, which is an evidence of usefulness of
the dragging-through part of the proposed algorithm. It also can be seen, that the optimal

Automated GPU Support in LuNA Fragmented Programming System 275



value of the parameter depends on the load parameter. It means, that different applica‐
tions would require different value of the drag-through parameter.

Fig. 2. Program execution time dependency on amount of the “middle-part” DFs for different
computation-per-data intensity.

It is worth mentioning, that during the testing the absolute performance achieved is
close to that of manually developed programs, which means that the conclusions made
are essential to the proposed algorithm, and are not significantly affected by foreign
factors, such as LuNA run-time system overhead.

5 Conclusion

An algorithm to distribute workload to CPUs and GPUs of a multicomputer is proposed.
The algorithm possesses parameters, capable of tuning to application and hardware
peculiarities to reduce program execution time. The algorithm was implemented as a
part of LuNA system and performance tests were performed. The tests showed that the
algorithm proposed allows automated efficient usage of hybrid (GPU+CPU) computing
nodes of a multicomputer. The tests also showed, that the parameters of the proposed
algorithm are essential.

Future work supposes solution of the problem of automatic (or at least automated)
definition of parameters of the algorithm to allow LuNA tune to given hardware config‐
uration and application peculiarities automatically.

276 B. Nikolay and V. Perepelkin



References

1. Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of numerical
models on mimd-multicomputers. Int. J. Futur. Gener. Comput. Syst. 17(6), 755–765 (2001).
Elsevier Science

2. https://www.khronos.org/opencl/ accessed May 2017
3. Wen, Y., Wang, Z., O’Boyle, M.F.P.: Smart multi-task scheduling for OpenCL programs on

CPU/GPU heterogeneous platforms. In: 21st International Conference on High Performance
Computing (HiPC), pp. 1–10 (2014)

4. http://www.openacc.org/ accessed May 2017
5. Bakhtin, V.A., Chetverushkin, B.N., Krukov, V.A., Shilnikov, E.V.: Extension of the DVM

parallel programming model for clusters with heterogeneous nodes. Doklady Math. 84(3), 879–881
(2011). Moscow: Pleiades Publishing Ltd

6. http://charm.cs.illinois.edu/research/charm accessed May 2017
7. Malyshkin, V.E., Perepelkin, V.A.: LuNA fragmented programming system, main functions

and peculiarities of run-time subsystem. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873,
pp. 53–61. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23178-0_5

8. Malyshkin, V.E., Perepelkin, V.A., Schukin, G.A.: Distributed algorithm of data allocation in
the fragmented programming system LuNA. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol.
9251, pp. 80–85. Springer, Cham (2015). doi:10.1007/978-3-319-21909-7_8

Automated GPU Support in LuNA Fragmented Programming System 277

https://www.khronos.org/opencl/
http://www.openacc.org/
http://charm.cs.illinois.edu/research/charm
http://dx.doi.org/10.1007/978-3-642-23178-0_5
http://dx.doi.org/10.1007/978-3-319-21909-7_8


Automation Development Framework of Scalable
Scientific Web Applications Based on Subject Domain

Knowledge

Igor V. Bychkov, Gennady A. Oparin, Vera G. Bogdanova,
Anton A. Pashinin, and Sergey A. Gorsky(✉)

Matrosov Institute for Systems Dynamics and Control Theory,
Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia

{oparin,bvg}@icc.ru, apcrol@gmail.com, gorskysergey@mail.ru

Abstract. Currently high-performance computing technologies using compu‐
tational capabilities for solving scientific, are actively improving. The purpose of
our research is the development of toolkit for construction and execution of
scientific service-oriented application in heterogeneous distributed computing
environment (HDCE). These tools provide the access for subject domain experts
to the high-capacity computing resource, using these resources without extensive
knowledge of computing architecture and low-level software, and the parallel
execution of the user application on the base of the service-oriented technology
and multi-agent control. We describe an architecture and functional capabilities
of automated toolkit for the service-oriented application creation based on applied
programs package, and multi-agent control of this application parallel running in
HDCE. We demonstrate an example of the creation of the web-application for
parametric feedback synthesis of linear dynamic object by these tools. The offered
technology allows simplifying service creation and provides new qualitative
opportunities of controlling parallel high-performance computations.

Keywords: Scalable application · Service · Parametric synthesis of control law

1 Introduction

One of current trends in high performance computing (HPC) is to apply its possibilities
for complicated scientific problems solving in different subject domains. Therefore,
there is relevant the creation of toolkit intended for program environments creation
provided the access to HPC resources for subject domain experts, and using these
resources without extensive knowledge of computing architecture and low-level soft‐
ware tools. There is also a tendency of combining the service-oriented approach that
provides access to resources via the Internet, and the multi-agent technology for
managing these resources.

The computation works automation issues are relevant for many subject domains.
This paper discusses the automation of problem solving from researching the dynamic
and design of control systems for moving objects, in particular, the problem of struc‐
turally parametric synthesis of linear control systems (LCS). Using HPC requires

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 278–288, 2017.
DOI: 10.1007/978-3-319-62932-2_27



automatizing complex of scientific and technological works, performed on the level of
mathematical models, analytical and numerical methods of its research. The foundation
of this complex involves three closely connected conceptions – mathematical models,
approach methods of these models and methodology of main research object achieve‐
ment. The integration of these conceptions constitutes the basis of algorithmic knowl‐
edge of computation works. In the process of dynamics research and LCS designing
multivariate calculations are of great need. By multivariate calculations, we mean
computational experiments, where the structure and parameter values of model,
methods, and methodology vary according to research strategy and tactics, and the
search of the acceptable solution. In previous decades, new tendency was formed in
programing, namely the creation of applied programs packages, representing a set of
interrelated programs of functional filling and control tools. These packages provide the
solution of certain class problems described with terms of subject domain glossary. The
represented research purpose is the creation of toolkit, which automatizes converting an
applied program package into scalable service-oriented application, and controls the
parallel computation schemes execution of this application in HDCE. In the context of
parallel computing process, we consider the scalability as increasing the speedup while
saving the stable level of the efficiency with increasing the processors number. Offered
toolkit is also horizontally scalable. Integration with additional computational node,
activated into HDCE, for using its resources is realized by installing on this node
configurable agent-manager, which functional capabilities are examined in the descrip‐
tion of the toolkit architecture.

We offer such toolkit, namely High-performing computing Service-Oriented Multi‐
agent System (HPCSOMAS) Framework, which was developed in accordance with the
following requirements:

• Providing automation tools for creating service-oriented applications based on an
applied programs package;

• Availability of tools for describing knowledge about the subject domain;
• Providing the access to high-performance resources;
• Organizing multi-agent control of parallel execution in HDCE with distribution of

computing resources on the user application level;
• Orientation towards two categories of users, subject domain experts and developers.

This approach suggests developing by these tools specialized multi-agent systems
(MAS). MAS agents are represented in form of services and perform decentralized
resource management on the base of cooperation. Such approach provides new quali‐
tative opportunities of controlling high-performance computations. The paper explores
the HPCSOMAS architecture and the technology of developing HPCSOMAS-based
web-application. We described such application for the parametric synthesis of the
stabilized feedback law for various classes of linear dynamic objects.

Automation Development Framework 279



2 Related Data

Currently controlled dynamic systems are actively developing and improving. Despite
the large number of existing methods, the problem of analyzing and synthesizing
different classes of such systems is still a challenging issue. Particularly, binary dynamic
systems (Boolean networks) are of great interest in theory and practice. Stability of
control systems is a mandatory requirement for such systems. Synthesis of the control
law for such objects is often associated with significant computational difficulties. The
use of modern computing tools greatly speeds up the synthesis process, reducing the
amount of the researcher routine work by dozens of times. Program tools for solving
tasks of controlling complex dynamic systems have been developing for a long time [1].
The system MATLAB [2] is very well known, however this system does not provide an
expert with a necessary level of automation of computation work, and is designed mostly
for the extensive tests of various algorithms and methods rather than effective solution
of complex engineering problems of controller design [3]. Therefore program tools for
automated solution of problems referred to above, oriented on different categories of
users are being developed along with this system. These tools provide ready-for-use
applications for typical project solutions, and possibilities for creating new applications.
As an example, we can consider the system, presented in [4]. However, issues, connected
with using high-capacity resources for solving complicated problems referred to above
and organization of control of their parallel solution in HDCE, still have not been
resolved. In the review [5] some classes of problems of linear control theory, the non-
convexity and NP-hardness of which create difficulties in the solution search are
described. Thus, in the work [6] the NP-hardness of the problem of State Output Feed‐
back (SOF) is shown. A large number of topical problems in contemporary control
theory, which require high-capacity resources, are connected with the problem of para‐
metric synthesis of linear controller for linear dynamic objects.

In recent years, problem-oriented environments based on HPC and service-oriented
technology are actively developing and improving [7, 8]. These researches concerned
with development of workflow systems, performed by Russian [9] and foreign [10–12]
scientists. Various aspects of the implementation of management in such systems
actively explores [13, 14]. There are successful solutions [15] in the field of multi-agent
control of distributed computing, but the orientation of many MAS to operate in a
particular HDCE reduces the efficiency of their operation in environments with different
characteristics. Currently, developers do not have the necessary high-level tool for the
mass creation and application of MAS [16].

The systems for transparent user access to distributed computing resources, and high-
level tools for creating services is also actively improving. Thus, for example, in [17]
the toolkit for compounding computing resources into a single service and providing
users an access to this service through web-application was described. However, this
toolkit do not provide tools of automation for designing of scalable web-applications
and managing multivariate computations. In [18] the web-service for execution of such
computations based on Everest platform are described. However, additional means for
description of the execution logic of web-application may be used only by programming
way. In the work [8] some challenges unresolved by such systems as grid middleware,

280 I.V. Bychkov et al.



scientific workflow systems, web service toolkits, gateways and platforms are discussed,
and the Everest platform architecture and its basic components are overviewed. Despite
the variety of tools of this kind, a number of questions is still a challenging issue. There
are such questions as decentralized control of resource distribution, more preferable in
partitioned environments for providing scalability [19], the employment of tools for
subject domain specification, and declarative language tools for the execution logic
description. Therefore, the development of automation tools integrating creating agents
in the form of services, the composition of services with description of execution logic,
and multi-agent decentralized control of parallel running in HDCE with the distribution
of computing resources at the user application level remains a relevant problem.

3 HPCSOMAS Architecture

HPCSOMAS Framework is intended for developing specialized MAS, designed for
organizing control of parallel execution of scalable service-oriented applications in
HDCE. Such application consists of two main parts – system part, independent from the
solving problem class, and problem-oriented one. The system application part consists
of the set of components, which are the agents of hierarchical role-based MAS.

There are several possibilities for creating such application. The application based
on an autonomously used program (or several programs) is simply designed as a service
(or several services) with an appropriate description and web interface. An execution
logic of the application is defined by declarative way with using system services. There
are two ways for implementation of web-applications based on a package of interrelated
programs. The first one is to create a manual description of the subject domain reflecting
there interrelations. Then every program is realized as a service. The other way uses for
intellectual packages of application programs, which represent a combination of knowl‐
edge and processing tools. In this case, there is possibility to use automated conversion
of the package knowledge into HPCSOMAS knowledge base. Using an approach, based
on knowledge, constitutes the methodological basis of the automation of building web-
applications, based on packages of applied programs. We can distinguish three concep‐
tually isolated layers of knowledge: computational, system and production knowledge,
over which problems are formulated [20]. Computational knowledge are libraries of
sub-programs, provided with specifications and realizing methods of solving problems
in the application subject domain under consideration. System knowledge reflect a set
of concepts, which are necessary for describing structural peculiarities and characteris‐
tics of blocks of mathematical models and research algorithms. Production knowledge
allows, depending on the parameters of the model, to select the most appropriate research
algorithms as well as numerical values of control parameters of these algorithms. The
conceptual model of the subject domain includes the description of the interaction of
the following objects: parameters, modules, operations and productions. Developed
web-application consolidates objects of the subject domain, which are correspondent to
the family of research methods, similar in terms of parameters and operations. Opera‐
tions are converted into computational services. The HPCSOMAS Framework includes
the following components:

Automation Development Framework 281



• Class library for creating agents, which is used in programmatic implementation of
MAS;

• A basic set of configurable system agents, configuration of which is performed
according to characteristics of the specific computing resource;

• Agent Based Class Service Wizard (ABCSW) tools for the automation of the process
of creating and configuring agents, and developing a service-based application, based
on an applied programs package;

• Language tools for subject domain specification, and a set of converters for trans‐
lating knowledge from one format to a different another;

• Packages of configurable subject-oriented computing services, represented web-
applications running in the HPCSOMAS environment.

HPCSOMAS combines the multi-agent approach to organizing the computational
process, described in detail in [21, 22] and service-oriented technologies for its imple‐
mentation. The MAS, created on HPCSOMAS platform, includes three hierarchical
levels of agents – user agent (web-interface), server agent-program (agent-manager),
system agents and agents of computational applications (computational services). The
first level is the frontend part of the platform. The other two levels are the backend part.

The user agent is designed as a thin-client. JavaScript, html language and jQuery
library used for its implementation. This agent allows using the HPCSOMAS based
application in the browser from computers and mobile devices. The connection is estab‐
lished through AJAX-queries over HTTP messages, and authentication tools with the
help of web-sessions protect the transmitted data for user agents. Access keys used for
other types of agents.

The agent-manager and computational services are designed as java-servlets based
on the REST architectural style. Every agent-manager represent own computational
recourse, and is configured accordingly its characteristics. The agent-manager is the
access-point to the computational resources for the user-agent and includes operations
with the main objects of the system, such as tasks, computational subtasks and resources.
These operations are realized as system web-services. Agent-managers are connected
peer-to-peer, and share information (about available services, uses, tasks, and current
state of resources) over HTTP messages. To distribute tasks between these agents, a
tender model is used, where the lots are tasks, and participants are the agent-managers,
representatives of computing resources claiming to perform these tasks. Using the
Vickrey auction for this model, which is discussed in detail in [23], allows to achieve
consistent stable state of participants of the auction upon the end of the bidding. The
formed task (subtask) is transferred to the selected agent-manager, which, in turn, sends
it to the corresponding computational agent, which independently running task in inter‐
action with the control system of task scheduling of the computational resource.

Agents of computational applications (computational services) represent user
programs, transformed into web-services. Computational web-services, designed for
performing a single operation (elementary services) can be combined into a composite
service with the help of system web-services, describing its execution logic.

HPCSOMAS Framework differs from composite applications performance control
systems [9–11] by following functional capabilities:

282 I.V. Bychkov et al.



• The creation of problem-oriented and system agents in the form of services;
• The declarative description of the composite service execution logic;
• The multiagent control of parallel execution of received application composite serv‐

ices in HDCE;
• The distribution of computational resources on the level of a user-application.

4 ABCSW Computational Services Development Subsystem

In order to provide automation of converting application programs of the user into
computational services, new Agent Based Class Service Wizard (ABCSW) have been
introduced into HPCSOMAS. This tool includes the editor of computational services
and agent-manager. ABCSW intended for describing the service schema, and for
configuring computational services, in the form of which problem-oriented and system
agents are realized with the help of HPCSOMAS Framework (Fig. 1). ABCSW are
designed for programmers as well as subject domain experts. The former are provided
with code libraries for programmatically implementation of complex computational
services, and ABCSW tools help to install these services to computational resources.
The latter have access to ready-made realizations of particular scenarios of using
HPCSOMAS tools in converting the user’s programs into services. Then uses must
configure services with the ABCSW editor without compiling the code.

Fig. 1. The structural scheme of developing the service-oriented application in HPCSOMAS
environment

Automation Development Framework 283



5 Service-Oriented PSF Application

The PSF web-application groups services for the parametric synthesis of controller
parameters of linear and binary dynamic systems, and constructing stability regions.

The service for the parametric synthesis of the statistical output controller for a
continuous linear dynamic system is designed for solving the problem [5]: for the system

(1)

where  – state of the object;  – control;  – measured output; ,
 and  – dimensionalities of vectors x, u and y; A, B, C – matrices of constant coeffi‐

cients of corresponding dimensionality, figure out whether it is possible to stabilize it
by the feedback of the following type

(2)

where  is such, that the Ac matrix of the closed-loop system 

is stable. Hereinafter we suppose that interval limitations  are imposed on
matrix K (inequalities are considered as componentwise).

The service for the parametric synthesis of the statistical output controller for a linear
discrete dynamic system is designed for solving the problem: for the system

(3)

where  – state of the object;  – control vector;  – vector of
measured output; ,  and  – dimensionalities of vectors x, u and y, find out whether
it is possible to stabilize it by the feedback of the following type

(4)

where  is such, that the Ac matrix of the closed-loop system  is
stable.

The service for the parametric synthesis of the dynamic output controller for a linear
continuous dynamic system is designed for solving the problem: for system (1) find out
whether it is possible to stabilize it with the help of feedback of the following type

where  – controller state, interval limitations are imposed on Ar, Br, Cr, Dr

matrices. With k ≠ 0 the equation of the closed-loop system is the following:
, where . Block structure of matrix Ac is shown in [24].

284 I.V. Bychkov et al.



Described above services are based on the parallel algorithm of the directed solution
search in the parameter state space, developed by authors [25].

Service for the parametric synthesis of static controller for a binary dynamic system
(BDS) is designed to solve the following problem. We consider a linear BDS, where the
vector-matrix equation is as follows:

(5)

where x, u – vector of state and control vector, respectively,
,  – discrete time (measure number), A

–  binary matrix of state, B –  binary input matrix, operations of addition
and multiplication are performed by . The problem of static controller synthesis
for (5) is in the choice of the control law from the class of inverse linear connections by
state as follows

where P – binary matrix of controller parameters of the corresponding order, which
provides consistent balance x = 0 of the closed-loop system

(6)

Balance position  of autonomous system (6) is considered stable, if for each
 there is such a moment of time , that trajectory  for t time steps

reaches zero state: . It is evident, that  for all following moments
of time t > k. This service provides the automated specification of the required dynamic
property of a closed system on the language of formal logic in the form of a quantified
Boolean formula (QBF). The synthesis problem concludes in checking the trueness of
QBF (TQBF problem) with the following search of feedback matrix (SAT problem).

Next service group intended for constructing two/three-dimensional (2D/3D)
stability region in the space of controller parameters of a closed-loop control system
within the given ranges. By varying selected parameters, a numerical grid is constructed.
Multivariate calculations are used to determine the stability of the Ac matrix of a closed-
loop system in the each point of this grid. Tools for describing the logic of performing
services provide the capability to use cycles, logical conditions, and multivariate compu‐
tations. Computational services based on algorithms providing the natural data paral‐
lelism for solving problems referred to above in HDCE.

For example, we find the stabilizing feedback (4) for the system of type (3), matrices
of which are defined as follows [26]:

Automation Development Framework 285



with the following limitations for the K feedback matrix:

As a result, we get the following feedback matrix:

which makes the closed-loop system stable. The roots of the characteristic equation of
Ac matrix located in the unit circle, and have the following values:

The result of constructing 3D region with fixed value of the first parameter K11 and
variation other parameters in the interval [-1, 1] with the step 0.02 is shown on Fig. 2.

Fig. 2. Stability region in the space of parameters K12 (axis x), K21 (axis y), K22 (axis z)

HPCSOMAS agents (agent-managers) were located on virtual machines of the inte‐
grated cluster environment. Computational resources of the supercomputer center [27]

286 I.V. Bychkov et al.



of the Matrosov Institute for System Dynamics and Control Theory of SB of RAS were
used as HDCE during the experiment.

6 Conclusion

The new automated framework for service-oriented scientific applications and organ‐
izing high-performance problem-oriented computations based on multiagent control
was developed. The web-application for parametric synthesis of stabilized feedback law
for various classes of linear dynamic objects was implemented on the base of this
framework. Experimental results [25, 28] show scalability and effectiveness of compu‐
tations with the help of scientific services, based on the suggested approach.

Acknowledgments. The research was supported by Russian Foundation of Basic Research,
projects no. 15-29-07955.

References

1. Somov, Y.I., Oparin, G.A.: Methods and software for computer-aided design of the spacecraft
guidance. In: Navigation and Control Systems, MESA, vol. 7, no. 4, CSP, Cambridge, UK,
I&S 2016 - Florida, USA, pp. 613–624 (2016)

2. MathWorks: http://www.mathworks.com
3. Aleksandrov, A.G., Isakov, R.V., Mikhailova, L.S.: Structure of the software for computer-

aided logical design of automatic control. Autom. Remote Control 66(4), 664–671 (2005)
4. Aleksandrov, A.G., Mikhailova, L.S., Stepanov, M.F.: GAMMA-3 system and its application.

Autom. Remote Control 72(10), 2023–2030 (2011). doi:10.1134/S0005117911100031
5. Polyak, B.T., Shcherbakov, P.S.: Hard problems in linear control theory: possible approaches

to solution. Autom. Remote Control 66(5), 681–718 (2005). doi:10.1007/s10513-005-0115-0
6. Nemirovskii, A.A.: Several NP-hard problems arising in robust stability analysis. Math.

Control Signals Syst. 6, 99–105 (1993)
7. Kovalchuk, S.V., Smirnov, P.A., Knyazkov, K.V., Zagarskikh, A.S., Boukhanovsky, A.V.:

Knowledge-based expressive technologies within cloud computing environments. In: Wen,
Z., Li, T. (eds.) Practical Applications of Intelligent Systems. AISC, vol. 279, pp. 1–11.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54927-4_1

8. Sukhoroslov, O., Volkov, S., Afanasiev, A.: Web-based platform for publication and
distributed execution of computing applications. In: 14th International Symposium on Parallel
and Distributed Computing (ISPDC), pp. 175–184. IEEE (2015)

9. Nasonov, D., Visheratina, A., Butakova, N., Shindyapinaa, N., Melnika, M., Boukhanovskyb,
A.: Hybrid evolutionary workflow scheduling algorithm for dynamic heterogeneous
distributed computational environment. In: International Joint Conference SOCO 2014-CISIS
2014-ICEUTE 2014, pp. 83–92 (2014)

10. Wolstencroft, K., Haines, R., Fellows, D., et al.: The taverna workflow suite: designing and
executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res.
41(Web Server), 557–561 (2013). doi:10.1093/nar/gkt328

11. Deelman, E.: Pegasus in the Cloud: Science Automation through Workflow Technologies.
IEEE Internet Comput. 20(1), 70–76 (2016)

Automation Development Framework 287

http://www.mathworks.com
http://dx.doi.org/10.1134/S0005117911100031
http://dx.doi.org/10.1007/s10513-005-0115-0
http://dx.doi.org/10.1007/978-3-642-54927-4_1
http://dx.doi.org/10.1093/nar/gkt328


12. Silva, R.F., Deelman, E., Filgueira, R., Vahi, K., Rynge, M., Mayani, R., Mayer, B.:
Automating environmental computing applications with scientific workflows. In:
Environmental Computing Workshop (ECW 2016) (2016)

13. Silva, R.F., Vicente, R.F., Deelman, E., Pairo-Castineira, E., Overton, I., Atkinson, M.: Using
simple PID controllers to prevent and mitigate faults in scientific workflows. In: 11th
Workflows in Support of Large-Scale Science (WORKS 2016) (2016)

14. Knyazkov, K.V., Kovalchuk, S.V.: Modeling and simulation framework for development of
interactive virtual environments. Procedia Comput. Sci. 29, 332–342 (2014). Elsevier

15. Kaljaev, A.I., Kaljaev, I.A., Korovin, J.: Metod mul’tiagentnogo dispetchirovanija resursov
v geterogennoj oblachnoj srede pri vypolnenii potoka zadach. Herald Comput. Inf. Technol.
11, 31–40 (2015)

16. Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul. 18(1), 11
(2015)

17. Gorodnichev, M.A., Vaycel, S.A.: Organization of access to supercomputing resources in the
HPC community cloud. Comput. Math. Soft. Eng. 3(4), 85–95 (2014). doi:10.14529/
cmse140406

18. Volkov, S., Sukhoroslov, O.A.: Generic web service for running parameter sweep experiments
in distributed computing environment. Procedia Comput. Sci. 66, 477–486 (2015)

19. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid resource
management systems for distributed computing. Soft. Pract. Exper. 32, 135–164 (2002)

20. Bychkov, I.V., Oparin, G., Tchernykh, A., Feoktistov, A., Bogdanova, V., Gorsky, S.:
Conceptual model of problem-oriented heterogeneous distributed computing environment
with multi-agent management. Procedia Comput. Sci. 103, 162–167 (2017)

21. Bychkov, I.V., Oparin, G.A., Feoktistov, A.G., Bogdanova, V.G., Pashinin, A.A.: Service-
oriented multiagent control of distributed computations. Autom. Remote Control 76(11),
2000–2010 (2015)

22. Bychkov, I.V., Oparin, G.A., Feoktistov, A.G., Sidorov, I.A., Bogdanova, V.G., Gorsky, S.A.:
Multiagent simulation control of computational systems on the basis of meta-monitoring and
imitational. Optoelectron. Instrum. Data Process. 52(2), 107–112 (2016). doi:10.3103/
S8756699016020011

23. Bogdanova, V.G., Bychkov, I.V., Korsukov, A.S., Oparin, G.A., Feoktistov, A.G.: Multiagent
approach to controlling distributed computing in a cluster grid system. J. Comput. Syst. Sci.
Int. 53(5), 713–722 (2014). doi:10.1134/S1064230714040030

24. Balandin, D.V., Kogan, M.M.: Synthesis of nonfragile controllers on the basis of linear matrix
inequalities. Autom. Remote Control 67(12), 2002–2009 (2006). doi:10.1134/
S0005117906120125

25. Oparin, G., Feoktistov, A., Bogdanova, V., Sidorov, I.: Automation of multi-agent control for
complex dynamic systems in heterogeneous computational network. In: AIP Conference
Proceedings 1798 (2017). doi:10.1063/1.4972709

26. Bara, G.I., Boutayeb, M.: Static Output feedback stabilization with Performance for linear
discrete-time system. IEEE Trans. Autom. Control 50(2), 250–254 (2005)

27. Irkutsk Supercomputer Center of SB RAS. http://hpc.icc.ru
28. Bychkov, I., Oparin, G., Feoktistov, A., Bogdanova, V., Sidorov, I.: The service-oriented

multiagent approach to high-performance scientific computing. In: Dimov, I., Faragó, I.,
Vulkov, L. (eds.) Numerical Analysis and Its Applications, NAA 2016. LNCS, vol. 10187,
pp. 261–268. Springer, Cham (2017). doi:10.1007/978-3-319-57099-0_27

288 I.V. Bychkov et al.

http://dx.doi.org/10.14529/cmse140406
http://dx.doi.org/10.14529/cmse140406
http://dx.doi.org/10.3103/S8756699016020011
http://dx.doi.org/10.3103/S8756699016020011
http://dx.doi.org/10.1134/S1064230714040030
http://dx.doi.org/10.1134/S0005117906120125
http://dx.doi.org/10.1134/S0005117906120125
http://dx.doi.org/10.1063/1.4972709
http://hpc.icc.ru
http://dx.doi.org/10.1007/978-3-319-57099-0_27


Stopwatch Automata-Based Model for Efficient
Schedulability Analysis of Modular

Computer Systems

Alevtina Glonina(B) and Anatoly Bahmurov

Lomonosov Moscow State University, Moscow, Russia
{alevtina,bahmurov}@lvk.cs.msu.su

Abstract. In this paper we propose a stopwatch automata-based model
of a modular computer system operation. This model provides an ability
to perform schedulability analysis for a wide class of modular computer
systems. It is formally proven that the model satisfies a set of correctness
requirements. It is also proven that all the traces, generated by the model
interpretation, are equivalent for schedulability analysis purposes. The
traces equivalence allows to use any trace for analysis and therefore the
proposed approach is much more efficient than Model Checking, espe-
cially for parallel systems with many simultaneous events. The software
implementation of the proposed approach is also presented in the paper.

Keywords: Stopwatch automata · Integrated modular avionics · Sim-
ulation · Schedulability analysis

1 Introduction

Nowadays modular approach to computer systems design is replacing the old
federated approach. We consider Integrated Modular Avionics (IMA) [1] systems
as an example of modular computer systems, but the proposed approach can be
also applied for other modular architectures (e.g. [2,3]).

An IMA system consists of standardized hardware modules containing mul-
ticore processors connected by a switched network with virtual links. There can
be several module types in a system with different processors performance.

A module hardware resources are shared by several applications, called parti-
tions. Every partition is mapped to one of the processing cores. One core can be
shared by several partitions. A partition has its own memory space and execution
time slots, called windows. A core’s scheduling period is divided into windows
and each window corresponds to one of the core’s partitions.

A partition contains a set of tasks. A task is characterized by priority, period,
deadline and worst case execution time (WCET) on every processor type. Every
task period an instance of the task (called a job) must be executed. There can be
data dependencies between tasks with the same period: current job of receiver
task can’t be executed until it receives data from corresponding jobs of all senders
tasks.

The work is supported by the RFBR grant 17-07-01566.

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 289–300, 2017.
DOI: 10.1007/978-3-319-62932-2 28



290 A. Glonina and A. Bahmurov

Every partition has its own task scheduler which controls tasks execution.
Schedulers usually work according to dynamic algorithms. The most common
algorithm is fixed-priority preemptive scheduling (FPPS) algorithm. Every job
must complete within its deadline. If a job’s deadline is reached this job can not
be executed anymore.

System configuration contains characteristics of hardware modules and parti-
tions, mapping partitions to cores and windows sets for cores. The configuration
is called schedulable if all the jobs complete within their deadlines. During sys-
tem design multiple potential configurations are considered and for each of them
schedulability analysis must be performed.

There are many schedulability analysis approaches, but some of them do not
consider all modular systems features (e.g. [4]) and others have too high compu-
tational complexity (e.g. Model Checking [5]). Another approach is generating
system operation trace and then analyzing this trace. Unfortunately, all the
existing tools for it have essential drawbacks: some also do not consider all mod-
ular systems features (e.g [6]), others support only manual model development
(e.g [7]) and almost all do not support any formal proving of model correctness
(e.g. [8]). In this work we propose a general model for modular system operation,
which can be used for required trace generation and overcomes these drawbacks.

As a modular system consists of standardized components, our model also
consists of standardized sub-models. The key idea is to model every compo-
nent type with a parametric stopwatch automaton with specified interface. The
whole model is a parametric Network of Stopwatch Automata (NSA) [9]. System
model for a given configuration can be constructed automatically. The formalism
of NSA allowed us to prove formally that our model satisfies correctness require-
ments necessary for using it for schedulability analysis. We also proved that for
a given configuration all interpretations of the proposed model are equivalent.
This fact allows to use any single model interpretation for schedulability analysis
in contrast to Model Checking where all possible interpretations are considered.

The rest of the paper is structured as follows: in Sect. 2 necessary formal
definitions are given and our model is presented, in Sect. 3 the model determinism
and correctness are proven and in Sect. 4 the software implementation of the
proposed approach is described and experimental results are discussed.

2 The Model of Modular System Operation

2.1 Formal Definitions

A system configuration is a tuple 〈HW,WL,Bind, Sched〉, where

– HW = {HWi}Ni=1 — processing cores; Type : HW → 1, Nt — core type
(Nt ∈ IN — number of core types); Mod : HW → 1, Nm — module number
for a core (Nm ∈ IN — number of modules);

– WL =< Part,G > — workload, where:
• Part = {Parti = 〈Ti, Ai〉}Mi=1 — partitions, where:



Stopwatch Automata-Based Model 291

∗ Ti = {Tij}Ki
j=1 — tasks, each characterized by priority (prij), WCETs

on different core types (Cij = (C1
ij , ..., C

Nt
ij )), period (Pij), dead-

line (Dij);
∗ Ai — scheduling algorithm type;

• G = 〈∪M
i=1Ti, {Msgj}Hj=1〉 — data flow graph, where Msgj corresponds to

a message and is characterized by sender and receiver tasks and maximum
durations of transfer through memory and through network;

– Bind : Part → HW — partitions binding to cores;
– Sched = {{〈Startij , Endij〉}N

w
i

j=1}Mi=1 — partitions schedule, which is repeated
periodically with a period L equal to the least common multiple of all the
tasks periods; Nw

i ∈ IN — number of windows for the i-th partition; Startij ,
Endij ∈ 0, L — start time and end time for j-th window of i-th partition.

Let CONF be a set of all possible system configurations.
For a task Tij a set of jobs Wij = {wijk}L/Pij

k=1 is defined.
Let e = 〈Type, Src, t〉 be an event, where Type ∈ {EX,PR,FIN} corre-

sponds to start or continuation of a job execution (EX), job preemption (PR)
and finish of a job execution due to its completion or reaching deadline (FIN);
Src ∈ Wij is a source job for the event; t ∈ 1, L is a timestamp. Let E be a set
of possible events.

A system operation trace is a set of events, therefore it is a subset of E. Let
TR ∈ 2E be a set of all possible traces.

Design problems for IMA systems are commonly being solved under the
following assumptions (e.g. in [8,10], considering industrial avionics systems):

– Every job’s execution time is equal to its WCET.
– Every message transfer delay is also equal to its worst case; typical avionics

networks (e.g. AFDX) allow to obtain safe estimations for these delays.
– Scheduling algorithms are deterministic (e.g. in ARINC 653 systems [1]).

Under these assumptions system operation is deterministic and corresponds
to a worst-case scenario, i.e. only one trace corresponds to a configuration and
this trace can be used for schedulability analysis. Therefore the mapping Q :
CONF → TR exists and ∀conf ∈ CONF : ∃!Q(conf).

Let Rijk be a number of executing intervals for a job wijk. Then an ordered
subtrace for this job is:

– empty, if Rijk = 0;
– 〈EX,wijk, t0〉, 〈FIN,wijk, t1〉, if Rijk = 1;
– 〈EX,wijk, t0〉, 〈PR,wijk, t1〉, ..., 〈EX,wijk, t2Rijk−2〉, 〈FIN,wijk, t2Rijk−1〉, if

Rijk > 1.

In these terms the schedulability criterion has the following form:
∀wijk, i ∈ 1,M, j ∈ 1,Ki, k ∈ 1, L/Pij :

∑Rijk

r=1 (t2r−1 − t2r−2) =
C

Type(Bind(Parti))
ij

In this paper we consider the problem of building the system operation model,
the interpretation of which defines the mapping Q. This model is necessary for
checking the schedulability criterion for a given configuration.



292 A. Glonina and A. Bahmurov

2.2 Networks of Stopwatch Automata

First of all the mathematical formalism for system operation description must
be chosen. It should meet the following requirements:

– ability to model such aspects of system operation as queues, preemption,
parallel functioning of different schedulers;

– ability to obtain a time trace of model interpretation;
– ability to formalize and check requirements to models;
– existence of software tools for modeling and verification.

We reviewed several formalisms found in the literature and the formalism of
stopwatch automata networks [9,11] was chosen, as it meets all the requirements
and has the best program support of modeling and verification. Now we give a
brief description of the formalism.

A stopwatch automaton is a finite automaton (denoted graphically by a graph
containing a set of nodes or locations and a set of labeled edges) extended with
integer variables and clocks. Each variable has a bounded domain and an ini-
tial value. A clock is a special real-valued variable, that can be compared with
integer variables or with other clocks, reset to zero, stopped and later resumed
with the same value. All the clocks are initialized with zero and then increase
synchronously (except for the stopped clocks) with the same rate.

An edge represents an action transition and has three labels: a guard label, a
synchronization (will be explained later) label and an update label. A transition
can be taken when clocks and variables satisfy the guard and synchronization
can be performed. During action transitions, synchronizations and updates of
clocks and variables are performed. A location has a label called an invariant,
which is a predicate over variables and clocks. An automaton may remain in a
location as long as the invariant of the location is true. For an automaton an
initial location is defined.

In addition to action transitions, represented by automaton edges, there are
delay transitions, corresponding to synchronous clock increasing by the same
real value. All the clocks (except for the stopped clocks) can be increased by a
value of d if their values increased by d satisfy current location invariant. Some
locations can be labeled as committed. No delay transitions can be performed if
an automaton current location is committed.

A network of stopwatch automata (NSA) is a set of several automata, oper-
ating synchronously. Communications between the automata are performed by
using shared variables and channels.

A channel is a mechanism for automata synchronous communication. Every
automaton edge has a synchronization label, which can be either an empty label
(for internal transitions) or a synchronization action. There are two complemen-
tary types of such actions: sending and receiving a signal through a channel.
And there are two types of channels: binary and broadcast. Two transitions in
different automata can synchronize via a binary channel if the guards of both
transitions are satisfied, and they have complementary synchronization actions.
A transition with binary synchronization action can be performed if and only



Stopwatch Automata-Based Model 293

if the transition in the other automaton with complementary action can be
performed. When synchronization is performed the current locations of both
automata are changed, i.e. the both transitions are performed simultaneously.
N + 1 automata can synchronize via a broadcast channel if the transition with
sending action is enabled and N transitions with receiving action are enabled.

More formally a stopwatch automaton is a tuple 〈L, l0, U, C, V, v0, AU,AS,E,
I, P 〉, where

– L, l0 ∈ L,U ⊆ L — finite set of locations, initial location and set of committed
locations;

– C — set of clocks;
– V, v0 — set of integer variables and their initial values;
– AU,AS — sets of updating and synchronization actions;
– E — set of edges, E ⊆ L × B(C, V ) × AU × AS × L, where B(C, V ) is a set

of predicates over C and V
– I : L → B(C, V ) associates invariants to locations;
– P : L × C → B(∅, V ) associates progress conditions to locations and clocks;

Let A = A1|...|An be an NSA, where Ai = 〈Li, l
0
i , Ui, Ci, Vi, v0i , AUi,

ASi, Ei, Ii, Pi〉. A state of the NSA is a tuple 〈l, c, v〉 ∈ (L1 × ...×Ln) × IR|C|
≥0 ×

ZZ |V |, where V = ∪Vi, C = ∪Ci. A sequence (may be infinite) of action and
delay transitions between states 〈l0, c0, v0〉 → 〈l1, c1, v1〉 → ... → 〈li, ci, vi〉 → ...
is a run of an NSA. An NSA usually has many (may be infinitely) possible runs.

2.3 General Model of Modular System Operation

To present our model we have to introduce several definitions.
A parametric stopwatch automata, or concrete automata type, is a tuple

〈L, l0, U, C, V, p,AU,AS,E, I, P 〉, where p is a vector of unknown integer-valued
parameters. An automaton’s shared variables and possible synchronization
actions comprise the automaton interface. Base automata type is a pair of sets
〈Vb, ASb〉, where Vb is a set of shared variables and ASb is a set of synchronization
actions. A concrete automata type implements a base automata type if Vb ⊆ V ,
ASb ⊆ AS.

A set of base automata types is a general NSA. A set of concrete automata
types is a concrete NSA. A concrete NSA implements a general NSA if each
base automata type in the general NSA is implemented by one or more con-
crete automata type in the concrete NSA and logic relations between concrete
automata types corresponds to relations (i.e. rules defining, which implementa-
tions of base automata types must communicate) between base automata types.

Model time is a value of a special clock, which is never stopped or reset.
Synchronization event is a tuple 〈CH,A, t〉, where CH is the channel, A is a set
of automata instances, participating in the synchronization, t is the model time
of synchronization. NSA trace is a set of synchronization events, generated by
the network.



294 A. Glonina and A. Bahmurov

We propose to represent the general model of modular system operation as
a general NSA.

The following shared variables and channels are used for automata commu-
nication in the proposed model:

– variables is readyij , is failedij , prioij , deadlineij i ∈ 1,M, j ∈ 1,Ki,
each corresponding to a job readiness, reaching its deadline and a task char-
acteristics;

– variables is data readyh, h ∈ 1,H, each corresponding to a message delivery
through the hth virtual link;

– channels wakeupi, sleepi, readyi, finishedi i ∈ 1,M , each corresponding
to a window start and finish, a ready job arrival and its finish; a job finishes
either due to its completion or due to reaching its deadline;

– channels execij , preemptij , i ∈ 1,M , j ∈ 1,Ki, each corresponding to a job
execution start (or resumption) and preemption;

– broadcast channels sendij , receiveij , i ∈ 1,M , j ∈ 1,Ki, each corresponding
to receiving data from a sender job and sending data to all receiver jobs.

The general NSA consists of the following base automata types:

1. T base automata type modeling a task. As a task deadline is less or equal to
its period, there can be only one active job of a task at a given moment. T is
defined by following interface:

– receiving signals through channels exec and preempt;
– sending signals through channels ready, finished, send, receive;
– changing variables is ready, is failed, is data readyh;

2. TS base automata type modeling a task scheduler for a partition. It is defined
by following interface:

– receiving signals through channels wakeup, sleep, ready, finished;
– sending signals through channels execj , preemptj ; the j-th channel cor-

responds to the j-th task of the partition;
– reading variables is readyj , prioj , deadlinej ; the j-th variable corre-

sponds to the j-th task of the partition.
3. CS base automata type modeling a core scheduler (scheduling partitions for

a core). It is defined by the following interface:
– sending signals through channels wakeupi and sleepi; the i-th channel

corresponds to the ith partition.
4. L base automata type modeling a virtual link. It is defined by the following

interface:
– receiving signals through a broadcast channel send;
– sending signals through a broadcast channel receive;
– changing variable is data ready.

The structure of the proposed general model of modular system operation is
shown on Fig. 1.



Stopwatch Automata-Based Model 295

Fig. 1. The structure of the general NSA type modeling modular system operation.

A concrete NSA implementing the proposed general NSA is a parametric
model of modular system operation. Our concrete NSA has the following concrete
automata types, implementing base automata types: task model, core scheduler
model, virtual link model, FPPS scheduler, FPNPS scheduler and EDF sched-
uler. For a given concrete NSA and a system configuration an NSA instance can
be constructed by the Algorithm1.

Algorithm 1. An NSA instance construction
Data: conf ∈ CONF , concrete NSA
Result: NSA instance modeling system of conf configuration
begin

for i ∈ 1, N do

for j ∈ 1,M : Bind(Partj) = HWi do
create channels readyj , finishedj , wakeupj , sleepj ;

for k ∈ 1,Ki do
create channels execjk, preemptjk, sendjk, receivejk and variables
is readyjk, priojk, deadlinejk, is data readyh (each corresponding

to a virtual link, where jkth task is a receiver);
create an automaton implementing T, initialize its interface with
channels execjk, preemptjk, sendjk, receivejk, readyj , finishedj
and variables is readyjk, priojk, deadlinejk, is data readyh;

create an automaton implementing TS and corresponding to Aj for
jth partition, initialize its interface with channels execjk,
preemptjk, readyj , finishedj , wakeupj , sleepj and variables

is readyjk, priojk, deadlinejk (k ∈ 1,Ki);

create an automaton implementing CS for ith core and initialize its
interface with corresponding channels wakeupj , sleepj ;

for h ∈ 1, H do
create an automaton implementing L, initialize its interface with
corresponding channels sendj1k1 , receivej2k2 and variable is data readyh.



296 A. Glonina and A. Bahmurov

By construction there is an automaton of appropriate type for every system
component and automata interfaces for logical connections between components.
Automata parameters correspond to a system configuration parameters. There-
fore there is unambiguous correspondence between a system configuration and
a model instance.

A system operation trace, which is necessary for checking the schedulability
criterion, can be unambiguously obtained from the corresponding model trace
(i.e. a trace of the NSA instance).

3 Correctness and Determinism

Modular systems specifications contain correctness requirements to system com-
ponents operation and to the whole system operation. These requirements spec-
ify correct events sequences and delays between events of given types. In order
to ensure schedulability analysis correctness, our model must satisfy correctness
requirements, which are applicable at the chosen abstraction level.

We call a model deterministic if a trace generated by its run is uniquely
determined. This determinism is crucial for schedulability analysis of large sys-
tems with many simultaneous events, because it allows to use any of the NSA
runs for a trace generation in contrast to model-checking where all possible runs
are to be considered.

Correctness requirements to system components models (i.e. parametric
automata) can be checked automatically by a verifier. For this purpose we chose
“observers” approach [12], which is successfully used in practice.

One observer automaton usually corresponds to one requirement. The
observer is an automaton, which operates synchronously with a given automaton
and does not block any synchronization. The observer has one “bad” location
and all incorrect synchronization event sequences or incorrect delays lead the
observer to the “bad” location. The reachability of the “bad” location means
that an incorrect event sequences can be generated by the given automaton and
therefore it does not satisfy the requirement. As the given automaton is paramet-
ric and must operate correctly with all possible parameters values, its observer
non-deterministically sets each parameter to one of possible values.

We derive correctness requirements to system components from system spec-
ifications, construct an observer for each requirement and automatically check
with UPPAAL [11] verifier that “bad” locations are unreachable. Such proof was
performed for a set of requirements derived from ARINC 653 specification [1]
and the set of concrete automata types described in Sect. 2.3.

Let us consider a correctness requirement example and build its observer:
For every partition at any time zero or one job can be executed.
This is the requirement to TS base automata type and all the TS implemen-

tations must satisfy this requirement. In terms of synchronization events, a job
of task Tjk is executed between synchronizations through channels execjk and
preemptjk, and through channels execjk and finishedj . It means that any



Stopwatch Automata-Based Model 297

Fig. 2. The observer automaton for the requirement to TS automata

synchronization through execjk must be followed by a synchronization through
preemptjk or finishedj . The corresponding observer is shown on Fig. 2.

Satisfaction of the requirements to the whole general model can’t be proven
automatically because the number of automata of different types in the model is
unknown in general. Thus, we have to prove the satisfaction of these requirements
manually. This proof implies that all the models instances constructed by the
algorithm 1 satisfy these requirements. Our proof is based on the satisfaction of
the requirements to components models which are proven automatically.

This is an example of a requirement to the whole model and its proof:
If one task depends on another, then start time for any job of the receiver

task is more or equal the completion time for the corresponding job of the sender
task plus the upper bound of the message transfer delay.

The satisfaction of the following requirements to components models were
proven automatically:

1. Every job sends data to its output virtual links after its completion.
2. A message transfer delay trough a virtual link is equal to its pessimistic upper

bound.
3. A job of receiver task can’t be executed until it receives data from corre-

sponding jobs of all senders tasks.

The satisfaction of these requirements implies the satisfaction of the given
requirement to the whole model.

The model determinism proof is based on the previously proven satisfaction
of the correctness requirements.

Suppose by contradiction that two different NSA traces can be generated
by the model interpretation for a given configuration. Let the both traces be
partially ordered by events time. Thus, a set of events is bound to every time



298 A. Glonina and A. Bahmurov

point in every trace. Let ti be the first time point, which has different events sets
for given traces. It means that at least one event is contained in one event set
and is absent in the other. Suppose that this event is a synchronization through
finishedj . As all previous events sets are equal for the traces, there are two
alternatives:

1. Some job executes on the processor for WCET time units according to the first
trace (where the event is contained). But it means that this job’s cumulative
time of execution on the processor is more than WCET according to the
second trace (where the event is absent).

2. Some job reaches its deadline according to the first trace. But it means that
this job is not removed from the processor after its deadline is reached accord-
ing to the second trace.

Both the alternatives are impossible, because they imply violation of the
requirements, which satisfaction was previously proven. Therefore the supposi-
tion is impossible. For other events types the proof is similar.

So we proved that the proposed model satisfies correctness requirements and
all the traces generated by its interpretation are equal. It was also shown that
there is unambiguous correspondence between a system configuration and a
generated model instance and between a system trace and a model interpre-
tation trace. Therefore schedulability analysis (checking the criterion specified
in Sect. 2.1) performed by using this model is correct.

4 Implementation and Experiments

In order to test the applicability of the proposed approach in practice we imple-
mented it in software. The concrete automata types modeling concrete types
of system components were developed and verified using UPPAAL [11] toolset.
These concrete automata types are contained in an automata components mod-
els library. A user can develop, verify and add to the library own models. As
UPPAAL doesn’t have commandline interface for NSA interpretation, we devel-
oped our own NSA simulation library in C++ and a translator from UPPAAL to
C++ automata representation. The library of automata models for components
was translated to a library of software models. Models from the library compose
the parametric software model of system operation (see Fig. 3).

We compared the proposed approach with Model Checking using the same
NSA. The results of the experiments confirm that our approach is much more
efficient (see Table 1).

We also integrated the parametric model with an IMA scheduling tool, which
searches the optimum IMA configuration among possible configurations [8]. On
every iteration the scheduling algorithm chooses a configuration to be checked for
schedulability. Then an XML file with the configuration description is generated
and passed to the parametric model. After that a model instance is created and
run and it trace is passed back to the scheduling tool, which performs schedu-
lability analysis. Unschedulable configurations are discarded by the scheduling



Stopwatch Automata-Based Model 299

Fig. 3. The scheme of the parametric modular system operation model organization.

Table 1. Execution times for various number of jobs

Number of
jobs

10 11 12 13 14 15 16 17 18

Model
checking
(seconds)

0.57 1.16 2.22 5.05 10.43 23.51 48.13 112.28 215.91

Proposed
approach
(seconds)

0.027 0.027 0.028 0.030 0.031 0.032 0.033 0.035 0.036

algorithm and schedulable ones are considered as candidate solutions. The exper-
iments showed that a model instance construction and interpretation take about
several seconds for configurations of same complexity as configurations of indus-
trial avionics systems (about 11 s for a configuration with 12500 jobs). Thus it
was shown that our approach is applicable in practice.

5 Conclusion

We developed a general model of a modular computer system operation based
on the NSA formalism. The model can be used for schedulability analysis of such
systems configurations. It was proven that our model is deterministic and cor-
rect, and therefore the analysis is performed correctly. The model determinism
(in terms of jobs start, finish and preemption) makes our approach is signifi-
cantly more efficient than Model Checking, especially for systems with many
multicore processors operating concurrently. The experiments with the model
implementation showed the applicability of the proposed approach in practice
to real scale systems.

In future work, we plan to extend our components models library with more
models of core and task schedulers and models of switched networks components.



300 A. Glonina and A. Bahmurov

Integration with a scheduling tool which allows user-defined models of system
components is also planned.

References

1. Avionics application software standard interface: ARINC specification 653. Aero-
nautical Radio, Annapolis (1997)

2. AUTOSAR. Enabling Innovation. http://www.autosar.org/
3. Obermaisser, R., et al.: DECOS: an integrated time-triggered architecture. Elek-

trotech. Inftech. 123(3), 83–95 (2006). doi:10.1007/s00502-006-0323
4. Marinescu, S., et al.: Timing analysis of mixed-criticality hard real-time appli-

cations implemented on distributed partitioned architectures. In: Proceedings of
2012 17th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA 2012), Krakow, Poland, pp. 1–4 (2012). doi:10.1109/ETFA.
2012.6489720

5. Macariu, G., Cretu, V.: Timed automata model for component-based real-time sys-
tems. In: Proceedings of 2010 17th IEEE International Conference and Workshops
on Engineering of Computer Based Systems, Oxford, UK, pp. 121–130 (2010).
doi:10.1109/ECBS.2010.20

6. Craveiro, J.P., Silveira, R.O., Rufino, J.: hsSim: an extensible interoperable
object-oriented n-level hierarchical scheduling simulator. In: Proceedings of the
3rd International Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS 2012), Pisa, Italy, pp. 9–14 (2012)

7. Khoroshilov, A., et al.: AADL-based toolset for IMA system design and integration.
SAE Int. J. Aerosp. 5(2), 294–299 (2012). doi:10.4271/2012-01-2146

8. Balashov, V.V., Balakhanov, V.A., Kostenko, V.A.: Scheduling of computational
tasks in switched network-based IMA systems. In: Proceedings of International
Conference on Engineering and Applied Sciences Optimization, Athens, Greece,
pp. 1001–1014 (2014)

9. Cassez, F., Larsen, K.: The impressive power of stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000).
doi:10.1007/3-540-44618-4 12

10. Tretyakov, A.: Automation of scheduling for periodic real-time systems
(in Russian). Proc. Inst. Syst. Program. 22, 375–400 (2012). doi:10.1134/
S0361768813050046

11. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–
124. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27755-2 3

12. Andre, E.: Observer patterns for real-time systems. In: Proceedings of 2013 18th
IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS), Singapore, pp. 125–134 (2013). doi:10.1109/ICECCS.2013.26

http://www.autosar.org/
http://dx.doi.org/10.1007/s00502-006-0323
http://dx.doi.org/10.1109/ETFA.2012.6489720
http://dx.doi.org/10.1109/ETFA.2012.6489720
http://dx.doi.org/10.1109/ECBS.2010.20
http://dx.doi.org/10.4271/2012-01-2146
http://dx.doi.org/10.1007/3-540-44618-4_12
http://dx.doi.org/10.1134/S0361768813050046
http://dx.doi.org/10.1134/S0361768813050046
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1109/ICECCS.2013.26


Parallelizing Inline Data Reduction Operations
for Primary Storage Systems

Jeonghyeon Ma(✉) and Chanik Park

Department of Computer Science and Engineering, POSTECH, Pohang, South Korea
{doitnow0415,cipark}@postech.ac.kr

Abstract. Data reduction operations such as deduplication and compression are
widely used to save storage capacity in primary storage system. These operations
are compute-intensive. High performance storage devices like SSDs are widely
used in most primary storage systems. Therefore, data reduction operations
become a performance bottleneck in SSD-based primary storage systems.

In this paper, we propose a parallel data reduction technique on data dedupli‐
cation and compression utilizing both multi-core CPU and GPU in an integrated
manner. First, we introduce bin-based data deduplication, a parallel technique on
deduplication, where CPU-based parallelism is mainly applied whereas GPU is
utilized as co-processor of CPU. Second, we also propose a parallel technique on
compression, where main computation is done by GPU while CPU is responsible
only for post-processing. Third, we propose a parallel technique handling both
deduplication and compression in an integrated manner, where our technique
controls when and how to use GPU. Experimental evaluation shows that our
proposed techniques can achieve 15.0%, 88.3%, and 89.7% better throughput than
the case where only CPU is applied for deduplication, compression, and integrated
data reductions, respectively. Our proposed technique enables easy application of
data reduction operations to SSD-based primary storage systems.

Keywords: Primary storage · Inline data reduction scheme · GPU

1 Introduction

Data reduction operations such as data de-duplication and compression are widely used
to save storage capacity on primary storage systems. In recent years, however, replacing
primary storage systems from HDD-based to SSD-based has exposed the computational
overhead of data reduction operations, making it difficult to apply data reduction oper‐
ations to storage systems. One way to conceal the overhead of data reduction operations
is to store all of the data on the storage system and then perform data reduction in the
background when the system is idle. However, this generates more write I/O than
systems without the data reduction operations. Therefore, it is not applicable to SSD-
based storage systems due to write endurance problems. A way to increase the lifetime
of SSD-based storage systems is to apply data reduction operations to the critical I/O
paths. However, applying them to the critical I/O paths can significantly degrade I/O
performance. One way to improve the throughput of data reduction is to take advantage

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 301–307, 2017.
DOI: 10.1007/978-3-319-62932-2_29



of GPUs designed to calculate computation-intensive workloads. However, depending
on the workload, the performance of the CPU-based parallel data reduction operations
may be better than GPU-based techniques.

In this paper, we propose an inline parallel data reduction operations based on multi-
core CPU and GPU for primary storage systems. To do this, we design a parallel dedu‐
plication and compression method considering multi-core CPU and GPU architecture,
and finally we show how to integrate CPU and GPU-based data reduction operations.

2 Background

Data reduction operations such as deduplication and compression are widely used to
save storage capacity on primary storage systems. This section describes the basic tasks
of data reduction operations and the performance bottlenecks.

Deduplication is performed in four stages: chunking, hashing, indexing, and de-
staging. Chunking is the process of breaking a data stream into chunks, which is the base
unit for checking the redundancy of data. Hashing is the process of calculating the hash
value of each chunk. The hash value is used as an identifier for the chunk. Indexing is
the process of comparing the hash value of each chunk with the hash values of already
stored chunks to determine whether it is a duplicate. If the chunk is found to be unique,
a destaging step is performed to store the chunk on the storage device. Of these stages,
hashing and indexing are the main performance bottlenecks in deduplication systems.
Previous work [1] has also attempted to address these two major performance bottle‐
necks.

Among the compression algorithms, LZ-based compression algorithms are widely
used in main storage systems due to their simplicity and effectiveness [2]. The history
buffer and the look-ahead buffer are used to perform LZ compression. If characters in
the same order are found in both the history buffer and the look-ahead buffer, the char‐
acter sequence in the look-ahead buffer is replaced by a pointer to the character sequence
in the history buffer. Matching the entire string is a performance bottleneck.

3 Design and Implementation

3.1 Parallel Data Deduplication on Multi-core CPU and GPU

There is no data dependency between chunks when the hash value of the chunk is calcu‐
lated in the hashing phase. This allows us to easily calculate multiple chunks at once in
a natural parallel manner. However, parallelizing the indexing is more complicated than
the hashing. This is because the hash table used to determine the chunk’s redundancy is
globally shared across all computing threads. Therefore, this section describes how
indexing is parallelized on the multi-core CPU and GPU, and how it applies to the
primary storage system.

(1) How to Parallelize Indexing on the CPU: we divide the hash table into several
small hash tables called bin so that multiple computing threads can check the chunks of
multiple hash tables at the same time without locking mechanism. This is a technique

302 J. Ma and C. Park



that was commonly used in existing DHT-based systems. We call this operation bin-
based indexing. In addition, to avoid disk access that significantly degrades performance,
hash table entries are kept in memory space only, not disk space. Due to this index
management policy, the deduplication module cannot find some duplicate data.
However that is not a big deal. Assuming that the storage capacity is 4 TB, the chunk
size is 8 KB, and the index size is 32 bytes, including the hash size (SHA1, 20 bytes)
and other metadata, the storage system requires 16 GB of memory for the index. That
is, if primary storage is the target, it does not require that much memory. In addition,
the way to reduce memory consumption is to remove the prefix value of the hash entry.
If the prefix value is n bytes, the deduplication system keeps only 20-n bytes for each
hash value. If the storage system uses a 2-byte prefix value, we can save 1 GB of memory
in this way.

(2) How to Parallelize Indexing on the GPU: parallel processing of GPU indexing
needs to take into account the architectural characteristics of the GPU. First, the GPU
is connected to the system memory via the PCI interface, and the data used for the
calculation must be transferred from the system memory to the GPU device memory.
Second, GPU threads in the same workgroup run the same command regardless of
branching, even though each thread has its own execution path. Therefore, many branch
operations can degrade computational performance. This means we have to design the
GPU code in a rather simple way. Third, GPUs have many computing cores and large
memory bandwidth. Therefore, we can calculate large amounts of data at a time. This
means that allocating data to all computing cores and setting up data layouts is critical
to taking full advantage of all GPU resources.

The GPU also performs bin-based indexing just like on a CPU. However, considering
the characteristics of the advanced GPU architecture, we organize one bin into a linear
table structure rather than a tree structure. This continuous data layout is useful when
utilizing the GPU’s local memory. This is because copying data from GPU global
memory to local memory can be done naturally if the thread accesses the data continu‐
ously. It also does not cause multiple branch operations. The GPU can check the redun‐
dancy of data by comparing a single hash table. Also, only the hash value persists in
GPU memory, and other metadata in the chunk is maintained in system memory. This
is because transferring data can be a direct update process. This means that there is no
other hash table update overhead on the GPU. Therefore, the result of whether an index
is hit or not includes an index number and a hit/miss information pair. The metadata
space structure in system memory then uses the results of the GPU.

(3) When to use GPU for indexing: we decide how to apply GPU for indexing. To
do this, we compare the CPU and GPU indexing performance. The number of hash table
entries used for indexing remains the same on the CPU and GPU for a fair comparison.
Preliminary experiments show that CPU performance is 4.16 to 5.45 times better than
GPU performance in terms of execution time. For GPU indexing, the execution time is
fixed because of the inevitable time at which the GPU kernel starts. This means that
even with high-performance GPUs, there is a limit to optimizing indexing on the GPU.
Therefore, we decide to use GPU only when CPU utilization is full and there is still
some work to do for indexing.

Parallelizing Inline Data Reduction Operations 303



3.2 Parallel Data Compression on Multi-core CPU and GPU

In this section, we focus on the way to parallelize LZ compression schemes that are
commonly used in primary storage systems.

(1) How to parallelize compression for CPU: As with hashing operations, there is no
data dependency between chunks, so we can run compression independently on
each chunk. CPU-based compression algorithms have been well studied previously.
Therefore, the compute is parallelized by the CPU by assigning a computing thread
that runs the previously studied compression algorithm to each chunk.

(2) How to parallelize compression for GPU: Ozsoy et al. [3] introduced a parallel
compression algorithm on the GPU. This algorithm divides the data into several
sub-blocks and calculates the compression result in each sub-block and merges it
in the CPU. This algorithm has a weakness to apply as a compression algorithm for
primary storage systems. This algorithm assumes that the size of the data to be
compressed is large enough to take full advantage of the GPU resources. This means
that it does not work well for small-sized target data. The size of the chunk is 4 KB.
Only a small number of computing cores can be allocated to compute the compres‐
sion result of 4 KB chunks. Therefore, we design a compression algorithm that
computes the chunk compression results at a time. The GPU allocates multiple
threads for each chunk. Each stage performs its own LZ compression algorithm
with its own history buffer and look-ahead buffer. Adjacent threads inspect over‐
lapping regions by the size of the history buffer. The GPU’s compression results
are not refined in GPU due to performance issues. Therefore, the CPU must refine
the results. It is called as post-processing.

(3) How to use the GPU for compression: we compare the compression performance
of the CPU and the GPU to determine when to use the GPU. Experimental results
show that GPU performance is 88.3% better than CPU performance in terms of
execution time (In Sect. 4). The performance gap is large. Therefore, the GPU
performs compression and the CPU is used for refinement.

3.3 Putting It All Together

This section describes how to incorporate two parallel data reduction operations called
deduplication and compression. First, we need to determine the order of which operation
should be applied. Based on the result of [5], we adopt deduplication-before-compres‐
sion order for higher data reduction ratio. Second, we add a bin buffer structure to the
data deduplication algorithm. The bin buffer is used to temporarily store a hash for each
bin before moving each bin to the GPU memory and bin tree. When the buffer is full,
the hash is immediately flushed from the buffer to the storage. This creates the appro‐
priate sequential writes for the SSD. Figure 1 shows a workflow that incorporates dedu‐
plication and compression operations on the CPU and GPU. GPU indexing is performed
if the GPU is available, and CPU indexing is performed if duplicate hashes are not found.
For the CPU indexing path, the bin buffer is checked first, because recently updated
chunks can reside in the bin buffer and chunks are more likely to find duplicates in the
bin buffer due to temporal locality. If there are no duplicates in the bin buffer, check the

304 J. Ma and C. Park



bin tree to store most of the hash table entries. If we cannot find any duplicate, then the
chunk is regarded a unique chunk. Therefore, the chunk becomes the compression target.
After compressing the data, the bin buffer is updated because the chunks are unique. If
the bin buffer becomes full, the buffer will be flushed to the storage. And then, GPU bin
in GPU memory are updated accordingly. Currently, random based replacement policy
is applied.

Fig. 1. An integrated workflow of deduplication and compression proposed for data reduction
operations

4 Evaluation

This section evaluates the throughput of the parallel data reduction operations on the
CPU and GPU. The vdbench is used to generate datasets. Our test machine equipped
with Intel i7-3770 k, Radeon HD 7970, and 16 GB main memory. The vdbench [4] is
used to generate the dataset. The size of the data stream is about 2 GB. The deduplication
and compression ratio are set to 2.0, which is a common ratio for primary storage
systems. We compare our schemes with the throughput of Samsung SSD 830. In this
section, the Samsung SSD 830 is simply referred to as the SSD.

(1) Parallel data deduplication: the GPU performs indexing of only a small portion of
the chunk. The workflow for the integrated CPU and GPU for indexing is the same
as in Fig. 1, except for the compression phase. Experimental results show that the
GPU-supported data deduplication scheme can improve throughput by 15% over
CPU-only data deduplication scheme. In addition, it shows three times the
throughput of the SSD.

(2) Parallel data compression: the proposed technique uses the GPU for compression
and the CPU for post-processing of compression. Due to the nature of the compres‐
sion technique, the throughput is high when the compression ratio is high. The CPU-
based compression method has lower performance (about 50 K IOPS) than SSD
throughput (about 80 K IOPS) when the compression ratio is low, but the GPU-
based parallel compression method has the performance of 100 K IOPS even when
the compression ratio is low. It always shows higher performance than SSD
throughput.

(3) Putting it all together - Parallelizing both data deduplication and compression
together: In an environment where CPU and GPU are available, there are several

Parallelizing Inline Data Reduction Operations 305



options for integrating two data reduction operations, deduplication and compres‐
sion. The first option is to use the GPU in two data reduction operations. The second
option is to use the GPU for only one data reduction operation. The last option is
that both data reduction operations do not use the GPU at all. The last option may
be useful when the performance of the GPU is poor. Figure 2 shows the throughput
of these options.

Fig. 2. Throughput comparison of integration methods

Allocating the GPU for compression is the best choice among the integration
methods. This is because data compression, which has a high performance gain when
using a GPU, monopolizes the GPU. However, because hardware specifications may be
different on different platforms, we cannot guarantee that this integration is always right.
Therefore, before assigning processors to each data reduction operation, the perform‐
ance of these integration methods is compared using dummy I/O to determine the best
fit for throughput. Therefore, we can ensure the best performance even if the target
platform is different.

5 Related Works

There have been lots of previous researches which investigated the way to improve the
throughput of data reduction operations.

There exist some researches exploiting parallelism in data deduplication system.
Xia W. et al. [6] proposed multicore-based parallel data deduplication approach.
However, the problem is that they did not consider the operation of indexing which
is known as main bottleneck in data deduplication [1]. Kim et al. [7] proposed GPU-
based data deduplication approach for the primary storage. However, they did not
consider utilizing CPU that performs better than GPU for indexing operation.

There exist some researches exploiting GPU parallelism for compression operation.
Ozsoy et al. [3] introduced the parallel compression algorithms on GPU. However, the
compression target data are quite large to utilize GPU resource fully. This feature does
not match with primary storage system that conducts compression for 4 KB of several
chunks. Moreover, there exist researches introducing CPU parallel algorithms for
compression. Shmuel et al. [8] introduce the algorithm for the compression executed

306 J. Ma and C. Park



using the tree-structured hierarchy. Gonzalo et al. [9] introduce the algorithm dividing
data stream into several small subset and allocating each threads to the subset of data.
Even they parallelize the compression for CPU, our GPU-based approach is better than
at least about 88.3%.

There exists a research analyzing the effect of mixing two data reduction operations,
deduplication and compression. Constantinescu et al. [5] analyze the data reduction ratio
when deduplication and compression are applied together. However, it focuses only data
reduction ratio, not throughput.

6 Conclusion

Throughput is becoming more important as data reduction operations are applied to save
space on SSD-based primary storage systems. To solve this problem, we proposed
parallel data reduction operations using multi-core CPU and GPU. We also showed how
to integrate deduplication and compression technologies on multicore CPUs and GPUs.
Applying our parallel approach to deduplication is 3 times better than SSD’s throughput.
For compression, the throughput of the parallel compression method supported by the
GPU is 88.3% better than the average throughput of parallel QuickLZ. Finally, GPU-
supported integration shows a performance improvement of 89.7% over parallel data
reduction operations using CPU (deduplication ratio 2.0, compression 2.0). This means
that our proposed technique enables easy application of data reduction operations to
SSD-based primary storage systems.

References

1. Guo, F., Efstathopoulos, P.: Building a high-performance deduplication system: In: USENIX
Annual Technical Conference (2011)

2. De Agostino, S.: Lempel-Ziv data compression on parallel and distributed systems. Algorithms
4, 183–199 (2011)

3. Ozsoy, A., Swany, M., Chauhan, A.: Pipelined parallel LZSS for streaming data compression
on GPGPUs. In: Parallel and Distributed Systems, pp. 37–44 (2012)

4. Berryman, A., Calyam, P., Honigford, M., Lai, A.M.: Vdbench: a benchmarking toolkit for
thin-client based virtual desktop environments. In: Cloud Computing Technology and Science,
pp. 480–487 (2010)

5. Constantinescu, C., Glider, J., Chambliss, D.: Mixing deduplication and compression on active
data sets: In: Data Compression Conference, pp. 393–402 (2011)

6. Xia, W., Jiang, H., Feng, D., Tian, L., Fu, M., Wang, Z.: P-dedupe: exploiting parallelism in
data deduplication system: In: Networking, Architecture and Storage, pp. 338–347 (2012)

7. Kim, C., Park, K.W., Park, K.H.: GHOST: GPGPU-offloaded high performance storage I/O
deduplication for primary storage system. In: Proceedings of the International Workshop on
Programming Models and Applications for Multicores and Manycores, pp. 17–26 (2012)

8. Klein, S.T., Wiseman, Y.: Parallel Lempel Ziv coding (extended abstract). In: Amir, A. (ed.)
CPM 2001. LNCS, vol. 2089, pp. 18–30. Springer, Heidelberg (2001). doi:
10.1007/3-540-48194-X_2

9. Navarro, G., Raffinot, M.: Practical and flexible pattern matching over Ziv-Lempel compressed
text. J. Discrete Algorithms 2, 347–371 (2004)

Parallelizing Inline Data Reduction Operations 307

http://dx.doi.org/10.1007/3-540-48194-X_2


Distributed Algorithm of Dynamic Multidimensional Data
Mapping on Multidimensional Multicomputer

in the LuNA Fragmented Programming System

Victor E. Malyshkin1,2,3 and Georgy A. Schukin1,3(✉)

1 Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia

{malysh,schukin}@ssd.sscc.ru
2 Novosibirsk National Research University, Novosibirsk, Russia

3 Novosibirsk State Technical University, Novosibirsk, Russia

Abstract. The distributed algorithm Patch with local communications for
dynamic data allocation of a distributed multicomputer in the course of an appli‐
cation LuNA fragmented program execution is presented. The objective of the
Patch is to decrease the length and as result the volume of communications while
the parallel program is executed. Communications include all the internode inter‐
actions for data processing, dynamic data allocation, search and balancing. The
Patch takes into account the data dependencies and maximally tries to keep the
data locality during all the internode interactions.

Keywords: Dynamic data allocation · Dynamic load balancing · Distributed
algorithms with local interactions · Fragmented programming technology

1 Introduction

Supercomputer large-scale numerical modeling is now widely used, especially in
science. To achieve good performance and scalability of application parallel programs
of numerical modeling the effective resources allocation strategies, control, dynamic
load balancing and other means usually should be used. Because of that, the complexity
of application parallel programming becomes comparable to the complexity of system
parallel programming. To simplify the development of parallel programs of numerical
modeling, the LuNA system for automatic construction of parallel programs was devel‐
oped [1–6]. We consider that in visible future LuNA-like systems should significantly
or fully eliminate parallel programming from the process of large-scale numerical
models creation.

The LuNA automatically assembles an application parallel numerical program out
of pieces (fragments) as data as computations. Each fragment of computations (CF) in
the course of a LuNA-program execution defines an independent process. Each CF
computes the output data fragments (DF) values from CF’s input DFs values. Each DF
is the single assignment variable of a LuNA-program and each CF is executed once only.
Fragmented structure of a LuNA-program is kept during the LuNA-program execution.

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 308–314, 2017.
DOI: 10.1007/978-3-319-62932-2_30



This allows to provide DFs and CFs migration between the nodes of a multicomputer
and their execution in parallel.

Efficiency of the LuNA fragmented program execution substantially depends on the
quality of distributed resources allocation. Below a distributed Patch algorithm with
local interactions is described. Patch is intended for dynamic distributed allocation of
distributed resources. It is included into the LuNA system and optimized for allocation
of multidimensional data on grid-like communication network.

2 Related Works

There are many domain decomposition methods for data distribution and load balancing.
One of them is tiled arrays [7–10], where data are decomposed into orthogonal convex
tiles, which are then distributed over nodes of a multicomputer. In [7, 9] hierarchical
tiling arrays are used. In [10] arbitrary tiles (i.e. the tiles can have different sizes by any
dimension and not necessarily be aligned) are allowed. In [8] user-defined decomposi‐
tion of arrays into tiles is supported. Restriction of tiled arrays is rectangular shape of
tiles, which in some cases can prevent achievement of load balance between tiles. Also,
decomposition on tiles is assumed to be static and little information is given about
possibility of its dynamic change in a distributed way.

Data decomposition into domains is also widely used in molecular dynamics and
particle simulations [11–15]. In [11, 13] two or three dimensional domain (field of
particles) is partitioned by placing inner vertices into it, thus creating a mesh of domains,
each is initially of rectangular form; one domain is assigned to each PE of a multicom‐
puter. For a purpose of load balancing inner vertices can be moved to change domains
size and PEs’ workload. Load balancing can proceed in distributed form, i.e. each node
communicates only with its neighbors, but sometimes global operations are used.
Usually convex shape of domains is required, which may sometimes be a restriction.
Also up to 8 PEs (in 3D case) can share a single inner vertex, so a movement of this
vertex can require a synchronization between all these PEs.

In [14] recursive orthogonal bisection is used for domain decomposition. For load
balancing planes of bisections are recursively moved to change domains size. Because
nodes and domains assigned to them are organized in a tree, load balancing requires tree
traversal and consequently communications between unfixed number of non-neigh‐
boring nodes. Also tree topology may not fit for an actual grid network topology.

In [12] domains consist of Voronoi cells which can be moved between domains to
achieve load balance. In [15] usual rectangular cells are used in a similar fashion. To
preserve communication pattern between neighboring nodes, some cells are marked as
permanent, i.e. can’t be moved. Because these algorithms are for molecular dynamics
applications and use additional information (such as particles and their movement) for
load balancing decisions, they may not be readily applicable for more general cases.

We can conclude that desired data distribution and load balancing algorithm should
be distributed, use preferably local communications, and be applicable to a broad range
of problems.

Distributed Algorithm of Dynamic Multidimensional Data Mapping 309



3 Distributed Algorithm of Dynamic Data Allocation

Previously, a distributed Rope algorithm for dynamic data allocation was developed [1, 2].
Rope algorithm was designed to support general data structures processing on distributed
network. This paper presents new algorithm Patch, which is developed to support mesh
data structures processing on distributed grid network, where Rope algorithm has some
disadvantages. Further sections present description of Patch algorithm and its comparison
with Rope.

3.1 Initial Definitions

Numerical algorithms data are usually multidimensional Cartesian meshes (for example,
particles-in-cell or Poisson equation solver meshes). For data decomposition the mesh
is divided into parallelepipeds (DFs) that form the grid of DFs. Two DFs, whose planes
are adjacent, are called adjacent DFs. Two DFs are called neighbor DFs if the value of
one of them is computed by application algorithm with the use of the other DF value.

3.2 Patch Algorithm

Rope algorithm used mapping of multi-dimensional mesh of DFs to one-dimensional
numerical domain (for example, with Hilbert space-filling curve) for data distribution [16].
To better exploit multidimensional neighborhood, multi-dimensional numerical domain is
required. For this reason, the Patch algorithm maps k-dimensional mesh of DFs to n-dimen‐
sional numerical domain. The numerical domain is represented as Cartesian grid of regular
cells, each cell has its n-dimensional coordinate. Mapping to n-dimensional domain allows
all neighbor DFs be mapped to the same or adjacent cells, thus, neighborhood relation on
DFs is better preserved. Mapping is fixed during program execution.

Assuming n-dimensional Cartesian grid network topology is used, the whole numer‐
ical domain is decomposed into subdomains (“patches”) of cells, one subdomain for
each node (Fig. 1, left). Cell coordinates are globally ordered through the nodes by all
dimensions. There are no restrictions on a shape of domains, but several constraints
should be satisfied:

• No empty subdomains are allowed
• Square of subdomain adjacent planes should be minimal in order to minimize the

volume of communications between adjacent subdomains
• Each node’s subdomain should be adjacent to subdomain of it’s neighbor nodes in a

network topology.

These constraints are to enable proper functioning of data allocation algorithm,
which is described further.

In LuNA system each DF and each CF are mapped dynamically on the nodes of
distributed multicomputer at runtime. Additionally, migration of CFs and DFs also
demands dynamically to search where CFs and DFs are located. Thus, data allocation
algorithm should provide assignment of any DF on any node and search for any DF from
any node. Node, which currently holds a cell to which a DF was mapped, is called a

310 V.E. Malyshkin and G.A. Schukin



residence of this DF. If DF’s residence is known, the DF can be allocated on the residence
node or requested (copied) from it.

To make possible a DF residence determination from any node, in Patch algorithm
each cell stores information about current location (node) of all its adjacent cells in a
Cartesian grid. The use of this adjacency information makes it possible to find DF’s
residence from any node for a finite number of steps, using only local communications.
First, cell coordinate for required DF is acquired. This coordinate is a constant and can
be computed everywhere because DF mapping to cells is fixed. Secondly, if current node
doesn’t contain a cell with required coordinate, the cell, closest to it in the current node’s
“patch”, is chosen and search can be continued from the neighbor node, adjacent to it
in the direction to the required cell. Otherwise, search is over and the residence is found.

Benefits of Patch algorithm are follows:

• Preserves neighborhood of DFs in all dimensions
• Ideally fits for an actual grid network topology
• The worst case DF allocation time is proportional to the diameter of the network

topology, which is usually smaller then Rope’s algorithm (total number of nodes).

3.3 Dynamic Load Balancing in Patch Algorithm

Diffusion scheme is used in Patch algorithm for dynamic load balancing implementation.
All nodes of a multicomputer in a grid topology are divided into overlapping groups of
nodes. Each group consists of a central node and all its neighbor nodes in the topology
of communicating system. Each cell, assigned to a node, defines a node workload, which
is calculated by some formula or criteria, for example, a value of a current total volume
of the DFs, on the node mapped to the cell. Total load of a node is a sum of the loads of
all cells on the node. Every node keeps the value of its total load and the values of total
loads of all its neighbor nodes. Node is considered overloaded, if its total load is greater
than average load of all cells of the group, and underloaded otherwise. If a central node

Fig. 1. Distribution of cells on PEs in Patch algorithm, initial (left) and after load balancing
(right). Different colors denote different PEs. Adjacency links are shown also. See [16] for
dynamic picture.

Distributed Algorithm of Dynamic Multidimensional Data Mapping 311



of a group is overloaded/underloaded, then some cells should migrate to/from under‐
loaded/overloaded nodes of the group equalizing their workload (Fig. 1, right). All the
CFs, that process migrated DFs, follow the DFs.

Migrated cells are selected in such a way in order to minimize the number of border
cells between subdomains, because this number is directly proportional to the volume
of communications between the neighbor DFs. Usually, this means selecting connected
group of cells lying on subdomains border. Greedy algorithm is used for cells selection.
Migration is actually implemented, if the difference between total and average work‐
loads exceeds a threshold.

To synchronize simultaneous exchange of cells between many nodes and keep cells
information consistent, the following transaction mechanism is used. Each transaction
comprises transfer of cells from one node to another. If cells are transferred between
two nodes, then any other transactions between them are locked. To prevent deadlocks
and decide which transaction should be executed next, a random priority is assigned to
each transaction. Transaction with max priority is executed first. Because a cell can be
adjacent to many nodes’ subdomains (not actually participating in transaction), special
updates are sent to these nodes to keep adjacency information correct.

Transferring single cells instead of shifting a whole subdomain border allows for
more accurate load balancing. Also only two nodes need to be synchronized for each
transaction, which allows for more transactions to be done in parallel. Only local
communications between neighbor nodes are used during load balancing, which makes
the algorithm scalable.

4 Tests

To compare the algorithms, LuNA implementation of Poisson equation solver with an
explicit finite-difference scheme on a regular 3D mesh was chosen. Experiments were
conducted on cluster with two Intel Xeon E5-2690 processors per PE and Infiniband
FDR communication and transport network. GCC 5.3 C++ compiler and MPICH 3.2
MPI library were used.

4.1 Test Results

For testing the regular mesh of 5123 size was divided into 322 three dimensional data
fragments. Measurements were done for up to 256 processes (N). Cluster configuration
allowed placement up to 4 processes on a single physical node. 1D and 2D grid network
topologies were used for testing Rope and Patch algorithms respectively.

Following program execution characteristics were measured: total execution time
(ET, seconds), average DF send distance (AvgSD, processes in topology), average
summary size of all DFs sent by process (AvgSS, megabytes; also includes DFs move‐
ment during load balancing), standard deviation from an average computation time per
process (AvgCTD, seconds).

Table 1 shows the results when all processes are loaded uniformly and load balancing
doesn’t need. Showing comparable results of execution time and average migrated data

312 V.E. Malyshkin and G.A. Schukin



size, Patch, as expected, demonstrates much better average DFs migration distance than
Rope due to exploiting of multidimensional DF neighborhood.

Table 1. 5123 mesh, 322 fragments, uniform distribution.

N 1 2 4 8 16 32 64 128 256
ET, Rope 773.8 407.4 217.8 111.9 57.9 31.7 19.7 14.7 17.4
ET, Patch 769.0 409.4 221.3 113.4 68.8 31.7 19.4 12.3 13.6
AvgSD, Rope 0 1 1.5 1.8 2.5 3.24 4.84 6.41 9.66
AvgSD, Patch 0 1 1 1 1 1 1 1 1
AvgSS, Rope 0 20.2 20.2 20.2 15.1 12.6 8.8 6.9 4.7
AvgSS, Patch 0 20.2 20.2 20.2 15.1 12.6 8.8 6.9 4.7

For dynamic load balancing testing initial disbalance was created assigning data and
computations on one half of processes only. The goal of balancing was to load all
processes as equally as possible. Table 2 shows results of the testing. Patch algorithm
generally demonstrates smaller deviation of average computational time, i.e. it managed
to load processes better than Rope. Also average DFs migration distance and total size
of transferred data are smaller for Patch again because of exploiting more dimensions
than Rope. Increased average transferred data sizes and decreased migration distances,
comparing with uniform distribution case, are due to data movement during load
balancing.

Table 2. 5123 mesh, 322 fragments, non-uniform distribution with dynamic load balancing.

N 2 4 8 16 32 64 128 256
AvgCTD, Rope 53.4 15.99 55.68 47.21 25.18 13.51 7.44 3.93
AvgCTD, Patch 58.11 23.7 56.49 33.33 21.39 12.56 7.01 3.71
AvgSD, Rope 1 1.19 1.42 1.48 1.46 1.80 1.30 1.44
AvgSD, Patch 1 1.03 1.18 1.27 1.31 1.24 1.16 1.04
AvgSS, Rope 7787.6 6246.7 2821.6 1032.2 1192.6 598.0 566.9 392.0
AvgSS, Patch 9917.9 4955.9 2225.3 1226.2 714.6 444.1 193.8 91.8

5 Conclusion

The problematics of data allocation and load balancing automation for implementation
of large-scale numerical models for supercomputers are considered. The Patch algo‐
rithms for dynamic multidimensional data allocation in LuNA fragmented programming
system is proposed. Comparison tests of the algorithm are presented.

Distributed Algorithm of Dynamic Multidimensional Data Mapping 313



References

1. Malyshkin, V.E., Perepelkin, V.A., Schukin, G.A.: Scalable distributed data allocation in LuNA
fragmented programming system. J. Supercomput. 73(2), 726–732 (2017). Springer, US

2. Malyshkin, V.E., Perepelkin, V.A., Schukin, G.A.: Distributed algorithm of data allocation
in the fragmented programming system LuNA. In: Malyshkin, V. (ed.) PaCT 2015. LNCS,
vol. 9251, pp. 80–85. Springer, Cham (2015). doi:10.1007/978-3-319-21909-7_8

3. Malyshkin, V.E., Perepelkin, V.A.: LuNA fragmented programming system, main functions
and peculiarities of run-time subsystem. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873,
pp. 53–61. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23178-0_5

4. Malyshkin, V.E., Perepelkin, V.A.: Optimization methods of parallel execution of numerical
programs in the LuNA fragmented programming system. J. Supercomput. 61(1), 235–248
(2012)

5. Malyshkin, V.E., Perepelkin, V.A.: The PIC implementation in LuNA system of fragmented
programming. J. Supercomput. 69(1), 89–97 (2014)

6. Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of numerical
models on MIMD-multicomputers. J. Future Gener. Comput. Syst. 17(6), 755–765 (2001)

7. Gonzalez-Escribano, A., Torres, Y., Fresno, J., Llanos, D.R.: An extensible system for
multilevel automatic data partition and mapping. J. IEEE Trans. Parallel Distrib. Syst. 25(5),
1145–1154 (2014). IEEE

8. Chamberlain, B.L., Deitz, S.J., Iten, D., Choi, S.-E.: User-defined distributions and layouts in
chapel: philosophy and framework. In: 2nd USENIX Conference on Hot Topics in
Parallelism, HotPar 2010, p. 12. USENIX Association, Berkeley (2010)

9. Bikshandi, G., Guo, J., Hoeflinger, D., Almasi, G., Fraguela, B.B., Garzarán, M.J., Padua, D.,
von Praun, C.: Programming for parallelism and locality with hierarchically tiled arrays. In:
11th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2006, pp. 48–57. ACM, New York (2006)

10. Furtado, P., Baumann, P.: Storage of multidimensional arrays based on arbitrary tiling. In:
15th International Conference on Data Engineering, pp. 480–489. IEEE (1999)

11. Begau, C., Sutmann, G.: Adaptive dynamic load-balancing with irregular domain
decomposition for particle simulations. J. Comput. Phys. Commun. 190, 51–61 (2015).
Elsevier B.V.

12. Fattebert, J.-L., Richards, D.F., Glosli, J.N.: Dynamic load balancing algorithm for molecular
dynamics based on Voronoi cells domain decompositions. J. Comput. Phys. Commun.
183(12), 2608–2615 (2012). Elsevier B.V.

13. Deng, Y., Peierls, R.F., Rivera, C.: An adaptive load balancing method for parallel molecular
dynamics simulations. J. Comput. Phys. 161(1), 250–263 (2000). Elsevier B.V.

14. Fleissner, F., Eberhard, P.: Parallel load-balanced simulation for short-range interaction
particle methods with hierarchical particle grouping based on orthogonal recursive bisection.
Int. J. Numer. Meth. Eng. 74(4), 531–553 (2008). Wiley, Ltd.

15. Hayashi, R., Horiguchi, S.: Efficiency of dynamic load balancing based on permanent cells
for parallel molecular dynamics simulation. In: 14th International Parallel and Distributed
Processing Symposium, IPDPS 2000, pp. 85–92. IEEE (2000)

16. Rope and Patch demonstration page. http://ssd.sscc.ru/en/algorithms

314 V.E. Malyshkin and G.A. Schukin

http://dx.doi.org/10.1007/978-3-319-21909-7_8
http://dx.doi.org/10.1007/978-3-642-23178-0_5
http://ssd.sscc.ru/en/algorithms


Probabilistic Causal Message Ordering

Achour Mostéfaoui(B) and Stéphane Weiss

LS2N, Université de Nantes, 44322 Nantes, France
achour.mostefaoui@univ-nantes.fr

Abstract. Causal broadcast is a classical communication primitive that
has been studied for more then three decades and several implementa-
tions have been proposed. The implementation of such a primitive has a
non negligible cost either in terms of extra information messages have to
carry or in time delays needed for the delivery of messages. It has been
proved that messages need to carry a control information the size of which
is linear with the size of the system. This problem has gained more inter-
est due to new application domains such that collaborative applications
are widely used and are becoming massive and social semantic web and
linked-data the implementation of which needs causal ordering of mes-
sages. This paper proposes a probabilistic but efficient causal broadcast
mechanism for large systems with changing membership that uses few
integer timestamps.

Keywords: Asynchronous message-passing system · Happened before
relation · Logical clock · Message causal ordering · Vector clock

Nowadays, we are facing an increasing number of collaborative applications.
The nature of these applications is diverse as they appear as web 2.0 applica-
tions such as blogs, wikis or even social networks, as well as applications for
mobile devices such as foursquare, yelp, latitude. Moreover, semantic web (web
3.0) and now social semantic web and linked-data (web 4.0) such as DBpedia
are gaining more and more interest. The common point to these applications is
that they gather the outcome of numerous users in order to provide a service for
their users. The more users participate, the more content is created, attracting
more users. This virtuous circle tends to create very large scale systems. How-
ever, while the content is created by users for users, for many applications, the
underlying architecture remains centralized, leading to scalability issues as well
as privacy and censorship threats. Stating this observation, several work envision
decentralized architectures. The idea behind this concept, is to put the users as
nodes of the network, allowing direct communication between users.

Currently, the development of such applications is restricted by several sci-
entific problems. Among them, the problem of data replication has been investi-
gated for many years, and have provided several approaches such as appropriate
replicated data structures [11,14] and programming languages [1]. Hence repli-
cated data can be enriched, updated and queried. However, the implementation

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 315–326, 2017.
DOI: 10.1007/978-3-319-62932-2 31



316 A. Mostéfaoui and S. Weiss

of these operations has an underlying requirement: causally ordered communica-
tion (causal order for short) [15,16]. Informally a causal communication primitive
imposes some restrictions on the delivery order of sent messages. It can be seen
as an extension of the FIFO channel property to a whole communication net-
work. Hence, a causal broadcast communication service imposes that a message
is delivered to a some process only if all the messages that have been delivered
in its past have been already delivered.

Unfortunately, causal communication has a cost that can be high either in
time (message exchanges) or in space (the size of control information carried
by messages). This cost becomes unacceptable when we consider a very large
scale network of nodes with churn. Moreover, if the set of participating users
changes over time, one needs to offer a join/leave decentralized procedure that is
theoretically impossible to implement in asynchronous systems [7]. Interestingly,
in a real setting, depending on the system we consider, the probability to deliver
in a non causal order two messages the sending of which are causally related may
be quite low. For example, if the time between the generation of two messages
on each peer is bigger than the transit time of a message, most of messages will
be received in the causal order without any explicit control or synchronization.
This observation is in favor of a probabilistic mechanism.

In this paper, we propose a probabilistic causal broadcast that provides a
causal communication with high probability at a low cost for very large systems
while allowing continuous joins and leaves. Of course it may happen, in few
situations, that causal ordering is not respected. The proposed solution is then
evaluated from a theoretical point of view and by simulation.

1 Related Work

The first causal broadcast mechanism was introduced in the ISIS system [2].
The simplest way to implement causal communication consists in piggybacking
on each messsage a process want to send the whole set of messages it has deliv-
ered prior to this sending. Of course, this is very costly and there is a need to
some kind of garbage collector. Otherwise, prior work mainly use either a logical
structure (central node, tree, ring, etc.) or are based on the use of timestamps.
A timestamp is an integer value that counts events (possibly not all events).
A vector clock is a vector of such counters. The first solution based on vector
clocks for a broadcast primitive has been proposed is [13] (a solution based on a
matrix of counters has been proposed in [12] for point-to-point communication).
Vector clocks introduced simultaneously by [6,9] have been proved to be the
smallest data structure that can capture exactly causality [4]. Moreover, vector
clocks require to know the exact number of sites involved in the application. As
an example, the churn (intempestive join and leave of processes) and the high
(and unknown) number of processes make the use of vector clocks unrealistic.

Torres-Rojas and Ahamad presented an approach based on plausible clocks
[17]. Its aim is to trade the quality of the detected causality (number of false
positives and false negative) among events (messages sending events) against



Probabilistic Causal Message Ordering 317

timestamp size. When using a vector clock of size 1, a plausible clock boils down
to Lamport’s clocks [8] then as the timestamp size increases, a more and more
accurate causal relation is encoded. Finally, when considering a timestamp size
equal to the total number of processes, plausible clocks meet vector clocks. In a
vector clock, the entry j of the vector managed by a given process pi counts the
number of messages broadcast by process pj , to the knowledge of pi. Indeed due
to asynchronism, the different processes do not have the same view of the state of
the system at a given time instant. The approach of Torres-Rojas and Ahamad
consists in associating several processes to the same entry of each vector clock.

The approach presented in this paper is an extension to the one of Torres-
Rojas, namely each entry is associated to several processes and moreover, to
each process are associated several entries of the vector clock. To summarize,
let us consider the triplet (a, b, c). Where a is the size of the system (number of
processes), b the size of the vector and c the number of entries associated with
each process. A Lamport clock is (n, 1, 1) where n is the total number of users
in the system, a vector clock is (n, n, 1), a plausible clock is (n, r, 1) and the
proposed approach is (n, r, k) (r and k being two constants n ≥ r ≥ k).

2 System Model

When we consider the application level, the different users, nodes, processses or
whatever we call them share common information by mean of replication to be
able to tolerate chrashes and unexpected leaves (each process manages a local
copy of part of the whole set of data). The differents processes interact by mean
of operations (insert/delete/update a piece of data, make a query, etc.). The
frequency and the distribution of operations through time and space depend on
the application. At the underlying level, an operation will entail a change in the
local state of a process and possibly the sending of messages to inform the other
processes as the system is message-passing (no shared memory).

At the abstraction level considered in this paper, a distributed computation
is a large set Π of n processes/users (n and Π are not necessarily known to the
different processes). Let pi and pj denote any processes in Π. We assume that
processes generate messages at arbitrary rates. Messages are sent to all processes
using a broadcast mechanism (broadcast sending primitive). Any process pi ∈ Π
generates three kinds of events. An event e could be a local event, a send event or
a delivery event. Local event induce no interaction with other processes and thus
will be omitted in the rest of the paper. The events produced by a distributed
computation are ordered by Lamport’s happened-before relation [8].

Definition 1 (Happened-before Relation [8]). We say that event e1 hap-
pened before event e2 denoted by e1 → e2 if:

– e1 occurred before e2 on the same process, or
– e1 is the send event of some message m and e2 is the delivery event of the

same message by some process, or
– there exists an event e3 such that e1 → e3 and e3 → e2 (transitive closure).



318 A. Mostéfaoui and S. Weiss

Let us note send(m) the sent event of a message m and del(m) the associated
delivery event. Note that del(m) �= rec(m) the receive event. The receive event
corresponds to the arrival of a message to the underlying communication level of
some process. The delivery of a message corresponds to the arrival of the message
at the application level leading to the use of its content. When considering two
messages m1 and m2, we say that m1 → m2 if send(m1) → send(m2).

A distributed computation respects causal order if for any pair of messages
(m1,m2) the following holds send(m1) → send(m2) ⇒ del(m1) → del(m2).

To ensure the aforementioned property an arrived message m, event rec(m),
at a destination process pi can be possibly delayed until all the messages sent or
delivered by the sending process pj before the sending of m have been already
delivered by the receiving process pi.

3 Probabilistic Causal Broadcast

Several works in the literature propose to reduce the communication cost to
increase scalability by proposing probabilistic solutions. One example is the prob-
abilistic broadcast [5]. While traditional broadcast ensures that each message is
delivered exactly once to each recipient when the sender does not crash, a prob-
abilistic broadcast ensures this only with high probability. In addition, this mes-
sage can be received several times, requiring a mechanism to discard duplicated
messages. This paper introduces two definitions: the probabilistic causal ordering
mechanism and the probabilistic causal broadcast. Existing mechanisms such as
vector clocks are often used to provide a perfect causal ordering mechanism. We
believe that their cost is not compatible with large systems, and thus we propose
to use a probabilistic causal ordering mechanism that ensures a causal delivery
with high probability.

3.1 A Probabilistic Causal Ordering Mechanism

The main idea of the proposed solution is to associate with each process pi a
vector of integer values Vi of size R < N (N being the total number of processes
in the system). This vector acts as a logical clock that allows to timestamp
a subset of the events generated by this process. This timestamping allows to
test whether an event occured before another one. Mainly, the proposed pro-
tocol associates a logical date with each send event and this date is attached
to the message and is called its timestamp. When a message is received, the
receiving process compares its local logical clock with the timestamp carried by
the received message. This allows it to know whether there exist messages sent
causally before it and that have not yet been delivered. As soon as a message
can be delivered it is given to the upper layer application and the local clock is
updated to take into account that this message has been delivered.

We denote Vi[j] with 0 ≤ j < R the j-th entry of the vector clock of the
process pi. A vector clock assigns exactly one entry to each process. With a
plausible clock, each process is assigned only one entry, but one entry is assigned



Probabilistic Causal Message Ordering 319

to several processes. Finally, our approach proposes to assign several entries to
each process, each entry being assigned to several processes. We denote f(pi)
the set of the entries assigned to pi.

Probabilistic Causal Ordering Delivery Mechanism. The proposed prob-
abilistic causal ordering delivery mechanism is an adaptation of the classical and
well-known causal delivery mechanism [2]. When a process pi wants to broadcast
a message m, it executes Algorithm 1 given below. First, process pi increments
all its assigned set of entries f(pi) in its local vector. Then, a copy of this local
vector is attached to the message to be sent. m.V denotes the vector timestamp
attached to message m. Finally, m is broadcast to all processes.

Input: m: message to broadcast
∀x ∈ f(pi), Vi[x] = Vi[x] + 1;
m.V = Vi;
Broadcast(m);

Algorithm 1: Broadcast of a message m by process pi

Input: m: message received by pi from pj
waitUntil((∀x ∈ f(pj), Vi[x] ≥ m.V [x] − 1) ∧ ∀k /∈ f(pj), Vi[k] ≥ m.V [k]);
∀x ∈ f(pj), Vi[x] = Vi[x] + 1;
deliver(m);

Algorithm 2: Upon reception of message m by process pi

When a message m broadcast by a process pj is received by a process pi,
this process executes Algorithm 2. A message m received by a process pi from
a process pj is queued until it is considered as causally ready, namely all the
messages m′ sent causally before it (m′ → m) have been already delivered by
process pi to the application level. Note that:

On the one side, the f(pj) entries are at least as high as the local vector
of process pj before it generates that message: ∀x ∈ f(pj), Vi[x] ≥ m.V [x] − 1.
This means that all the messages sent by process pj but message m are already
known at process pi. On the other side, the other entries of the vector are at
least as high as the local vector of process pj before it generates that message:
∀k /∈ f(pj), Vi[k] ≥ m.V [k]. This means that at least all the messages that have
been delivered to process pj before it broadcast message m are known at process
pi before pi delivers m to its application level.

When the delivery test of a message m holds, process pi increments the entries
of its local vector that belong to the set f(pj) of entries of its local vector before
delivering the message to the application. Hence pi has recorded the information
“m has been delivered to the pi” in its local vector.

Assume that three processes pi, pj and pk are in the same initial state,
meaning they have generated no messages yet, and all values in their vector are
set to 0. Also, we consider here that each process has a vector of R = 4 entries
and each process is assigned K = 2 entries. We assume that f(pi) = {0, 1},
f(pj) = {1, 2} and f(pk) = {3, 4}.



320 A. Mostéfaoui and S. Weiss

On that state, pi generates a first message called m. If we assume that f(pi) =
{0, 1}, then after applying the Algorithm1 at pi, its vector becomes [1, 1, 0, 0].
Notice that it is this vector ([1, 1, 0, 0]) that is attached to m. This message
is sent to all other processes, here we represent only pj and pk. We assume
that pj receives m first: Algorithm 2 is applied and, pj ’s vector is updated to
[1, 1, 0, 0]. Then pj generates a new message m′. Assuming that f(pj) = {1, 2},
the generation of m′ leads to update pj ’s vector to the value [1, 2, 1, 0] which is
piggybacked with the message m′. As m′ is generated after m, m′ is causally
dependent of m (m → m′). Although message m′ is broadcast and will eventually
reach pi, we only represent its reception by process pk for the sake of simplicity.

When pk receives m′, the vector pk is [0, 0, 0, 0] while the vector attached to
m′ is [1, 2, 1, 0]. The delivery of m′ is delayed because its delivery condition (see
Algorithm 2) is not satisfied (Vk[1] < (m.V [1] − 1) and Vk[0] < m.V [0]).

The reception of m turns pk’s vector into [0, 0, 1, 1] which fulfills the condition
for delivering m′.

Fig. 1. Example of possible delivery error

This protocol cannot be perfect as it uses control information the size of which
is smaller than a vector clock of size N that has been proved to be minimal for
ensuring causal delivery of messages. Indeed, it is possible that if process pk
receives some set of messages before receiving m′, the vector of pk could have
been updated in such a way that pk believes that m′ is causally ready. This
scenario is illustrated by Fig. 1. In addition to the previous processes, we now
consider p1 and p2 whose assigned entries are respectively f(p1) = {0, 3} and
f(p2) = {1, 3}. Processes p1 and p2 generate m1 and m2, which are received by
pk before m′.

The reception of m2 and m1 updates the vector of pk to the value [1, 1, 0, 2].
When m′ arrives, pk evaluates to true the delivery condition of Algorithm2 and



Probabilistic Causal Message Ordering 321

delivers m′ while m has not been received yet. This error comes from the fact
that all entries of pi are matched by the combination of the entries of p1 and
p2: f(pi) ⊆ (f(p1) ∪ f(p2)). It is interesting to notice that, as each set of entries
is assigned to at most one process, the error occurs only if we have at least
two concurrent messages, here m1 and m2. If only one concurrent message is
received, the protocol delivers the message in causal order.

In addition, it is easy to see that the proposed protocol never delays the
delivery of an arrived message m′ at some process pi if all the messages m that
have been sent causally before m′ (i.e. m → m′) have been already delivered by
process pi. Indeed, between two consecutive sendings of messages, on the same
process, the increment is one for some entries and when a message is delivered
the corresponding entries are at least incremented by 1 then if the first one is
delivered, the second cannot be blocked as the corresponding entries are aug-
mented by at least 1. The same happens for messages sent by different processes
as in this case the sender of the second message has necessarily delivered the first
message to establish the causal dependency between the two messages. Finally
the proofs that all messages are eventually delivered and that a message causally
ordered is never delayed are given in [10].

Generation and Distribution of the Sets of Keys. The example given
above gives the intuition why the generation of the sets of keys (entries in the
vector clock) is the core of the approach, and how it heavily affects the accuracy
of the resulting protocol. In this section, we present our approach to assign sets
of keys to processes.

Perfect distribution of keys. We assume the existence of a mapping function f
used to assign to each process a set of K entries of the vector such that, the
function f returns exactly K distinct values between 0 and R − 1 (R being the
total number of entries, i.e. the size of the vector clock). Moreover, the values are
equally distributed among processes. In other words, for all subsets of s values
assigned to x processes, there exists no other subset of s values assigned to more
than x + 1 processes, or less than x − 1 processes, for 1 ≤ s ≤ K.

Distributed key assignment algorithms. Finding the best solution is a difficult
problem. Moreover, such an algorithm would not support dynamicity. Indeed,
the addition or the removal of one process would lead to re-assign all new entries
to all or part of the processes. Therefore, to select the K values, we propose to
use a random algorithm. Each process generates randomly a value called setid
chosen between 1 and CR

K . An algorithm that ensures all peers have different
identities, all the generated sets are distinct, and the intersection between all
the sets is at most K − 1 is proposed in [10].

3.2 Detecting Delivery Errors

Most of the applications that require causal ordering of messages assume that
no message is wrongly delivered. The proposed approach that aims to scale, may



322 A. Mostéfaoui and S. Weiss

deliver a message before a message that causally precedes it. This would lead to
inconsistencies, however, we make the assumption that a recovery procedure does
exist (e.g., anti-antropy). This procedure may be costly, and we must determine
when it is required. A simple solution could be to run it at an arbitrarily chosen
period of time. However, this period impacts the system performance: on the one
hand, if it is underestimated, we will waste time by running unnecessary costly
recovery procedure. On the other hand, the over estimation of this period will
cause heavy changes on the application and will hurt the usability of the system
and the recovery from this inconsistent global state. Two mechanisms to detect
delivery errors and to improve the accuracy of this protocol are proposed in [10].

4 Theoretical Error Analysis

In this section, we evaluate the error rate of our probabilistic causal ordering
mechanism depending on the estimation of the system load and the different
parameters of our approach (N,R and K).

Let us first say that the higher R the better is the resulting protocol (better
in the sense less messages that violate causal ordering). At the extreme, if R = 1
we have a linear clock similar to Lamport’s clock. At the other extreme, R = N
we get the perfect and optimal (no causal order violation and delivery at the
earliest) solution to causal ordering. Concerning K, it is easy to see that the
situation is less clear. Indeed, if K is too small; at the extreme K = 1 we get
the plausible clocks of Torres and Ahamad, and we are sure that if two process
are assigned the same entry they will interfere at each message sending. At the
other extreme K = R the protocol boils down to the use of a Lamport’s clock
merging all processes within one single entry. Hence the intuition of the proposed
approach is that there is some value of K to determine that lies between 1 and R
that is optimal. The aim of this theoretical analysis and the simulations presented
in the coming sections is to determine the best value for K and to evaluate the
impact of K on the error rate.

First, we need to compute the probability that a message m is delivered before
a message m′ that precedes it causally (m′ → m). As explained in Sect. 3.1 if such
messages m and m′ are received by some process pi with m received first, then m
can be delivered before m′ with a probability that we note Pnc the probability
that a message m bypasses a message m′ sent causally before it. Depending
on the system we consider, this probability may be quite low. Therefore, we
have to consider this probability to dimension precisely the size of the vector
and the number of entries each process chooses. A necessary condition, though
not sufficient, to wrongly delivered a message is that this message is received
after a preceding message, and the entries of the delayed messages have been all
matched by concurrent messages. Let us note Perror the probability that all the
K entries of the missing message are covered by a set of concurrent messages
(see the example given in Sect. 3.1). Consequently, the probability P of wrongly
delivering a message is bounded by the probability that a delayed message has
its entry matched concurrently P ≤ Pnc ∗ Perror.



Probabilistic Causal Message Ordering 323

The probability that a message is replaced by a set combination of previous
messages is computed following the same scheme as the false positive error of
a bloom filter [3]. The probability that one entry is incremented is 1/R. So the
probability that it is not incremented is: 1 − 1/R and that it is not set by X
messages is (1 − 1/R)k∗X . Then the probability that one entry is incremented
by X messages is 1 − (1 − 1/R)k∗X . Finally the probability of an error delivery
is (1 − (1 − 1/R)k∗X)k.

We need to find the value K that minimizes the probability of an error. We
can easily show that (1 − (1 − 1/R)k∗X)K is minimal when Kmin = ln(2) ∗ R

X .

4.1 Experiments

In this section, we detail the model used to run our simulation. In the first part,
we show that the estimation of the optimal value of K is sound. Then, in a second
part, the experiments are run using this optimal value. We, therefore, show the
behavior of the mechanism based on the size of the vector. In a third part, we
show the accuracy of the estimation of the probability of an error occurrence.

Methodology: In order to evaluate our proposal, we have developed a simple
event-based simulator. Each process generates messages according to a Pois-
son distribution of parameter λ. Each message has its own propagation time
d described as a random value which follows a Gaussian distribution N(μ, σ2)
law. Each process receives a message whose propagation time is according to a
N(d, σ2

m). In the average, each node generates a message each second. The mes-
sage propagation time d follows a normal distribution law N(100, 20) and the
skew between a message reception on all nodes follows also a normal distribution
law N(d, 20).

Detecting Delivery Errors. One of the challenges to evaluate the proposed
approach is to measure the error rate. When a message is said to be “causally
ready” by our mechanism, we need to verify that it is really causally ready,
therefore, in our simulator we also need to implement a perfect causal broadcast.
This additional mechanism should have the lowest cost possible as it limits the
simulator scalability. To detect an error, we must know all the messages the
sending of which happened-before a given message. A simple solution would be
to attached a set of messages to each sent message. Obviously, this would limit
drastically the scalability of the simulator. Therefore, we use a mechanism based
on vector clocks. Unfortunately, a vector clock cannot capture wrongly delivered
messages.

Indeed, when a non-causally ready message arrives, the causal ordering mech-
anism delays it, while in our case, it may be delivered to the application. To deal
with this case, we update the local vector clock by taking the maximum of the
local vectors and the wrongly delivered messages. Therefore, missing messages
will be dropped by the perfect causal delivery mechanism. Detecting precisely if
the missing messages are causally ready is costly, instead we propose two metrics.
The first one, εmin, simply assumes that all missing messages are delivered in a



324 A. Mostéfaoui and S. Weiss

causal order, while the second one εmax assume that all of them are delivered
in a non-causal order. Finally, we have two bounds on the error rate: the lower
bound εmin and the upper bound εmax.

Choosing the Optimal Number of Keys. The first step in validating our
approach is to verify that we choose the best value for the parameter K. There-
fore, we ran several experiments by changing only the value of K and then
compare the value that minimizes it with the theoretical optimal value. Figure 2
shows the error rate for respectively 500, 1000, 1500 and 2000 peers. In this
experiment, the average number of messages received by a process is constant
(200 msgs/s) and, the number of exchanged messages is more than a hundred
million.

As our simulation considers an average message propagation time of 100 ms,
the average number of messages that are received concurrently is 20. We use 100-
entry vectors, hence, the optimal number of keys is theoretically ln(2)∗100/20 ≈
3.5 and the experimental results show that the value for K that minimizes the
error rate for this configuration is 4.

Fig. 2. Number of errors for different value of K (Theoretical best value is 3.5)

Impact of the Different Parameters. For the different simulations, we
assumed a system composed on n = 1000 processes each managing a vector of 4
entries (K = 4) and generates a message every 5 s in the average (λ = 5000). As
a real system may behave differently from the estimation, we are now interested
in the impact on the error rate when we vary only one parameter. We studied
respectively the effect on the error rate of the message generation rate λ, the
total number of process in the system, and for different constant number of mes-
sage per process. The different results are given in [10]. The different simulations
show that indeed, it is not λ and n by themselves that directly impact the error
rate but the “concurrency”. We mean by concurrency the mean number of mes-
sages that are broadcast during the transit time of some message (latency of the
network).



Probabilistic Causal Message Ordering 325

5 Conclusion

In this paper we presented a new approach that allows to heavily reduce the cost
of causal broadcast communication primitive. This reduction of the cost leads
to a small rate of errors. The errors being the cases when a message is delivered
while there are causally related messages that need to be delivered that are
not yet delivered. We have shown that the approach is theoretically sound. The
main parameter K optimizes the protocol and may vary from 1 and R the two
extreme already existing cases. The second contribution of the paper is an alert
mechanism that allows to check the bad cases. In case there is no alert, we are
sure there is no error.

Acknowledgments. This work has been partially supported by the Franco-German
DFG-ANR Project DISCMAT (40300781) devoted to connections between mathemat-
ics and distributed computing, and the French ANR project O’Browser (ANR-16-CE25-
0005-01) devoted to decentralized computing on networks of browsers.

References

1. Alvaro, P., Conway, N., Hellerstein, J.M., Marczak, W.R.: Consistency analysis in
bloom: a CALM and collected approach. In: Proceedings of the CIDR 2011, pp.
249–260 (2011)

2. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failures.
ACM Trans. Comput. Syst. 5, 47–76 (1987)

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

4. Charron-Bost, B.: Concerning the size of logical clocks in distributed systems. Inf.
Process. Lett. 39, 11–16 (1991)

5. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kouznetsov, P., Kermarrec,
A.M.: Lightweight probabilistic broadcast. In: DSN, pp. 443–452 (2001)

6. Fidge, C.: Logical time in distributed computing systems. Computer 24(8), 28–33
(1991)

7. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

8. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

9. Mattern, F.: Virtual time and global states of distributed systems. In: Proceedings
of the International Workshop on Parallel and Distributed Algorithms, pp. 215–226
(1989)

10. Mostefaoui, A., Weiss, S.: A Probabilistic Causal Message Ordering Mechanism.
Research report, Université de Nantes (2017). Open archive HAL ref. hal-01527110

11. Oster, G., Urso, P., Molli, P., Imine, A.: Data consistency for p2p collaborative
editing. In: CSCW, pp. 259–268 (2006)

12. Raynal, M., Schiper, A., Toueg, S.: The causal ordering abstraction and a simple
way to implement it. Inf. Process. Lett. 39(6), 343–350 (1991)

13. Schiper, A., Eggli, J., Sandoz, A.: A new algorithm to implement causal ordering.
Distrib. Algorithms 392, 219–232 (1989)



326 A. Mostéfaoui and S. Weiss

14. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24550-3 29

15. Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.: Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems.
ACM Trans. Comput.-Hum. Interact. 5(1), 63–108 (1998)

16. Terry, D., Demers, A., Petersen, K., Spreitzer, M., Theimer, M., Welch, B.: Session
guarantees for weakly consistent replicated data. In: Proceedings of the PDIS, pp.
140–149 (1994)

17. Torres-Rojas, F.J., Ahamad, M.: Plausible clocks: constant size logical clocks for
distributed systems. Distrib. Comput. 12(4), 179–195 (1999)

http://dx.doi.org/10.1007/978-3-642-24550-3_29


An Experimental Study of Workflow Scheduling
Algorithms for Heterogeneous Systems

Alexey Nazarenko and Oleg Sukhoroslov(B)

Institute for Information Transmission Problems of the Russian Academy of Sciences,
Moscow, Russia

nazar@phystech.edu, sukhoroslov@iitp.ru

Abstract. The paper studies the efficiency of nine state-of-the-art algo-
rithms for scheduling of workflow applications in heterogeneous comput-
ing systems (HCS). The comparison of algorithms is performed on the
base of discrete-event simulation for a wide range of workflow and system
configurations. The developed open source simulation framework based
on SimGrid toolkit allowed us to perform a large number of experiments
in a reasonable amount of time and to ensure reproducible results. The
accuracy of the used network model helped to reveal drawbacks of sim-
pler models commonly used for studying scheduling algorithms.

Keywords: Distributed computing · Heterogeneous systems · Schedul-
ing · Workflow · Simulation

1 Introduction

Heterogeneous computing systems (HCSs) composed of different computational
units or standalone resources, which can be local or geographically distributed,
are widely used nowadays for executing parallel applications. Workflows [13] is
an important class of such applications that consist of many tasks with logical
or data dependencies which can be modeled as directed acyclic graphs (DAGs).

The efficiency of executing workflows in HCS critically depends on the meth-
ods used to schedule the workflow tasks, i.e. decide when and which resource
must execute the tasks of the workflow. The main objective is to minimize the
overall completion time or makespan subject to possible additional constraints
such as meeting a deadline or using a fixed budget. In comparison to homoge-
neous systems, the task scheduling problem in HCS is more complicated because
of the different execution rates of individual resources and different communica-
tion rates of links between these resources.

The DAG scheduling problem has been shown to be NP-complete [9], even
for the homogeneous case. This makes it practically impossible to obtain the
optimal schedule even for the simplest formulations of practical interest. There-
fore the research effort in this field has been mainly to obtain low complexity
heuristics that produce good schedules. Since the late 1990s and until now, a
multitude of workflow scheduling algorithms [18] based on different heuristics
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 327–341, 2017.
DOI: 10.1007/978-3-319-62932-2 32



328 A. Nazarenko and O. Sukhoroslov

and metaheuristics have been proposed. While each scheduling algorithm is gen-
erally compared by its authors with the best known ones, such comparisons
are ad-hoc, use different methodologies and assumptions, and can not be easily
reproduced by other researchers. Thus there is a lack of comprehensive and repro-
ducible comparative studies of such algorithms for a wide range of application
and system configurations.

Simulation, involving computer modeling of the process of application execu-
tion in HCS, is widely used in scheduling algorithm research. In comparison to
the full-scale experiments on real systems, simulation allows to perform a statis-
tically significant number of experiments in a reasonable amount of time while
ensuring the reproducibility and having moderate hardware resource require-
ments. While individual researchers often rely on different simulators and under-
lying models, the comparative study necessitates the use of a common simulation
framework with accurate and validated models.

In this paper we attempt to address the aforementioned issues by comparing
the performance of nine state-of-the-art algorithms for scheduling of workflows
in HCS using the developed simulation framework. The proposed framework
provides tools for implementation of scheduling algorithms, generation of syn-
thetic systems and workflows, execution of simulation experiments and analysis
of results. It leverages SimGrid toolkit for the discrete-event simulation of par-
allel applications in distributed environments. In contrast to WorkflowSim [7], a
previously published toolkit for simulating workflows, the developed framework
includes more algorithms and relies on a thoroughly validated network model
implemented in SimGrid. The obtained experimental results, while confirming
the advantage of HEFT [15] and Lookahead [5] algorithms, also provide a strong
evidence against the widely used simple network models that disregard network
topology and bandwidth allocation.

The paper is structured as follows. Section 2 provides a brief description of
the studied algorithms. Section 3 introduces the used system and application
models along with the developed simulation framework. Section 4 presents and
discusses the results of simulation experiments. Section 5 concludes and discusses
future work.

2 Workflow Scheduling Algorithms

For our experiments, we have selected a number of scheduling algorithms. To
assess the possible advantages of static scheduling, we have employed a well-
known Heterogeneous Earliest Finish Time (HEFT) [15] algorithm and a few
related list scheduling heuristics, using the simplest dynamic scheduling algo-
rithm (OLB) as a reference point. We have also added a few more advanced
dynamic algorithms filling the gap between whole workflow analysis of static
methods and per-task planning of OLB.

In this section we provide a brief overview of each studied algorithm. To
describe the algorithms, we will introduce a few common notations:



An Experimental Study of Workflow Scheduling Algorithms 329

– Individual workflow tasks — Ta;
– Data transfer size between task Ta and its child Tb — cab;
– Individual computing resources — Ri;
– Estimated execution time of a task on a particular resource — EET (Ta, Ri).

It must be noted that obtaining the EET is a separate and non-trivial prob-
lem. In this study, we compute EET as the ratio of known computational
complexity of the task to the resource performance;

– Estimated communication time between tasks — ECOMT (Ta, Tb, Ri, Rj).
Yet again, it may be difficult to estimate this value on practice. In this study,
we use a simple yet widely applied Hockney’s model:

ECOMT (Ta, Tb, Ri, Rj) =
cab

bandwidth between Ri and Rj
+ network latency

– Estimated task start time — EST (Ta, Ri). At any given moment, non-zero
values of EST show that either the resource Ri is currently busy or that the
task Ta is not ready to run yet.

– Estimated task completion time on a particular — ECT (Ta, Ri). This value
can be computed as

ECT (Ta, Ri) = EST (Ta, Ri) + max
Tb∈parents of Ta

(ECOMT (cab)) + EET (Ta, Ri)

2.1 Static Algorithms

Static algorithms schedule all workflow tasks before the actual execution of the
workflow. These algorithms inherently rely on some performance models to esti-
mate the task completion and communication times.

It is worth noting that, while this approach does not take into account the
dynamic nature of real HCSs or any inaccuracies in used models, it could be used
in a dynamic setting by recomputing the schedule during the workflow execution
if some of the previous assumptions are violated.

Heterogeneous Earliest Finish Time (HEFT): Probably the most cited
workflow scheduling algorithm [15]. The tasks are sorted in descending order of
their rank computed as

rank(Ta) = EET (Ta) + max
Tb∈children of Ta

(
ECOMT (cab) + rank(Tb)

)
,

and then each task is scheduled to a resource with minimum ECT . Note the
important feature of the rank function — it defines a valid topological order for
the tasks. All tasks are scheduled after their parents, so we can compute the
communication time estimate.

Heterogeneous Critical Parent Trees (HCPT): This algorithm implements
an alternative ordering approach [10]. For each task we compute two criteria.
The first criterion is the average earliest start time

AEST (Ta) = max
Tb∈parents of Ta

(
ECOMT (cab) + EET (Tb) + AEST (Tb)

)
.



330 A. Nazarenko and O. Sukhoroslov

This criterion is calculated by a forward traversal of the workflow graph. AEST
value for the entry task is defined to be zero. The second criterion is the average
latest start time

ALST (Ta) = min
Tb∈children of Ta

(
ALST (Tb) − ECOMT (cab)

) − EET (Ta).

This criterion is calculated by a reverse traversal of the workflow graph.
ALST value for the exit task is set to be equal to its AEST value. Tasks with
equal values of AEST and ALST are considered to be critical tasks. Then we
perform a guided topological sort that prioritizes critical tasks. On a scheduling
stage, tasks are considered in resulting order. Each task is scheduled to a resource
that minimizes the ECT .

Lookahead (LA): This algorithm can be considered as an extension of the
HEFT algorithm [5]. It uses the same task ranking approach, however on a
scheduling step the best resource is selected not by the ECT of a current task, but
by an estimated total makespan of the workflow if all remaining tasks are sched-
uled using HEFT. Hence a particular task can get a less performant resource if
this reduces the total makespan, making the approach less greedy. The algorithm
tends to produce efficient schedules, but has a high computational complexity.

Predict Earliest Finish Time (PEFT): This algorithm attempts to achieve
the benefits of the Lookahead algorithm while keeping the computational com-
plexity low [1]. To do this it precomputes the values of Optimistic Cost Table
(OCT) for each task-resource pair as follows:

OCT (Ta, Ri) = max
Tb∈children of Ta

min
Rj

(OCT (Tb, Rj) + EET (Tb, Rj)

+ ECOMT (cab, Ri, Rj)).

The idea of this criterion is to estimate the remaining workflow execution
time disregarding the resource availability. The tasks are scheduled in decreasing
order of the mean OCT value across all resources. A task is assigned to a resource
that minimizes the sum of ECT and OCT .

2.2 Dynamic Algorithms

Dynamic algorithms schedule workflow tasks incrementally during the workflow
execution. On each scheduling cycle, the algorithm considers a subset of tasks
currently available for scheduling. In most cases, the available tasks include all
unscheduled tasks ready for execution, i.e. tasks whose parent tasks are already
completed. While the simplest algorithms blindly schedule available tasks to
idle resources, more sophisticated algorithms try to estimate task completion
and communication times using performance models and consider all resources
just like the static algorithms.

Opportunistic Load Balancing (OLB): A simple algorithm that dynami-
cally assigns available tasks to resources currently being idle [3]. The order in



An Experimental Study of Workflow Scheduling Algorithms 331

which the tasks and resources are considered during the scheduling cycle is unde-
fined in a general case. In this paper we order tasks by their name and resources
by their performance to ensure reproducible results. The advantages of this algo-
rithm include its simplicity and adaptability. It also avoids the need to estimate
task completion times for each resource which is often non-trivial. Although it
may produce significantly suboptimal schedules, OLB is among the most used
scheduling algorithms in modern HCSs.

Minimum Completion Time (MCT): An algorithm that assigns each avail-
able task to a resource that is expected to finish the task the earliest. The tasks
can be scheduled in an undefined order, however in this paper we use a pre-
defined order for reproducible results. Unlike OLB, this algorithm considers all
available resources regardless of whether they are idle. To achieve this, the algo-
rithm maintains an estimate of the earliest start time for each resource EST (Ri).
This approach allows to combine the strengths of static and dynamic schedul-
ing: computing the ECT for each task implicitly takes into account the local
workflow structure (as ECT includes communication times from task’s parents)
while reducing the schedule degradation when the used estimates are inaccurate.

Min-Min: A dynamic batch-mode scheduling algorithm [8,12]. The resource
selection procedure is the same as in the MCT algorithm. However, it resolves
the task ordering problem by scheduling all available tasks in one batch using
the following heuristic. The ECT matrix is computed for each task-resource pair,
and for each task the minimum ECT value and the corresponding best resource
are determined. Then the task with a minimum best ECT is selected (hence
the name of this algorithm) and is assigned to its best resource. The scheduled
task is then removed from the batch and the whole process is repeated until the
batch is fully scheduled.

Max-Min: A dynamic batch-mode scheduling algorithm [8,12]. Max-Min is
structurally identical to the Min-Min heuristic, the only difference being the
task ordering criterion — the tasks with a maximum best ECT are scheduled
first. The intuition behind this heuristic is to schedule the long-running tasks as
earlier as possible.

Sufferage: A dynamic batch-mode scheduling algorithm introduced in [12].
Again this algorithm is structurally identical to the Min-Min heuristic, the only
difference being the task ordering criterion — the tasks with a maximum dif-
ference between ECT values on best and second-best resources are scheduled
first. The intuition behind this heuristic is to give preference to tasks which
completion time could suffer the most if they are not scheduled now.

3 Simulation Framework

To study the workflow scheduling algorithms in this paper we use simulation.
This approach, involving computer modeling of the process of application execu-
tion in a distributed computing system, is widely used for such kind of research.



332 A. Nazarenko and O. Sukhoroslov

In comparison with the full-scale experiments on real systems, simulation allows
to significantly reduce the time needed to run an experiment and to ensure the
reproducibility of produced results, while having moderate requirements to the
used hardware resources. This allowed us to perform a statistically significant
number of experiments for a wide range of workflow and system configurations in
a reasonable amount of time. However, when using simulation it is important to
ensure the accuracy, i.e. minimal deviation from the results of real-world exper-
iments, and the scalability, i.e. the ability to conduct large-scale experiments, of
the used simulation model.

The simulation model used in this paper is implemented on the base of
SimGrid1 [6], a simulation toolkit for studying the behavior of large-scale dis-
tributed systems. The toolkit provides the required fundamental abstractions
for the discrete-event simulation of parallel applications in distributed environ-
ments. The choice of SimGrid was motivated by the maturity of the toolkit, the
soundness and high level of verification of embedded models, and the active sup-
port of developers. An important factor is also the versatility of the toolkit that
allows one to simulate grids, cloud infrastructures, peer-to-peer systems and MPI
applications.

Many studies also used WorkflowSim [7], an open source toolkit for simu-
lating scientific workflows based on CloudSim simulator. We avoided the use of
WorkflowSim as it has been shown that CloudSim among other simulators has
flaws in its network model [17].

3.1 System and Application Models

The heterogeneous computing system is modeled as a set of hosts and network
links between them as depicted on Fig. 1. Each host is characterized by its per-
formance expressed in FLOPS. In this study, it is assumed that each host has
a single processor core, which resources are evenly distributed among the tasks
running on the host. The execution of any task is considered nonpreemptive.
Network links are characterized by their bandwidth and latency.

While the simulation is widely used for studying scheduling algorithms, the
researchers often neglect the accuracy of the used models, especially network
ones. In particular, in many papers authors assume a contention-free network
model in which a network host can simultaneously send to or receive data from
as many hosts as possible without experiencing any performance degradation.
However, this model is not representative of real-world networks. In this study,
we use the bounded multiport model provided by SimGrid. In this model, a host
can communicate with several other hosts simultaneously, but each communica-
tion flow is limited by the bandwidth of the traversed route, and communications
using a common network link have to share bandwidth. This scheme corresponds
well to the behavior of TCP connections on a LAN. The validity of this network
model has been demonstrated in [16].

1 http://simgrid.gforge.inria.fr/.

http://simgrid.gforge.inria.fr/


An Experimental Study of Workflow Scheduling Algorithms 333

root

end

task1

task2

task3

bytes

flops

Network
(LAN, WAN)

bandwidth
latencyperformance

(FLOPS)

master

Fig. 1. Workflow and heterogeneous computing system models.

SimGrid supports simulation of various network topologies including hierar-
chies and combinations of autonomous systems with different internal routing
strategies. We consider systems with a simple topology where each host is con-
nected to a central backbone via a dedicated link as depicted on Fig. 1, and a
route between any two hosts contains the two respective links. The backbone,
which can correspond to the LAN switch or the WAN, doesn’t impose additional
latency or bandwidth constraints in this model. Therefore the rate of commu-
nication between any pair of hosts is determined only by characteristics of the
corresponding pair of links.

The workflow application is modeled as a directed acyclic graph (DAG),
whose vertices correspond to individual tasks and directed edges represent the
data dependencies between tasks as depicted on Fig. 1. Each vertex is charac-
terized by its size, i.e. the amount of computations in flops associated with the
corresponding task. Similarly, each edge is characterized by the amount of com-
munication in bytes between the corresponding pair of tasks. The size of task
input data equals to the sum of sizes of incoming edges.

The two special tasks with zero size are introduced in order to model the
staging of workflow input and output data. The root task passes through its
outgoing edges the input data to the initial tasks, i.e. those that do not depend
on other workflow tasks. The end task receives through its incoming edges the
output data from the final tasks, i.e. those that do not pass their data to other
workflow tasks.

The root and end tasks are executed on a dedicated host called master, which
does not participate in computations. This host corresponds to the machine,
which stores the input data and where the output data should be placed after
the application execution. In practice, this host often performs submission and
management of the workflow.



334 A. Nazarenko and O. Sukhoroslov

3.2 Algorithm Implementations and Supporting Tools

While the SimGrid toolkit has been used previously for studying workflow
scheduling algorithms [2,11], to the best of our knowledge there are no pub-
lished open source implementations of such algorithms for SimGrid. Therefore
we have implemented all nine algorithms described in Sect. 2 following their
original papers. It is worth to mention that the WorkflowSim toolkit2 includes
only implementations of HEFT and simple dynamic algorithms (FCFS, MCT,
MinMin, MaxMin).

The scheduling algorithm should be able to interact with the described sys-
tem and application models during the simulation. In the case of SimGrid, this
interaction can be implemented via its application programming interfaces (API)
for C programming language. However, the implementation of each algorithm
in C using low-level interfaces would require a considerable effort. SimGrid also
provides a Java API, but it does not cover all toolkit functionality.

To simplify the implementation of scheduling algorithms for our experiments
we have developed a pysimgrid library. This library implements a thin wrapper
around the native SimGrid API and provides a convenient interface for develop-
ment of scheduling algorithms in Python language. The library also includes aux-
iliary tools for generation of synthetic systems and workflows, batch execution
of simulation experiments and analysis of simulation results. The use of ubiqui-
tous high-level programming language with a wide range of third-party libraries
helped to significantly accelerate the development of the simulation framework.
The code of pysimgrid library including the implementations of studied algo-
rithms is publicly available on the GitHub3.

4 Experimental Results

In this section, we present the results of simulation experiments that compare
the performance of studied algorithms for a wide range of workflow and system
configurations using the described simulation framework.

We use the makespan, i.e. the measured total run time of a workflow in a given
system according to a schedule produced by an algorithm, as the basis for com-
parison of algorithm performance. For each simulated pair system-application
we run all algorithms and then normalize their makespans by the makespan
achieved by the OLB algorithm. The use of OLB as a baseline is motivated by
its wide use in modern HCSs. Finally, to reduce the variance, we compute the
mean of normalized makespans across all simulations and report these values in
tables for each experiment.

4.1 Experiments with Real Workflows

The first series of experiments uses a fixed set of workflows while varying the
system characteristics. The used workflows are based on real world scientific
applications [4]:
2 https://github.com/WorkflowSim/.
3 https://github.com/alexmnazarenko/pysimgrid.

https://github.com/WorkflowSim/
https://github.com/alexmnazarenko/pysimgrid


An Experimental Study of Workflow Scheduling Algorithms 335

– CyberShake: characterize earthquake hazards in a region (SCEC);
– Epigenomics: automates various genome sequencing operations (USC

Epigenome Center);
– LIGO Inspiral: analyse and filter the time-frequency data from the Laser

Interferometer Gravitational Wave Observatory experiment (LIGO);
– Montage: stitch together multiple images of the sky to create large-scale

custom mosaics (NASA/IPAC).

The simulated systems have 5, 10 or 20 hosts with performance varying in a
range of 1 to 4 GFlops. The network links have identical characteristics selected
to be close to the Gigabit Ethernet network (bandwidth: 100 MBytes/sec,
latency: 100 us). For each host count 100 distinct systems are randomly
generated.

The mean normalized makespans achieved by the studied algorithms are
presented in the Table 1. The results for Montage, LIGO and Epigenomics work-
flows are similar — OLB performs the worst, dynamic heuristics follow and
the best results are produced by static algorithms. Among the static algorithms,
Lookahead performs the best, closely followed by HEFT. The maximum speedup
achieved in comparison to OLB varies among the workflows due to the different
amount of inherent parallelism.

Table 1. Experiment 1, mean normalized makespan

Hosts count OLB MCT MinMin MaxMin Sufferage HCPT HEFT Lookahead PEFT

CyberShake, 100 tasks

5 1.0000 1.0031 1.0160 0.9995 1.0125 1.1000 1.0525 1.0424 1.0607

10 1.0000 0.9950 0.9920 0.9817 0.9855 1.1151 1.0828 1.0599 1.1020

20 1.0000 0.9833 0.9623 0.9833 0.9537 1.1111 1.1027 1.0497 1.1130

Epigenomics, 100 tasks

5 1.0000 0.9679 0.9692 0.9684 0.9652 0.9710 0.9349 0.9052 0.9669

10 1.0000 0.9002 0.9229 0.9107 0.9092 0.9338 0.8482 0.8088 0.9155

20 1.0000 0.7706 0.8071 0.7725 0.7836 0.8349 0.6908 0.6619 0.8305

LIGO Inspiral, 100 tasks

5 1.0000 0.9820 0.9813 0.9819 0.9801 1.0895 0.9619 0.9428 1.0043

10 1.0000 0.9038 0.9106 0.9100 0.9094 1.1099 0.8619 0.8320 0.9487

20 1.0000 0.7900 0.7914 0.8245 0.8153 0.9045 0.6899 0.6699 0.8132

Montage, 100 tasks

5 1.0000 0.9777 0.9779 0.9765 0.9780 1.0296 0.9752 0.9674 0.9791

10 1.0000 0.9579 0.9596 0.9549 0.9579 1.0071 0.9573 0.9435 0.9632

20 1.0000 0.9124 0.9159 0.9080 0.9135 0.9243 0.9163 0.8912 0.9200

CyberShake workflow, however, is different. All dynamic algorithms show
similar results and outperform the static algorithms. Investigation shows that
this workflow has two distinguishing properties — high parallelism and high
communication-to-computation ratio (CCR). This could lead to a network con-
tention resulting in a significant mismatch between the simple model used in the



336 A. Nazarenko and O. Sukhoroslov

static algorithms for estimation of ECOMT and the accurately modeled network
in the simulator. To check this hypothesis, we obtained the predicted makespan
values from the internal state of the static algorithms. Each predicted makespan
is normalized by the simulated OLB makespan so that the values are compatible
with the previous table. The results are presented in the Table 2.

Table 2. Experiment 1, mean normalized makespan predicted by the static algorithms

Hosts count OLB HCPT HEFT Lookahead PEFT

CyberShake, 100 tasks

5 1.0000 0.5594 0.5074 0.5035 0.5269

10 1.0000 0.4069 0.3789 0.3706 0.4101

20 1.0000 0.3003 0.2958 0.2922 0.3284

Epigenomics, 100 tasks

5 1.0000 0.9671 0.9311 0.9017 0.9631

10 1.0000 0.9261 0.8405 0.8023 0.9079

20 1.0000 0.8197 0.6740 0.6471 0.8157

LIGO Inspiral, 100 tasks

5 1.0000 1.0883 0.9608 0.9418 1.0031

10 1.0000 1.1076 0.8602 0.8305 0.9468

20 1.0000 0.9006 0.6865 0.6666 0.8096

Montage, 100 tasks

5 1.0000 1.0223 0.9683 0.9603 0.9720

10 1.0000 0.9972 0.9478 0.9338 0.9537

20 1.0000 0.9107 0.9023 0.8772 0.9070

As we can see, the static algorithms expect to achieve drastically different
values of makespan than the ones produced by the simulation. It means that
for the CyberShake workflow, ignoring the network contention effect caused by
competing data transfers produces more than 200% error in the makespan esti-
mation. This result emphasizes the importance of accurate network simulation
for studying and benchmarking of task scheduling algorithms for HCSs.

To strengthen our conclusion, we repeated the simulation for the same set of
workflows and systems using the virtually infinitely fast network. The obtained
results are presented in the Table 3. In this setup, we get consistent results across
all workflows, with the simplest OLB algorithm producing the worst schedules
and the most advanced Lookahead algorithm producing the best ones.

4.2 Experiments with Synthetic Workflows

To investigate the observed effects related to the workflow inherent parallelism
and CCR ratio, we have conducted another series of experiments with randomly



An Experimental Study of Workflow Scheduling Algorithms 337

Table 3. Experiment 1, mean normalized makespan with infinitely fast network

Host count OLB MCT MinMin MaxMin Sufferage HCPT HEFT Lookahead PEFT

CyberShake, 100 tasks

5 1.0000 0.9853 0.9861 0.9554 0.9640 1.0605 0.9584 0.9468 0.9890

10 1.0000 0.9636 0.9668 0.9032 0.9247 0.9754 0.9065 0.8828 0.9812

20 1.0000 0.8982 0.9512 0.8145 0.8810 0.8912 0.8001 0.7865 0.9248

Epigenomics, 100 tasks

5 1.0000 0.9758 0.9760 0.9707 0.9676 0.9647 0.9330 0.9036 0.9533

10 1.0000 0.8977 0.9174 0.9081 0.9085 0.9325 0.8451 0.8071 0.8816

20 1.0000 0.7553 0.8009 0.7643 0.7718 0.8350 0.6920 0.6629 0.8045

LIGO Inspiral, 100 tasks

5 1.0000 0.9787 0.9792 0.9785 0.9763 1.0879 0.9605 0.9398 0.9960

10 1.0000 0.9043 0.9063 0.9113 0.9118 1.1133 0.8680 0.8371 0.9487

20 1.0000 0.7979 0.8025 0.8331 0.8288 0.9136 0.6953 0.6739 0.8426

Montage, 100 tasks

5 1.0000 0.9770 0.9771 0.9752 0.9769 1.0318 0.9766 0.9684 0.9797

10 1.0000 0.9582 0.9596 0.9544 0.9574 1.0082 0.9605 0.9467 0.9681

20 1.0000 0.9097 0.9120 0.9036 0.9094 0.9375 0.9207 0.8942 0.9240

generated synthetic workflows. These experiments are run on a single system
consisting of 10 hosts with performance ranging from 1 to 4 Gflops. Network
links have the same bandwidth and latency as previously.

The synthetic workflows are generated using the daggen utility, which imple-
ments the layered workflow generation algorithm specifically designed for study-
ing workflow scheduling algorithms [14]. Two parameters of generated workflows
are varied: the average number of tasks per layer (graph width) and the CCR
ratio. The CCR is expressed as the ratio of the total size of task inputs in MBs
to its computational cost in Gflops. The CCR value was fixed across all workflow
tasks. 100 random workflows with 100 tasks were generated for each combination
of graph width and CCR.

The simulation results are presented in the Table 4. It appears that the results
of static algorithms become less and less consistent both with the increase of the
graph width and of the CCR. To quantify the error of their internal models,
we have collected the makespans predicted by the algorithms using the same
approach as in the first experiment in the Table 5.

As we can see, for CCR=1000 the makespan prediction error gets as high
as 2500%! Although the total predicted makespan is not important by itself,
this result also shows that the algorithm’s internal model completely diverges
from the simulation for all static algorithms. Interestingly enough, the simpler
algorithms such as HEFT and HCPT are still able to produce decent schedules
while the more advanced Lookahead and PEFT algorithms end up worse than
the simplest dynamic OLB due to the overoptimized schedule built using an
inaccurate performance model.

Finally, we repeated the simulation for the same synthetic workflows and the
system using an infinitely fast network. The results are presented in the Table 6.



338 A. Nazarenko and O. Sukhoroslov

Table 4. Experiment 2, mean normalized makespan

CCR OLB MCT MinMin MaxMin Sufferage HCPT HEFT Lookahead PEFT

Workflows with 100 tasks, 10 tasks per layer

1 1.0000 0.9954 1.0149 0.9979 1.0186 0.9308 0.8157 0.8117 0.9085

10 1.0000 1.0245 1.0367 1.0503 1.0837 0.8452 0.8004 0.7761 0.9223

100 1.0000 0.4934 0.4882 0.5111 0.5282 0.5206 0.5969 0.5929 0.7692

500 1.0000 0.2540 0.2538 0.2670 0.2643 0.2489 0.2732 0.2810 0.3590

1000 1.0000 0.2193 0.2191 0.2262 0.2295 0.2367 0.2496 0.1999 0.3387

Workflows with 100 tasks, 20 tasks per layer

1 1.0000 1.0238 1.0996 1.0563 1.0614 0.9411 0.8295 0.8265 0.9242

10 1.0000 1.1279 1.1837 1.1215 1.1653 0.9057 0.8830 0.8637 1.0594

100 1.0000 0.7148 0.7268 0.7787 0.7801 0.7381 0.7748 0.7424 1.0609

500 1.0000 0.5284 0.5151 0.5740 0.5731 0.4622 0.4755 0.6458 0.6637

1000 1.0000 0.4466 0.4456 0.4961 0.4948 0.4057 0.4083 0.6205 0.4991

Workflows with 100 tasks, 40 tasks per layer

1 1.0000 1.0589 1.0821 1.0468 1.0816 0.8613 0.8160 0.8226 0.9341

10 1.0000 1.1852 1.1984 1.2057 1.2076 0.9464 0.9303 0.9648 1.2927

100 1.0000 1.0190 0.9934 1.0648 1.0802 0.9357 0.9463 0.8855 1.7834

500 1.0000 0.8159 0.8169 0.8734 0.8897 0.7725 0.7926 1.3575 1.4882

1000 1.0000 0.7890 0.7460 0.8370 0.8425 0.7590 0.7499 1.3137 0.9202

Table 5. Experiment 2, mean normalized makespan predicted by the static algorithms

CCR OLB HCPT HEFT Lookahead PEFT

Workflows with 100 tasks, 10 tasks per layer

1 1.0000 0.9096 0.7932 0.7831 0.8803

10 1.0000 0.6186 0.5375 0.5270 0.5983

100 1.0000 0.1462 0.1557 0.1392 0.1817

1000 1.0000 0.0279 0.0293 0.0262 0.0397

Workflows with 100 tasks, 20 tasks per layer

1 1.0000 0.9148 0.8001 0.7922 0.8905

10 1.0000 0.6260 0.5584 0.5493 0.6186

100 1.0000 0.1430 0.1381 0.1248 0.1513

1000 1.0000 0.0655 0.0646 0.0527 0.0554

Workflows with 100 tasks, 40 tasks per layer

1 1.0000 0.8307 0.7818 0.7730 0.8893

10 1.0000 0.6167 0.5756 0.5638 0.6485

100 1.0000 0.1377 0.1293 0.1204 0.1494

1000 1.0000 0.0629 0.0625 0.0545 0.0547



An Experimental Study of Workflow Scheduling Algorithms 339

Table 6. Experiment 2, mean simulated makespan with infinitely fast network

CCR OLB MCT MinMin MaxMin Sufferage HCPT HEFT Lookahead PEFT

Workflows with 100 tasks, 10 tasks per layer

1 1.0000 1.0243 1.0357 1.0211 1.0192 0.9793 0.8536 0.8438 0.9540

10 1.0000 0.9951 1.0429 1.0006 1.0313 0.9646 0.8386 0.8298 0.9305

100 1.0000 1.0098 1.0276 1.0105 1.0293 0.9808 0.8559 0.8450 0.9537

500 1.0000 1.0202 1.0362 1.0125 1.0518 0.9869 0.8717 0.8561 0.9663

1000 1.0000 1.0199 1.0254 1.0079 1.0480 0.9803 0.8670 0.8525 0.9578

Workflows with 100 tasks, 20 tasks per layer

1 1.0000 1.0958 1.1173 1.0803 1.0815 0.9780 0.8494 0.8408 0.9566

10 1.0000 1.1062 1.1463 1.1060 1.1209 0.9675 0.8498 0.8419 0.9500

100 1.0000 1.0953 1.1398 1.0778 1.0947 0.9774 0.8505 0.8426 0.9596

500 1.0000 1.1043 1.1275 1.0812 1.0925 0.9645 0.8429 0.8343 0.9446

1000 1.0000 1.0961 1.1149 1.0736 1.0985 0.9732 0.8476 0.8380 0.9523

Workflows with 100 tasks, 40 tasks per layer

1 1.0000 1.1137 1.1054 1.1177 1.1367 0.8942 0.8378 0.8278 0.9575

10 1.0000 1.1400 1.1354 1.1095 1.1353 0.9130 0.8431 0.8339 0.9687

100 1.0000 1.1427 1.1331 1.1210 1.1411 0.9149 0.8519 0.8421 0.9766

500 1.0000 1.1404 1.1375 1.1137 1.1300 0.9098 0.8450 0.8342 0.9668

1000 1.0000 1.1455 1.1390 1.1057 1.1233 0.9042 0.8407 0.8299 0.9709

As anticipated, we are back to the expected results — the static algorithms are
outperforming the dynamic ones with Lookahead performing the best.

It is interesting to note that in these experiments dynamic heuristics are
often outperformed by the OLB algorithm. The analysis of simulation traces
shows that these heuristics do save computation and communication time for
individual tasks, but still increase the makespan. The main cause is that dynamic
heuristics disregard the task dependencies. The tasks can accumulate on the
most performant hosts, delaying the execution of the next layer of the workflow.
This effect is further amplified by overloading the network links of those most
performant hosts.

5 Conclusion and Future Work

In this study, we have reviewed and compared the performance of nine state-
of-the-art algorithms for scheduling of workflows in heterogeneous computing
systems. The comparison was performed by running a large number of simulation
experiments for a wide range of workflow and system configurations.

For this purpose, we have developed an open source simulation framework
that provides tools for implementation of scheduling algorithms, generation
of synthetic systems and workflows, execution of simulation experiments and
analysis of results. The developed framework leverages SimGrid toolkit for the



340 A. Nazarenko and O. Sukhoroslov

discrete-event simulation of parallel applications in distributed environments.
The accuracy of the used network model allowed us to ensure realistic simu-
lations and reveal drawbacks of simpler models commonly used for studying
scheduling algorithms.

The presented experimental results provide a strong evidence against the
widely used experimental approach based on linear performance models that
disregard network topology and bandwidth allocation. The schedules produced
by static algorithms clearly demonstrate that even for the modestly parallel
workloads with sufficiently large data items the effect of competing data transfers
may lead to the drastic underestimation of the communication time and the
makespan degradation. However, when the parallelism and/or communication-
to-computation ratio are low enough, the static algorithms, even based on simple
models, can significantly outperform the opportunistic load-balancing approach
widely used in practice.

Future work will include further development of the presented simulation
framework, implementation of other known algorithms, i.e. based on metaheuris-
tics, carrying out additional experiments and validation on real systems. We
also plan to incorporate more accurate network models into static algorithms to
improve their performance for highly parallel and data-intensive workflows.

Acknowledgments. This work is supported by the Russian Science Foundation
(project No. 16-11-10352).

References

1. Arabnejad, H., Barbosa, J.G.: List scheduling algorithm for heterogeneous systems
by an optimistic cost table. IEEE Trans. Parallel Distrib. Syst. 25(3), 682–694
(2014)

2. Arabnejad, H., Barbosa, J.G., Prodan, R.: Low-time complexity budget-deadline
constrained workflow scheduling on heterogeneous resources. Future Gener. Com-
put. Syst. 55, 29–40 (2016)

3. Armstrong, R., Hensgen, D., Kidd, T.: The relative performance of various map-
ping algorithms is independent of sizable variances in run-time predictions. In:
Proceedings of 1998 Seventh Heterogeneous Computing Workshop, HCW 1998,
pp. 79–87. IEEE (1998)

4. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.H., Vahi, K.: Charac-
terization of scientific workflows. In: 2008 Third Workshop on Workflows in Support
of Large-Scale Science, pp. 1–10, November 2008

5. Bittencourt, L.F., Sakellariou, R., Madeira, E.R.M.: Dag scheduling using a look
ahead variant of the heterogeneous earliest finish time algorithm. In: 2010 18th
Euromicro Conference on Parallel, Distributed and Network-Based Processing, pp.
27–34, February 2010

6. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scal-
able, and accurate simulation of distributed applications and platforms. J. Parallel
Distrib. Comput. 74(10), 2899–2917 (2014)

7. Chen, W., Deelman, E.: Workflowsim: a toolkit for simulating scientific work-
flows in distributed environments. In: 2012 IEEE 8th International Conference on
E-science (e-science), pp. 1–8. IEEE (2012)



An Experimental Study of Workflow Scheduling Algorithms 341

8. Freund, R.F., Gherrity, M., Ambrosius, S., Campbell, M., Halderman, M., Hensgen,
D., Keith, E., Kidd, T., Kussow, M., Lima, J.D., et al.: Scheduling resources in
multi-user, heterogeneous, computing environments with smartnet. In: Proceedings
1998 Seventh Heterogeneous Computing Workshop, (HCW 1998), pp. 184–199.
IEEE (1998)

9. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approxi-
mation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math.
5, 287–326 (1979)

10. Hagras, T., Janecek, J.: A simple scheduling heuristic for heterogeneous computing
environments. In: Proceedings of Second International Symposium on Parallel and
Distributed Computing, pp. 104–110, October 2003

11. Hunold, S., Rauber, T., Suter, F.: Scheduling dynamic workflows onto clusters
of clusters using postponing. In: 8th IEEE International Symposium on Cluster
Computing and the Grid, CCGRID 2008, pp. 669–674. IEEE (2008)

12. Maheswaran, M., Ali, S., Siegal, H.J., Hensgen, D., Freund, R.F.: Dynamic match-
ing and scheduling of a class of independent tasks onto heterogeneous comput-
ing systems. In: Proceedings of the Eighth Heterogeneous Computing Workshop,
(HCW 1999), pp. 30–44. IEEE (1999)

13. Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science: Sci-
entific Workflows for Grids. Springer Publishing Company Incorporated, London
(2014)

14. Tobita, T., Kasahara, H.: A standard task graph set for fair evaluation of multi-
processor scheduling algorithms. J. Sched. 5(5), 379–394 (2002)

15. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

16. Velho, P., Legrand, A.: Accuracy study and improvement of network simulation
in the simgrid framework. In: Proceedings of the 2nd International Conference on
Simulation Tools and Techniques, p. 13. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering) (2009)

17. Velho, P., Schnorr, L.M., Casanova, H., Legrand, A.: On the validity of flow-level
TCP network models for grid and cloud simulations. ACM Trans. Model. Comput.
Simul. (TOMACS) 23(4), 23 (2013)

18. Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid
computing. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in
Distributed Computing Environments. SCI, vol. 146, pp. 173–214. Springer, Hei-
delberg (2008)



PGAS Approach to Implement Mapreduce Framework
Based on UPC Language

Shomanov Aday(✉), Akhmed-Zaki Darkhan, and Mansurova Madina

Al-Farabi Kazakh National University, Almaty, Kazakhstan
adai.shomanov@gmail.com, {darhan_a,mansurova01}@mail.ru

Abstract. Over the years from its introduction Mapreduce technology proved
to be very effective parallel programming technique to process large volumes of
data. One of the most prevalent implementations of Mapreduce is Hadoop frame‐
work and Google proprietary Mapreduce system.

Out of other notable implementations one should mention recent PGAS
(partitioned global address space) – based X10, UPC (Unified Parallel C)
versions. These implementations present a new viewpoint when Mapreduce
application developers can benefit from using global address space model while
writing data parallel tasks. In this paper we introduce a novel UPC implementation
of Mapreduce technology based on idea of using purely UPC based implemen‐
tation of shared hashmap data structure as an intermediate key/value store. Shared
hashmap is used in to perform exchange of key/values between parallel UPC
threads during shuffle phase of Mapreduce framework. The framework also
allows to express data parallel applications using simple sequential code.

Additionally, we present a heuristic approach based on genetic algorithm that
could efficiently perform load balancing optimization to distribute key/values
among threads such that we minimize data movement operations and evenly
distribute computational workload.

Results of evaluation of Mapreduce on UPC framework based on WordCount
benchmark application are presented and compared to Apache Hadoop imple‐
mentation.

Keywords: UPC · PGAS · Mapreduce

1 Introduction

Large-scale data processing nowadays is widely used in many domains of science and
industry. There is a large number of sophisticated tools and algorithmic solutions that
allow to achieve high efficiency in handling and processing enormous amount of data.
Main driving forces of modern big data development are powerful Mapreduce - based
frameworks. The idea of Mapreduce was first presented in paper [1] by Google
researchers Jeffrey Dean and Sanjay Ghemawat in 2004. In general, the main idea behind
Mapreduce is to divide processing of the big data set between concurrently running map
and reduce processes such that each process performs processing of smaller data chunk.
The processing work in Mapreduce is done in several steps:

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 342–350, 2017.
DOI: 10.1007/978-3-319-62932-2_33



• Init phase. Specify map and reduce functions, provide input and output directory
paths and etc.

• Map phase. Each mapper scans the input chunk of data and emits key/value pairs
based on user provided map function.

• Shuffle phase. Distribute key/value pairs among reducers in a way that each reducer
operates on list of key/value pairs with some assigned to that reducer unique key.

• Reduce phase. Each reducer performs operations on assigned key based on user
provided reduce function.

The main complexity in efficiently implementing Mapreduce lies in developing
scalable and optimized code for shuffle phase. To achieve these goals it is required to
distribute key/value pairs with minimized network latencies. In distributed environment
due to necessity of data movements between processes that belong to different nodes,
network latencies can be very high and significantly degrade overall performance.

To overcome that we need to consider efficient tools that will allow to perform
sufficiently transparent and optimized remote data access operations. For that purpose
in our current work we will use UPC programming language. UPC programming
language [2] belongs to a family of PGAS languages. PGAS (Partitioned Global Address
Space) is a parallel programming model in which memory address space is divided into
two non-overlapping logical areas: private and shared. Private space is local to every
thread and can be accessed only by its own thread. Shared space has a more complex
structure where each thread has an access to shared memory and each memory element
has additionally affinity to the owner thread. The benefit of PGAS model is that each
thread has a transparent view of shared memory layout hence locality can be preserved
where it is needed to optimize data distribution for specific purposes of the application.
UPC language provides a set of operations with shared memory such as: pointers arith‐
metic, write and read functions, memory allocation and de-allocation functions and
other. UPC uses specifically designed GasNet communication system that enables high-
performance one-sided communications in order to implement remote data access oper‐
ations on shared memory.

2 Related Work

The implementation of PGAS-based Mapreduce model requires careful consideration
and solving of many problems associated with the organization of the computational
process, the process of data exchange between computing nodes, distribution and load
balancing between concurrent map and reduce processes. In the article [3], authors
describe Mapreduce framework, implemented on the UPC language. The approach
described in this article applies collective functions for data exchange in shuffle phase.
Map and reduce functions in that approach operate on the local storage of each node,
and for that reason the authors were forced to change the implementation of collective
UPC functions to make them work with local memory space of each thread. In our
implementation we used different approach based on shared hashmap data structure to
perform key/value exchange. Hashmap instances reside in shared address space and each
instance has an affinity to a single thread. Accordingly, every thread has an access to

PGAS Approach to Implement Mapreduce Framework 343



hashmap instance of any other thread. In different paper [4] authors presented a similar
approach where they applied X-10 library implementation of hashmap data structure to
store locally in each thread intermediate key/value pairs and then merge all the values
to one thread. X-10 enabled Mapreduce merging procedure is poorly scalable since all
data is moved to a single place and therefore such an approach possesses inherent limi‐
tations associated with processing and storage capabilities of a single node. In our
approach we keep one instance of shared hashmap per thread such that each thread works
on local portion of its own shared hashmap and other threads when needed could perform
remote operations on that thread-local instance of shared hashmap. Hence, processing
is not limited by resources of a single node and only requires efficient data exchange
after finishing map phase. Additionally, this way we can control locality of operations
on each instance of hashmap and as a result later on can optimize key distribution among
threads for reduce stage. Shared hashmap allows to efficiently extract and write key/
value pairs in average O(1) time complexity. Consequently, based on features of
hashmap data structure we attempted to reduce overhead associated with searching and
extracting keys.

3 Main Part

3.1 Mapreduce on UPC Framework

Presented in the paper Mapreduce on UPC framework aims to bring together programm‐
ability benefits associated with UPC model with advanced processing power of Mapre‐
duce technique. Implications of such architectural solution is that it is become very
convenient to be able to express complex Mapreduce logic in a more concise form of
UPC - Mapreduce by using global memory abstraction.

In order to implement Mapreduce in UPC we first wrote code for shared hashmap
data structure based on shared memory operations such as upc_memput, upc_memcpy,
upc_alloc, upc_memget and other. Operations on shared hashmap are controlled by our
API functions such as shared_hashmap_put, shared_hashmap_get, shared_hash
map_resize, shared_hashmap_remove.

To store key/value elements we created globally addressable array of shared
hashmap instances with default blocking factor of one in shared address space. Such
layout of shared array corresponds to one-to-one mapping of threads and hashmap array
entries. Consequently, each hashmap is designed to store key/value elements that are
local to the thread executing map functions (see Fig. 1).

Map and reduce functions are specified by the application developer and are passed
as parameters to init_mapreduce function that launches and controls the entire
processing cycle of Mapreduce execution.

Each thread is assigned a number of map tasks. Each map task operates on exactly
one input file. Therefore, in order to avoid imbalance, before map phase runtime distrib‐
utes files among threads in such a way that each thread has approximately the same
proportion of input files.

After all map functions are finished their execution, the shuffle phase take place. The
shuffle phase is divided into 2 main stages:

344 S. Aday et al.



1. Data movement optimization and load balancing step.
2. Distribution of key/values among reducers.

In the process of load balancing we are using integer indexing of keys. We have to
assign each key unique integer identifier. It is turn out that this operation is very expen‐
sive to perform since we need to traverse all hashmap entries in every thread by using
only processing power of a single thread.

This thread is responsible for fetching remote hashmap entries and checking if that
entry (key) already has been assigned identifier or not. If identifier already has been
assigned to that entry (key) then we can skip it, otherwise it is required to update id field
of that hashmap entry by remote write operation. Fetching and updating remote values
by fine-grained operations incur a lot of communication and software overhead that
should be avoided or substituted by coarse-grained bulk operations.

Hashmap element consists of the following fields: integer id, shared [] char * key,
integer in_use, shared [] shared_vector * data. Since all field values are located in shared
memory they can only be accessed by shared pointers. Shared pointers orders of magni‐
tude slower than ordinary private pointers and therefore amount of accesses to shared
memory area by shared pointers should be minimized.

Therefore, in order to minimize fine-grained access operations we developed more
scalable and efficient in terms of running time method to assign each key unique integer
identifier. We store keys in a shared array of string entries. A new method works by
merging local to each thread keys stored in a shared array into a single shared array that
has an affinity to thread number 0. The goal was to minimize number of copy operations.
In a new method this number is equal to O(logn) compared to O(n) operations in a
previous implementation. There n represents number of threads.

Fig. 1. UPC on Mapreduce map and shuffle design.

PGAS Approach to Implement Mapreduce Framework 345



Listing 1. Procedure for coarse-grained merge of key arrays   

Merge procedure uses divide and conquer method that works according to Listing 1.

3.2 Data Movement and Load Balancing Optimization

For load balancing and data movement optimization we employ heuristic approach
based on genetic algorithm [5]. Genetic algorithms are used in many problems in domain
of combinatorial and multi-objective optimization. The problem with many instances
of combinatorial optimization tasks is that they belong to NP class of problems. There‐
fore they cannot be solved by means of polynomial time algorithms and only hope to
find a feasible solution for sufficiently large dimensions is to apply different heuristic
approaches.

The following set of equations describes the problem:

min

threads−1∑

i=0

keys∑

j=1

xij × costij (1)

xij ∈ {0, 1} (2)

min

(
max

i,j=0..threads−1

|||loadi − loadj

|||

)
(3)

346 S. Aday et al.



loadi =

threads−1∑

t=0

keys∑

j=1

xij × sizetj (4)

The optimization problem we have stated above is a modification of “Generalized
assignment problem” which is known to be NP-hard. Genetic algorithms for solving
GAP has been presented in different sources before, e.g. in [6, 7].

In order to find cost of assigning key j to thread i we construct cost matrix in which
each entry costij is corresponding cost value of moving key j to thread i. Quantitatively,
cost represents number of elements of some particular key that needs to be moved to
some other thread. Formula (3) defines load balancing function. Load balancing function
is calculated as minimum value over maximum difference of loads assigned to different
pairs of threads. We need to perform distribution of key/values among threads with aim
to optimize both functionals defined in formulas (1) and (3). Formula (2) defines the
domain of xij variable to be consisting of two integer values of either 0 or 1. For thread
i and key j the value of xij = 0 when thread i is not assigned to process key j and xij = 1
otherwise. Load value for each thread i is defined in formula (4). Genetic algorithm
works according to following procedure:

Listing 2. Genetic algorithm for load balancing of keys among reducers  

In order to be able to adapt genetic algorithm to solve our problem we first need to
identify how to represent solution in the language of genetic algorithm. Solution

PGAS Approach to Implement Mapreduce Framework 347



(chromosone) is represented by vector, where i-th entry contains number of the thread
that is assigned to process i-th key. Population is defined as set of all solutions and can
be selected and correspondingly adjusted depending on specific needs and limitations
of the task. Fitness value is an objective function that can be calculated for each particular
solution. The task of genetic algorithm is to find specific solution with best fitness value.
Fitness function in our problem is represented by combination of functionals described
in (1) and (3).

Then, after genetic algorithm generates a solution, runtime can proceed to perform
shuffle procedure.

3.3 Shuffle Phase

To perform shuffle procedure we need to appropriately distribute key/values among
reducers such that each reducer can then schedule to perform reduce function calls on
input elements with same key. In our program we have implemented shuffle procedure
as follows:

• To store key/value elements on reduce side we created a new array of shared hashmap
data structures with default layout in shared address space

• Each hashmap of the old array on each thread is traversed in parallel and according
to the thread-keys mappings, obtained by solving optimization problem, elements
are copied to threads that are assigned to process current element (key).

• After key/value distribution completes, each thread is ready to run reduce functions

Reduce stage is organized such that on each thread shared hashmap is traversed and
each hashmap entry of <key, set of values> is assigned as input to a single reduce
function. After completing their execution each reduce function writes final result to a
single resulting file.

3.4 WordCount Implementation

For experimental evaluation of our Mapreduce framework we have chosen WordCount
benchmark application. WordCount program computes number of occurrences of each
word in a set of documents. This problem is a standard application for evaluating
Mapreduce-based frameworks. The main idea behind implementing WordCount on
Mapreduce is to divide processing such that each mapper emits for every word a pair
of <word, 1> and each reducer then add all entries in the list of 1’s that has been assigned
to it and emits as final result pair of <word, overall_count>. In code listings 3 and 4
below our map and reduce function implementations for WordCount application are
presented. The code for map and reduce functions must be written in C language with
possible use of UPC-related functions for shared memory operations.

348 S. Aday et al.



void * map (string filename) 
{ 

char * file_data; 
  file_data = read_file_contents (filename); 

Vector tokens; 
vector_init(&tokens); 

Tokenize (file_data,&tokens); 
for (int i = 0;i<tokens.size;i++) 
{ 

collect (vector_get (&tokens,i),1); 
}   
free(file_data); 
} 
Listing 3. Implementation of map function for WordCount application  

void reduce (string key,shared [] vector_sh
*values) 
{ 

int i; 
int cnt = 0; 
for (i = 0;i<values->size;i++) 

 { 
  int v = vector_get_shared_copy (values,i); 
  cnt+=v; 
 } 

reduce_collect (key,cnt); 
} 

Listing 4. Implementation of reduce function for WordCount application

4 Experimental Results

In this section we present results of evaluation of UPC on Mapreduce framework based
on Google cloud platform architecture. The setup consisted of one instance of n1-
highmem-8 (8 vCPUs, 52 GB memory). In our experiments we used the following soft‐
ware:

• Berkeley UPC runtime version 2.24.0
• Apache Hadoop version 2.7.3
• The Berkeley UPC-to-C translator, version 2.24.0

WordCount application has been tested for different input sizes ranging from 50 to
200 megabytes. Based on results of running WordCount on Apache Hadoop and UPC
on Mapreduce (see Fig. 2) we can conclude that Mapreduce on UPC shows better
performance on all inputs besides smallest 50 Mb input in which both frameworks show
the same performance.

PGAS Approach to Implement Mapreduce Framework 349



0

20

40

60

80

100

50Mb 100Mb 200Mb

ti
m

e 
(i

n
 s

ec
o

n
d

s)

Input size

Hadoop

Mapreduce on UPC

Fig. 2. Hadoop and Mapreduce on UPC running time for different input sizes

5 Conclusion

The paper presented UPC on Mapreduce framework that allows to users to implement
data parallel applications by expressing them in the form of map and reduce functions.
By analyzing results of evaluation of Mapreduce on UPC framework we observed better
performance results compared to Hadoop, but algorithm have some scalability issues in
case of small number of threads performing WordCount task.

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Sixth
Symposium on Operating System Design and Implementation (OSDI2004), p. 10. USENIX
Association, San Francisco (2004)

2. Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E., Warren, K.: Introduction to
UPC and language specification. Technical report, IDA Center for Computing Sciences (1999)

3. Teijeiro, C., Taboada, G.L., Tourino, J., Doallo, R.: Design and implementation of Mapreduce
using the PGAS programming model with UPC. In: 17th International Conference on Parallel
and Distributed Systems (ICPADS 2011), pp. 196–203. IEEE Computer Society, Washington
(2011). doi:10.1109/ICPADS.2011.162

4. Dong, H., Zhou, S., Grove, D.: X10-enabled MapReduce. In: 4th Conference on Partitioned
Global Address Space Programming Model (PGAS 2010), pp. 1–6. ACM, New York (2010).
doi:10.1145/2020373.2020382

5. Man, K.F., Tang, K.S., Kwong, S.: Genetic algorithms: Concepts and applications. IEEE Trans.
Industr. Electron. 43(5), 519–534 (1996). doi:10.1109/41.538609

6. Chu, P.C., Beasley, J.E.: A genetic algorithm for the generalised assignment problem. Comput.
Oper. Res. 24(1), 17–23 (1997). doi:10.1016/S0305-0548(96)00032-9

7. Liu, Y.Y., Wang, S.: A scalable parallel genetic algorithm for the generalized Assignment
Problem. Parallel Comput. 46, 98–119 (2015). doi:10.1016/j.parco.2014.04.008

350 S. Aday et al.

http://dx.doi.org/10.1109/ICPADS.2011.162
http://dx.doi.org/10.1145/2020373.2020382
http://dx.doi.org/10.1109/41.538609
http://dx.doi.org/10.1016/S0305-0548(96)00032-9
http://dx.doi.org/10.1016/j.parco.2014.04.008


Islands-of-Cores Approach for Harnessing
SMP/NUMA Architectures in Heterogeneous

Stencil Computations

Lukasz Szustak1(B), Roman Wyrzykowski1, and Ondřej Jakl2

1 Czestochowa University of Technology,
Dabrowskiego 69, 42-201 Czestochowa, Poland

{lszustak,roman}@icis.pcz.pl
2 Institute of Geonics of the Czech Academy of Sciences,
Studentská 1768, 708 00 Ostrava-Poruba, Czech Republic

ondrej.jakl@ugn.cas.cz

Abstract. SMP/NUMA systems are powerful HPC platforms which
could be applied for a wide range of real-life applications. These systems
provide large capacity of shared memory, and allow using the shared-
variable programming model to take advantages of shared memory for
inter-process communications and synchronizations. However, as data
can be physically dispersed over many nodes, the access to various data
items may require significantly different times. In this paper, we face
the challenge of harnessing the heterogeneous nature of SMP/NUMA
communications for a complex scientific application which implements
the Multidimensional Positive Definite Advection Transport Algorithm
(MPDATA), consisting of a set of heterogeneous stencil computations.

When using our method of MPDATA workload distribution, which
was successfully applied for small-scale shared memory systems with sev-
eral CPUs and/or accelerators, significant performance losses are notice-
able for larger SMP/NUMA systems, such as SGI UV 2000 server used
in this work. To overcome this shortcoming, we propose a new islands-
of-cores approach. It exposes a correlation between computation and
communication for heterogeneous stencils, and enables an efficient man-
agement of trade-off between computation and communication costs in
accordance with the features of SMP/NUMA systems. In consequence,
when using the maximum configuration with 112 cores of 14 Intel Xeon
E5-4627v2 3.3 GHz processors, the proposed approach accelerates the
previous method more then 10 times, achieving about 390 Gflop/s, or
approximately 30% of the theoretical peak performance.

1 Introduction

In the last years, it appears evident [7,22] that emerging computing platforms
will combine multi- and manycore architectures. In particular, this trend is
noticeable in an environment of large-scale computations (High Performance
Computing, HPC) where supercomputers are built with massively parallel com-
ponents [24], such as multicore processors and manycores accelerators. The most
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 351–364, 2017.
DOI: 10.1007/978-3-319-62932-2 34



352 L. Szustak et al.

common solutions for such systems are based on the cluster architectures, that
are delivered by many vendors. More than 80% of supercomputers in the TOP500
list for November 2016 refer to these systems (http://top500.org).

However, despite the considerable popularity of clusters, other powerful com-
puting platforms are also perceptible in HPC environments. Among them are sys-
tems based on the SMP/NUMA (symmetric multiprocessor/non-uniform mem-
ory access) architectures [4], which are usually built around high-performance
networks as distributed shared memory (DSM) systems. DSM is a form of mem-
ory architecture where physically separated memories can be addressed as one
logically shared address space. These systems provide extremely large capac-
ity of shared memory, and are able to achieve high levels of memory through-
put performance. At the same time, because data can be physically dispersed
over many nodes, the access time for different data items may well be different
which explains the term non-uniform data access. In SMP/NUMA architectures,
the parallelism can be successfully expressed with the OpenMP library, or the
MPI standard - a common solution for clusters. Also, the mixture of MPI and
OpenMP is possible. However, is worthwhile to mention that OpenMP is capable
of itself to fully utilize such systems without demanding more complex message
passing operations [5,23] required by MPI.

One of leading vendors of these systems is SGI, that has been delivering
SMP/NUMA architectures for more than 20 years. Its newest SMP/NUMA prod-
uct series, SGI UV [11] is based on Intel multicore processors and the high-speed
NUMAlink system interconnect, offering up to thousands of cores in a single
system which shares large main memory capacity. An example of using the SGI
UV 2000 server for accelerating a complex real-world application, MapReduce
is presented in [2], where a topology-aware placement algorithm is proposed to
speed up the data shuffling phase of MapReduce. The first generation of SGI
UV platforms is applied in [3] to parallelize the Generalized Conjugate Residual
(GCR) elliptic solver with preconditioner, using a mixture of MPI and OpenMP.
In order to place properly all MPI processes and OpenMP threads on the under-
lying hardware, a specialized scheduler was developed to take into account the
network topology. Apart from numerical applications, the SGI UV 2000 systems
are also reported to be efficiently used in other areas, such as computation on
graphs [25] and combinatorial optimization problems [1].

In this paper, we face the challenge of efficient utilization of SMP/NUMA sys-
tems in practice, for a rather complex scientific application. The application we
study implements the Multidimensional Positive Definite Advection Transport
Algorithm (MPDATA) [13,14], which consists of a set of heterogeneous stencils.
Besides the GCR solver, MPDATA is the second major part of the dynamic
core of the EULAG (Eulerian/semi-Lagrangian) geophysical model [15]. It is an
established numerical model developed for simulating thermo-fluid flows across
a wide range of scales and physical scenario. In particular, it can be used in
numerical weather prediction, simulation of urban flows, turbulences, and ocean
currents [9,16,17].

http://top500.org


Islands-of-Cores Approach for Harnessing SMP/NUMA Architectures 353

In our previous works [18–20], we successfully developed a new version of
MPDATA, dedicated to small-scale shared memory systems with several proces-
sors and/or accelerators. In particular, we proposed a new (3+1)D decomposition
of MPDATA computations that allows us to significantly reduce the main mem-
ory traffic. This implementation provides a much better usage of capabilities of
novel CPUs and Intel Xeon Phi coprocessors. However, although the proposed
new strategy of workload distributions gives a gain at the desired performance
level not only for Intel Xeon processors, but also for the first generation of Intel
Xeon Phi accelerators ([19]), significant performance losses are noticeable for
larger SMP/NUMA systems, such as SGI UV 2000 server used in this work.

In this paper, to overcome this shortcoming and to improve the efficiency
of the MPDATA application, we propose an islands-of-cores approach dedicated
to heterogeneous stencils such as those of MPDATA. This approach reveals a
correlation between computation and communication for heterogeneous stencil
computations, and enables a better management of the balance between compu-
tation and communication costs in accordance with the features of SMP/NUMA
systems such as the SGI UV 2000 server. The proposed approach is based on
the analysis of two scenarios for the parallel execution of a set of heteroge-
neous stencils. While the first scenario performs less computations but requires
more data transfers, the second one allows us to replace the implicit data traffic
between nodes by extra computations, and overcome the non-uniform mem-
ory constraints. In consequence, when using the maximum number P = 14 of
processors with 112 cores totally, the proposed approach accelerates the pure
(3+1)D decomposition more then 10 times, achieving approximately 30% of the
theoretical peak performance of the system.

To our best knowledge, there exists no investigations of the correlation
between computation and communication for heterogeneous stencils compu-
tations which consist of a set of stencils with different patterns. The closest
approaches were proposed in papers [6,26]. Similarly to our study, these works
consider the code transformation using the overlapped tiling technique. It enables
removing the synchronization and enhancing the data locality at the cost of
redundant computations. However, these works take into account only the homo-
geneous stencil computations, with a single pattern only. Opposite to our study,
these approaches are addressed to small computing platforms with one or two
processors.

2 SMP/NUMA Architecture: SGI UV 2000 Server

The parallel computer architecture that we are interested in this paper has all
its processing elements interconnected to a shared main memory. One of the
most prominent manufacturers of shared-memory systems is SGI. The latest
SGI UV (“UltraViolet”) product line is delivered since 2009. In all the experi-
ments described in this paper we employ a machine of the second UltraViolet
generation known as UV 2 [12], launched in 2012. For a single system, its cache-
coherent shared memory can be extended up to 64 TB, and accessed from up to



354 L. Szustak et al.

2048 Intel CPU cores, thanks to the high-speed NUMAlink 6 proprietary inter-
connect with a point-to-point bandwidth of 6.7 GB/s per direction; doubled with
respect to NumaLink 5. This allows putting hundreds of NUMA nodes together
to behave as a single multicore system.

The target SGI UV 2000 server was acquired by the IT4Innovations National
Supercomputing Center in Ostrava [8] to support applications with extraor-
dinary large memory requirements. It consists of one “individual rack unit”
(IRU) that features 3328 GB of RAM and 112 cores in total, distributed across
14 NUMA nodes in 7 compute/memory modules called blades, connected to
each other via a backplane (one blade position in this IRU enclosure is empty).
Each NUMA node is based on the 8-core Intel Xeon E5-4627v2 3.3 GHz proces-
sor with roughly 236 GB RAM. IRU has ports that are brought out to external
NUMAlink 6 connectors. This UV 2000 server shares some infrastructure with
the Salomon supercomputer of the IT4Innovations center, in June 2015 placed
#40 on the TOP500 list (http://top500.org).

3 Parallelization of MPDATA for Shared-Memory Model

3.1 Introduction to MPDATA Application

The MPDATA application implements a general approach for integrating the
conservation laws of geophysical fluids on micro-to-planetary scales [10,13].
The MPDATA algorithm enables solving advection problems, and offers sev-
eral options to model a wide range of complex geophysical flows. The MPDATA
computations correspond to the group of iterative, forward-in-time algorithms.
This application is used typically for long running simulations, such as the
numerical weather prediction, that require execution of several thousand time
steps for a given size of domain. Moreover, since the accuracy of computation
plays a key role for MPDATA, these simulations usually are performed using
the double-precision floating-point format. The application allows solving 1-, 2-
or 3-dimensional problems. In this paper, we consider the last case, when the
MPDATA algorithm is defined on 3D grids with i, j, and k dimensions.

Every MPDATA time step performs the same computations, which consist
of the set of 17 stages [19,20]. The MPDATA stages represent the heterogeneous
stencils codes which update grid elements according to different patterns. All
the stages are dependent on each other: outcomes of prior stages are usually
input data for the subsequent computations. A single MPDATA time step loads
five 3D input arrays from the main memory, and saves one output 3D array
that is necessary for the next steps. In the original version of code, a lot of
intermediate results (3D arrays) are also transferred to/from the main memory.
In consequence, a significant data traffic to the main memory is generated, which
mostly limits the attainable performance on novel architectures.

3.2 (3+1)D Decomposition

In our previous works [18–20], we proposed a new strategy of workload dis-
tribution for the MPDATA application. This strategy contributes to ease the

http://top500.org


Islands-of-Cores Approach for Harnessing SMP/NUMA Architectures 355

memory and communication bounds, and to better exploit computation
resources of shared-memory systems including CPUs and the first generation of
Intel Xeon Phi accelerators. The main challenge of these works was to minimize
data transfers between the main memory and the cache hierarchy. To improve
the overall performance, we reorganized computation inside each time step of
MPDATA.

The main aim of the new computational flow for the MPDATA application
is to eliminate accesses to the main memory associated with all the intermediate
computations. This idea implies that all the intermediate outcomes of compu-
tations have to be kept in cache only - without transferring them to the main
memory. As a result, for each MPDATA time step, the main memory traffic
will be generated only by transfers required by input/output data (arrays). To
reach this goal, we proposed the (3+1)D decomposition of MPDATA compu-
tation [19,20] that is based on a combination of loop fusion and loop tiling
optimization techniques.

The implementation of the (3+1)D decomposition requires to partition the
MPDATA domain (grid) onto a set of sub-domains of size that enables to
kept all the necessary intermediate data in the cache memory. The consecu-
tive sub-domains are processed sequentially, one by one, while every sub-domain
is processed in parallel by available computing resources. Every sub-domain is
responsible for computing all the MPDATA stages that perform computations
on chunks (or blocks) of the corresponding arrays, and returns an adequate part
of the output array.

The proposed (3+1)D decomposition allows us to significantly reduce the
main memory traffic, where the real profit depends on the size of domains, as
well as computational characteristic of a given computing platform. For exam-
ple, using a single Intel Xeon CPU E5-2660v2 processor, the volume of the main
memory traffic is reduced from 133 GB to 30 GB, and computations are acceler-
ated about 2.8 times for domains of the size 256 × 256 × 64, and 50 time steps.
In this research, the likwid-perfctr tool [21] is used for the performance analy-
sis of developed codes. However, although the proposed (3+1)D decomposition
gives a gain at the desired performance level not only for Intel Xeon processors,
but also for the first generation of Intel Xeon Phi accelerators (see [19]), signif-
icant performance losses are noticeable for large shared-memory architectures,
such as SMP/NUMA systems.

Table 1 presents the comparison of execution times of MPDATA obtained
for the SGI UV 2000 server introduced in Sect. 2, for different versions of code.
The performance results are generated for the various number of processors,
benchmarking both versions: original and after (3+1)D decomposition. It should
be noted that in order to get the optimal performance for this server, it is
necessary for each thread of execution to allocate memory closest to a core on
which it is executed. This is achieved by initializing memory using the technique
known [22] as the first-touch policy with parallel initialization.

The obtained performance results reveals the performance limitations for
the proposed (3+1)D decomposition. Particularly, the performance gain at the



356 L. Szustak et al.

Table 1. Execution times of 50 MPDATA time steps and grid of size 1024 × 512× 64
obtained for the original parallel version of code and after the (3+1)D decomposition,
using the SGI UV 2000 server

#CPUs 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Original 30.4 44.5 58.2 61.5 64.3 70.1 71.6 73.7 75.4 77.6 78.4 78.2 80.6 82.2

Originala 30.4 15.4 10.5 7.9 6.6 5.6 5.0 4.3 4.0 3.6 3.3 3.1 3.0 2.8

(3+1)Da 9.0 8.2 7.4 8.0 7.1 7.2 7.3 7.7 9.1 9.5 10.2 10.1 10.3 10.4
aThe first-touch policy with parallel initialization is used

desired level is achieved only for a single processor (3.37× faster than the original
version), while significant performance losses take place for the MPDATA execu-
tions with a higher number of processors. It should be also underlined here that
the original version returns even better execution times than the (3+1)D decom-
position, for all the benchmarks with the number of processors greater than 4. To
overcome this shortcoming and to improve the efficiency of the MPDATA appli-
cation, we propose the islands-of-cores approach, dedicated to heterogeneous
stencils such as those of MPDATA.

4 Islands-of-Cores Approach for MPDATA

4.1 Trade-off Between Computation and Communication
for Heterogeneous Stencils

To eliminate the revealed performance losses, the analysis of computational flow
for heterogeneous stencils has to be considered. Figure 1(a) presents an example
of forward-in-time computations with a set of heterogeneous stencils, when every
time step consists of three stages. Here each stage corresponds to execution of
an 1D stencil. Figure 1(b) and (c) show two scenarios for parallelization of this
example using two processors.

The first scenario (Fig. 1b) reveals an implicit data traffic between processors
in a shared-memory system because of data dependencies. This data traffic takes
place on borders of sub-domains distributed between processors. For example,
the output element C[d] computed by CPU B within the 3rd stage depends on
the element B[c] that is computed by CPU A as a result of stage 2. However,
B[c] depends on the element A[d] which is returned by CPU B in the 1st stage.
In consequence, the implicit transfers of two elements take place between the
processors CPU A and CPU B of a shared-memory system. Furthermore, three
synchronization points have to be added in order to ensure the correctness of
parallel computations.

The second scenario (Fig. 1c) demonstrates how to avoid exchanging data
between processors at the cost of extra computations. To compute the output
element C[d], the processor CPU B has to provide the element B[c] computed in
the 2nd stage by CPU A in the first scenario. Instead of transferring this element,
let CPU B compute the required element B[c] once more. However, this element
depends on the element A[c] from the Stage 1, which is returned by CPU A in the



Islands-of-Cores Approach for Harnessing SMP/NUMA Architectures 357

CPU_A CPU_B

d e f

d e f

d e f

c

ca b c

a b c

a b c

d

sync.

c)

extra computations

Input data
Su

bs
eq

ue
nt

 ti
m

e 
st

ep
s

a)

// Stage 1:
for(...; ...; ...)
  A[i]=in[i-1]+in[i+1];

// Stage 2:
for(...; ...; ...)
  B[i]=A[i]+A[i+1];

// Stage 3:
for(...; ...; ...)
  C[i]=B[i-1]+B[i];

Output data

CPU_A CPU_B

a b c d e f
sync.

a b c d e f
sync.

a b c d e f
sync.

b)

data transfer between cores
data transfer inside core

Island A Island B

Fig. 1. Idea of Islands-of-cores approach: (a) computations corresponding to three
exemplary heterogeneous stencils; (b) parallelization with transfers of data between
CPUs; (c) parallelization without transfers of data and synchronization points between
CPUs, at the cost of extra computations

first scenario. Again, let both processors compute the element A[c] twice, rather
than transferring it from CPU A to CPU B. In consequence, CPU B computes
two elements more, independently of CPU A. This strategy can be also applied
for CPU B that requires the element A[d] computed by CPU A in the first
scenario. As a result, something like independent islands, both processors are
enabled to perform computations independently of each other within every time
step, at the total cost of computing three extra elements.

As shown in Fig. 1, both scenarios enable performing parallel computations.
The first scenario performs less computations but requires more data traffic,
while the second one allows us to replace the implicit data traffic between proces-
sors by replicating some computations. In fact, both solutions should be consid-
ered, but the key point is how they fit to the architecture of a computing system.
It is expected that the second scenario will be able to get a higher performance
in the case of powerful computing resources with relatively less efficient inter-
connects. On the contrary, the first scenario is more suitable for systems with
more efficient networks that connect less powerful computing resources.

Taking into account the architecture of the SGI UV 2000 server, the second
scenario seems to fit perfectly to processors connected each other by NUMAlink.
At the same time, the first scenario should be well suited inside each processor,
where a more efficient, internal memory hierarchy is used to implement the data
traffic between available cores.

4.2 Implementation: From Islands-of-Cores to Work-Teams

The (3+1)D decomposition moves the data traffic from the main memory to the
cache hierarchy. In consequence, a lot of intra- and inter-cache communications



358 L. Szustak et al.

between cores/processors is generated. This approach corresponds to the first
scenario (Fig. 1b). When using a single processor, this traffic is restricted to
the cache hierarchy of this CPU. However, in the case of the whole server, the
required data are implicitly transferred between caches of neighbor processors
through the NUMAlink interconnect [12]. As Table 1 shows, it is particularly
significant when more than two processors cooperate to execute the application.

To face this issue, we propose to adopt the islands-of-cores approach to the
MPDATA application, which has a significantly more complex computing struc-
ture than the example shown in Fig. 1. In this work, we focus on the MPDATA
algorithm defined on a 3D grid, where every time step consists of 17 stages with
heterogeneous stencils that depend on each other in all three dimensions.

Based on the conclusion formulated in the end of the previous subsection, the
abstraction of islands-of-cores is applied across P processors of an SMP/NUMA
platform. In consequence, the MPDATA domain is partitioned into P parts
that are mapped onto P islands. Following the islands-of-cores approach, each
processor is now an island of cores, and these islands perform the following
phases:

1. All islands share all input data for each MPDATA time step, utilizing the
first-touch policy with parallel initialization.

2. Every island processes the part of MPDATA assigned to it according to the
(3+1)D decomposition.

3. Each island performs independent computations within every time step, at
the cost of extra computations (see Fig. 1).

4. All islands return common outcomes to the main memory, after each time
step.

5. All islands synchronize their works after each time step, in order to ensure
correctness of input data for subsequent time steps.

Since every island consists of the same number of cores, the MPDATA domain
is decomposed into equals parts, where the number of parts is equal to the
number of processors used in computations. Each part is further partitioned into
the set of sub-domains according to the proposed (3+1)D decomposition. While
different sub-domains are executed sequentially, each of sub-domain is processed
in parallel by utilizing a work team of cores which belong to every island. Each
work team of cores performs computations corresponding to all the 17 stages
of MPDATA, including computing extra elements instead of transferring them
from other teams. As a result, every work team is able to perform computations
for each MPDATA time step independently of other teams.

To adapt the proposed islands-of-cores approach to the MPDATA applica-
tion, an efficient method of mapping parts of MPDATA onto processors has to
be developed. It is expected to obtain too large communication overheads when
the MPDATA domain is partitioned in all three dimensions. The reason is that
data layouts of all the MPDATA arrays allow performing required transfers of
the continuous areas of memory only in the first and second dimensions. As a
result, only 1D and 2D variants of partitioning the MPDATA domain should be
taken into account. When evaluating the proposed approach, the 1D partitioning



Islands-of-Cores Approach for Harnessing SMP/NUMA Architectures 359

is considered as a starting point in this paper, while investigating more complex
2D variants will be among the main goals of our future works.

As data transfers take place only between neighbour parts of the MPDATA
domain, to reduce the communication paths through the network topology, all
the neighbour parts should be assigned to the adjacent processors that are closely
connected each other within the interconnect. It can be achieved by controlling
the OpenMP Thread Affinity interface that allows us to bind threads to physical
processing units.

The total amount of extra elements which have to be computed redundantly
depends on the problem size, number of islands, and shape of partitioning, as
well as data dependencies between all the MPDATA stages. Table 2 presents an
example how the total number of extra elements increases with the number of
work teams, in comparison with the original version. We compare results for two
variants of mapping the MPDATA domain onto 1D grids of processors - across
either the first (A) or second (B) dimension of the MPDATA grid. It can be
concluded that the first variant gives fewer extra elements, for any number of
islands.

Table 2. The total amount of extra elements in percentage in comparison with the
original version, obtained for mapping the MPDATA grid onto 1D grids of processors
using variants A and B, for different number of islands and the domain of size 1024 ×
512 × 64

# of islands 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Variant A [%] 0.00 0.25 0.49 0.74 0.99 1.24 1.48 1.73 1.98 2.22 2.47 2.72 2.96 3.21

Variant B [%] 0.00 0.49 0.99 1.48 1.98 2.47 2.96 3.46 3.95 4.45 4.94 5.43 5.93 6.42

5 Performance Results

This section outlines the performance results obtained for the new implementa-
tion of MPDATA developed using the approach described in the previous sec-
tions. The new strategies proposed for the workload distribution and data par-
allelism require also to develop a proprietary scheduler with the affinity-aware
placement of threads/cores. To achieve this goal, the OpenMP application pro-
gramming interface is used only for creating threads and controlling their affinity
policy, while all parallel computations are managed by our scheduler which sup-
ports the proposed approach.

All the benchmarks are compiled using the Intel compiler icpc v.17.0.1 with
the compilation flags: -O3 -xavx -fp-model precise -fp-model source, and
executed using the SGI UV 2000 server equipped with 14 CPUs. All performance
results are obtained for the double-precision floating-point format, the grid of
size 1024× 512× 64, and 50 times steps. Such a relatively small number of time
steps is sufficient to provide the performance evaluation because of homogeneity
of all time steps.



360 L. Szustak et al.

In this work, we test the 1D mapping of parts of the MPDATA domain onto a
grid of processors. Two variants of experiments are performed, which correspond
to distributing the MPDATA domain across either its first or second dimension.
Only the results for the first variant are presented in the rest of the paper as it
gives better results for all the benchmarks. This is a consequence of a smaller
number of extra elements provided by this variant (Table 2).

Table 3 and Fig. 2 present the execution times achieved for the proposed
islands-of-cores approach in comparison with the original version and the pure
(3+1)D decomposition. Also, we show the partial Spr and overall Sov speedups
which define the performance gains of the proposed approach against the pure
(3+1)D decomposition and original version, respectively.

The main conclusion is that the proposed islands-of-cores approach, which
combines the (3+1)D decomposition and the second scenario of paralleliz-
ing stencil computations, allows us to improve radically the efficiency of the
MPDATA computations in comparison with the pure (3+1)D decomposition.
As expected, despite the extra computations (Table 2), MPDATA is now exe-
cuted faster for all values of P . What should be underlined here, the usage of
the islands-of-core approach together with the (3+1)D decomposition permits
preserving the high efficiency of such a decomposition.

Table 3. Execution times for the original version, pure (3+1)D decomposition, and
the proposed islands-of-cores approach, as well as partial Spr and overall Sov speedups
of the proposed approach

#CPUs 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Execution times

Original 30.40 15.40 10.50 7.87 6.55 5.61 4.95 4.27 4.01 3.58 3.31 3.14 2.95 2.81

(3+1)D 9.00 8.20 7.38 7.98 7.06 7.22 7.26 7.69 9.11 9.48 10.20 10.10 10.30 10.40

Islands of cores 9.00 5.62 4.17 2.93 2.34 1.97 1.72 1.49 1.36 1.25 1.12 1.06 1.05 1.01

Speedups

Spr 1.00 1.46 1.77 2.72 3.02 3.66 4.22 5.16 6.70 7.58 9.11 9.53 9.81 10.30

Sov 3.38 2.74 2.52 2.69 2.80 2.85 2.88 2.87 2.95 2.86 2.96 2.96 2.81 2.78

0

20

30

Ex
ec

ut
io

n 
tim

e 
[s

]

Number of CPUs
1 2 3 4 5 6 7 8 9 10 11 12 13 140

10

Original version
(3+1)D approach
Islands-of-Cores approach

0

4

10

Sp
ee

du
p

Number of CPUs
1 2 3 4 5 6 7 8 9 10 11 12 13 140

2

Partial Spr speedup

Overall Sov speedup

6

8

Fig. 2. Performance results for the different number P of processors: (a) comparison
of the execution time for the different versions of MPDATA; (b) partial and overall
speedups of the islands-of-cores approach



Islands-of-Cores Approach for Harnessing SMP/NUMA Architectures 361

In fact, only for configurations with one 8-core processor and two processors
(16 cores totally), the pure (3+1)D decomposition is able to shorten radically
the execution time in comparison with the original version, while already for
P = 4 this decomposition gives a worse performance. For larger values of P ,
it is the original version that overpowers the pure (3+1)D decomposition. The
disadvantage of utilizing only the (3+1)D decomposition increases with the grow-
ing number of processors, achieving the ratio of about 3.7 for P = 14 (112 cores
totally). The reason for such a disappointing behavior of the pure (3+1)D decom-
position is large overheads of data transfers between NUMA nodes (processors)
when data should be extracted from the deep memory hierarchy of each node
before performing transfers, while in the original version these data are simply
located in the main memory.

On the contrary, the acceleration of the proposed island-of-core approach
against the original version is kept on a similar level, independently of the num-
ber of processors, with Sov = 2.74 and Sov = 2.78 for P = 2 and P = 14,
respectively. As shown in Fig. 2, the performance gain of the combined approach
against the pure (3+1)D decomposition increases with the growing number of
processors that together perform computations. Finally, when using the max-
imum number P = 14 of processors, the proposed approach accelerates the
(3+1)D decomposition more then 10 times.

Table 4 presents the sustained performance (in Gflop/s) for the islands-of-
cores approach, as well as the utilization rate in comparison with the theoretical
peak performance of the server. As shown in this table, approximately 30% of
the theoretical peak is achieved when using less than 12 processors, while it
decreases up to the level of 26% for larger values of P . In this benchmark, the
maximum sustained performance of about 390 Gflop/s is obtained for P = 14,
which corresponds to about 77% of the linear scaling. For smaller values of P ,
the parallel efficiency decreases from 96.6% for P = 4 to 80.7% for P = 12.

Table 4. Sustained performance [Gflop/s] obtained for the islands-of-cores approach
when using the SGI UV 2000 server, as well as utilization rate [%], and parallel efficiency
expressed as percentage of linear scaling

Number of processors

1 2 3 4 5 6 7 8 9 10 11 12 14

Theoretical performance

105.6 211.2 316.8 422.4 528.0 633.6 739.2 844.8 950.4 1056.0 1161.6 1267.2 1478.4

Sustained performance

42.7 68.5 92.5 131.9 165.5 197.0 226.1 261.4 287.0 325.9 349.8 370.3 390.1

Utilization rate [%]

40.4 32.4 29.2 31.2 31.3 31.1 30.5 30.9 30.2 30.8 30.1 29.2 26.3

Parallel efficiency: % of linear scaling

100.0 98.7 96.5 96.6 92.8 90.3 87.7 89.0 84.2 84.9 83.5 80.7 77.3



362 L. Szustak et al.

6 Conclusions and Future Work

Accelerating memory access by arranging data and computations in an appropri-
ate way is vital for achieving the high application performance on modern com-
puting architectures. Applications with a poor data locality reduce the effective-
ness of the memory hierarchy, causing long stall times waiting for data accesses. A
purposeful management of data locality plays the primary role for enabling appli-
cations to run on different architectures efficiently. The above statement refers
in particular to SMP/NUMA systems, which are characterized by heterogeneous
network structures. In consequence, since data can be physically dispersed over
many nodes, the access to various data items may require significantly different
times. This favours accesses to the local memory as fastest.

The present paper faces this challenge for heterogeneous stencil computa-
tions, where MPDATA is an important example of such scientific codes. For
this purpose, the new islands-of-cores approach is proposed aiming at increasing
the efficiency of stencil computations on SMP/NUMA platforms, by improv-
ing the data locality. This approach exposes a correlation between computation
and communication for heterogeneous stencils, enabling a better management
of the trade-off between computation and communication costs in accordance
with the features of SMP/NUMA systems, such as the SGI UV 2000 server used
in this work. To overcome the non-uniform memory access constraints, the pro-
posed approach combines the previously developed (3+1)D decomposition and
the scenario of parallelizing stencil computations when the implicit data traf-
fic between nodes is replaced by extra computations. As a result, the resulting
parallel code scales well with increasing the number of processors, and radically
better than both the original version and pure (3+1)D decomposition.

In particular, for the MPDATA grid of size 1024 × 512 × 64, approximately
30% of the theoretical peak is achieved when using less than 12 processors,
while it decreases up to the level of 26% for large configurations. In this bench-
mark, the maximum sustained performance of about 390 Gflop/s is obtained for
the maximum configuration with 112 cores of 14 Intel Xeon E5-4627v2 3.3 GHz
processors. It corresponds to about 77% of the linear scaling. For smaller values
of P , the parallel efficiency decreases from 96.6% for P = 4 to 80.7% for P = 12.

The achieved results justify further research on improving the efficiency of
heterogeneous stencil computations on modern architectures. In particular, the
proposed islands-of-cores approach can be applied to optimize computations
within every multicore CPU (or manycore accelerator). At the opposite edge
of the scale, we plan to study the usage of MPI for extending the scalability
of our approach for much large system configurations. This requires to build
performance models and methods for modeling and management of the correla-
tion between computation and communication costs, to study its impact on the
sustained performance. The optimal trade-off between computations and com-
munications inside and between processors should be determined on this basis.



Islands-of-Cores Approach for Harnessing SMP/NUMA Architectures 363

Acknowledgments. This work was supported by the National Science Centre
(Poland) under grant UMO-2015/17/D/ST6/04059, as well as partially supported by
the Ministry of Education, Youth and Sports of Czech Republic from the project
“IT4Innovations National Supercomputing Center LM2015070”, and by EU under
the COST Program Action IC1305 “Network for Sustainable Ultrascale Computing
(NESUS)” and its Czech supporting project LD15105 “Ultrascale Computing in Geo-
sciences”.

References

1. Cao, X., et al.: Accelerating data shuffling in MapReduce framework with a scale-
up NUMA computing architecture. In: Proceedings of the 24th High Performance
Computing Symposium, HPC 2016. International Society for Computer Simulation
(2016)

2. Castro, M., Francesquini, E., Nguélé, T.M., Méhaut, J.F.: Analysis of computing
and energy performance of multicore, NUMA, and manycore platforms for an irreg-
ular application. In: Proceedings of the 3rd Workshop on Irregular Applications:
Architectures and Algorithms. ACM (2013)

3. Ciznicki, M., Kulczewski, M., Kopta, P., Kurowski, K.: Methods to load balance a
GCR pressure solver using a stencil framework on multi-and many-core architec-
tures. Sci. Program. (2015)

4. Culler, D., Pal Singh, J., Gupta, A.: Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann Publishers Inc., San Francisco (1999)

5. Czarnul, P.: Benchmarking performance of a hybrid Xeon/Xeon Phi system for
parallel computation of similarity measures between large vectors. Int. J. Parallel
Program. 1–17 (2017)

6. Guo, J., Bikshandi, G., Fraguela, B.B., Padua, D.: Writing productive stencil codes
with overlapped tiling. Concurr. Comput. Pract. Exp. 21(1), 25–39 (2009)

7. Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring performance and power
properties of modern multi-core chips via simple machine models. Concurr. Com-
put. Pract. Exp. 28(22), 189–210 (2016)

8. National Supercomputing Center IT4Innovations (2017). http://www.it4i.cz
9. Kumar, S., Bhattacharyya, R., Joshi, B., Smolarkiewicz, P.: On the role of repet-

itive magnetic reconnections in evolution of magnetic flux ropes in solar corona.
Astrophys. J. 830(2), 80 (2016)

10. Lastovetsky, A., Szustak, L., Wyrzykowski, R.: Model-based optimization of
EULAG kernel on Intel Xeon Phi through load imbalancing. IEEE Trans. Par-
allel Distrib. Syst. 28(3), 787–797 (2017)

11. SGI Products: Servers SGI UV (2015). https://www.sgi.com/products/servers/
uv/

12. SGI UV 2000 System User Guide. Document Number 007–5832-002 (2013)
13. Smolarkiewicz, P.: Multidimensional positive definite advection transport algo-

rithm: an overview. Int. J. Numer. Methods Fluids 50(10), 1123–1144 (2006)
14. Smolarkiewicz, P., Margolin, L.: MPDATA: a finite-difference solver for geophysical

flows. J. Comput. Phys. 140(2), 459–480 (1998)
15. Smolarkiewicz, P.K., Charbonneau, P.: EULAG, a computational model for mul-

tiscale flows: an MHD extension. J. Comput. Phys. 236, 608–623 (2013)
16. Smolarkiewicz, P.K., Szmelter, J., Xiao, F.: Simulation of all-scale atmospheric

dynamics on unstructured meshes. J. Comput. Phys. 322(C), 267–287 (2016)

http://www.it4i.cz
https://www.sgi.com/products/servers/uv/
https://www.sgi.com/products/servers/uv/


364 L. Szustak et al.

17. Strugarek, A., Beaudoin, P., Brun, A., Charbonneau, P., Mathis, S., Smolarkiewicz,
P.: Modeling turbulent stellar convection zones: sub-grid scales effects. Adv. Space
Res. 58(8), 1538–1553 (2016)

18. Szustak, L., Rojek, K., Gepner, P.: Using Intel Xeon Phi coprocessor to accel-
erate computations in MPDATA algorithm. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 582–592.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-55224-3 54

19. Szustak, L., Rojek, K., Olas, T., Kuczynski, L., Halbiniak, K., Gepner, P.: Adapta-
tion of MPDATA heterogeneous stencil computation to Intel Xeon Phi coprocessor.
Sci. Program. (2015). doi:10.1155/2015/642705

20. Szustak, L., Rojek, K., Wyrzykowski, R., Gepner, P.: Toward efficient distribution
of MPDATA stencil computation on Intel MIC architecture. In: Proceedings of the
1st International Workshop on High-Performance Stencil Computations, HiStencils
2014, pp. 51–56 (2014)

21. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented
tool suite for x86 multicore environments. In: Proceedings of the First International
Workshop on Parallel Software Tools and Tool Infrastructures, PSTI 2010, San
Diego, CA (2010)

22. Unat, D., et al.: Programming abstractions for data locality. (2014). http://web.
eecs.umich.edu/akamil/papers/padal14report.pdf

23. Utrera, G., Gil, M., Martorell, X.: In search of the best MPI-OpenMP distribution
for optimum Intel-MIC cluster performance. In: 2015 International Conference on
High Performance Computing and Simulation (HPCS), pp. 429–435. IEEE (2015)

24. Xue, W., et al.: Ultra-scalable CPU-MIC acceleration of mesoscale atmospheric
modeling on Tianhe-2. IEEE Trans. Comput. 64(8), 2382–2393 (2015)

25. Yasui, Y., Fujisawa, K., Goh, E.L., Baron, J., Sugiura, A., Uchiyama, T.: NUMA-
aware scalable graph traversal on SGI UV systems. In: Proceedings of the ACM
Workshop on High Performance Graph Processing, pp. 19–26. ACM (2016)

26. Zhou, X., Giacalone, J.P., Garzarán, M.J., Kuhn, R.H., Ni, Y., Padua, D.: Hier-
archical overlapped tiling. In: Proceedings of the Tenth International Symposium
on Code Generation and Optimization, pp. 207–218. ACM (2012)

http://dx.doi.org/10.1007/978-3-642-55224-3_54
http://dx.doi.org/10.1155/2015/642705
http://web.eecs.umich.edu/akamil/papers/padal14report.pdf
http://web.eecs.umich.edu/akamil/papers/padal14report.pdf


The Algorithm of Control Program Generation
for Optimization of LuNA Program Execution

Anastasia A. Tkacheva1,2(B)

1 Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia

tkacheva@ssd.sscc.ru
2 Novosibirsk State University, Novosibirsk, Russia

Abstract. LuNA fragmented programming system is a high-level
declarative system of parallel programming. Such systems have the prob-
lem of achieving on appropriate program execution performance in com-
parison with MPI. The reasons are a high degree of parallel program
execution non-determinism and execution overhead. The paper presents
an algorithm of control program generation for LuNA programs. That is
a step towards automatic improvement of LuNA program execution per-
formance. Performance tests presented show effectiveness of the proposed
approach.

Keywords: High performance computing · Fragmented programming
technology · Fragmented programming system LuNA · Parallel program
generation

1 Introduction

Implementation of large-scale numerical models on supercomputers is difficult
and to achieve good performance the programmer has to have knowledge of
parallel programming. For example, to program the particle-in-cell method [2] it
requires providing dynamic load balance, virtual layers and so on. The LuNA sys-
tem [1] is being developed. Its main aim is to simplify the parallel programming
process for the case of large-scale numerical models. An application program is
represented in a cross-platform form with explicit parallelism. The such form
increases parallel program code reuse and portability, but requires complex exe-
cution algorithms in parallel programming system. It is for these reasons that
there is the lack of LuNA program execution efficiency in comparison with the
similar implementation using MPI. On the other hand, the programmer does
not have to define resources distribution. Most dynamic properties are provided
automatically in LuNA system.

In LuNA program can be divided into parts (subroutines). For some of those
parts the most decisions on resources distribution can be made statically at
compiling stage. In the paper the authors are studying ways to optimize LuNA
program execution performance. One of them is to create and use framework for
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 365–371, 2017.
DOI: 10.1007/978-3-319-62932-2 35



366 A.A. Tkacheva

implementation of these parts. The LuNAFW framework is being developed. In
LuNAFW the application execution is based on the model of event-driven type.
For using it control program has to be developed. Inside control program most
decisions on resources distribution and operations order were partially made, and
they are formulated using event handlers and LuNAFW API functions for dis-
tributed or shared memory environment. The efficiency of suggested approach is
presented in [4]. The manual development of control program for LuNA program
is a separate time-consuming task and it does not respond to the LuNA system
development objectives. Therefore, an algorithm of control program generation
is developed and proposed in the paper.

2 Related Works

There is the lack of efficiency of parallel program execution in most high-level
parallel programming systems in comparison with MPI for the large-scale task
on supercomputers. The main reason is that runtime-system can not make good
decisions on resources distribution and organize parallel computation without
knowledge of the application problem. To improve performance these systems
usually narrow down object domain or include annotations in the language that
help the run-time system to make more appropriate decisions.

For example, PaRSEC [5] system was developed for DPLASMA [6] library
contained linear algebra subroutines for dense matrices. In spite of small object
domain the system includes a way to define priorities of operations execution.
The priorities are also presented in SMP Superscalar [7]. Charm++ [8] sys-
tem has annotation language Charisma [9] to show the run-time system which
functions are related to communications. To improve performance functional
language Haskell [10] uses a coordinate language Eden [11]. The engine to create
skeleton for object subdomain are also provided.

3 LuNA Fragmented Programming System

LuNA (Language for Numerical Algorithms) is a language and a parallel pro-
gramming system [1] intended for implementation of large-scale numerical mod-
els on supercomputers. It is being developed in the Institute of Computation
Mathematics and Mathematical Geophysics of the Siberian Branch of Russian
Academy Of Sciences.

In LuNA application program is represented in a single-assignment coarse-
grained explicitly parallel language LuNA as a bipartite graph of data fragments
(DF) and computational fragments (CF). DFs are basically blocks of data (sub-
matrixes, array slices, etc.). CFs are applications of pure functions on DFs. A
CF has a set of input DFs and a set of output DFs. Values of output DFs are
computed by the CF from the values of input DFs. Such representation is called
fragmented algorithm(FA).

LuNA program consists of the FA description in LuNA language and a
dynamic load library with a set of conventional sequential procedures. CFs are



The Algorithm of Control Program Generation 367

implemented as calls to these procedures with input and output DFs. Execution
of all the CFs is done in accordance with partial order, that is imposed on the
set of CFs by the information dependencies, forms the FA execution.

A FA is executed by the LuNA run-time system. Fragmented structure of
the FA is kept in run-time, allowing the run-time system to dynamically assign
CFs and DFs to different computing nodes, execute CFs in parallel (if possible),
balance computational workload by redistributing CFs and DFs and so on.

The run-time system makes most decisions on FA execution dynamically.
That is the reason of significant execution overheads.

The overall overhead may be divided into the following types:

– Overhead to organize computations inside a node.
– Overhead to organize computations among different nodes.

The previous work [12] presents ways to decrease overhead inside a node
by optimizing checks for CFs being ready. This is applied for loop execution
with using Petri nets or by monolithization. It is especially important for small-
grained FAs when CFs computational time is too short. The experiments in
distributed computing environment show that the benefit of using those ways is
limited in comparison with overhead to organize computations among different
nodes. So the next aim is to optimize overhead related to distributed computing.

For optimization an approach of framework developing for an object sub-
domain was chosen. The LuNAFW is such a framework based on a model of
event-driven type. To use it for LuNA program it is required to develop a con-
trol program where most decisions on resources distribution and CFs execution
order are partially made. They represented using event handlers and framework
basic API function. The efficiency of the approach is presented in [4].

Since the main aim of LuNA system development is to automate the process
of parallel programs development, the manual control program development
is not appropriate. Thus, the algorithm of control program generations was
developed.

4 The Algorithm of Control Program Generation
for LuNA Program

In LuNA program each DF and CF has to be identified by unique (program-wide)
identifiers. The identifier has atomic or indexed form. In LuNAFW framework
CFs are distributed among different nodes using the same resources distribution
strategy as in LuNA system [13].

The input of suggested algorithm is FA. It includes the elements of following
types:

– CF description. It contains:
• CF identifier.
• The set of input DFs’ identifiers.
• The set of output DFs’ identifiers.



368 A.A. Tkacheva

• Name of pure function on C/C++ language.
• The set of DFs’ identifiers should be destroyed after CF execution is

finished (optional parameter).
– The set of CF descriptions using loop construction. It contains:

• The name of cycle counter.
• The value of lower boundary (must be integer).
• The value of upper boundary (must be integer).
• List of CF descriptions or the set of CF descriptions using loop construc-

tion.
– The set of output DFs of FA.

The requirements for input FA is that all information dependences should be
able to be analyzed in compiling stage. In case of the identifier has indexed form
the index must be integer constant, the name of cycle counter or expression of
type the name of cycle counter plus/minus integer constant.

The output of the algorithm is the generated control program represented as
C++ class. LuNAFW framework can execute control program in distributed or
shared memory environment.

The LuNAFW program execution is based on model of event-driven type.
The following handlers have to be defined:

– onInit() - the beginning event handler is used for initialization.
– onComputed(df id) - the handler is called after each DF is computed.
– onReceived (df id) - the handler is called after each DF is received from other

nodes.
– onCfFinished (cf id) - the handler is called after each CF is finished execution.

Inside handlers the following functions (actions) supported by LuNAFW
framework API can be used:

– startCF (CF disctiption) - the action to start CF execution.
– checkCF (CF disctiption) - if all input DFs are available the action startCF

is called.
– destroyDF(df id) - the action to destroy DF with identifier df id.
– sendDF (df id, rank) - the action to send DF with identifier df id to node
rank.

– exit - the action to stop of execution.
– int getRank(identifier) - the action returns node where CF is distributed.

The algorithm of control program generation can be divided into two stages:

1. Converter is to convert FA from data-flow-based to event-driven computation
model.

2. Generator is to generate control program from Converter output taking into
account resources distribution strategy.

The Converter output includes:

– Init is the list of descriptions of CFs which have no input DFs.



The Algorithm of Control Program Generation 369

– B is the list of descriptions of CFs which have no output DFs.
– Out is the list of output DFs of FA.
– Dictionary GarbageCollection:

• Key is CF identifier.
• Value is the list of DF identifiers which should be destroyed after CF

execution is finished. If DF or CF identifier has indexed form then the
boundary use for each index is also defined.

– Dictionary DAG :
• Key is DF identifier.
• Value the list of CF descriptions for which key is the input DF identifier.

If DF or CF identifier has indexed form then the boundary use for each
index is also defined.

In Coverter the identifier is the key of the dictionary. So the functioning
of the algorithm is evident in case when identifier has atomic form. In case of
the identifier has indexed form, then transformation to common indexed form is
needed. For these reasons each index is substituted for new name which is chosen
depended on the order of the indices in indexed form. If index is the expression of
type the name of cycle counter plus/minus integer constant, then the old name is
substituted by new name minus/plus integer constant, and new name boundary
use is defined as old name boundary use plus/minus integer constant.

The output of Converter is the Generator input. To generate handler onInit
the list Init is used. For each CF from it checks if CF is distributed on the node
then the action startCF is called. To generate handler onCfFinished (cf id) the
dictionary GarbageCollection and the list B are used. The following conditions
are checked:

• If GarbageCollection has the key cf id then action destroyDF with the corre-
sponding value is called.

• If the list B contains cf id, it is kept track of in the exit algorithm.

To generate handlers onComputed(df id) and onReceived(df id) is used the
dictionary DAG. If DAG has the key df id then:

– In both cases: The value with key df id is viewed and if a CF from it is
distributed on this node, then action checkCF is called. If the input DFs of
FA contain df id it is kept track of in the exit algorithm.

– In case of handler onComputed : If CF is distributed on different node action
sendDF is called. If DF needs to execute many CFs optimization to send once
is supported.

Control program is considered to be finished if all CFs from list B were
executed and all DFs from the set of output DFs of FA were computed. In that
case action exit is called.

The order of CF execution in generated control program does not contradict
information dependence described in input FA.



370 A.A. Tkacheva

5 Perfomance Tests

To investigate the efficiency of the proposed algorithm an explicit finite differ-
ence method (FDM) for 3D Poisson equation solution [3] was chosen as a test
application.

The experiments were conducted on MVS-10P cluster of Joint Supercom-
puter Center of RAS (each cluster node has two Xeon E5-2690 processors with
64 GB RAM (16 cores per node); nodes are connected by Infiniband FDR net-
work). GCC 5.2.0 compiler and MPICH 3.1.4 communication library were used.

The three versions of parallel program were tested: MPI, LuNA and
LuNAFW. The LuNAFW version is automatically generated using the suggested
algorithm of control program generation. One MPI process per a core is used.
The LuNA version was tested with one thread per MPI process. The goal of the
test is to evaluate weak scalability, when the problem size increases with increas-
ing a number of processes. In ideal case the computation time is the same, but
in reality communication overhead make effect and time is growing.

Fig. 1. Weak scalability: computation time (in sec.) dependency on number of cores.

In Fig. 1 computation times are shown for the case of a fragment size of
100× 200× 200 per core and for 20 iteration of FDM. The LuNAFW implemen-
tation is more efficient than LuNA version and allows achieving good perfor-
mance of parallel program in comparison with MPI. The average benefit is 40%.

6 Conclusion

The ways to optimize LuNA programs are studied. The way to develop LuNAFW
framework based on the model of event-driven type is chosen. To automate con-
trol program development for LuNAFW the algorithm is developed and consid-
ered. Performance of evaluation is presented. It showed the efficiency of suggested
approach.



The Algorithm of Control Program Generation 371

Acknowledgments. The author would like to thank his supervisor Dr. Victor E.
Malyshkin for his professional guidance and Vladislav A. Perepelkin for his constructive
suggestions during the development of this research work.

References

1. Malyshkin, V.E., Perepelkin, V.A.: LuNA fragmented programming system, main
functions and peculiarities of run-time subsystem. In: Malyshkin, V. (ed.) PaCT
2011. LNCS, vol. 6873, pp. 53–61. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23178-0 5

2. Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of
numerical models on MIMD-multicomputers. J. Future Gener. Comput. Syst.
17(6), 755–765 (2001)

3. Kireev, S.E., Malyshkin, V.E.: Fragmentation of numerical algorithms for parallel
subroutines library. J. Supercomput. 57(2), 161–171 (2011)

4. Akhmed-Zaki, D.Z., Lebedev, D.V., Perepelkin, V.A.: Implementation of a three
dimensional three-phase fluid flow (oilwatergas) numerical model in LuNA frag-
mented programming system. J. Supercomput. 73(2), 624–630 (2017)

5. Bosilca, G., Bouteiller, A., et al.: DAGuE: a generic distributed DAG engine for
high performance computing. In Proceedings of IPDPS 2011 Workshops, pp. 1151–
1158 (2011)

6. Bosilca, G., Bouteiller, A., et al.: Flexible development of dense linear algebra
algorithms on massively parallel architectures with DPLASMA. In: Proceedings of
IPDPS 2011 Workshops, pp. 1432–1441 (2011)

7. Perez, J.M., Badia, R.M., Labarta, J.: A flexible and portable programming model
for SMP and multi-cores. Technical report 03/2007, Barcelona Supercomputing
Center (2007)

8. Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented
system based on C++. In: Proceedings of OOPSLA 1993, pp. 91–108. ACM,
New York (1993)

9. Huang, C., Laxmikant, V.K.: Charisma: orchestrating migratable parallel objects.
In: Proceedings of the 16th International Symposium on High Performance Dis-
tributed Computing (HPDC), pp. 75–84 (2007)

10. Coutts, D., Loeh, A.: Deterministic parallel programming with Haskell. Comput.
Sci. Eng. 14(6), 36–43 (2012)

11. Loogen, R., Ortega-Malln, Y., Pea-Mar, R.: Parallel functional programming in
Eden. J. Funct. Program. 15(3), 431–475 (2005)

12. Malyshkin, V.E., Perepelkin, V.A., Tkacheva, A.A.: Control flow usage to
improve performance of fragmented programs execution. In: Malyshkin, V. (ed.)
PaCT 2015. LNCS, vol. 9251, pp. 86–90. Springer, Cham (2015). doi:10.1007/
978-3-319-21909-7 9

13. Malyshkin, V.E., Perepelkin, V.A., Schukin, G.A.: Scalable distributed data allo-
cation in LuNA fragmented programming system. J. Supercomput. 73(2), 726–732
(2017)

http://dx.doi.org/10.1007/978-3-642-23178-0_5
http://dx.doi.org/10.1007/978-3-642-23178-0_5
http://dx.doi.org/10.1007/978-3-319-21909-7_9
http://dx.doi.org/10.1007/978-3-319-21909-7_9


Cyclic Anticipation Scheduling in Grid VOs
with Stakeholders Preferences

Victor Toporkov1(&), Dmitry Yemelyanov1, Anna Toporkova2,
and Petr Potekhin1

1 National Research University “MPEI”,
ul. Krasnokazarmennaya, 14, Moscow 111250, Russia

{ToporkovVV,YemelyanovDM,PotekhinPA}@mpei.ru
2 National Research University Higher School of Economics,

ul. Myasnitskaya, 20, Moscow 101000, Russia
atoporkova@hse.ru

Abstract. In this work, a job-flow scheduling approach for Grid virtual orga-
nizations (VOs) is proposed and studied. Users’ and resource providers’ pref-
erences, VOs internal policies, resources geographical distribution along with
local private utilization impose specific requirements for efficient scheduling
according to different, usually contradictive, criteria. With increasing resources
utilization level the available resources set and corresponding decision space are
reduced. This further complicates the problem of efficient scheduling. In order to
improve overall scheduling efficiency, we propose an anticipation scheduling
approach based on a cyclic scheduling scheme. It generates a near optimal but
infeasible scheduling solution and includes a special replication procedure for
efficient and feasible resources allocation. Anticipation scheduling is compared
with the general cycle scheduling scheme and conservative backfilling using
such criteria as average jobs’ response time (start and finish times) as well as
users’ and VO economic criteria (execution time and cost).

Keywords: Scheduling � Grid � Resources � Utilization � Heuristic � Job
batch � Virtual organization � Cycle scheduling scheme � Anticipation �
Replication

1 Introduction and Related Works

In Grids with non-dedicated resources the computational nodes are usually partly
utilized by local high-priority jobs coming from resource owners. Thus, the resources
available for use are represented with a set time intervals (slots) during which the
individual computational nodes are capable to execute parts of independent users’
parallel jobs. These slots generally have different start and finish times and a perfor-
mance difference. The presence of a set of slots impedes the problem of resources
allocation necessary to execute the job flow from VOs users. Resource fragmentation
also results in a decrease of the total computing environment utilization level [1, 2].

Application level scheduling [3] is based on the available resources utilization and,
as a rule, does not imply any global resource sharing or allocation policy. Job flow

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 372–383, 2017.
DOI: 10.1007/978-3-319-62932-2_36



scheduling in VOs [4, 5] suppose uniform rules of resource sharing and consumption,
in particular based on economic models [2, 6]. This approach allows improving the
job-flow level scheduling and resource distribution efficiency. VO policy may offer
optimized scheduling to satisfy both users’ and VO common preferences. The VO
scheduling problems may be formulated as follows: to optimize users’ criteria or utility
function for selected jobs [6, 7], to keep resource overall load balance [8, 9], to have
job run in strict order or maintain job priorities [10], to optimize overall scheduling
performance by some custom criteria [11, 12], etc.

Users’ preferences and VO common preferences (owners’ and administrators’
combined) may conflict with each other. Users are likely to be interested in the fastest
possible running time for their jobs with least possible costs whereas VO preferences
are usually directed to balancing of available resources load or node owners’ profit
boosting. Thus, VO policies in general should respect all members to function properly
and the most important aspect of rules suggested by VO is their fairness. A number of
works understand fairness as it is defined in the theory of cooperative games [7], such
as fair job flow distribution [9], fair quotas [13, 14], fair user jobs prioritization [10],
and non-monetary distribution [15]. In many studies VO stakeholders’ preferences are
usually ensured only partially: either owners are competing for jobs optimizing only
users’ criteria [6, 16], or the main purpose is the efficient resources utilization not
considering users’ preferences [17]. Sometimes multi-agent economic models are
established [3, 18]. Usually they do not allow optimizing the whole job flow
processing.

The goal of the current study is to design a general scheduling approach which will
be able to find a tradeoff between VO stakeholders’ contradictory preferences based on
the cyclic scheduling scheme (CSS). CSS [19] has fair resource share in a sense that
every VO stakeholder has mechanisms to influence scheduling results providing own
preferences. The downside of a majority centralized metascheduling approaches is that
they lose their efficiency and optimization features in distributed environments with a
limited resources supply. For example in [2], a traditional backfilling algorithm pro-
vided better scheduling outcome when compared to different optimization approaches
in resource domain with a minimal performance configuration. The general root cause
is that in fact the same scarce set of resources (being efficient or not) have to be used for
a job flow execution or otherwise some jobs might hang in the queue. Under such
conditions, user jobs priority and ordering greatly influence the scheduling results. At
the same time, application-level brokers are still able to ensure user preferences and
optimize the job’s performance under free-market mechanisms.

Main contribution of this paper is a CSS-based job-flow scheduling approach which
retains efficiency even in distributed computing environments with limited resources.
A special replication procedure is proposed and studied to ensure a feasible scheduling
solution.

The rest of the paper is organized as follows. Section 2 presents a general CSS fair
scheduling concept. The proposed heuristic-based scheduling technique is presented in
Sect. 3. Section 4 contains experiment setup and results for the proposed scheduling
approach. Finally, Sect. 5 summarizes the paper.

Cyclic Anticipation Scheduling in Grid VOs 373



2 Cyclic Alternative-Based Scheduling

Scheduling of a job flow using CSS is performed in time cycles known as scheduling
intervals, by job batches [19]. The actual scheduling procedure consists of two main
steps. The first step involves a search for alternative scenarios of each job execution, or
simply alternatives [20]. During the second step the dynamic programming methods
[19] are used to choose an optimal alternatives’ combination. One alternative is
selected for each job with respect to the given VO and user criteria. An example for a
user scheduling criterion may be an overall job running time, an overall running cost,
etc. This criterion describes user’s preferences for that specific job execution and
expresses a type of an additional optimization to perform when searching for alter-
natives. Alongside with time (T) and cost (C) properties each job execution alternative
has a user utility (U) value: user evaluation against the scheduling criterion. A common
VO optimization problem may be stated as either minimization or maximization of one
of the properties, having other fixed or limited, or involve Pareto-optimal strategy
search involving both kinds of properties [4, 19, 21, 22].

We consider the following relative approach to represent the user utility U: each
alternative gets its utility in relation to the “best” and the “worst” optimization criterion
values user could expect according to the job’s priority. Accordingly U 2 ½0%; 100%�
and the more some alternative corresponds to user’s preferences (the smaller the dif-
ference from the “best” alternative) the smaller is the U value.

For a fair scheduling model the second step VO optimization problem could be in
form of: C ! max; limU (maximize total job flow execution cost, while respecting
user’s preferences to some extent); U ! min; lim T (meet user’s best interests, while
ensuring some acceptable job flow execution time) and so on [19, 21].

The launch of any job requires a co-allocation of a specified number of slots, as
well as in the classic backfilling variation. A single slot is a time span that can be
assigned to run a part of a parallel job. The target is to scan a list of available slots and
to select a window of parallel slots with a “length” of the required resource reservation
time. The user job requirements are arranged into a resource request containing a
resource reservation time, characteristics of computational nodes (clock speed, RAM
volume, disk space, operating system etc.), limitation on the selected window maxi-
mum cost.

ALP, AMP and AEP window search algorithms were discussed in [20]. The job
batch scheduling performs consecutive allocation of a multiple nonintersecting in terms
of slots alternatives for each job. Otherwise irresolvable collisions for resources may
occur if different jobs will share the same time-slots. Sequential alternatives search and
resources reservation procedures help to prevent such scenario. However in an extreme
case when resources are limited or over utilized only at most one alternative execution
could be reserved for each job. In this case alternatives-based scheduling result will be
no different from First Fit resources allocation procedure [2]. First Fit resource selec-
tion algorithms [23] assign any job to the first set of slots matching the resource request
conditions without any optimization.

374 V. Toporkov et al.



3 Cyclic Anticipation Scheduling

In order to address the scheduling optimization problem the following heuristic job
batch scheduling scheme is proposed. It consists of three main steps.

First, a set of all possible execution alternatives is found for each job not consid-
ering time slots intersections and without any resources reservation. The resulting
intersecting alternatives found for each job reflect a full range of different job execution
possibilities which user may expect on the current scheduling interval.

Second, CSS scheduling procedure [19, 21] is performed to select alternatives
combination (one alternative for each job of the batch) optimal according to VO policy.
The resulting alternatives combination most likely corresponds to an infeasible
scheduling solution as possible time slots intersection will cause collisions on resources
allocation stage. The main idea of this step is that obtained infeasible solution will
provide some heuristic insights on how each job should be handled during the
scheduling. For example, if time-biased or cost-biased execution is preferred, how it
should correspond to user criterion and VO administration policy and so on.

Third, a feasible resources allocation is performed by replicating alternatives
selected in step 2. The base for this replication step is an Algorithm searching for
Extreme Performance (AEP) described in details in [20]. In the current step AEP helps
to find and reserve feasible execution alternatives most similar to those selected in the
near-optimal infeasible solution. After these three steps are performed the resulting
solution is both feasible and efficient as it reflects scheduling pattern obtained from a
near-optimal reference solution from step 2.

We used AEP modification to allocate a diverse set of execution alternatives for
each job. Originally AEP scans through a whole list of available time slots and retrieves
one alternative execution satisfying user resource request and optimal according to the
user custom criterion. During this scan, we saved all intermediate AEP search results to
a dedicated list of possible alternatives.

For the replication purpose a new Execution Similarity criterion was introduced
which helps AEP to find a window with a minimum distance to a reference alternative.
Generally, we define a distance between two different alternatives (windows) as a
relative difference or error between their significant criteria values. For example if
reference alternative has Cref total cost, and some candidate alternative cost is Ccan, then

the relative cost error EC is calculated as EC ¼ jCref�Ccanj
Cref

. If one needs to consider
several criteria the distance D between two alternatives may be calculated as a linear
sum of criteria errors: Dl ¼ EC þET þ ::þEU , or as a geometric distance in a
parameters space: Dg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
C þE2

T þ ::E2
U

p

.
AEP with Execution Similarity scans through the whole list of available time slots

and checks every feasible slots combination. The main difference from the original
AEP is that instead of searching for a window with a maximum single criterion value,
we retrieve window with a minimum distance Dg or Dl to a reference execution
alternative. Generally, this distance can reflect job execution preferences in terms of
multiple criteria such as job execution cost, runtime, start time, finish time, etc.

For a feasible job batch resources allocation AEP consequentially allocates for each
job a single execution window with a minimum distance to a reference corresponding

Cyclic Anticipation Scheduling in Grid VOs 375



alternative from an infeasible solution. Time slots allocated for some job are reserved and
excluded from the slot list when AEP search algorithm is performed for the following
jobs of the batch. Thus this procedure prevents any conflicts for resources and provides
scheduling solution which in some sense reflects near-optimal reference solution.

4 Simulation Study

An experiment was prepared as follows using a custom distributed environment sim-
ulator [2, 19, 21].

Simulation environment was configured with the following features. The resource
pool includes 80 heterogeneous computational nodes. A specific cost of a node is an
exponential function of its performance value (base cost) with an added variable
margin distributed normally as ±0.6 of a base cost. The scheduling interval length is
800 time quanta. The initial resource load with owner jobs is distributed hyper-
geometrically resulting in 5% to 10% time quanta excluded in total.

Jobs number in a batch is 125. Nodes quantity needed for a job is a whole number
distributed evenly on [2; 6]. Node reservation time is a whole number distributed
evenly on [100; 500]. Job budget varies in the way that some of jobs can pay as much
as 160% of base cost whereas some may require a discount. Every request contains a
specification of a custom user criterion which is one of the following: job execution
runtime or overall execution cost.

4.1 Replication Scheduling Accuracy

The first experiment is dedicated to a replication scheduling accuracy study. For this
matter we conducted and collected data from more than 1000 independent job batch
scheduling simulations. First, the general CSS was performed in each experiment for
the following job-flow execution cost maximization problem C ! max; limUa ¼
10%. Ua stands for the average user utility for one job, i.e. lim Ua ¼ 10% means that at
average resulting deviation from the best possible outcome for each user did not exceed
10%. Next, linear and geometric replication algorithms were executed to replicate CSS
solution using linear Dl and geometric Dg distance criteria. In the current experiment
we used job execution cost error Ec and processor time usage error Et to calculate
distances Dl and Dg.

In order to evaluate the resulting difference in scheduling outcomes, we additionally
performed CSS algorithm for C ! max, lim Ua ¼ 0% (ensuring users’ individual
preferences only) and C ! max, lim Ua ¼ 100% (ensuring VO preference, i.e. max-
imizing overall cost without taking into account users’ criteria) problems. These
additional problems reflect extreme boundaries for scheduling results, which can be
used to evaluate a relative replication error. Table 1 contains scheduling results for all
these three problems and two replication algorithms.

The results indicate that both linear and geometric replication algorithms provided
average scheduling parameters very close to the reference solution (indicated as bold in
Table 1), and especially close against job execution cost and processor time usage, i.e.

376 V. Toporkov et al.



integral characteristics which were used for a replication distance calculation. For
example, borderline problems C ! max, lim Ua ¼ 100% and C ! max, lim Ua ¼
0% provided average job execution cost (main job-flow optimization criterion) values
1283 and 1475 correspondingly. Reference intermediate solution provided 1349. And
both replication algorithms ensured average job execution cost 1353 with only 2%
deviation from reference solution against [1283; 1475] interval of possible scheduling
outcomes. However individual user’s preferences were considered to a lesser extent as
both replication algorithms provided average user utility Ua almost twice as much as
the reference problem.

4.2 Anticipation Scheduling Simulation

The second experiment series consider anticipation scheduling efficiency. During each
experiment a VO domain and a job batch were generated and the following scheduling
schemes were simulated and studied. First, a general CSS solved the optimization
problems T ! min, lim U with different limits
Ua 2 0%; 1%; 4%; 10%; 16%; 32%; 100%f g. Second, a near-optimal but infeasible
reference solution REF was obtained for the same problems. Third, a replication
procedure CSSrep was performed based on CSS solution to demonstrate a replication
process accuracy. For the heuristic anticipation scheduling ANT the same replication
procedure was performed based on REF solution. We used a geometric distance as a
replication criterion. Finally two independent job batch scheduling procedures were
performed to find scheduling solutions most suitable for VO users (USERopt) and VO
administrators (VOopt). USERopt was obtained by using only user criteria to allocate
resources for jobs without taking into account VO preferences. VOopt was obtained by
using one VO optimization criterion (T ! min) for each job scheduling without taking
into account user preferences.

1000 single scheduling experiments were conducted. Average number of alterna-
tives found for a job in CSS was 2.6. This result shows that while for relatively small
jobs usually a few alternative executions have been found, large jobs usually had at
most one possible execution option (remember that according to the simulation set-
tings, the difference between jobs execution time could be up to 15 times). At the same
time REF algorithm at average considered more than 100 alternative executions for
each job. CSS failed to find any alternative executions for at least for one job of the
batch in 209 experiments; ANT - in 155 experiments. These results show that simu-
lation settings at the same time provided quite a diverse job batch and a limited set of
resources not allowing executing all the jobs during every experiment.

Table 1. CSS replication average scheduling results

Job execution
characteristic

C ! max, limUa ¼ 0% C ! max, limUa ¼ 10% Linear
replication

Geometric
replication

C ! max, limUa ¼ 100%

Cost 1283 1349 1353 1353 1475

Processor Time 191.6 191.2 190.6 190.5 202.3

Finish time 367.1 353.8 356.2 356.4 358.5

Ua% 0 9.9 17.6 17.8 65

Cyclic Anticipation Scheduling in Grid VOs 377



Figure 1 shows average job execution time (VO criterion) in T ! min, lim U
optimization problem. Different limits Ua 2 0%; 1%; 4%; 10%; 16%; 32%; 100%f g
specify to what extent user preferences were taken into account. Two horizontal lines
USERopt and VOopt represent practical T values when only user or VO administration
criteria are optimized correspondingly.

First thing that catches the eye in Fig. 1 is that REF for U [ 10% provides job
execution time value better (smaller) than those of VOopt. However such behavior is
expected as REF generates an infeasible solution and may use time-slots from more
suitable (according to VO preferences) resources several times for different jobs.
Otherwise ANT provided better VO criterion value than CSS for all U [ 0%. The
relative advantage reaches 20% when U [ 20% is considered. ANT algorithm graph
gradually changes from USERopt value at U ¼ 0% to almost VOopt value at U ¼
100% just with changing average user utility limit. Thereby ANT represents a general
scheduling approach allowing balancing between VO stakeholder’s criteria according
to specified scenario, including VO or user criteria optimization.

A similar pattern can be observed in Fig. 2 where C ! max, lim U scheduling
problem is presented. However, in this case ANT advantage over CSS amounts to 10%
against VO criterion.

Fig. 1. Average job execution time in T ! min, lim U problem

378 V. Toporkov et al.



4.3 Anticipation and Backfilling Scheduling Comparison

The third experiment setup reiterates work [2] and is intended to compare anticipation
scheduling procedure with a traditional backfilling algorithm. The main criteria for
comparison include average jobs’ response time (or start and finish times) as well as
users’ and VO economic criteria (such as execution time and cost).

We used the following three algorithms for the comparison: CSS – the general
cycle scheduling scheme; ANT – the anticipation scheduling procedure; BF – the
conservative backfilling algorithm.

In a single experiment CSS and ANT solved C ! max, lim Ua ¼ 10% problem.
Execution cost (C ! min) and processor time (T ! min) criteria were uniformly
distributed between 75 user jobs generated in each experiment.

Important addition was introduced for ANT scheduling. In contrast with experi-
ment series in Subsects. 4.1 and 4.2, job replication geometric distance Dg was cal-
culated as Dg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ec þET þEs
p

, where additional element Es stands for a job start time
error. As a reference start time value for each job we used start time obtained for a
particular job by a prior backfilling scheduling. Thus, when searching for a job exe-
cution window we used infeasible solution for time and cost reference values, and a
feasible backfilling solution as a reference for an attainable start time values complying
with a queue priority.

To observe the behavior of the main scheduling parameters we conducted exper-
iments with a different number N of computing nodes available during the scheduling:
N 2 f20; 25; 30; 40g.

Average job’s start and finish times are presented in Figs. 3 and 4. As can be seen
in Figs. 3 and 4, backfilling provided better start and finish times for a job-flow
execution compared to CSS and this result is consistent with [2]. In the current problem
setup backfilling was able to finish the job flow execution almost twice earlier then
CSS. At the same time anticipation algorithm during each experiment solved C !

Fig. 2. Average job execution cost in C ! max; limU problem

Cyclic Anticipation Scheduling in Grid VOs 379



max, lim U problem and provided jobs’ start and finish times only 10% behind the
backfilling scheduling outcome.

The details of anticipation scheduling can be examined in Figs. 5 and 6.
Figure 5 shows average job execution time provided by backfilling (BF) and

anticipation algorithm (ANT). Additionally ANT T and ANT C represent average
execution times obtained by anticipation scheduling for jobs with time minimization
and cost minimization criteria correspondingly. As it can be observed, ANT and BF
generally provided comparable execution times, which is not a direct optimization
criterion for either of them. At the same time ANT applied completely different
scheduling policies for jobs with different private scheduling criteria. So that ANT T

Fig. 3. Average jobs’ start time in C ! max; limU problem

Fig. 4. Average jobs’ finish time in C ! max; limU problem

380 V. Toporkov et al.



jobs used 25%–33% less processor time then ANT C jobs and 15% less compared to
BF solution.

A similar pattern can be observed in Fig. 6, where average jobs’ execution cost is
presented. ANT and BF provided comparable general job-flow execution cost value.
However ANT was able to consider user preferences and shared resources so that
ANT C jobs execution cost was 10–15% less then ANT T jobs and 6–9% less com-
pared to backfilling.

Summarizing the results, ANT is able to provide a general scheduling outcome
similar to backfilling (with at most 10% error on job’s start and finish times), and at the
same time considers users’ and VO preferences by efficiently solving C ! max, lim U
problem.

Fig. 5. Average jobs’ execution time in C ! max; limU problem

Fig. 6. Average jobs’ execution cost in C ! max; limU problem

Cyclic Anticipation Scheduling in Grid VOs 381



Thereby the available resources are distributed between user jobs according to the
predefined scheduling requirements (see Figs. 5 and 6). They include individual jobs
execution preferences (for example, certain job’s execution cost minimization) and a
common job-flow scheduling policy (total job-flow execution cost maximization in our
example).

Even better VO job-flow optimization results may be obtained when users’ pref-
erences are fully matched with VO scheduling criterion [19, 21].

5 Conclusions and Future Work

In this paper, we study the problem of fair job batch scheduling with a relatively limited
resources supply. The main problem arise is a scarce set of job execution alternatives
which eliminates scheduling optimization efficiency.

We study a heuristic scheduling scheme which generates a near-optimal but
infeasible reference solution and then replicates it to allocate a feasible accessible
solution. The obtained results show that in computing environments with a limited set
of resources the anticipation algorithm is still able to allocate resources according to
VO stakeholders’ preferences, generally comply with queue priorities and provide a
job-flow completion time up to 10% behind backfilling solution.

Future work will be focused on replication algorithm studies and its possible
application to fulfill complex user preferences expressed in a resource request. Ref-
erence parameters may be obtained from user expectations or transformed from dif-
ferent scheduling solutions.

Acknowledgments. This work was partially supported by the Council on Grants of the Presi-
dent of the Russian Federation for State Support of Young Scientists and Leading Scientific
Schools (grants YPhD-2297.2017.9 and SS-6577.2016.9), RFBR (grants 15-07-02259 and
15-07-03401), and by the Ministry on Education and Science of the Russian Federation (project
no. 2.9606.2017/BCh).

References

1. Dimitriadou, S.K., Karatza, H.D.: Job scheduling in a distributed system using backfilling
with inaccurate runtime computations. In: Proceedings of 2010 International Conference on
Complex, Intelligent and Software Intensive Systems, pp. 329–336 (2010)

2. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Potekhin, P.: Heuristic
strategies for preference-based scheduling in virtual organizations of utility grids. J. Ambient
Intell. Humanized Comput. 6(6), 733–740 (2015)

3. Buyya, R., Abramson, D., Giddy, J.: Economic models for resource management and
scheduling in grid computing. J. Concurr. Comput. 14(5), 1507–1542 (2002)

4. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria aspects of grid resource
management. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource Management.
State of the Art and Future Trends, pp. 271–293. Kluwer Academic Publishers, Boston (2003)

5. Rodero, I., Villegas, D., Bobroff, N., Liu, Y., Fong, L., Sadjadi, S.M.: Enabling
interoperability among grid meta-schedulers. J. Grid Comput. 11(2), 311–336 (2013)

382 V. Toporkov et al.



6. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic scheduling in grid computing. In:
Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537,
pp. 128–152. Springer, Heidelberg (2002). doi:10.1007/3-540-36180-4_8

7. Rzadca, K., Trystram, D., Wierzbicki, A.: Fair game-theoretic resource management in
dedicated grids. In: IEEE International Symposium on Cluster Computing and the Grid
(CCGRID 2007), pp. 343–350. IEEE Computer Society, Rio De Janeiro (2007)

8. Vasile, M., Pop, F., Tutueanu, R., Cristea, V., Kolodziej, J.: Resource-aware hybrid
scheduling algorithm in heterogeneous distributed computing. J. Future Gener. Comput.
Syst. 51, 61–71 (2015)

9. Penmatsa, S., Chronopoulos, A.T.: Cost minimization in utility computing systems. Concurr.
Comput. Pract. Exp. 16(1), 287–307 (2014). Wiley

10. Mutz, A., Wolski, R., Brevik, J.: Eliciting honest value information in a batch-queue
environment. In: 8th IEEE/ACM International Conference on Grid Computing, New York,
USA, pp. 291–297 (2007)

11. Blanco, H., Guirado, F., Lérida, J.L., Albornoz, V.M.: MIP model scheduling for
multi-clusters. In: Caragiannis, I., et al. (eds.) Euro-Par 2012. LNCS, vol. 7640, pp. 196–
206. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36949-0_22

12. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An advance reservation-based
co-allocation algorithm for distributed computers and network bandwidth on
QoS-guaranteed grids. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS,
vol. 6253, pp. 16–34. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16505-4_2

13. Carroll, T., Grosu, D.: Divisible load scheduling: an approach using coalitional games. In:
Proceedings of the Sixth International Symposium on Parallel and Distributed Computing,
ISPDC 2007, p. 36 (2007)

14. Kim, K., Buyya, R.: Fair resource sharing in hierarchical virtual organizations for global
grids. In: Proceedings of the 8th IEEE/ACM International Conference on Grid Computing,
pp. 50–57. IEEE Computer Society, Austin (2007)

15. Skowron, P., Rzadca, K.: Non-monetary fair scheduling cooperative game theory approach.
In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Parallelism in Algorithms
and Architectures, pp. 288–297. ACM, New York (2013)

16. Dalheimer, M., Pfreundt, F., Merz, P.: Agent-based grid scheduling with Calana. In:
Proceedings of Parallel Processing and Applied Mathematics, 6th International Conference,
pp. 741–750 (2006)

17. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In: Feitelson, D.
G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102. Springer, Heidelberg
(2001). doi:10.1007/3-540-45540-X_6

18. Thain, T., Livny, M.: Distributed computing in practice: the condor experience. Concurr.
Comput. Pract. Exp. 17, 323–356 (2005)

19. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Potekhin, P.: Metaschedul-
ing and heuristic co-allocation strategies in distributed computing. Comput. Inform. 34(1),
45–76 (2015)

20. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Slot selection algorithms in
distributed computing. J. Supercomput. 69(1), 53–60 (2014)

21. Toporkov, V., Yemelyanov, D., Bobchenkov, A., Potekhin, P.: Fair resource allocation and
metascheduling in grid with VO stakeholders preferences. In: Proceedings of the 45th
International Conference on Parallel Processing Workshops, pp. 375–384. IEEE (2016)

22. Farahabady, M.H., Lee, Y.C., Zomaya, A.Y.: Pareto-optimal cloud bursting. IEEE Trans.
Parallel Distrib. Syst. 25, 2670–2682 (2014)

23. Cafaro, M., Mirto, M., Aloisio, G.: Preference-based matchmaking of grid resources with
CP-nets. J. Grid Comput. 11(2), 211–237 (2013)

Cyclic Anticipation Scheduling in Grid VOs 383

http://dx.doi.org/10.1007/3-540-36180-4_8
http://dx.doi.org/10.1007/978-3-642-36949-0_22
http://dx.doi.org/10.1007/978-3-642-16505-4_2
http://dx.doi.org/10.1007/3-540-45540-X_6


Parallel Computing Applications



Comparison of Auction Methods
for Job Scheduling with Absolute Priorities

Anton Baranov(B), Pavel Telegin, and Artem Tikhomirov

Joint Supercomputer Center of the Russian Academy of Sciences,
Branch of Federal State Institution “Scientific Research Institute

for System Analysis of the Russian Academy of Sciences”, Moscow, Russia
antbar@mail.ru, ptelegin@jscc.ru, tema4277@rambler.ru

Abstract. The model of geographically distributed computing sys-
tem with absolute priorities of jobs is described in the paper. Authors
designed the decentralized scheduling algorithm using the auction meth-
ods. Two auction methods were researched and compared: the first-price
sealed-bid auction and the English auction. The paper includes results
of experimental comparison of researched auction methods.

1 Introduction

To improve the performance and reliability of computations individual super-
computer computing facilities (CF) are often integrated into geographically dis-
tributed systems (GDS). In this kind of systems absolute priorities can be used
for industrial problems. These priorities can be combined with well-known auc-
tion methods of scheduling computational jobs (or simply jobs). The main advan-
tages of the auction methods and scheduling algorithms are ease of organization
and high speed of operation. There are known several auction models, including
the English auction and the first-price sealed-bid auction. The goal of this paper
is to compare efficiency of these two auction models for scheduling jobs in GDS
with absolute priorities.

2 GDS Architecture

Grid technologies are often used [1] for integration of CFs into a GDS. CFs as
are typically computer clusters [2], consisting of individual computational nodes,
combined with high-speed communication networks. It is important to note that
GDS can be a heterogeneous system (CFs in one GDS may vary by number of
nodes and their performance), and a separate CF can be heterogeneous as well
(e.g., it may contain different generations of computational nodes).

A single CF in GDS runs under a local resource management system (LRMS),
like common systems: PBS, SLURM, Moab, or domestic batch system SUPPZ.
The main functions of LRMS are: scheduling computational jobs, start and mon-
itoring their execution on the computational resources of individual CFs.

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 387–395, 2017.
DOI: 10.1007/978-3-319-62932-2 37



388 A. Baranov et al.

The basic unit of information processing in GDS is a job, which is defined as
a set containing input data, program and job passport. Job passport is a special
object that describes the resource request: number of processors (cores), memory
and disk space, ordered execution time and some others.

In classification [3] every computational job can be of one of the following
types: rigid, moldable and evolving. Job with a rigid resource request requires
only one resource request for execution. Moldable job requires several resource
requests for execution; scheduling system selects and satisfies one of the requests
just once immediately before job start. Evolving job allows changes in the list
and amount of resources used during execution of job.

Resource request for a scalable job is described by the vector of values: num-
ber of computational nodes required for the job, estimation of running time, the
weight coefficient – priority that allows to specify the scheduler which queries
are the most preferred options for the job.

The general scheme of processing jobs flow is the following. Jobs are inde-
pendently entered to any of the CFs in GDS, then they are placed into a queue
of Global Resource Management System (GRMS). GRMS determines a target
CF for each job. GRMS organizes delivery of input data and job to the target
CF, resulting in the job to be placed into local LRMS queue of the target CF.

It is known that in order to improve the resilience and scalability the GRMS
should be based on a decentralized scheme [3,4]. This means the absence of a
single control center, which operates on a dedicated CF and makes decisions on
jobs scheduling. Decentralized management is based on the joint coordinated
work of a team of peer dispatchers, which run locally on all GDS CFs.

Each manager schedules jobs flow in accordance with the decentralized
scheduling algorithm. This algorithm should be based on the principle of level-
ling the GDS CF load [5]. Consistency of managers decisions on jobs allocation is
achieved by their interaction through a uniform information system [6,7], which
is responsible for maintenance of the of the same global jobs queue [8] for all
dispatchers.

3 Decentralized Scheduling Algorithms Using
the Auction Method

Earlier studies [9–11] show that economic methods can be applied for scheduling
jobs in a distributed computing system. Each computing job is considered to
be a subject of trade, i.e. the goods. Every dispatcher at different time points
may operate as Customer or Seller. Customers compete for the right to process
the jobs gaining maximum benefit for themselves. Here benefit means minimum
idle time of the computing resources. Sellers, in turn, are interested in obtaining
results of their jobs execution as soon as possible.

Two basic economic models used in a distributed system are: commodities
markets and auctions [11]. The commodities market model [8] assumes availabil-
ity of a large number of the same type of goods (computing jobs), while many
Customers are ready to buy (process) it. In this case, the price for the job can



Comparison of Auction Methods for Job Scheduling with Absolute Priorities 389

be established on the base of statistics of completed sales. For the future sales,
the established price will be used to all other jobs. The model of the commodity
market can be applied particularly in a system with homogeneous computing
resources.

The auction model is efficient when the product is unique or limited in quan-
tity, or when the number of Customers (who are ready to participate in the
auction) is unknown [12]. Note that the price of the goods can not be deter-
mined initially. Every participant who wants to buy goods, sets a bid and sends
it to the auctioneer [13]. The auctioneer is another possible role for the dis-
patcher in addition to the Customer and Seller. The main task of the auctioneer
is to accept bids from auction participants. After the end of the auction, the
auctioneer ranks the bids offered by the participants and determines the best.
The participant who offered the best bid is considered the winner of the auction
and receives the goods. Advantages of the auction model are the ease of imple-
mentation and the possibility of usage in the decentralized scheme of dispatchers
interaction. The disadvantage limiting use of the auction model in some areas
(like balancing the workload of CDN-servers), is relatively long time for making
a job assignment decision.

There are known several models of the auction [14–18] including first price
sealed-bid auction, English auction, Vickrey auction, Double auction, and com-
bined auctions.

Note that in most cases for auction scheduling methods, a GDS model with
equal or relative priorities and fixed resource request for assignments is used.
For GDS model with absolute priorities let us consider a scheme for planning
scalable jobs using two auction models: the first price sealed-bid auction [19] and
the English auction.

First-price sealed-bid auction is the most widely used model for scheduling
computer resources. In this model, all participants of the auction (dispatchers)
bid on job, they do not see the bids of opponents and cannot change their own.
The winner is the participant who offered the highest rate. English auction is a
multi-round open ascending price auction, which starts with setting a minimum
price. The participants are aware of the bids made by the others, and bet only
if their rate exceeds all earlier bids.

The difficulty in using this auction model is determination of rate which the
dispatcher can offer, since there must be a way of rate increase.

While scheduling scalable jobs for more than one resource request indicating
their preference, the dispatcher may increase the rate by offering to run a scalable
job according to the most preferred resource request.

4 Bid Problem

Determination of rate that the dispatcher can offer for the job is the key issue
of the auction methods. In [20] to determine bid the authors suggested to use
the heuristic “compatibility” coefficient of job characteristics and target CF, and
considered different ways of its definition. In [11], the authors studied the GDS



390 A. Baranov et al.

model with absolute priorities, where time of initial data transfer sometimes is
comparable to or even much greater than the execution time of job. For this
model the following compatibility coefficient Psend is suggested.

Psend = A · V

C
(1)

where
V is volume of the original job data,
C – communication bandwidth between the CF, which enqueued the job and

the target CF,
A is a weight coefficient.
Bid of dispatcher Ptotal for a job is defined as

Ptotal =
1

Psend + 1
(2)

The rate of job is determined by the formula (2) and takes into account com-
munications heterogeneity of GDS, but does not take into account the compu-
tational heterogeneity, i.e., different number of computational nodes in different
CFs inside the GDS. So, it is suggested to form the rate with several components:
price for computational resources, price for interrupts and price for transfer of
input data.

Price for Computational Resources. Pwork can be defined as follows:

Pwork = B · N (3)

where
N is number of modules used for job on CF
B is weight coefficient. It is reasonable to assume that for CF with large

number of modules probability to get greater number of modules is higher, and
the price

Pwork takes into account computational heterogeneity of GDS.

Price for Interrupts. Pspeed is defined as follows:

Pspeed = D · G (4)

where
G is the maximum priority of displaced jobs,
D is a weight coefficient that allows you to take into account the work-

load of computational resources. Price for interrupts takes into consideration
the assumption that the high-priority job should displace from execution (inter-
rupt) job with minimum priority.



Comparison of Auction Methods for Job Scheduling with Absolute Priorities 391

The Final Bid. Ptotal of dispatcher is defined as follows:

Ptotal =
Pwork

Psend + Pspeed + 1
(5)

Auction is won by dispatcher, which offered the maximum bid. To win, the
dispatcher must offer to as much computing power as possible, the time for trans-
fer of initial data should be minimal, while proposed computational resources
should be either free or occupied by the least priority jobs.

5 Scheduling Algorithm

Scheduling algorithm developed by the authors enables the use of both auc-
tion models: English and first-price sealed-bid ones. The algorithm is executed
independently by every dispatcher on each CF in a GDS, while the dispatcher
executing the algorithm is regarded as a potential job performer.

Step 1. Dispatcher interacts with LRMS and generates a list of running jobs
on the CF. Information on priority and the number of occupied nodes is placed
in the list for each job.

Step 2. Dispatcher scans the global queue for high-priority jobs and deter-
mines whether these jobs can displace running jobs contained in the list from
step 1. If there is no such kind of job in the global queue, then the algorithm
stops. Otherwise, dispatcher generates the list of high-priority jobs from the
global queue, for which it is ready to participate in the auction, and proceeds to
step 3.

Step 3. Dispatcher auctions high-priority jobs selected in step 2, and
becomes the auctioneer and the auction participant at the same time. If selected
in step 2 jobs have already been put on the auction by another dispatcher, the
current dispatcher becomes only participant in the auction for these jobs.

Step 4. Each participant in accordance with (5) determines the rate for each
job and sends it to the auctioneer.

Step 5. The auction lasts for the time set for the auction. After this time,
the auctioneer proceeds to step 6, and participants to step 7.

Step 6. Determination of winner. The auctioneer takes bids from all the
participants. Then the auctioneer ranks the bids aby their value. The auctioneer
appoints the winner: the dispatcher, which offered the maximum rate for the
job. The rate for the job is Ptotal value, which determined according to (5). If
the more than one participant offered maximum, the winner is the dispatcher,
which offered it first.

Step 7. If the dispatcher has won the auction, it organizes preparation of
the job initial data and puts the job into the queue of LRMS.

Steps 1–7 are repeated until all the jobs in the global queue are distributed
on CFs.

Sequence of steps described above can be applied to the both auction models.
In the case of a first-price sealed-bid auction steps 1–5 are passed once, then the
job is selected according to the bids on step 6. In the case of an English auction,



392 A. Baranov et al.

the auctioneer sets a minimum bid on step 3, then it starts to accept bids from
other dispatchers. Steps 1–5 for each job can be repeated many times during the
time of the auction, and the participants can change their bids, increasing job
price.

Dispatcher bids are determined by the formula (5). It is assumed that the
dispatcher bid can change when the amount of available computational resources
changes, i.e., changes the price Pwork according to (3). At the end of the auction
the dispatcher with the highest rate gets the job.

6 Experimental Comparison of Two Auction Models

To test technique above the authors created model of GDS, see Fig. 1. The model
contains two CFs with different performance: the first CF contains 8 nodes,
and the second one contains 13 nodes. Global job queue is placed in a special
distributed information system.

Experiments were performed on supercomputer MVS-10P in JSCC RAS.
We used MPI-programs from NAS Parallel Benchmarks (NPB) for the test. The
global queue received steady flow of M = 400 jobs. Test jobs were selected
pseudo-randomly. Number of resource requests was set by gamma distribution
with parameters α = 3 β = 1 (the average number of resource requests for one
job was equal to 2). For each resource request number of required CFs for job
was generated accordingly gamma distribution with parameters 2 and 3. Jobs
entered the global queue with time intervals t, exponentially distributed with
intensity value λ = 350.

The following indicators were selected for evaluating efficiency of scheduling
algorithms:

1. Average processing time of high priority jobs T .
2. Number of jobs in the global queue for each priority level.

In addition, two more characteristics were investigated:
3. Number of jobs, which execution of was interrupted by a priority job.
4. Held auctions, i.e. proportion of jobs for which two or more dispatchers com-

peted.

The goal of the experiment was to compare the English auction model and
the first-price sealed-bid auction model for scheduling jobs in GDS with absolute
priorities. During experiment it was established that the first-price sealed-bid
auction can not guarantee allocation of maximum resources for the job. Job
execution time with first-price sealed-bid model is greater for most priority levels.
Distribution of processing time for both models depending on priority levels is
presented in Fig. 1.

On the one hand, when jobs does not get the maximum resources, it is possi-
ble to run a greater number of jobs simultaneously compared to the case when all
jobs run using the maximum resources. On the other hand, increase in execution



Comparison of Auction Methods for Job Scheduling with Absolute Priorities 393

Fig. 1. Average processing time of jobs depending on priority level

time of job results the increase in interrupted lower priority jobs. Figure 2 demon-
strates proportion of interrupted jobs for both auction methods. Interrupting a
job is associated with the following time-consuming:

1. Time spent on preparation to the job interrupt.
2. Time spent on reinitialization of the computational resources for the inter-

rupted job.

The displaced job does not return to the global queue and remains in the
local queue of CF. Impossibility to reallocate interrupted job leads to long wait
in the local queue of the CF, this results the increase in average job processing
time.

Fig. 2. Proportion of jobs, which execution was interrupted

Increase in run time for almost every job, as well as increase in number of
interrupted jobs results decrease in intensity of handling jobs from the global
queue. Increasing intensity of coming jobs will increase number of interrupts for
both types of auctions; in this case advantage of the English auction becomes
even more significant.

Figure 3 demonstrates that the English auction model gives smaller average
number of jobs in the queue. Each of five charts on Fig. 3 corresponds to one of
five priority levels, the upper chart corresponds to priority level 3 (top priority),
the bottom chart - to priority level 1 (bottom priority).



394 A. Baranov et al.

Fig. 3. Comparison of the length the global queue for two auction models: Q is number
of jobs in the queue, T is duration of the experiment

7 Conclusions

Comparison of two auction models: the English auction and the first-price sealed-
bid auction showed that use of the English auction model for scheduling scalable
jobs in GDS with absolute priorities is more efficient. Efficiency is greater because
the dispatcher can increase the previously proposed rate for the job. As a result
of the experiment, it was found that raising the rate allows to minimize run time
of job due to the greater number of resources assigned for job execution. It was
discovered that minimization of job run time decreases the number of interrupted
jobs, which in turn leads to reduction of time losses caused by interrupts, and,
as a consequence, to reduction of the average job processing time.

References

1. Foster, I.: The physiology of the grid: an open grid services architecture for dis-
tributed systems integration. Comput. Netw. Int. J. Comput. Telecommun. Netw.
40(1), 5–17 (2002)

2. Kovalenko, V.N., Koryagin, D.A.: Organization of Grid resources Keldysh Institute
of Applied Mathematics RAS, no. 63, p. 25 (2004)

3. Khoroshevskii, V.G.: Virtualization architecture of distributed computing systems
in Student, Scientist, Teacher. p. 69. Avtograf, Novosibirsk (2015)

4. Korneev, V.V., Monakhov, O.G.: About allocation of tasks in computer systems
with programmable structure in Architecture of computer systems with program-
mable structure, pp. 3–17. Sobolev Institute of mathematics, Novosibirsk (1982)



Comparison of Auction Methods for Job Scheduling with Absolute Priorities 395

5. Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour, R.: Evaluation of job-
scheduling strategies for grid computing. In: Buyya, R., Baker, M. (eds.) GRID
2000. LNCS, vol. 1971, pp. 191–202. Springer, Heidelberg (2000). doi:10.1007/
3-540-44444-0 18

6. Kovalenko, V.N., Kovalenko, E.I., Shorin, O.N.: Development of grid job dispatcher
based on lookahead scheduling. Keldysh Institute of Applied Mathematics RAS,
Moscow (2005)

7. Bobchenkov, A.V.: Development of models and management practices in virtual
organizations distributed computing systems (in Russian). MPEI, Moscow (2011)

8. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource
allocation and scheduling in grid computing. Concurrency Comput. Pract. Exp.
14, 1507–1542 (2002). doi:10.1002/cpe.690

9. Nabrzyski, J., Schopf, J.M., Weglarz, J.: Grid Resource Management. State of the
Art and Future Trends (2003). doi:10.1007/978-1-4615-0509-9

10. Wolski, R., Plank, J.S., Bryan, T., Brevik, J.: G-commerce: market formulations
controlling resource allocation on the computational grid. In: Proceedings of the
15th IEEE International Parallel and Distributed Processing Symposium, April
2000. doi:10.1109/IPDPS.2001.924985

11. Vazhkudai, S., von Laszewski, G.: A greedy grid - the grid economic engine direc-
tive. In: Proceedings of the 15th IEEE International Parallel and Distributed
Processing Symposium, April 2000. doi:10.1109/IPDPS.2001.925170

12. Chen, C., Maheswaran, M., Toulouse, M.: Supporting coallocation in an
auctioning-based resource allocator for grid systems. In: Proceedings of the 11th
IEEE Heterogeneous Computing Workshop, April 2001. doi:10.1109/IPDPS.2002.
1015666

13. Hurwicz, L.: The design of resource allocation mechanisms. In: Arrow, K., Hurwicz,
L. (eds.) Studies in Resource Allocation Processes, pp. 3–38. Cambridge University
Press, Cambridge (1977). doi:10.1017/CBO9780511752940.002

14. Gomoluch, J., Schroeder, M.: Market-based resource allocation for grid computing:
a model and simulation. In: Proceedings of the 1st International Workshop on
Middleware for Grid Computing, pp. 211–218, June 2003

15. Grosu, D., Das, A.: Auction-based resource allocation protocols in grids. In: Pro-
ceedings of the 16th IASTED International Conference on Parallel and Distributed
Computing and Systems, pp. 20–27 (2004)

16. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing market-based resource
allocation strategies for the computational grid. Int. J. High Perform. Comput.
Appl. 15(3), 258–281 (2001). doi:10.1177/109434200101500305

17. Vohra, R.V.: Combinatorial auctions. In: Handbook of Game Theory with Eco-
nomic Applications, vol. 4, pp. 455–476 (2015). doi:10.1016/B978-0-444-53766-9.
00008-2

18. Kale, L.V., Kumar, S., Potnuru, M., DeSouza, J., Bandhakavi, S.: Faucets: efficient
resource allocation on the computational grid. In: Proceedings of the International
Conference on Parallel Processing (ICPP 2004), pp. 396–405 (2004). doi:10.1109/
ICPP.2004.1327948

19. Baranov, A.V., Tikhomirov, A.I.: Use closed bid auction in a territorially distrib-
uted computing system with absolute priorities. In: Proceedings of the NSCF 2016,
Pereslavl-Zalessky (2016)

20. Toporkov, V.V., Emelyanov, D.M., Potehin, P.A.: Job batch generation and
scheduling in distributed computing environments. Bulletin of the South Ural
State University. Series: Computational Mathematics and Software Engineering,
no 2. pp. 21–24 (2015)

http://dx.doi.org/10.1007/3-540-44444-0_18
http://dx.doi.org/10.1007/3-540-44444-0_18
http://dx.doi.org/10.1002/cpe.690
http://dx.doi.org/10.1007/978-1-4615-0509-9
http://dx.doi.org/10.1109/IPDPS.2001.924985
http://dx.doi.org/10.1109/IPDPS.2001.925170
http://dx.doi.org/10.1109/IPDPS.2002.1015666
http://dx.doi.org/10.1109/IPDPS.2002.1015666
http://dx.doi.org/10.1017/CBO9780511752940.002
http://dx.doi.org/10.1177/109434200101500305
http://dx.doi.org/10.1016/B978-0-444-53766-9.00008-2
http://dx.doi.org/10.1016/B978-0-444-53766-9.00008-2
http://dx.doi.org/10.1109/ICPP.2004.1327948
http://dx.doi.org/10.1109/ICPP.2004.1327948


Parallel Algorithm for Solving Constrained
Global Optimization Problems

Konstantin Barkalov(&) and Ilya Lebedev

Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
{barkalov,lebedev}@vmk.unn.ru

Abstract. This work considers a parallel algorithm for solving multiextremal
problems with non-convex constraints. The distinctive feature of this algorithm,
which does not use penalty functions, is the separate consideration of each
problem constraint. The search process can be conducted by reducing the
original multidimensional problem to a number of related one-dimensional
problems and solving this set of problems in parallel. An experimental assess-
ment of parallel algorithm efficiency was conducted by finding the numeric
solution to several hundred randomly generated multidimensional multiextremal
problems with non-convex constraints.

Keywords: Global optimization � Constrained problems � Non-convex
constraints � Dimension reduction � Parallel algorithms

1 Introduction

This work considers parallel methods for solving global optimization problems with
non-convex constraints. The objective function and constraints are assumed to satisfy
the Lipschitz condition with a priori unknown Lipschitz constants. The analytical form
of the problem’s functions may also be unknown, i.e. they can be set by an algorithm
computing their values at various points within the search domain (so-called
“black-box” functions). Moreover, it is supposed that even a single computation of
the function value can be time-consuming, as in the applied problems it requires
performing numerical simulation. These assumptions are typical for many approaches
to building parallel algorithms for unconstrained global optimization [1–4].

At the same time, it is common for applied constrained optimization problems to be
in a situation where violating one constraint results in all other functions returning
indeterminate values. An example includes optimal control problems, described
through systems of ordinary differential equations with a certain matrix A on the right
side [5, 6]. It is only possible to calculate the optimality criteria for these problems if
the matrix A is a Hurwitz matrix, i.e. every eigenvalue of A has strictly negative real
part. Otherwise the value of the criteria is indeterminate.

This partial computability of the functions in constrained optimization problems
substantially complicates the application of the well-known penalty function method
(in some cases making it completely impossible). Thanks to its simplicity, this method
is one of the most popular approaches to solving problems with constraints. However,
calculating the penalty function requires first calculating the values of all of the

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 396–404, 2017.
DOI: 10.1007/978-3-319-62932-2_38



problem’s functions at the given point, which is impossible if they are partially
indeterminate.

In this work, the authors consider an approach to minimizing multiextremal
functions under non-convex constraints, developed in [7–9] and called the index
method. The approach is based on separate considering every constraint in the problem
and is not related to using penalty functions. According to the index method, each
iteration (a trial) at a respective point in the search domain includes a sequential check
of the problem constraints at that point. As soon as the first constraint violation is
found, the trial is interrupted and the method proceeds with the next iteration; no other
problem functions are calculated at that point. This allows problems to be solved in
which function values may not be determined for the entire search domain. Under this
approach, solving multidimensional problems is reduced (using Peano-type
space-filling curves) to solving equivalent one-dimensional problems.

It should be noted that standard approaches to algorithm parallelization are not
quite applicable to global optimization. For example, the rules for selecting another
iteration point are quite simple and do not require parallelization (as overheads asso-
ciated with organizing parallel computations will nullify any possible acceleration).
Some acceleration can be achieved by parallelizing the computation of function values
describing the object to be optimized; however, this approach is specific to each
individual problem being solved.

The following approach looks more promising. The algorithm can be modified to
run several trials in parallel. This approach provides the efficiency (as parallelization is
applied to the most computation-intensive part of the problem solving process) and
generality (in that it applies to a wide range of global optimization algorithms). The
approach, described in [10] for unconstrained optimization, was used in this work for
parallelizing constrained optimization algorithms.

The main part of the paper has the following structure. Section 2 states the con-
strained optimization problem, reviews the index method and an approach to reducing
dimensionality by using Peano curves. Section 3 presents a parallel implementation of
the index method using a set of space-filling curves. Section 4 presents the results of
numerical experiments. Section 5 concludes the paper.

2 Problem Statement

Let us consider the N-dimensional optimization problem

min u yð Þ: y2D; gi yð Þ � 0; 1 � i � mf g ð1Þ

D ¼ y2RN : aj � yj � bj; 1 � j � N
� �

: ð2Þ

The objective function uðyÞ (henceforth denoted by gmþ 1ðyÞÞ and the left-hand sides
gi yð Þ; 1 � i � m; of the constraints satisfy Lipschitz condition

Parallel Algorithm for Solving Constrained Global Optimization Problems 397



gi y1ð Þ � gi y2ð Þj j � Li y1 � y2k k; 1 � i � mþ 1;

with a priory unknown constants Li; 1 � i � mþ 1; and may be multiextremal. It is
assumed that functions giðyÞ are defined and computable only at the points y2D
satisfying the conditions

gk yð Þ � 0; 1 � k\ i: ð3Þ

Employing the continuous single-valued Peano curve yðxÞ mapping the unit
interval [0,1] on the x-axis onto the N-dimensional domain (2) it is possible to find the
minimum in (1) by solving the one-dimensional problem

u y x�ð Þð Þ ¼ min u y xð Þð Þ: x2 ½0; 1�; gi y xð Þð Þ � 0; 1 � i � mf g:

Algorithms for numerical construction of Peano curve approximation (evolvent) are
given in [11]. Due to (3) the functions giðyðxÞÞ are defined and computable in the
domains

Q1 ¼ 0; 1½ �; Qiþ 1 ¼ x2Qi: gi y xð Þð Þ � 0f g; 1 � i � m:

These conditions allows to introduce a classification of the points x2 ½0; 1�
according to the number mðxÞ of the constraints computed at this point. The index mðxÞ
can also be defined by the conditions

gi y xð Þð Þ � 0; 1 � i\ m; gm y xð Þð Þ [ 0;

where the last inequality is inessential if m ¼ mþ 1:
The considered dimensionality reduction scheme juxtaposes to a multidimensional

problem with lipschitzian functions a one-dimensional problem, where the corre-
sponding functions satisfy uniform Hölder condition (see [11]), i.e.,

gi y x0ð Þð Þ � gi y x00ð Þð Þ � Hi x
0 � x00j j1N; x0; x00 2 0; 1½ �; 1 � j � mþ 1:

Here N is the dimensionality of the initial multidimensional problem and the
coefficients Hi are related with Lipschitz constant Li of the initial problem as
Hi � 2Li

ffiffiffiffiffiffiffiffiffiffiffiffi
Nþ 3

p
.

Thus, a trial at a point xk 2 ½0; 1� executed at the k-th iteration of the algorithm will
consist in the following sequence of operations.

• To determine the image yk ¼ yðxkÞ in accordance with the mapping yðxÞ:
• To compute the values g1ðykÞ; . . .; gmðykÞ; where the index m � m is determined by

the conditions

gi y
k

� � � 0; 1 � i\ m; gm yk
� �

[ 0; m � m:

The occurrence of the first violation of the constraint terminates the trial. In the
case, when the point yk is a feasible one, i.e. when y xk

� �2Qmþ 1; the trial includes the

398 K. Barkalov and I. Lebedev



computation of the values of all functions of the problems and the index is accepted to
be m ¼ mþ 1: The pair of values

m ¼ m xk
� �

; zk ¼ gm yðxkÞ� �

is a result of the trial.
The scheme of the serial index algorithm is as follows. The first trial is executed at

an arbitrary internal point x1 2 ð0; 1Þ: The selection of the point xkþ 1; k � 1; of any
next trial is carried out by the following steps.

Step 1. Renumber the points x1; . . .; xk of the preceding trials by the lower indices
in increasing order of the coordinate values, i.e.

0 ¼ x0 \ x1 \ � � � \ xk \ xkþ 1 ¼ 1;

and juxtapose to them the values zi ¼ gmðyðxiÞÞ; m ¼ mðxiÞ; 1 � i � k; computed at
these points. The points x0 ¼ 0 and xkþ 1 ¼ 1 are introduced additionally and the
values z0 and zkþ 1 are not defined.

Step 2. For each interval xi�1; xið Þ; 1 � i � kþ 1; compute the characteristics
RðiÞ using some formulae.

Step 3. Find the interval ðxt�1; xtÞ with the maximal characteristic

R tð Þ ¼ maxfR ið Þ: 1 � i � kþ 1g:

Step 4. Execute the next trial in the inner point of the interval ðxt�1; xtÞ; i.e.
xkþ 1 2 ðxt�1; xtÞ:

Step 5. Check termination condition xt � xt�1j j1N � 2 , where t is the number of
interval with the maximal characteristic and 2 [ 0 is the predefined accuracy.

Detailed description of this algorithm and the corresponding theory of convergence
are presented in [7–9].

3 Parallel Index Algorithm with the Set of Evolvents

The reduction of the multidimensional problems to the one-dimensional ones using
evolvents has such important properties as the continuity and preservation of bound-
edness of function divided differences. However, a partial loss of information on the
nearness of the points in the multidimensional space takes place since a point x2 ½0; 1�
has only the left and the right neighbors while the corresponding point y xð Þ 2RN has
the neighbors in 2N directions. As a result, when using the mappings like Peano curve
the images y0; y00; which are close to each other in the N-dimensional space can cor-
respond to the preimages x0; x00; which can be far away from each other in the interval
½0; 1�: This property results in the excess computations since several limit points x0; x00

of the trial sequence generated by the index method in the interval ½0; 1� can correspond
to a single limit point y in the N-dimensional space.

One of the possible ways to overcome this disadvantage consists in using the
multiple mapping YS xð Þ ¼ y1 xð Þ; . . .; yS xð Þ� �

instead of single evolvent yðxÞ:

Parallel Algorithm for Solving Constrained Global Optimization Problems 399



To construct the set YSðxÞ different approaches can be used. For example, in [7] a
scheme was implemented, according to which each evolvent yiðxÞ from YSðxÞ is
constructed as a result of shifting the original evolvent y0ðxÞ along the main diagonal of
the hypercube D. The set of Peano curves thus constructed allows one to obtain y0; y00

from D for any close multidimensional images, which differ only in one coordinate,
close preimages x0; x00 from the interval ½0; 1� for the evolvent ys xð Þ; 1 � s � S:

Using the multiple mapping allows solving initial problem (1) by parallel solving
the problems

min u ys xð Þð Þ: x2 0; 1½ �; gi ys xð Þð Þ � 0; 1 � i � mf g; 1 � s � S:

on a set of intervals [0,1] by the index method. Each one-dimensional problem is
solved on a separate processor. The trial results at the point xk obtained for the problem
being solved by particular processor are interpreted as the results of the trials in the rest
problems (in the corresponding points xk1 ; . . .; xkS ). In this approach, a trial at the point
xk 2 ½0; 1� executed in the framework of the s-th problem, consists in the following
sequence of operations.

1. Determine the image yk ¼ ysðxkÞ for the evolvent ysðxÞ:
2. Inform the rest of processors about the start of the trial execution at the point yk (the

blocking of the point yk).
3. Compute the values g1 yk

� �
; . . .; gm yk

� �
; where the index m � m is determined by the

conditions

gi y
k

� � � 0; 1 � i\ m; gm yk
� �

[ 0; m � m:

The occurrence of the first violation of any constraint terminates the trial at the point
yk. In the case when yk is a feasible one, i.e., when ys xk

� �2Qmþ 1, the trial includes
the computation of all problem functions. In this situation, the index is set to
m ¼ mþ 1: The triplet

ys xk
� �

; m ¼ m xk
� �

; zk ¼ gmðysðxkÞÞ

is the result of the trial at the point xk .
4. Determine the preimages xks 2 0; 1½ �; 1 � s � S; of the point yk and interpret the

trial executed at the point yk 2D as the execution of the trials in the S points
xk1 ; . . .; xkS with the same results

m xk1
� � ¼ � � � ¼ m xkS

� � ¼ mðxkÞ;

gm y1 xk1
� �� � ¼ � � � ¼ gm yS xkS

� �� � ¼ zk:

5. Inform the rest of processors about the trial results at the point yk .

The decision rules for the proposed parallel algorithm, in general, are the same as
the rules of the sequential algorithm (except the method of the trial execution). Each

400 K. Barkalov and I. Lebedev



processor has its own copy of the software realizing the computations of the problem
functions and the decision rule of the index algorithm. For the organization of the
interactions among the processors, the queues are created on each processor, where the
processors store the information on the executed iterations in the form of the tuples: the
processor number s; the trial point xks , the index m xks

� �
; and the value gm ys xks

� �� �
:

Moreover, the index of the blocked point is assumed to be equal to −1; the function
value at this point is undefined.

The proposed parallelization scheme was implemented with the use of MPI tech-
nology. Main features of implementation consist in the following. A separate
MPI-process is created for each of S one-dimensional problems being solved, usually,
one process per one processor employed. Each process can use p threads, usually one
thread per an accessible core.

At every iteration of the method, the process with the index s; 0 � s\ S performs
p trials in parallel at the points xsþ iS; 0 � i\ p: At that, each process stores all Sp
points, and an attribute indicating whether this point is blocked by another process or
not is stored for each point. Let us remind that the point is blocked if the process starts
the execution of a trial at this point.

At every iteration of the algorithm, operating within the s-th process, determines the
coordinates of p «its own» trial points. Then, the interchange of the coordinates of
images of the trial points ysþ iS; 0 � i\ p; 0 � s\ S is performed (from each process
to each one). After that, the preimages xqþ iS; 0 � q\ S; q 6¼ s of the points received
by the s-th process from the neighbor ones are determined with the use of the evolvent
ys xð Þ: The points blocked within the s-th process will correspond to the preimages
obtained. Then, each process performs the trials at the non-blocked points, the com-
putations are performed in parallel using OpenMP. The results of the executed trials
(the index of the point, the computed values of the problem functions, and the attribute
of unblocking of this point) are transferred to all rest processes. All the points are added
to the search information database, and the transition to the next iteration is performed.

4 Results of Numerical Experiments

A well-known approach to the investigation and comparing of the multiextremal
optimization algorithms is based on testing these methods by solving a set of problems,
chosen randomly from some specially designed class.

GKLS generator for the functions of arbitrary dimensionality with known prop-
erties (the number of local minima, the size of their domains of attraction, the global
minimizer, etc.) has been proposed in [12]. Four GKLS classes of differentiable test
functions of the dimensions N = 4 and 5, have been used. For each dimension, both
Hard and Simple classes have been considered. The difficulty of a class was increased
either by decreasing the radius of the attraction region of the global minimizer, or by
decreasing the distance from the global minimizer y� to the domain boundaries.
Application of the generator for studying some optimization algorithms has been
described in [13–15].

Parallel Algorithm for Solving Constrained Global Optimization Problems 401



In this study we will use GKLS generator to produce the constrained problems. The
scheme that allows to form the constrained global optimization problems is proposed in
[16]. In the previous investigations, the index method has been confirmed experi-
mentally to be not inferior to well-known analogues. The comparing of the method to
well known DIRECT one [1] in solving the unconstrained optimization problems has
been performed in [17, 18]. In the present study, an experimental investigation of the
speedup, which is obtained by the use of the index method in combination with the
two-level parallelization scheme from [10].

The experiments have been carried out by solving a series of 100 problems with
two constraints and the objective functions from the Simple and Hard GKLS classes
with the dimensionalities N ¼ 4; N ¼ 5: The number of the used cluster nodes S and,
correspondingly, the number of evolvents as well as the number of cores p employed at
each node have been varied. The problem was considered to be solved, if the algorithm
generated trial point yk in d-vicinity of the global minimum, i.e., yk � y�

�� �� � d. The
size of the vicinity was selected as d ¼ 0:03 b� ak k; where a and b are borders of the
search domain. For the purpose of simulation of the computational complexity inherent
to applied problems of optimization, calculation of the problem functions in all per-
formed experiments was made more complex by additional calculations without
changing the type of function and arrangement of its minima (series summation of 80
thousand elements).

The average time and number of iterations, which were required to solve the prob-
lems of the series at various parallelization parameters are reflected in Tables 1 and 2.
Here Node=core are the numbers of employed nodes and cores per a node,
correspondingly.

The results demonstrate the presence of the speedup when using the common
memory at a node (performing several trials within a problem in parallel) as well as the
distributed memory (parallel solving of several subproblems at different nodes). At that,
the highest time speedup was 10 (when using 64 cored on 4 cluster nodes), the highest
iteration speedup was 95 (when using 128 cores on 8 cluster nodes). The difference in
the speedups in time and in the number of iterations can be explained by the effect of

Table 1. Average time

Node/core N = 4 N = 5
Simple Hard Simple Hard

1/1 220.5 334.8 1223.6 1386.6
1/16 31.3 49.1 211.8 547.2
2/1 158.4 260.0 1052.9 1458.1
2/16 22.1 35.9 227.5 603.0
4/1 127.7 286.4 951.3 1362.2
4/16 20.9 45.0 206.0 925.7
8/1 99.3 141.8 700.1 897.3
8/16 31.0 77.7 264.6 374.0

402 K. Barkalov and I. Lebedev



the overheads of the data transmission between the processes. Note that when solving
the applied optimization problems, the computing of the problem function values even
in one point is a computation costly operation. The data transfer overheads will not
affect the total computational costs predominately in this case, and the time speedup
will not differ from the iteration one so strongly.

5 Conclusions

The parallel index method for solving constrained global optimization problems con-
sidered in the present work:

• allows solving the initial problem directly, without the use of the penalty functions
(thus, the issues of selection the penalty coefficient and of solving a series of
unconstrained problems with different penalty coefficients are eliminated);

• allows solving the problems, which the values of the problem function are not
defined everywhere (for example, the objective function values are undefined out of
the feasible domains of the problem constraints);

• allows using the two-level parallelization scheme with the shared and distributed
memory proposed earlier for the unconstrained optimization methods.

The parallel algorithm has demonstrated speedup with respect to the number of
processors/cores employed. This was confirmed by the results of the numerical solving
of several hundred test problems using 128 cores of UNN computer cluster. The
direction of further research is the generalization of the considered parallel algorithm
for solving multicriteria problems.

Acknowledgements. The study was supported by the Russian Science Foundation, project No
16-11-10150.

Table 2. Average number of iterations

Node/core N = 4 N = 5
Simple Hard Simple Hard

1/1 58320 84546 266943 287102
1/16 4297 6601 22655 56754
2/1 34791 52126 188465 241369
2/16 2029 3239 16689 40763
4/1 22223 47771 135734 180489
4/16 1281 2483 9241 35024
8/1 13844 18933 77748 94563
8/16 608 1473 5820 23033

Parallel Algorithm for Solving Constrained Global Optimization Problems 403



References

1. Jones, D.R.: The direct global optimization algorithm. In: Floudas, C.A., Pardalos, P.M.
(eds.) The Encyclopedia of Optimization, 2nd edn., pp. 725–735. Springer, Heidelberg
(2009). doi:10.1007/978-0-387-74759-0_128

2. Evtushenko, Y., Malkova, V.U., Stanevichyus, A.A.: Parallel global optimization of
functions of several variables. Comput. Math. Math. Phys. 49(2), 246–260 (2009)

3. Paulavicius, R., Zilinskas, J., Grothey, A.: Parallel branch and bound for global optimization
with combination of Lipschitz bounds. Optim. Methods Softw. 26(3), 487–498 (2011)

4. Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained
optimization. Optim. Lett. 7(4), 819–829 (2013)

5. Balandin, D.V., Kogan, M.M.: Optimal linear-quadratic control: from matrix equations to
linear matrix inequalities. Autom. Remote Control 72(11), 2276–2284 (2011)

6. Balandin, D.V., Kogan, M.M.: Pareto-optimal generalized H2-control and vibration isolation
problems. Autom. Remote Control 8, 76–90 (2017). [in Russian]

7. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints:
Sequential and parallel algorithms. Springer, New York (2000). doi:10.1007/978-1-4615-
4677-1

8. Sergeyev, Y.D., Famularo, D., Pugliese, P.: Index branch-and-bound algorithm for Lipschitz
univariate global optimization with multiextremal constraints. J. Glob. Optim. 21(3), 317–
341 (2001)

9. Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive order of
checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300 (2002)

10. Gergel, V., Sidorov, S.: A two-level parallel global search algorithm for solution of
computationally intensive multiextremal optimization problems. In: Malyshkin, V. (ed.)
PaCT 2015. LNCS, vol. 9251, pp. 505–515. Springer, Cham (2015). doi:10.1007/978-3-
319-21909-7_49

11. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting
Space-Filling Curves. Springer, New York (2013). doi:10.1007/978-1-4614-8042-6

12. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.: Software for generation of classes of test
functions with known local and global minima for global optimization. ACM Trans. Math.
Softw. 29(4), 469–480 (2003)

13. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set
of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

14. Paulavicius, R., Sergeyev, Y., Kvasov, D., Zilinskas, J.: Globally-biased DISIMPL
algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 54–567 (2014)

15. Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal
auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 99–111 (2015)

16. Gergel, V.: An approach for generating test problems of constrained global optimization. In:
Proceedings of Learning and Intelligent Optimization Conference (to appear)

17. Barkalov, K., Gergel, V., Lebedev, I.: Use of Xeon Phi coprocessor for solving global
optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 307–318.
Springer, Cham (2015). doi:10.1007/978-3-319-21909-7_31

18. Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Glob. Optim. 66(1), 3–20
(2016)

404 K. Barkalov and I. Lebedev

http://dx.doi.org/10.1007/978-0-387-74759-0_128
http://dx.doi.org/10.1007/978-1-4615-4677-1
http://dx.doi.org/10.1007/978-1-4615-4677-1
http://dx.doi.org/10.1007/978-3-319-21909-7_49
http://dx.doi.org/10.1007/978-3-319-21909-7_49
http://dx.doi.org/10.1007/978-1-4614-8042-6
http://dx.doi.org/10.1007/978-3-319-21909-7_31


Parallelizing Metaheuristics for Optimal Design
of Multiproduct Batch Plants on GPU

Andrey Borisenko1(B) and Sergei Gorlatch2

1 Tambov State Technical University, Tambov, Russia
borisenko@mail.gaps.tstu.ru

2 University of Muenster, Muenster, Germany
gorlatch@uni-muenster.de

Abstract. We propose a metaheuristics-based approach to the opti-
mal design of multi-product batch plants, with a particular application
example of chemical-engineering systems. Our hybrid approach combines
two metaheuristics: Ant Colony Optimization (ACO) and Simulated
Annealing (SA). We develop a sequential implementation of the pro-
posed method and we parallelize it on Graphics Processing Units (GPU)
using the CUDA programming environment. We experimentally demon-
strate that the results of our hybrid metaheuristic approach (ACO+SA)
are very near to the global optimal solutions, but they are produced
much faster than using the deterministic Branch-and-Bound approach.

Keywords: Hybrid metaheuristics · Ant Colony Optimization · Simu-
lated Annealing · GPU computing · CUDA · Parallel metaheuristics ·
Combinatorial optimization · Multiproduct batch plant design

1 Motivation and Related Work

A heuristic for an optimization problem is an algorithm that explores not all possi-
ble states of the problem, but rather the most likely ones. Purely heuristics-based
solutions may be inconsistent, therefore, metaheuristics are used that usually per-
form better than simple heuristics [14]. A metaheuristic is a generic algorithmic
template that can find high-quality solutions of optimization problems [4] exploit-
ing a trade-off of local search and global exploration. Metaheuristics find good-
quality solutions for optimization problems in a reasonable amount of time, but
there is no guarantee that the optimal solution is always reached [26].

In this paper, we consider a challenging area of optimisation – optimal design
of multiproduct batch plants, e.g., in the chemical industry for producing phar-
maceuticals, polymers, food etc. There has been an active research on efficiently
solving such and similar problems. The classical n-queens problem was addressed
using the Ant Colony Optimization (ACO) [17,24] and its combination with a
Genetic Algorithm (GA) [2]. Paper [21] solves process engineering problems by
the Differential Evolution (DE) algorithm and demonstrates its advantages over
the exact optimization by Branch-and-Bound (B&B) and using a GA. In [13],
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 405–417, 2017.
DOI: 10.1007/978-3-319-62932-2 39



406 A. Borisenko and S. Gorlatch

a particle swarm algorithm and a GA are exploited for multiproduct batch plant
design. Paper [10] develops a multiobjective GA which demonstrates high flex-
ibility and adaptability for various engineering problems. The problem of the
optimal design of batch plants with imprecise demands on product amounts is
addressed in [3] by integrating an analytic hierarchy process strategy for the
analysis of the GA Pareto-optimal solutions. Paper [19] uses ACO and SA to
solve a stochastic facility layout problem in which product demands are normally
distributed random variables.

In order to reduce the run time of metaheuristics-based approaches, their
implementation on different parallel architectures has been studied. In particular,
Graphics Processing Units (GPU) are widely used by employing the CUDA
platform [20]. GPU were used for solving the classical TSP problem by simulated
annealing [27] and by an ant system [8]. The problem of scheduling transit stop
inspection and maintenance was studied by using Harmony Search and ACO [16],
with alternative implementations on CPU and GPU.

Our contribution in this paper is two-fold: (1) we develop a novel, hybrid app-
roach which combines two metaheuristics – Ant Colony Optimization (ACO) [11]
and Simulated Annealing (SA) [18], and (2) we implement it on a CPU-GPU
system using CUDA and we show that it is preferable to the Branch-and-Bound
approach used in our previous work [7]. Section 2 describes the mathematical
problem formulation, Sect. 3 – the methodology of our hybrid ACO+SA app-
roach, and Sect. 4 – its parallelization. Section 5 reports our experimental results,
and Sect. 6 concludes the paper.

2 Problem Formulation

Our application use case is optimizing a Chemical-Engineering System (CES) – a
set of equipment (tanks, filters, dryers etc.) which manufacture some products.
A CES consists of a sequence of I processing stages; i-th stage is equipped
with equipment units from a finite set Xi, with Ji being the number of equip-
ment units variants in Xi. All equipment unit variants of a CES are described
as Xi = {xi,j}, i = 1, I, j = 1, Ji, where xi,j is the main size j (working vol-
ume, working surface) of the unit suitable for processing stage i. A CES variant
Ωe, e = 1, E (where E =

∏I
i=1 Ji is the number of all possible variants) is an

ordered set of available equipment unit variants. The goal is finding the optimal
number of units at processing stages and their sizes while the input data are:
demand for each product of assortment, production horizon, available equipment
set, etc. Each variant Ωe of a system must be in an operable condition (com-
patibility constraint), i.e., it must satisfy the condition of a joint action for its
processing stages expressed by function S: S(Ωe) = 0 if the compatibility con-
straint is satisfied. An operable variant of a CES must also satisfy a processing
time constraint : T (Ωe) ≤ Tmax, where Tmax is the total available time (horizon).

Thus, designing an optimal CES is formulated as follows [5,6]: find a variant
Ω∗ ∈ Ωe, e = 1, E of a CES, that minimizes the objective function – equip-
ment costs Cost(Ωe), and both compatibility and processing time constraint are
satisfied:



Parallelizing Metaheuristics for Optimal Design 407

Ω∗ = argmin Cost(Ωe), e = 1, E (1)

Ωe = {x1,j1 , x2,j2 , . . . , xI,jI |ji = 1, Ji, i = 1, I}, e = 1, E (2)

xi,j ∈ Xi, i = 1, I, j = 1, Ji (3)

S(Ωe) = 0, e = 1, E (4)

T (Ωe) ≤ Tmax, e = 1, E (5)

The search space can be represented as a tree of height I (Fig. 1). Each tree level
corresponds to one processing stage of the CES, each edge corresponds to a selected
equipment variant taken from the set of possible variants Xi at stage i. Each node
ni,k at the tree layer Ni = {ni,1, ni,2, . . . , ni,k}, i = 1, I, k = 1,Ki,Ki =

∏i
l=1(Jl)

corresponds to a variant of equipment units for stages 1 to i.

Fig. 1. The search tree for a CES with 4 stages.

Figure 1 shows an example CES consisting of 4 stages (I = 4), where each
stage can be equipped with 2 devices (J1 = J2 = J3 = J4 = 2), i.e., the number
of all possible system variants is 24 = 16.

3 Hybrid Metaheuristic Approach

Our approach to the optimal design of multi-product batch plants is based on
two metaheuristics: Simulated Annealing (SA) and Ant Colony Optimization
(ACO). SA is widely used for solving optimization problems [18,26]; its key
advantage is escaping from local optima by allowing hill-climbing moves to find
a global optimum. SA can deal with arbitrary systems and objective functions;
it often finds an optimal solution and generally finds a good-quality solution.

Before searching for a solution using SA, we need a feasible initial solution.
For classical optimization problems, e.g., Traveling Salesman Problem (TSP), it
is possible to use a random initial solution. However, for our problem described
in Sect. 2, random initialization is unacceptable, because the compatibility (4)



408 A. Borisenko and S. Gorlatch

and processing time (5) constraints must be satisfied. Our search for a feasi-
ble initial solution is a Constraint Satisfaction Problem (CSP) [23] without cost
optimization, which consists in finding an operable variant of a CES, satisfying
(4) and (5). For solving it, we use the Ant Colony Optimization (ACO) meta-
heuristic [15] that provides good-quality results in many applications, including
CSP [24].

3.1 Ant Colony Optimization (ACO)

The Ant Colony Optimization (ACO) metaheuristic can be viewed as a multi-
agent system in which agents (ants) interact with each other in order to reach
a global goal [26]. It is inspired by the behaviour of ant colonies: while walking
from food source to the nest and vice versa, ants deposit a chemical substance
called pheromone on their path. Pheromone is used as a communication medium
among ants and guides them to find the shortest path from the nest to food:
ants follow, with some probability, the pheromone deposited by previous ants.

1 AntColonyOptimization(){

2 isFound = false; /* repeat while solution not found */

3 while(!isFound){

4 Initialize(); /* initialize pheromone value */

5 foreach(ant in swarm){/* for each ant in colony */

6 ConstructSolution(); }

7 if(isFound) return; /* if solution is found, then end */

8 PheromoneUpdate(); /* update pheromone */

9 EvaporatePheramone(); }

Listing 1. The pseudocode of ACO algorithm.

Listing 1 shows the pseudocode of the ACO algorithm for our problem. The
number M of ants is the algorithm parameter which determines the trade-off
between the number of iterations and the breadth of the search per iteration:
the larger the number of ants per iteration, the fewer iterations are needed [25].
All ants behave in a similar way: each ant moves from the top of the tree in
Fig. 1 to the bottom. Once an ant selected a node r = ni,j at level i, it can pick
the next child node s = ni+1,j . The tour of an ant ends at the last tree level I;
each path corresponds to a potential solution of the problem. The ant transition
from node r to s is probabilistically biased by two values: pheromone trail τrs

and heuristic information ηrs, as follows: prs = τα
rs · ηβ

rs/
∑

k∈Cr
(τα

rk · ηβ
rk), where

Cr is the set of child nodes for r [12,24,26]. The factors α and β influence the
pheromone value and heuristic value respectively. These parameters control the
relative importance of the pheromone trails and the heuristic information.

Our approach to calculating heuristic information is based on the fact that
a CES with bigger units is usually more expensive, but it has a bigger batch



Parallelizing Metaheuristics for Optimal Design 409

size of products and so produces faster than a CES with smaller units. This is
favourable for satisfying the time constraint (5). Therefore, we make a unit which
satisfies the compatibility constraint (4) for the beginning part of the CES and
a larger basic size more preferable than a unit with the unsatisfied compatibility
constraint and smaller basic size. We use the following rule for the pheromone
update (line 8): τrs = τrs + Q/

∑M
m=1 Lm, where Q is some constant and Lm is

the tour length of the m-th ant, M is the swarm size. The smaller is the value of
Lm the larger is the value added to the previous pheromone value. We use Lm

as a fitness value that indicates how close is a given solution to achieving the
required goals. Listing 2 shows our approach to computing the fitness value L[m]
(line 2). Function NumberS() (lines 4–8) counts the number of stages of the
beginning part of the CES, composed of devices for stages 1 to i (lines 6–7), for
which (4) is satisfied. We add 1 to NumberS() if constraint (5) is satisfied (line 2).
Therefore, the minimal fitness value is 0 (no constraint is satisfied), the maximal
value is I + 1 (all constraint are satisfied, the problem is solved). We use the
maximal fitness value as constant Q: Q = I + 1. With time, the concentration
of pheromone decreases due to evaporation. The evaporation (Listing 1 line 9) is
performed at a constant rate after the completion of each iteration. It allows the
ant colony to avoid an unlimited increase of the pheromone value and to forget
poor choices made previously [25]. We implement this as follows: τrs = τrs · ρ,
where ρ ∈ [0, 1] is the trail persistence parameter.

1 ...

2 L[m] = NumberS(W[m]) + (T(W[m]) <= Tmax ? 1 : 0);

3 ...

4 int NumberS(W){

5 count = 0;

6 for (i = 1; i <= I; i++){ /* check constraint (4) */

7 if(PartS(W, i) == 0) count++; }

8 return count; }

Listing 2. Pseudocode of the fitness value computing for ACO.

3.2 Simulated Annealing (SA)

The basic idea of SA is to use random search which accepts not only changes
that improve the objective function, but also some changes that are not ideal,
in order to escape local minima. A parameter t called temperature governs the
search behaviour.

Listing 3 shows a pseudocode of our SA version that performs two loops:
the inner loop (line 4) to search for a neighbouring solution, and the outer
loop (line 3) to decrease the temperature in order to reduce the probability
of accepting the non-improving neighbouring solutions in the inner loop. W is
a vector of length I, each element W[i] specifying the device variant at each



410 A. Borisenko and S. Gorlatch

1 SimulatedAnnealing(){

2 t = Tinit; W = Winit;/* initialize temperature and guess */

3 while(t > Tfinal) {/* loop until t don’t reaches Tfinal */

4 for(l = 0; l < Lmax; l++) { /* repeat Lmax times */

5 Wcand = Perturb(W); /* construct neighbour solution */

6 /* check compatibility and processing time constraints */

7 if (S( Wcand ) == 0 && T( Wcand ) <= Tmax ){

8 deltaCost = Cost(Wcand) - Cost(W);

9 if (deltaCost < 0){ /* if new solution is better */

10 W = Wcand;} /* accept the new solution */

11 else {

12 r = rand(0, 1); /* generate a random number */

13 p = exp (-deltaCost / t); /* calculate probability */

14 if (p > r) {

15 W = Wcand; }}}} /* accept the new solution */

16 t = sigma * t; }} /* decrease the temperature value */

17 Perturb(W){

18 stage = (int) rand(1, I); /* select random stage */

19 W[stage] = (int) rand(1, J[stage]);/* select random unit */

20 return W; }

Listing 3. The pseudocode of SA algorithm.

stage of the problem solution (1)–(5). At each iteration of the inner loop, we
generate a new candidate solution Wcand in the neighbourhood of the current
feasible solution (line 5) using our procedure Perturb() (lines 17–20): we select
a random stage (line 18) in the feasible solution, for which we select a random
unit (line 19) from the equipment set accessible for this stage. Thus at each
iteration we change only one unit in the feasible solution at a stage. We avoid
getting trapped in a local optimum by randomly generating neighbours and
accepting a solution that worsens the value of the objective function with certain
probability [22] which depends on the change of the objective function ΔE and
parameter t: the acceptance probability p decreases over time as t decreases.
Consequently, SA first performs a wide investigation of the solution space and
then restricts the solution space gradually, converging to the best solution. We
initialize W with an initial feasible solution Winit obtained as the result of ACO,
and the temperature t with initial value Tinit (line 2). We choose Tinit as a
difference between the cost of the most expensive and the cheapest CES variant,
as recommended in [1]. The transition probability p (line 13) is determined by
p = exp(−ΔE/(kB · t)), where kB is the Boltzmann’s constant, E is the change
of the energy level [28]. We use kB = 1 and γ = 1 [28]. Thus, the probability
becomes p = exp (-deltaCost / t) (line 13).

A finite-time implementation of SA is obtained by generating a sequence of
homogeneous Markov chains of finite length Lmax which depends on the size of
the problem [1]. The iterations at a given value of t repeat Lmax times (line 4).
We compute Lmax as the total size of equipment set, i.e., Lmax =

∑I
i=1 Ji,



Parallelizing Metaheuristics for Optimal Design 411

where Ji is the number of equipment units variants for stage i. By permuting
the feasible solution, we select at each iteration a random unit (line 19) in one
random stage (line 18). Temperature t is decreased at the end of each iteration
using a cooling schedule defined by an initial temperature Tinit, a rule for
reducing t, and a final temperature Tfinal which is fixed at a small value chosen
as the smallest possible difference in cost between two neighboring solutions; in
our case, we use for Tfinal the price of the cheapest unit. We use (line 16) the
fast cooling rule t = σ · t [26], where 0.8 ≤ σ ≤ 0.99 as recommended in [1].

4 Parallelization for GPU

Figure 2 illustrates our parallel implementation of the hybrid (ACO+SA) app-
roach described in Sect. 3 on a system comprising a CPU and a GPU.

Fig. 2. The hybrid algorithm structure.

Application code consists of a sequential code (host code for CPU) that
invokes parallel execution of hundreds or thousands of threads on the device
(GPU), where all threads execute the same kernel code. The implementation
consists of the following five steps (from left to right in Fig. 2):

1. CPU reads the input data (number of CES stages I, number of accessible
equipment set Ji, production horizon Tmax etc.) from a file, initializes the
metaheuristics’ parameters for ACO and SA, sends this data to GPU, and
starts on the GPU the kernel function for ACO.

2. The ACO kernel on the GPU searches for the first feasible solution – the
initial CES-variant, as described is Sect. 3.1. We use the Multiple Ant Colonies
approach [9]: all colonies work as threads in parallel to solve the problem
independently. If some thread finds a solution then all threads terminate.
With an increasing number of threads, the probability of finding a solution
increases, and therefore the search time is typically reduced.

3. CPU receives the obtained solution, distributes it between threads as an initial
solution for SA, and starts the SA kernel function on the GPU.



412 A. Borisenko and S. Gorlatch

4. The SA kernel on the GPU searches in each thread for the optimal solution
with the initial solution found by ACO, i.e., we do not try to reduce the
time of one iteration, but rather increase the number of iterations executed
simultaneously. Each thread executes an independent instance of SA, thus,
the chance of the algorithm to converge to the global optimum increases, even
if all instances use the same initial solution. A larger number of threads does
not reduce the run time of the algorithm, but rather increases the probability
that some thread eventually finds a nearly optimal solution.

5. CPU receives the SA solutions obtained by the GPU threads and chooses the
best among them – this is the final solution of our problem.

Host Code. The host starts its work by loading the input data from a file.
The number of threads is a program launch parameter taken as a command-
line argument. The host sends data to the GPU and starts the kernel ACO()
that implements the ACO-algorithm. A CUDA kernel launch is asynchronous,
i.e. it returns control to the CPU immediately after starting the kernel. Using
cudaDeviceSynchronize(), the CPU waits until the GPU terminates and
receives the results from it.

Kernel Code for ACO. Listing 4 shows our parallel implementation of ACO,
where each thread simulates the work of one ant colony. For all threads, ini-
tially, all edges are assigned small random pheromone values from interval [0, 1]
(lines 4–5). The global flag isFound and the local iteration counter iterCounter
are used to control threads. The flag is changed by a thread using atomicAdd()
if this thread has found a feasible solution (line 21). The local iteration counter
is used by each thread as a nonstop operation protection: if ants in this thread
cannot find the solution after maxIterNumber iterations (which is possible for
stochastic algorithms) then the thread terminates. After initialization, each ant
m in swarm M generates a path (lines 9–17). Here, Want is a local two-dimensional
array of length M, each element of which is a vector of length I specifying the
device variant at each stage of the solution.

We do not discuss the kernel code of SA – it largely follows Listing 3.

5 Experimental Results

Our experiments are conducted on a heterogeneous system comprising: (1) a
CPU: Intel Xeon E5-1620 v2, 4 cores with Hyper-Threading, 3.7 GHz with 16 GB
RAM, and (2) a GPU: NVIDIA Tesla K20c with altogether 2496 CUDA cores
and 5 GB of global memory. We use Ubuntu 16.04.2, NVIDIA Driver version
367.57, CUDA version 8.0 and GNU C++ Compiler version 5.4.0.

As our test case, we evaluate the design of a CES consisting of 16 processing
stages with 2 to 12 variants of devices at every stage (total 216 to 1216 CES
variants). In our previous work [6,7], we used the Branch-and-Bound (B&B)
algorithm to find the global optimal solution. Here we solve the same problem



Parallelizing Metaheuristics for Optimal Design 413

1 __global__ void ACO(){ /* obtaining thread identifier */

2 threadID = blockDim.x * blockIdx.x + threadIdx.x;

3 if(threadID < numThreads){ /* pheromone initialization */

4 for (i = 1; i <= I; i++) {

5 for (j = 1; j <= J[i]; j++){tau[i][j] = curand(0, 1);}}

6 iterCounter = 0; /* while solution is not found */

7 while (isFound == 0 && iterCounter < maxIterNumber)){

8 /* generate path for each ant m in swarm M */

9 for(m = 1; m <= M && isFound == 0; m++){sum = 0.0;

10 for (i = 1; i <= I - 1; i++){

11 for (j = 1; j <= J[i]; j++){

12 eta[i][j] = (S(Want[m], i + 1) ? 1:0) + X[i][j];

13 sum += pow(tau[i][j], alpha) * pow(eta[i][j], beta);}

14 r = curand(0, 1); sump = 0.0;

15 for (j = 1; j <= J[i]; j++){

16 p = pow(tau[i][j],alpha) * pow(eta[i][j],beta) / sum;

17 sump += p; if(sump > r) {Want[m][i] = j; break; }}}}

18 /* calculate new pheromone values */

19 for(m = 1; m <= M && isFound == 0; m++){

20 L[m] = NumberS(Want[m],I) + (T(Want[m]) <= Tmax ? 1:0);

21 if (L[m] == Q) {atomicAdd(isFound, 1); bestAntId = m;}

22 for (i = 1; i <= I; i++) {

23 for (j = 1; j <= J[i]; j++) {dtau[i][j] = 0.0; }}

24 for (i = 1; i <= I; i++){

25 idx = Want[m][i]; dtau[i][idx] += Q / L[m]; }

26 /* pheromone update and evaporation */

27 for (i = 1; i <= I; i++){

28 for (j = 1; j <= J[i]; j++){

29 tau[i][j] = tau[i][j] * rho + dtau[i][j]; }}}

30 iterCounter++; }

31 /* save feasible solution and its thread identifier */

32 if(bestAntId != -1) {Wfirst[threadID] = Want[bestAntId];

33 threadIdx[threadID] = threadID; }}}

Listing 4. The kernel pseudocode for ACO.

on the same test system using our hybrid metaheuristic approach (ACO+SA),
and we compare the results with the solution obtained by B&B. Since both SA
and ACO are probability-based algorithms, their results will be different if run
multiple times on the same instance of a problem; therefore, we run each instance
for 100 times and we take the average of the measured values.

Figure 3 shows how the run time of the (ACO+SA) parallel program depends
on the number of threads. We run our CUDA-based implementation with the
number of threads from 100 to 2500 with step 100, for the CES example of
16 processing stages with 10 variants of units. We observe that the run time
is decreasing with the increasing number of threads. While on 100 threads, the
ACO takes 91% of the total run time, the portion of ACO decreases to only about



414 A. Borisenko and S. Gorlatch

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00

Pr
og

ra
m

 r
un

 t
im

e,
 s

ec

Threads number

ACO execution time
SA execution time

Fig. 3. Run time of (ACO+SA)
depending on threads number.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

D
ev

ia
tio

n,
 %

Threads number

Fig. 4. Deviation of the found solution
from global optimum.

10% on more than 2000 threads. This is because, with more threads, ACO finds
a solution faster with a higher probability, whereas using more threads for SA
can improve the quality of solution, but not the speed.

Figure 4 shows the deviation of the observed objective value (CES cost) by
our hybrid algorithm, calculated as |observed − expected|/expected · 100%. As
the expected value we use the global optimal value obtained by the B&B algo-
rithm. On 100 threads, the deviation is about 0.38% and then it decreases to
almost 0% for more than 2000 threads, so we achieve an almost optimal solution.

Figure 5 shows the deviation (vertical axis has a logarithmic scale) of solu-
tions obtained by our hybrid (ACO+SA) algorithm (sequential on CPU, parallel
on GPU using up to 2500 threads) from the global optimum obtained by sequen-
tial B&B. We observe that our parallel hybrid algorithm produces a nearly global
optimal solution (for problem size 216–916 the deviation is 0%, and for problem
size 1016–1216 the deviation is less than 0.01%). The deviation obtained by our
sequential algorithm is less than 1% for small size problem 216, but it increases
to about 14% for the problem size of 1216. This is because the sequential imple-
mentation performs only a single run of the SA: for small problem sizes, the
probability of finding a good solution is higher than for larger problem sizes.

Figure 6 shows the program run time (vertical axis has a logarithmic scale)
of our hybrid approach vs. B&B depending on the problem size. The program

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

216 316 416 516 616 716 816 916 1016 1116 1216

D
ev

ia
tio

n,
 %

CES variants count (problem complexity)

(ACO + SA) on CPU (ACO + SA) on GPU

Fig. 5. Deviation (logarithmic scale)
for different problem sizes.

0.001

0.01

0.1

1.0

10.0

100.0

1.0E3

1.0E4

1.0E5

1.0E6

216 316 416 516 616 716 816 916 1016 1116 1216

Pr
og

ra
m

 r
un

 t
im

e,
 s

ec

CES variants count (problem complexity)

B&B on CPU
(ACO+SA) on CPU
(ACO+SA) on GPU

Fig. 6. Run time (logarithmic scale)
depending on problem sizes.



Parallelizing Metaheuristics for Optimal Design 415

run time of B&B increases exponentially: while for problem size 216 the run
time is less than 1 s, for size 1216 the run time of B&B becomes prohibitively
long at about 134 h. The run time of the sequential implementation of our hybrid
algorithm is less than 0.1 s for the smallest problem, and it increases to about 580
sec for our maximal problem size. The run time of the parallel implementation
smoothly increases from 5 to 227 sec. The parallel implementation is slower
than the sequential implementation for smaller problem sizes (216 to 916), but
for larger problem sizes (1016 to 1216) it is faster than the sequential version by
about 2.6–2.8 times. At first glance, the speedup of 2.7 times compared to the
sequential case is small, but the quality of the solutions obtained by the parallel
implementation is significantly higher: the deviation from the global optimum for
the parallel implementation is less than 0.01% against more than 10% deviation
for the sequential version. This good quality of solutions is achieved by the
independent runs of SA: for a larger number of threads the probability that
one of the threads finds a nearly optimal solution is higher, because running
a parallel algorithm on 2500 threads is equivalent to the launch of sequential
algorithm 2500 times and the choice of the best among the found solutions.
The parameters of metaheuristic algorithms influence both the run time and the
quality of solutions. Empirically we have found that α = 0.4 and β = 0.6 with
the colony size M = 100 are good values for our application: they were selected
after numerous experiments. In our experiments, we use ρ = 0.9 and the cooling
rule constant σ = 0.9, also chosen empirically for our problem.

6 Conclusion

Our contribution is the novel hybrid (ACO+SA) metaheuristic approach to solv-
ing the optimization problem for multiproduct batch plants design and its paral-
lel implementation on a CPU-GPU platform. We have found out that increasing
the number of threads accelerates finding the solution with ACO and increases
the reliability and quality of the solutions obtained by SA. We compare our
results with the global optimal solution obtained by the B&B method. Our exper-
iments confirm that our parallel hybrid approach obtains good-quality solutions
which are very near to the global optimal values obtained by a deterministic
algorithm like B&B, but our approach finds the solution much faster.

Acknowledgement. This work was supported by the DAAD (German Academic
Exchange Service) and by the Ministry of Education and Science of the Russian Fed-
eration under the “Mikhail Lomonosov II”-Programme, as well as by the German
Research Agency (DFG) in the framework of the Cluster of Excellence CiM at the
University of Muenster. We also thank the Nvidia Corp. for the donated hardware
used in our experiments.



416 A. Borisenko and S. Gorlatch

References

1. Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Search Methodologies,
pp. 265–285. Springer Science & Business Media, Heidelberg (2014)

2. Agarwal, K., Sinha, A., Hima Bindu, M.: A novel hybrid approach to N-Queen
problem. In: Wyld, D., Zizka, J., Nagamalai, D. (eds.) Advances in Computer
Science, Engineering & Applications. AISC, vol. 166, pp. 519–527. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30157-5 52

3. Aguilar-Lasserre, A.A., Bautista, M.A.B., Ponsich, A., Huerta, M.A.G.: An AHP-
based decision-making tool for the solution of multiproduct batch plant design
problem under imprecise demand. Comput. Oper. Res. 36(3), 711–736 (2009)

4. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer,
Heidelberg (2009)

5. Borisenko, A.B., Karpushkin, S.V.: Hierarchy of processing equipment configura-
tion design problems for multiproduct chemical plants. J. Comput. Syst. Sci. Int.
53(3), 410–419 (2014)

6. Borisenko, A., Haidl, M., Gorlatch, S.: A GPU parallelization of branch-and-bound
for multiproduct batch plants optimization. J. Supercomput. 73(2), 639–651 (2017)

7. Borisenko, A., Kegel, P., Gorlatch, S.: Optimal design of multi-product batch
plants using a parallel branch-and-bound method. In: Malyshkin, V. (ed.) PaCT
2011. LNCS, vol. 6873, pp. 417–430. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23178-0 36

8. Dawson, L., Stewart, I.: Improving ant colony optimization performance on the
GPU using CUDA. In: 2013 IEEE Congress on Evolutionary Computation, pp.
1901–1908. IEEE, June 2013

9. Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel ant colony optimization
on graphics processing units. J. Parallel Distrib. Comput. 73(1), 52–61 (2013)

10. Dietz, A., Azzaro-Pantel, C., Pibouleau, L., Domenech, S.: Strategies for multiob-
jective genetic algorithm development: Application to optimal batch plant design
in process systems engineering. Comput. Ind. Eng. 54(3), 539–569 (2008)

11. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoret. Comput.
Sci. 344(2–3), 243–278 (2005)

12. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances.
In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. International
Series in Operations Research & Management Science, vol. 146, pp. 227–263.
Springer, New York (2010). doi:10.1007/978-1-4419-1665-5 8

13. El Hamzaoui, Y., Bassam, A., Abatal, M., Rodŕıguez, J.A., Duarte-Villaseñor,
M.A., Escobedo, L., Puga, S.A.: Flexibility in biopharmaceutical manufacturing
using particle swarm algorithms and genetic algorithms. In: Schütze, O.,
Trujillo, L., Legrand, P., Maldonado, Y. (eds.) NEO 2015. SCI, vol. 663, pp. 149–
171. Springer, Cham (2017). doi:10.1007/978-3-319-44003-3 7

14. Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Metaheuristic algorithms
in modeling and optimization. In: Metaheuristic Applications in Structures and
Infrastructures, pp. 1–24. Elsevier BV (2013)

15. Gonzalez-Pardo, A., Camacho, D.: A new CSP graph-based representation for ant
colony optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp.
689–696. Institute of Electrical and Electronics Engineers (IEEE), June 2013

16. Kallioras, N.A., Kepaptsoglou, K., Lagaros, N.D.: Transit stop inspection and
maintenance scheduling: a GPU accelerated metaheuristics approach. Transp. Res.
Part C Emerg. Technol. 55, 246–260 (2015)

http://dx.doi.org/10.1007/978-3-642-30157-5_52
http://dx.doi.org/10.1007/978-3-642-23178-0_36
http://dx.doi.org/10.1007/978-3-642-23178-0_36
http://dx.doi.org/10.1007/978-1-4419-1665-5_8
http://dx.doi.org/10.1007/978-3-319-44003-3_7


Parallelizing Metaheuristics for Optimal Design 417

17. Khan, S., Bilal, M., Sharif, M., Sajid, M., Baig, R.: Solution of n-queen problem
using ACO. In: 2009 IEEE 13th International Multitopic Conference, pp. 1–5.
Institute of Electrical and Electronics Engineers (IEEE), December 2009

18. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated
annealing. Science 220(4598), 671–680 (1983)

19. Lee, T.S., Moslemipour, G., Ting, T.O., Rilling, D.: A novel hybrid ACO/SA
approach to solve stochastic dynamic facility layout problem (SDFLP). In: Huang,
D.-S., Gupta, P., Zhang, X., Premaratne, P. (eds.) ICIC 2012. CCIS, vol. 304, pp.
100–108. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31837-5 15

20. NVIDIA Corporation: CUDA C programming guide 8.0, September 2016. http://
docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf

21. Ponsich, A., Coello, C.C.: Differential evolution performances for the solution
of mixed-integer constrained process engineering problems. Appl. Soft Comput.
11(1), 399–409 (2011)

22. Pourvaziri, H., Azimi, P.: A tuned-parameter hybrid algorithm for dynamic facility
layout problem with budget constraint using GA and SAA. J. Optim. Ind. Eng.
7(15), 65–75 (2014)

23. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,
Amsterdam (2006)

24. Solnon, C.: Ant Colony Optimization and Constraint Programming. Wiley Inc.,
Hoboken (2010)

25. Stützle, T., López-Ibánez, M., Pellegrini, P., Maur, M., de Oca, M.M., Birattari,
M., Dorigo, M.: Parameter adaptation in ant colony optimization. In: Hamadi,
Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 191–215. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21434-9 8

26. Valadi, J., Siarry, P.: Applications of Metaheuristics in Process Engineering.
Springer Science & Business Media, Heidelberg (2014)

27. Wei, K.C., Wu, C.C., Yu, H.L.: Mapping the simulated annealing algorithm onto
CUDA GPUs. In: 2015 10th International Conference on Intelligent Systems and
Knowledge Engineering (ISKE), pp. 1–8, November 2015

28. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol
(2010)

http://dx.doi.org/10.1007/978-3-642-31837-5_15
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://dx.doi.org/10.1007/978-3-642-21434-9_8


The Optimization of Traffic Management for Cloud
Application and Services in the Virtual Data Center

Irina Bolodurina and Denis Parfenov(✉)

Orenburg State University, Orenburg, Russia
{prmat,fdot_it}@mail.osu.ru

Abstract. Nowadays one of the problems of optimization is the control of the
traffic in cloud applications and services in the network environment of virtual
data center. Taking into account the multitier architecture of modern data centers,
we need to pay a special attention to this task. The advantage of modern infra‐
structure virtualization is the possibility to use software-defined networks and
software-defined data storages. However, the existing optimization of algorithmic
solutions does not take into account the specific features of the heterogeneous
network traffic routing with multiple application types. The task of optimizing
traffic distribution for cloud applications and services can be solved by using
software-defined infrastructure of virtual data centers. We have developed a
simulation model for the traffic in software-defined networks segments of virtual
data centers involved in processing user requests to cloud application and services
within a network environment. Our model enables to implement the traffic
management algorithm of cloud applications and optimize the access to storage
systems through the effective use of data transmission channels. During the
experimental studies, we have found that the use of our algorithm enables to
decrease the response time of cloud applications and services and, therefore,
increase the productivity of user requests processing and reduce the number of
refusals.

Keywords: Software-Defined Network · Virtual Data Center · Cloud computing ·
Traffic · Simulation model · Software-defined infrastructure

1 Introduction

Nowadays, we see a steady growth in the use of cloud computing in modern business.
This enables to reduce the cost of IT infrastructure owning and operation; however, there
are some issues related to the management of data centers. At present, the solutions for
virtual infrastructure are dynamically developing. Thus, the container technology has
been lately used for placing cloud applications and services within virtual data centers.
Container technologies are mostly based on Docker. Besides, modern data centers rather

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 418–426, 2017.
DOI: 10.1007/978-3-319-62932-2_40



use virtual infrastructures instead of physical infrastructures especially based on soft‐
ware-defined components: networks, data storages [1, 2], etc. This changes the mecha‐
nisms launch and placement management of applications and services. Thus, it is impor‐
tant to develop effective scheduling and resource distributing methods for cloud systems
that optimize the response time in user requests.

2 The Multilevel Model of the Software-Defined Infrastructure

We developed the multilevel model of the software-defined infrastructure of the virtual
data center (VDC), which supports containerization method of cloud applications and
services.

The first level is the hardware component of any data center, which includes
computing nodes (Nodes), storages systems (Storages) and physical network objects
(NetObj). Let us introduce it as a set of solutions: PhysLayer = {Nodes, Storages,
NetObj}.

The next level represents the software-defined layer. This layer consists of the same
number of objects as the first level but the main difference is that all the infrastructure
elements are dynamic, easily transformed and adjusted within the limits of the physical
database network environment. The second level can be presented as the following set
of connections: SDLayer = {SDNodes, SDStorages, SDNetwork}, where SDNodes –
software-defined computing nodes; SDStorages – software-defined storages (SDS);
SDNetwork – software-defined network (SDN).

Above the layer of the software-defined infrastructure, there is a level of the specific
objects virtualization. The main objects are: virtual computing nodes (VirtNodes),
virtual data storages and other elements of the software-defined network. Virtual objects
are used for work in the cloud platform and consolidated in next set of
VirtLayer = {VirtNodes, VirtStorages, VirtNetwork}. In the software-defined infra‐
structure, computing nodes and data storages are more often presented as virtual
machines (VM) that discharge the set of given functions.

To control such multi-layer infrastructure, a separate orchestration layer is needed
(the forth level). Its include functions of orchestration main types of the virtualization
objects OrchLayer = {ONodes, OStorages, ONetwork}.

The next level (service level) ServiceLayer = {Service1, …, Servicen}. Its represents
the services used in the working process of the cloud platform or by cloud applications
distributed there. For example, DBMS, Hadoop, Nginx and others. All the multitude of
ServiceLayer cloud services that work in the virtual data center infrastructure can be
divided into two disjoint subsets ServVM ∪ ServDocker = ServiceLayer. The first set
(ServVM) involves services that use virtualization based on other machines. In the
second set (ServDocker), there are services based on containers under Docker control.

The top level includes cloud applications that are exploited by users for flexible
scalability providing AppLayer = {App1, …, Appm}. Like at the previous level, cloud
applications Appi can be placed in containers and form the AppVM set. Or they can
form the AppDocker set using containerization. At the same time
AppLayer = AppVM ∪ AppDocker.

The Optimization of Traffic Management for Cloud Application and Services 419



Thus, the set of objects of the software-defined infrastructure can be divided into
two groups by the methods of placing. Virtual objects that use a container placing method
can be referred to the first group. Let us describe them in this way: Docker = {Serv‐
Docker, AppDocker}. In the second group, there are services and applications that use
virtual machines as a placing platform: VM = {ServVM, AppVM}.

3 Research Methods

Generally, the software-defined infrastructure of a virtual data center has several heter‐
ogeneous applications and services. We can assume that the network of a virtual data
center encompasses at least three types of application traffic: web-applications, case-
applications, and video services. To generate user requests in the simulation model, we
apply weight coefficients k1, k2, k3 for each traffic type. Each coefficient allows us to
classify requests into types and affects the following set of parameters: running time,
routes, priority in the process queue, request intensity, and the distribution law for each
type of traffic.

Presented as a multi-channel queuing system, the simulation model of the software-
defined infrastructure of the virtual data center includes a user request source (I), a queue
(Qs) and a scheduler (S) who manages application hosting and its launch (App). Besides,
it contains computing cluster (Srv) and systems of data center storage (Stg). The queuing
system is represented in Fig. 1.

I S

Srv

Srv

Srv

Srv

App

App

App

App

App

App

Stg

Stg

Stg

Stg

Stg

Stg

Qs

users’ 
requests 
source

queue to 
planner 

planner

queue to 
compute nodes

Qsrv Qapp

Qstg

compute 
nodes

queue to 
applications 
and services

applications 
and services

queue to 
storages

storages

Fig. 1. A queuing system scheme of the software-defined infrastructure of the VDC

A queuing system model is stochastic. For its operation, it is necessary to make a
user request flow to cloud applications and services with account for the distribution
laws and request intensities for each type of cloud applications and services.

To optimize application distribution in the cloud environment of a virtual data center,
it is necessary to determine the traffic distribution laws for each application type and
distribute the traffic into access objects. For this purpose, it is necessary to set a certain
route and make the control law for it within the time interval T = [t1, t2].

420 I. Bolodurina and D. Parfenov



The dynamic of traffic in cloud applications and services of the software-defined
infrastructure of a virtual data center can be described by the following discrete system:

xi,j(t + 𝛥t) = xi,j(t) −

K∑

k=1

N∑

l=1

si,j(t)u
j,k
i,l (t) +

N∑

m=1

sm,i(t)u
j

m,l(t) + yi,j(t) (1)

where N is the number of virtual nodes within the network; K is the number of application
types within the network; si,j(t) is the capacity of the channels between i-th computing
node and j-th storage system (i ≠ j); yi,j(t) = 𝜆i,j(t)Δt i is the traffic volume (the number
of user requests) at the moment t on the virtual node i-th, intended for transferring to the
storage system j-th; 𝜆i,j(t) is the intensity of incoming load, which is defined as the total
intensity of the user request flow connecting to the virtual node i-th and using the storage
system j-th; uj,k

i,l (t) is a part of the channel transmission capacity in a certain segment of
the software-defined network (i, l) at the moment t for the user request flow to the appli‐
cation of type k, working with the data storage system j-th.

To exclude the possibility of overloading the objects of the virtual data center due
to the limited queue buffers on compute nodes, as well as to use data transmission
channel capacity efficiently, a number of restrictions are introduced for network param‐
eters of cloud applications in software-defined networks (SDN).

The restrictions related to channel capacity limits can be written as follows:

0 ≤ u
j

i,l(t) ≤ u
j(max)

i,l ≤ 1;
N∑

l=1

u
j

i,l(t) ≤ 𝜀
j,k
i,l ≤ 1 (2)

where uj(max)

i,l  uj(max)

i,l  is the limit of channel capacity available for the computing node
i-th in the SDN segment l-th for traffic transfer to the storage j-th; 𝜀j,k

i,l  is the part of the
channel capacity for the compute node i-th in the SDN segment l-th for the transmission
of user requests to the application of type k to the storage system j-th.

Let us consider the system performance as a criterion of optimality, gained through
a fixed period T = [t1, t2], which is formalized within the model as an objective function
in the following form:

t−1∑

t=0

K∑

k=1

N∑

i=1

N∑

j=1

si,j(t)u
j,k
i,l (t) → max (3)

To solve the optimization task, we use an iterative method that allows us to explore
the dynamics of the system at the interval T = [t1, t2] and control channel capacity for a
certain type of applications in a software-defined network.

4 Algorithm of Adaptive Routing

Based on the constructed models, we have developed an optimization algorithm of
adaptive routing and balancing of the application and services flows in a heterogeneous

The Optimization of Traffic Management for Cloud Application and Services 421



cloud platform, which is located in the data center. The algorithm aims to ensure the
efficient management of the application and services’ flows under dynamic changes in
the load on the communication channels used to deploy data center software-defined
networks by reducing the design complexity for optimal route schemes. Generalized
algorithm is as follows:

Application of the proposed algorithm for optimizing the adaptive routing of data
flow balancing has allowed us to reduce the complexity of calculating the optimum route
to the value O (k N), where k is the number of completed transitions to alternative routes,
and N is the number of objects in the software-defined network of data center. Thus, the
algorithm is designed to speed up the search and selection of optimal routes for appli‐
cation and service data flows arranged in a heterogeneous cloud platform under dynamic
load changes on the communication channels.

5 Data Assignment Algorithm for Cloud Applications

The data assignment algorithm for cloud applications provides heuristic analysis of
application requests and traffic classification on data types at the performance time. The
flexibility of the algorithm is due to virtualization of data storage. This makes it possible
to dynamically change the physical location of the application within the cloud system
for providing uninterrupted access to services.

The suggested solution is transparent to the client and scales cloud applications into
multiple virtual storage devices. This provides a reduction in the application response
time, and also improves the fault tolerance of the whole system.

The data assignment algorithm for cloud applications is based on a cloud resource
model describing its structure and links between virtual storage devices, machines and
cloud applications. The model uses multi-agent approach in data storage. Agents get
information about the system state. Analyzing the maps the cloud control system makes
decisions on reconfiguring or migrating virtual storage devices as well as data redis‐
tributing between nodes.

For a user request service several resources can be used with different access param‐
eters. In this case the cloud control system has to optimize read time. Our data assignment
algorithm forms internal assignment rules and changes them according to resource
demands. Such approach allows to balance dynamically the resource load.

6 Experimental Results

To assess the efficiency of the developed algorithm for optimizing the adaptive routing
of applications and services data flow balancing in a heterogeneous data center cloud
platform, we have conducted a pilot study. We have chosen the Openstack cloud system
as a basic platform. For comparison, we have applied algorithms used in the OpenFlow
version 1.4 for route control of the software-defined network of the data center in the
experiment. We have created a virtual data center prototype with basic nodes and soft‐
ware modules for the developed algorithms that redistribute data and applications flows
for the pilot study. To verify the developed algorithm of optimal routing and traffic

422 I. Bolodurina and D. Parfenov



balancing under conditions of dynamic changes channels in the software-defined
network of the data center, we have deployed several experimental networks consisting
of from 25 to 400 objects. All generated requests have been reproduced consequently
at two pilot sites: with the traditional routing technology (platform 1, NW) and with the
technology of the software-defined networks (platform 2, SDN). This restriction is
caused by the need to compare the results with traditional network infrastructure inca‐
pable of dynamic reconfiguration. Two tests were carried out on platform 2. In the first
case, we have used the model OpenFlow version 1.4 routing algorithms, in the second
case (NEW SDN), we have applied the developed routing optimization algorithm.
Experiment time was one hour. We have chosen the response time of applications and

1. Divide all channels in network in two subsets, ST and SR.
2. Generate optimal routes for data flow of the particular class of applications.
3. Determine the points of entry in two subset, ST and SR. 
4. Search for all the alternative routes at minimum cost.
5. Calculate alternative routes for dynamic load change in the network channel.
6. Form the full list of alternative paths in network.
7. Define whether there were load changes.
If “Yes” then GO TO Step 8, else GO TO Step 7.
8. Define whether you need to change the route for the current data flow.
If “Yes” then GO TO Step 9, else GO TO Step 13. 
9. Calculate metrics connection. 
10. Define list of network objects placed higher in the hierarchy, which performance 
has decreased. If network objects found then GO TO Step 11, else GO TO Step 12. 
11. Define the new minimum length route for every networks object.
12. Design the new optimal route tree.
13. Transfer the current data flows to new routes. Reshape the list of alternative routes. 
GO TO Step 7.

Fig. 2. Generalized plan of optimization algorithm of adaptive routing and balancing of the
application and services flows in the virtual data center

0 

50

100

150

25 50 100 200 300 400D
el

ay
 o

f a
pp

lic
at

io
n 

re
qu

es
t (

m
s)

Number of network objects

NW

SDN

NEW SDN

Fig. 3. A schedule of dependence of the response time of applications and services in a
heterogeneous cloud platform from the quantities of network objects in the data center

The Optimization of Traffic Management for Cloud Application and Services 423



services that work in a cloud platform as a basic metrics to assess the efficiency of the
proposed solutions. The results of the experiment are provided in Fig. 2 (Fig. 3).

7 Discussion

Traditional approaches to route traffic based on load-balancing are reactive. They use
simple classical algorithms for distributed computing tasks First Fit or Best Fit. Such
algorithms as [3–5] First Come First Served Scan, Most Processors First Served Scan,
and Shortest Job First Scan are popular too. Their main disadvantage is poor utilization
of a computer system due to a large number of windows in the task launch schedule and
problem with “hanging up” when their service is postponed indefinitely due to tasks of
higher priority [9]. The solution proposed by D. Lifka from Argonne National Labora‐
tory is usually applied as an alternative method of load distribution between nodes. It is
based on the aggressive variant of Backfill algorithm [3, 5] and has two conflicting goals
– a more efficient use of computing resources by filling the empty windows schedule
and prevention of problems with “hanging up” due to redundancy mechanism. Further,
various modifications have been created by B. Lawson and E. Smyrni, S. Srinivasan [6,
7] and etc. The main drawback of these algorithms is the time lag during calculation,
which is not acceptable for critical services at the time of failure.

In addition to the traditional reactive fault-tolerant technology, such as replication
and redundancy to ensure reliability of networked storage cloud platforms, a group of
scientists from Nankai University proposed an approach based on the Markov model,
which provides secure storage of data without excessive redundancy [8]. However, a
significant drawback of this model is the lack of classification and analysis of the types
and sources of data to be placed in their consumption. Nevertheless, the model demon‐
strates a proactive approach that gives certain advantages to achieve the desired resil‐
iency of cloud storage.

Reliability and availability of applications and services play an important role in the
assessment of its cloud platform performance. A major shortcoming of existing software
reliability solutions in the data center infrastructure is the use of traditional data flow
routing methods. In this work, we offer to use the software-defined network technology
to adjust the network to the current load of the applications and services that are hosted
in a cloud platform before they start using pre-computed and installation routes of trans‐
mission. The principles of a software-defined network first emerged in research labo‐
ratories at Stanford and Berkeley, and are currently being developed by the Open
Network Foundation consortium, GENI project.

The algorithms for routing data flows in a software-defined network in case of track
selection published in scientific sources do not take into account the need to ensure the
QoS parameters for the previously installed and routed data flows. We are going to do
it within a framework of the developed methods of adaptive network communications
routing. The existing QoS algorithms to provide a software-defined network are also
quite inefficient. The paper [10] describes an approach to dynamic routing of multimedia
flows transmission that provide a guaranteed maximum delay via the LARAC algorithm.
However, the authors consider only the cases of single delays on each network

424 I. Bolodurina and D. Parfenov



connection and do not take into account the minimum guaranteed bandwidth. A similar
approach is described in the paper [11]; the authors pose and solve the optimization
problem for the transfer of multimedia traffic without losses on alternative routes,
leaving the shortcuts for common data.

The researchers from Stanford have offered an algorithm for adaptive control of QoS
Shortest Span First, which enables to calculate the optimal priorities for each flow
mathematically, to minimize crosstalk influence of flows on delay, to manage priorities
dynamically depending on the current situation, and to lay the flow of data transmission
through specific port queues [12].

We are going to formulate optimization problems for laying routes with QoS
constraints and load balancing within a framework of adaptive routing methods of
network communications cloud services and applications developed in this research. In
their solution, we may use heuristics similar to the Shortest Span First algorithm.

The analysis of scientific sources on the topic of the study has shown that:

(a) so far, there are no effective algorithmic solutions for planning virtual machines,
cloud services, application-oriented accounting topology of the computer system,
and communication tasks schemes;

(b) the existing solutions for managing distributed scientific computing on multi-cloud
platforms plan computing tasks without subsequent adjustment of network to their
communication schemes and use traditional routing methods;

(c) the existing methods of data flow routing can be enhanced by taking into account
the QoS requirements and distributed nature of a heterogeneous cloud platform.

This demonstrates the novelty of the solutions offered by the project.

8 Conclusions

The experimental studies found that the application of the developed algorithm allows
reducing the response time of cloud applications and services, and as a consequence, to
improve the performance of processing user requests and to reduce the number of fail‐
ures. As shown in our research, the algorithm for optimizing the adaptive routing of data
flow balancing based on collected information about alternative routes has enabled to
reduce the response time for applications and service of a heterogeneous cloud platform
with a dynamically changing load on channels by 40% compared to traditional networks,
and by 25% compared to the model algorithms of the Protocol version 1.4 of OpenFlow.
Thus, the algorithm is efficient in designing optimal routes and traffic balancing in SDN
of the virtual data center in case of dynamic changes of load on communication channels.

Acknowledgements. The research has been supported by the Russian Foundation of Basic
Research (grants 16-37-60086 mol_a_dk, 16-07-01004 a), and the President of the Russian
Federation within the grant for state support of young Russian scientists (MK-1624.2017.9).

The Optimization of Traffic Management for Cloud Application and Services 425



References

1. Bolodurina, I., Parfenov, D.: Development and research of models of organization storages
based on the software-defined infrastructure. In: 39th International Conference on
Telecommunications and Signal Processing, pp. 1–6. IEEE Press, Vienna (2016). doi:
10.1109/TSP.2016.7760818

2. Parfenov, D., Bolodurina, I., Shukhman, A.: Approach to the effective controlling cloud
computing resources in data centers for providing multimedia services. In: International
Siberian Conference on Control and Communications, pp. 1–6. IEEE Press, Omsk (2015).
doi:10.1109/SIBCON.2015.7147170

3. Garey, M., Graham, R.: Bounds for multiprocessor scheduling with resource constraints.
SIAM J. Comput. 4(2), 187–200 (1975)

4. Arndt, O., Freisleben, B., Kielmann, T., Thilo, F.: A comparative study of online scheduling
algorithms for networks of workstations. Cluster Comput. 3(2), 95–112 (2000)

5. Feitelson, D., Weil, A.: Utilization and predictability in scheduling the IBM SP2 with
backfilling. In: Parallel Processing Symposium, pp. 45–52 (1998)

6. Lawson, B.G., Smirni, E.: Multiple-queue backfilling scheduling with priorities and
reservations for parallel systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2002. LNCS, vol. 2537, pp. 72–87. Springer, Heidelberg (2002). doi:
10.1007/3-540-36180-4_5

7. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Selective reservation
strategies for backfill job scheduling. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.
(eds.) JSSPP 2002. LNCS, vol. 2537, pp. 55–71. Springer, Heidelberg (2002). doi:
10.1007/3-540-36180-4_4

8. Li, J., Li, M., Wang, G., Liu, X., Li, Z., Tang, H.: Global reliability evaluation for cloud storage
systems with proactive fault tolerance. In: Wang, G., Zomaya, A., Perez, G.M., Li, K. (eds.)
ICA3PP 2015. LNCS, vol. 9531, pp. 189–203. Springer, Cham (2015). doi:
10.1007/978-3-319-27140-8_14

9. Rahme, J., Xu, H.: Reliability-based software rejuvenation scheduling for cloud-based
systems. In: The 27th International Conference on Software Engineering and Knowledge
Engineering, pp. 1–6 (2015)

10. Lin, T.: Enabling SDN applications on software-defined infrastructure. In: Network
Operations and Management Symposium (NOMS), pp. 1–7. IEEE Press (2011)

11. Ibanez, G., Naous, J., Rojas, E., Rivera, D., Schuymer, T.: A small data center network of
ARP-path bridges made of openflow switches. In: The 36th IEEE Conference on Local
Computer Networks (LCN), pp. 15–23. IEEE Press (2011)

12. Tavakoli, A., Casado, M., Koponen, T., Shenker, S.: Applying NOX to the datacenter. In: 8th
ACM Workshop on Hot Topics in Networks (HotNets-VIII). IEEE Press, New York (2009)

426 I. Bolodurina and D. Parfenov

http://dx.doi.org/10.1109/TSP.2016.7760818
http://dx.doi.org/10.1109/SIBCON.2015.7147170
http://dx.doi.org/10.1007/3-540-36180-4_5
http://dx.doi.org/10.1007/3-540-36180-4_4
http://dx.doi.org/10.1007/978-3-319-27140-8_14


Distributed Data Fusion
for the Internet of Things

Rustem Dautov1(B) and Salvatore Distefano1,2

1 Higher Institute of Information Technology and Information Systems (ITIS),
Kazan Federal University (KFU), Kazan, Russia

{rdautov,s distefano}@it.kfu.ru, sdistefano@unime.it
2 University of Messina, Messina, Italy

Abstract. The ubiquitous Internet of Things is underpinned by the
recent advancements in the wireless networking technology, which
enabled connecting previously scattered devices into the global network.
IoT engineers, however, are required to handle current limitations and
find the right balance between data transferring range, throughput, and
power consumption of wireless IoT devices. As a result, existing IoT
systems, based on collecting data from a distributed network of edge
devices, are limited by the amount of data they are able to transfer over
the network. This means that some sort of data fusion mechanism has to
be introduced, which would be responsible for filtering raw data before
sending them further to a next node through the network. As a poten-
tial way of implementing such a mechanism, this paper proposes utilis-
ing Complex Event Processing and introduces a hierarchical distributed
architecture for enabling data fusion at various levels.

Keywords: Data fusion · Complex Event Processing · Distributed
architecture · Internet of Things · Edge computing · Cloud computing

1 Introduction

The development of the Internet of Things (IoT) and ubiquitous penetration
of ‘smart’ devices in almost every aspect of people’s everyday life have been
supported by the rapid progress in the networking area and – more specifically
– wireless technologies. Wireless communication enabled connecting previously
disconnected embedded devices into the global network, facilitating device dis-
covery, querying and interaction. Examples of such wireless networking technolo-
gies, actively used in the context of complex distributed IoT systems, include
LPWAN, Bluetooth Low Energy, ZigBee, Wi-Fi, etc. These technologies differ in
their data transferring range, throughput, and power consumption. These three
aspects are typically seen as the key factors when choosing a particular wireless
technology to a be applied to a scenario at hand. There also exists a dependency
between these three factors. Usually, the larger the data transferring range, the
lower the throughput, and vice versa. Increasing any of the two – either the
range or the throughput – typically leads to an increased power consumption.
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 427–432, 2017.
DOI: 10.1007/978-3-319-62932-2 41



428 R. Dautov and S. Distefano

As a result, these dependencies introduce certain constraints to the amount
of transferred data – that is, in order to be sent to a remote device at a dis-
tance ranging between hundreds and thousands meters, data packets have to be
considerably small. Given the extreme amounts of generated data, a potentially
promising solution is to perform data filtering/aggregation – i.e. data fusion
– as close to the source of data as possible, thus minimising the amount of
‘noisy’ data being sent over throughput-limited wireless links. However, this is
not always possible due to the lack of computing resources on embedded sys-
tems and constrained devices. Therefore, a solution, able to meet local resource
restrictions, while reducing the overhead by keeping computation as close to
data sources as possible, is required. To this end, this paper introduces Complex
Event Processing (CEP) as a potential way of implementing sensor data fusion
in distributed IoT systems, aiming to leverage local processing capabilities wher-
ever possible, or off-load tasks to Edge/Cloud Computing otherwise – thereby
paving the way for a multi-layered, hierarchical data fusion approach, aiming at
reducing network latencies and amounts of transferred data.

2 Background and Related Work

A common solution adopted for data management and processing is to off-
load related tasks to remote servers, typically located in data centers and cloud
platforms, which collect, store and process data, thus promoting a convergence
between the IoT and the cloud paradigms [2]. Indeed, the IoT has primarily
adopted a ‘vertical’ offloading paradigm, in which raw sensor data are collected
by edge devices and transferred over the network to a central processing loca-
tion (e.g. an IoT-Cloud platform) via several network links, such as network
gateways and routers. This inevitably implies that raw sensor data are sent out
immediately upon generation, thus putting strict dependency on the underlying
network bandwidth. Likely, this requirement appears not affordable or unsus-
tainable due to restrictions of wireless networks and related (3G/4G) providers,
which impacts on the overall processing latency. This way, (resource-constrained)
edge devices are not expected to perform data processing themselves, but rather
to push collected data through the network topology, albeit they may already
have enough processing, storage and computing resources on-board, which can
be exploited in filtering, pre-processing, local analytics, sensor fusion and simi-
lar activities on nodes with great benefits in terms of performance and network
overhead.

Indeed, network devices as well as communication and processing units, such
as Mobile Edge Cloud (MEC) servers, are usually quite powerful and therefore
can support this computation. This pattern has been recently proposed in the
context of the Edge/Fog computing paradigm, aiming at pushing intelligence
towards the edge [4]. In Edge/Fog computing, network devices, switches, routers,
servers, or even ‘cloudlet’ machines, are widely used to support computational
tasks, incoming from IoT edge nodes. This complements the traditional off-
loading to the cloud and overcomes bandwidth constraints, while mitigating



Distributed Data Fusion for the Internet of Things 429

latency and delays. Therefore, a solution able to minimise costs and latency, while
taking into account edge devices’ resource constraints, is possible by exploiting
and properly combining local resources with those provided by the network (i.e.
Edge computing) and cloud nodes.

Despite the increasing processing capabilities, edge devices are typically not
yet equipped with full-featured hard disks to store large data sets. In this light,
it naturally follows that edge devices are more suited for in-memory Stream
Processing – i.e. data processing, which does not write data to local mass stor-
age, but rather keeps all the computation in memory, thus potentially achieving
better performance. Complex Event Processing (CEP) – one of the existing
approaches to Stream Processing – goes beyond simple data querying and aims
to detect complex event patterns, themselves consisting of simpler atomic events,
within a data stream. Accordingly, from CEP’s point of view, constantly arriving
tuples can be seen as notifications of events happening in the external world –
e.g. a fire alarm signal, social status update, a stock exchange fluctuation, etc.
The focus of this perspective is on detecting occurrences of particular patterns
of lower-level events that represent higher-level events. A standing query fetches
results, if and only if a corresponding pattern of lower-level events is detected.
For example, a common CEP task is to detect situation patterns, where one
atomic event happened after another in time. To achieve this functionality, CEP
systems rely on event timestamps; they extend continuous query languages with
sequential operators, which allow specifying the chronological order of events.

CEP’s capabilities to enable data fusion over incoming streams have been
utilised in IoT scenarios, for example to enable run-time monitoring and data
fusion [1,3,5,6]. There are two main aspects, however, which seem to be not
addressed in the existing works. First, existing approaches tend to implement
CEP only at the highest level of cloud computing, thus neglecting the possibility
of introducing intermediate data fusion at the levels of networking and edge
devices. Second, there is little evidence of the bi-directional communication –
that is, existing approaches only focus on data collection, and do not consider
coordination of lower-level devices by modifying data fusion policies in a top-
down manner.

3 Proposed Solution

In the presence of increasing processing capabilities of edge devices, it is natural
to think on how to exploit this untapped potential to support IoT data fusion
tasks. To this end, given different types of devices and their location within an
IoT network topology, as well as the CEP technology, this paper proposes a
hierarchical multi-level architecture for data fusion in IoT systems. According
to the proposed approach, data should be firstly processed on-board (i.e. locally
on IoT nodes) whenever possible, or pushed to network devices and services,
and, finally, to the cloud in a hierarchical manner. The proposed architecture
includes three conceptual levels, which are also aligned with geographical areas,
from which sensor data are collected.



430 R. Dautov and S. Distefano

Local area data fusion (LADF) is supposed to take place on edge devices,
which collect data, coming from embedded sensors. The amount of data is rela-
tively small, and data fusion can be performed on-board.

Wide area data fusion (WADF) refers to performing more intensive data ana-
lytics, pushed from a wider network of edge devices. Following the principles of
Edge Computing, WADF is performed on communication and processing units.

Global area data fusion (GADF) refers to the highest level of data fusion,
which provides a global view on the whole managed system of edge devices
and networking nodes. This involves processing of large amounts of data, and
therefore is expected to be implemented in a data center or a cloud platform.

As a result, the described high-level conceptual data fusion architecture is
realised through deploying and running instances of CEP middleware on devices,
constituting multi-level IoT systems. The CEP middleware implements main
two functions – namely, (i) the actual data fusion via event correlation across
multiple data sources, and (ii) communication with devices, located at lower
levels of the IoT network topology, and orchestration of the data processing
tasks distributed across lower-level nodes. The reference architecture in Fig. 1
depicts this conceptual separation of concerns – all three levels are equipped
with dedicated CEP engine instances (i.e. Local Area CEP – LACEP, Wide
Area CEP – WACEP, and Global Area CEP – GACEP), whereas the upper
two levels also include coordination components, responsible for bi-directional
communication between lower- and higher-level nodes, while coordinating and
managing all the offloading requests incoming from these bottom layer nodes. It
is worth remarking that the presence of one of the two upper layers is optional,
since a LACEP Engine can directly interact with a WACEP Coordinator, or a
LACEP Coordinator can assign requests only to WACEP and LACEP engines.

Fig. 1. Reference architecture of the multi-level hierarchical CEP data fusion.

4 Towards a Proof of Concept

As a first step towards validating the proposed hierarchical data fusion app-
roach, an initial proof-of-concept prototype was implemented. The prototype



Distributed Data Fusion for the Internet of Things 431

utilises Drools Fusion1 as the underlying CEP middleware. Being just one of
the pluggable modules of the larger modular platform Drools, Fusion is a light-
weight open-source CEP implementation, which combines CEP expressiveness
(i.e. temporal reasoning over events and sliding windows of interest), relatively
low resource requirements, and well-maintained client libraries. As a result, the
Fusion middleware was deployed at three levels of the hierarchical architecture
(Fig. 2).

Fig. 2. Prototype implementation of the multi-level hierarchical data fusion in a uni-
versity campus.

The low-level smart objects, equipped with multiple sensing devices (i.e. tem-
perature, humidity, light sensors and motion detectors) are represented by Rasp-
berry Pi boards. These boards are responsible for collecting relevant raw sensor
data from a local area (i.e. a room) and perform CEP – that is, data fusion takes
place as close to the source of data as possible, such that only filtered/aggregated
values are transferred to an upper-level processing node. The goal of this LACEP
is to detect if someone is still indoors, or if electrical appliances (e.g. heaters,
A/C, lights) are still on, and to send a corresponding alert.

The middle-level communication/processing units are represented by a
server, responsible for collecting data from multiple Raspberry Pi boards and
perform data fusion over a larger area of interest. This way, WACEP provides
a more extensive perspective on the managed area (i.e. a university building).
By being notified of rooms, in which someone is still working, the system can
identify empty floors in the building and activate the alarm on those floors.
Same way, the system can detect a potentially dangerous situation (e.g. fire or
burglary) and report on this.

The highest-level processing location is represented by the Amazon Web Ser-
vices2 cloud, which is responsible for GACEP – i.e. collecting data from all the
managed buildings and performing data fusion over the whole university campus
area. This way, the Cloud platform is able to provide a global real-time view on

1 http://drools.jboss.org/drools-fusion.html
2 https://aws.amazon.com/

http://drools.jboss.org/drools-fusion.html
https://aws.amazon.com/


432 R. Dautov and S. Distefano

the campus, including, for example, an emergency situation which is spreading
and already involves several buildings.

5 Conclusions

The number of connected devices has already exceeded 10 billions, and is
expected to reach hundreds of billions in the next 4–5 years. Equipped with
processing, storage, networking, sensing and actuation capabilities, such devices
are able to intercommunicate and handle mega-/gigabytes of data, and collec-
tively approach the zettabyte frontier on a daily basis. In this light, data manage-
ment is becoming of utmost importance – i.e. to support the exponential growth
of IoT devices, a potential solution should aim to reduce the amount of redun-
dant data exchanged. This requirement can be addressed by pushing intelligence
to the edge of an IoT network – i.e. closer to the data source – and exploiting
resources and capabilities of edge nodes for data (pre-)processing. Accordingly,
this paper proposes a data fusion approach based on a three-level hierarchical
architecture using CEP techniques. Data are first sensed and processed locally
on-board (i.e. sensor fusion) and then, if required, further processed by higher-
level (wide and/or global) data fusion engines deployed on a server and/or a
cloud platform. This way, a scalable architecture is achieved, in which local com-
putational resources, if insufficient, are extended by the higher levels. The main
idea and architecture of the proposed solution are described in this paper, while
further implementation and experimentation on a real use case are ongoing.

References

1. Brunelli, D., Gallo, G., Benini, L.: Sensormind: virtual sensing and complex event
detection for internet of things. In: Gloria, A. (ed.) ApplePies 2016. LNEE, vol. 409,
pp. 75–83. Springer, Cham (2017). doi:10.1007/978-3-319-47913-2 10

2. Dı́az, M., Mart́ın, C., Rubio, B.: State-of-the-art, challenges, and open issues in the
integration of Internet of things and cloud computing. J. Netw. Comput. Appl. 67,
99–117 (2016)

3. Fonseca, J., Ferraz, C., Gama, K.: A policy-based coordination architecture for dis-
tributed complex event processing in the internet of things: doctoral symposium. In:
Proceedings of the 10th ACM International Conference on Distributed and Event-
Based Systems, pp. 418–421. ACM (2016)

4. Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A.,
Barcellos, M., Felber, P., Riviere, E.: Edge-centric computing: vision and challenges.
SIGCOMM Comput. Commun. Rev. 45(5), 37–42 (2015)

5. Guo, Q., Huang, J.: A complex event processing based approach of multi-sensor data
fusion in IoT sensing systems. In: 2015 4th International Conference on Computer
Science and Network Technology (ICCSNT), vol. 1, pp. 548–551. IEEE (2015)

6. Wang, Y., Cao, K.: A proactive complex event processing method for large-scale
transportation internet of things. Int. J. Distrib. Sens. Netw. 10(3), 159052 (2014)

http://dx.doi.org/10.1007/978-3-319-47913-2_10


Scalable Computations of GeRa Code
on the Base of Software Platform INMOST

Igor Konshin1,2(B) and Ivan Kapyrin1,2

1 Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow 119333, Russia

igor.konshin@gmail.com
2 Nuclear Safety Institute of the Russian Academy of Sciences,

Moscow 115191, Russia

Abstract. The hydrogeological modeling code GeRa is based on
INMOST software platform, which operates with distributed mesh data
and allows to assemble and solve the system of linear equations. The
set of groundwater flow models with filtration, transport, and chemical
processes are considered. The comparison of parallel efficiency for differ-
ent linear solvers in the INMOST framework is performed. The analysis
of scalability of GeRa code on different computer platforms from multi-
core laptop to Lomonosov supercomputer is presented.

Keywords: Numerical modelling · Software platform · Distributed
meshes · Subsurface flow and transport

1 Introduction

At present the problem of safe radioactive waste (RW) disposal is of great inter-
est for the countries utilizing nuclear energy and radionuclides in their national
economy. Along with relatively successful practice of low level waste disposal in
surface repositories the advances in creation of national high-level waste (HLW)
disposals are moderate. No country except Finland issued a license for the con-
struction of such an object while the national programs for the creation of HLW
deep geological disposals had been conducted for several decades. The reason for
that is the complexity of safety assessment problem stemming from extremely
large time and space scales, large variety of coupled processes and uncertainties.

Hydrogeological modeling codes able to model the groundwater flow and
transport processes are the basis for disposal safety assessment. By order of
the State Atomic Energy Corporation ROSATOM Nuclear Safety Institute and
Institute of Numerical Mathematics of the Russian Academy of Sciences develop
the GeRa numerical code designed for the solution of a broad class of surface
and deep geological RW disposals safety assessment problems. GeRa features
the application of 3D unstructured adaptive grids, initially established means
of parallelization and integral modeling approach. The latter means that the
code shall allow to solve the problem as a whole, starting from geological model
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 433–445, 2017.
DOI: 10.1007/978-3-319-62932-2 42



434 I. Konshin and I. Kapyrin

generation and ending with doses for the population calculations with the proper
uncertainty analysis. At present the following major processes can be modeled
in GeRa:

– groundwater flow in confined, unconfined and unsaturated conditions;
– transport in uniform and dual-porosity media (advection, dispersion, diffu-

sion);
– equilibrium chemical reactions either governed by sorption isotherms or with

real chemical calculations;
– radioactive decay chains;
– heat generation caused by radioactive decay;
– density and temperature driven convection.

The discretizations of GeRa are based on finite volume (FV) method. Besides
the conventional two-point (TPFA) and multi-point flux approximation (MPFA)
schemes [1] a nonlinear monotone FV method [2,3] is applied for the diffusion
operator approximation. The advection operator may be discretized either using
TVD-schemes with limiters or an upwind first order accurate scheme. The dis-
cretizations are aimed at use on polyhedral conformal grids. Two grid generators
were implemented in GeRa [4]. The first one is the generator of triangular-
prismatic grids, the second is a hexahedral grid generator based on octree struc-
tures with the ability of cell cutting. The geochemical module iPhreeqc [5] is
used for chemical reactions calculation (see [6] for an example).

The INMOST [7,8] software platform is used in GeRa to support the distrib-
uted mesh and data storage and operations as well as assembling and solution of
linear systems. In this work we analyze for the first time the parallel efficiency of
GeRa on several computer architectures from multicore laptop to clusters and
supercomputers.

The article is organized as follows. In Sect. 1 a brief overview of INMOST
platform based GeRa code is given; in Sect. 2 the test problems are defined; the
available linear solvers are described in Sect. 3; the results of numerical experi-
ments are presented in Sect. 4; while the conclusions are given in Sect. 5.

2 Model Problems Description

A set of model problems common for hydrogeological modeling was chosen for
numerical experiments. Different physical and chemical processes are taken into
account and meshes of different sizes are generated in these tests. In the follow-
ing when solving problems on a series of refined grids the following notation is
used: the letter is the first letter in the name of the test (“g” – “geos”, “c” –
“chemistry”, “t” – “transport”) and the following it digits denote the number
of mesh cells measured in thousands. For example model “t5740” denotes the
“transport” model with 5740 thousand cells in the computational grid.

The model “f262” is a steady groundwater flow problem in a rectangular
domain [0; 1]×[0; 1]×[0; 0.1]. A regular rectangular grid containing 128×128×16
cells (approximately 262 thousand cells) were used.



Scalable Computations of GeRa Code 435

The “geos” set contain the groundwater flow models that are solved in a real-
life domain with heterogeneous parameters. Three geological layers are present
in the model. The top and bottom layers are aquitards (hydraulic conductivity
K = 0.001 m/day), the middle layer is an aquifer with hydraulic conductivity
K = 1 m/day. The coarsest grid contains approximately 28 thousand cells, the
major part of these are triangular prisms, but also there are 102 tetrahedra
and 108 pyramids caused by the top layer pinch-out. A stationary saturated
groundwater flow problem is solved using the MPFA scheme. The series contains
“g28”, “g185”, “g402”, “g1425” and “g5740” models.

In the “chemistry” set of tests a reactive transport advection problem is
solved. A full description of the problem is available in [6]. Five wells with bal-
anced rates are working in a uniform layer 200 × 200 × 10 meters in size: four
of them being injection wells located in the corners of the domain; the fifth
being a production well in the middle. The chemical calculations are done using
iPhreeqc [5]. Hexahedral octree-based grids with local refinement to well screens
are used. The series contains five tests: “c18”, “c60”, “c254”, “c700”, “c1120”.

In the “transport” set of tests one dimensional advective transport along
the X-axis is modeled in a rectangular domain [0; 1000] × [0; 100] × [0; 1]. The
discretization is done using the TVD scheme which implies local optimization
problem solution on each mesh cell in the process of concentration gradient
cellwise reconstruction. Triangular prismatic meshes are used. Five models with
different grid sized are in the set: “t20”, “t70”, “t377”, “t1215”, “t5740”.

3 Linear System Solvers Available in INMOST

Except for distributed mesh operations, INMOST software platform provides
a user the interface to collect the coefficient matrix and the right-hand side
of the discretization linear system and than to solve it. The main feature of
this interface is the handling to the matrix row/column indices i and j by its
global value just as for the dense one. It gives an opportunity for the problem
discretization to simplify the collection of the coefficient matrix.

INMOST provides a common interface to linear solvers: both set of inner
solvers and the third party (PETSc, Trilinos, SuperLU, Ani3D) ones. The most
of inner solvers are based on advanced second order incomplete triangular factor-
ization ILU2(τ) or in other words two-threshold ILU2(τ1, τ2) factorization [9]. In
our experiments we used the theoretically approved values τ1 = τ and τ2 = τ2. It
should be noted that the partial case τ1 = τ2 = τ is reduced to the conventional
one-threshold ILU(τ) factorization.

The preconditioner parallelization is based on either Additive Schwarz AS(q)
or BIILU(q) scheme with the overlap size parameter q. The geometrical inter-
pretation of this parameter is the number of layers in the subdomains overlap.

In the present paper we consider two inner linear solvers InnerILU2 and
BIILU2 ones based on ILU2(τ) with AS(q) and BIILU(q) preconditioning,
respectively, as well as the conventional linear solver from PETSc package [10]
based on structural factorization ILU(k) and AS(q) preconditioning. All the con-
sidered linear solvers are accelerated by BiCGStab iterations.



436 I. Konshin and I. Kapyrin

The BIILU2 linear solver is of the special care in our team: the first time
it was presented [11] namely at the PaCT conference in 1999. It was a sym-
metric version with the second order incomplete Cholesky factorization IC2(τ)
and block incomplete inverse Cholesky BIIC(q) as a parallel scheme with Pre-
conditioned Conjugate Gradient (PCG) iterations. Next, at PaCT-2009 [12] the
version with post filtration of triangular factors were presented.

4 Numerical Experiments

4.1 The Parallel Computer Platforms Available

In the present paper we performed the comparative analysis of parallel run prop-
erties for the developed GeRa code. The following parallel computer platforms
were used:

– quad-core laptop Intel i7-4810MQ (2.80 GHz) with 16 GB RAM under Ubuntu
16.04.1 using compiler gcc v.5.4.0 and mpicc for MPICH v.3.2.

– INM RAS cluster [13] consisting of nodes with two six-core Intel Xeon X5650
(2.67 GHz) and 24 GB RAM per node under SUSE Linux Enterprise Server
11 SP1 (x86 64) using compiler Intel C v.4.0.1 and Intel MPI v.5.0.3.

– “test” and “regular4” partitions of “Lomonosov” supercomputer [14] located
in the Moscow State University consisting of nodes with quad-core Intel Xeon
E5-2697 v3 (2.60 GHz) and 12 GB RAM per node.

When performing numerical experiments, we analyzed the discretization
stage time T = T (p) obtained on one of the mentioned platform using
p cores. The relative speedup S = T (1)/T (p) and the resulting computa-
tional efficiency E = S/p were calculated as well. The PETSc linear solver
BiCGStab+AS(q)+ILU(k) with the parameters q = 1 and k = 1 was used as a
default one.

4.2 Numerical Experiment on a Multicore Laptop

Table 1 presents the computation time T (p) using p cores for some described
above models. Numerical experiments performed on quad-core laptop showed
a fairly good monotonic acceleration of computation time (up to about 3-fold)
with increasing number of used cores to 4. This may allow to a GeRa user to
accelerate the calculations carried out even on the local PC without exploiting
an external computing cluster or in the case when the cluster is unavailable.

The data for calculation for “t70” model on 8 threads are missing in the table
due to RAM restrictions. It should be noted that the use of hyper-threading
technology with 8 threads allows to actually reduce the computation time for
the models considered.



Scalable Computations of GeRa Code 437

Table 1. Computation times (in sec.) for some models on quad-core laptop.

p “c60” “d224” “g1425” “t70”

1 320.485 4.339460 59.388 11.406

2 242.605 3.217543 35.801 7.762

4 150.606 2.927468 30.258 4.455

8 119.705 2.586953 28.005 —

4.3 Preliminary Experiments on INM RAS Cluster

In Table 2 we compare the performance of different linear solvers of INMOST
software platform when solving “f262” model using p = 64 cores of INM RAS
cluster. Besides the already mentioned default linear solver PETSc (with para-
meters q = 1, k = 1) we used the inner INMOST solvers InnerILU2 (with para-
meters q = 1, τ = 0.005) and solver BIILU2 (with parameters q = 1, τ = 0.03).
The default parameter settings were used in all linear solvers.

The analysis of the results in Table 2 shows the most efficient use of the linear
solver BIILU2, which gives a reason for a more detailed study of its properties.

Table 2. Computation times for model “f262” on 64 cores of INM RAS cluster for
different linear solvers.

Tdiscr

InnerILU2 (q = 1, τ = 0.005) 2.749

PETSc (q = 1, k = 1) 2.230

BIILU2 (q = 1, τ = 0.03) 1.371

In the next experiment we analyze the influence of the parameters choice
to the BIILU2 solver performance behavior. The experiment was performed on
INM RAS cluster using 64 cores. The results of parameters tuning are presented
on Fig. 1. The tuning of threshold parameter τ (for q = 2) is presented on
Fig. 1a. One can observe the very smooth behavior of solution time in wide
range of the parameter τ from 5 · 10−3 to 10−6. Next, on Fig. 1b the tuning of
overlap parameter q ones again demonstrates the smooth behavior of solution
time depending on q. The most important conclusion is the crucial importance
of the overlap usage (q > 0) as well as very stable behavior up to overlap q = 5.
The optimal values for the considered model “t1215” for p = 64 are q = 3 and
τ = 0.001, which are more strict ones than the usually exploited default set q = 1
and τ = 0.03. It means that the considered model “t1215” is a more difficult to
solve among the other ones.



438 I. Konshin and I. Kapyrin

)b()a(

Fig. 1. Tuning of (a) threshold parameter τ (for q = 2) and (b) overlap parameter q
(for τ = 0.001) of the BIILU2 linear solver for “t1215” model on INM RAS cluster.

4.4 Solution of Chemical Models

In the present subsection we consider the numerical results obtained on different
computer platforms: INM RAS cluster and the “Lomonosov” supercomputer
specified in Sect. 4.1. Both platform have about the same scalar performance,
but communication rate of “Lomonosov” is appreciably higher to provide a pos-
sibility of efficient parallel computations on several thousand cores.

The number of used cores on both platforms varied from 1 to 128. Let us
consider the solution of some of the model series on these two computer platforms
in more detail.

Table 3 presents the speedup with respect to the serial run for the set “c”
models on the INM RAS cluster using the solver PETSc(q = 3, k = 3). The
table above shows that with increasing number of cores there is a significant
acceleration in computation time, and in most cases with an increase in the
dimension of the problem the obtained speedup is growing. The latter can be
seen most clearly in Fig. 2a. This effect is associated with a decrease in the
portion of communications regarding that of calculations when the size of the
local subproblem is increasing.

The maximum speedup obtained on 128 cores is 56.17, which means about
50% of parallel efficiency reached.

Table 4 presents the speedup with respect to the serial run for the set “c”
models on “Lomonosov” supercomputer using the same solver PETSc(q = 3, k =
3). The table above shows the acceleration in computation time is even better
than for INM RAS (see Fig. 2b). This fact is in agreement with the above remarks
on communication rate. The maximum speedup for “Lomonosov” supercomputer
obtained on 128 cores is 80.28, which means more than 60% of parallel efficiency
reached.

It should be noted the growth in speedup for the model “c18” on 128 cores,
which means the acceleration even for about 150 unknowns per core. Effective
functioning with such a small dimension subproblems on one core means high
efficiency parallel implementation of INMOST platform as well as the GeRa code
itself.



Scalable Computations of GeRa Code 439

Table 3. Speedups for the set “c” models on INM RAS cluster with PETSc(q = 3, k =
3) for p = 1, ..., 128 cores.

p “c18” “c60” “c254” “c700” “c1120”

1 1.00 1.00 1.00 1.00 1.00

2 1.84 1.86 1.82 1.82 1.88

4 3.36 3.66 3.54 3.64 3.69

8 5.08 5.81 6.13 6.25 6.41

16 8.39 8.17 9.89 9.62 10.45

32 13.35 14.05 17.59 18.04 17.75

64 20.29 23.98 30.75 29.91 31.64

128 20.15 38.85 51.18 53.13 56.17

Table 4. Speedups for the set “c” models on “Lomonosov” supercomputer with
PETSc(q = 3, k = 3) for p = 1, ..., 128 cores.

p “c18” “c60” “c254” “c700” “c1120”

1 1.00 1.00 1.00 1.00 1.00

2 1.54 1.52 1.66 1.79 1.78

4 3.14 2.87 2.93 3.27 3.28

8 4.80 4.59 4.59 5.27 5.57

16 8.75 8.79 8.69 10.19 10.84

32 16.59 17.63 17.04 20.40 21.54

64 27.82 32.48 35.60 40.19 42.84

128 30.65 56.20 63.57 76.35 80.28

)b()a(

Fig. 2. Speedups for the set “c” models on both (a) INM RAS cluster and (b)
“Lomonosov” supercomputer with the PETSc(q = 3, k = 3) linear solver.



440 I. Konshin and I. Kapyrin

4.5 Solution of “geos” Models

As shown in Table 1 the “geos” problem of dimension more than 1 million of
cells can be solved on a regular laptop. In the present section we continue to
analyze the parallel performance for this set of models.

Table 5 presents the speedups with respect to serial run for some models from
set “g” both on INM RAS cluster and “Lomonosov” supercomputer, respectively.
The default PETSc(q = 3, k = 3) solver was used for p = 1, ..., 128 cores.

Table 5. Speedups for two models of the set “g” on both INM RAS cluster and
“Lomonosov” supercomputer by PETSc(q = 3, k = 3) solver for p = 1, ..., 128 cores.

INM RAS cluster “Lomonosov”

p “g402” “g1425” “g5740” “g402” “g1425”

1 1.00 1.00 — 1.00 1.00

2 1.85 1.97 — 1.90 2.09

4 3.18 3.49 — 3.14 3.60

8 4.64 4.81 — 4.59 3.49

16 4.50 4.28 1.00 9.06 9.78

32 10.84 8.97 1.64 16.68 19.12

64 13.63 21.03 3.16 28.46 36.07

128 16.47 22.81 5.86 48.56 62.32

From the above data, it can be seen that for “g1425” model the monotonous
increase of the speedup can be obtained up to 128 cores, besides the maximal
speedups for INM RAS cluster and “Lomonosov” supercomputer are 22.81 and
62.32, respectively (see also Fig. 3). From the analysis of the above data it should
also be noted that for the largest model “g5740” RAM limit on “Lomonosov”
supercomputer does not allow to obtain the problem solution, as well as when
using from 1 to 8 cores of INM RAS cluster. However, when using from 16 to 128
cores it is possible to obtain a solution, and even with sufficiently high relative
speedup 5.86 for 128 cores with respect to run on 16 cores. On one hand, the
latter shows the ability to solve the problem of over 5 million of computational
cells, and of the other hand, it indicates the existence of problems for which
the resources of personal computer are insufficient and there is a necessity for
a parallel version of the GeRa code. The latter is not only due to increasing of
computation efficiency, but namely the opportunities to solve the problem itself.

4.6 Solution of Transport Models

In dealing with transport models it is required to solve the problem for groundwa-
ter flow and than the respective transport problem. In GeRa two separate default



Scalable Computations of GeRa Code 441

Fig. 3. Speedups for the medium size models from “g” set on “Lomonosov” supercom-
puter with the PETSc(q = 3, k = 3) linear solver.

set of linear solver parameters used for these two problems: PETSc(q = 3, k = 3)
for flow problem and PETSc(q = 1, k = 1) for the transport one.

When solving “t” set of models using the solver PETSc with the above default
parameters, there was no convergence for the flow problem. By this reason, it
was necessary to “enhance” the PETSc parameter for the flow equation up to
values (q = 7, k = 7).

The comparative numerical results for two models from the set “t” on INM
RAS cluster and “Lomonosov” supercomputer are shown in Table 6. As expected,
the obtained results on “Lomonosov” supercomputer were much more scalable
(as can be seen in Fig. 4).

Table 6. Speedups for two models of the set “t” on both INM RAS cluster and
“Lomonosov” supercomputer by PETSc(q = 7, k = 7) solver for p = 1, ..., 128 cores.

INM RAS cluster “Lomonosov”

p “t70” “t377” “t70” “t377”

1 1.00 1.00 1.00 1.00

2 1.67 1.67 1.69 1.68

4 3.24 3.08 3.30 3.09

8 5.06 5.25 5.20 5.39

16 7.03 8.05 8.77 9.49

32 10.68 12.94 15.30 18.09

64 12.92 18.68 22.80 27.15

128 12.19 24.89 30.10 44.92



442 I. Konshin and I. Kapyrin

Fig. 4. Speedups for the model “t377” on INM RAS cluster and “Lomonosov” super-
computer with the PETSc(q = 7, k = 7) linear solver.

At the next step of the linear solvers properties study we used the BIILU2
solver with default set of parameters q = 5 and τ = 0.003. In this case all the
problems at once have been successfully solved.

The calculation results are shown in Tables 7, 8 and Fig. 5 for INM
RAS cluster and “Lomonosov” supercomputer, respectively. As expected, on
“Lomonosov” supercomputer, it was able to achieve more significant speedup.
When using 128 cores for the model “t1215” it was attained the value of 78.62,
that means the parallel efficiency more than 60%. It should be noted, that the
time reduction for the smallest model “t20” were observed until the use of 64
cores, which is about 300 computational cells per one core.

Table 7. Speedups for the set “t” models on INM RAS cluster by BIILU2(q = 5, τ =
0.003) for p = 1, ..., 128 cores.

p “t20” “t70” “t377” “t1215”

1 1.00 1.00 1.00 1.00

2 1.98 1.84 1.81 1.79

4 3.74 3.46 3.33 3.08

8 6.98 6.77 5.34 5.20

16 4.43 7.82 9.09 6.47

32 6.65 12.62 14.64 17.26

64 5.00 15.13 26.98 30.06

128 1.05 10.12 40.50 54.64



Scalable Computations of GeRa Code 443

Table 8. Speedups for the set “t” models on “Lomonosov” supercomputer by
BIILU2(q = 5, τ = 0.003) for p = 1, ..., 128 cores.

p “t20” “t70” “t377” “t1215”

1 1.00 1.00 1.00 1.00

2 1.90 1.79 1.75 1.80

4 3.69 3.31 3.29 3.23

8 7.01 6.65 5.75 5.23

16 13.02 12.91 11.64 10.18

32 22.65 24.35 24.17 24.11

64 27.35 42.70 45.41 45.78

128 20.13 50.21 76.63 78.62

Fig. 5. Speedups for the set “t” models on “Lomonosov” supercomputer for the
BIILU2(q = 3, τ = 0.001) linear solver.

4.7 The Results for the Largest Models

As a final illustration of the achieved parallel efficiency for the model problems,
Fig. 6 shows the plots of the speedups of numerical experiments on “Lomonosov”
supercomputer for the largest size models using a variety of INMOST linear
solvers. From these plots, one can observe a sufficiently high parallel efficiency,
which in most of the considered runs amounted more than 50 %.

To conclude this section, it should be noted the high reliability and efficiency
of developed parallel linear solver BIILU2 from INMOST software platform.
With BIILU2 it was able to solve all without an exception linear system for the
considered models as well as for the above examples to get solutions in less time
than a linear solver PETSc.



444 I. Konshin and I. Kapyrin

Fig. 6. Speedups for the large size models from all sets on “Lomonosov” supercomputer.

5 Conclusions

– A speedup up to 3 for GeRa code on regular quad-core laptop can be achieved
for sufficiently large size models.

– The nonoverlapping block Jacobi preconditioning can be used for the most
simple models only, the more complicated problems require the use of over-
lapping preconditioning such as AS(q) or BIILU(q).

– A conventional AS(q)+ILU(k) preconditioning from PETSc is unable to
obtain the solution for the most hard-to-solve linear systems, the usage of
advanced BIILU2(q, τ) preconditioning is required.

– The communication rate of the computer is of importance; Having about the
same scalar performance as INM RAS cluster, the Lomonosov supercomputer
takes less time for parallel runs.

– The speedup 80 on 128 cores can be achieved of Lomonosov supercomputer
for sufficiently large size models.

– A speedup can be obtained even for sufficiently small size models with up to
150 unknowns per each of 128 cores.

– Ranging the models types by degree of scalability, it should be noted that the
worse scalable physical process is diffusion, the transport is the sufficiently
good one, while the chemical processes are the best scalable due the large
amount of independent work in each mesh cell.

– Both the distributed mesh operations and linear solvers from INMOST
demonstrate hight reliability and parallel efficiency in the framework of
groundwater flow modelling by GeRa code.



Scalable Computations of GeRa Code 445

Acknowledgements. The authors express their gratitude to V. Kramarenko for his
permanent assistance with assembling the GeRa code, for installing GeRa on different
computer platforms, and for generating the model sets from the GeRa verification tests.

References

1. Aavatsmark, I., Barkve, T., Boe, O., Mannseth, T.: Discretization on unstructured
grids for inhomogeneous, anizotropic media. Part I: derivation of the methods.
SIAM J. Sci. Comput. 19(5), 1700–1716 (1998)

2. Danilov, A., Vassilevski, Y.: A monotone nonlinear finite volume method for dif-
fusion equations on conformal polyhedral meshes. Russ. J. Numer. Anal. Math.
Model. 24(3), 207–227 (2009)

3. Kapyrin, I., Nikitin, K., Terekhov, K., Vassilevski, Y.: Nonlinear monotone FV
schemes for radionuclide geomigration and multiphase flow models. In: Fuhrmann,
J., Ohlberger, M., Rohde, C. (eds.) Finite Volumes for Complex Applications VII-
Elliptic, Parabolic and Hyperbolic Problems. Springer Proceedings in Mathematics
& Statistics, vol. 78, pp. 655–663. Springer, Berlin (2014)

4. Plenkin, A.V., Chernyshenko, A.Y., Chugunov, V.N., Kapyrin, I.V.: Adaptive
unstructured mesh generation methods for hydrogeological problems. Vychisl.
Metody Program. 16(4), 518–533 (2015)

5. Charlton, S.R., Parkhurst, D.L.: Modules based on the geochemical model
PHREEQC for use in scripting and programming languages. Comput. Geosci.
37(10), 1653–1663 (2011)

6. Boldyrev, K.A., Kapyrin, I.V., Konstantinova, L.I., Zakharova, E.V.: Simulation
of strontium sorption onto rocks at high concentrations of sodium nitrate in the
solution. Radiochemistry 58(3), 243–251 (2016)

7. INMOST: a toolkit for distributed mathematical modelling. URL: http://www.
inmost.org

8. Vassilevski, Y.V., Konshin, I.N., Kopytov, G.V., Terekhov, K.M.: INMOST - a soft-
ware platform and a graphical environment for development of parallel numerical
models on general meshes, 144 pp. Moscow State University Publication, Moscow
(2013) (in Russian)

9. Kaporin, I.E.: High quality preconditioning of a general symmetric positive definite
matrix based on its UTU + UTR + RTU -decomposition. Numer. Lin. Alg. Applic.
5(6), 483–509 (1998)

10. PETSc - Portable, Extensible Toolkit for Scientific Computation. https://www.
mcs.anl.gov/petsc

11. Kaporin, I.E., Konshin, I.N.: Parallel solution of large sparse SPD linear sys-
tems based on overlapping domain decomposition. In: Malyshkin, V. (ed.) PaCT
1999. LNCS, vol. 1662, pp. 436–446. Springer, Heidelberg (1999). doi:10.1007/
3-540-48387-X 45

12. Kaporin, I.E., Konshin, I.N.: Load balancing of parallel block overlapped incom-
plete cholesky preconditioning. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol.
5698, pp. 304–315. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03275-2 30

13. INM RAS cluster. http://cluster2.inm.ras.ru (in Russian)
14. ”Lomonosov” supercomputer. https://parallel.ru/cluster/lomonosov.html (in

Russian)

http://www.inmost.org
http://www.inmost.org
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1007/3-540-48387-X_45
http://dx.doi.org/10.1007/3-540-48387-X_45
http://dx.doi.org/10.1007/978-3-642-03275-2_30
http://cluster2.inm.ras.ru
https://parallel.ru/cluster/lomonosov.html


Parallel Computing for Time-Consuming
Multicriterial Optimization Problems

Victor Gergel(&) and Evgeny Kozinov

Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
gergel@unn.ru, evgeny.kozinov@itmm.unn.ru

Abstract. In the present paper, an efficient method for parallel solving the
time-consuming multicriterial optimization problems, where the optimality cri-
teria can be multiextremal, and the computation of the criteria values can require
a large amount of computations, is proposed. The proposed scheme of parallel
computations allows obtaining several efficient decisions of a multicriterial
problem. During performing the computations, the maximum use of the search
information is provided. The results of the numerical experiments have
demonstrated such an approach to allow reducing the computational costs of
solving the multicriterial optimization problems essentially – several tens and
hundred times.

Keywords: Decision making � Multicriterial optimization � Parallel
computing � Dimensionality reduction � Criteria convolution � Algorithm of
global search � Computation complexity

1 Introduction

The statements of the multicriterial optimization (MCO) problems belong to the most
general models of the decision making problems. A general state of the art in the field
of multicriterial optimization is presented in the monographs [2–4, 19], the reviews of
the scientific and practical results are given in [1, 5–8, 20].

At the same time, the MCO problems are the most complicated ones. As a rule, the
solving of the MCO problems is reduced to finding some compromised (efficient)
decisions, where the best values obtained with respect to particular partial criteria are
coordinated with each other.

The necessity to find several efficient decisions increases the computational com-
plexity of solving the MCO problems. In such conditions, finding even a single efficient
solution requires a large amount of computations whereas the finding of several effi-
cient decisions (or of the whole Pareto set) becomes a problem of high computation
complexity. Addressing this problem becomes possible by using the huge computa-
tional capabilities of high-performance systems. In addition, full utilization of the
search information obtained in the course of computations is necessary for efficient
computations.

Further structure of the paper is as follows. In Sect. 2, the multicriterial opti-
mization problem statement is given. In Sect. 3, a scheme of parallel computations for
the simultaneous solving of a set of multicriterial global optimization problems is

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 446–458, 2017.
DOI: 10.1007/978-3-319-62932-2_43



proposed. In Sect. 4, a parallel algorithm of multicriterial global search is presented.
Section 5 describes the results of numerical experiments. In Conclusion, the obtained
results are discussed and main directions of further investigations are outlined.

2 Multicriterial Optimization Problem Statement

The problem of multicriterial (or multi-objective) optimization (MCO) can be defined
as follows:

f yð Þ ¼ f1 yð Þ; f2 yð Þ; . . .; fs yð Þð Þ ! min; y 2 D; ð1Þ

where y ¼ ðy1; y2; . . .; yNÞ is a vector of varied parameters, N is the dimensionality of
the problem being solved, and D is the search domain being an N-dimensional
hyperparallelepiped

D ¼ fy 2 RN : ai � yi � bi; 1� i�Ng

with given boundary vectors a and b. Without a loss in generality, the partial criteria
values in the problem (1) are supposed to be non-negative, and the decrease of these
ones corresponds to the increase of the efficiency of the considered solutions y 2 D. It
is also supposed that the partial criteria fi(y), 1� i� s satisfy the Lipschitz condition

fi y
0ð Þ � fi y

00ð Þj j � Lijjy0 � y00jj; y0; y00 2 D; 1� i� s ð2Þ

where Li, 1� i� s are the Lipschitz constants for the corresponding partial criteria
fi yð Þ, 1� i� s, and �k k denotes the norm in the RN space.

As a solution of the MCO problem, any efficient decision (a partial solution) is
considered. In the general case, it is required to find the whole set of Pareto-optimal
solutions PD f ;Dð Þ (a full solution of a MCO problem).

In the present work, the MCO problems are considered in the context of the most
complicated problems of decision making, where the partial criteria fi yð Þ, 1� i� s can
be multiextremal, and the obtaining of the criteria values at the points of the search
domain y 2 D can require a considerable amount of computations. In the paper, it is
proposed to use the minimax convolution of the partial criteria, according to which the
solving of the problem (1) is reduced to the solving of a family of the global opti-
mization problems:

min F k; yð Þ ¼ max kifi yð Þ; 1� i� sð Þþ q
Xs

i¼1
kifi yð Þð Þ

n o

;

k 2 K � Rs :
Xs

i¼1
ki ¼ 1; ki � 0; 1� i� s

ð3Þ

where q[ 0 is a small positive number (the last term in the expression for F k; yð Þ
allows obtaining the Pareto optimal solutions at the appropriate value of the coefficient
q – see, for example, [22, 23]). It should be noted that the scalar criterion F k; yð Þ also

Parallel Computing for Time-Consuming 447



satisfies the Lipschitz condition

F k; y0ð Þ � F k; y00ð Þj j � Ljjy0 � y
00 jj; y0

; y
00 2 D: ð4Þ

3 Parallel Computations for Solving the Multicriterial Global
Optimization Problems

The scalarization of the vector criterion allows reducing the solving of the MCO
problem (1) to solving a series of the multiextremal problems (3). And, therefore, the
problem of development of the methods for solving the MCO problems is resolved by
the possibility of a wide use of the efficient parallel global optimization algorithms.

The proposed approach of parallel computations for solving time-consuming global
optimization problems is based on the following main statements:

• The parallelism of the performed computations is provided by means of simulta-
neous computing the values of the partial criteria fi yð Þ, 1� i� s at several different
points of the search domain D. Such an approach provides the parallelization of the
most computation costly part of the global optimization and is a general one – it can
be applied for many global optimization methods for various global optimization
problems.

• In addition, the parallel computations are provided by means of the simultaneous
solving of several global optimization problems (3) for various values of the
coefficients ki, 1� i� s. For solving the problems of the family (3), a set of
computational nodes of the high performance systems with distributed memory can
be applied.

• The search information obtained in the course of parallel computations is exchanged
between all employed processors because of the information compatibility of the
global optimization problems of the family (3).

Below, these statements will be considered in more details.

3.1 Structure of the Global Search Information

For solving the optimization problems, the values of the partial criteria f i ¼ f yið Þ at the
points yi; 1� i� k of the search domain D are computed.

The search information obtained as a result of these computations can be repre-
sented in the form of the Search Information Set (SIS):

Xk ¼ yi; f i ¼ f yi
� �� �T

: 1� i� k
n o

: ð5Þ

The availability of SIS allows transforming the results of the previous computations
to the values of any next optimization problem (3) being solved without any

448 V. Gergel and E. Kozinov



time-consuming computations of the partial criteria values fiðyÞ, 1� i� s from (1) for
new values of the convolution coefficients k

0
j, 1� j� s i.e.

z0i ¼ max k
0
jf

j
i ; 1� j� s

� �

; 1� i� k: ð6Þ

As a result, all the search information can be employed for continuing the com-
putations. In general, the reuse of the search information will provide less and less
computations for solving every next optimization problem (see Sect. 5).

3.2 General Scheme of Parallel Computations

As it has been mentioned above, when solving a multicriterial optimization problem
(1), in order to find several different efficient decisions, solving a series of scalar
problems (3) with various values of the coefficients of the minimax convolution of the
partial criteria may be required

U
!

yð Þ ¼ u1 yð Þ; . . .;uq yð Þ� �

;ui yð Þ ¼ F ki; yð Þ; 1� l� q: ð7Þ

The problems of the family U
!

yð Þ can be solved sequentially, various global
optimization methods can be used for solving the problems. On the other hand, these
problems can be solved simultaneously with the use of several processors as well. It is

important to note that the obtained family of the one-dimensional problems U
!

yð Þ is an
information-linked one – the values of the optimized functions computed for any
problem ul yð Þ, 1� l� q can be transformed to the values of all the rest problems of the
family without the time-consuming recalculations of the partial criteria values fi yð Þ,
1� i� s according to (6).

The information compatibility of the problems from the family (7) allows
proposing the following scheme of parallel computations. Solving each particular
problem can be performed on a separate processor of the computational system; the
exchange of the obtained search information between the processors should be per-
formed in the course of computations.

As a result, a unified approach to the parallel computations for the multiprocessor
computational systems with the distributed memory can be proposed in the following
way.

1. The family of the one-dimensional reduced information-linked problems U
!

yð Þ from
(7) is distributed among the processors of the computational system.

2. For solving the optimization problems from the family (7), the global optimization
method applied on each processor should be updated by the following rules:
(a) Prior to beginning a new global optimization iteration, for any problem ul yð Þ,

1� l� q at any point y0D, the point y should be transferred to all employed
processors in order to exclude the repeated computation of the criteria values
fi yð Þ, 1� i� s at this point. In order to perform the data transfer, a queue for

Parallel Computing for Time-Consuming 449



receiving the transferred points and the criteria values at these points can be
constructed at each computational node.

(b) Upon completing the iteration for any problem ul yð Þ, 1� l� q at any point y0D,
the point y0 with the particular criteria values fi yð Þ, 1� i� s computed at this
point should be transferred to all employed processors.

(c) Prior to beginning the next global search iteration, the method should check the
queue of the received messages; if there are any data in this queue, the received
information should be included into the search information Xk from (5).

The scheme of the parallel computing considered above provides the completeness

of the search information Xk from (5) for all problems from the family U
!

yð Þ.
The possibility of the asynchronous data transfer is a key feature of such a scheme

of the parallel computations. Besides, any single control node is absent in this scheme,
and the number of computational nodes can vary in the course of global optimization.

4 Parallel Methods for Solving the Multicriterial Global
Optimization Problems

The multiextremal optimization is a research area being developed actively – the current
state is presented, for example, in [9–11, 13, 14, 17, 18, 21]. The information-statistical
theory of global optimization is one of the promising approaches [10, 11, 15, 27, 31].
The high performance computing systems are used widely for solving the
time-consuming global search problems [11, 16, 24–26, 29–31].

4.1 Parallel Algorithm of Multicriterial Global Optimization

The approach is based on the following two statements:

• In order to reduce the complexity of the computational analysis of a multidimen-
sional search information Xk from (5), the reduction of the dimensionality of the
MCO problems is applied.

• For solving the problems from the family (3), the efficient global search algorithms
developed within the framework of the information-statistical theory of the multi-
extremal optimization [10, 11] are used.

These statements are presented in more details below.

The dimensionality reduction. Within the framework of the proposed approach, the
Peano space-filling curves or evolvents yðxÞ mapping the interval [0,1] onto the N-
dimensional hypercube D unambiguously (see, for example, [10–12]) were used for the
dimensionality reduction. As a result of such reduction, the initial multidimensional
global optimization problem (3) is reduced to a one-dimensional problem:

uðx�Þ ¼ min uðxÞ : x 2 ½0; 1�f g; ð8Þ

where u xð Þ ¼ F k; y xð Þð Þ.

450 V. Gergel and E. Kozinov



The dimensionality reduction scheme reduces the multidimensional problem (3)
with the Lipschitzian minimized function to a one-dimensional problem (8), where the
corresponding functions satisfy the uniform Hölder condition i.e.

F k; y x
0

� �� �

� F k; y x
00

� �� �
�

�

�

�

�

�
�H x

0 � x
00�

�

�

�

1=N
; x

0
; x

00 2 ½0; 1�; ð9Þ

where the Hölder constant H is defined by the relation H ¼ 4L
ffiffiffiffi

N
p

, L is the Lipschitz
constant from (4) and N is the dimensionality of the optimization problem (1).

As a result of the dimensionality reduction, the search information Xk from (5) can
be transformed into the Matrix of the Search State (MSS)

Ak ¼ ðxi; zi; liÞT : 1� i� k
� �

; ð10Þ

where xi, 1� i� k are the reduced points of the executed global search iterations1, zi,
1� i� k are the values of the scalar criterion of the optimization problem (8) being
solved, li, 1� i� k are the indices of the global search iterations, where the points xi,
1� i� k were computed.

The matrix of the search state can be used by the optimization algorithms in order
to improve the efficiency of the global search – selecting the points for the scheduled
iterations can be performed taking into account the results of all computations per-
formed before. Besides, the availability of the MSS allows computing the numerical
estimates of the Hölder constant H from (9)

m ¼ rM; M[ 0;
1; M ¼ 0;




M ¼ max
1\i� k

zi � zi�1j j
qi

ð11Þ

as the maximum values of the relative differences of the minimized function values
zi ¼ u xið Þ, 1� i� k on the set of points xi, 1� i� k. Hereafter qi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xi�1
N
p

,
1\i� k and the constant r, r[ 1 is the reliability parameter of the estimate of the
constant H.

The parallel algorithm. Within the proposed approach, for solving the reduced
one-dimensional multiextremal optimization subproblems (8), it is proposed to use
well-known Multidimensional Algorithm of Global Search (MAGS) developed within
the framework of the information-statistical theory of the multiextremal optimization
[10, 11]. This method has a good theoretical substantiation and has demonstrated a high
efficiency as compared to other global search algorithms (see also the results of
numerical experiments in Sect. 5).

For the sake of completeness, let us consider briefly the general computational
scheme of MAGS, which consists in the following.

Let us suppose that k, k[ 1 global search iterations have been executed already,
the optimization function values have been calculated at the previous iteration points
(hereafter these calculations will be called the trials), and the obtained search

1 The lower indices denote the increasing order of the coordinate values of the points xi, 1� i� k.

Parallel Computing for Time-Consuming 451



information has been represented in the form of Ak from (10). The trial point for the
next kþ 1ð Þth iteration is determined by the following rules.

Rule 1. Compute the characteristics R ið Þ for each interval ðxi�1; xiÞ, 1\i� k
from Ak

R ið Þ ¼ qi þ
zi � zi�1ð Þ2
m2qi

� 2 zi þ zi�1ð Þ
m

; 1\i� k ð12Þ

Rule 2. Determine the interval xt�1; xtð Þ with the maximum characteristic R(t) i.e.

R tð Þ ¼ max R ið Þ : 1\i� kf g ð13Þ

Rule 3. Compute the trial point of the next global search iteration xkþ 1 within the
interval t, 1\t� k from (13):

xkþ 1 ¼ xt þ xt�1

2
� zt � zt�1

2m
:

The termination condition is defined by the inequality

qt � e ð14Þ

which should be checked for the interval t from (13) and the quantity e[ 0 is the
predefined accuracy of the problem solution. If the termination condition is not ful-
filled, the iteration index k is incremented by 1, and the execution of the algorithm is
continued.

As the current estimate of the optimization problem solution, the minimum com-
puted value of the optimization function is accepted i.e.

z�k ¼ min zi : 1� i� kf g: ð15Þ

Additional information on the MAGS algorithm is given in [11]. Here, it should be
noted that the characteristics RðiÞ, 1\t� k from (12) can be interpreted as some
measures of importance of the intervals with respect to the location of the global
minimum point in these ones.

Within the framework of the proposed approach, the MAGS algorithm is applied to

solving every problem from the family U
!

yð Þ in combination with the general scheme
of the parallel computations presented in Sect. 3. The method obtained as a result of
such extension is called hereafter Parallel Multicriterial Global Algorithm (PMGA) for
high-performance computing systems with distributed memory.

4.2 Multilevel Parallel Algorithm of Multicriterial Global Optimization

The general scheme of parallel computations considered in Subsect. 4.1 can be extended
for the simultaneous computing of several minimized function values for every

452 V. Gergel and E. Kozinov



optimization problem from the family U
!

yð Þ on a separate multiprocessor multicore
node with shared memory. For this purpose, a parallel generalization of the MAGS
method can be applied – see, for example, [11, 16, 22]. This generalization consists in
the following.

Let p is the number of employed parallel computational units (processors or cores)
of a high-performance system node with shared memory. The rules of the parallel
algorithm correspond to the computational scheme of the MAGS method (see
Subsect. 4.1) except the rules of computation of the next global search iteration points.
Below, for the sake of brevity, the modified rules for the parallel algorithm only are
given.

Rule 2 (updated). Arrange the characteristics of the intervals obtained in (12) in the
decreasing order

R t1ð Þ�R t2ð Þ� . . .�R tk�1ð Þ�R tkð Þ ð16Þ

and select p intervals with the indices tj, 1� j� p having the maximum values of the
characteristics.

Rule 3 (updated). Perform new trials (the computations of the optimization function
values xð Þ) at the points xkþ j, 1� j� p located in the intervals with the maximum
characteristics from (16)

xkþ j ¼ xtj þ xtj�1

2
� sign ztj � ztj�1

� � 1
2r

ztj � ztj�1
�

�

�

�

m

� �N

; 1� tj � p:

The termination condition (14) in this case should be checked for all intervals from
(16), where the scheduled trials are performed i.e.

qtj � e; 1� tj � p:

The PMGA algorithm updated by the scheme of parallel computations for the
computational nodes with shared memory will be named hereafter Multilevel Parallel
Multicriterial Global Algorithm (MPMGA).

5 Results of Numerical Experiments

The numerical experiments have been carried out on the «Lobachevsky» supercom-
puter at State University of Nizhni Novgorod (the operating system – CentOS 6.4, the
supercomputer management system – SLURM). Each supercomputer node had 2 Intel
Sandy Bridge E5-2660 2.2 GHz processors, 64 Gb RAM. Each processor had 8 cores
(i.e. total 16 CPU cores were available at each node). To generate the executable
program code, Intel C++ 14.0.2 compiler was used.

At the very beginning, let us consider the results of comparison of the proposed
approach with a number of other multicriterial optimization algorithms presented in
[28]. For the comparison, the bi-criterial test problem proposed in [29] was used:

Parallel Computing for Time-Consuming 453



f1 yð Þ ¼ y1 � 1ð Þy22 þ 1; f2 yð Þ ¼ y2; 0� y1; y2 � 1: ð17Þ

As a solution of a MCO problem, a Pareto domain approximation (PDA) was
considered. To evaluate the efficiency of the computed approximations, the com-
pleteness and the uniformity of coverage of the Pareto domain were compared using the
following two indicators [28, 29]:

• The hypervolume index (HV) defined as the volume of the subdomain of the values
of the vector criterion f(y) dominated by the points of the Pareto domain approxi-
mation. This indicator characterizes the completeness of the Pareto domain
approximation (the higher the value, the more complete the coverage of the Pareto
domain).

• The distribution uniformity index (DU), which characterizes the uniformity of the
Pareto domain approximation (the less the value, the more uniform the coverage of
the Pareto domain).

Within the framework of the considered experiment, five multicriterial optimization
algorithms were compared: the Monte-Carlo (MC) method, the genetic algorithm
SEMO from the PISA library [20, 32], the Non-Uniform Coverage (NUC) method
[20], the Bi-objective Lipschitz Optimization (BLO) method proposed in [32], and the
serial version of the MPMGA algorithm proposed in the present paper. Total 50
problems (3) have been solved by MPMGA with various values of the convolution
coefficients k distributed in K from (3) uniformly. The results of experiments from [28]
are presented in the complete form in Table 1.

The results of the performed experiments have demonstrated that MPMGA has a
considerable advantage with respect to the considered multicriterial optimization
methods even when solving the relatively simple MCO problems.

The next numerical experiment has been carried out on solving the bi-criterial
two-dimensional MCO problems i.e. for N ¼ 2, s ¼ 2. As the problem criteria, the
multiextremal functions defined by the relations [11]:

/ y1; y2ð Þ ¼ � ABþACð Þ12;

Table 1. Results of numerical experiments from [28] for the test problem (17)

Method Iterations PDA points HV DU

MC 500 67 0.300 1.277
SEMO 500 104 0.312 1.116
NUC 515 29 0.306 0.210
BLO 498 68 0.308 0.175
MPMGA 370 100 0.316 0.101

454 V. Gergel and E. Kozinov



Where

AB ¼
X7

i¼1

X7

j¼1
Aijaij y1; y2ð ÞþBijbij y1; y2ð Þ �

� �2
;

CD ¼
X7

i¼1

X7

j¼1
Cijaij y1; y2ð Þ � Dijbij y1; y2ð Þ �

� �2

and

aij y1; y2ð Þ ¼ sin piy1ð Þ sin pjy2ð Þ; bij y1; y2ð Þ ¼ cos piy1ð Þ cos pjy2ð Þ

were used. These functions are defined in the range 0� y1; y2 � 1; and the parameters
�1�Aij;Bij;Cij;Dij � 1 are the independent random numbers distributed uniformly.

The solving of 100 multicriterial problems has been performed in these experi-
ments. To compute the Pareto domain approximation, each problem has been solved
for 50 coefficients k distributed in K from (3) uniformly. The obtained results were
averaged over the number of solved MCO problems.

The results of numerical experiments are presented in Table 2. The first two col-
umns in Table 2 denote the numbers of the processors (P) and of the parallel com-
putational cores on each processor (Q) employed. The third column (P*Q) contains the
total number of cores employed. In the fourth, fifth, and sixth columns, the numbers of
iterations necessary to find the solutions in given groups of problems from the family
(3) for the corresponding numbers of the different coefficients k from (3) are given. The
last two columns contain the speedups of the parallel computations obtained with the
use of the search information (S1) and without the one (S2).

The obtained results of experiments demonstrate that even simple reuse of the
search information allows reducing the total amount of computations 9.7 times without
the use of additional computational resources. When using 25 computational cores, one
can obtain the speedup from 9.3 up to 22.2 times. If 625 computational cores are used,
the speedup with the reuse of the search information reaches 106.3 times. The overall

Table 2. Results of a series of experiments for solving the two-dimensional bi-criterial MCO
problems

P Q P*Q 1–25 26–50 1–50 S1 S2
Computations without the reuse of the search
information
1 1 1 8 571,6 8 590,2 17 165,9 – 1
Computations with the reuse of the search information
1 1 1 1 199,5 573,9 1 773,4 1 9,7
1 25 25 52,1 27,6 79,7 22,2 215,4
25 1 25 135,1 54,8 189,8 9,3 90,4
5 5 25 66,8 37,1 103,9 17,1 165,2
25 25 625 8,6 8,1 16,7 106,3 1 029,1

Parallel Computing for Time-Consuming 455



speedup in this case relative to the initial algorithm without the reuse of the search
information was more than 1029 times.

6 Conclusion

In the present article, an efficient method for solving the time-consuming multicriterial
optimization problems, where the optimality criteria can be multiextremal and com-
puting the criteria values can require a large amount of computations has been pro-
posed. The key aspect of the developed approach consists in the overcoming of the
high computational complexity in solving the multicriterial optimization problems.
A considerable improvement of the efficiency and a significant reduction of the amount
of computations have been provided by means of the intensive use of the search
information obtained in the course of computations. Within the framework of the
developed approach, the methods for reusing the available search information for the
values of current scalar nonlinear programming problem being solved have been
proposed. The search information was used by the optimization methods for the
adaptive planning of the executed global search iterations.

The results of the numerical experiments have demonstrated such an approach to
allow reducing the computation costs of solving the multicriterial optimization prob-
lems considerably – tens and hundreds times.

In conclusion, one can note that the developed approach is a promising one and
requires further investigations. First of all, it is necessary to continue carrying out the
numerical experiments for solving the multicriterial optimization problems with more
partial criteria of efficiency and for a greater dimensionality of the optimization
problems being solved.

Acknowledgements. This work has been supported by Russian Science Foundation, project No
16-11-10150 “Novel efficient methods and software tools for time-consuming decision making
problems using superior-performance supercomputers.”

References

1. Mardani, A., Jusoh, A., Nor, K., Khalifah, Z., Zakwan, N., Valipour, A.: Multiple criteria
decision-making techniques and their applications – a review of the literature from 2000 to
2014. Econ. Res.-Ekonomska Istraživanja 28(1), 516–571 (2015). doi:10.1080/1331677X.
2015.1075139

2. Miettinen K.: Nonlinear Multiobjective Optimization. Springer, New York (1999)
3. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Heidelberg (2010)
4. Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies (Decision

Engineering). Springer, Heidelberg (2011)
5. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering.

Struct. Multidisciplin. Optim. 26, 369–395 (2004)
6. Figueira,J., Greco, S., Ehrgott, M. (eds.): Multiple Criteria Decision Analysis: State of the art

Surveys. Springer, New York (2005)

456 V. Gergel and E. Kozinov

http://dx.doi.org/10.1080/1331677X.2015.1075139
http://dx.doi.org/10.1080/1331677X.2015.1075139


7. Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems.
Comput. Optim. Appl. 44, 249–273 (2009)

8. Siwale, I.: Practical multi-objective programming. Technical Report RD-14-2013. Apex
Research Limited (2014)

9. Pintér, J.D.: Global optimization in action (continuous and Lipschitz optimization:
algorithms, implementations and applications). Kluwer Academic Publishers, Dordrecht
(1996)

10. Strongin, R.G.: Numerical Methods in Multiextremal Problems: Information-Statistical
Algorithms. Nauka, Moscow (1978). (in Russian)

11. Strongin, R., Sergeyev, Ya.: Global Optimization with Non-Convex Constraints. Sequential
and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000). 2nd edn. (2013).
3rd edn. (2014)

12. Sergeyev Y.D., Strongin R.G., Lera D.: Introduction to Global Optimization Exploiting
Space-Filling Curves. Springer, New York (2013)

13. Floudas, C.A., Pardalos, M.P.: Recent Advances in Global Optimization. Princeton
University Press, Princeton (2016)

14. Locatelli, M., Schoen, F.: Global Optimization: Theory, Algorithms, and Applications.
SIAM, Philadelphia (2013)

15. Sergeyev, Y.D.: An information global optimization algorithm with local tuning.
SIAM J. Optim. 5(4), 858–870 (1995)

16. Sergeyev, Y.D., Grishagin, V.A.: Parallel asynchronous global search and the nested
optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)

17. Törn, A., Žilinskas, A. (eds.): Global Optimization. LNCS, vol. 350. Springer, Heidelberg
(1989). doi:10.1007/3-540-50871-6

18. Zhigljavsky, A.A.: Theory of Global Random Search. Kluwer Academic Publishers,
Dordrecht (1991)

19. Marler, R.T., Arora, J.S.: Multi-Objective Optimization: Concepts and Methods for
Engineering. VDM Verlag, Saarbrucken (2009)

20. Hillermeier, C., Jahn, J.: Multiobjective optimization: survey of methods and industrial
applications. Surv. Math. Ind. 11, 1–42 (2005)

21. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog.
Aerosp. Sci. 45(1), 50–79 (2009)

22. Krasnoshekov, P.S., Morozov, V.V., Fedorov, V.V.: Decompozition in design problems.
Eng. Cybern. 2, 7–17 (1979). (in Russian)

23. Wierzbicki, A.: The use of reference objectives in multiobjective optimization. In: Fandel,
G., Gal, T. (eds.) Multiple Objective Decision Making, Theory and Application, vol. 177,
pp. 468–486. Springer, New York (1980)

24. Gergel, V., Sidorov, S.: A two-level parallel global search algorithm for solution of
computationally intensive multiextremal optimization problems. In: Malyshkin, V. (ed.)
PaCT 2015. LNCS, vol. 9251, pp. 505–515. Springer, Cham (2015). doi:10.1007/978-3-
319-21909-7_49

25. Barkalov, K., Gergel, V., Lebedev, I.: Use of Xeon Phi coprocessor for solving global
optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 307–318.
Springer, Cham (2015). doi:10.1007/978-3-319-21909-7_31

26. Gergel, V.: An unified approach to use of coprocessors of various types for solving global
optimization problems. In: 2nd International Conference on Mathematics and Computers in
Sciences and in Industry, pp. 13–18 (2015) doi:10.1109/MCSI.2015.18

27. Gergel, V.P., Grishagin, V.A., Gergel, A.V.: Adaptive nested optimization scheme for
multidimensional global search. J. Global Optim. 66(1), 1–17 (2015)

Parallel Computing for Time-Consuming 457

http://dx.doi.org/10.1007/3-540-50871-6
http://dx.doi.org/10.1007/978-3-319-21909-7_49
http://dx.doi.org/10.1007/978-3-319-21909-7_49
http://dx.doi.org/10.1007/978-3-319-21909-7_31
http://dx.doi.org/10.1109/MCSI.2015.18


28. Gergel, V., Kozinov, E.: Accelerating parallel multicriterial optimization methods based on
intensive using of search information. Procedia Comput. Sci. 108, 1463–1472 (2017)

29. Evtushenko, Y.G., Posypkin, M.A.: A deterministic algorithm for global multi-objective
optimization. Optim. Methods Softw. 29(5), 1005–1019 (2014)

30. Gergel, V., Lebedev, I.: Heterogeneous parallel computations for solving global optimization
problems. Procedia Comput. Sci. 66, 53–62 (2015). doi:10.1007/s10898-016-0411-y

31. Strongin, R., Gergel, V., Grishagin, V., Barkalov, K.: Parallel Computations for Global
Optimization Problems. Moscow State University, Moscow (2013). (in Russian)

32. Zilinskas, A., Zilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm
of bi-objective Lipschitz optimization to multidimensional problems. Commun. Nonlinear
Sci. Numer. Simul. 21, 89–98 (2015)

458 V. Gergel and E. Kozinov

http://dx.doi.org/10.1007/s10898-016-0411-y


A Functional Approach to Parallelizing
Data Mining Algorithms in Java

Ivan Kholod1(&), Andrey Shorov1, and Sergei Gorlatch2

1 Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
{iiholod,ashxz}@mail.ru

2 University of Muenster, Muenster, Germany
gorlatch@uni-muenster.de

Abstract. We describe a new approach to parallelizing data mining algorithms.
We use the representation of an algorithm as a sequence of functions and we use
higher-order functions to express parallel execution. Our approach generalizes
the popular MapReduce programming model by enabling not only data-parallel,
but also task-parallel implementation and a combination of both. We implement
our approach as an extension of the industrial-strength library Xelopes, and we
illustrate it by developing a multi-threaded Java program for the 1R classifica-
tion algorithm, with experiments on a multi-core processor.

Keywords: Parallel algorithms � Data mining � Parallel data mining �
Multithreads � Multi-core processors � MapReduce, homomorphisms

1 Motivation and Related Work

Data mining algorithms have become especially popular in analyzing Big data, and
their parallelization is in increasing demand, because they are often time-intensive.

Recent research in the field of parallel data mining [1] has created several paral-
lelization approaches for particular classes of data mining algorithms, e.g., for search
associations [2], clustering [3], building decision tree [4], etc. However, these indi-
vidual approaches have high complexity and require much development and debugging
effort. A popular alternative is the MapReduce programming model [5, 6] that relies on
the functions map and reduce used in functional programming and is especially effi-
cient for data-parallel functions called homomorphisms [7, 8]. MapReduce was used in
[9] for a subclass of data mining algorithms that correspond to the Statistical Query
Model. The libraries Apache Spark Machine Learning Library [10] and Apache
Mahout [11] also contain data mining algorithms based on MapReduce.

The restrictions of MapReduce in the area of data mining are as follows: we need to
find customizing functions for the map and reduce phases; only data parallelism is
supported; parallelization is done only within a single loop iteration over the data set,
while many data mining algorithms possess a more complex parallel structure.

Our contribution in this paper is a novel approach to parallelizing algorithms of data
mining. Like MapReduce, our approach is based on the principles of functional pro-
gramming, but it facilitates a more flexible parallelization, including task-parallel
execution and parallelization across the loop iterations. We implement our approach as

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 459–472, 2017.
DOI: 10.1007/978-3-319-62932-2_44



an extension of Xelopes – a commercial Java-based library for data mining. The
extended library allows the developer to transform a sequential data mining algorithm
into several parallel versions, efficiently running on modern multi-core processors.

2 The Formal Functional Approach

2.1 Data Mining Algorithm as a Composition of Functions

A data mining algorithm is represented in our approach as a function that takes a data
set d2D as input and builds a mining model m2M as output:

dma : D ! M ð1Þ

where D is a type of data sets, and M is a type of mining models. We use capital letters
to denote types and lower case letters for variables of these types and functions.

A data set contains characteristics of objects (e.g., persons, items, or courses)
described by attributes (such as age, height, weight, or gender). Thus, a data set is often
represented as a 2-dimensional array, e.g., for z objects and p attributes [12, 13]:

d ¼ xj:k
� �z;p

j¼1;k¼1 ð2Þ

where xj.k is the value of kth attribute for jth object. The set of possible values of kth

attribute is denoted as Defk (xj.k 2 Defk). A row in matrix (2) is called a vector.
A mining model comprises elements that describe knowledge from a data set, e.g.,

classification or association rules, cluster centers, decision tree nodes, etc. We represent
a mining model m 2 M as an array of mining model’s elements ei, i = 0…w:

m ¼ e0; e1; . . .; ew½ �: ð3Þ

We represent a data mining algorithm as a composition of functions, e.g.:

dma ¼ fn � fn�1 � . . . � fr � . . . � fs. . . � f1 � f0; ð4Þ

where function f0 : D ! M takes a data set d 2 D as an argument and returns a mining
model m0 2 M, adding information about the data set into the mining model, and
functions ft: M ! M, t = 1..n take the mining model mt − 1 2 M created by the
previous function ft − 1 and return the changed mining model mt 2 M. We will call that
functions as a Functional Mining Block (FMB).

A data mining algorithm as a composition of functions (4) looks like Fig. 1:

f0 f1 fn-1 fn
m1 fr fs

msd mr-1 mn-2mr ms-1 mn-1m0 mn

Fig. 1. Data mining algorithm as a composition of functions.

460 I. Kholod et al.



To express loops in our algorithms, we define a loop as a higher-order function that
applies a FMB ft to the mining model’s elements starting from index is till index i.e.:

loop : I ! I ! ðM ! MÞ ! M ! M
loop is ie ft m ¼ ðftie � ftie � 1 � . . . � ftisÞ m ð5Þ

where I is a set of mining model’s arrays indices; ftih are the FMBs which execute the
FMB ft for the mining model’s element with index ih (is < ih < i.e.). The FMB ftih can
be implemented as a composition of ft and a function selecting a certain mining model’s
element in the array with index ih.

2.2 Illustration for the 1R Algorithm

Listing 1 shows a 1R algorithm [14] as a pseudocode of its implementation in the Weka
library [15]. Let us illustrate how 1R can be represented in our approach. The 1R
algorithm builds mining model’s elements as simple classification rules. These rules
determine the value vt.p of a dependent attribute at (vt.p 2 Deft) using values vk.q of
independent attributes ak: k = 1..p, where vk.q 2 Defk:

if ak ¼ vk:q
� �

then at ¼ vt:p
� �

:

They are included into the mining model as a tuple <ak, vk.q, vt.p>.

A Functional Approach to Parallelizing Data Mining Algorithms 461



According to our approach, we represent the 1R algorithm (Listing 1) as a com-
position (4) of functions ft, t = 0..n. The array of the mining model’s elements for the
1R algorithm (initialized by function f0) can be split in the following disjoint sets:

m1R ¼ mA [mV [mT [mX [mR [mC [mCR ð6Þ

• mA is the subset of mining model’s elements with information about the attributes
of the matrix (2), with indices in [0, p − 1] (where p is the number of attributes);

• mV is the subset of mining model’s elements containing information about the
independent attribute’s values with indices in [v1, v2], where v1 = p, v2 = p +
p�|Defk|;

• mT is the subset of mining model’s elements, containing information about the
dependent attribute’s values, with indices in [t1, t2], where t1 = v1, t2 = t1 + |Deft|;

• mX is the subset of mining model’s elements with information about the vectors of
the matrix (2), with indices in [x1, x2], where x1 = t2 + 1, x2 = x1 + z+1 (z is the
number of vectors);

• mR is the subset of mining model’s elements, containing information about the
created rules R (Listing 1), with indices in [r1, r2], where r1 = x2 + 1, r2 = r1 +
|R|;

• mC is the subset of mining model’s elements, containing value of array count
(Listing 1), with indices in [c1, c2], where c1 = r2 + 1, c2 = c1 + p�|Defk|�|Deft|;

• mCR is subset of mining model’s elements, containing information about the
candidate-rules CR (Listing 1), with indices in [cr1,cr2], where cr1 = c2 + 1,
cr2 = cr1 + |CR|.

The representation of the 1R algorithm according to the schema (4) comprises the
following FMBs:

• f1 is the loop for the mining model’s elements of the subset mA (line 1 in Listing 1):
f1 = loop 0 p − 1 (f13°f10°f4°f2);

• f2 is the loop for mining model’s elements of the subset mX (lines 2–3 in Listing 1):
f2 = loop x1 x2 f3;

• f3 increments the count array element for each independent k-th and dependent t-th
attributes and each vector of a data set (line 3);

• f4 is the loop for mining model’s elements of the subset mV (lines 4–9 in Listing 1):
f4 = loop v1 v2 (f9°f8°f5);

• f5 is the loop for mining model’s elements of the subset mT (lines 5–7 in Listing 1):
f5 = loop t1 t2 f6,

• f6 searches for the maximum value in matrix count (lines 6–7 in Listing 1);
• f8 adds the rule for the maximum value (line 8 in Listing 1);
• f9 counts the number of vectors which relevant to rules CR (line 9 in Listing 1);
• f10 selects the set of rules (R or CR) with maximum the number of relevant vectors

(lines 10–12 in Listing 1);
• f11 clears the set of candidate rules (line 13 in Listing 1).

462 I. Kholod et al.



Thus, we can represent the 1R algorithm as a composition of functions as follows:

1R ¼ f1 � f0 ¼
ðloop 0 p�1 f11 � f10 � f4 � f2Þ � f0 ¼
ðloop 0 p�1 f11 � f10 � ðloop v1 v2 f9 � f8 � f5Þ � loop x1 x2 f3ð ÞÞ � f0 ¼
ðloop 0 p�1 f11 � f10 � ðloop v1 v2 f9 � f8 � ðloop t1 t2 f6ÞÞ � loop x1 x2 f3ð ÞÞ � f0

ð7Þ

2.3 Functions for Parallelization

In representation (4), parallel execution of FMBs ft and ft + 1 is possible if the data
dependency between them allows it. We introduce the following identifications for
FMBs: In(ft) is subset of mining model elements used by FMB ft; Out(ft) is subset of
mining model elements modified by FMB ft. According to the Bernstein’s conditions
[16], two FMBs ft and ft + 1 can be executed in parallel in systems with share memory if
and only if:

• there is no data anti-dependency: In(ft) \ Out(ft + 1) = ∅;
• there is no data flow dependency: Out(ft) \ In(ft + 1) = ∅;
• there is no output dependency: Out(ft) \ Out(ft + 1) = ∅.

For parallel execution of FMBs, we introduce the higher-order function fork that
takes a list of FMBs and a mining model, applies each FMB from the list to the mining
model and returns the list of the resulting mining models:

fork : ½M ! M� ! M ! M½ �
fork ½f1; . . .; fk� m ¼ ½f1 m; . . .; fkm� ¼ ½m1; . . .; mk� ð8Þ

In this function, all calls to FMBs from the list can be executed in parallel, such that
the mining models (m1,…,mk) are built in parallel.

We use the function join to combine the source mining model (1st argument) and
mining models (2th argument) that are built by several FMBs:

join : M ! M½ � ! M ð9Þ

The implementation of the join function depends on the structure of the particular
mining model.

Using the introduced functions, we define the higher-order function parallel for the
parallel execution of FMBs:

parallel : ½ðM ! MÞ� ! M ! M
parallel ½f1; . . .; fk� m ¼ join m fork ½f1; . . .; fkð � mÞ ð10Þ

Different FMBs fs, …, fr can be computed in parallel using function parallel (10)
according to the principle of task parallelism.

A Functional Approach to Parallelizing Data Mining Algorithms 463



Data parallelism can be implemented by applying the function parallel to the
function loop (5). If a data mining algorithm is represented by (4), a FMB fr is a loop
(fr � loop is ie ft) and the FMB ft for mining model’s elements of array with index
i satisfy the Bernstein’s conditions, then the FMB fr can be executed in parallel:

loop isieft ¼ parallel ftis; . . .; ftie � 1; ftie½ �:

Thus parallelizing a loop for vectors is a generalization of MapReduce: FMB ft is an
analog of the map function and the function join (9) is an analog of the reduce function.
Additionally, unlike the MapReduce, the parallel function can be used multiple times
to parallelize different parts of the algorithm.

Thus, a data mining algorithm is parallelized in our approach in three steps:

(1) represent the algorithm as a composition (4) of functions ft, t = 0..n;
(2) verify Bernstein’s conditions for FMBs fs … fr for sequence of the FMBs;
(3) transform the sequential execution of the FMBs fs … fr into the parallel execution

by using the parallel function:

fn � . . . � fr þ 1 � fr � . . . � fs � fs � 1 � . . . � f0 ¼ fn � . . . � fr þ 1 � ðparallel½fs; . . .; fr�Þ � fs � 1 � . . . � f1 � f0

The parallel execution of a data mining algorithm is shown in the Fig. 2.

2.4 Illustration: The 1R Algorithm

In our approach, the sequential form of the 1R algorithm (7) can be transformed into
parallel form as follows. The Bernstein’s conditions are verified based on Listing 1. For
example, sets of the used and modified mining model’s elements for f8 and f9 are
determined based on line 8 and line 9 of the pseudocode:

Inðf8Þ ¼ fak; vk:q; vt:mi; count k½ � vk:q
� �

vt:mi½ �g; Outðf8Þ ¼ fCR k½ �g
Inðf9Þ ¼ fcorrectVectors; count k½ � vk:q

� �
vt:mi½ �g; Outðf9Þ ¼ fcorrectVectorsg:

For these FMBs, the Bernstein’s conditions are satisfied: In(f8) \ Out(f9) = ∅; Out
(f8) \ In(f9) = ∅; Out(f8) \ Out(f9) = ∅.

Verifying the Bernstein’s conditions for all FMBs allows us to obtain the following
variants of the 1R algorithm (differences between the variants are indicated by the bold
underline font) with parallel execution of:

parallel

f0 fork

fs (ms-1)

fs+1(ms-1)
join fn

d m0 ms-1
fs, ms-1 mn-1

m’s+1 mr mn

fr(ms-1)fr, ms-1

m’s

m’r

ms-1

Fig. 2. Parallel execution of the data mining algorithm

464 I. Kholod et al.



• the loop for vectors f2 (variant 1RParVec):

1RParVec = (loop 0 p-1 f11°f10

°(loop v1 v2 f9°f8° (loop t1 t2 f6))
°(parallel [loop x1 x2 f3]))°f0

ð11Þ

• the loop for values of dependent attribute f5 (variant 1RParVal):

1RParVal = (loop 0 p-1 f11°f10

° (parallel [loop v1 v2 f9°f8°(loop t1 t2 f6)] )
° (loop x1 x2 f3))°f0 

ð12Þ

• the FMB adding a rule for the number of relevant vectors f8 and counting the
number of relevant vectors for current independent attribute ak f9 (variant
1RParFMB):

1RParFMB = (loop 0 p-1 f11°f10

°(loop v1 v2 (parallel [f8, f9])°(loop t1 t2 f6))
°(loop x1 x2 f3))°f0

ð13Þ

Note that the variant 1RParVec is the traditional way of parallelizing using the
MapReduce, while 1RParVal can be implemented by applying MapReduce to the
values of an independent attribute. The variant 1RParFMB realizes task parallelism that
cannot be implemented by MapReduce. Additionally, we can combine all there variants
(variant 1RParAll) as follows, which is also not possible in MapReduce:

1RParAll = (loop 0 p-1 f11°f10

° (parallel [loop v1 v2 (parallel [f8, f9])°(loop t1 t2 f6)])
° (parallel [loop x1 x2 f3]))°f0

ð14Þ

3 Implementation of the Approach

We implement our approach as an extension of the commercial Java-based library
Xelopes [17] that comprises a broad variety of data mining algorithms.

3.1 Implementation of Functional Mining Block

Our implementation of the approach is a set of Java classes for parallel data mining
algorithms: they hide the details of parallel execution from the developer. Figure 3
shows the class diagram of the basic classes for implementation of the FMBs.

Any FMB in the library is implemented as a subclass of the MiningBlock class.
This class defines the abstract method execute(). In accordance with the definition
of FMB, method execute() takes one argument - a mining model (implemented as a
subclass of the EMiningModel class) - and returns the changed mining model.

A Functional Approach to Parallelizing Data Mining Algorithms 465



To implement a composition of FMBs and our two higher-order functions - loop
(5) and parallel (10) - we added in the library subclasses of the MiningBlock class.

The composition of FMBs is implemented by class MiningBlockSequence. Its
method the execute()sequentially calls FMBs from the sequence list. The
higher-order function loop (5) is implemented by the LoopMiningElementSet
class. The execute() method executes calls to the composition – iteration for
all elements from mining model array from indexStart till indexEnd.

The higher-order function parallel (10) is implemented by the ParallelBlock
class. The execute() method executes the blocks composition in parallel. It calls
FMBs in parallel with the fork() method, and unites the resulting mining models
with the join() method. The method fork() is also implemented in the Par-
allelBlock class. The method join() is implemented by the class that describes
the mining model for implemented data mining algorithm.

The whole data mining algorithm is implemented by a subclass of the class
MiningAlgorithm. It contains a sequence of all FMBs of the algorithm – blocks.
The data mining algorithm structure is formed by creating composition of the FMBs
blocks in the abstract method initBlocks(), which must be implemented in
subclass for particular data mining algorithm.

A mining model is built by the buildModel() method of the class Min-
ingAlgorithm. This method calls the methods initModel() and runAlgo-
rithm(). The method initModel() creates a new mining model and initializes it
by arrays of vectors and attributes, i.e., this method implements the f0 function. The
method runAlgorithm() executes FMBs from the sequence blocks, i.e., it
executes the whole data mining algorithm.

Fig. 3. Class diagram of basic functional mining blocks

466 I. Kholod et al.



3.2 Illustration: The 1R Algorithm

To develop different parallel variants of a data mining algorithm using our approach
and the library implementation, the developer performs the following steps:

(1) decompose the data mining algorithm into FMBs;
(2) implement the FMBs as subclasses of the MiningBlock class;
(3) implement the sequential data mining algorithm as a subclass of the Min-

ingAlgorithm class;
(4) verify the Bernstein’s conditions for each pair FMBs;
(5) implement the parallel variants for FMBs which satisfy the Bernstein’s conditions

using instances of the ParallelBlock class.

The step 1 for the 1R algorithm is described in Sect. 2.2; it produces expression (7).
In step 2, for example, IncrementCorrectVectorsCount class implements f3.

In step 3, we implement 1R in the method initBlocks. To implement 1R
according to (7), we create instances of all the FMBs of the algorithm. For example, for
the FMB f2 (the loop for array of vectors f2 = loop x1 x2 f3) we create the instance of
LoopMiningElementSet (matches the function loop) by a constructor with
arguments: x1 and x2 are the start and end indices of the processed mining model’s
elements; the instance of the IncrementCorrectVectorsCount class is the
FMB f3. Therefore, the developer only writes the following Java code:

The whole algorithm is implemented according to expression (7) in the init-
Blocks() method of the OneRAlgorithm class:

In step 4, the developer verifies the Bernstein’s conditions for all FMBs of the
algorithm (example is described in Sect. 2.4). The FMBs listed in Sect. 2.4 satisfy
them. The parallel variants for these FMBs are given by (11)–(14).

A Functional Approach to Parallelizing Data Mining Algorithms 467



In step 5, the developer transforms the sequential variant of 1R into parallel forms
using the instance of the ParallelBlock class. For example, to implement variant
1RParVec (13) and parallelize the loop for vectors (parallel [loop x1 x2 f3]), the
instance of LoopMiningElementSet is passed to the constructor of the Paral-
lelBlock class:

Similarly, other variants (11)–(14) are obtained from the sequential implementation
of 1R. For example, variant 1RParAll described by (14) is implemented in the
initBlocks() of the OneRAlgorithm class by changing few lines (these
changes for parallel variants are shown by the bold underline font):

Thus, the transformation of a sequential Java implementation to different parallel
variants in our library requires only changing few lines of code.

4 Experimental Results

We perform several experiments for the implemented parallel versions of the 1R
algorithm. The experiments are conducted on various generated input data sets
(Table 1).

The experiments were run on a multi-core computer with the following configu-
ration: CPU Intel Xenon (8 cores), 2.90 GHz, 4 Gb. The parallel algorithms are exe-
cuted for different numbers of cores: 2, 4 and 8.

468 I. Kholod et al.



Figures 4, 5, 6 and 7 show the results of our experiments on the data sets from
Table 1 with the following parallel variants of the 1R algorithm: 1R according to the
expression (7); 1RParVec according to (11); 1RParVal according to (12); 1RParFMB
according to (13); 1RParAll according to (14).

Table 1. Parameters of experimental data sets

Name of input data set W10 m W50 m W100 m C1t C5t C10t

Number of vectors 107 5�107 108 1 000 1 000 1 000
Number of attributes 10 10 10 100 100 100
Avg. number of values of attributes 1 000 1 000 1 000 1 000 5 000 10 000

Fig. 4. Runtime of the 1RParVec variant of the 1R algorithm

Fig. 5. Runtime of the 1RParVal variant of the 1R algorithm

Fig. 6. Runtime of the 1RParFMB variant of the 1R algorithm

A Functional Approach to Parallelizing Data Mining Algorithms 469



We compare to the sequential implementation in Weka [15] and Rapid Miner [18].
The results of the experiments show good scalability: the more threads we employ on
the 8-core processor, the better speedup we achieve on up to 8 threads.

Our different variants of parallelism for the 1R data mining algorithm achieve
different efficiency (runtime of efficient variants are indicated by the bold font):

• parallelization of the loop for vectors (Fig. 4 left) is more efficient for the data sets
with large number of vectors (data sets: W10 m, W50 m, W100 m);

• parallelization of the loop for values of the dependent attribute (Fig. 5 right) is more
efficient for the data sets with large number of classes (C1t, C5t, C10t).

These results can be explained by the fact that longest part of the algorithm that
comprises the maximum number of iterations is parallelized. The parallel execution
compensates the overhead of preparing for parallel execution (creation and running of
threads, etc.) and subsequent processing (synchronization of threads, joining of mining
model, etc.). Parallelizing loops with a small number of iterations is inefficient: the
overhead significantly exceeds the effect of parallelization.

Bigger mining models (w.r.t. the number of vectors or values of attributes) increase
the overhead, which is reflected in the loss of performance of the 1RParVec variant for
the data set with large number of attribute values (Fig. 4 right) and the 1RParVal
variant for the data set with large number of vectors (Fig. 5 left). The 1RParFMB
variant (task parallelism) is inefficient for both types of data sets (Fig. 6), because of the
comparatively small runtime of parallel FMBs for the 1R algorithm, such that their
parallel execution does not compensate the overhead. We note that our experiments
with different task parallelism variants for the more time-intensive association algo-
rithm Apriori [2] show much better parallel performance. The 1RParAll variant that
combines both data and task parallelism demonstrates good performance for both
algorithms (Fig. 7).

5 Conclusion

This paper suggests a novel approach to parallelizing data mining algorithms based on
their functional representation. We demonstrate the generality of the approach and its
applicability for a particular example of the 1R algorithm.

Fig. 7. Runtime of the 1RParAll variant of the 1R algorithm

470 I. Kholod et al.



The advantages of our approach are as follows: (1) it is provably correct as based
on the formal transformations of functions; (2) it covers both data parallelism and task
parallelism and a combination of both; (3) it is implemented as an extension of the
commercial library Xelopes and can be effectively used to develop different
multi-threaded Java implementations by changing only few lines of program code.

Our library contains parallel implementations of several data mining algorithms (for
example association rules algorithms Apriori [2], clustering algorithm k-Means [3],
decision tree algorithm C 4.5 [4] and others) based on our approach.

Our experiments with different data sets on an eight-core processor show a good
performance of the parallel Java implementations of the 1R data mining algorithm.

Acknowledgments. This work was supported by the Ministry of Education and Science of the
Russian Federation in the framework of the state order “Organization of Scientific Research”,
task #2.6113.2017/BУ, and by the German Research Agency (DFG) in the framework of the
Cluster of Excellence Cells-in-Motion at the University of Muenster.

References

1. Paul, S.: Parallel and distributed data mining. In: Funatsu, K. (ed.) New Fundamental
Technologies in Data Mining, Karunya University, Coimbatore, India, pp. 43–54 (2011).
ISBN 978-953-307-547-1

2. Zaki, M.: Parallel and distributed association mining : a survey. IEEE Concurrency 7(4),
14–25 (1999)

3. Kim, W.: Parallel clustering algorithms: survey. In: CSC 8530 Parallel Algorithms. Spring
(2009). http://s3-us-west-2.amazonaws.com/mlsurveys/46.pdf

4. Satuluri, V.: A survey of parallel algorithms for classification (2007). http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.126.5567

5. Dean, J. Ghemawat, S.: MapReduce: simplified data processing on large clusters. In:
Proceedings of Operating Systems Design and Implementation. San Francisco (2004)

6. Lammel, R.: Google’s MapReduce programming model—revisited. Sci. Comput. Program.
70(1), 1–30 (2008)

7. Gorlatch, S.: Extracting and implementing list homomorphism in parallel program
development. Sci. Comput. Program. 33(1), 1–27 (1999)

8. Rasch, A., Gorlatch, S.: Multi-dimensional homomorphisms and their implementation in
OpenCL. Int. J. Parallel Prog. 45, 300–319 (2017)

9. Ng, A.Y., Bradski, G., Chu, C.-T., Olukotun, K., Kim, S.K., Lin, Y.-A., Yu, Y.Y.:
Map-Reduce for machine learning on multicore. In: Proceedings of the Twentieth Annual
Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 281–288
(2006)

10. Machine learning library (MLlib) guide. http://spark.apache.org/docs/latest/mllib-guide.html
11. Grant ingersoll, introducing apache mahout. http://www.ibm.com/developerworks/java/

library/j-mahout/
12. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining,

inference and prediction, 533 p. Springer, New York (2001)
13. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufman,

San Francisco (2001)

A Functional Approach to Parallelizing Data Mining Algorithms 471

http://s3-us-west-2.amazonaws.com/mlsurveys/46.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.5567
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.5567
http://spark.apache.org/docs/latest/mllib-guide.html
http://www.ibm.com/developerworks/java/library/j-mahout/
http://www.ibm.com/developerworks/java/library/j-mahout/


14. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets.
Mach. Learn. 11, 63–90 (1993)

15. Witten, I.H., Eibe, F., Hall, M.A.: Data Mining Practical Machine Learning Tools and
Techniques, 3rd edn., 629 pp. Morgan Kaufmann, San Francisco (2011)

16. Bernstein, A.J.: Program analysis for parallel processing. IEEE Trans. Electron. Comput.
EC-15, 757–762 (1966)

17. Prudsys Xelopes. https://prudsys.de/en/knowledge/technology/prudsys-xelopes/
18. Rapid Miner. http://rapidminer.com/

472 I. Kholod et al.

https://prudsys.de/en/knowledge/technology/prudsys-xelopes/
http://rapidminer.com/


Parallel Calculation of Diameter Constrained
Network Reliability

Sergei N. Nesterov and Denis A. Migov(B)

Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia

cepera@inbox.ru, mdinka@rav.sscc.ru

Abstract. The problem of network reliability calculation in case of the
diameter constraint is studied. The problem of computing this charac-
teristic is known to be NP-hard. We introduce the parallel methods,
which are based on the well-known factoring method and on the factor-
ing method modification proposed by H. Cancela and L. Petingi. The
analysis of the numerical experiments has allowed us to set some impor-
tant parameters of the parallel algorithm for speeding up calculations.

Keywords: Network reliability · Parallel algorithm · Random graph ·
Diameter constraint · Factoring method

1 Introduction

In the present article we consider networks where links are subject to random
failures under the assumption that failures are statistically independent. Random
graphs are commonly used for modeling of such networks. As a rule, network
reliability is defined as some connectivity measure. The most common reliability
measure of such networks is the probability that all terminal nodes in the network
can keep connected together, given the reliability of each network node and edge.
The problem of calculation of network probabilistic connectivity is known to be
NP-hard. Nevertheless, it is possible to conduct the exact calculation of reliability
for networks with dimension of a practical interest by taking into consideration
some special features of real network structures and based on modern high-speed
computers [1,2].

Another popular measure of network reliability is the diameter constrained
network reliability (Petingi and Cancela, 2001 [3]). Further on we will use the
abbreviation DCNR for its notation. DCNR is a probability that every two nodes
from a given set of terminals are connected with a path of length less or equal to a
given integer. By the length of a path we understand the number of edges in this
path. This reliability measure is more applicable in practice, for example, in the
case of P2P networks. However, the problems of computing these characteristics

Supported by Russian Foundation for Basic Research under grants 16-37-00345,
16-07-00434.

c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 473–479, 2017.
DOI: 10.1007/978-3-319-62932-2 45



474 S.N. Nesterov and D.A. Migov

are known to be NP-hard. Moreover, DCNR calculation problem is NP-hard
for most combinations of a diameter value and a number of terminals [4]. In
our previous studies we have obtained some methods for speeding up DCNR
calculations [5].

However, despite the improvements achieved on the efficiency of the com-
putational methods for reliability analysis, they still are ineffective and so their
parallel realizations are needed for executing on the modern supercomputers.
By now we have in this area only the parallel approach for estimation of net-
work reliability by Monte Carlo technique [6] and the parallel implementation
of the well-known factoring method, which was proposed in one of our previous
study [7].

In this paper we propose the parallel method for DCNR calculating. The
proposed method is based on the well-known sequential factoring method [2].
We have chosen the fastest modification [3] of factoring method for DCNR cal-
culation with the improvements proposed in [5]. For parallel implementation we
chosen “Master-Slave” parallel programming model, as we have done for calcu-
lation of network probabilistic connectivity [7]. The analysis of the numerical
experiments results allows us to optimize some important parameters of the
algorithm which further increase its speedup and scalability.

2 The Basic Definitions and Notations

A network with perfectly reliable nodes and unreliable edges is modeled by an
undirected random graph G = (V,E) with given presence probabilities 0 ≤ re ≤
1 of any edge e ∈ E. There is also a given set of terminals K ⊆ V , that is, the
nodes of the network G which should be connected via operational edges to the
network to operate well.

Assume Q = (V,EQ) is a subgraph of the graph G where EQ is defined by
existence or absence of each edge e ∈ E. An edge e is called operational if it
exists in E′, otherwise we call it faulty. Q is usually called as an elementary
event. Hence the count of possible elementary events is 2|E|. The probability of
an elementary event Q could be calculated by multiplying the product of prob-
abilities of absence of faulty edges and the product of probabilities of existence
of operational edges.

A reliability with diameter constraint d of network G is defined as the sum of
probabilities of elementary events in which every pair of terminals u, v ∈ K can
be connected by a path p of length at most d, where the length of the path p is
the number of edges belonging to this path. We denote this reliability measure
by Rd

K(G).

3 Methods for DCNR Calculation

In practice, it is no use computing of DCNR directly by the definition because
this approach should result to an exhaustive search of all graph realizations.



Parallel Calculation of Diameter Constrained Network Reliability 475

Therefore the other methods are used for calculation of different reliability mea-
sures. The most common method among them is the factoring method [2], which
can be applied to any network reliability measure, including DCNR. The factor-
ing method divides the probability space into two sets, based on the success or
failure of one graph particular unreliable element: a node or an edge. For DCNR
we have the following formula:

Rd
K(G) = reR

d
K(G/e) + (1 − re)Rd

K(G\e), (1)

Where G\e is graph G without edge e, G/e is graph G with absolutely reliable
edge e. Recursions continue until a graph is obtained, in which at least one pair of
terminals cannot be connected by path of limited length (returns 0), or all pairs
of terminals are connected by absolutely reliable paths of limited length (returns
1). Further on we refer to this method as SFM (simple factoring method).

A modified factoring method for DCNR calculation was proposed by Cancela
and Petingi [3]. Further on we refer to this method as CPFM (Cancela & Petingi
factoring method). This method is much faster than basic factoring method in
the diameter constrained case (1). The main feature of the modified factoring
method is operating with list of paths instead of operating with graphs. In the
preliminary step for any pair of terminals s, t the list Pst(d) of all paths with
limited length between s, t is generated. It automatically removes all edges which
do not belong to any such path from consideration. For example, all so called
“attached trees” without terminals are no longer considered. By Pd the union of
Pst(d) for all pairs of terminals is denoted. By P (e) the set of paths of Pd which
include link e is denoted. Parameters of the modified factoring procedure are not
graphs. Instead of graphs we use 6 parameters, which describe the corresponding
graph from the viewpoint of Pd.

One of the main reasons, why the calculation of diameter constrained network
reliability much more complicated in comparison with other network reliability
measures, is the lack of methods for decreasing of recursions quantity. In our
previous studies [5] we have obtained such methods which can make DCNR
calculation faster. These methods are the analogue of the well-known series-
parallel transformation for CPFM, and the pivot edge selection strategy. Also
we have obtained decomposition methods for calculating DCNR in two terminal
case. Obtained methods allow to significantly reduce the number of recursive
calls in CPFM and complexity of DCNR computation.

4 Parallel Computation of DCNR

In this section we introduce an algorithm with use of MPI for DCNR calculation
for supercomputers with distributed memory.

During the factoring procedure two subtasks are created: “contraction” and
“removal” of edge e. So one part of this work (for example, “contracting”) could
be sent to some idle process while another one will be evaluated in current
process. If all of the processes are busy now, then both tasks should be performed
in current process.



476 S.N. Nesterov and D.A. Migov

Unfortunately, this approach has a significant disadvantage. Since the algo-
rithm is based on the factorization formula, it is necessary to send the value
evaluated in the current process to the parent process to perform other mul-
tiplication and summation operations. Therefore this could lead to additional
sending operations, and the idle time could increase. For example, “contraction”
RK(G\e, d) of an edge e is performed in the first process and at the same time
“removal” RK(G/e, d) of this edge is performed in the second process. So, if
the first process is already finished, it should wait for response from the second
process to evaluate RK(G,D) = re × RK(G\e,D) + (1 − re) × RK(G/e,D).

As in our previous work on parallel computing of all-terminal network reli-
ability [7], we suggest sending a subtask to a helping process along with an
auxiliary parameter p which is the probability of obtaining this subtask, e.g. the
probability of graph realization to be sent. For the initial graph this parameter
is equal to 1. For the first “contraction” subtask this parameter equals to re and
for the first “removal” subtask this parameter equals to 1 − re. Please note that
on every step the current task could also have some probability p, so in general
the parameters are p ∗ re and p ∗ (1 − re). This approach allows to avoid back-
sending of the probability value calculated, and now it is possible to accumulate
on every process its own value. When all processes are finished, all values are
summed to get the exact probability value.

To implement the method described above we have chosen “Master-Slave”
parallel programming model in which one master process controls all the other
guided processes. This process is also responsible for summation of the involved
values. A guided process evaluates tasks received from the master process, sends
the results obtained back and then receives a new task. If it is necessary, the
guided process can ask the master process for help in the form of an idle process.

Master process

– Controls of all the other processes load.
– Sends the initial graph to one of the guided processes to calculate.
– When it receives a help request, it either declines it or sends the number of

an idle process back.
– Sums up all the values obtained on all the guided processes getting the exact

reliability value.

Guided process

– Is initialized as an idle at the beginning.
– After receiving a task it performs the factorization procedure (with use of

formula (1) or with use of CPFM). One of the subtasks remains on the current
process for the further calculations. Thereafter the process sends the help
request to the master process. According to the answer it either sends the
other subtask to the idle process or calculates this subtask itself.

– When all calculation are finished, it sends the accumulated value to the master
process and waits up to get the new task.



Parallel Calculation of Diameter Constrained Network Reliability 477

The difference between two parallel methods (CPFM and simple factoring)
is only the format of a data that should be sent. In the CPFM we work with the
list of structures instead of the graph, so the data size is much bigger. Therefore
sending of all the required data takes more time than in the simple factor-
ing method. Anyway, the CPFM itself is much faster than the basic factoring
method. So in the next chapter we try to figure out which method is better to
use in the parallel realization.

5 Case Studies

To compare the scalabilities of two parallel methods (CPFM and SFM) we have
choosen a grid 5 × 5 topology, it contains 25 vertices and 40 edges. In spite of its
small dimension, this graph is very hard for DCNR computing because it does
not applicable to various accelerating methods. The number of terminals was
set to 3 and the diameter was equal to 4 (Fig. 1). The terminals are nodes no.
12, 16, 20 when numbered from the upper left corner to the right. So using the
sequential factoring method the reliability value was calculated in 16 min 9.507 s
with 249602055 recursions. At the same time CPFM has finished in 0 min 0.061 s
with only 74 recursions. It was decided to make a data for CPFM more complex
in order to make both algorithms be finished in almost the same time. The
following parameters were set for CPFM: the number of terminals: 5, and the
diameter: 9. The terminals are nodes no. 1, 12, 16, 20, 23. With the new data
the CPFM finished in 16 min 35.16 s with 1154905688 recursions.

The experiments were made on the computing cluster HKC-30T of the
Siberian Supercomputer Center. This cluster consists of double-blade servers
HP BL2220 G6 with Intel Xeon 5540 2.53 GHz CPUs.

Fig. 1. Tested graph

The scalabilities of the both methods are almost the same: a speedup can be
observed till the number of cores is lower than 16. And when it is higher then
16, runtime became slower. Anyway, since the data for the CPFM is much more
complicated for the calculations, we can conclude that in parallel realizations
CPFM works much faster than the basic factoring method.

In [7] to speedup the calculation time of all-terminal reliability one important
parameter NEdges was introduced: the lower limit of a dimension of graph that
could be sent to another process. For example, it is useless to send a small
dimension graph to another process since it would be faster to calculate it in the



478 S.N. Nesterov and D.A. Migov

one process. The experiments have shown that this parameter is significantly
affect the working time of the algorithm. In the diameter constraint case the
analogue of NEdges was found: a lower limit of considered edges amount. So when
the edges amount in the current task is below this limit, the working process
stops sending help requests to the master process and executes all procedures
without any help.

Below we try to find optimal value of NEdges, which make the algorithm
faster, using the binary search. Figures 2 and 3 show the scalability of the pro-
posed algorithm for different values of NEdges. As we can see the optimal value
is between 10 and 20. Continuing the search is worthless because the difference
between 10 and 20 is 1 s only.

1 1632 64 128 256

101

102

103

number of cores

E
x
ec

u
ti
o
n
ti
m
e(
s)

n = 10
n = 15
n = 20
n = 30
n = 40

Fig. 2. Scalability of the simple factoring method

1 1632 64 128 256

101

102

103

(c
)

n = 10
n = 15
n = 20
n = 30
n = 40

Fig. 3. Scalability of the CPFM



Parallel Calculation of Diameter Constrained Network Reliability 479

The results show that the CPFM works well in parallel implementation for
supercomputers with distributed memory. The algorithm shows a linear speedup
for number of cores less than 256.

6 Conclusion

We introduce a parallel implementation of the factoring method for exact cal-
culation of network reliability in case of the diameter constraint. Also we have
suggested to set one important parameter of the proposed algorithm which sig-
nificantly improve its performance. The results of the numerical experiments
show that the CPFM works well in parallel implementation for supercomputers
with distributed memory. Our next primary goal is to further improve scalability
of the proposed algorithm. It seems that there are two ways to do this: to use
the several master processes or do not use them at all.

References

1. Won, J.-M., Karray, F.: Cumulative update of all-terminal reliability for faster fea-
sibility decision. IEEE Trans. Reliabil. 59(3), 551–562 (2010)

2. Page, L.B., Perry, J.E.: A practical implementation of the factoring theorem for
network reliability. IEEE Trans. Reliabil. 37(3), 259–267 (1998)

3. Cancela, H., Petingi, L.: Diameter constrained network reliability: exact evaluation
by factorization and bounds. In: International Conference on Industrial Logistics,
Okinawa, Japan, pp. 359–356 (2001)

4. Canale, E., Cancela, H., Robledo, F., Romero, P., Sartor, P.: Full complexity analysis
of the diameter-constrained reliability. Int. Trans. Oper. Res. 22(5), 811–821 (2015)

5. Migov, D.A., Nesterov, S.N.: Methods of speeding up of diameter constrained net-
work reliability calculation. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova,
M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA
2015. LNCS, vol. 9156, pp. 121–133. Springer, Cham (2015). doi:10.1007/
978-3-319-21407-8 9

6. Martnez, S.P., Calvino, B.O., Rocco, S.C.M.: All-terminal reliability evaluation
through a Monte Carlo simulation based on an MPI Implementation. In: Euro-
pean Safety and Reliability Conference: Advances in Safety, Reliability and Risk
Management (PSAM 2011/ESREL 2012), Helsinki, pp. 1–6 (2012)

7. Migov, D.A., Rodionov, A.S.: Parallel Implementation of the factoring method for
network reliability calculation. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS,
vol. 8584, pp. 654–664. Springer, Cham (2014). doi:10.1007/978-3-319-09153-2 49

http://dx.doi.org/10.1007/978-3-319-21407-8_9
http://dx.doi.org/10.1007/978-3-319-21407-8_9
http://dx.doi.org/10.1007/978-3-319-09153-2_49


Congestion Game Scheduling Implementation
for High-Throughput Virtual Drug Screening

Using BOINC-Based Desktop Grid

Natalia Nikitina1(&), Evgeny Ivashko1, and Andrei Tchernykh2

1 Institute of Applied Mathematical Research, Karelian Research Center,
Russian Academy of Sciences, Petrozavodsk, Russia
{nikitina,ivashko}@krc.karelia.ru

2 Computer Science Department, CICESE Research Center,
Ensenada, Baja California, Mexico

chernykh@cicese.mx

Abstract. Virtual drug screening is one of the most common applications of
high-throughput computing. As virtual screening is time consuming, a problem
of obtaining a diverse set of hits in a short time is very important. We propose a
mathematical model based on game theory. Task scheduling for virtual drug
screening in high-performance computational systems is considered as a con-
gestion game between computing nodes to find the equilibrium solutions for best
balancing between the number of interim hits and their chemical diversity. We
present the developed scheduling algorithm implementation for Desktop Grid
and Enterprise Desktop Grid, and perform comprehensive computational
experiments to evaluate its performance. We compare the algorithm with two
known heuristics used in practice and observe that game-based scheduling out-
performs them by the hits discovery rate and chemical diversity at earlier steps.

Keywords: Drug discovery � Virtual drug screening � High-performance
computing � High-throughput computing � Desktop grid � BOINC �
Scheduling � Game theory � Congestion game

1 Introduction

Drug development is a time-consuming process. It takes up to 10–15 years to develop a
new market-available drug [1]. One of the first stages of this process is an identification
of a set of chemical compounds called hits with predicted desired biochemical activity.
Hits are identified among a set of ligands, low-molecular compounds able to form a
biochemical complex with a protein molecule responsible for disease progression,
called a target.

With computer development of highly accurate specific disease models to validate
targets and bind ligands to targets, virtual screening [2] (VS) has emerged to aid this
stage of research. In the course of VS, one performs computer modeling of the
interaction of the candidate ligands with the target and scores the resulting molecular
complexes. The ligands with high scores become hits.

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 480–491, 2017.
DOI: 10.1007/978-3-319-62932-2_46



The chemical space of all small organic molecules, each of which might become a
drug for the studied disease, is estimated to have the order of 1060 [3]. The libraries that
are used in VS setups typically have size from hundreds of thousands to tens of
millions of molecules [4–7]. The largest database GDB-17 contains more than 166
billion molecules [8]. Performing VS over such large databases essentially requires
high-performance computational facilities. The exhaustive structure-based VS could
take over five months at one of the world’s fastest supercomputers Tianhe-2 [9].

With proper VS organization, the interim results can significantly contribute to the
research progress boost. Considering the long time interval to screen the whole ligand
library, it is important to obtain a diverse set of hits as soon as possible, so that they
could proceed to the next stage of research in laboratory without finding the rest.

In this contribution, we propose a method for reducing the explored ligands space
on the fly when performing structure-based VS to obtain diverse and useful results in a
short time. The method is based on mathematical model of task scheduling. We
develop an algorithm which promises the best balancing between the number of interim
hits and their diversity. The algorithm does not depend on the docking algorithm
implementation, the quality of protein and ligands models used for VS.

The model considers the heterogeneous environment with uncertainty of processing
time and workload, and limited knowledge about the input dataset structure. The
algorithm can be used to develop software based on a high-performance computing
cluster, a Grid system or a Cloud. In this paper, we concentrate on the algorithm
implementation for Desktop Grid and Enterprise Desktop Grid.

2 Related Work

In comparison with supercomputers and computational clusters, task scheduling in
Desktop Grids is more complicated because of such factors as huge hardware and
software heterogeneity, lack of trust, uncertainty, etc. A wide range of algorithms has
been proposed in the literature to address these challenges. The most popular opti-
mization parameters for task scheduling in Desktop Grids are the throughput [10, 11],
the makespan [12, 13], the probability to obtain a correct result [10, 14], etc.

The task replication in Desktop Grids as a method to achieve optimization aims is a
wide area of study [11, 14]. It often comes along with the notion of reliability or
credibility of the computing nodes [10, 11, 14]. The availability patterns predictions of
the computing nodes are also used to improve task scheduling in Desktop Grids [12].

Game-theoretic methods find their application for task scheduling in Desktop Grids
[15, 16]. The thesis [17] presents methods for the fair distribution of resources between
heterogeneous computing nodes in order to optimize throughput and average task
completion times, basing on optimization methods and game theory.

The problem of drug discovery imposes additional challenges to the task scheduling
in Desktop Grids. According to drug development principles, two primary character-
istics of the compounds resulting set have to be tested in the laboratory: efficiency of
their interaction with the target protein, and the chemical diversity [18, 19]. In general,
these two objectives are in conflict: an improvement of one leads to simultaneous

Congestion Game Scheduling Implementation 481



deterioration of another. Hence, we have to find solutions that balance them depending
on drug developers preferences.

The most conventional method to reduce input dataset for VS down to manageable
size is pre-filtering of the chemical space, leaving only representative and chemically
diverse compounds that promise to show desired biological activities. In many cases,
the resulting library is still large, VS results are redundant and require post-processing.
Compound classes that are potentially good for a specific target, but do not comply
with general considerations, can be filtered out [19]. Hence, it is important to develop
new efficient VS methods for large datasets.

A recent example of genetic algorithms application [20] has been published in
2015. The authors explore the chemical space by creating generations of molecules,
filtering them by desirable properties, and selecting maximally diverse sets of results.
The algorithm demonstrates high efficiency in selecting diverse subsets of molecules
with desired properties from large databases. Apart from genetic algorithms, compound
libraries can be prepared using dissimilarity analysis [21], clustering analysis [22],
partitioning methods [23] etc.

The mathematical model described in this paper has been elaborated in [24].

3 Congestion Game Model

Due to variations in chemical characteristics, molecules have different chances to show
high predicted binding affinity. One can expect that these chances are higher for
molecules close in topology to a known ligand [25, 26]. In contrast, molecules with
very large number of atoms are less likely to become hits [27]. Thus, non-overlapping
subsets of molecules in the library could be ranked by their prospectivity for VS.

The estimated prospectivity can be updated in the course of VS according to
interim results. At the same time, results originating from the same subset might be
redundant. The idea behind this work is to explore most prospective subsets first while
keeping the desired level of diversity by restricting intensity of subsets exploration.

Let us consider a computer system with m computational nodes or players
C ¼ C1; . . .Cm, and a set of computational tasks T (data) for VS processing. Each node
Ci is characterized by its computational performance opsi, which is an average number
of operations performed in a time unit.

The data set T is divided into n non-overlapping blocks T ¼ T1 [ . . . [ Tn of sizes
Ntotal
1 ; . . .;Ntotal

n such that the estimated portion of VS hits in block Tj will be pj. We
define priority of the block Tj as

rj ¼ pj
p1 þ . . .þ pn

; 0� rj � 1: ð1Þ

The blocks with higher priority have to be chosen first for processing. We assume
that all tasks in block Tj have average computational complexity hj, i.e., a number of
operations to process one task. Each node selects exactly one block.

The nodes make their decisions at time steps 0; s; 2s; . . .. After a node has pro-
cessed its portion of tasks, it sends the results to the server and is ready for the next

482 N. Nikitina et al.



portion. Let the utility of node Ci at time step s express the amount of useful work
performed during this step. This amount depends on the number of executed tasks from
the chosen block, its computational complexity, priority, and the number of other nodes
who have also chosen this block.

The fewer nodes explore block Tj simultaneously, the more valuable their work is.
This condition ensures diversification of the interim set of hits. Let nj be the number of
the players who have chosen block Tj at the considered step, and d nj

� �
be the con-

gestion coefficient for the block:

d nj
� � ¼ m þ 1 � nj

m
: ð2Þ

The utility of node Ci that chooses block Tj is

Uij ¼ rj þ d nj
� �� � opsi

hj
s: ð3Þ

Therefore, at each considered time step, we have a singleton congestion game
G ¼ C; T ;Uð Þ, where C is the set of players (computational nodes), T is the set of data
blocks of which each node selects exactly one, and U is the set of utility functions.
A strategy profile is a schedule s ¼ s1; . . .smð Þ, where the component si ¼ j equals to
the block Tj chosen by player Ci.

Such games have been thoroughly studied in literature. The existence of at least one
Nash equilibrium in pure strategies has been proven for the case of identical players
[28] and identical task blocks [29]. The equilibrium situation means that no node can
increase amount of its useful work by unilaterally deviating from the schedule.
Moreover, better- and best-response dynamics are guaranteed to converge to equilib-
rium in polynomial time [29, 30].

Heterogeneity complicates the model: utility of each player depends both on its
own performance, and on the task complexity of the chosen block. But due to the form
of utility functions, the game G has at least one Nash equilibrium in pure strategies
[31]. The Nash equilibrium situation means the best amount of useful work given the
current estimates of probabilities and the available set of nodes and molecules. Further
in this paper we show that the Nash equilibrium, for the most part, corresponds to the
best proportion between the chemical diversity and hits number.

4 Algorithm Implementation

4.1 Desktop Grids

Desktop Grid is a form of distributed high-throughput computing system, which uses
idle time of non-dedicated geographically distributed computing nodes connected over
low-speed network. The computing nodes are personal desktop computers of volun-
teers connected over Internet (volunteer computing) or organization desktop computers
connected over local area computer network (Enterprise Desktop Grid).

Congestion Game Scheduling Implementation 483



On the high-level, Desktop Grid has the following architecture. The main server
holds a large number of tasks that are mutually independent pieces of a computationally
heavy problem. Computing nodes are connected to the server. When they are idle, they
request a work from the server, receive one or more tasks, and process them inde-
pendently from each other. When the node finishes the processing, it reports results
back to the server. The results are then stored in the database for further usage.

The server does not distribute all available tasks because of internal uncertainties
present in Desktop Grid systems. These uncertainties are related to unknown avail-
ability periods of the nodes, their speed, node failures, possible computational errors,
variation of tasks complexities, etc. With heterogeneous nodes and heterogeneous
tasks, the scheduling system has variety of options how to assign different tasks to
different nodes or the groups of nodes.

4.2 BOINC Platform

There are a number of middleware systems for Desktop Grid computing. However, the
open source BOINC platform [32] is nowadays considered as de facto standard. Since
1990s, BOINC has been a framework for many independent volunteer computing
projects. Today, it is the most actively developed Desktop Grid middleware, which
supports the widest range of applications.

BOINC is based on server-client architecture, where the workflow proceeds as
described in the previous subsection. The client part is able to work at an arbitrary
number of computers with various hardware and software characteristics. The server
part consists of the Web server that provides functionality to employ volunteer com-
puting power, the database server that monitors the state of tasks and results, stores
information about the clients and the whole computational process, and a set of daemon
programs that periodically check the database state and implement necessary actions to
operate the system and distribute the tasks.

In addition to the standard components of the BOINC server, each computational
project might need individually developed utilities. One of them is a task generator,
which creates computational tasks with specified parameters and attributes. The client
application is developed individually for the project. This application can be either
developed from scratch under the BOINC platform or be adapted using a wrapper
program, which allows to run non-native applications under BOINC.

4.3 Implementation

In this section, we describe the Desktop Grid application, which implements our
approach to VS in BOINC Desktop Grid middleware based on resources of the
Karelian Research Center, RAS. The proposed implementation is intended for the
BOINC server version 7.7.0 as well as for earlier versions.

In order to implement task scheduling algorithm proposed in this paper, one needs
to implement the task generating program, modify the scheduler and assimilator dae-
mons at the server side, and implement the docking application for the client side.

484 N. Nikitina et al.



The BOINC server takes up every other part of the task workflow apart from the
modifications proposed in this subsection.

Below, we describe the necessary modifications.
Firstly, the task generator must be able to create computational tasks based on the

current knowledge about the input dataset structure, as defined in Sect. 3. According to
the mathematical model, the knowledge about input dataset structure is being updated
after each step of computations. Therefore, the task generator must consider the
Desktop Grid properties as well, in order to supply the necessary amount of tasks for
each subsequent step.

The task generator pseudo code is provided in Fig. 1.

Secondly, the scheduler must consider the current state of computational process
and assign new tasks to the clients who ask for work. The assignment is being per-
formed according to the equilibrium game schedule as described in Sect. 3.

The scheduler pseudo code is provided in Fig. 2.

1: for Molecule in Database 

2:  Properties = get_properties (Molecule) 

3:  Block = get_block (Properties) 

4:  create_task (Molecule, Block) 

Fig. 1. The task generator pseudo code.

1: if update signal received  

2:  Dataset_structure = get_dataset_structure (Database) 

    #s is the initial schedule vector where each client 

   #chooses a separate non-empty block 

3:  for i = 1 to m   #m is the number of BOINC clients 

4:   s[i] = i % n   #n is the number of non-empty blocks 

    #The optimal schedule vector is then calculated  

    #by finite improvements sequence starting from s 

    #according to the formulae (2)-(4) 

5:  Schedule = get_equilibrium (s, Dataset_structure) 

    #Each component of Schedule is the block number  

    #chosen by the corresponding BOINC client 

6: if request signal received 

7:  Client = client_id 

8:  Block = Schedule[Client] 

9:  Timespan = requested_timespan 

10: send_work (Client, Block, Timespan) 

Fig. 2. The scheduler pseudo code.

Congestion Game Scheduling Implementation 485



Thirdly, the assimilator must handle completed tasks. If the result is not erroneous,
it must be considered for updating the knowledge of the input dataset structure. The
assimilator pseudo code is provided in Fig. 3.

Finally, the client application must perform the molecular docking. According to
the BOINC system workflow for VS, the input files are the target structure, the ligand
structure and the docking configuration file. The output value is the predicted binding
energy. A variety of docking programs can be used as the client application for VS.

5 Experimental Setup

5.1 Database Preparation

In order to perform computational experiments and evaluate the performance of the
developed approach, we divide a molecules database into blocks and simulate VS. The
efficiency of the approach can be shown by earlier acquisition and higher diversity of
hits at early VS stages comparing with known heuristics used in practice.

We use the database GDB-9 of about 320 thousand enumerated organic molecules
with variety of chemical properties. The chosen database is manageable for performing
computational experiments and can be unambiguously divided into several
non-overlapping blocks. Nevertheless, the set of molecules is rich enough to demon-
strate the feasibility and practicability of proposed solutions.

For the experiments, we consider three pre-calculated chemical properties of each
molecule: the total number of atoms, the polar surface area PSA, and the partition
coefficient logP. Basing on these properties, we divide the database into 16
non-overlapping task blocks.

As 10% of molecules in GDB-9 have logP � x ¼ 1:8823, the value x ¼ 1:8823 is
taken as a threshold to count a molecule as a hit.

5.2 The Chemical Diversity Measure

We employ the knowledge about input dataset structure to describe and investigate the
chemical diversity of interim results. In perfect case, the fraction of hits discovered in

1: if Result received 

2:  if Result.error_mask != 0 

3:   handle_error (Result) 

4: else 

5:  if Result.value >= Hit_threshold 

6:   update Hits table in Database 

7:  update Blocks table in Database 

8:  send update signal 

Fig. 3. The assimilator pseudo code.

486 N. Nikitina et al.



each pre-defined block at each computational step should be equal for all the blocks.
We define the diversity of a result subset as expression (4) shows. Here, hi is the
number of hits in block Ti, pi is the estimation of hits fraction in the block, and Ntotal

i is
the initial block size.

D ¼ max
1� i� n

hi
piNtotal

i
� min

1� i� n

hi
piNtotal

i
: ð4Þ

In Subsection 5.4 we provide the dynamics of the chemical diversity obtained at
each computational step and show that the proposed scheduling algorithm outperforms
two scheduling heuristics at early steps.

5.3 Experimental Setup

We performed numerical experiments, simulating homogeneous and heterogeneous
Desktop Grid consisting of 64 computing nodes. As a first test case, we consider the
case with identical computational nodes and tasks of identical complexities. At the
second test case, we consider a Desktop Grid with heterogeneous nodes and hetero-
geneous tasks. The parameters of the simulations are provided in Table 1.

At each VS step, the optimal schedule is computed based on the current knowledge
about expected fractions of hits in blocks. After completion of the computations, the
expected fractions of hits are updated according to the number of hits discovered in
each block. Then a next step is performed, etc.

The performance of the proposed game scheduling, where each node selects a task
block defined by the Nash equilibrium, is compared with two simple scheduling
strategies: Probabilistic scheduling and Uniform scheduling. The probabilistic
scheduling strategy represents the case when the selection of a task block does not
depend on the congestion level of the block, but only on the probability to find a hit.
Simulation results for the probabilistic scheduling are averaged on 20 runs. On the
contrary, the uniform scheduling strategy ensures the least possible level of congestion,

Table 1. Simulation parameters.

Parameter Value Description
First test case Second test case

ops 25 15 (nodes C1–C16) Performance of a computational
node (number of conditional
operations per time unit)

20 (nodes C17–C32)
25 (nodes C33–C48)
30 (nodes C49–C64)

h 100 100 (blocks T1–T4) Complexity of a computational task
(number of conditional operations)125 (blocks T5–T8)

125 (blocks T9–T12)
150 (blocks T13–T16)

Congestion Game Scheduling Implementation 487



or the highest diversity, by distributing the nodes across task blocks uniformly, so, as
many diverse blocks are explored simultaneously as possible.

5.4 Experimental Analysis

In Figs. 4 and 5, we provide the rate of discovery hits during the first and second test
cases, respectively. Each discrete point represents the fraction of the total amount of
hits discovered at the corresponding step. The quality measure of such curves is their
proximity to the upper left corner of the chart.

To illustrate the performance in terms of obtained chemical diversity, in Figs. 6 and 7,
we provide the normalized chemical diversity obtained during the first and the second test
cases, respectively. The chemical diversity is defined by formula (4).

The presented results indicate that the game scheduling algorithm outperforms both
heuristics by the fraction of discovered hits at early steps. Performance of the proba-
bilistic algorithm is approximately equal to performance of the game scheduling

Fig. 4. Fraction of hits discovered at each
step of simulations (identical nodes, identical
tasks).

Fig. 5. Fraction of hits discovered at each step
of simulations (heterogeneous nodes, heteroge-
neous tasks).

Fig. 6. Normalized diversity obtained at each
step of simulations (identical nodes, identical
tasks).

Fig. 7. Normalized diversity obtained at each
step of simulations (heterogeneous nodes,
heterogeneous tasks).

488 N. Nikitina et al.



algorithm in terms of the speed of hits discovery. However, the performances in terms
of obtained chemical diversity at early steps differ significantly.

6 Conclusion and Discussion

In this paper, we present an implementation of congestion game-based scheduling
algorithm for high-throughput virtual drug screening using BOINC-based Desktop
Grid. It is based on the mathematical model of game theory, where task scheduling is
considered as a game with computing nodes as players, who choose specific data
blocks for processing. We show that the equilibrium solution corresponds to the best
balance between the number of interim hits and their chemical diversity. We discuss
key points of implementations: the task generating program, scheduler and assimilator
daemon at the server side, and present pseudo codes.

We perform computational experiments on the Enterprise Desktop Grid based on
resources of the Karelian Research Center, RAS. We compare the algorithm with two
known heuristics used in practice and observe that game-based scheduling outperforms
them by the hits discovery rate and chemical diversity at earlier steps.

However, further study is required to assess its performance and effectiveness in
multi objective domains. This will be the subject of future work. Moreover, game
equilibrium solutions stability and selection of the most efficient algorithms among all
equilibria are other important issues to be addressed.

Acknowledgments. This work is partially supported by the Russian Fund for Basic Research
under grants no. 16-07-00622 and 15-29-07974, and CONACYT (Consejo Nacional de Ciencia y
Tecnología, México) under grant no. 178415.

References

1. Pharmaceutical Research and Manufacturers of America (PhRMA). Biopharmaceutical
Industry Profile (2016). http://phrma.org/sites/default/files/pdf/biopharmaceutical-industry-
profile.pdf accessed 2017/05/14

2. Bielska, E., Lucas, X., Czerwoniec, A., et al.: Virtual screening strategies in drug design —
methods and applications. J. Biotechnol. Comput. Biol. Bionanotechnol. 92(3), 249–264
(2011)

3. Bohacek, R.S., McMartin, C., Guida, W.C.: The art and practice of structure-based drug
design: A molecular modeling perspective. Med. Res. Rev. 16(1), 3–50 (1996)

4. Irwin, J., et al.: ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52,
1757–1768 (2012)

5. Bento, A.P., et al.: The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42,
1083–1090 (2014)

6. Pence, H.E., Williams, A.: ChemSpider: an online chemical information resource. J. Chem.
Educ. 87(11), 1123–1124 (2010)

7. Bolton, E.E., et al.: Chapter 12 - PubChem: integrated platform of small molecules and
biological activities. Annu. Rep. Comput. Chem. 4, 217–241 (2008). Elsevier

Congestion Game Scheduling Implementation 489

http://phrma.org/sites/default/files/pdf/biopharmaceutical-industry-profile.pdf
http://phrma.org/sites/default/files/pdf/biopharmaceutical-industry-profile.pdf


8. Ruddigkeit, L., van Deursen, R., Blum, L.C., Reymond, J.-L.: Enumeration of 166 billion
organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model.
52, 2864–2875 (2012)

9. Liu, T., et al.: Applying high performance computing in drug discovery and molecular
simulation. Nat. Sci. Rev. 3(1), 49–63 (2016)

10. Yasuda, S., Nogami, Y., Fukushi, M.: A dynamic job scheduling method for reliable and
high-performance volunteer computing. In: 2nd International Conference on Information
Science and Security (ICISS 2015), pp. 1–4. IEEE (2015)

11. Sonnek, J., Chandra, A., Weissman, J.: Adaptive reputation-based scheduling on unreliable
distributed infrastructures. IEEE Trans. Parallel Distrib. Syst. 18(11), 1551–1564 (2007)

12. Byun, E., et al.: MJSA: Markov job scheduler based on availability in desktop grid
computing environment. Futur. Gener. Comput. Syst. 23, 616–622 (2007)

13. Gil, J.-M., Kim, S., Lee, J.: Task scheduling scheme based on resource clustering in desktop
grids. Int. J. Commun. Syst. 27(6), 918–930 (2014)

14. Miyakoshi, Y., Watanabe, K., Fukushi, M., Nogami, Y.: A job scheduling method based on
expected probability of completion of voting in volunteer computing. In: 2nd International
Symposium on Computing and Networking, pp. 399–405. IEEE (2014)

15. Wang, Y., et al.: Toward integrity assurance of outsourced computing — a game theoretic
perspective. Futur. Gener. Comput. Syst. 55, 87–100 (2016)

16. Donassolo, B., et al.: Non-cooperative scheduling considered harmful in collaborative
volunteer computing environments. In: Proceedings of 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 144–153 (2011)

17. Legrand, A.: Scheduling for large scale distributed computing systems: approaches and
performance evaluation issues. Distrib. Parallel, Clust. Comput. [cs.DC], Université
Grenoble Alpes, p. 167 (2015)

18. Tanrikulu, Y., Krüger, B., Proschak, E.: The holistic integration of virtual screening in drug
discovery. Drug Discov. Today 18(7/8), 358–364 (2013)

19. Lionta, E., Spyrou, G., Vassilatis, D.K., Cournia, Z.: Structure-based virtual screening for
drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem. 14,
1923–1938 (2014)

20. Rupakheti, C., Virshup, A., Yang, W., Beratan, D.N.: Strategy to discover diverse optimal
molecules in the small molecule universe. J. Chem. Inf. Model. 55, 529–537 (2015)

21. Ashton, M., et al.: Identification of diverse database subsets using property-based and
fragment-based molecular descriptions. Quant. Struct. Act. Relationsh. 21, 598–604 (2002)

22. Downs, G.M., Barnard, J.M.: Clustering methods and their uses in computational chemistry.
Rev. Comput. Chem. 18, 1–40 (2003)

23. Oprea, T.I., Gottfries, J.: Chemography: the art of navigating in chemical space. J. Comb.
Chem. 3, 157–166 (2001)

24. Nikitina, N., Ivashko, E., Tchernykh, A.: Congestion game scheduling for virtual drug
screening optimization. J. Comput. Aided Mol. Des. (2017). Manuscript submitted for
publication

25. Patterson, D.E., et al.: Neighborhood behavior: a useful concept for validation of “molecular
diversity” descriptors. J. Med. Chem. 39, 3049–3059 (1996)

26. Willet, P., Barnard, J.M., Downs, G.M.: Chemical similarity searching. J. Chem. Inf.
Comput. Sci. 38(6), 983–996 (1998)

27. Hann, M.M., Leach, A.R., Harper, G.: Molecular complexity and its impact on the
probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864
(2001)

28. Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game
Theor. 2(1), 65–67 (1973)

490 N. Nikitina et al.



29. Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ. Behav.
13, 111–124 (1996)

30. Ieong, S. et al.: Fast and compact: a simple class of congestion games. In: Proceedings of
AIII, pp. 1–6 (2005)

31. Gairing, M., Klimm, M.: Congestion games with player-specific costs revisited. In: Vöcking,
B. (ed.) SAGT 2013. LNCS, vol. 8146, pp. 98–109. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-41392-6_9

32. Anderson, D.P.: BOINC: A system for public-resource computing and storage. In:
Proceedings of 5th IEEE/ACM International Workshop on Grid Computing, pp. 4–10
(2004)

Congestion Game Scheduling Implementation 491

http://dx.doi.org/10.1007/978-3-642-41392-6_9
http://dx.doi.org/10.1007/978-3-642-41392-6_9


Globalizer – A Parallel Software System for Solving Global
Optimization Problems

Alexander Sysoyev(✉), Konstantin Barkalov, Vladislav Sovrasov,
Ilya Lebedev, and Victor Gergel

Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
alexander.sysoyev@itmm.unn.ru

Abstract. In this paper, we describe the Globalizer software system for solving
global optimization problems. The system implements an approach to solving the
global optimization problems using the block multistage scheme of the dimension
reduction, which combines the use of Peano curve type evolvents and the multi‐
stage reduction scheme. The scheme allows an efficient parallelization of the
computations and increasing the number of processors employed in the parallel
solving of the global optimization problems many times.

Keywords: Multidimensional multiextremal optimization · Global search
algorithms · Parallel computations · Dimension reduction · Block multistage
dimension reduction scheme

1 Introduction

The development of optimization methods that use high-performance computing
systems to solve time-consuming global optimization problems is an area receiving
extensive attention. The theoretical results obtained provide efficient solutions to many
applied global optimization problems in various fields of scientific and technological
applications. At the same time, the practical software implementation of these algo‐
rithms for multiextremal optimization is quite limited. Among the software for the global
optimization, one can select the following systems: LGO (Lipschitz Global Optimiza‐
tion) [14], GlobSol [11], LINDO [12], IOSO (Indirect Optimization on the basis of Self-
Organization) [3], MATLAB Global Optimization Toolkit [23], TOMLAB system [10],
BARON (Branch-And-Reduce Optimization Navigator) [15], GAMS (General Alge‐
braic Modeling System) [2], Global Optimization Library in R [13].

In this paper, a novel Globalizer software system is considered. The development of
the system was conducted based on the information-statistical theory of multiextremal
optimization aimed at developing efficient parallel algorithms for global search – see,
for example, [21, 22]. The Globalizer advantage is that the system is designed to solve
time-consuming multiextremal optimization problems. In order to obtain global opti‐
mized solutions within a reasonable time and cost, the system efficiently uses modern
high-performance computer systems.

© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 492–499, 2017.
DOI: 10.1007/978-3-319-62932-2_47



2 Statement of Multidimensional Global Optimization Problem

In this paper, the core class of optimization problems which can be solved by using
Globalizer is examined. This involves multidimensional global optimization problems
without constraints, which can be defined in the following way:

(1)

(2)

If  is an exact solution of problem (1)–(2), the numerical solution of the problem
is reduced to building an estimate  of the exact solution matching to some notion of
nearness to a point (for example,  where  is a predefined accuracy)
based on a finite number  of computations of the optimized function values.

Regarding to the class of problems considered, the fulfillment of the following
important conditions is supposed:

1. The optimized function φ(y) can be defined by some algorithm for the computation
of its values at the points of the domain D.

2. The computation of the function value at every point is a computation-costly oper‐
ation.

3. Function φ(y) satisfy the Lipschitz condition.

3 Globalizer Architecture

The Globalizer expands the family of global optimization software systems successively
developed by the authors during the past several years [1, 5].

The Globalizer architecture is presented in Fig. 1. The structural components of the
systems are:

– Block 0 is an external block. It consists of the procedures for computing the function
values (criteria and constraints) for the optimization problem being solved.

– Blocks 1–4 form the optimization subsystem for solving the global optimization
problems (Block 1), nonlinear programming (Block 2), multicriterial optimization
(Block 3), and general decision making problems (Block 4).

– Block 5 is a subsystem for accumulating and processing the search information.
– Block 6 contains the dimensional reduction procedures based on the Peano evolvents;

this block also provides interaction between the optimization blocks and the initial
multidimensional optimization problem.

– Block 7 organizes the choice of parallel computation schemes in the Globalizer
system subject to the computing system architecture employed (the numbers of cores
in the processors, the availability of shared and distributed memory, the availability
of accelerators for computations, etc.) and the global optimization methods applied.

Globalizer – A Parallel Software System 493



– Block 8 is responsible for managing the parallel processes when performing the
global search (determining the optimal configuration of parallel processes,
distributing the processes between computing elements, etc.).

– Block 9 is a management subsystem, which controls the computational process when
solving global optimization problems.

– Block 10 is responsible for organizing the dialog interaction with users for stating
the optimization problem, adjusting system parameters (if necessary), and visualizing
and presenting the global search results.

– Block 11 is a set of tools for visualizing and presenting the global search results; the
availability of tools for visually presenting the computational results enables the user
to provide efficient control over the global optimization process.

Optimization

Nonlinear 
programming Global 

Multi-criteria General

1 2

3 4

Search 
information 

5

Visualization

11

Parallel 
manager

8

Parallel 
scheme

7

Dimension 
reduction 

6

Manager

9

Dialog  
interaction

10

Function  
computation 

0

Fig. 1. Program architecture of Globalizer system (Blocks 1–2, 5–7 have been implemented;
Blocks 3–4 and 8–11 are under development)

4 Globalizer Approach for Solving the Global Optimization
Problems

4.1 Methods of Dimension Reduction

The Globalizer implements a block multistage scheme of dimension reduction [1], which
reduces the solving of initial multidimensional optimization problem (1)–(2) to the
solving of a sequence of «nested» problems of less dimensionality.

Thus, initial vector  is represented as a vector of the «aggregated» macro-variables

494 A. Sysoyev et al.



(3)

where the i-th macro-variable  is a vector of the dimensionality  from the components
of the vector  taken sequentially i.e.

(4)

where  and 
Using the macro-variables, the main relation of the well-known multistage scheme

can be rewritten in the form

(5)

where the subdomains , are the projections of the initial search domain 
onto the subspaces corresponding to the macro-variables .

It should be pointed that the nested subproblems

(6)

are the multidimensional ones in the block multistage scheme and this is the key differ‐
ence from the initial scheme. Thus, this approach can be combined with the reduction
of the domain  (for example, with the evolvent based on Peano curve) for the possibility
to use the efficient methods of solving the one-dimensional problems of the multiex‐
tremal optimization [20].

The Peano curve  lets map the interval of the real axis [0, 1] onto the domain D
uniquely:

(7)

The evolvent is the approximation to the Peano curve with the accuracy of the order
 where  is the density of the evolvent.
Application the mappings of this kind allows reducing multidimensional problem

(1)–(2) to a one-dimensional one

(8)

4.2 Method for Solving the Reduced Global Optimization Problems

The information-statistical theory of global search formulated in [22] has served as a
basis for the development of a large number of efficient multiextremal optimization
methods – see, for example, [6–9, 16–19], etc. Within the framework of information-
statistical theory, a general approach to parallelization computations when solving
global optimization problems has been proposed – the parallelism of computations is

Globalizer – A Parallel Software System 495



provided by means of simultaneously computing the values of the minimized function
 at several different points within the search domain.

The general computation scheme of Parallel Multidimensional Algorithm of Global
Search (PMAGS) that is implemented in Globalizer is fully described in [1].

4.3 Implementation of Parallel Algorithm of Global Optimization

Let us consider a parallel implementation of the block multistage dimension reduction
scheme described in Subsect. 4.1.

For the description of the parallelism in the multistage scheme, let us introduce a
vector of parallelization degrees

(9)

where  is the number of the subproblems of the -th nesting level
being solved in parallel, arising as a result of execution of the parallel iterations at the
-th level. For the macro-variable , the number  means the number of parallel trials

in the course of minimization of the function

with respect to  at fixed values of , i.e. the number of the values of the
objective function  computed in parallel.

In the general case, the quantities  can depend on various parameters
and can vary in the course of optimization, but we will limit ourselves to the case when
all components of the vector  are constant.

At every nested multistage dimension reduction level PMAGS is used. Let us remind
that the parallelization is implemented by selection not a single point for the next trial
(as in the serial version) but  points, which are placed into  intervals with the highest
characteristics. Therefore, if  processors are available,  trials can be executed in these
points in parallel. At a result, the solving of the problem at the i-th level generates p
subproblems for the -th level.

5 Numerical Results

The computational experiments were conducted using the Lobachevsky supercomputer
at the State University of Nizhny Novgorod (http://hpc-education.unn.ru/en/resources).
The problems generated by the GKLS-generator [4] were selected for the test problems.

The results of the numerical experiments with Globalizer on an Intel Xeon Phi are
provided in Table 1. The computations were performed using the Simple and Hard
function classes with the dimensions equal to 4 and 5.

496 A. Sysoyev et al.

http://hpc-education.unn.ru/en/resources


Table 1. Average number of iterations

p N = 4 N = 5
Simple Hard Simple Hard

I Serial computations
Average number of
iterations

1 11953 25263 15920 >148342(4)

II Parallel computations
on CPU
Speedup

2 2.51 2.26 1.19 1.36
4 5.04 4.23 3.06 2.86
8 8.58 8.79 4.22 6.56

III Parallel computations
on Xeon Phi
Speedup

60 8.13 7.32 9.87 6.55
120 16.33 15.82 15.15 17.31
240 33.07 27.79 38.80 59.31

In the first series of experiments, serial computations using MAGS were executed.
The average number of iterations performed by the method for solving a series of prob‐
lems for each of these classes is shown in row I. The symbol “>” reflects the situation
where not all problems of a given class were solved by a given method. It means that
the algorithm was stopped once the maximum allowable number of iterations Kmax was
achieved. In this case, the Kmax value was used for calculating the average number of
iterations corresponding to the lower estimate of this average value. The number of
unsolved problems is specified in brackets.

In the second series of experiments, parallel computations were executed on a CPU.
The relative “speedup” in iterations achieved is shown in row II; the speedup of parallel
computations was measured in relation to the serial computations (p = 1).

The final series of experiments was executed using a Xeon Phi. The results of these
computations are shown in row III; in this case, the speedup factor is calculated in
relation to the PMAGS results on a CPU using eight cores (p = 8).

6 Conclusion

In this paper, the Globalizer global optimization software system was presented for
implementing a general scheme for the parallel solution of globally optimized decision
making. The work is devoted to the investigation of the possibility to speedup the process
of searching the global optimum when solving the multidimensional multiextremal
optimization problems using the approach based on the application of the parallel block
multistage scheme of the dimension reduction.

This research was supported by the Russian Science Foundation, project No
16-11-10150 “Novel efficient methods and software tools for the time consuming deci‐
sion making problems with using supercomputers of superior performance”.

Globalizer – A Parallel Software System 497



References

1. Barkalov, K.A., Gergel, V.P.: Multilevel scheme of dimensionality reduction for parallel
global search algorithms. In: Proceedings of the 1st International Conference on Engineering
and Applied Sciences Optimization, pp. 2111–2124 (2014)

2. Bussieck, M.R., Meeraus, A.: General algebraic modeling system (GAMS). In: Kallrath, J.
(ed.) Modeling Languages in Mathematical Optimization, pp. 137–157. Springer, Boston
(2004). doi:10.1007/978-1-4613-0215-5_8

3. Egorov, I.N., Kretinin, G.V., Leshchenko, I.A., Kuptzov, S.V.: IOSO optimization toolkit -
novel software to create better design. In: 9th AIAA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Atlanta, Georgia (2002). http://www.iosotech.com/text/
2002_4329.pdf

4. Gaviano, M., Lera, D., Kvasov, D.E., Sergeyev, Y.D.: Software for generation of classes of
test functions with known local and global minima for global optimization. ACM Trans. Math.
Software 29, 469–480 (2003)

5. Gergel, V.P.: A software system for multiextremal optimization. Eur. J. Oper. Res. 65(3),
305–313 (1993)

6. Gergel, V.P.: A method of using derivatives in the minimization of multiextremum functions.
Comput. Math. Math. Phys. 36(6), 729–742 (1996)

7. Gergel, V.P.: A global optimization algorithm for multivariate function with Lipschitzian first
derivatives. J. Glob. Optim. 10(3), 257–281 (1997)

8. Gergel, V., Lebedev, I.: Heterogeneous parallel computations for solving global optimization
problems. Procedia Comput. Sci. 66, 53–62 (2015)

9. Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making. In:
Malyshkin, V.E. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 76–88. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45145-7_7

10. Holmström, K., Edvall, M.M.: The TOMLAB optimization environment. In: Kallrath, J. (ed.)
Modeling Languages in Mathematical Optimization. Applied Optimization, vol. 88, pp. 369–
376. Springer, Boston (2004). doi:10.1007/978-1-4613-0215-5_19

11. Kearfott, R.B.: GlobSol user guide. Optim. Methods Softw. 24, 687–708 (2009)
12. Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24, 657–

668 (2009)
13. Mullen, K.M.: Continuous global optimization in R. J. Stat. Softw. 60(6) (2014)
14. Pintér, J.D.: Global Optimization in Action: Continuous and Lipschitz Optimization:

Algorithms, Implementations and Applications. Springer, New York (1996). doi:
10.1007/978-1-4757-2502-5

15. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob.
Optim. 8(2), 201–205 (1996)

16. Sergeyev, Y.D.: An information global optimization algorithm with local tuning. SIAM J.
Optim. 5(4), 858–870 (1995)

17. Sergeyev, Y.D.: Multidimensional global optimization using the first derivatives. Comput.
Math. Math. Phys. 39(5), 743–752 (1999)

18. Sergeyev, Y.D., Grishagin, V.A.: A parallel method for finding the global minimum of
univariate functions. J. Optim. Theor. Appl. 80(3), 513–536 (1994)

19. Sergeyev, Y.D., Grishagin, V.A.: Parallel asynchronous global search and the nested
optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)

20. Sergeyev, Y., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-
Filling Curves. Springer, New York (2013). doi:10.1007/978-1-4614-8042-6

498 A. Sysoyev et al.

http://dx.doi.org/10.1007/978-1-4613-0215-5_8
http://www.iosotech.com/text/2002_4329.pdf
http://www.iosotech.com/text/2002_4329.pdf
http://dx.doi.org/10.1007/978-3-540-45145-7_7
http://dx.doi.org/10.1007/978-1-4613-0215-5_19
http://dx.doi.org/10.1007/978-1-4757-2502-5
http://dx.doi.org/10.1007/978-1-4614-8042-6


21. Strongin, R.G., Gergel, V.P., Grishagin, V.A., Barkalov, K.A.: Parallel Compucations for
Global Optimization Problems. Moscow State University, Moscow (2013). (In Russian)

22. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints:
Sequential and Parallel Algorithms. Springer, New York (2000). doi:
10.1007/978-1-4615-4677-1

23. Venkataraman, P.: Applied Optimization with MATLAB Programming. Wiley, Chichester
(2009)

Globalizer – A Parallel Software System 499

http://dx.doi.org/10.1007/978-1-4615-4677-1


A Novel String Representation and Kernel
Function for the Comparison

of I/O Access Patterns

Raul Torres(B) , Julian Kunkel , Manuel F. Dolz , and Thomas Ludwig

Scientific Computing Research Group, Universität Hamburg, Hamburg, Germany
raul.torres@informatik.uni-hamburg.de

Abstract. Parallel I/O access patterns act as fingerprints of a parallel
program. In order to extract meaningful information from these patterns,
they have to be represented appropriately. Due to the fact that string
objects can be easily compared using Kernel Methods, a conversion to a
weighted string representation is proposed in this paper, together with
a novel string kernel function called Kast Spectrum Kernel. The simi-
larity matrices, obtained after applying the mentioned kernel over a set
of examples from a real application, were analyzed using Kernel Prin-
cipal Component Analysis (Kernel PCA) and Hierarchical Clustering.
The evaluation showed that 2 out of 4 I/O access pattern groups were
completely identified, while the other 2 conformed a single cluster due
to the intrinsic similarity of their members. The proposed strategy can
be promisingly applied to other similarity problems involving tree-like
structured data.

Keywords: Kernel functions · Kast spectrum kernel · I/O access pat-
tern comparison · Kernel PCA

1 Introduction

I/O access patterns act as fingerprints of an application. The identification and
analysis of these patterns is important in High Performance Computing because
it helps, not only to understand the impact factors on the underlying Parallel
File System, but also to design better ways of organizing I/O operations. In
order to understand the correlation of a collection of patterns, two requirements
have to be met: (a) a proper representation able to abstract the relevant features
of each pattern and (b) an appropriate strategy to find similarities or dissim-
ilarities between the data in this new representation. To tackle (a) this paper
proposes a two-stage string conversion technique for access patterns. The first
stage transforms the data and reflects the containment relationships of the pat-
tern in a tree-like data structure. The second stage flattens the resulting tree and
simplifies the representation in a weighted string. In order to tackle (b) these
weighted strings are compared with a novel string kernel function called Kast
Spectrum Kernel.
c© Springer International Publishing AG 2017
V. Malyshkin (Ed.): PaCT 2017, LNCS 10421, pp. 500–512, 2017.
DOI: 10.1007/978-3-319-62932-2 48

http://orcid.org/0000-0001-6050-1227
http://orcid.org/0000-0002-6915-1179
http://orcid.org/0000-0001-9466-3398


String Representation and Kernel Function for I/O Access Patterns 501

2 Background

2.1 Parallel File Systems

Generalities. Parallel File Systems [1] are minded for accessing files in a simul-
taneous, concurrent and efficient way. The contents of a file are usually scattered
among different I/O subsystems in order to take advantage of the highest local
performance of each subsystem. These systems should provide, among other
capabilities, persistence, consistence, performance, and manageability. Other
desired features might include: scalability, fault-tolerance and availability. Differ-
ent approaches can be used to analyze the performance of a Parallel File System.
Checking the patterns of the I/O traces is among the most commonly used ones.

I/O Access Patterns. I/O access patterns depict the behavior of disk access
over a period of time. They can be used to determine the overall performance
of an I/O system. It is possible to characterize them by the following proper-
ties: access granularity, randomness, concurrency, load balance, access type and
predictability. Liu et al. [2] mentioned three additional features seen on super-
computing I/O patterns: burstiness, periodicity and repeatability.

2.2 Kernel Methods for Similarity Search

As stated in [3], a typical machine learning systems consists of two subsystems:
the feature extraction and clustering/classifier subsystems. On the one hand,
the feature extraction subsystem performs the process of conversion of raw data
to a meaningful representation. On the other hand, the clustering/classifier sub-
system makes reference to the strategy used to distill information from the new
representation. There is group of algorithms, among the constellation of machine
learning techniques, that have been successfully applied in structured data prob-
lems: they are called Kernel Methods. Kernel Methods are well documented in
the book of Shawe-Taylor and Cristianini [4]. This group of algorithms are strong
enough to detect stable patterns robustly and efficiently from a finite data sam-
ple; basically, the idea is to embed the original data into a space where linear
relations manifest as patterns. These methods have been successfully applied in
problems with structured data types like trees and strings [5]. Kernel methods
follow the mentioned two-stages strategy: first, a mapping is made by the Kernel
Function, which depends on the specific data type and domain knowledge. Sec-
ond, a general purpose and robust kernel learning algorithm is applied to find
the linear relationships in the induced feature space. The stage of construction
of the kernel function can be characterized as follows:

– Original data items are embedded into a vector space called feature space.
– The images of data in the feature space have linear relations.
– The learning algorithm does not need to know the coordinates of the feature

space data; the pairwise inner products are enough.
– These inner products can be calculated in an efficient way using a kernel

function.



502 R. Torres et al.

The inner products between the training examples conform the kernel matrix.
The learning algorithms are independent from the kernel function and need
only the kernel matrix to extract meaningful information from the data. In this
work we used two algorithms: Hierarchical Clustering [6] and Kernel Principal
Component Analysis (Kernel PCA) [7].

String Kernels. Usually, data is delivered as a collection of attribute-value
tuples; the widely used Polynomial and Gaussian Kernels Functions are ideal
for this kind of representation. But for the case of structured data like trees
and strings, the design of kernel functions becomes more complex. Despite
this complexity, some solutions have been proposed, for example, Convolution
Kernels [8–10]. Strings kernels are explained in a comprehensive way in [11]. They
basically check for the number of shared substrings among a collection of strings.
These substrings must comply with certain weighting factors, which produces
different kernel functions; The bag-of-characters kernel only takes into account
single-character matching. The bag-of-words kernel searches for shared words
among strings. The k-spectrum kernel [12] only counts sub-strings of length k.
The k-blended spectrum kernel [4] only counts sub-strings which length are less
or equal to a given number k.

3 Methodology

3.1 Creating Strings from I/O Access Patterns

The I/O access pattern files are plain text files where each line corresponds to an
operation. Some of these operations are negligible and hence ignored (e.g. fileno,
nmap and fscanf). Some other operations keep information of the number
of bytes involved on it. The proposed string representation can either use or
ignore such byte information (ignoring is made by assuming all byte values are
zero), which means that two different type of strings can be generated from a
single I/O access pattern. Operations in the I/O access pattern are registered
chronologically; with several file handles acting at the same time it is not always
possible that all the operations belonging to the same file handle could have
been written contiguously. For that reason the patterns are first converted into
trees. Trees are ideal data structures for representing containment relationships
between objects.

From I/O Access Patterns to Trees. The trees that we use in this paper
will have the following levels: The ROOT level, the HANDLE level, the BLOCK
level and the operation level (See Fig. 1):

– At the highest level, an imaginary root node groups all the operations of a
single I/O access pattern file. Such node is represented as ROOT.

– At the second level, imaginary nodes group all the operations belonging to
the same file handle. Such nodes are represented as HANDLE.



String Representation and Kernel Function for I/O Access Patterns 503

– At the third level, imaginary nodes group all the operations found between
an open operation and its corresponding close operation. Such nodes are
represented as BLOCK.

– At the deepest level, operations are given nodes, except for open and close,
because the BLOCK node already plays the role of a delimiter.

(a) Access pattern (b) Result-
ing tree

Fig. 1. Conversion of a plain text I/O access pattern into a tree

In order to save space, a set of consecutive operation nodes on the same block
can be expressed as a single node when they present some simple patterns. A
similar approach was applied by Kluge [13]. The resulting node will have an
additional field that stores of the number of repetitions. This compression step
is based on the following transformations, which are performed in the given
order:

– Consecutive operations with the same name and the same number of bytes
are simplified to a single operation with the same information. E.g. a read
operation inside a loop reading a file n bytes per iteration.

– Consecutive operations with the same name but different number of bytes
are simplified to a single operation with the same name. The new byte value
is a combination of both previous byte numbers. E.g. initializing in a loop an
array of C structures compound of a 2-bytes integer and a 4-bytes integer will
need a read operation extracting two bytes first and another read extracting
four bytes afterwards.



504 R. Torres et al.

– Consecutive operations with different name but same number of bytes are
simplified to a single operations with the same number of bytes. The new
operation name is a combination of both previous names. E.g., a series of
interlaced read and write operations with the same number of bytes might
indicate a tacit copy operation.

– Consecutive operations with different name and different number of bytes
but with one operation having 0 as number of bytes are simplified to a single
operation with the non-zero value as the number of bytes. The new operation
name is a combination of both previous names. E.g. inside a loop an lseek
operation moves the pointer in the file descriptor and a write operation
records the information there.

The previous steps are repeated once again to capture higher level patterns.
Some of the operations (e.g. read, write) have a memory address associated to
them. If this values would be taken into account, the compression step would be
more precise to capture related operations e.g. a copy operation. However, the
degree of compression would be reduced. The main interest of this research is to
use patterns for determining in an efficient way how similar a collection of I/O
traces are, not to break down the pattern and try to understand the underlying
structure of it. For this reason, the memory addresses are ignored completely.

From Trees to Strings. Once the tree is compacted, the string representation
can be built. The process is straightforward (See Fig. 2). The tree is traversed
in pre-order and each node properties are extracted; each node of the tree cor-
responds to a token in the string. A token is compound by a literal part and a
weight value. For leaf nodes the literal part is formed with the name of the oper-
ation and the number of bytes enclosed by [ ] while their weight corresponds to
the number of repetitions. ROOT, HANDLE and BLOCK nodes are translated
as [ROOT], [HANDLE] and [BLOCK] respectively; their weight is always 1. To
preserve information about the tree structure, we introduced a new token that
does not correspond to any node but give a notion of distance between nodes.
The rational of this design corresponds to the future application of this repre-
sentation in more complex structures like Abstract Syntax Trees (ASTs). The
[LEVEL UP] token represents the change to an upper level when doing the pre-
order traversal. Its weight is simply the amount of levels jumped until the next
new node is found. Notice that there is no need for a token to indicate a change
to a lower level, due to the fact that in the pre-order traversal the number of
levels jumped from a parent to a child is always 1, which is implicitly expressed
when two tokens are written one after the other.

3.2 Comparing Strings: The Kernel Function

The basic idea is to create a comparison measure for strings conformed by
weighted tokens. In theory, the number of different tokens is infinite. In practice,
the number of different tokens can be limited to the I/O operations on a program
and the number of bytes related to each operation; still, the number is high. In



String Representation and Kernel Function for I/O Access Patterns 505

(a) Compacted tree (b) Extracted tokens

Fig. 2. Creation of a string of tokens from a tree

order to define a proper similarity measure, it is necessary to define first some
important concepts:

– A weighted string is a set of consecutive weighted tokens (from here on out
referred simply as strings and tokens).

– A substring is a string that is fully contained by another string.
– The weight of a string is the summation of the weights of its tokens.

It is easy to infer here that the number of possible strings is also infinite. In an
hypothetical feature space, where every string is characterized by the presence or
absence of each possible token with each possible weight, the number of features
is still infinite. However, in practice, for a single string, most of the features of
this hypothetical space are zero-valued. This is a fact that eases the creation of
a feasible kernel function. In this work the Kast Spectrum Kernel is proposed. In
this kernel, some conditions have to be met to build the new embedding space:

– The algorithm precises a minimum weight value as parameter (from here on
out referred simply as cut weight). Strings with a weight value that is smaller
than the cut weight are ignored.

– The aim is to find the substrings shared by two strings which weight is greater
than or equal to the cut weight.

– The weight of a target substring might be different in each string.
– A target substring might appear more than once in one of the strings.
– A target substring must not be a substring of another matching substring in

at least on of the original strings.



506 R. Torres et al.

For each target substring complying with the previous conditions, a new embed-
ding feature is created. Its value is the summation of the weights of all the sub-
string appearances in a string. This way, a new embedding space with a finite
and small number of features can be built. The number of features for both
strings is equal to the number of substrings that comply to the above mentioned
conditions. It is possible now to calculate a similarity measure using the inner
product between the new feature vectors; this is the so-called kernel value. The
following is an example that illustrates the proposed kernel function: Let A and
B be strings as shown in Fig. 3. The function weightw≥n(A) returns the summa-
tion of the weights of all the tokens of A which weight is greater than or equal to
n. The function kw≥n(A,B) returns the evaluation of the Kast Spectrum Kernel
between A and B. The function k̄w≥n(A,B) is the normalized version of the
former kernel. For n = 4 the respective weights are:

weightw≥4(A) = 64 (1)

weightw≥4(B) = 52 (2)

The target in this example are all substrings with weight greater than or equal
to 4 (cut weight). According to the kernel definition, three shared substrings are
obtained: S1, S2 and S3 (See Figs. 3, 4 and 5). The respective weights of each
feature in A are calculated with:

weightw≥4(S1)A = 19 (3)

weightw≥4(S2)A = 7 + 6 = 13 (4)

weightw≥4(S3)A = 6 + 9 = 15 (5)

The embedding feature vector for A is:

fw≥4(A) = {19, 13, 15} (6)

The respective weights of each feature in B are calculated with:

weightw≥4(S1)B = 17 + 18 = 35 (7)

weightw≥4(S2)B = 6 + 5 = 11 (8)

weightw≥4(S3)B = 8 + 6 = 14 (9)

The embedding feature vector for B is:

fw≥4(B) = {35, 11, 14} (10)

The inner product of these two vectors gives us the kernel value

kw≥4(A,B) =< fw≥4(A), fw≥4(B) >= 1018 (11)

A normalization step will use the weights of each string:

k̄w≥4(A,B) =
kw≥4(A,B)

√
kw≥4(A,A) ∗ kw≥4(B,B)

=
kw≥4(A,B)

weightw≥4(A) ∗ weightw≥4(B)
(12)

k̄w≥4(A,B) =
1018

64 ∗ 52
=

1018
3328

= 0.3059 (13)



String Representation and Kernel Function for I/O Access Patterns 507

Fig. 3. S1 is the largest substring found on both examples

Fig. 4. S2 appears once as an independent case

Fig. 5. S3 appears twice as an independent case

4 Evaluation

4.1 Experiment Configuration

The I/O access patterns were taken from two different parallel I/O benchmarks
[14,15]. The patterns were generated from 4 different I/O forms of accessing the
storage: (A) were those using Flash I/O, (B) were the ones using Random POSIX
I/O, (C) were those using Normal I/O and (D) the ones using Random Access
I/O. For each pattern 4 additional synthetic copies were created. Such copies
introduced small mutations on the pattern; the idea behind these mutations was
the need to create access patterns that were, in theory, closer to a determined
example than the rest of the category members. So, from 22 examples we ended
up with 110, distributed as follows: (A) 50 examples, (B) 20 examples, (C) 20
examples and (D) 20 examples. Each access pattern was converted to the two
proposed string representations: the one that took into account the byte infor-
mation of the operations and the one that totally ignored it. The proposed Kast
Spectrum Kernel function was applied to them, as well as the Blended Spectrum
Kernel proposed in the literature. The selected cut weight values were the fol-
lowing: {21, 22, ..., 2n} : n = 10. If the matrices presented negative eigenvalues,
they were replaced by zero and the matrices rebuilt. All the similarity matrices
were analyzed with both Kernel PCA and Hierarchical Clustering, the latest
using the simple linkage method.

4.2 Kast Spectrum Kernel

The application of the proposed kernel function (Kast Spectrum Kernel) over
strings that preserved the byte information from the I/O operations, achieved
the best results when a small cut weight was used. The fact that small cut weights



508 R. Torres et al.

Fig. 6. Kernel PCA for Kast Spectrum Kernel using byte information (cut weight = 2)

were sufficient to achieve a meaningful clustering, eased the parametrization of
the comparison process. It was remarkable that both learning algorithms clearly
separated the same 3 clusters (See Figs. 6 and 7). While Flash I/O (A) and Ran-
dom POSIX I/O (B) were separated independently, Normal I/O and Random
Access I/O (C-D) were placed on the same group. This corresponded to the
structure of each category: (A) examples contained contiguous write operations
with different byte values that were not present in the other categories. (B)
examples contained lseek operations not seen elsewhere. (C) and (D) shared
roughly the same pattern. Also, it is important to notice that there were not
misplaced examples on any of the groups.

In the case of the strings that ignored the byte information, such clear separa-
tion of clusters was not so easily achieved. For small cut weights only two clusters
were identified: Random POSIX I/O (B) was the only group independently sepa-
rated, while Flash I/O, Normal I/O and Random Access I/O (A-C-D) conformed
a second group. In order to obtain the same three clustering groups identified
using the other string category, the weight value had to be increased, which
made the parametrization more difficult. Notice that, regardless of the string
representation, the smaller the cut weight the most expensive the computation
became, because the algorithm always started searching from the substrings
with the highest weight. According to the clustering analysis results one can
infer that the usage of high cut weights is recommended to focus only on finding
general categories and lower cut weights to discriminate better among examples.
However, a small cut weight is always preferred, as it eases the parametrization.



String Representation and Kernel Function for I/O Access Patterns 509

Fig. 7. Hierarchical clustering for Kast Spectrum Kernel using byte information (cut
weight = 2)

4.3 Blended Spectrum Kernel

Given the particular form of the string representation we propose, where a group
of subsequent tokens can encode more meaningful information than a single one,
we discarded the bag-of-characters and the bag-of-words kernels. Experimental
evaluation showed also that the k-Spectrum kernel was not successful at finding
an acceptable clustering, a task where the Blended Spectrum Kernel had a better
performance. However, for strings containing byte information the obtained clus-
ters were not as diverse as those achieved with our solution (See Figs. 8 and 9).
In this case only Flash I/O (A) examples were independently separated, while
Random POSIX I/O, Normal I/O and Random Access I/O (B-C-D) conformed
a single group.

For the case of strings lacking the byte information, both clustering analysis
results were not satisfactory.

5 Related Work

Kluge [13] proposed an intermediate representation of I/O events from High Per-
formance Computing (HPC) applications as a Directed Acyclic Graph (DAG).
In this DAG vertices are used to represent events while edges are used to depict
the chronological order of the events. Kluge also proposed a redundancy elim-
ination step where adjacent synchronization vertices can be merged in a single
one. Madhyastha et al. [16] applied two supervised learning algorithms to clas-
sify Parallel I/O access patterns: a feed forward neural network and a hidden
Markov models based approach. Both strategies require training with previously



510 R. Torres et al.

Fig. 8. Kernel PCA for Blended Spectrum Kernel using byte information (cut
weight = 2)

Fig. 9. Hierarchical clustering for Blended Spectrum Kernel using byte information
(cut weight = 2)

labeled examples. Behzad et al. [17] proposed and I/O auto tuning framework
that extracts the patterns from an application and searches for a match on a
database of previously known pattern models. If there is a match, the associated
model is adopted on the fly during the execution of the application. A differ-
ent abstraction approach was made by Liu et al. [2]. They used the I/O bursts



String Representation and Kernel Function for I/O Access Patterns 511

registered on noisy server-side logs of an application as a signature to find simi-
larities between I/O samples. The final signature is a 2D grid called CLIQUE [18]
that relates a correlation coefficient with time. Because the signature extraction
was made over log files there was zero overhead in the application performance.
Koller and Rangaswami [19] used disk static similarity and workload static sim-
ilarity at the block level to analyze the performance of concurrent applications
of the same file system. Unfortunately, we couldn’t find suitable studies on I/O
pattern similarity with kernel methods for comparing our results.

6 Conclusions and Future Work

In this paper we showed how the I/O traces of a parallel program can be used to
extract patterns and represent them as a string of tokens. The resulting strings
were compared using a novel kernel function proposed by the authors. The Kast
Spectrum Kernel emits a similarity matrix between examples that can be later
analyzed by a proper algorithm. This kernel was applied to a set of examples
taken from a real parallel application, where 4 distinct patterns were present;
Kernel PCA and Hierarchical Clustering showed a consistent formation of 3
groups according to the pattern with no misplaced examples. The best results
were obtained when the string representation took into account the byte infor-
mation of the operations and the cut weight was small. It was observed that
the cut weight determined the granularity of the search, while the usage of the
byte information permitted the separation between examples of the same clus-
ter. These findings clearly show that both the proposed string representation and
the comparison method are suitable to compare I/O access patterns of a parallel
application. However, due to the fact that the proposed string representation is
independent from the domain, it can also be used to compare I/O access of a
sequential program. Future efforts of this project will focus on the comparison of
the intermediate representation delivered by the LLVM Compiler Infrastructure
using the string representation and kernel method here proposed.

Acknowledgements. Raul Torres would like to acknowledge the financial support
from the Colombian Administrative Department of Science, Technology and Innovation
(Colciencias) as well as the mathematical advisory received from Ruslan Krenzler.

References

1. Kunkel, J.M.: Simulating parallel programs on application and system level. Com-
put. Sci. Res. Dev. 28(2), 167–174 (2012)

2. Liu, Y., Gunasekaran, R., Ma, X.S., Vazhkudai, S.S.: Automatic identification of
application I/O signatures from noisy server-side traces. In: Proceedings of the
12th USENIX Conference on File and Storage Technologies (FAST 2014), Santa
Clara, pp. 213–228 (2014)

3. Kung, S.Y.: Kernel Methods and Machine Learning. Cambridge University Press,
Cambridge (2014)



512 R. Torres et al.

4. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, New York (2004)

5. BakIr, G., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan,
S.V.N.: Predicting Structured Data. The MIT Press, Cambridge (2007)

6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning -
Data Mining, Inference. Springer Series in Statistics. Springer, New York (2009)

7. Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis. In:
Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS,
vol. 1327, pp. 583–588. Springer, Heidelberg (1997). doi:10.1007/BFb0020217

8. Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels for structured data. In: Matwin,
S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 66–83. Springer,
Heidelberg (2003). doi:10.1007/3-540-36468-4 5

9. Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels and Distances for Structured Data.
Mach. Learn. 57(3), 205–232 (2004)

10. Haussler, D.: Convolution Kernels on Discrete Structures. Technical Report.
University of California at Santa Cruz (1999)

11. Vishwanathan, S.V.N., Smola, A.J.: Fast kernels for string and tree matching. In:
Advances in Neural Information Processing Systems 15, pp. 569–576 (2003)

12. Leslie, C., Eskin, E., Noble, W.S.: The spectrum kernel: a string kernel for SVM
protein classification. In: Proceedings of the Pacific Symposium on Biocomputing,
vol. 7, pp. 566–575 (2002)

13. Kluge, M.: Comparison and End-to-End Performance Analysis of Parallel Filesys-
tems. Ph.D. Thesis Dissertation. Technische Universität Dresden (2011)

14. Loewe, W., McLarty, T., Morrone, C.: IOR Benchmark (2012)
15. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q.,

MacNeice, P., Rosner, R., Truran, J.W., Tufo, H.: FLASH: an adaptive mesh
hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys.
J. Suppl. Ser. 131(1), 273 (2000)

16. Madhyastha, T.M., Reed, D.A.: Learning to classify parallel input/output access
patterns. IEEE Trans. Parallel Distrib. Syst. 13(8), 802–813 (2002)

17. Behzad B., Byna S., Prabhat and Snir, M.: Pattern-driven parallel I/O tuning. In:
Proceedings of the 10th Parallel Data Storage Workshop, Austin, Texas, pp. 43–48
(2015)

18. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. In: Proceedings of the
1998 ACM SIGMOD International Conference on Management of Data, SIGMOD
1998, Seattle, pp. 94–105 (1998)

19. Koller, R., Rangaswami, R.: I/O Deduplication: utilizing content similarity to
improve I/O performance. ACM Trans. Storage (TOS) 6(3), 13:1–13:26 (2010)

http://dx.doi.org/10.1007/BFb0020217
http://dx.doi.org/10.1007/3-540-36468-4_5


Author Index

Abramov, Maksim 172
Aday, Shomanov 342
Alias, Norma 85
Ammaev, S.G. 257
Arykov, Sergey 265

Bahmurov, Anatoly 289
Baranov, Anton 387
Barkalov, Konstantin 396, 492
Bastrakov, Sergey 94
Bessonov, Oleg 101
Bodei, Chiara 3
Bogdanova, Vera G. 278
Bolodurina, Irina 418
Borisenko, Andrey 405
Bychkov, Igor V. 278

Chistyakov, Aleksandr 159, 172

D’Alotto, Louis 183
Darkhan, Akhmed-Zaki 342
Dautov, Rustem 427
de Macedo Mourelle, Luiza 215
de Moraes Calazan, Rogério 215
Degano, Pierpaolo 3
Désérable, Dominique 18
Distefano, Salvatore 427
do Nascimento, Tiago M. 58
Dolz, Manuel F. 500
dos Santos, Rodrigo W. 58

Efimenko, Evgeny 94
Efimov, Nikolay 159

Ferrari, Gian-Luigi 3

Galletta, Letterio 3
Gergel, Victor 446, 492
Gervich, L.R. 257
Glonina, Alevtina 289
Gonoskov, Arkady 94
Gorlatch, Sergei 405, 459

Gorsky, Sergey A. 278
Gribov, E.N. 205

Hoffmann, Rolf 18

Isupov, Konstantin 196
Ivashko, Evgeny 480

Jakl, Ondřej 351

Kamikawa, Naoki 232
Kapyrin, Ivan 433
Kataev, Nikita 32
Kholod, Ivan 459
Kireev, Sergey 85
Kireeva, A.E. 205
Kolganov, Alexander 32
Konshin, Igor 433
Kopitsa, Vadim 159
Kostin, Victor 42
Kovartsev, A.N. 114
Kozinov, Evgeny 446
Kunkel, Julian 500
Kurnosov, Mikhail G. 143
Kuvaev, Alexander 196

Lebedev, Ilya 396, 492
Levchenko, Vadim 124
Lisitsa, Vadim 42
Lobosco, Marcelo 58
Ludwig, Thomas 500

Ma, Jeonghyeon 301
Madina, Mansurova 342
Maltseva, N.V. 205
Malyshkin, Victor E. 308
Markova, V.P. 225
Mauri, Giancarlo 70
Menshov, Igor 136, 151
Meyerov, Iosif 94
Migov, Denis A. 473
Moldovanova, Olga V. 143
Mostéfaoui, Achour 315



Nazarenko, Alexey 327
Nedjah, Nadia 215
Nesterov, Sergei N. 473
Nikitina, Alla 159, 172
Nikitina, Natalia 480
Nikolay, Belyaev 272
Nobile, Marco S. 70

Oparin, Gennady A. 278
Ostapkevich, M.B. 225

Parfenov, Denis 418
Park, Chanik 301
Parshukov, Vladimir 159
Pashinin, Anton A. 278
Pavlukhin, Pavel 151
Perepelkin, Vladislav 272
Perepelkina, Anastasia 124
Popov, Mikhail 196
Potekhin, Petr 372

Reshetova, Galina 42

Sabelfeld, K.K. 205
Schukin, Georgy A. 308
Semenyakina, Alena 172
Shchur, Lev 246
Sheverdin, Viktor 136
Shorov, Andrey 459
Sovrasov, Vladislav 492

Steinberg, B.Y. 257
Stepovoy, Dmitriy 159
Sukhinov, Aleksandr 159, 172
Sukhoroslov, Oleg 327
Sumbaev, Vladimir 172
Surmin, Igor 94
Sysoyev, Alexander 492
Szustak, Lukasz 351

Tchernykh, Andrei 480
Tcheverda, Vladimir 42
Telegin, Pavel 387
Tikhomirov, Artem 387
Titov, Pavel 32
Tkacheva, Anastasia A. 365
Toporkov, Victor 372
Toporkova, Anna 372
Torres, Raul 500

Umeo, Hiroshi 232

Weiss, Stéphane 315
Wyrzykowski, Roman 351

Yakovenko, Irina 159
Yemelyanov, Dmitry 372

Zaviyalov, Anton 196
Zhidchenko, V.V. 114
Ziganurova, Liliia 246

514 Author Index


	Preface
	Organization
	Contents
	Mainstream Parallel Computing
	Experimenting with a Context-Aware Language
	1 Introduction
	2 A First Example: An e-Healthcare System
	3 Further Case Studies
	4 A Glimpse on MLCoDa Compiler
	5 Conclusions, Discussion and Open Problems
	References

	Generating Maximal Domino Patterns by Cellular Automata Agents
	1 Introduction
	2 Domino Patterns and Degree of Order
	3 Modeling the Multi-agent-System
	4 Livelock and Termination
	5 Evolving FSP by a Genetic Algorithm
	6 Simulation and Performance Evaluation
	7 Conclusion
	References

	Automated Parallelization of a Simulation Method of Elastic Wave Propagation in Media with Complex 3D Geometry Surface on High-Performance Heterogeneous Clusters
	1 Introduction
	2 Problem Statement
	3 Parallel Algorithm and It's Software Implementation Using MPI
	4 Parallelization of Given Program Using SAPFOR and DVM Systems
	4.1 Using Static Analyzer of SAPFOR System
	4.2 Development of a Parallel Program in DVMH

	5 Results
	6 Conclusion
	References

	Parallel Algorithm with Modulus Structure for Simulation of Seismic Wave Propagation in 3D Multiscale Multiphysics Media
	1 Introduction
	2 Elastic Media with Attenuation
	2.1 Mathematical Formulation
	2.2 Parallel Implementation

	3 Anisotropy
	3.1 Finite Difference Approximation
	3.2 Coupling
	3.3 Parallel Implementation
	3.4 Numerical Experiment

	4 Multi-scale Simulation
	4.1 Mathematical Formulation
	4.2 Implementation of Parallel Computations
	4.3 Numerical Experiment

	5 Conclusion
	References

	Performance Evaluation of Two Load Balancing Algorithms on a Hybrid Parallel Architecture
	1 Introduction
	2 Load Balancing Algorithms
	2.1 Static Load Balancing Algorithm
	2.2 Dynamic Load Balancing Algorithm

	3 Performance Evaluation
	3.1 Benchmark
	3.2 Computational Platform
	3.3 Results

	4 Conclusion and Future Works
	References

	Accelerated Analysis of Biological Parameters Space Using GPUs
	1 Introduction
	2 Methods
	3 GPU-Powered Simulators
	3.1 Deterministic Simulation
	3.2 Stochastic Simulation

	4 Applications of GPU-Powered Simulators
	4.1 Parameter Sweep Analysis
	4.2 Sensitivity Analysis

	5 Discussion and Conclusions
	References

	Parallel Models and Algorithms in Numerical Computation
	Fragmentation of IADE Method Using LuNA System
	1 Introduction
	2 Fragmented Programming Technology
	3 IADE-RB-CG Method
	4 Fragmentation of IADE-RB-CG Method
	5 Fragmented Algorithm Implementation Using LuNA Language
	6 Performance Evaluation
	7 Conclusion
	References

	Performance Aspects of Collocated and Staggered Grids for Particle-in-Cell Plasma Simulation
	1 Introduction
	2 Overview of the Particle-in-Cell Method
	3 Computational Evaluation
	3.1 Test Problem
	3.2 Baseline Implementation
	3.3 Supercells
	3.4 Vectorization

	4 Summary
	References

	Technological Aspects of the Hybrid Parallelization with OpenMP and MPI
	1 Introduction
	2 Parallel Performance of Modern Multicore Processors
	3 Properties of Explicit and Implicit Algorithms
	3.1 Natural Parallelization of Explicit Algorithms
	3.2 Parallelization Properties of Implicit Algorithms
	3.3 Peculiarities of the Multigrid
	3.4 Methods of Separation of Variables and ADI

	4 Unified ParallelizationApproach for OpenMP and MPI
	5 Conclusion
	References

	Application of Graph Models to the Parallel Algorithms Design for the Motion Simulation of Tethered Satellite Systems
	Abstract
	1 Introduction
	2 Mathematical Model of Tether Dynamics in Space
	3 Numerical Simulation of the Tethered System Motion
	4 Parallel Algorithm for the Motion Simulation of Tethered Satellite Systems
	5 Graph Model of the Parallel Algorithm
	6 Evaluation of Speedup of the Parallel Program for Numerical Simulation of the Tethered System Motion
	7 Conclusion
	Acknowledgements
	References

	The DiamondTetris Algorithm for Maximum Performance Vectorized Stencil Computation
	1 Introduction
	2 Wave Equation
	3 Algorithm
	4 Implementation
	4.1 Data Structure
	4.2 Computation Flow
	4.3 Vector Computation
	4.4 Boundary Conditions and Initial Values

	5 Results and Conclusions
	References

	A Parallel Locally-Adaptive 3D Model on Cartesian Nested-Type Grids
	Abstract
	1 Introduction
	2 Representation of Cartesian LA Grid in Computer Memory
	3 Discrete Model
	4 Application Library for Cartesian LA Grid Operation
	5 Numerical Results
	6 Conclusions
	Acknowledgments
	References

	Auto-Vectorization of Loops on Intel 64 and Intel Xeon Phi: Analysis and Evaluation
	1 Introduction
	2 Vector Instruction Sets
	3 Benchmark
	4 Results of Experiments
	5 Conclusion
	References

	Parallel Algorithms for an Implicit CFD Solver on Tree-Based Grids
	1 Introduction
	2 Choosing an Adaptive Mesh Refinement Approach
	3 LU-SGS Method on Octree-Based Grids
	4 Graph Coloring Algorithm for Octree-Based Grids
	5 Parallel Implementations of the Graph Coloring Algorithm
	6 Conclusions
	References

	Software Implementation of Mathematical Model of Thermodynamic Processes in a Steam Turbine on High-Performance System
	1 Introduction
	2 Problem Statement
	3 Thermal Conductivity Coefficient
	4 Discrete Model
	5 Discrete Model Research
	6 Weight Scheme Optimization
	7 Solution Method of Grid Equations
	8 Parallel Implementation of the Modified Alternating Triangular Iterative Method
	9 Conclusion
	References

	Predictive Modeling of Suffocation in Shallow Waters on a Multiprocessor Computer System
	1 Introduction
	2 Hydrodynamic Mathematical Model
	3 Mathematical Model of Water Bloom Processes of Shallow Waters
	4 Parallel Implementation of the Modified Alternating Triangular Method (MATM)
	5 Results of Numerical Experiments
	6 Conclusion
	References

	Cellular Automata and Discrete Event Systems
	Finite and Infinite Computations and a Classification of Two-Dimensional Cellular Automata Using Infinite Computations
	1 Introduction
	2 The Infinite Unit Axiom
	3 Two-Dimensional Cellular Automata
	4 Discussion and Conclusion
	References

	Multiple-Precision Residue-Based Arithmetic Library for Parallel CPU-GPU Architectures: Data Types and Features
	1 Introduction
	2 Background of RNS
	3 Moduli Set Selection
	4 Extended-Range and Multiple-Precision Data Formats
	5 Computations with MPRES
	6 Memory Overhead Evaluation
	7 Conclusion
	References

	Parallel Implementation of Cellular Automaton Model of the Carbon Corrosion Under the Influence of the Electrochemical Oxidation
	1 Introduction
	2 The Cellular Automaton Model of Carbon Corrosion
	3 Parallel Implementation of CA Model of Carbon Corrosion
	4 Results of Simulation of a Large Carbon Sample
	5 Conclusion
	References

	A Fine-Grained Parallel Particle Swarm Optimization on Many-core and Multi-core Architectures
	1 Introduction
	2 Particle Swarm Optimization
	3 The Fine-Grained Parallel PSO
	4 FGP-PSO on Shared Memory Multi-core Processors
	5 FGP-PSO on Clusters of Multi-core Shared Memory Processors
	6 Performance Results
	7 Conclusion
	References

	The Implementation of Cellular Automata Interference of Two Waves in LuNA Fragmented Programming System
	Abstract
	1 Introduction
	2 The Main Definitions and Characteristics of the LuNA System
	3 The Implementation of LuNA-Program for CA Interference Algorithm
	3.1 Cellular Automata
	3.2 Simulation of Interference of Two Waves
	3.3 Description of the Fragmented Algorithm of CA Interference

	4 Conclusion
	References

	A New Class of the Smallest Four-State Partial FSSP Solutions for One-Dimensional Ring Cellular Automata
	1 Introduction
	2 Firing Squad Synchronization Problem on Rings
	2.1 Definition of the FSSP on Rings
	2.2 Full vs. Partial Solutions
	2.3 A Quest for Four-State Partial Solutions for Rings

	3 Four-State Symmetric Partial Solutions
	4 Asymmetric Solutions
	5 Summary and Discussions
	References

	Properties of the Conservative Parallel Discrete Event Simulation Algorithm
	1 Introduction
	2 Models of Evolution of LVT Profile in PDES
	3 Model Definition
	4 Results
	5 Discussion and Future Work
	References

	Organization of Parallel Computation
	Combining Parallelization with Overlaps and Optimization of Cache Memory Usage
	1 Introduction
	2 The Iteration Space of Nested Loop and Hyperplane Method
	3 Using the Hyperplane Method for Temporal Data Locality in Iterative Algorithm
	4 Decomposition of Iteration Space
	5 Combining Parallelization and Usage of the Hyperplane Method for Temporary Data Localization in Iterative Algorithms
	6 Placement with Overlaps for the Modified Hyperplane Method
	7 Conclusion
	References

	Defining Order of Execution in Aspect Programming Language
	Abstract
	1 Introduction
	2 A Fragmented Approach to Parallel Programming
	3 Declarative Language Aspect
	3.1 Language Fundamentals
	3.2 Defining Control Scheme in Aspect Language
	3.3 Example of Aspect Program

	4 Results of Experiments
	5 Related Works
	6 Conclusion
	References

	Automated GPU Support in LuNA Fragmented Programming System
	Abstract
	1 Introduction
	2 LuNA-Program
	3 CPU and GPU Workload Distribution Algorithm with Automatic Data Refragmentation
	4 Testing
	5 Conclusion
	References

	Automation Development Framework of Scalable Scientific Web Applications Based on Subject Domain Kno ...
	Abstract
	1 Introduction
	2 Related Data
	3 HPCSOMAS Architecture
	4 ABCSW Computational Services Development Subsystem
	5 Service-Oriented PSF Application
	6 Conclusion
	Acknowledgments
	References

	Stopwatch Automata-Based Model for Efficient Schedulability Analysis of Modular Computer Systems
	1 Introduction
	2 The Model of Modular System Operation
	2.1 Formal Definitions
	2.2 Networks of Stopwatch Automata
	2.3 General Model of Modular System Operation

	3 Correctness and Determinism
	4 Implementation and Experiments
	5 Conclusion
	References

	Parallelizing Inline Data Reduction Operations for Primary Storage Systems
	Abstract
	1 Introduction
	2 Background
	3 Design and Implementation
	3.1 Parallel Data Deduplication on Multi-core CPU and GPU
	3.2 Parallel Data Compression on Multi-core CPU and GPU
	3.3 Putting It All Together

	4 Evaluation
	5 Related Works
	6 Conclusion
	References

	Distributed Algorithm of Dynamic Multidimensional Data Mapping on Multidimensional Multicomputer in  ...
	Abstract
	1 Introduction
	2 Related Works
	3 Distributed Algorithm of Dynamic Data Allocation
	3.1 Initial Definitions
	3.2 Patch Algorithm
	3.3 Dynamic Load Balancing in Patch Algorithm

	4 Tests
	4.1 Test Results

	5 Conclusion
	References

	Probabilistic Causal Message Ordering
	1 Related Work
	2 System Model
	3 Probabilistic Causal Broadcast
	3.1 A Probabilistic Causal Ordering Mechanism
	3.2 Detecting Delivery Errors

	4 Theoretical Error Analysis
	4.1 Experiments

	5 Conclusion
	References

	An Experimental Study of Workflow Scheduling Algorithms for Heterogeneous Systems
	1 Introduction
	2 Workflow Scheduling Algorithms
	2.1 Static Algorithms
	2.2 Dynamic Algorithms

	3 Simulation Framework
	3.1 System and Application Models
	3.2 Algorithm Implementations and Supporting Tools

	4 Experimental Results
	4.1 Experiments with Real Workflows
	4.2 Experiments with Synthetic Workflows

	5 Conclusion and Future Work
	References

	PGAS Approach to Implement Mapreduce Framework Based on UPC Language
	Abstract
	1 Introduction
	2 Related Work
	3 Main Part
	3.1 Mapreduce on UPC Framework
	3.2 Data Movement and Load Balancing Optimization
	3.3 Shuffle Phase
	3.4 WordCount Implementation

	4 Experimental Results
	5 Conclusion
	References

	Islands-of-Cores Approach for Harnessing SMP/NUMA Architectures in Heterogeneous Stencil Computations
	1 Introduction
	2 SMP/NUMA Architecture: SGI UV 2000 Server
	3 Parallelization of MPDATA for Shared-Memory Model
	3.1 Introduction to MPDATA Application
	3.2 (3+1)D Decomposition

	4 Islands-of-Cores Approach for MPDATA
	4.1 Trade-off Between Computation and Communication for Heterogeneous Stencils
	4.2 Implementation: From Islands-of-Cores to Work-Teams

	5 Performance Results
	6 Conclusions and Future Work
	References

	The Algorithm of Control Program Generation for Optimization of LuNA Program Execution
	1 Introduction
	2 Related Works
	3 LuNA Fragmented Programming System
	4 The Algorithm of Control Program Generation for LuNA Program
	5 Perfomance Tests
	6 Conclusion
	References

	Cyclic Anticipation Scheduling in Grid VOs with Stakeholders Preferences
	Abstract
	1 Introduction and Related Works
	2 Cyclic Alternative-Based Scheduling
	3 Cyclic Anticipation Scheduling
	4 Simulation Study
	4.1 Replication Scheduling Accuracy
	4.2 Anticipation Scheduling Simulation
	4.3 Anticipation and Backfilling Scheduling Comparison

	5 Conclusions and Future Work
	Acknowledgments
	References

	Parallel Computing Applications
	Comparison of Auction Methods for Job Scheduling with Absolute Priorities
	1 Introduction
	2 GDS Architecture 
	3 Decentralized Scheduling Algorithms Using the Auction Method
	4 Bid Problem
	5 Scheduling Algorithm
	6 Experimental Comparison of Two Auction Models
	7 Conclusions
	References

	Parallel Algorithm for Solving Constrained Global Optimization Problems
	Abstract
	1 Introduction
	2 Problem Statement
	3 Parallel Index Algorithm with the Set of Evolvents
	4 Results of Numerical Experiments
	5 Conclusions
	Acknowledgements
	References

	Parallelizing Metaheuristics for Optimal Design of Multiproduct Batch Plants on GPU
	1 Motivation and Related Work
	2 Problem Formulation
	3 Hybrid Metaheuristic Approach
	3.1 Ant Colony Optimization (ACO)
	3.2 Simulated Annealing (SA)

	4 Parallelization for GPU
	5 Experimental Results
	6 Conclusion
	References

	The Optimization of Traffic Management for Cloud Application and Services in the Virtual Data Center
	Abstract
	1 Introduction
	2 The Multilevel Model of the Software-Defined Infrastructure
	3 Research Methods
	4 Algorithm of Adaptive Routing
	5 Data Assignment Algorithm for Cloud Applications
	6 Experimental Results
	7 Discussion
	8 Conclusions
	Acknowledgements
	References

	Distributed Data Fusion for the Internet of Things
	1 Introduction
	2 Background and Related Work
	3 Proposed Solution
	4 Towards a Proof of Concept
	5 Conclusions
	References

	Scalable Computations of GeRa Code on the Base of Software Platform INMOST
	1 Introduction
	2 Model Problems Description
	3 Linear System Solvers Available in INMOST
	4 Numerical Experiments
	4.1 The Parallel Computer Platforms Available
	4.2 Numerical Experiment on a Multicore Laptop
	4.3 Preliminary Experiments on INM RAS Cluster
	4.4 Solution of Chemical Models
	4.5 Solution of ``geos'' Models
	4.6 Solution of Transport Models
	4.7 The Results for the Largest Models

	5 Conclusions
	References

	Parallel Computing for Time-Consuming Multicriterial Optimization Problems
	Abstract
	1 Introduction
	2 Multicriterial Optimization Problem Statement
	3 Parallel Computations for Solving the Multicriterial Global Optimization Problems
	3.1 Structure of the Global Search Information
	3.2 General Scheme of Parallel Computations

	4 Parallel Methods for Solving the Multicriterial Global Optimization Problems
	4.1 Parallel Algorithm of Multicriterial Global Optimization
	4.2 Multilevel Parallel Algorithm of Multicriterial Global Optimization

	5 Results of Numerical Experiments
	6 Conclusion
	Acknowledgements
	References

	A Functional Approach to Parallelizing Data Mining Algorithms in Java
	Abstract
	1 Motivation and Related Work
	2 The Formal Functional Approach
	2.1 Data Mining Algorithm as a Composition of Functions
	2.2 Illustration for the 1R Algorithm
	2.3 Functions for Parallelization
	2.4 Illustration: The 1R Algorithm

	3 Implementation of the Approach
	3.1 Implementation of Functional Mining Block
	3.2 Illustration: The 1R Algorithm

	4 Experimental Results
	5 Conclusion
	Acknowledgments
	References

	Parallel Calculation of Diameter Constrained Network Reliability
	1 Introduction
	2 The Basic Definitions and Notations
	3 Methods for DCNR Calculation
	4 Parallel Computation of DCNR
	5 Case Studies
	6 Conclusion
	References

	Congestion Game Scheduling Implementation for High-Throughput Virtual Drug Screening Using BOINC-Based Desktop Grid
	Abstract
	1 Introduction
	2 Related Work
	3 Congestion Game Model
	4 Algorithm Implementation
	4.1 Desktop Grids
	4.2 BOINC Platform
	4.3 Implementation

	5 Experimental Setup
	5.1 Database Preparation
	5.2 The Chemical Diversity Measure
	5.3 Experimental Setup
	5.4 Experimental Analysis

	6 Conclusion and Discussion
	Acknowledgments
	References

	Globalizer – A Parallel Software System for Solving Global Optimization Problems
	Abstract
	1 Introduction
	2 Statement of Multidimensional Global Optimization Problem
	3 Globalizer Architecture
	4 Globalizer Approach for Solving the Global Optimization Problems
	4.1 Methods of Dimension Reduction
	4.2 Method for Solving the Reduced Global Optimization Problems
	4.3 Implementation of Parallel Algorithm of Global Optimization

	5 Numerical Results
	6 Conclusion
	References

	A Novel String Representation and Kernel Function for the Comparison of I/O Access Patterns
	1 Introduction
	2 Background
	2.1 Parallel File Systems
	2.2 Kernel Methods for Similarity Search

	3 Methodology
	3.1 Creating Strings from I/O Access Patterns
	3.2 Comparing Strings: The Kernel Function

	4 Evaluation
	4.1 Experiment Configuration
	4.2 Kast Spectrum Kernel
	4.3 Blended Spectrum Kernel

	5 Related Work
	6 Conclusions and Future Work
	References

	Author Index



