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Abstract We review some cohomological aspects of complex and hypercomplex
manifolds and underline the differences between both realms. Furthermore, we try
to highlight the similarities between compact complex surfaces on one hand and
compact hypercomplex manifolds of real dimension 8 with holonomy of the Obata
connection in SL.2;H/ on the other hand.

1 Introduction

We describe a recipe that allows one to adapt some cohomological results from
complex manifolds to hypercomplex manifolds. A hypercomplex manifold is a
complex manifold together with a second complex structure that anticommutes
with the first one. To extract cohomological information out of a hypercomplex
manifold, we may thus start with the double complex of the underlying complex
manifold, twist this data by the second complex structure and see what information
we get about the hypercomplex manifold in question. This approach turns out to
be surprisingly successful if we want to adapt results from complex geometry to
hypercomplex geometry and the resulting cohomology groups have the additional
advantage of being easily computable.

We would like to anticipate that this way of proceeding also suffers from some
drawbacks and that there is an alternative approach available in the literature. If
a manifold admits two anticommuting complex structures I and J, then K D IJ is
another almost-complex structure, anticommutingwith both I and J. This then leads
to a whole 2-sphere worth of almost-complex structures
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and it has been shown that all of these almost-complex structures are integrable as
soon as I and J are (see for example [18]). From this point of view, all these complex
structures should be treated equally on a hypercomplex manifold and singling out
a preferred complex structure, as we do with I, is not very natural. Unfortunately,
the cohomology groups based upon the “averaged complex structures” often tend
to be quite cumbersome to work with and less explicit to compute. For further
information, we refer the interested reader to [11, 29, 34, 36].

In the present note we summarise some results from the recent preprints [15]
and [22]. We would like to thank the organisers of the INdAM meeting Complex
and Symplectic Geometry for the great conference held in June 2016 in Cortona,
Italy.

1.1 History and Examples

While complex manifolds have been around for a long time, the study of hyper-
complex manifolds only became prominent in the eighties with publications such
as [8, 29]. Probably the most well-known class of hypercomplex manifolds are
hyperkähler manifolds. However, the realm of hypercomplex manifolds is much
broader than the one of hyperkähler manifolds. To cite but a few hypercomplex non-
hyperkähler manifolds, note that some nilmanifolds, that is quotients of a nilpotent
Lie group by a cocompact lattice, admit hypercomplex structures [5]. Furthermore,
Dominic Joyce constructed many left-invariant hypercomplex structures on Lie
groups [16] and similar ones have been analysed by physicists interested in string
theory [32] in the context of N D 4 supersymmetry. In more recent years, various
authors constructed inhomogeneous hypercomplex structures: see for example [9]
for hypercomplex structures on Stiefel manifolds as well as [7, 27].

A complete classification of compact hypercomplex manifolds of real dimen-
sion 4, called quaternionic curves, has been established by Boyer [8]. These are
either 4-tori or K3 surfaces, both of whom are hyperkähler, or else quaternionic
Hopf surfaces [19] which, even if non-hyperkähler, remain locally conformally
hyperkähler. On the other hand, the situation becomes much more complicated
for compact hypercomplex manifolds of real dimension 8, called hypercomplex
surfaces. While compact complex surfaces are nowadays well understood thanks to
the work of Kodaira [20], a similar classification for compact hypercomplex surfaces
is still missing. In the sequel of this note, we will hence focus on hypercomplex
manifolds of real dimension 8, the first “unsolved dimension”.
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2 Cohomological Properties of Complex and Hypercomplex
Manifolds

In this Section we first briefly review some well-known cohomological aspects
of complex manifolds and then show how these can be adapted to hypercomplex
manifolds. For the cohomological properties of complex manifolds we refer the
reader to [1] and the references therein whilst the hypercomplex cohomologies
appear in [11, 15, 22, 29, 34, 36] to cite but a few of them.

2.1 Cohomologies on Complex Manifolds

An almost complex manifold .X; I/ is a smooth manifold X of real dimension 2n
together with an endomorphism of the tangent bundle I W TX ! TX that satisfies
I2 D �IdTX . This almost complex structure I can be used to decompose the
bundle of complex-valued one-forms ˝1.X/ ˝ C into the subbundle ˝

1;0
I .X/ and

the subbundle ˝
0;1
I .X/, with I acting on the sections of ˝

1;0
I .X/ by i and on those of

˝
0;1
I .X/ by �i: We get the following decomposition

˝k.X/ ˝ C D
M

pCqDk

˝
p;q
I .X/:

We denote by �
p;q
I .X/ the sections of ˝

p;q
I .X/ and define the Dolbeault operators

@ D �pC1;q ı d W �
p;q
I .X/ ! �

pC1;q
I .X/; N@ D �p;qC1 ı d W �

p;q
I .X/ ! �

p;qC1
I .X/;

where d is the exterior derivative and �p;q is the projection onto �
p;q
I .X/. Clearly,

df D �
@ C N@�

f for any function f . However, a priori, the same is not true for higher
degree forms as explained in Fig. 1:

Fig. 1 In general, the two dashed maps NI D �0;2 ı d W �
1;0
I .X/ ! �

0;2
I .X/ and N�

I D �2;0 ı d W
�

0;1
I .X/ ! �

2;0
I .X/ do not need to vanish. If they do, then the almost complex structure I is called

integrable and d D @ C N@ not only on functions but also on forms of higher degree
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An almost complex manifold .X; I/ is integrable if and only if

@2˛ D N@2˛ D �
@N@ C N@@

�
˛ D 0 for all ˛ 2 �

p;q
I .X/: (1)

On any complex manifold .X; I/, there is a double complex .�
p;q
I .X/; @; N@/ with two

anti-commuting differentials.

2.2 Cohomologies on Hypercomplex Manifolds

An almost hypercomplex manifold .M; I; J; K/ is a smooth manifold M of real
dimension 4n equipped with three almost-complex structures I, J, K satisfying the
quaternionic relations

I2 D J2 D K2 D IJK D �IdTM:

If all three almost-complex structures are integrable, then .M; I; J; K/ is called
a hypercomplex manifold. We would like to mimic the above characterisation
of integrability (1) in terms of differential operators. To this end, we will keep
the decomposition of complexified differential forms with respect to the almost-
complex structure I. As the almost-complex structures I and J anticommute, we
deduce that J interchanges �

1;0
I .M/ with �

0;1
I .M/. This action then extends to an

action J W �
p;q
I .M/ ! �

q;p
I .M/:

J.'/.X1; : : : ; Xp; Y1; : : : ; Yq/ D .�1/pCq.'/. JX1; : : : ; JXp; JY1; : : : ; JYq/:

On any almost hypercomplexmanifold, the twisted Dolbeault operator @J is defined
by the commutative diagram

−−−−→

−−−−→

Both @ and @J increase the first index in the bidegree as illustrated in Fig. 2.
One checks that @2˛ D 0 D @2

J˛ for all ˛ 2 �
p;0
I .M/ if and only if the Nijenhuis

tensor NI of the almost complex structure I vanishes, that is if and only if the almost
complex structure I is integrable. Moreover, a direct computation shows that .@@J C
@J@/˛ D 0 for all ˛ 2 �

p;0
I .M/ if and only if the Nijenhuis tensor NJ of the almost

complex structure J vanishes. We deduce the following result [29, 34]: An almost
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Fig. 2 On general almost
hypercomplex manifolds, the
two dashed maps J�1 ı NI W
�

1;0
I .M/ ! �

2;0
I .M/ and

N�

I ı J W �
1;0
I .M/ ! �

2;0
I .M/

do not need to vanish. If they
do, then the almost complex
structure I is called integrable

hypercomplex manifold .M; I; J; K/ is integrable if and only if

@2˛ D @2
J˛ D .@@J C @J@/ ˛ D 0 for all ˛ 2 �

p;0
I .M/:

On any hypercomplex manifold .M; I; J; K/, there is always a cochain complex
.�

p;0
I .M/; @; @J/ with two anti-commuting differentials. This naturally leads to a

definition of cohomology groups on hypercomplex manifolds.

2.3 Complex and Quaternionic Cohomology Groups

As soon as one is facing a cochain complex with two differential operators that
anticommute, one may think about defining the following cohomology groups: the
Dolbeault cohomology groups, the Bott–Chern cohomology groups and the Aeppli
cohomology groups. Table 1 below gives precise definitions of these groups for
both the double complex .�

p;q
I .X/; @; N@/ on a complexmanifold .X; I/ and the single

complex .�
p;0
I .M/; @; @J/ on a hypercomplex manifold .M; I; J; K/.

Table 1 Some cohomology groups on compact complex manifolds .X; I/ (left) and their ana-
logues on compact hypercomplex manifolds .M; I; J; K/ (right)

Complex Dolbeault cohomology groups Quaternionic Dolbeault cohomology groups

Hp;q
@ .X/ D f'2�

p;q
I .X/ j @'D0g

@�
p�1;q
I .X/

D Ker @

Im @
Hp;0

@ .M/ D f'2�
p;0
I .M/ j @'D0g

@�
p�1;0
I .M/

D Ker @

Im @

Hp;q
N@

.X/ D f'2�
p;q
I .X/ j N@'D0g

N@�
p;q�1
I .X/

D Ker N@

Im N@
Hp;0

@J
.M/ D f'2�

p;0
I .M/ j @J'D0g

@J�
p�1;0
I .M/

D Ker @J

Im @J

Complex Bott–Chern cohomology groups Quaternionic Bott–Chern cohomology groups

Hp;q
BC.X/ D f'2�

p;q
I .X/ j @'D0DN@'g

@N@�
p�1;q�1
I .X/

D
Ker @\Ker N@

Im @N@

Hp;0
BC.M/ D f'2�

p;0
I .M/ j @'D0D@J'g

@@J�
p�2;0
I .M/

D
Ker @\Ker @J

Im @@J

Complex Aeppli cohomology groups Quaternionic Aeppli cohomology groups

Hp;q
AE .X/ D f'2�

p;q
I .X/ j @N@'D0g

@�
p�1;q
I .X/CN@�

p;q�1
I .X/

D
Ker @N@

Im @CIm N@

Hp;0
AE .M/ D f'2�

p;0
I .M/ j @'D0D@J'g

@@J�
p�2;0
I .M/

D
Ker @\Ker @J

Im @@J
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On compact hypercomplex manifolds, the groups Hp;0

@ .M/, Hp;0

@J
.M/, Hp;0

BC.M/

and Hp;0
AE .M/ are finite-dimensional complex vector spaces [15].

2.4 Conjugation Symmetry

On a complex manifold .X; I/, conjugation defines a map

�
p;q
I .X/ ! �

q;p
I .X/ W ˛ 7! N̨ :

As this map passes to cohomology, we deduce that Hp;q
@ .X/ Š Hq;p

N@ .X/. Further-
more, this also implies that

Hp;q
BC.X/ Š Hq;p

BC.X/ and Hp;q
AE .X/ Š Hq;p

AE .X/:

On a hypercomplex manifold .M; I; J; K/, conjugation followed by the action of J
similarly defines a map

�
p;0
I .M/ ! �

p;0
I .M/ W ˛ 7! J. N̨ /:

Once more, this map descends to cohomology and leads to the isomorphism

Hp;0

@ .M/ Š Hp;0

@J
.M/

but we do not get any isomorphisms for Hp;0
BC.M/ or Hp;0

AE .M/.

2.5 The @@J-Lemma

On a compact complex manifold .X; I/ and on a compact hypercomplex manifold
.M; I; J; K/, the identity map induces the following maps:

In general, these maps have no reason to be either injective or surjective. We say
that the @N@-Lemma holds if the map Hp;q

BC.X/ ! Hp;q
N@ .X/ is injective and similarly
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that the @@J-Lemma is satisfied if the map Hp;0
BC.M/ ! Hp;0

@J
.M/ is injective. In

other words, the @N@-Lemma holds if every @-closed N@-exact . p; q/-form is @N@-exact
while the @@J-Lemma holds if every @-closed, @J-exact . p; 0/-form is @@J-exact. As
it turns out, this actually implies that all of the maps in the above diagram become
isomorphisms [12].

2.6 A Quaternionic Frölicher-Type Inequality

We deduce that, on a compact complex manifold .X; I/, the Bott–Chern and Aeppli
cohomology groupsmay differ from the Dolbeault and deRham cohomology groups
(if the @N@-Lemma does not hold). The following result by Angella–Tomassini
quantifies this difference:

Theorem 1 ([2]) Let .X; I/ be a compact complex manifold of real dimension 2n.
Then

X

pCqDk

�
dimHp;q

BC.X/ C dimHp;q
AE .X/

�
> 2 dimHk

dR.X/ (2)

for any 0 6 k 6 n where

Hk
dR.X/ D f' 2 �k.X/ j d' D 0g

d�k.X/
D Ker d

Im d

denotes deRham cohomology. Moreover, the @N@-Lemma holds if and only if we have
equality for all 0 6 k 6 n.

A similar result can be established for quaternionic cohomologies on compact
hypercomplex manifolds:

Theorem 2 ([22]) Let .M; I; J; K/ be a compact hypercomplex manifold of real
dimension 4n. Then

dimHp;0
BC.M/ C dimHp;0

AE .M/ > 2 dimEp;0
2 .M/ (3)

for any 0 6 p 6 2n where the space Ep;0
2 .M/ is defined by

Ep;0
2 .M/ D f' 2 �

p;0
I .M/ j @' D 0 and @J' C @˛1 D 0g

f' 2 �
p;0
I .M/ j ' D @̌ 1 C @Jˇ2 and @̌ 2 D 0g :

Moreover, the @@J-Lemma holds if and only if we have equality for all 0 6 p 6 2n.
While these results look very similar, the conclusions we draw differ. More

precisely, recall that the Betti numbers appearing in the right-hand-side of (2) are
topological invariants. As the dimensions of the cohomology groups are upper
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semi-continuous, Angella and Tomassini deduce from Theorem 1 that, on compact
complex manifolds, the @N@-Lemma is stable by small complex deformations [2,
35, 37]. However, the same reasoning fails on compact hypercomplex manifolds,
because the term dimEp;0

2 .M/ appearing in the right-hand-side of (3) in Theorem 2
has no reason to be a topological invariant. Indeed, it can be shown that the @@J-
Lemma is not stable by small hypercomplex deformations as illustrated in the
Example in Sect. 4.5.

Finally, Theorems 1 and 2 also allow us to quantify how far away a complex
manifold is from being “cohomologically Kähler” and similarly how far away a
hypercomplexmanifold is from being “cohomologically HKT” (see Sect. 3). Define
the non-Kähler-ness degrees [3] on complex manifolds

�k.X/ D
X

pCqDk

�
dimHp;q

BC.X/ C dimHp;q
AE .X/

� � 2 dimHk
dR.X/

and the non-HKT-ness degrees [22] on hypercomplex manifolds

�p.M/ D dimHp;0
BC.M/ C dimHp;0

AE .M/ � 2 dimEp;0
2 .M/:

3 Metric Structures

Every complex manifold .X; I/ admits a Hermitian metric, that is a Riemannian
metric g such that

g.�; �/ D g.I�; I�/:

We can build out of this the Hermitian form !.�; �/ D g.I�; �/ and various special
metrics can be characterised via conditions on !. Similarly, any hypercomplex
manifold .M; I; J; K/ admits a quaternionic Hermitian metric, that is a Riemannian
metric g which satisfies

g.�; �/ D g.I�; I�/ D g. J�; J�/ D g.K�; K�/:

This leads to three (not necessarily closed) differential forms !I.�; �/ D g.I�; �/,
!J.�; �/ D g. J�; �/ and !K.�; �/ D g.K�; �/ that can be assembled to build the
fundamental form

˝ D !J C p�1!K

which is of type .2; 0/ with respect to the complex structure I. Once more, various
special metrics can be characterised by imposing conditions on the form ˝ . If,
for instance, the form ˝ is d-closed then .M; I; J; K; ˝/ is called a hyperkähler
manifold whereas if ˝ is @-closed, then .M; I; J; K; ˝/ is called hyperkähler with
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Table 2 Correspondence between metric structures on complex and hypercomplex manifolds

Complex Condition Hypercomplex Condition

Gauduchon @N@!n�1 D 0 Quaternionic Gauduchon @@J˝n�1 D 0

Strongly Gauduchon @!n�1 2 Im N@ Quaternionic strongly Gauduchon @˝n�1 2 Im @J

Balanced d!n�1 D 0 Quaternionic balanced @˝n�1 D 0

Kähler d! D 0 Hyperkähler with torsion (HKT) @˝ D 0

Hyperkähler d˝ D 0

torsion, or HKT for short (see [14] for a nice introduction). Table 2 summarises
some special metrics on hypercomplex manifolds together with their associated
conditions on ˝ as well as their complex counterparts. We point out that HKT
metrics, just as Kähler metrics in the complex setup, admit a local potential [4].

A first important difference between complex and hypercomplex manifolds is
the existence of a preferred metric. Indeed, a complex manifold always admits a
Gauduchon metric and this metric is unique in its conformal class up to a constant.
On the other hand, to recover existence of a quaternionic Gauduchon metric on
hypercomplex manifolds, we will impose an additional holonomy constraint as
described in the next Section.

4 SL.n;H/-manifolds

There is a particular class of hypercomplex manifolds, called SL.n;H/-manifolds,
that shares more properties of complex manifolds than general hypercomplex
manifolds do. The key reason for this is that the canonical bundle of an SL.n;H/-
manifold is holomorphically trivial and this leads to a version of Hodge theory when
HKT [34] and to a version of Serre duality on the bundle ˝

�;0
I .M/.

4.1 The Obata Connection

Another important difference between complex and hypercomplex geometry is the
existence of a special connection. A complex manifold generally admits infinitely
many torsion-free connections which preserve the complex structure [17]. On the
other hand, any hypercomplex manifold admits a unique torsion-free connection r
such that

rI D rJ D rK D 0:

This connection is called the Obata connection [26]. In general, the Obata connec-
tion does not preserve the metric, except when the manifold is hyperkähler. Given
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Fig. 3 This figure shows the
possible holonomy groups of
compact hypercomplex
manifolds in real
dimension 8. Left-invariant
structures on Lie groups are
conjectured to have holonomy
equal to GL.2;H/ just as it
has been proven for SU.3/

any torsion-free affine connection, the holonomy group introduced by Élie Cartan
measures the failure of the parallel translation associated to a connection to be
holonomic. Merkulov and Schwachhöfer classified the groups which can possibly
arise as irreducible holonomy groups of torsion-free connections [24]. As illustrated
in Fig. 3, in the case of the Obata connection, there are three possible choices:
GL.n;H/, SL.n;H/ and U.n;H/. Indeed, as the Obata connection preserves all
three complex structures, its holonomy is necessarily contained in the quaternionic
general linear groupGL.n;H/. It turns out that, for all nilmanifolds, the holonomy is
contained in the commutator subgroup SL.n;H/ [6]. Finally, a hyperkähler manifold
is characterised by the fact that the holonomy of the Obata connection is equal
to the compact symplectic group Sp.n/ D U.n;H/, i.e. the hyperunitary group.
For the homogeneous hypercomplex structure on SU.3/ constructed by Joyce, the
holonomy is equal to GL.2;H/ [31].

4.2 Hodge Theory

One important aspect of SL.n;H/-manifolds is that, if the metric is HKT, then
it is possible to establish a version of Hodge theory [34]. Indeed, any SL.n;H/-
manifold has holomorphically trivial canonical bundle. The nowhere degenerate real
holomorphic section ˚ (that is a nowhere degenerate section ˚ such that J N̊ D ˚

and @ N̊ D 0) which trivialises ˝
2n;0
I .M/ may then be used to define a Hodge star

operator on a SL.n;H/-manifold .M; I; J; K; ˝/

?˚ W �
p;0
I .M/ ! �

2n�p;0
I .M/

via

˛ ^ .?˚ ˇ/ ^ N̊ D h.˛; ˇ/
˝n ^ N̊

nŠ
;
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Fig. 4 Serre duality on compact complex surfaces (left) and SL.2;H/-symmetry on compact
hypercomplex surfaces (right)

where h is the C-bilinear extension with respect to I of the quaternionic Hermitian
metric g associated to ˝ . On compact manifolds, this leads to the adjoints

@�˚ D � ?˚ @ ?˚ and @
?˚
J D � ?˚ @J?˚

and thus to the Laplacians

�@ D @@�˚ C @�˚ @ and �@J D @J@
�˚

J C @
�˚

J @J :

On SL.2;H/-manifolds, the Hodge ?˚ acts as an involution on �
2;0
I .M/ and hence

we may decompose .2; 0/-forms into ?˚ -self-dual ones and ?˚ -anti-self-dual ones.
As ?˚ commutes with �@, this splitting descends to cohomology.We conclude that,
on a compact SL.2;H/-manifold, the space H2;0

@ .M/ can be decomposed as a direct
sum of @-closed ?˚ -self-dual and @-closed ?˚ -anti-self-dual forms.

4.3 Serre Duality and SL.n;H/-symmetry

Besides the conjugation symmetry, compact complex manifolds also satisfy Serre
duality coming from the pairing on Hp;q

@ .X/ � Hn�p;n�q
@ .X/ given by

.Œ˛�; Œˇ�/ 7!
Z

X
˛ ^ ˇ:

On compact SL.n;H/ manifolds, an analogue of this exists and can be formulated
as follows (see also Fig. 4). Consider the pairing Hp;0

@ .M/ � H2n�p;0

@ .M/ given by

.Œ˛�; Œˇ�/ 7!
Z

M
˛ ^ ˇ ^ N̊ :

Note that, for this to be well-defined we really need @ N̊ D 0.
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Furthermore, Serre duality and SL.n;H/-symmetry also provide links between
Bott–Chern and Aeppli cohomologies. Indeed, using the above pairings, it can
be shown that Serre duality on compact complex manifolds of real dimension 2n
implies that Hp;q

BC.X/ Š Hn�p;n�q
AE .X/ and similarly SL.n;H/-symmetry on compact

SL.n;H/-manifolds implies that Hp;0
BC.M/ Š H2n�p;0

AE .M/.

4.4 SL.2 ;H/-manifolds

We saw that compact SL.2;H/-manifolds share many properties of compact com-
plex surfaces, most notably a version of Hodge theory when it is HKT and similar
symmetries. Hence it should not surprise that many results valid on compact
complex surfaces can be adapted to results on SL.2;H/-manifolds. To illustrate this
link, we display in Table 3 some results which show that HKT metrics play a similar
role on SL.2;H/-manifolds than Kähler metrics do on complex surfaces.

4.5 Computations

On a compact hypercomplex nilmanifold .M; I; J; K/ of real dimension 8, if
one assume that the Dolbeault cohomology Hp;q

N@ .X/ with respect to I can be
computed using left-invariants forms then the quaternionic Dolbeault cohomology
groups Hp;0

@ .M/ and Hp;0

@J
.M/, the quaternionic Bott–Chern cohomology groups

Hp;0
BC.M/ as well as the quaternionic Aeppli cohomology groups Hp;0

AE .M/ can be
computed using only left-invariant forms [22]. Hence we may explicitly calculate
these cohomologies for the following example based upon the central extension of
the quaternionic Lie algebra R� H7. We consider a path of hypercomplex structures
as done in [13, 15, 22]. We end up with an SL.2;H/-manifold carrying a family
t 2 .0; 1/ of hypercomplex structures which is HKT for t D 1

2
but not HKT for all

Table 3 Results valid on compact complex surfaces (left) and the corresponding results on
compact SL.2;H/-manifolds (right)

Compact complex surfaces Compact SL.2;H/-manifolds

Kähler if and only if dimH1
dR.X/

even [10, 21, 25, 30]
HKT if and only if dimH1;0

@ .M/ even [15]

Kähler if and only if strongly Gauduchon [28] HKT if and only if quaternionic strongly
Gauduchon [22]

Kähler if and only if the second
non-Kähler-ness degree vanishes [3, 23, 33]

HKT if and only if the second non-HKT-ness
degree vanishes [22]
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other values of t. The structure equations of the Lie algebra are:

8
ˆ̂<

ˆ̂:

de1 D de2 D de3 D de4 D de5 D 0;

de6 D e1 ^ e2 C e3 ^ e4;

de7 D e1 ^ e3 C e4 ^ e2;

de8 D e1 ^ e4 C e2 ^ e3:

Consider the family of hypercomplex structures .It; Jt; Kt/ parametrised by t 2
.0; 1/:

Ite1 D t�1
t e2; Ite3 D e4; Ite5 D 1

t e6; Ite7 D e8;

Jte1 D t�1
t e3; Jte2 D �e4; Jte5 D 1

t e7; Jte6 D �e8:

A basis of left-invariant .1; 0/-forms is given by:

'1 D e1 � i t�1
t e2; '2 D e3 � ie4; '3 D e5 � i 1

t e6; '4 D e7 � ie8:

The structure equations become:

d'1 D 0; d'2 D 0; d'3 D 1
2.1�t/ '

1N1 � 1
2t '

2N2; d'4 D 2t�1
2t�2

'12 � 1
2t�2

'
N12:

If t D 1
2
, then d' i � �1;1

I .M/ and the complex structure is abelian whereas
otherwise it is not. In terms of the differentials @ and @J , the structure equations
can be written as:

@'1 D 0; @'2 D 0; @'3 D 0; @'4 D 2t�1
2.t�1/

'12;

@J'1 D 0; @J'2 D 0; @J'3 D � 2t�1
2.t�1/

'12; @J'4 D 0:

We conclude: if t ¤ 1
2
, then we get Table 4.

Whereas if t D 1
2
then both @'4 D 0 and @J'3 D 0 which leads to Table 5.

Table 4 Dimensions of the
quaternionic cohomology
groups when t D 1

2

. p; 0/ h p;0

@ h p;0

@J
h p;0

BC h p;0
AE

.1; 0/ 3 3 2 4

.2; 0/ 4 4 5 5

.3; 0/ 3 3 4 2

Table 5 Dimensions of the
quaternionic cohomology
groups when t ¤ 1

2

. p; 0/ h p;0

@ h p;0

@J
h p;0

BC h p;0
AE

.1; 0/ 4 4 4 4

.2; 0/ 6 6 6 6

.3; 0/ 4 4 4 4
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We deduce that, just as the HKT property, the @@J-Lemma is not stable by small
hypercomplex deformations [13]. This differs from the complex setup where the
@N@-Lemma is stable by small complex deformations [2, 35, 37].
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