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Abstract We survey recent results on the existence of Kähler-Einstein metrics on
certain smoothable Fano varieties, focusing on the importance of such metrics in
the construction of compact algebraic moduli spaces of K-polystable Fano varieties.
Moreover, we give some applications and we discuss some natural problems which
deserve future investigations.

1 Introduction

Let X be a smooth Fano manifold, i.e., a compact n-dimensional complex manifold
with positive first Chern class or, equivalently, with ample anticanonical bundle K�1

X .
In this survey we discuss the moduli problem of this important class of complex

varieties, showing its deep connections with the theory of canonical metrics on
complex manifolds. More precisely, we focus on the so-called Kähler-Einstein
(KE) metrics. This correspondence can be thought as an higher dimensional
generalization of the relations between the theory of compact complex curves and
their natural algebraic degenerations to nodal curves (Deligne-Mumford moduli
compactification), and the theory of metrics with constant negative Gauss curvature
and formation of hyperbolic cusps. However, crucially, in our higher dimensional
KE Fano situation the value of the constant scalar curvature is positive, fact that
imposes, as we will see, important constraints on the possible degenerations of such
spaces.

Beside a pioneering work of Mabuchi and Mukai in a special complex two
dimensional case [50] (based on fundamental works on geometric limits of Kähler-
Einstein manifolds in real dimension four by, among others, Anderson [3] and
Tian [68]), the precise picture on “geometric compactified” moduli spaces for Fano
manifolds remained unclear. In particular, it is important to note that the “space”
of all Fano manifolds is non-Hausdorff and Fano varieties may have continuous
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families of automorphisms. Thus some care has to be considered in studying such
moduli problem.

However, the recent advances on the equivalence between existence of KE
metrics and the purely algebro-geometric notion of K-stability on Fano manifolds
[16], combined with the results [24] by Donaldson and Sun on geometric limits
of non-collapsing KE metrics (based on the so-called Cheeger-Colding-Tian theory
of limit spaces), made possible to study in more detail moduli spaces of KE (or
K-stable) Fano manifolds and their degenerations showing that, if we restrict
our attention to such special Fano varieties, their moduli theory becomes much
well behaved. In particular, we now have a complete explicit picture in complex
dimension two [57], and more general abstract results [48, 49, 56, 62] in higher
dimension regarding existence of weak KE metrics on singular Fanos and on the
structure of the (compactified) moduli spaces.

Finally, for completeness, we should mention here in the introduction that the
relation between canonical metrics and compact moduli spaces of varieties is also
fundamental in the higher dimensional case of varieties with negative first Chern
class. Contrary to the Fano case, we have that all such smooth manifold admit
KE metrics with negative “cosmological constant” by the works of Aubin [6] and
Yau [72]. If we consider singular varieties, K-stability is equivalent to “KSBA
stability” [52, 53] (a condition on the singularities of canonical polarized varieties,
generalizing Deligne-Mumford stability for curves, used to construct compact
separated moduli spaces, e.g., [1, 40, 41]). Moreover, it has been proved in [9]
that certain singular KE metrics [9] always exist precisely on this type of singular
varieties. We will briefly explain these relations in more detail at the end of Sect. 4.

In conclusion, we can say that, at least for (anti)canonical polarized varieties, K-
stability, with its relation with KE metrics, provides a unified way to construct nice
(compact) moduli spaces of algebraic varieties, and thus KE/K-moduli spaces are
important objects to be further studied in the near future.

2 An Overview of Fano KE/K-Moduli Problem

Let X be an n-dimensional smooth Fano manifold and let �.K�k
X / be the Euler char-

acteristic of power of the anticanonical line bundle K�1
X . By Kodaira’s vanishing,

such Euler characteristic is equal to h0.K�k
X / and, moreover, it coincides with the

Hilbert polynomial associated to the anticanonical polarization.
Thus, for a given polynomial h, we can define the following moduli set:

Mh WD fXn Fano mfd with �.K�k
X / D h.k/g=bi-holo:

Being a “parameter space” for certain algebraic manifolds, we would like this set
to admit a natural algebraic/complex analytic structure of complex variety: i.e., if
� W X ! B is a flat family where ��1.b/ D Xb is a Fano manifold, the natural map
B ! Mh should be holomorphic with respect to the analytic structure on Mh.
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However, for dimension n � 3 such structure cannot exist for trivial reasons,
known as “jumps of complex structures”: there exist flat families of smooth Fanos
� W X ! � over the complex disc, such that Xt Š Xs for any t; s ¤ 0, but X0 © Xt,
for t ¤ 0. Thus ŒX0� 2 ŒXt� (here the square bracket denotes the isomorphism class).
Hence, ŒXt� 2 Mh would be a non-closed point, condition which is incompatible
with the existence of a natural structure of complex analytic variety on Mh (in
particularly inducing a Hausdorff topology). A well-known concrete example of
this phenomenon is given by deformations of Mukai-Umemura Fano threefold (see
[70], where the relations with KE metrics is discussed).

Thus the only hope to find a moduli space of Fanos which indeed admits
a nice classical analytic structure is to restrict the class of Fanos to consider.
Of course this non-Hausdorff issue is typical in many moduli problems (e.g.,
moduli of vector bundles). An answer for solving this problem is usually found
in restricting the attention to “stable” vector bundles or, thanks to the Hitchin-
Kobayashi correspondence, to bundles which admit Hermitian-Einstein metrics.

This suggests that also in the case of varieties we should look to certain “stable”
varieties or, somehow equivalently, varieties which carry special Riemannian
metrics. However, understanding the “right” stability condition to consider in the
case of varieties turned out to be a highly non-trivial task, and many scholars worked
in the last 30 years to better understand the relations between special metrics and
algebraic stabilities, guided by the so-called Yau-Tian-Donaldson conjecture (YTD
for short): given a polarized complex manifold .X; L/, the existence of a Kähler
metric with constant scalar curvature (cscK) in 2�c1.L/ should be equivalent to
certain purely algebraic notion of stability of .X; L/ (for a gentle introduction on
this topic, focused on a moduli perspective, one can read [67]). In particular, not all
polarized manifolds carry canonical metrics, contrary to the Calabi-Yau or negative
first Chern class case. Classical obstructions to the existence of such metrics are
given by the reductivity of the automorphism group [51] and the vanishing of the
so-called Futaki invariant [31].

We are not going to describe the huge literature in the subject here, but instead
we focus on our Fano case of anti-canonical polarized manifolds, where the natural
differential geometric notion for a canonical metric in 2�c1.K�1

X / reduces to the so-
called Kähler-Einstein (KE) condition. Recall that a KE metric on a Fano manifold
is a Kähler metric ! 2 2�c1.K�1

X / which satisfies the Einstein geometric PDE,
necessarily with “positive cosmological constant” (here normalized to 1):

Ric.!/
�D iN@@ log.!n/

� D !:

Thanks to the Kähler condition, such Einstein equation, in general obstructed,
reduces to a complex Monge-Ampère equation on a potential function and thus it
can be studied using techniques coming from pluri-potential theory.

In [70] Tian introduced the notion of K-stability, extending the notion of Futaki
invariant, stability condition later further generalized and made completely algebraic
by Donaldson [21]. K-(poly)stability (be aware that sometimes people call K-stable
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something that for us is K-polystable!) is a “geometric invariant theory (GIT)-like”
notion of stability for varieties in which one promotes an abstract version of the
Hilbert-Mumford criterion as a definition for stability.

A test-configuration for X (the analogous to a one-parameter subgroup in
standard GIT) is the datum of a C�-equivariant relative polarized normal flat family
of schemes over C:

C� Õ ..X ;L / ! C/ ;

such that over 1 (hence away from zero), we have an isomorphism .X1;LjX1
/ Š

.X; K�r
X /. Clearly C� acts naturally on the dk-dimensional vector space H0.X0;L

k
jX0

/

with weight wk on its top exterior power. Note that X0 can be highly singular.
The Donaldson-Futaki invariant for the test configuration .X ;L / for X (the

analogous of weight in GIT) is the k�1 coefficient in the Riemann-Roch expansion:

wk

kdk
D C C DF.X; .X ;L //k�1 C O.k�2/:

X is called K-stable (rep. semistable) if and only if DF.X; .X ;L // > 0 (resp. � 0)
for all test-configurations, and K-polystable if and only if it is K-semistable and
DF D 0 iff X Š X � C.

Note that to define K-stability we haven’t taken a specific embedding of X in
some fixed projective space and considered only embedded test configurations: the
definition require a-priori to test stability for all possible equivariant degenerations
inside any PN where X embeds, letting N ! 1. For this reason testing K-stability
from the actual definition is very challenging, even if we can reduce to the so-called
special test configurations [47]. However, some criteria related to the so-called
log-canonical-threshold, or to the very recent notion of Ding stability are available
(e.g.,[30]). More abstractly, K-stability may be thought as a GIT like notion on the
stack of Fano varieties where the DF-invariant is actually realized as the weight of
a stacky line bundle, called CM line bundle [58]. As we will see, this point of view
is quite important for the moduli discussion.

We are now ready to state the fundamental theorem relating KE metrics with
K-stability.

Theorem 2.1 (YTD Conjecture for Fano Manifolds) Let X be an n-dimensional
smooth Fano manifold. Then

there exists a KE metric in 2�c1.K
�1
X / ” X is K-polystable:

The direction “)” has been proved in various degrees of generality by Tian [70],
Donaldson [22], Stoppa [64] and finally by Berman [8]. The other direction is the
content of the recent breakthrough of Chen, Donaldson and Sun [16]. The proof uses
a combination of analytic, geometric and algebraic techniques, in particular related
to the notion of Gromov-Hausdorff (GH) convergence (notion that, as we will see,
is deeply relevant also for the moduli problem). More recently different proofs have
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been found: via Aubin’s continuity path [18], via Kähler-Ricci flow [17] or, for the
case of finite automorphisms groups, via calculus of variation techniques [10].

But now let us go back to the moduli discussion. We can define the “differential
geometric” KE moduli space of equivalence classes, up to biholomorphic isome-
tries, of KE Fano manifolds (with fixed Hilbert polynomial h):

EMh WD f.X; !/ j ! KEg= � :

Similarly, we can consider the subset of Mh defined by the algebro geometric
condition of K-polystability:

K Mh WD fŒX� j X K-psg ¨ Mh:

Thus we have the following Hitchin-Kobayashi map for varieties:

�h W EMh �! K Mh;

naturally given by forgetting the metric structure, i.e., �h.Œ.X; !/�/ WD ŒX�. This map
is:

• well-defined, by “)” in Theorem 2.1.
• surjective, by “(” in Theorem 2.1.
• injective, by Bando-Mabuchi uniqueness [7].

Thanks to the canonical metric structure induced by the KE metric, we can
now put a natural topology on the differential geometric moduli space EMh. Such
topology is essentially induced by the Gromov-Hausdorff (GH) distance between
compact metric spaces: given two compact metric spaces, say .S; dS/ and .T; dT/,
one defines

dGH.S; T/ WD inf
S;T Œ U

inffC > 0 j S � NC.T/ & T � NC.S/g;

where NC.S/ denotes the distance C neighborhood of S isometrically embedded in
a metric space U. The above defines a metric structure, in particular a Hausdorff
topology, on the space of isomorphisms classes of compact metric spaces. In
practice, one usually estimates the GH distance (which is sufficient for studying
convergence) via maps f W S ! T which are �-dense and �-isometries. See [12] for
an introduction to such notion of convergence.

One of the immediate advantage of the GH topology is that, by its very definition,
it gives a possible precise way to study degenerations of Riemannian manifolds to
singular spaces.

Moreover, in our KE Fano case, we have to following remarkable pre-
compactness property: any sequence of complex n-dimensional KE Fano manifolds
.Xi; !i/ subconverges in the GH sense to a compact length metric space S1 of
real Hausdorff dimension equal to 2n. This follows by Gromov’s theorem on
convergence of Riemannian manifolds with Ricci uniformly bounded below and
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diameter bounded above (condition that in our case is implied by the positivity
of the Ricci tensor, thanks to Myers’theorem) and by the volume non-collapsing
condition, i.e., the volume of balls of radius r is uniformly bounded below by Cr2n.

The metric space limit S1 can be considered as a very weak limit. However,
since we are considering limits of spaces which admit many additional structures (a
Riemannian metric and a complex structure) it is natural to expect that in a suitable
sense such structures are preserved in the limit. The first important result is the
“Riemannian regularity” provided by Cheeger-Colding theory [14] which shows
that S1 is actually an incomplete smooth Einstein space off a set of Hausdorff
codimension 4, and also gives some geometric stratification of the singular set
based on the local behavior of the metric structure (via splittings of metric tangent
cones). The second regularity result is the recent theorem of Donaldson and Sun [24]
which, in addition, shows that S1 admits a natural structure of normal algebraic
Fano variety. Such structure is constructed by realizing the GH convergence as
convergence of algebraic cycles in a sufficiently big projective space, via uniform
Tian’s L2-orthonormal embeddings by plurianticanonical sections. Thus S1 is
homeomorphic to a Fano limit cycle X0. Note that the above also gives a refinement
of the GH topology, which now “remembers” the complex structure (otherwise
there is some ambiguity related to complex conjugations [61]). More technically
(see Sect. 4 for details), X0 turned out to be a Q-Gorenstein smoothable Q-Fano
variety, i.e., a normal variety with Q-Cartier anticanonical divisor and Kawamata-
log-terminal (klt) singularities admitting nice smoothings and a weak KE metric.

It is important to remember that in complex dimension two the above conver-
gence results were already known by the works mentioned in the introduction of
Anderson, Tian and others. In this situation, GH limits must have isolated orbifold
singularities (which is precisely the klt condition in dimension two), i.e., quotients
of C2 by finite subgroups of U.2/ acting freely on the 3-sphere. Moreover, the KE
metric is orbifold smooth, i.e., it extends to a smooth metric on the local orbifold
covers.

Since, by the result of Berman [8], it is known that the direction KE implies K-
polystability holds also for singular varieties, one can naturally define the extended
Hitchin-Kobayashi map

Q�h W EM
GH
h �! K Mh;

where EM
GH
h is a compact Hausdorff topological space with respect to the refined

GH topology obtained by adding all GH limits, and K Mh denotes the set of Q-
Gorenstein smoothable K-polystable Q-Fano (Q-smoothable for short) varieties up
to isomorphism.

With all of this in mind, it is natural to ask the following foundational questions:

1. YTD for Q-smoothable Fanos: does any X 2 K Mh admit a weak KE metric?
(i.e., is Q�h surjective?)

2. Existence of K-moduli: does K Mh admit a natural algebraic structure such that
Q�h is an homeomorphism with respect to the GH topology and the euclidean
topology of the algebraic space?
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3. Can we find explicit examples of such compactifications?

We start by discussing the dimension two case, i.e., the case of del Pezzo surfaces.
In this situation the answer to all such questions is complete. Note that in dimension
one, if one does not consider weighted/cone angle case, the moduli problem for
Fanos is clearly trivial, being P1 with the Fubini-Study metric the only such space.

3 KE/K-Moduli of del Pezzo Surfaces

In complex dimension two Fano manifolds are traditionally called del Pezzo
surfaces. Such varieties are also completely classified: they are given by P2, P1 �P1

and the blow-up of the plane in up to eight points in “very general” position. Let
us denote with d D c2

1.X/ � 9 their degree (which also uniquely determines the
Hilbert polynomial, as a consequence of Riemann-Roch arguments). The problem
of understanding which smooth del Pezzo surface admits a KE metric was addressed
in the seminal paper of Tian [68]. The answer is: they all admit such metrics, beside
the well-known obstructed cases of the blow-up of the plane in one or two points.

Since we are interested in moduli problem, we restrict to the case d � 4,
i.e., to the case when there are non-trivial complex deformations. Together with
recovering Tian’s theorem in the smooth case and, somehow, providing a conceptual
explanation why all smooth del Pezzo of degree d � 4 admit KE metrics, the
following theorem computes via explicit algebro-geometric techniques the GH
compactifications of such KE moduli spaces, classifying the geometric limits (which
are KE del Pezzo orbifolds, by the result recalled in the previous section).

Theorem 3.1 ([57]) For any positive integer degree d � 4, there exists an

explicit compact algebraic space M
ALG
d (moduli space of certain degree d del Pezzo

orbifolds) such that the Hitchin-Kobayashi map

Q�d W EM
GH
d �! M

ALG
d

�
Š K Md

�

is a homeomorphism, and EMd is identified with a Zariski dense subset of M
ALG
d :

As we said in the introduction, the degree d D 4 case was previously understood
by Mabuchi and Mukai [50].

An important differential geometric application, generalizing Tian’s results in
the smooth setting, is the following corollary, answering a conjecture of Cheltsov
and Kosta [15]. Since KE del Pezzo orbifolds with orbifold groups contained in
SU.2/ (i.e., with canonical singularities) are classified and they always admit Q-
Gorenstein smoothings, from the above explicit KE/K-moduli compactification we
have:

Corollary 3.2 ([57]) KE del Pezzo orbifolds with orbifold groups at the singulari-
ties contained in SU.2/ are classified.
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For example, KE del Pezzo orbifolds of degree three with such singularities are
precisely given by all cubic surfaces in P3 with only nodal (i.e., A1) singularities
plus the toric cubic fxyz D t3g Š P2=Z3, since in this case the GH compactification
agrees with the classical GIT quotient of cubic surfaces. Partial results where
previously known (e.g., [15, 20, 60]).

We now indicate the main passages in the proof of the above Theorem 3.1 for the
interesting d D 2 case.

Let X1 be the GH limit of smooth degree 2 del Pezzo surfaces (i.e., GH limit of
KE double covers of P2 branched at a smooth quartics).

• Step 1: we first improve our understanding of the singularity of X1, combining
Bishop-Gromov monotonicity formula (which shows that the order of the
orbifold group at the singularity can be at most 6) with the Kollár and Shepherd-
Barron classification of two dimensional Q-Gorenstein smoothable quotient
singularities [42].

• Step 2: using classification results of singular del Pezzo surface, we show that
X1 has to be given by the following hypersurfaces (of degree four and eight,
respectively) in weighted projective spaces:

1. X1 Š f f4 D t2g � P.1; 1; 1; 2/;
2. X1 Š f f8 D z2 C t2g � P.1; 1; 4; 4/;

• Step 3: in both two cases there is a natural action of two groups on the parameter
spaces: more precisely, in the first case SL.3;C/ acts on the space of quartics
P.Sym4.C3// and in the second case SL.2;C/ acts on P.Sym8.C2//. This gives
two GIT quotients, with natural linearizations.

• Step 4: since X1 is K-polystable by Berman [8], a comparison of stabilities using
the CM line bundle, shows that X1 has to be also stable with respect to the
above classical notions of GIT stability. Next we can blow-up the first quotient
semistable stack at the point corresponding to the double conic to get a space

mapping to a categorical quotient M
ALG
2 : i.e., we can define

M2 WD ŒP.Sym4.C3//ss=SL.3;C/� [fŒq2Dt2�g ŒP.Sym8.C2//ss=SL.2;C/� ! M
ALG
2 :

• Step 5: since there exists at least one smooth degree two KE del Pezzo surface
[71], we can define a natural continuous map (the Hitchin-Kobayashi map) from

EM
GH
2 to M

ALG
2 . Finally a standard open-closed topological argument, combined

with the fact that M
ALG
2 is an Hausdorff space of del Pezzo orbifolds, implies the

statement.

Note that in general there are non-canonical singularities in the limits, e.g., the
limit toric variety X1 D fx4y4 D z2 C t2g Š .P1 � P1/=Z4 has in particular two
singularities of type 1

4
.1; 1/. This is related to the existence of torsion Calabi-Yau

ALE metric bubbles from limits of Einstein spaces [65]: loosing speaking, ALE
bubbles are spaces that metrically model the formation of singularities in this non-
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collapsing setting, and thus they are somehow the equivalent of hyperbolic collars
in the (locally collapsing) curve case near the formation of a node.

Let us also note that, since an Einstein deformation of a smooth KE del
Pezzo surface has to be KE [44], such moduli spaces, quotienting with respect
to the natural involution given by conjugating the complex structure, are explicit
compactification of connected component of (real) Einstein moduli spaces on the
real oriented manifolds CP2]kCP2 with 5 � k � 8. See, for example, the general
discussion on Einstein moduli by Koiso [39]. The topological types of our spaces
could be easily understood.

In degree one the construction of the algebraic compactification is more involved,
since bi-meromorphic contractions are used (which also cause the a-priori loss of
projectivity for the moduli space). However, in all cases the algebraic compacti-
fications obtained show that such moduli spaces admit “more structure”: namely,
they are KE moduli Artin stack (essentially étale covered by affine GIT quotients
parametrizing del Pezzo orbifold deformations, see definitions 3:13–14 in [57]).
This is related to the Alper’s notion of Good Moduli Spaces for an Artin stack [2].

Finally, the fact that our explicit moduli agrees with the K-compactification (that
is, all Q-smoothable K-polystable del Pezzo surfaces appear in their boundary) is
a consequence of more general results which we are going to discuss in the next
section.

4 KE Metrics on Q-Smoothable Fano Varieties

By what we explained in Sect. 2, in order to study the boundary of the moduli
problem is natural to consider Q-Gorenstein smoothings of a K-polystable Q-Fano
(Q-smoothings for short) varieties, i.e., flat families X ! � over the complex disc
where:

• X0 is a normal (K-polystable) Fano variety with Q-Cartier canonical divisor (i.e.,
some power is a line bundle) satisfying K OX0=X0

DQ

P
i aiEi, with ai > �1, for any

log-resolution OX0. Equivalently, from a more differential geometric view-point,
for any p 2 X0,

R
U\X

reg
0

s
1
m ^Ns 1

m < 1, where s is a local trivialization over a small
neighborhood U of the m-th power of the canonical bundle Km

X0
near p.

• KX =� is Q-Cartier.
• Xt is smooth.

We remark that not Q-Gorenstein smoothings of Q-Fano varieties exist, but such
deformations are not relevant for KE/K-moduli problems. We can now state the
main theorem of this section, which in particular give an answer to question one in
Sect. 2.

Theorem 4.1 ([62]) Let X ! � be a Q-smoothing of a K-polystable variety X0.
Then X0 admits a weak KE metric !0. Moreover, if Aut.X0/ is finite, Xt admit smooth
KE metrics !t for t sufficiently small, and .Xt; !t/ ! .X0; !0/ in the GH topology.
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Thanks to the above correspondence between metric limits and flat families, as a
corollary we have the following algebraic separatedness statement.

Corollary 4.2 ([62]) If two Q-smoothings of K-stable Q-Fanos (with finite auto-
morphisms) agree away from the singular fiber, then the central (singular) fibers
are isomorphic.

Before giving a quick survey of the main ideas in the proof, it is useful to discuss
some properties of weak KE metrics, which are the natural pluri-potential theoretic
generalization on singular varieties of smooth KE metrics ([26], or [19] for a recent
survey).

Near any point p 2 X0 such weak KE metrics are given by the restriction of the
i@N@ of a continuous potential for an embedding in CN of the analytic germ of the
singularity. As two dimensional orbifold singularities show, such regularity for the
potential is essentially optimal. Regarding more geometric considerations, we have
that the regular part Xreg

0 is a smooth incomplete KE space, and its metric completion

Xreg
0 topologically agrees with X0.

The actual “asymptotic behavior” at the singularities of these weak KE metrics
is quite delicate, and more complicated with respect to the two dimensional orbifold
case. Recently we have seen important results which put some light on the aspect
of the metric near the singular locus, at least when we consider singular KE
spaces arising as limits of smooth ones (note that orbifold singularities appear
only exactly in complex codimension two, by the famous Schlessinger’s rigidity
of quotient singularities). From a metric measure theoretic perspective, it is known
that the metric “looks the same” at all sufficiently small scales near a singularity
(uniqueness of metric Calabi-Yau tangent cone [25]). But, as first observed by Hein
and Naber [35], phenomena of local jumping of complex structures can happen
when “zooming” to find such metric tangent cone. For example, it is expected that
in complex dimension 3, metric tangent cones at the isolated singularities of type
Ak (i.e., locally analytical of type x2

1 C x2
2 C x2

3 C xkC1
4 D 0) for k � 3 should

all be isometric to the flat cone C � C2=Z2 (singular along a line). See [23] for a
discussion.

Roughly speaking (but the situation is slightly more subtle in reality), these
jumping phenomena have their origins in the fact that typical complex links of
klt singularities are Fano varieties, but the existence of a Calabi-Yau cone metric
model implies that such links have to be KE! So there is indication that some notion
of stability for singularities is required (related to Sasaki-Einstein stability, in the
simplest cases). Some recent works, such as [45, 46], are trying to understand this
picture from an algebraic perspective. However, in certain situations (e.g., for the
A1 case, where a CY cone metric can be found via Calabi’s ansatz [13] and where
the corresponding smoothing bubble was explicitly found by Stenzel [63]) it is
expected, and very recently proved in the CY case by Hein and Sun [36], that the
weak KE metrics are polynomially asymptotic to the CY cone models in a suitable
local holomorphic gauge.

Let us now briefly describe the strategy in the prove of Theorem 4.1. The very
rough idea consists in constructing the weak KE metric on the singular fiber via a
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GH limit of certain conically singular KE metrics on the smooth nearby fibers, thus
running in families the so-called “Donaldson’s cone angle path”, i.e., the continuity
path used by [16] for proving the YTD conjecture in the Fano case.

• Step 1: by a Bertini’s type argument we can take a divisor in D 2 j � �KX =�j,
for � big enough, which gives a smooth pair .Xt; Dt/ when restricted at t ¤ 0

and a klt pair .X0; .1 � ˇ/D0/ on the singular fiber for ˇ � 1. Thus we want to
consider the following two parameters family of PDEs:

Ric.!t C i@N@�t;ˇ/ D .1 � .1 � ˇ/�/.!t C i@N@�t;ˇ/ C 2�.1 � ˇ/ıDt ;

where !t is the restriction of a Fubini-Study metric from an embedding of the
family and ıDt the current of integration along Dt. At least when t ¤ 0 a solution
of this equation is a KE metric with cone angle equal to ˇ along Dt (e.g. [38] or
[33]).

• Step 2: via a log-canonical-threshold argument one shows that the above equation
has a positive KE solution for all t, if ˇ is sufficiently small.

• Step 3: using some pluri-potential techniques (e.g., Berndsson’s positivity of
direct images) one can find, for fixed ˇ, an a-priori bound of type jj't;ˇjjL1 �
C.ˇ/; for t ¤ 0. Taking the universal embedding in PN provided by the conical
generalization of Donaldson and Sun convergence theorem [16] III, one sees that
the conical metrics on the smooth fibers GH converge to the weak conical KE
metric on the central fiber.

• Step 4: the above convergence is used to prove that the function

ˇt WD supfˇ 2 .1 � ��1; 1� j 9 !t;ˇ KE on Xtg;

is a lower semi-continuous function in the euclidean topology of the disc. This is
connected with some properties of the automorphism groups.

• Step 5: the above semi-continuity result, combined with a gap argument for some
natural energy functional (Aubin’s energy), gives that the set of cone angles ˇs
for which a weak conical KE metric exists on X0 is open. The closeness follows
again by taking limits from the smooth nearby fibers.

Thus the KE metric on X0 is constructed as a kind of “diagonal” GH limit of
cone angle KE metrics !t;ˇ.t/ with ˇ.t/ ! 1 as t ! 0. In particular, it is a weak KE
metric thanks to the regularity theory for GH limits.

4.1 Algebraic Structure on Fano KE/K-Moduli

Theorem 4.1 above shows that the YTD conjecture also holds in the case of Q-
smoothable Fano varieties and it provides a natural correspondence between flat
limits and GH convergence, at least in the case of finite automorphisms groups. The
next step is then related to the construction of a natural algebraic structure on the
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differential geometric KE moduli space or, equivalently, showing that our question
two asked at the end of the second section admits a positive answer.

The rough idea for constructing such algebraic moduli space of Q-smoothable K-
polystable Fano varieties is the following. One knows that, being KE, such varieties
have linear reductive automorphism groups. Thus one can consider a Luna’s slice
type argument applied to the Hilbert scheme in the uniform PN embedding where
all GH limits of smooth KE spaces (say with fixed Hilbert polynomial h) live. Here
one shows that, étale locally, K-polystability is completely captured by some “local
GIT” stability on a small enough (affine) slice. The actual argument is similar to
Steps 4–5 in the construction of explicit moduli space of del Pezzo surfaces. Thus
this expected “local GIT picture” (e.g. [61]), generalizing the one in the smooth case
obtained by Broennle [11] and Székelyhidi [66], provides the natural, compatible
with the GH topology, algebraic atlas for a compact moduli space. The above
has been fully proved by Li et al. [48] and, independently, by Odaka [56] (using
Theorem 4.1 recalled above and some preliminary propositions in the first version
of [48]), generalizing [54]. In conclusion we have:

Theorem 4.3 ([48, 56]) In any dimension, K Mh admits a natural algebraic
structure (given étale locally by affine GIT quotients) such that the map Q�h is a
homeomorphism.

As in the del Pezzo case, this moduli space carries more structure: in particular,
K Mh is a categorical quotient of a KE/K-moduli stacks as we have previously
discussed. Moreover, further analyzing the structure of such moduli spaces (in
particular studying openness of K-semistability), the authors in [48] showed that
K Mh is “dominated” by a good Artin moduli stack K M h of K-semistable Q-
smoothable Fano varieties, with a unique K-polystable point in the K-semistable
equivalence classes. However, as we have seen, we stress that at present the exi-
stence/construction of such algebraic moduli spaces of Q-smoothable K-polystable
Fano varieties depends crucially on transcendental complex analytic techniques
related to KE metrics. Some discussion on the potential dependence on N (the
dimension of the projective space were all GH limits live) of the algebraic structure
on the compactified moduli space can be found in the original papers. Moreover,
it will be very important to find a purely algebraic way to form such moduli
spaces and, furthermore, to remove the smoothability hypothesis used in the present
construction. We expect new birational geometric techniques to be relevant for this
progress.

Finally, we mention that such KE/K compact moduli spaces of Fano varieties are
the analogous of the KSBA compactification of moduli spaces of manifolds with
negative first Chern class [41], and thus a special instance of the more general theme:
relations between special Kähler metrics and moduli of polarized varieties. In
[52, 53] Odaka showed that K-stability is equivalent to the KSBA conditions on the
singularities (semi-log-canonical) of a variety (satisfying the conditions G1 and S2)
with ample canonical divisor required to form compact moduli spaces. Moreover,
Berman and Guenancia showed in [9] that precisely on varieties with such type of
singularities is possible to construct weak KE metrics of negative scalar curvature.
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Here the metric can be complete near the non-klt locus, and locally collapsing
(this is precisely the higher dimensional analogous of the hyperbolic cusps in
the complement of a node in a DM stable curve). Thus, even if indirectly, one
recovers the equivalence between K-stability and (negative) KE metric. However,
the complete metric convergence picture is not fully understood, due to these
collapsing phenomena. It is known that if X0, the central fiber of a smoothing, has
only simple normal crossing singularities, then the KE metrics in the nearby fiber
naturally converge to complete KE metrics on the irreducible components of X0

(e.g., [59, 69]). Some properties of (special) collapsing regions has been recently
studied by Zhang in [73] inspired by the SYZ picture in collapsings of Calabi-
Yau manifolds. Related to the last point, we should mention that canonical metrics
should be relevant also (at least) in the study of compactified moduli space of
polarized Calabi-Yau manifolds: the non-collapsing case is well understood (e.g.,
[74]), however the full GH collapsing to lower dimensional spaces (e.g., [32])
remains quite mysterious (but see conjectures of Gross and Wilson, and Kontsevich
and Soibelman, e.g., [43], where collapsing to certain spaces of real dimension at
most equal to half of the original dimension is expected), and possibly related to
certain moduli of tropical varieties [55]. For relations with algebraic geometry,
fixing the polarization in the study of degenerations of Calabi-Yau manifolds is
going to be essential, as the purely trascendental collapsing of K3 surfaces to real
three dimensional spaces in [28] suggests.

5 Some Applications and Future Perspectives

In this last section we describe some possible applications of the previously
discussed results and, moreover, we will mention some natural problems to be
considered in the near future.

The first application, more differential geometric in nature, consists in using sin-
gular KE metrics to construct examples of smooth Kähler metrics of constant scalar
curvature (cscK), a notorious difficult problem, via certain geometric transitions.
Next we discuss some properties related to the study of the “geometry” of KE/K-
moduli spaces or stacks. Finally, we briefly mention the problem of understanding
explicit examples of KE/K-moduli spaces.

5.1 Generalized cscK Conifold Transitions

Through this section let X0 Œ X ! � be a Q-smoothing of a K-stable Fano
variety (with discrete automorphism group). By Theorem 4.1, X0 and its sufficiently
small deformations Xt are KE, and moreover the family is continuous in the GH
topology. Now let us take a resolution OX0 of the singular variety X0.
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Question 5.1 Can we find a family g� of “canonical” Kähler metrics on a resolution
OX0 which also degenerate, as � ! 0, to the singular KE space X0?

The natural notion of best metric to consider on the resolution OX0 is given by
the more general notion of cscK metrics. In a loose sense, we can think of KE
metrics on the smoothings to be a family of metrics where the underlying symplectic
structure is fixed while the complex structures changes and becomes degenerate. For
the metrics on the resolution the relations is the opposite one: the complex structure
is now fixed but the symplectic structures vary (the � parameter being related to let
the Kähler classes of the metrics approaching a special point in the boundary of the
Kähler cone on OX0). We call such paths of canonical metrics connecting in the GH
sense smooth complex manifolds, in general not diffeomorphic, through a singular
variety generalized cscK conifold transitions. Such terminology originates from a
similar geometric situation considered in Physics for Calabi-Yau threefolds.

The construction of these geometric transitions is expected to be hard in general.
However, in the case when X0 has only isolated singularities of some special type,
one can hope to show existence of cscK metrics on some resolutions via gluing
techniques, similar to the strategy used in [4] in the case of (orbifold) smooth
metrics. For example, if the singularities of X0 are locally analytically modeled on
the blow down of the zero section of the canonical bundle of a KE Fano manifold
(in general not orbifold) and the KE metric on X0 is asymptotic near the singularities
to the conical CY cone metric given by the Calabi’s ansatz [13], we can prove the
following:

Theorem 5.2 ([5]) Under the above hypothesis, X0 has a natural crepant resolu-
tion OX0 admitting a family of cscK metrics of positive scalar curvature converging
to the KE metric on X0 in the GH topology, and thus X0 is the degenerate variety of
a generalized cscK conifold transition.

The above theorem is a special case of more general results in [5] (combined with
Theorem 4.1), where X0 is not assumed to be Fano (e.g., it could have a KE metric
of zero or negative Einstein constant), nor smoothable, and the singularities belong
to a bigger class. We crucially remark that having the needed asymptotic behavior of
the weak KE metric near the singularities is in general a major problem. However,
as we have previously recalled, for the smoothable Ricci-flat case (but modifications
of the arguments should also work for KE metrics with different sign of the Einstein
constant) Hein and Sun have recently shown [36] that the required asymptotic decay
property of the weak KE metric for isolated singularities of the type considered in
the above theorem.

5.2 Geometry of KE/K-Moduli Stacks

As we have explained in the previous sections, inside the non-separated, non-proper
moduli stack Mh of Fano varieties, in general not of finite type even if we restrict
the attention to Q-smoothable Fanos, we can find a nice subspace of K-semistable
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Q-smoothable Fano varieties K M h mapping canonically to a compact algebraic
space K Mh, the coarse moduli variety of smoothable K-polystable or KE objects.
Thus we ended up in a set-up of good moduli space for an Artin stack [2], here
described by a kind of generalized GIT quotient space with respect to a more
abstract stability notion (K-stability) given by the CM line bundle on the moduli
stacks Mh (see [34] and [37] for more information on this view point, which we
think will be relevant in the future). The natural next step in this moduli theory is to
understand further the geometry of such spaces. For example, even if the CM line
bundle �CM is in general not ample [27], it is expected -thanks to its relation with
Weil-Petersson geometry [29]- that, once descended to the coarse algebraic space, it
becomes a natural Q-polarization for K Mh, which then will be a projective variety
(the quasi-projectivity of the part parameterizing smooth KE/K-polystable Fanos
has been recently shown in [49]).

Furthermore, it would be interesting to study properties of “subvarieties” of
the moduli stacks (i.e., families of K-stable Fano varieties), canonical bundles or
sheaves on such moduli spaces, and cohomological properties of them, similar to
the ones studied for curves and varieties with ample canonical class.

As a toy example of such possible investigations, we will now compute the CM-
volume of a simple curve (i.e., a family over a one dimensional space) in the KE/K-
moduli space of degree 3 del Pezzos, i.e., cubic surfaces. We first need an easy
lemma:

Lemma 5.3 Let 	 W X ! Cg be a curve of degree d del Pezzo orbifolds with
generically smooth fibers for which K�1

X =C makes sense. Then

c1.�CM.X ! Cg// D 6d.1 � g/ � c3
1.X /:

In fact, by the definition of the CM line bundle for the relative anticanoni-
cal polarization and by Grothendieck-Riemann-Roch, we have c1.�CM.C // D
�	�.c3

1.K
�1
X =C //. Hence, c1.�CM.C // D �	�

�
c3

1.K
�1
X / C 3c2

1.K
�1
X /c1.	

�KC /
�

which is indeed equal to �c3
1.X / � 6d.g � 1/, as claimed.

Thus, for example, if d D 3 and C D P1, we have c1.�CM/ D 18 � c3
1.X /:

Moreover note that, by the positivity of the CM line bundle, if X ! Cg is a “K-
polystable curve” then c3

1.X / � 6d.1 � g/. Similar Chern numbers inequalities can
be founded in higher dimension too.

Now, if we take a generic pencil of cubic surfaces tc1 Csc2 D 0, by genericity we
may assume that the generic member in the associated Lefschetz’s fibration X !
P1 is smooth and the singular fibers have only one nodal A1-singularity. Thus we
have the following “intersection number computation”.

Proposition 5.4 The degree of the CM line bundle on the base of a generic
Lefschetz’s fibration of (K-stable by Theorem 3.1) cubic surfaces is equal to

c1.�CM.X ! P1// D 8:
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For this, thanks to the previous lemma, it is sufficient to compute c3
1.X /, where

X D Bl˙gP
3 with ˙g D c1 \ c2 surface of genus g D 10, by adjunction. Since

�KX D 4H � E, where H is the pull-back of the hyperplane bundle of P3 and
E is the exceptional divisor (P1 bundle over ˙g), we have that c3

1.X / D 64H3 �
48H2E C 12HE2 � E3: But H2E D 0, HE2 D 9E:f D �9 (where f is a fiber of the
P1-bundle), and �E3 D N˙g D �KP3 :C C 2g � 2 D 54. Hence c3

1.X / D 10, which
implies the result.

We expect similar computations to be relevant in the study of properties of the
Picard group of K-moduli stacks K M h.

5.3 Examples of Fano KE/K-Moduli

Beside the complex dimensional two case, (where the KE/K-moduli picture is
complete, at least for the components corresponding to compactifications of smooth
surfaces), in higher dimension we are completely lacking of explicit examples.
There are several reasons to look for such examples. For us the two more important
ones are:

• they will provide a complete understanding of which Fano manifolds in a given
family admit KE metrics.

• they may provide hints to study recurrent properties of K/KE-moduli spaces.

We expect that the techniques developed in the proofs of the theorems presented
and discussed in this survey note (e.g., stability comparisons, local moduli picture,
properties of singularities, etc.) will be essential in the future studies. Natural
situations to investigate are given by Fano threefolds, log settings, “special” Fanos,
non-smoothable KE del Pezzo orbifolds. It is natural to believe that explicit K-
moduli compactifications could be found by birational modifications of standard
GIT quotients, as we have shown for the two dimensional del Pezzo case.
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