A Scalable Platform for Low-Latency Real-Time
Analytics of Streaming Data

Paolo Cappellari!®) | Mark Roantree?, and Soon Ae Chun!

! City University of New York, New York, USA
{paolo.cappellari,soon.chun}@csi.cuny.edu
2 School of Computing, Insight Centre for Data Analytics,
Dublin City University, Dublin, Ireland
mark.roantree@cs.dcu.ie

Abstract. The ability to process high-volume high-speed streaming
data from different data sources is critical for modern organizations
to gain insights for business decisions. In this research, we present the
streaming analytics platform (SDAP), which provides a set of opera-
tors to specify the process of stream data transformations and analytics.
SDAP adopts a declarative approach to model and design, delivering ana-
lytics capabilities through the combination of a set of primitive operators
in a simple manner. The model includes a topology to design streaming
analytics specifications using a set of atomic data manipulation opera-
tors. Our evaluation demonstrates that SDAP is capable of maintaining
low-latency while scaling to a cloud of distributed computing nodes, and
providing easier process design and execution of streaming analytics.

Keywords: Data stream processing - High-performance computing -
Low-latency - Distributed systems

1 Introduction

In their quest for competitive advantage, extending data analysis to include
streaming data sources has become a requirement for the majority of organiza-
tions. Driven by the need for more timely results and having to deal with an
increasing availability of real-time data sources, companies are investing in inte-
grating data streaming processing systems in their applications stack. Real-time
data processing can help multiple application domains, such as stock trading,
new product monitoring, fraud detection and regulatory compliance monitor-
ing, supporting situation awareness and decision making with real-time alerts
and real-time analytics. Real-time data processing and analytics requires flexi-
ble integration of live data captured from different sources that would otherwise
be lost, with traditional data from enterprise storage repositories (e. g. data
warehouse).

Existing streaming systems mainly focus on the problems of scalability,
fault-tolerance, flexibility, and performance of individual operations, e.g.
© Springer International Publishing AG 2017

C. Francalanci and M. Helfert (Eds.): DATA 2016, CCIS 737, pp. 1-24, 2017.
DOI: 10.1007/978-3-319-62911-7_1

2 P. Cappellari et al.

[1,2,26,29]. Our approach to building a high-performance data stream processing
engine was influenced by the growing need of more timely information by organi-
zations and the success of streaming systems such as Yahoo S4 [22], Storm [27],
Sonora [6], and Spark-Streaming [29]. We observed that none of the modern
systems target low-latency and high-performance while also providing an easy
way of developing streaming applications for non-expert users. Unlike these sys-
tems and other related research, we focus on the provision of a complete and
comprehensive solution for the rapid development, execution and management
of scalable high-performance, low-latency, stream analytics applications.

1.1 Motivation and Case Study

To illustrate the complex tasks involved in a stream analytics process, we use
a scenario which seeks to understand the performance of the bike utilization in
multiple locations within a city, trying to monitor the trend of the performance
data and comparing usage with bike usage in other cities. Assume a scenario
where a town planner needs to know various performance indicators, such as
whether bicycles are parked in specific docking stations located across the city
are utilized to an acceptable level. This requires the constant monitoring of data
from the Bike Sharing Systems (BSS). Every 60s, the BSS reports the status of
each station, which include the number of bikes docked at each station. The goal
is to calculate the performance of the BSS as the number of bikes in utilization
against the total number of bikes available in the system, in order to identify
stations with lower than predicted usage or stations with high usage that require
expansion. In addition, the manager is also interested in the performance of bike
sharing program in other cities, to gain a direct comparison among different
BSS.

1.2 Contribution

In this paper, we improve on our previous work [3] and we present the streaming
data analytics platform (SDAP), which provides a set of operators to specify
the process of stream data transformations and analytics, together with its exe-
cution environment. SDAP adopts a declarative approach to both modeling and
designing a streaming analytics system using combinations of primitive operators
in a straightforward manner.

SDAP is aimed to be a robust platform for flexible design of streaming
analytics applications that addresses the following broad requirements:

— The processing engine can manage high volumes of streaming data even when
the rate at which data generated is extremely high;

— Results of steaming analytics and processing, on which organizations base
decisions, are available as soon as possible;

— It supports designers of analytical processes by abstracting from the under-

lying parallel computation or high-performance programming;

It is easy to develop, maintain and optimize the analytical applications.

A Scalable Platform for Low-Latency Real-Time Analytics 3

The contribution of this research can be summarized as follows:

— Streaming analytics model. SDAP provides a set of operators to support a
declaration-based analytics development environment.

— Streaming analytics application specification. SDAP provides users without
prior knowledge of parallel computation or high-performance. programming,
the tools to easily specify a ‘topology’, which describes the analytics process.

— High-performance topology execution. SDAP delivers a platform that
exploits the best performing hardware and software to execute a topology,
while also efficiently managing the resource computation underlying data
stores and parallel processing.

A comprehensive evaluation demonstrates the performance of our system,
both in terms of latency and ease of development. SDAP presents the low-
est latency among the compared systems with the same low latency maintained
when scaling to a large number of computational resources. Compared to similar
systems, SDAP is different because it provides each of the following character-
istics: (i) it offers built-in operators optimized for parallel computation; (ii) it
was designed to deliver the best latency performance by exploiting the high-
performance hardware and software libraries; (iii) it is easy to use, since users
are not required to have programming skills; and (iv) it enables rapid devel-
opment, since applications are specified in a declarative way, where users link
built-in operations in a pipeline fashion.

The paper is organized as follows. In Sect.2, we provide a comparison of
our approach against other works. Section 3 we demonstrate a use case realized
by using SDAP, which is used as a running example throughout the paper. In
Sect. 4, we define the modeling of our platform, including the constructs and
the primitives. Section 5, discusses the platform’s architecture. In Sect.6, we
discuss the experimental setting, the performance results, and the ease of usage
compared to a popular alternative. Finally, in Sect. 7 we present our conclusions.

2 Related Research

Research projects such as S4 [22], IBM InfoSphere Streams [15], and Storm [27],
are considered event-based streaming systems as they process each tuple as soon
as they become available. While this is a requirement for low-latency system,
these research projects do not address latency or high-performance directly. The
S4 system, for instance, provides a programming model similar to Map-Reduce,
where data is routed from one operation to the next on the basis of key values.
In comparison to SDAP, their approach limits the ability of the designer in
the development of generic streaming applications. Storm [27] offers a set of
primitives to develop topologies. In brief, a set of constructs are provided to
route data between operations, similar to our approach in SDAP. However,
the developer must provide the implementation at each step in the topology and
thus, requiring development effort and expertise in parallel programming. This is
not the case in SDAP, where built-in operations are provided, so that designers

4 P. Cappellari et al.

can focus on the creation of the topology rather than on the implementation of
the operators. IBM InfoSphere Streams [15] follows an approach similar to Storm
but also offers a set of predefined operations. In fact, designers can assemble
operations in workflows, very much like in SDAP. However, the InfoSphere
Streams approach puts the focus on quality of service of the topologies, rather
than on latency performance.

A system that specifically targets low latency stream processing is Google’s
MillWheel [1]. As with the systems described above, MillWheel adopts an event
based design and in this case, data manipulation operations are specified in
a topology fashion. Similarly to S4, the computation paradigm is based on a
key model: data is routed between computation resources on the basis of the
value a key holds in the data. As it is the case for S4, this paradigm facilitates
the evaluation of operations requiring grouping (on the same key), and only
guarantee pure distributed parallelism using different keys. SDAP offers greater
flexibility in this respect as the SDAP designer can choose whether or not to
base the computation on keys. Moreover, as shown in our evaluation, SDAP
delivers superior performance.

In an entirely different approach, the research ideas presented in [7,11,23,
28,29], approach data stream processing by embracing a micro-batch oriented
design. These approaches extend the Map-Reduce paradigm and Hadoop sys-
tems. Limmat [11] and Google Percolator [23] extend Hadoop by introducing a
push-based processing, where data can be pushed into the process and results are
computed computed incrementally on top of the current process state, e.g. aggre-
gates for current windows. The main downside of these approaches is latency,
which can run into minutes.

The Spark-Streaming [29] and Hadoop Online Prototype (HOP) [7] projects
are an attempt to improve the Hadoop process by making it leaner and as a
result, faster. When possible, data manipulation is performed directly in main
memory without using secondary storage, which makes computation faster.
Although these approaches improve performance for real-time analytics sup-
port, the micro-batch design creates an intrinsic limit that prevents these types
of systems from achieving the same low latency as event-based systems.

Also included in the class of micro-batch systems, although not Map-Reduce
oriented, is the Trident [28] system, an extension to Storm that provides higher
level operators and other features. Trident suffers from the latency limitation
mentioned previously for the micro-batch systems, a problem which we do not
have in SDAP. Although both Spark-Streaming and Trident offer a set of prede-
fined operators, developing a topology still requires the development of a program
in Java or Scala, which unlike SDAP is a more challenging task because: users
have to know the language; and users must validate their code before validating
the application itself. SDAP enable designers, not developers, to rapidly develop
topologies neglecting all details related to software code development and thus,
focusing on the business logic. In addition, SDAP supports complex window
definitions which are not available in any of these systems.

A Scalable Platform for Low-Latency Real-Time Analytics 5

There has been much research on developing the performance of individual
operators, e.g. [4,5,9,16-18,20,26]. In [12,13], the authors tackle the problem of
processing XML data streams. They developed a multidimensional metamodel
for constructing XML cubes to perform both direct recursion and indirect recur-
sion analytics. While this approach has similar goals and approach, the SDAP
system is designed to scale, adopts an easier to use scripting approach, and can
facilitate JSON sources unlike their approach which only uses XML. In fact,
none of these research efforts offer a comprehensive solution to maximize perfor-
mance across all aspects of the streaming network. SDAP, on the other hand,
provides a general solution for rapid development of stream analytics for high
performance environments.

3 Streaming Analytics Case Study

Figure1 illustrates a Bike Sharing stream analytics process design using the
scenario described in Sect. 1. The data is streamed from bike sharing systems
(BSS) in real-time from the cities of New York and Dublin. Here, the rounded
rectangles represent the data manipulation steps. Arrows between steps describe
how the stream flows from one transformation to the next. The operation applied
by each step is depicted with a symbol (see the legend) within the rectangle,
along with its degree of parallelism (within parenthesis). The specific operation
performed by the operator is detailed with bold text just below each step. On
top of each step, an italic text provides a brief explanation of the operation
applied in the node. Note that the Selection operator outputs two streams: the
solid edge denotes the stream of data satisfying the condition; the dashed edges

Receive NYC Keep attributes: Add Attributes: Sum #bikes Docked

Bike Stream Parse JSON #bikesDocked City=NYC, totalBikes=6000 all Stations by City
HTTP Connector JSON Parser Projection Function Aggregate
Receive DUB Keep attributes: Add Attributes: #bikes on road:
Bike Stream Parse JSON #bikesDocked City=DUB, totalBikes=1500| totalBikes-sumDocked
R
HTTP Connector JSON Parser Projection Function Function
Trend: Self-join on City:
BSS Performance Convert performance-streaml streaml exp in 30sec performance:
Trend Stream to JSON - performance-stream2 stream2 exp in 90sec #bikes on road / totalBike
@} —{(Craf—(Rv DR
ZMQ-Endpoint JSON Encoder Function Join Function
Legend

® Functor @ Format Converter Datastore @ Interface Join @Utility

Fig. 1. Topology for bike sharing system case study in SDAP.

6 P. Cappellari et al.

are the stream of data mot satisfying the condition. Where one output stream
from Selection is not used, the edge is not shown in the illustration.

The application in Fig.1 describes an analysis of the bikes stream by gen-
erating the performance trend of the input BSS systems. Data flows into the
application by the HTTP Connector step that connects to the BSS stream
and delivers a snapshot of the status of all bike stations in each BSS system.
Data is collected on a per minute basis. Station status data is provided in JSON
format and thus, it is passed to the JSON Parser operator that convert data
from JSON into the mapped tuple format. The next step removes attributes
unnecessary for the required analysis at hand. Finally, two constants are added
to the stream: the city the BSS data is from, and the number of bikes the BSS
system has available. Streams from different cities are merged. As part of this
process, there are three calculations.

— Available: the number of bikes currently docked across the city, as an aggrega-
tion of all docked bikes in each station in the incoming data over the interval
of one minute (the data refresh rate);

— InUse: the number of bikes on the road, as the difference between the total
bikes available and those docked;

— System Performance: defined as the ratio between the number of bikes on
road and the total number of bikes (the more bikes on the road, the better
the performance for this topology).

The remaining steps calculate the trend of the performance of each system.
Performance trend is defined as the difference between two consecutive perfor-
mances. In order to have two performances values in the same observation, a
self-join (same city) is made on the performance stream, where one stream has
an expiration time of 30s (only fresh data being considered), while the second
stream has an expiration time of 90s. This way, a new performance value for a
city is coupled with the previous performance value from the same city.

Once the trend is available, the result is converted into JSON format and
produced in the output of the application, available to other applications, via a
ZeroM@Q end-point.

4 Conceptual Model for Streaming Analytics

In general, streaming applications consist of a sequence of data manipulation
operations, where each operation performs a basic transformation to a data ele-
ment, passing the result to the next operator in the sequence. When multiple
transformations are chained together in a pipeline fashion, they create sophisti-
cated, complex transformations. A complex transformation is a workflow, where
multiple pipelines are combined. These workflows can be represented as direct
acyclic graphs (DAGs) and are also referred to as topologies [4]. The SDAP
model enables the construction of complex topologies using the set of constructs
described below.

A Scalable Platform for Low-Latency Real-Time Analytics 7

Tuple. A tuple is used to model any data element in a stream. It is composed
of a list of values describing the occurrence of an event. For instance, in the
BSS stream described later in Sect. 3, each update reports on the status of
each station, where each station has an identifier, address, status (operative
or not), the number of bikes docked, and geo-location.

Stream. A stream is a sequence of events described by tuples. Tuples in a
stream conform to a (known) schema: each tuple value in the same stream
are instances of a known set of attributes, each having a specific data type.
For instance, tuples generated from bike stations status update on bike shar-
ing system all have the same structure, with potentially different values, as
people take and park bikes during the day.

Operator. An operator is a data processing step that processes each tuple
received from one (or more) input stream(s) by applying a transformation to
the tuple’s data to generate a new tuple in the output stream. The operators
are described in the following section but for now, we discuss two important
parameters that are associated with each operator: parallelism and protocol.

Parallelism. In a topology, each operator decides its degree of parallelism.
Parallelism controls the number of instances of an operator that collab-
orate to complete a process. In order to process large amounts of data,
processing must be distributed across multiple computational resources
(cores, CPUs, machines).

Protocol. The protocol defines how tuples are passed between the instances
of contiguous operators in a topology. For example, a tuple can be passed
to just one instance or to all instances of the next operator in the topol-
ogy. SDAP supports four routing modes for protocol: round-robin, direct,
hash and broadcast. In round-robin mode, tuples from an upstream
node’s output port are distributed to all instances, in an even fashion
across all the downstream resources. Direct mode defines a direct and
exclusive connection between one instance of the upstream node and
one instance of the downstream node. This routing strategy is effective
when pipelined operators require the same degree of parallelism. The
hash mode routes tuples on the basis of a (key) value within the tuple
itself. This permits an application to collect data having the same key
in the same resource. Where this leads to uneven usage of downstream
resources, the broadcast routing strategy, ensures that every tuple from
a single instance of an upstream node, is copied to all instances of the
downstream node.

Topology. A topology describes a stream analytics workflow, i.e. how the data
stream flows from the input source(s) through the combination of primitive
operators and sub-topologies to the output. It is modeled as a DAG, where
nodes represent operators, and edges describes how tuples move between
operators.

8 P. Cappellari et al.

4.1 Primitive Operators in SDAP

This section presents a sample of the more important operators in SDAP, which
are powerful enough to enable designers to construct very complex transforma-
tions. The rationale for providing a set of built-in operators is: (i) application
designers focus on the transformation workflow and not implementation details;
(ii) semantics are guaranteed and consistent across the entire system; (iii) every
operator delivers the best possible performance; and (iv) the system can be
extended with new operators as required. SDAP currently offers the following
operators: Functor, Aggregate, Join, Sort, Interface, Format Converter, Datas-
tore, Control and Utility.

The Functor operator applies a transformation that is confined and local
to the tuple currently being processed. Many transformations can be thought as
specializations of the Functor operator. SDAP provides Projection and Selec-
tion; Function which provides adding constants or a sequence attribute to the
stream; text-to/from-date conversion; math (addition, division, modulo, etc.)
and string functions.

The Aggregate operator groups tuples from the input stream, with an
implementation of SQL-like aggregations: average, sum, max, min and count.
The operator requires a window definition that specifies when and for how long
tuples be included in the aggregation.

The Join operator is similar to the relational join but requires the defini-
tion of a window specifying the tuples from each stream to include in the join
evaluation.

The Sort operator sorts the tuples within a “chunk” of the input stream in
lexicographical order on the specified set of attributes. The number of tuples
that comprise the chunk, is specified in a window definition.

The Datastore operator enables the stream to interact with a repository
to retrieve, lookup, store and update data. The repository can be a database, a
text file or an in-memory cache.

The Interface operator enables SDAP to create streams of data from exter-
nal data sources to generate into topologies and to create end-points where
processed data can be accessed by consumer applications. Consumer applica-
tions can be external or within SDAP (e.g. other topologies). Currently, SDAP
can process streams from Twitter, Salesforce, ZeroMQ and generic HTTP end-
points.

The FormatConverter provides data format conversion between the tuple
and other formats when processing data within a topology.

SDAP is extensible and new operators can be added as necessary. Currently,
SDAP also includes the following additional operators: Look-up, to look-up
values from either databases or files; Geotagging, to convert name of locations
into geo-coordinates; Delay, to hold or slow down the elaboration of each tuple
by some interval of time; Heartbeat, to signal all operators in a topology;
Cache, to provide a fast memory space where to temporarily hold and share data
across the whole topology; and Tokenizer, to transforms a text into multiple
word tokens.

A Scalable Platform for Low-Latency Real-Time Analytics 9

Some operators, e.g. join, cannot operate on an infinite stream of data: they
require the definition of a window that cut the stream in “chunks” of data. Win-
dows [4,5,18] are usually defined by specifying a set of constraints on attributes
such as time, number of observed events (i.e. received tuples), or values in the
stream(s) [16,20]. SDAP supports all of the above and, in addition, allows to
define windows on sophisticated constraints involving conditions on both the
input and output streams. Section4.3 presents additional information and an
example of a window definition.

4.2 Topology Model

A stream analytics process, called Topology, is modeled as a DAG, a directed
acyclic graph, which is defined as in Definition 1:

Definition 1 (Topology). A topologyT = (N,R, X0, Xr, Xp,0,7,p) is a five
element tuple where N = {ny,na,...} is a set of Nodes, and R = {r1,rs,...}
is a set of Routes, Yo is the set of operators, X'r the set of data distribution
protocols, X'p the degree of parallelism, and o,r and p functions that associates:
0: N — Yo a node with an operator (and configuration), r : R — X'r an edge
with a protocol, and p: N — X'p a node with a degree of parallelism.

Each node in the topology specification follows the expression syntax outlined
in Definition 2 in [3].

Definition 2 (Node)

operator
<node-label>
<operator-executable-path>
<node-configuration-path>

Where: operator declares a node in the DAG; node-1abel specifies the label
for such node, in order to refer to it in other places in the topology defini-
tion; operator-executable associates the executable with the node; finally,
node-configuration specifies the arguments to pass to the executable and
that configure the behaviour of the operator, e.g. conditions for a filtering
criteria.

With reference to Fig.1, Listing 1.1 shows an excerpt of the topology
specification to illustrate how nodes in a DAG are declared in SDAP. The
excerpt focuses on the top right part of Fig.1, specifically on nodes: Keep
Attributes: #bikesDocked, Add Attributes: CityNYC, total
Bikes6000 and Sum #bikes Docked all Station by City. For con-
venience, above nodes are renamed to keep_attributes, add_constant,
sum_docked, respectively.

Details on how to specify an operator’s configuration are presented in
the Sect.4.3. In Listing 1.1, line 11 defines a node with label sum_docked,
that is associated with operator Aggregation, whose configuration is in file

10 P. Cappellari et al.

sum_docked_conf. It implements an aggregation operation, calculating a sum
of all docked bikes available at each station, grouping data by city.

Product stream, nodes

; | operator
keep_attributes_dub
functor-mpi
S{keep_attributes_dub_conf}
7 | operator

add_constants_dub

9 functor-mpi
${add_constants_dub_conf}
11 | operator

add_constants_nyc

13 functor-mpi
${add_constants_nyc_conf}
15 | operator

sum_docked

17 aggregate-mpi

S {sum_docked_conf}

Listing 1.1. Specification of nodes in a topology: an example.

The flow of tuples from operator to operator in the topology is defined along
with a routing protocol. Its specification follows Definition 3 from [3].

Definition 3 (Route)

route
<upstream-node-label :port>
<protocol>
<downstream-node-label :port>

Where: route declares an edge in the topology; upstream-node-1label is the
label of a node acting as data provider (also called upstream node); analogously,
downstream-node-label is the label of the other node participating in the
connection, specifically the label of the node receiving data (also called down-
stream node); protocol specifies how to distribute tuples between the two
nodes (e.g. direct, round-robin, hash or broadcast); port specifies which port
each node will use to send/receive tuples.

The specification in Listing 1.2 shows the part of the topology in Fig.1
that links the add_attributes-dub and the sum_docked steps (also in Listing 1.1).
Specifically, all tuples from the add_attributes_dub node are passed to node
sum_docked via port number 1. Note that sum_docked receives data from two
upstream nodes, namely streams, one for the data from Dublin, the other for

A Scalable Platform for Low-Latency Real-Time Analytics 11

the data form NYC. All edge declarations use the protocol roundrobin to
exchange tuples between the instances of the involved nodes.

1 | ## Product stream, connections

3 | route

add_attributes_dub:1 roundrobin add_constants_dub:1
5 | route

add_constants_dub:1 roundrobin sum_docked:1
7 | route

add_constants_nyc:1 roundrobin sum_docked:1

Listing 1.2. Specification of routes between nodes in a topology: an example.

Lastly, we need to associate each node with a degree of parallelism. The
syntax is the following, from [3]:

Definition 4 (Parallelism)

parallelism <node-label> <degree>

Where: parallelism declares the parallelism for a node; node-label indi-
cates the node in question; and degree specifies the degree of parallelism, that
is how many runtime process instances have to be instantiated for the node in
question.

Listing 1.3 illustrate the final excerpt of the sample topology specification.
From Listing 1.3, we can see that nodes keep_attributes, add_constants,
and sum_docked have parallelism 2, 2, 3, respectively. The rationale in choosing
a degree of parallelism is based on the amount of data to process and on the cost of
the operation. In this example, the first two operations are rather simple, whether
the aggregation is actually performing a calculation, thus a higher degree of par-
allelism. Note that values in Listing 1.3 are for illustration purpose. Real-world
deployments these values have, in general, much higher values.

1 | ## Product stream, distribution

35 |parallelism keep_attributes 2
parallelism add_constants 2
5 |parallelism sum_docked 3

Listing 1.3. Specification of node parallelism: an example.

12 P. Cappellari et al.

"in": [
2 {"name": "timestamp", "type": "double"}
, {"name": "docked", "type": "int"}
1 ,{"name": "City", "type": "String"}
, {"name": "totalBikes", "type": "int"}
6]
,"out": [
8 {"name": "timestamp", "type": "double"}
,{"name": "City", "type": "String"}
10 ,{"name": "totalBikes", "type": "int"}
, {"name": "sumDockedBikes", "type": "int"}

12]

Listing 1.4. Schema of input and output streams of a node.

, "groupby": [

3 {"attribute": "City", "attribute": "totalBikes"}
]

, "aggregate": [

o

{"input_attribute_name": "dockedBikes"
7 , "operation": "sum"
,"output_attribute_name": "sumDockedBykes"}

5]

Listing 1.5. Detail of the aggregation operator configuration.

4.3 Operator Configuration

In a topology, a node is associated with an executable implementing a specific
operator, e.g. Selection. The details of the nature of the input and output
streams, as well as how to filter incoming tuples is provided in the operator con-
figuration specification file. This specification starts with detailing the schemas
of the input and output streams, that is attribute names and types. Then, each
operator has its own signature, thus a different set of configuration parameters.
Since it is not possible to illustrate the configuration of all operators in SDAP,
we focus on just one of them: the Aggregate. Listings 1.4 and 1.5 shows excerpt
of configuration for the aggregate operator in our example in Fig. 1. Listing 1.4
shows the schema of tuples for the input and the output streams. Listing 1.5
shows the details of aggregation, in this case a sum. It can be seen that values
from the input streams are grouped by City (and totalBikes); the aggrega-
tions are defined on attribute dockedBikes; the results are provided in output
attribute sumDockedBikes. An attribute timestamp is also added to the
output stream.

In contrast to the infinite nature of the data stream, the aggregation operator
is required to work on a finite set of data. Finite sets of data are defined by

A Scalable Platform for Low-Latency Real-Time Analytics 13

windows. SDAP supports arbitrarily complex windows, including those based
on: wall-clock intervals, number of observed tuples, the value of a progressing
attribute [19] in the stream (e.g. time), external events (e.g. control messages),
and conditional, that is based on values in the stream.

SDAP allows for the following window types: Interrupt, Attribute, and Tuple.
With Interrupt, the window is defined by an external message: basically, the oper-
ator finalize the calculations and release the results only when requested. This
options suits operations that have to release data at regular interval of (wall-clock)
times. Type Tuple models windows defined on the number of input observations,
e.g. create windows of 50 consecutive observations each, with a new window start-
ing every 20. Type Attribute models window based on a progressing attribute
embedded in the stream. The progressing attribute has the characteristic of being
monotone in value, that is, increase at a standard interval (e.g. time).

When a basic window is not sufficient, developers can define window borders
by condition: the developer can express an arbitrary condition to define when to
close or open a new window. This is useful, for instance, to define landmark [10]
windows or, more generally, windows whose boundaries depend on values in the
data stream. SDAP allows developers to define conditions on attributes from
both the input and output streams. An example of when a conditional window
may be needed is the following: provide aggregate results immediately when the
aggregate value exceeds a specified threshold defined by a literal in a constraint
or by another value embedded in the stream. SDAP does not wait for windows
to close to evaluate results: new partial, temporary, results are evaluated as
new data is received. Thus, temporary results are always current and can be
forwarded as part of a subsequent output.

Listing 1.6 continues the presentation of the configuration for the aggregation
operator by specifying its window. The listing defines a tumbling window [10] on
the progressing attribute timestamp. In fact we can see that: the window is of type
Attribute; that the attribute characterizing the window is the timestamp;
that a window should close (window_close) every 60s; that values should be
forwarded to output (window_emit) at the same time the window is closed (i.e.
60s); that a new window should be created (window_advance) 60 s ahead of the
previous open one; and that tuples are considered part of the “current” window if
they arrive up to half a second after the specified window close limit.

"window_type":"Attribute"

, "progressing_attribute":"timestamp"
1|, "window_close": {"type":"literal","size": 60}
,"window_emit": {"type":"literal","size": 60}
6|, "window_advance": 60

"window_delay": 0.5

Listing 1.6. Specification of a tumbling window configuration.

14 P. Cappellari et al.

5 SDAP System Architecture

While SDAP runs on a wide range of computational resources, the architec-
ture was designed and implemented as a high performance system. In Fig. 2,
the SDAP architecture is illustrated as having seven major components: the
Resource Manager, Clustering, Data Operators, Monitoring, System Interface,
Application Specification (repository) and the Resource Configuration reposi-
tories. Components such as the Resource Manager, Computation, Clustering
and Monitoring use Slurm [25], MVAPICH2 [21], and Ganglia [8], as they are
established, high performance open source source libraries.

System Interface

Visualization Tools Monitoring Tools Development Tools Administration Tools
Output Streamsﬁ \j\
v
Steraming Computation Streaming Management
Application
Clustering . Specification
Monitoring ~ [—| (IS 4-—| Repository
Parallelism anager
and P = ~
Data Movement l .
Y
N]
et Resource
Operators T <__I_ Relsourc(.e
Configuration
Repository
~_
Input Streams

=

Fig. 2. SDAP architecture: logical view.

5.1 Data Operations

The Clustering component resides at the core of the SDAP architecture and
comprises two sub-components: (i) parallelism and data movement and (ii) data
operations. The first component manages parallel processes and the movement
of data between processes. We adopt an implementation of the Message Pass-
ing Interface (MPI), specifically MVAPICH2, in order to optimize these high-
performance environments. MPI is designed to achieve high performance, scala-
bility, and portability and MVAPICH2 is one of the best performing implemen-
tation. This is mainly due to its support for the most recent and performing
hardware, such as Infiniband [14], a high-performance inter-connector, designed

A Scalable Platform for Low-Latency Real-Time Analytics 15

to be scalable and featuring high throughput and low latency. The Parallelism
and Data Movement component builds on top of Phish [24], that in turns uses
MPI. Phish is library to develop topologies composed of executables, provid-
ing an abstraction on parallelism and message delivery. The Data Operations
component implements the data processing operation and enforces the opera-
tion protocols across the parallel processes. Again using Phish, SDAP has a
Data Operators component which offers a set of built-in operations, including
selection, projection, join, etc.

5.2 Distribution Management

Figure 3 illustrate the physical architecture of SDAP. The cluster is divided
in Compute and Control nodes. Compute nodes provide computation and are
mutually independent while the control node manages and coordinates com-
pute nodes. Specifically, each compute node hosts the operators’ executables,
to perform data manipulation, and is responsible for forwarding data to the
next operator in the topology. The operators’ executable are deployed to every
compute node so that each node can accommodate any operation specified in
a topology. Each compute node also hosts the slave processes of the resource
manager and of the resource monitoring. The Resource Manager process main-
tains the state of available resources and the plan for allocation to each topology
(e.g. a single core allocated exclusively or not to an operator of a topology).
When the resource manager slave receives a request to allocate or to release a
resource, it first checks the state of the resource and then applies requests where
possible. The Resource Monitoring process collects resource usage data, i.e. CPU
time, memory allocation, etc., for the local node. This data is then forwarded
to the master node, where data is aggregated and evaluated. The master node
dispatches resource allocation requests and analyzes the resource usage of all
compute nodes. Topologies are deployed or recalled using the Application Man-
ager component that, in turns, uses the master process of the resource manager
to allocate the nodes as per topology specification, when possible. The resource
manager Master Process collects and analyzes resource usage data sent by all
slave processes residing on compute nodes. Resource usage is provided at both
the individual and collective level: a user can analyze details of CPU, memory,
and network load for each individual node or for the cluster as a whole. Resource
load can be analyzed for any specified time interval.

5.3 Resource Management

As multiple streaming topologies run on a Cluster and since resources are lim-
ited, there is a requirement for managing and monitoring resources. The Compo-
nents Resource Manager and Resource Monitoring components deliver on these
requirements. The Resource Manager is built on top of Slurm [25], a high-
performance, scalable and fault-tolerant cluster resource manager. Slurm pro-
vides functionality to execute, manage and monitor distributed parallel appli-
cations and is used in many of the most powerful computers in the world. It

16 P. Cappellari et al.

Compute Node Control Node

. System Interface Tools
Clustering 4

Parallelism

e Application Manager

Data Movement Resource Resource
Manager Monitoring
Data (Slave) (Slave)
Operators Resource Manager (Master)

Resource Monitoring (Master)

! v 3

High-Speed Interconnect

Fig. 3. SDAP architecture: physical view.

facilitates computational resource management and the allocation and deploy-
ment of streaming topologies. Among its features are topology relocation (to
other resources) and a fault-tolerance mechanism. We have integrated Ganglia
[8] as our resource monitoring system as it is highly scalable and works in high-
performance environments.

Because the SDAP system was designed for the highest levels of scalabil-
ity and performance, the resource monitoring and manager components can be
deployed in a hierarchical manner, as illustrated in Fig.4. Such a hierarchical
organization of processes facilitates resource allocation requests and monitoring
to be distributed over a larger number of processes and thus, avoiding bottlenecks
at either the CPU or network level.

For data monitoring and analysis, the processes between the bottom and top
of the hierarchy can perform partial aggregations which further reduces the load
on the control node.

The System Interface component includes tools such as: the development
environment, result visualization and monitoring and administrative tools. The
Application Specification repository maintains all defined topologies, allowing
users to store, retrieve and update topology specifications. Finally, the Resource
Configuration maintains the configuration of the resources available on the com-
putational cluster.

6 Experiments

In this section, we present our evaluation of SDAP, which consists of two parts:
performance, and usability. Performance evaluation focuses on the ability of
SDAP to deliver low latency data processing at scale. The usability evaluation

A Scalable Platform for Low-Latency Real-Time Analytics 17

Control
Node

[Manager |
[Monitoring

C IE |
| Node ” Node |

C. [c | | 1
Node ” Node | |

|[c |[c: | [c |[c: |
Node || Node ” Node || Node ” Node |

C

C
Node

C. | [c
Node || Node |

Fig. 4. SDAP architecture: resource and monitor manager scalability.

focuses on the simplicity of use of the tool, compared to popular alternative
systems.

6.1 Performance

Latency is a crucial metric for streaming data in a high-performance environment
and is defined as the interval of time between the solicitation and the response of
a system. For systems targeting analytics on big data, it is important to maintain
low latency when the inputs, and subsequent resources, grow to a large number.

We compare SDAP with Apache Storm [27] (version 1.0.2, latest version
available at the time of writing) and Google’s MillWheel [1]. These systems have
been chosen because they adopt the event based data processing paradigm, as
with SDAP. In particular, the former explicitly targets low latency performance
at a scale; while the latter focused initially on the provision of event based
processing primitives and scalability, and has now evolved to deliver low latency
in its recent versions.

The common ground on which to compare the systems is a topology com-
posed of the following steps: a data generator, followed by a non blocking stream
operation (e.g. select), and a collector. The data generator step generates random
data tuples of about 100B each. In implementing the non blocking operation,
the stream operation step perform the following tasks: (i) record the timestamp
of when the tuple is received, (ii) scan all attributes in the tuple, to emulate
an operator worst case scenario where the operation needs to access all data,
(iii) attach a timestamp to the tuple, and (iv) forward the tuple in output to the
collector step. The collector records the timestamp of the tuple arrival. The two
timestamp are used to calculate the intrinsic latency of the system. Specifically,
it is the time elapsed between the reception of the input (system solicitation),
and the execution and delivery of the data manipulation to the next step in the
topology (system response).

Experiments were conducted on the CUNY’s High Performance Computing
center. Each node is equipped with 2.2 GHz Intel Sandybridge processors with
12 cores, has 48 GB of RAM and uses the Mellanox FDR interconnect. The
topology is deployed so that contiguous steps in the topology require inter-host

18 P. Cappellari et al.

communication and thus, require the use of the network media to exchange
data (i.e. no communication via shared-memory). We conducted the test by
distributing the topology over 100 CPUs, scaling the parallelism of the steps as
well as the amount of data generated. Results show that SDAP exhibits a median
record latency below 1.2ms and 95% of tuples are delivered within 2.1 ms. In
contrast: Storm has a median record latency just below 3.2 ms, and delivers 95%
of tuples in just above 3.2ms; in MillWheel the median tuple latency is 3.6 ms,
while the 95th latency percentile is of 30 ms. Figure 5 illustrate the result of our
experiment, excluding Google’s MillWheel. MillWheel’s platform is not available
so it was not possible to run an empirical test: our comparison and analysis is
based on the author’s evaluation in [1].

90% e SDAP = = =Storm

80% N

70%
60%
50%
40%
30%

Record Percentage

/
'
'
'
'
'
'
'
0
'
!
'
20% !
'
1

\
\
\
]
]
]
]
]
]
]
]
]
]
\
\
\

10%
4

- - ~

0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42
ms

0%

Fig. 5. Tuple processing and delivery latency.

It can be seen that SDAP processes data faster that Storm (and MillWheel)
but the latency values are spread close to the median. With respect to Storm,
SDAP performs about 3 times better for both the median and the 95th percentile
latency. In comparison with MillWheel, SDAP performs 3 times better on the
median latency and 10 times better on the 95th percentile latency. Overall,
SDAP performs between 200% and 900% better than the other systems.

We also conducted a test to verify how the latency changes when the same
number of execution processes are distributed over a small number of machines
machines, compared to a large number. We have prepared 4 test scenarios,
namely Set8, Set24, Set48, and Set96, see [3]. Each scenario is run on differ-
ent machine numbers, from the lowest to the highest number of machines that
can accommodate the test. For instance, scenario Set8 requires 8 processes with
processes run as follows: on the same machine with 8 CPUs; on two machines,
using 4 CPUs from each; on four machines, using 2 CPUs from each; and eight
machines, using just one CPU from each. For Set96 we started with 12 machines
using 8 CPU from each, down to 96 machines using 1 CPU only from each.
This was repeated for the remaining configurations. The result of running these
scenarios is illustrated in Fig. 6 from [3].

A Scalable Platform for Low-Latency Real-Time Analytics 19

2.5

P e T PPPPR 24
48
- - =--96
0.5
0
0 10 20 30 40 50 60 70 80 90 100

Nodes

Fig. 6. Tuple processing and delivery latency time by node usage in SDAP.

It can be seen that: (i) the latency performance is quite stable across all
configurations, with values supporting the results from the previous experiment;
and (ii) the best configuration is when all processes are grouped together on the
same machines or when they are highly distributed across different machines.
The latter can be as follows: latency is low when all processes are grouped on the
same (few) machine(s) because data transfer is (mostly) performed via shared
memory (i.e. not via network); latency is also low when the least amount of
CPUs is used per machine, because not enough data is exchanged via the network
interface which as a result, does not become saturated. Latency is higher when
an intermediate number of CPUs are used per machine because the processes
generate enough data to flood the network interface while not being able to take
advantage of data exchange via shared memory.

6.2 Ease of Development

In this section, we discuss SDAP ease of development, that is, the effort required
to develop and maintain a topology. Since MillWheel is not available, and Storm
does not provide built-in operators, we have decided to compare SDAP with
another popular system: Spark-Streaming. Spark-Streaming provides built-in
operators and allows the designer to specify stream applications in a quite suc-
cinct manner as Scala programs. While Spark-Streaming supports other lan-
guages, Scala has been chosen because it is one of the less verbose and is sup-
ported natively.

Let us compare the two systems using a streaming application that must
detect tuples that match a set of specified keywords keywordSeq. If a tuple

20 P. Cappellari et al.

contains a target keyword, it is then forwarded in JSON format to a Kafka end-
point. Listing 1.7 shows such application for Spark-Streaming. As we can see,
specifying operations such as the cartesian product is rather straightforward.
However, even simple operations require a rather verbose specification. To begin
with, the developer must select the right libraries to use, such as what package
to use for the JSON conversion — omitted in the snippet. Since there are multi-
ple possibilities, the developer is required to study each alternative to determine
which one best fits her needs, which takes time. Then, the developer must com-
pose the application. Let us ignore the details of the streams, i.e. the attributes.
After the cartesian product operation, line 3, and before checking the keyword
match, line 15, the developer must manually open multiple connections to Kafka
for each node of the Spark-Streaming cluster. Specifically, the developer opens
a connection for each partition of data in the resilient distributed dataset (or
RDD, the main data structure in Spark), in an attempt to parallelize the data
exchange between the two systems.

> | statuses.foreachRDD(rdd => { // for each RDD
val cartesian = rdd.cartesian(keywordSeq)

// for each partition of data, connect to the end-point

6| cartesian. foreachPartition (partitionOfRecords => {

// initialize the Kafka producer

8 val props = new HashMap[String, Object] ()
setupKafkaProps (props)

10 val producer = new KafkaProducer[String, String] (props)
// for each record in partition, check keyword match

12 partitionOfRecords. foreach{

case (status, keywords) => {
4| // if a keyword matches, forward to end-point
if (keywords.map(l => 1l.toLowerCase()) .toSet

16 subsetOf status.toLowerCase().split (" ").toSet) {

val jsonMessage = ("text" -> record.toString)
18 ~ ("keywords" -> keywords.toList)

val jsonMessageString = compact (render (jsonMessage))
20| // send message to kafka

val message = new ProducerRecord[String, String]
22 (topicsOutputSet.head, null, jsonMessageString)
producer.send (message)

Listing 1.7. Keyword match sample application in spark-streaming.

In contrast, SDAP: (i) has no need to study libraries for inclusion as they
are built-in; (ii) the cartesian operator can also be expressed simply but requires
no knowledge of a programming language, Scala in this case; (iii) the connection
to the end-point is provided by a built-in operator that does not require the

A Scalable Platform for Low-Latency Real-Time Analytics 21

developer to study the inner workings of Scala optimization for Spark-Streaming;
and (iv) the set comparison between the record value and a set of keywords can
be implemented as a sequence of tokenizer + selection operators. In total, the
SDAP would have 4 operators and associated configuration files. Note that the
configuration files would be mostly empty, and the in/out stream attributes
are automatically populated using the designer portal. Listing 1.8 shows the
equivalent topology specification with details of configuration files omitted for
the sake of space.

> | operator cross_product join-mpi ${join_conf}

operator tokenize_keyword utility-mpi S${tokenizer_conf}
. | operator keyword _match functor-mpi ${selection_conf}
operator json_encoder_converter-mpi ${json_conf}

6 | operator kafka_endpoint interface-mpi ${kafka_conf}

s |route cross_product:1 roundrobin tokenize_keyword_set:1
route tokenize_keyword_set:1 roundrobin keyword_match:1
10 | route keyword_match:1 roundrobin json_endpoint:1
route keyword_json:1 roundrobin kafka_endpoint:1

Listing 1.8. Keyword match equivalent application in SDAP.

It can be observed that the SDAP implementation is easier to read and does
not require any previous programming knowledge. In our experience with the
SDAP, we have observed that users rapidly familiarize with topology paradigm,
with the options of the operators and become power-users capable of developing
rather complex transformations.

7 Conclusions

The increasing availability of data provided through online channels has led to
an increasing demand to include this form of data in many decision making
processes for growing numbers of organizations. The increasing volumes of this
data means a greater need for high performance streaming processors. Current
systems have been shown to suffer from issues of latency and/or overly complex
design and implementation methods. SDAP provides the capability to design
and deploy topologies which can scale to very high volumes of data while hid-
ing the complexities of these systems from the designer. Its powerful operators
provide a platform for highly complex analytics with SDAP abstracting the
underlying management of data and parallel processing. Our evaluation shows
SDAP to outperform popular streaming systems such as Storm and MillWheel.
Our current research is focused on a few fronts: analysis of application patters,
optimization of resource usage, and performance. On one side, we want to exploit
the declarative nature of the approach to further simplify the design of stream
analytics, and to discover application and resource optimization opportunity.

22 P. Cappellari et al.

The visibility and ease of access to the data transformations operation allows
to analyze stream analytics design patterns and to optimize the resource alloca-
tion. On the other side, we want to further improve performance of the execution
engine by including hardware acceleration, e.g. using graphics processing units
(GPUs), in the logic of the operators in the context of a high-performance and
low-latency environment.

Acknowledgements. This research was supported, in part, from Collective[i] Grant
RF-7TM617-00-01, the National Science Foundation Grants CNS-0958379,CNS-0855217,
ACI-1126113 and the City University of New York High Performance Computing Cen-
ter at the College of Staten Island.

References

1. Akidau, T., Balikov, A., Bekiroglu, K., Chernyak, S., Haberman, J., Lax, R.,
McVeety, S., Mills, D., Nordstrom, P., Whittle, S.: Millwheel: fault-tolerant
stream processing at internet scale. PVLDB 6(11), 1033-1044 (2013). http://www.
vldb.org/pvldb/vol6/p1033-akidau.pdf

2. Balazinska, M., Balakrishnan, H., Madden, S., Stonebraker, M.: Fault-tolerance
in the borealis distributed stream processing system. ACM Trans. Database Syst.
33(1), 1-3 (2008). http://doi.acm.org/10.1145/1331904.1331907

3. Cappellari, P.;, Chun, S.A., Roantree, M.: Ise: a high performance system for
processing data streams. In: Proceedings of 5th International Conference on Data
Science, Technology and Applications, DATA 2016, Lisbon, Portugal, pp. 13-24,
24-26 July 2016

4. Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G.,
Stonebraker, M., Tatbul, N., Zdonik, S.B.: Monitoring streams - a new class of
data management applications. In: Proceedings of 28th International Conference
on Very Large Data Bases, VLDB 2002, Hong Kong, China, pp. 215-226, 20—23
August 2002. http://www.vldb.org/conf/2002/S07P02.pdf

5. Chandrasekaran, S., Franklin, M.J.: Streaming queries over streaming data. In:
Proceedings of 28th International Conference on Very Large Data Bases, VLDB
2002, Hong Kong, China, pp. 203-214, 20-23 August 2002. http://www.vldb.org/
conf/2002/S07P01.pdf

6. Chen, X., Beschastnikh, 1., Zhuang, L., Yang, F., Qian, Z., Zhou, L., Shen,
G., Shen, J.: Sonora: a platform for continuous mobile-cloud computing.
Technical report (2012). https://www.microsoft.com/en-us/research/publication/
sonora-a-platform-for-continuous-mobile-cloud-computing/

7. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Gerth, J., Talbot, J.,
Elmeleegy, K., Sears, R.: Online aggregation and continuous query support in
mapreduce. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, pp. 1115-1118,
6-10 June 2010. http://doi.acm.org/10.1145/1807167.1807295

8. Ganglia (2015). http://ganglia.sourceforge.net/. Accessed 15 Nov 2016

9. Gedik, B., Yu, P.S., Bordawekar, R.: Executing stream joins on the cell processor.
In: Proceedings of the 33rd International Conference on Very Large Data Bases,
University of Vienna, Austria, pp. 363-374, 23-27 September 2007. http://www.
vldb.org/conf/2007 /papers/research /p363-gedik.pdf

http://www.vldb.org/pvldb/vol6/p1033-akidau.pdf
http://www.vldb.org/pvldb/vol6/p1033-akidau.pdf
http://doi.acm.org/10.1145/1331904.1331907
http://www.vldb.org/conf/2002/S07P02.pdf
http://www.vldb.org/conf/2002/S07P01.pdf
http://www.vldb.org/conf/2002/S07P01.pdf
https://www.microsoft.com/en-us/research/publication/sonora-a-platform-for-continuous-mobile-cloud-computing/
https://www.microsoft.com/en-us/research/publication/sonora-a-platform-for-continuous-mobile-cloud-computing/
http://doi.acm.org/10.1145/1807167.1807295
http://ganglia.sourceforge.net/
http://www.vldb.org/conf/2007/papers/research/p363-gedik.pdf
http://www.vldb.org/conf/2007/papers/research/p363-gedik.pdf

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A Scalable Platform for Low-Latency Real-Time Analytics 23

Gehrke, J., Korn, F.; Srivastava, D.: On computing correlated aggregates over
continual data streams. In: Mehrotra, S., Sellis, T.K. (eds.) Proceedings of the 2001
ACM SIGMOD International Conference on Management of Data, Santa Barbara,
CA, USA, pp. 13-24. ACM, 21-24 May 2001. http://doi.acm.org/10.1145/375663.
375665

Grinev, M., Grineva, M.P., Hentschel, M., Kossmann, D.: Analytics for the real-
time web. PVLDB 4(12), 1391-1394 (2011). http://www.vldb.org/pvldb/vold/
pl1391-grinev.pdf

Gui, H., Roantree, M.: Topological XML data cube construction. Int. J. Web Eng.
Technol. 8(4), 347-368 (2013)

Gui, H., Roantree, M.: Using a pipeline approach to build data cube for large XML
data streams. In: Hong, B., Meng, X., Chen, L., Winiwarter, W., Song, W. (eds.)
DASFAA 2013. LNCS, vol. 7827, pp. 59-73. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40270-8_5

Infiniband (2015). http://www.infinibandta.org/. Accessed 15 Nov 2016
InfoSphere streams (2015). http://www-03.ibm.com/software/products/en/
infosphere-streams. Accessed 15 Nov 2016

Kang, J., Naughton, J.F., Viglas, S.: Evaluating window joins over unbounded
streams. In: Proceedings of the 19th International Conference on Data Engineering,
Bangalore, India, pp. 341-352, 5-8 March 2003. doi:10.1109/ICDE.2003.1260804
Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: Semantics and evaluation
techniques for window aggregates in data streams. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, Baltimore, Maryland,
USA, pp. 311-322, 14-16 June 2005. http://doi.acm.org/10.1145/1066157.1066193
Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously adaptive con-
tinuous queries over streams. In: Proceedings of the 2002 ACM SIGMOD Inter-
national Conference on Management of Data, Madison, Wisconsin, pp. 49-60, 3—6
June 2002. http://doi.acm.org/10.1145/564691.564698

Maier, D., Li, J., Tucker, P., Tufte, K., Papadimos, V.: Semantics of data streams
and operators. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp.
37-52. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30570-5_3

Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku,
G.S., Olston, C., Rosenstein, J., Varma, R.: Query processing, approximation, and
resource management in a data stream management system. In: CIDR (2003).
http://www-db.cs.wisc.edu/cidr/cidr2003 /program/p22.pdf

MVAPICH2, The Ohio State University (2015). http://mvapich.cse.ohio-state.
edu/. Accessed 15 Nov 2016

Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream computing
platform. In: Proceedings of the 2010 IEEE International Conference on Data
Mining Workshops, ICDMW 2010, Washington, DC, USA, pp. 170-177 (2010).
IEEE Computer Society. doi:10.1109/ICDMW.2010.172

Peng, D., Dabek, F.: Large-scale incremental processing using distributed transac-
tions and notifications. In: Proceedings of the 9th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2010, Vancouver, BC, Canada,
pp- 251-264, 4-6 October 2010. http://www.usenix.org/events/osdil0/tech/full_
papers/Peng.pdf

Plimpton, S.J., Shead, T.M.: Streaming data analytics via message passing with
application to graph algorithms. J. Parallel Distrib. Comput. 74(8), 26872698
(2014). doi:10.1016/j.jpdc.2014.04.001

Slurm (2015). http://slurm.schedmd.com/. Accessed 15 Nov 2016

http://doi.acm.org/10.1145/375663.375665
http://doi.acm.org/10.1145/375663.375665
http://www.vldb.org/pvldb/vol4/p1391-grinev.pdf
http://www.vldb.org/pvldb/vol4/p1391-grinev.pdf
http://dx.doi.org/10.1007/978-3-642-40270-8_5
http://dx.doi.org/10.1007/978-3-642-40270-8_5
http://www.infinibandta.org/
http://www-03.ibm.com/software/products/en/infosphere-streams
http://www-03.ibm.com/software/products/en/infosphere-streams
http://dx.doi.org/10.1109/ICDE.2003.1260804
http://doi.acm.org/10.1145/1066157.1066193
http://doi.acm.org/10.1145/564691.564698
http://dx.doi.org/10.1007/978-3-540-30570-5_3
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p22.pdf
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://dx.doi.org/10.1109/ICDMW.2010.172
http://www.usenix.org/events/osdi10/tech/full_papers/Peng.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Peng.pdf
http://dx.doi.org/10.1016/j.jpdc.2014.04.001
http://slurm.schedmd.com/

24

26.

27.

28.

29.

P. Cappellari et al.

Teubner, J., Miller, R.: How soccer players would do stream joins. In: Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2011, Athens, Greece, pp. 625-636, 1216 June 2011. http://doi.acm.org/10.1145/
1989323.1989389

Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S.,
Jackson, J., Gade, K., Fu, M., Donham, J., Bhagat, N., Mittal, S., Ryaboy, D.V.:
Storm@twitter. In: International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, pp. 147-156, 22-27 June 2014. http://doi.acm.org/10.
1145/2588555.2595641

Trident (2012). http://storm.apache.org/documentation/Trident-tutorial.html.
Accessed 15 Nov 2016

Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I.: Discretized streams: an effi-
cient and fault-tolerant model for stream processing on large clusters. In: 4th
USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2012, Boston,
MA, USA, 12-13 June 2012. https://www.usenix.org/conference/hotcloud12/
workshop-program/presentation/zaharia

http://doi.acm.org/10.1145/1989323.1989389
http://doi.acm.org/10.1145/1989323.1989389
http://doi.acm.org/10.1145/2588555.2595641
http://doi.acm.org/10.1145/2588555.2595641
http://storm.apache.org/documentation/Trident-tutorial.html
https://www.usenix.org/conference/hotcloud12/workshop-program/presentation/zaharia
https://www.usenix.org/conference/hotcloud12/workshop-program/presentation/zaharia

	A Scalable Platform for Low-Latency Real-Time Analytics of Streaming Data
	1 Introduction
	1.1 Motivation and Case Study
	1.2 Contribution

	2 Related Research
	3 Streaming Analytics Case Study
	4 Conceptual Model for Streaming Analytics
	4.1 Primitive Operators in SDAP
	4.2 Topology Model
	4.3 Operator Configuration

	5 SDAP System Architecture
	5.1 Data Operations
	5.2 Distribution Management
	5.3 Resource Management

	6 Experiments
	6.1 Performance
	6.2 Ease of Development

	7 Conclusions
	References

