
Chapter 16
Sliding Mode Control of Power Converters
with Switching Frequency Regulation

Víctor Repecho, Domingo Biel, Josep M. Olm and Enric Fossas

16.1 Introduction

Sliding mode control (SMC) constitutes a natural control tool for variable structure
systems (VSS), such as power converters, which are nonlinear systems where the
control inputs are inherently discontinuous functions of time. Several first order SMC
applications for linear and nonlinear systems can be found in the literature [21].

In most cases SMC designs assume an infinite switching frequency of the control
action in accordance with the sign of a certain function, but this entails issues when
implemented in real systems. In the field of power converters, the first realistic SMC
implementations are reported in [2, 22]. In these works, the sign function is replaced
by a hysteresis comparator, and the control action is enforced to switch at finite fre-
quency, but variable and system dependent [3, 4]. However, power converters require
a fixed switching frequency operation since the design of their reactive components
is highly dependent on the switching frequency of the system.
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Several different approaches have been proposed to regulate the SMC switching
frequency to a fixed value. Some of them adapt the comparator hysteresis band,
adjusting its level in accordance with the system state [5, 7, 8, 10, 12, 17]. The
procedure provides good results, but requires perfect knowledge of the plant, and it
is not robust in the face of parametric variations. Additional sensors and/or observers
can be included to get a proper adaptation of the hysteresis band amplitude but, in
this case, the system reliability decreases and the cost raises.

Fixed switching frequency can also be achieved by using an external signal to
force the switching instants [11, 18]. This approach needs some additional hardware
on the controller and requires the switching frequency to be low enough with respect
to the system time constants, otherwise the state dynamics drifts away from the ideal
sliding mode and an unexpected steady-state error appears.

The Zero Averaged Dynamics (ZAD) concept was presented in [6]. The method
computes a duty cycle that guarantees zero T -periodic mean value of the switching
function, with T denoting the switching period. Therefore, fixed switching frequency
is reached in the steady-state, and the averaged behaviour is close to the ideal sliding
mode one. The ZAD strategy has been successfully implemented in [13]. The results
presented therein show a good performance of the ZAD, but also point out the
requirement of a fast digital processor to solve the complex calculations involved
in the duty cycle computation, which in the end constitute the main drawbacks of
ZAD-based SMC fixed frequency implementations.

Pulse Width Modulators (PWM) at fixed frequency have been used to imple-
ment the so-called PWM-SMC. Initially proposed in [9, 19], the method imple-
ments directly the equivalent control and obtains the switching instants comparing
the equivalent control with the fixed frequency saw-tooth waveform at the PWM.
The results presented in [20] show overall good performance, but it should be noted
that the same solution can also be derived by calculating the duty cycle required to
obtain the desired system dynamics. Moreover, some sliding mode properties, such
as order reduction or robustness in the face of disturbances, could be lost.

Alternatively, a simple hysteresis band controller in charge of fixing the switching
frequency of a slidingmode controller is presented in the next sections. The controller
is based on a variable hysteresis band comparator which regulates the switching
frequency to a desired constant value. The analysis allows to develop a large signal
model for the frequency control loop, and the controller parameters design guarantees
stability and asymptotic tendency to a fixed switching frequency when the system
is on the sliding surface. Furthermore, in order to cover the case of tracking time-
varying references, the switching frequency controller design has also been extended
with the addition of a feedforward term which, once properly designed following the
guidelines presented here, is able to provide the desired switching frequency in the
steady state.
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16.2 Hysteresis Band Controller for Switching
Frequency Regulation

Let us consider a single input single output (SISO) system, with dynamics given by

ẋ = f (x) + g(x)u, (16.1)

where x denotes the state vector, f (x), g(x) are smooth nonlinear functions, and
u ∈ {u+, u−} is the control input. According to [3, 21], a system with the structure
presented in (16.1), where a sliding motion is enforced over a switching surface
σ(x) = 0 in a comparator with a fixed hysteresis band value Δ > 0, see Fig. 16.1, as

u =
{

u+ if σ < −Δ, or (|σ | < Δ & σ̇ > 0)
u− if σ > Δ, or (|σ | < Δ & σ̇ < 0)

(16.2)

produces a series of consecutive kth switching periods (k > 0), corresponding to

Tk = T +
k + T −

k = 2Δ
(
ρ+

k − ρ−
k

)
, (16.3)

where ρ+
k , ρ−

k are defined as the inverses of σ̇ for each control input state:

ρ+
k = 1

σ̇ku=u+
, ρ−

k = 1

σ̇ku=u−

The obtaining of (16.3) relies on the assumption of piecewise linear behavior
for σ , which implies that ρ+

k , ρ−
k are constant during the switching interval. This

is a standard hypothesis in the SMC literature [3, 21] which holds if the switching
frequency is high enough with respect to the system dynamics.

Fig. 16.1 Behavior of σ within a constant amplitude boundary layer
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Notice that the expected switching period depends onρ+
k , ρ−

k , which are inversely
proportional to the switching function slopes, and this implies that the switching
period varies as the state vector does. This phenomenon is sometimes disadvanta-
geous for specific systems, as happens with power converters. Hence, a solution is
provided hereafter.

16.2.1 Control Architecture

The proposed structure, already presented in [14–16], includes a control loop that
regulates the switching period of the control action under slidingmotion, thus achiev-
ing a fixed switching frequency in the steady state. The idea is sketched in Fig. 16.2.
The control loop measures each switching period of the control action and compares
it with the desired switching period, T ∗. The difference is processed by the switch-
ing frequency controller (SFC), which will update the hysteresis band value of the
hysteretic comparator in such a way that Tk → T ∗.

16.2.2 Discrete-Time Modelling of the Control Loop

It is assumed that the hysteresis band amplitude can be updated at the beginning
of each switching interval by the SFC, keeping it constant up to the next switch-
ing interval. The behavior of σ when confined in a time-varying boundary layer is
represented in Fig. 16.3. Therefore, the expression of the switching period needs to
be revisited. Following an analogue procedure to the derivation of (16.3), the kth
switching period in the time-varying case is now given by:

Tk = T +
k + T −

k = ρ+
k (Δk + Δk−1) − 2ρ−

k Δk = ρ̂kΔk + (
ρ̃k − ρ̂k

)
Δk−1, (16.4)

Fig. 16.2 Overall controller architecture
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Fig. 16.3 Behavior of σ within a time-varying amplitude boundary layer

with

ρ̂k = ρ+
k − 2ρ−

k ,

ρ̃k = 2
(
ρ+

k − ρ−
k

)
.

Let us define the switching period error as e := T ∗ − T . Therefore, using (16.4)
one easily finds out that

ek − ek−1 = ρ̂k (Δk−1 − Δk) + ρ+
k−1 (Δk−2 − Δk−1) + (ρ̃k−1 − ρ̃k)Δk−1. (16.5)

Next subsections will particularize expression (16.5) in two different working
conditions, namely: the regulation case and the tracking case.

16.2.2.1 The Regulation Case

In regulation tasks the state vector reference, x∗, is constant. Assuming that the
amplitude of the ripple, 2Δ, of σ in the vicinity of σ = 0 is small, the steady state
vector can be considered also constant, and hence x = x∗. As a consequence, the
switching function derivatives and their inverses are constant in the steady state as
well. Therefore, from a certain discrete-time instant k0 it results that:

ρ±
k = ρ

(
x∗, u±) := ρ±

∗ , ρ̂k := ρ̂∗, ρ̃k := ρ̃∗, ∀k ≥ k0. (16.6)

With these approximations, (16.5) can be simplified up to the following expression:

ek − ek−1 = ρ̂∗ (Δk−1 − Δk) + ρ+
∗ (Δk−2 − Δk−1) . (16.7)
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Fig. 16.4 Switching frequency regulation control loop with feedforward action. The inherent time
delay due to the switching period measurement is represented by z−1, see [14] for details

The control law proposed for the hysteresis band amplitude in the regulation case
is of integral type and answers to the following difference equation:

Δk = Δk−1 + γ ek−1, (16.8)

with γ > 0 denoting the integral constant. Notice that taking (16.8) to (16.7) results
in the following linear homogeneous difference equation with constant coefficients:

ek = (
1 − γ ρ̂∗) ek−1 − γρ+

∗ ek−2. (16.9)

The stability of the zero solution of (16.9), which means Tk → T ∗, is studied in
Sect. 16.2.3.

16.2.2.2 The Tracking Case

When the system tracks a time-varying reference x∗ = x∗(t), the time derivatives
of the switching functions can not be considered constant values, i.e. ρ+

k �= ρ+
k−1,

ρ−
k �= ρ−

k−1. Hence, when using the integral action (16.8) as SFC, the corresponding
closed-loop response given by (16.5) results in:

ek = (
1 − γ ρ̂k

)
ek−1 − γρ+

k−1ek−2 + Δk−1 (ρ̃k−1 − ρ̃k) . (16.10)

Notice that (16.10) is non-homogeneous, and does not have ek = 0 as an equi-
librium solution. In order to overcome this drawback the proposal presented here
adds a feedforward loop that compensates the undesirable effect of the last term of
(16.10). Therefore, the new SFC structure for systems under tracking tasks is shown
in Fig. 16.4 and consists of setting

Δk = Ψk + Ωk, (16.11)
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where Ψk is the integral control action

Ψk = Ψk−1 + γ ek−1, (16.12)

while the feedforward term Ωk responds to:

Ωk = ρ̂k−1 − ρ+
k

ρ̂k
Ωk−1 + ρ+

k−1

ρ̂k
Ωk−2 + ρ̃k−1 − ρ̃k

ρ̂k
Ψk−1. (16.13)

Merging (16.11)–(16.13) the new closed-loop error dynamics is given by

ek = (
1 − γ ρ̂k

)
ek−1 − γρ+

k−1ek−2. (16.14)

Now the equation of the switching period error boils down to a homogeneous time-
varying discrete-time linear system recovering ek = 0 as the desired equilibrium
solution. Under sliding motion and in the steady state, the state vector profile x∗(t)
will produce time-varying values for ρk :

ρ+
k = ρk

(
x∗(t), u+) := ρ+

∗k,

ρ−
k = ρk

(
x∗(t), u−) := ρ−

∗k,

ρ̂k = ρ̂k (x∗(t)) := ρ̂∗
k ,

ρ̃k = ρ̃k (x∗(t)) := ρ̃∗
k ,

(16.15)

∀k ≥ k0, and the preceding error equation becomes

ek = (
1 − γ ρ̂∗

k

)
ek−1 − γρ+

∗k−1ek−2. (16.16)

The stability analysis of the zero solution of (16.16) is conducted in Sect. 16.2.3.

16.2.3 Stability Analysis and Design Criteria

The obtained results rely upon the hypotheses established in the above analysis.
These can be summarized as follows:

Assumption 16.1 The control law (16.2) induces system (16.1) to evolve within a
boundary layer defined by |σ (x, x∗(t))| < Δ. Moreover, sliding motion exists on
the switching hyperplane σ (x, x∗(t)) = 0 for Δ → 0, with x∗(t) ∈ R

n being the
steady state of the ideal sliding dynamics. Finally, σ (x, x∗(t)) shows constant time
derivatives at either sides of the switching hyperplane during a complete switching
period within the boundary layer.
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16.2.3.1 The Regulation Case

Theorem 16.1 Let Assumption 16.1 be fulfilled, with x∗ being a constant regulation
point, and let the hysteresis band amplitude, Δ, be updated according to (16.8). If
the integral gain γ is selected as

0 < γ < min
{(

ρ+
∗
)−1

,
∣∣ρ−

∗
∣∣−1

}
,

with ρ±∗ defined in (16.6), then the switching period, Tk, converges asymptotically to
its reference value, T ∗, in the steady state.

Proof It follows applying Jury stability criterion to the characteristic polynomial
associated to the difference equation (16.5), see [14] for details.

16.2.3.2 The Tracking Case

Theorem 16.2 Let Assumption 16.1 be fulfilled, with x∗ = x(t) being a time-varying
reference signal, and let the hysteresis band amplitude, Δ, be updated according to
(16.11)–(16.13). If the integral gain γ is selected as

γm :=max

⎧⎪⎪⎨
⎪⎪⎩

ρ̂∗
k −

√
1
2

(
ρ̂∗2

k − ρ+2

∗k

)

ρ̂∗2
k + ρ+2

∗k

, ∀k ≥ 0

⎫⎪⎪⎬
⎪⎪⎭

,

γM :=min

⎧⎪⎪⎨
⎪⎪⎩

ρ̂∗
k +

√
1
2

(
ρ̂∗2

k − ρ+2

∗k

)

ρ̂∗2
k + ρ+2

∗k

, ∀k ≥ 0

⎫⎪⎪⎬
⎪⎪⎭

,

with ρ̂∗
k and ρ+

∗k defined in (16.15), then the switching period, Tk, converges asymp-
totically to its reference value, T ∗, in the steady state.

Proof It follows using a Lyapunov-based discrete time approach, see [15] for details.

16.3 Application to Power Electronics

In this section, the previously proposed structures for switching frequency regulation
in SMC are designed for several power converters. Specifically, three different cases
are considered: a SMC in a regulation task for a buck converter, a SMC in a regu-
lation case for a boost converter, and a SMC in a tracking task for a voltage source
inverter (VSI).



16 Sliding Mode Control of Power Converters with Switching … 393

Fig. 16.5 Buck converter

16.3.1 Output Regulation of a Linear System: The Buck
Converter

Abuck converter circuit scheme is shown in Fig. 16.5, and the values of its parameters
are listed in Table16.1.

The converter state space equations are:

C
d vc

dt
= il − vc

R

L
d il

dt
= E u − vc,

where u is the control signal and takes values in the set {0, 1}. The power switches
M1 and M2work in a complementary way, remaining closedwhen u takes the values
showed in Fig. 16.5.

16.3.1.1 Sliding Mode Control

Taking into account that the relative degree of the buck converter with respect to the
output voltage is two, the chosen switching surface for output voltage regulation is:

Table 16.1 Buck converter parameters

Parameter Symbol Value

Input voltage E 48 V

Desired output voltage v∗
c 12–24V

Inductor L 22 µH

Output capacitor C 50 µF

Load resistance R 2 �

Switching period reference T ∗ 10 µs
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σ(vc, il) := λ1ev + λ2ėv = 0, λ1,2 > 0,

where vc
∗ and ev = vc

∗ − vc are the output voltage reference and the voltage error,
respectively. The switching function derivative becomes:

σ̇ (vc, il) = f1(vc, il) − λ2

LC
E u (16.17)

where

f1(vc, il) = il

(
λ2

R C2
− λ1

C

)
+ vc

(
λ1

RC
+ λ2

LC
− λ2

R2 C2

)
.

From (16.17), it is clear that sliding motion exists if λ2 E
LC > f1 > 0. In turn, the

equivalent control results in:

ueq = LC

E λ2
f1(vc, il),

and the control law that enforces a real sliding motion in the vicinity of
|σ(vc, il)| < Δ is:

u =
{
0 if σ < −Δk or (|σ | < Δk & σ̇ > 0)
1 if σ > Δk or (|σ | < Δk & σ̇ < 0) .

Under sliding motion the system dynamics are governed by:

d vc

dt
= −λ1

λ2
vc + λ1

λ2
v∗

c + v̇∗
c (16.18)

d il

dt
=

(
1

RC
− λ1

λ2

)(
il − vc

R

)
, (16.19)

which is a linear system with equilibrium point vc = v∗
c , il = v∗

c
R . From (16.18),

(16.19) it is evident that system will be asymptotically stable if λ1
λ2

> 1
RC . According

to Table16.1, the selected values for the sliding coefficients are: λ1 = 0.2, λ2 =
1.9 · 10−5, which ensures stability and delivers a good transient response.

16.3.1.2 Switching Frequency Regulation

In order to select γ for the SFC, ρ+
k and ρ−

k have to be evaluated. This requires
(16.17) to be particularized for the ideal steady-state sliding mode dynamics, namely
vc = v∗

c , il = v∗
c

R :

σ̇ (v∗
c , i∗

l ) = λ2

LC

(
v∗

c − E u
)
,
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which yields

ρ+
∗k = [

σ̇ (v∗
c , i∗

l )u=u−
]−1 = LC

λ2v∗
c

ρ−
∗k = [

σ̇ (v∗
c , i∗

l )u=u+
]−1 = LC

λ2
(
v∗

c − E
) .

Then, with the data given in Table1.1, one gets:

v∗
c = 12V → ρ+

∗k = 4.82e−6; ρ−
∗k = −1.61e−6,

v∗
c = 24V → ρ+

∗k = 2.41e−6; ρ−
∗k = −2.41e−6.

According to Theorem 16.1, the values of γ within the range (0, 207470) provide
stability for the SFC. It should be noted that this range corresponds to 12 V at the
output, corresponding to the worst case for the SFC stability. Consequently, the
chosen value is γ = 2 · 104.

16.3.1.3 Simulation Results

The simulations are performed using Matlab Simulink, with the data shown in
Table16.1 and with the previously selected control parameters, namely λ1 = 0.2,
λ2 = 1.9 · 10−5, and γ = 2 · 104.

Figure16.6 shows the response of the system with different initial conditions,
Δini , for the hysteresis value. From the top plots it can be seen how the system
always reaches the desired steady state, Δss , i.e. when Δini < Δss and also when
Δini > Δss . The second and third plots show the evolution of the hysteresis band
and the corresponding switching period, respectively, confirming a good regulation
to the desired value, 10−5 s i.e. 100kHz, in both cases.

In Fig. 16.7 the system response to a variation of the voltage reference between 24
and 12V is plotted. Besides a correct regulation of the output voltage, it is possible
to confirm how, after the sliding transient, the desired switching frequency is reached
in both cases.

The results shown in Fig. 16.8 correspond to the variation of the switching period
reference when the value of γ brings the system close to the unstable region. Such
tests are performed in order to numerically verify the theoretical values that ensure
stable behaviour of the SFC. Specifically, γ is set to 2 · 105. In the test, the switching
period reference is step varied from 14 to 12 µs and from 10 to 12 µs, respectively.
From the results, it is clear that this value of γ is close to the ones which would
produce instability, as Theorem 16.1 claims.
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Fig. 16.6 BuckConverter: start-upwith different initial values forΔ. From top to bottom. 1- Output
voltage, vc, and reference voltage, v∗

c . 2- Switching function σ . 3- Desired and real switching period
(T ∗, T )

Fig. 16.7 Buck Converter: output voltage response to a step-changing reference. From top to
bottom. 1- Output voltage, vc, and reference voltage, v∗

c . 2- Switching function σ . 3- Desired and
real switching period (T ∗, T )
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Fig. 16.8 Buck Converter: switching period regulation. From top to bottom. 1- Output voltage, vc,
and reference voltage, v∗

c . 2- Switching function σ . 3- Desired and real switching period (T ∗, T )

Fig. 16.9 Boost converter

Table 16.2 Boost Converter
Parameter

Parameter Symbol Value

Input voltage E 12V

Desired output voltage range v∗
c 36–48V

Output capacitor C 50 µF

Inductance L 22 µH

Load Resistance R 20 �

Switching period reference T ∗ 10 µs

16.3.2 Output Regulation of a Nonlinear System: The Boost
Converter

Aboost converter circuit scheme is shown inFig. 16.9, and the values of its parameters
are listed in Table16.2.
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The nonlinear state space equations of the converter are:

L
dil

dt
= E − vc(1 − u)

C
dvc

dt
= il(1 − u) − vc

R
,

where u is the control signal and takes values in {0, 1}. The power switches M1 and
M2 work in a complementary way, as in the Buck converter case.

16.3.2.1 Sliding Mode Control

The relative degree between the output voltage and the control input is one. However,
imposing a sliding dynamics directly over the output voltage results in an unstable
behaviour of the inductor current, which prevents its practical use [1]. An alternative
solution in order to regulate the output voltage, vc, is to consider the following
switching function:

σ(vc, il) := κ1ev + κ2

∫
evdt − κ3 il , κ1,2,3 > 0

where ev = v∗
c − vc.

The switching function derivative results in

σ̇ (vc, il) = −ψ1(vc, il) + (1 − u) ψ2(vc, il), (16.20)

where

ψ1(vc, il) = κ3 E

L
− κ1

R C
vc − κ2ev, ψ2(vc, il) = κ3

L
vc − κ1

C
il . (16.21)

Notice from (16.20) that sliding motion can be enforced on σ(vc, il) = 0 if 1 >
ψ1(vc,il )

ψ2(vc,il )
> 0. Using the last expression, the equivalent control is easily derived:

ueq = ψ2(vc, il) − ψ1(vc, il)

ψ2(vc, il)
. (16.22)

Therefore, the equivalent system in sliding mode is:

L
dil

dt
= E − vc

ψ1(vc, il)

ψ2(vc, il)
(16.23)

C
dvc

dt
= il

ψ1(vc, il)

ψ2(vc, il)
− vc

R
, (16.24)
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which is highly nonlinear. It is straightforward to check that (i∗
l , v∗

c ), with

i∗
l = v∗

c
2

E R
,

is an equilibrium point for this system. In the following, conditions will be obtained
to guarantee local asymptotic stability of such equilibrium.

Indeed, defining the error variables e1 = il − i∗
l , e2 = vc − v∗

c , the linearized
model of the error system corresponding to (16.23), (16.24) reads as:

L
de1
dt

= − E2κ1

Cv∗
cψ1(v∗

c , i∗
l )

e1 − E

ψ1(v∗
c , i∗

l )

(
κ2 − 2κ1

RC

)
e2

C
de2
dt

= E2κ3

Lv∗
cψ1(v∗

c , i∗
l )

e1 + 1

Rψ1(v∗
c , i∗

l )

(
v∗

cκ2 − 2Eκ3

L

)
e2, (16.25)

where it follows from (16.21) that

ψ1(v
∗
c , i∗

l ) = Eκ3

L
− κ1v∗

c

RC
.

The characteristic polynomial of (16.25) is given by:

P(λ) = λ2 + 1

ψ1(v∗
c , i∗

l )

(
E2κ1

LCv∗
c

− κ2v∗
c

RC
+ 2Eκ3

RLC

)
λ + E2κ2

LCv∗
cψ1(v∗

c , i∗
l )

.

Hence, under the current hypotheses (κ1, κ2, κ3 > 0), the origin of (16.25) will be
locally asymptotically if and only if

Ev∗
cκ3

L
− κ1v∗

c
2

RC
> 0, and

E2κ1

L
− κ2v∗

c
2

R
+ 2Ev∗

cκ3

RL
> 0.

In this simulation case, the chosen values are: κ1 = 0.8, κ2 = 4500, κ3 = 0.6, which
deliver a good transient response for the output voltage. Finally, using (16.20), the
hysteretic control law that confines the switching function within the space region
|σ(vc, il)| < Δk is:

u =
{
0 if σ · sign (ψ2) < −Δk or (|σ | < Δk & σ̇ > 0)
1 if σ · sign (ψ2) > Δk or (|σ | < Δk & σ̇ < 0) .

16.3.2.2 Switching Frequency Regulation

In order to select γ for the SFC, ρ+
k and ρ−

k have to be evaluated. This requires
(16.22) to be particularized for the steady state sliding mode, i.e. assuming vc = v∗

c

and il = v∗
c
2

R E ,
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σ̇ (v∗
c , i∗

l ) = ψ2(v
∗
c , i∗

l )

(
1 − E

v∗
c

− u

)

where

ψ2(v
∗
c , i∗

l ) = κ3v∗
c

L
− κ1v∗2

c

ERC
.

Using the data given in Table16.2,ψ2(v∗
c , i∗

l ) results positive; therefore, the expected
switching function slopes become:

ρ+
∗k = [

σ̇ (v∗
c , i∗

l )u=0
]−1 = ψ2(v

∗
c , i∗

l )−1

(
1 − E

v∗
c

)−1

ρ−
∗k = [

σ̇ (v∗
c , i∗

l )u=1
]−1 = −ψ2(v

∗
c , i∗

l )−1 v∗
c

E
.

Replacing the values of the parameter shown in the Table16.2 one gets:

v∗
c = 36V → ρ+

∗k = 1.67 · 10−5; ρ−
∗k = −3.35 · 10−5;

v∗
c = 48V → ρ+

∗k = 1.15 · 10−5; ρ−
∗k = −3.46 · 10−5;

According to Theorem 16.1, the closed-loop system is stable for γ ∈ (0, 2.89 ·
105). Hence, we choose γ = 2 · 104.

16.3.2.3 Simulation Results

The simulations are performed using Matlab Simulink with the data shown in
Table16.2 and the control parameters κ1 =0.8, κ2 = 4500, κ3 = 0.6, and γ = 2 · 104.

Figure16.10 shows the response of the system with different initial conditions,
Δini , for the hysteresis valueΔ. Both voltage and frequency regulation are confirmed
from the results.

The simulation shown in Fig. 16.11 plots the system response when the voltage
reference is step changed between 48 and 36 V (see the top plots). Once the sliding
motion is recovered, the switching period reaches the desired value in around 500µs.
Notice from the mid plots of the figure how the SFC adjusts the hysteresis value in
order to keep the switching period at the desired value.

The results presented in Fig. 16.12 show the switching period response when
γ = 2.75 · 105, which is close to the maximum value that guarantees stability, i.e.
γ = 2.88 · 105. The underdamped response illustrates the validity of the stability
range.
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Fig. 16.10 Boost Converter: start-up with different initial values for Δ. From top to bottom.
1- Output voltage, vc, and reference voltage, v∗

c . 2- Switching function σ . 3- Desired and real
switching period (T ∗, T )

16.3.3 Output Tracking: The Voltage Source Inverter

The voltage source inverter (VSI) circuit scheme is depicted in Fig. 16.13. This circuit
is commonly employed to generate a sinusoidal signal at its output and is classified
as DC/AC converter.

The VSI dynamics are governed by:

C
dvc

dt
= −vc

R
+ iL , (16.26)

L
diL

dt
= −vc + E u, (16.27)

where iL is the inductor current, vc is the output voltage, R is the resistive load, L
is the inductance, C is the capacitor and E is the input voltage. The control action u
takes values in {−1, 1}. The power switches are represented by M1, M2, M3, and M4.
As it is shown in Fig. 16.13, M1 and M4 are short circuited when u = 1, and remain
open when u = −1, whereas M2 and M3 work in a complementary way. Table16.3
presents the specific values of the converter parameters used in the simulation.
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Fig. 16.11 Boost Converter: step-changing output voltage reference. From top to bottom. 1- Output
voltage, vc, and reference voltage, v∗

c . 2- Switching function σ . 3- Desired and real switching period
(T ∗, T )

16.3.3.1 Sliding Mode Control

In this case, the control objective is to track a time-varying reference at the output.
The signal to be tracked is defined as:

v∗
c (t) = A sinωt.

Since the relative degree of the output voltage with respect to the control is two, the
following first order linear switching surface is used [4]:

σ (vc, v̇c) = φ1ev + φ2Cėv = 0, φ1,2 > 0, (16.28)

where ev = v∗
c − vc.

The switching function derivative becomes:

σ̇ (vc, v̇c) = fvsi − φ2 E

L
u (16.29)
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Fig. 16.12 Boost Converter: switching period regulation with γ = 275000. From top to bottom.
1- Output voltage, vc, and reference voltage, v∗

c . 2- Switching function σ . 3- Desired and real
switching period T ∗, T

Fig. 16.13 Voltage source
inverter structure

where

fvsi = φ1v̇∗
c + φ2Cv̈∗

c + vc

(
φ1

RC
− φ2

R2 C
+ φ2

L

)
+ il

(
φ2

RC
− φ1

C

)
.

It is clear that sliding motion exists if φ2 E
L > | fvsi |. The equivalent control

results in:

ueq = L

φ2 E
fvsi .
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Table 16.3 Voltage Source Inverter parameters

Parameter Symbol Value

Input voltage E 400V

Desired output voltage amplitude A 230
√
2V

Output voltage frequency range f 50−200Hz

Inductor L 450µH

Output capacitor C 100µF

Load range R 1k�–10�

Switching period reference T ∗ 50µs

According to the definition of the equivalent control, the expression (16.29) can be
redefined as:

σ̇ (vc, v̇c) = φ2 E

L
(ueq − u) (16.30)

The corresponding ideal sliding behavior is given by the linear time-varying sys-
tem:

C
dvC

dt
= −φ1

φ2
vC + φ1

φ2
v∗

C + Cv̇∗
C ,

L
diL

dt
= αφ1

Rφ2
vC − αφ1

φ2
iL + Lh(t),

where

α := L

C

(
1 − φ2

Rφ1

)
and h(t) := φ1

φ2
v̇∗

C + Cv̈∗
C .

It is then immediate that the system is asymptotically stable if R > φ2φ
−1
1 > 0.

According to the VSI parameters values defined in Table16.3, the sliding coefficients
are selected as: φ1 = 0.1, and φ2 = C .

Finally, the hysteretic control law that confines σ within a boundary layer of width
2Δk , is:

u =
{−1 if σ < −Δk or (|σ | < Δk & σ̇ > 0)

1 if σ > Δk or (|σ | < Δk & σ̇ < 0) .

16.3.3.2 Switching Frequency Regulation

In order to select γ for the SFC, the values of ρ+
∗k and ρ−

∗k have to be evaluated. The
switching function slopes can be obtained from (16.30). The equivalent control in the
steady sliding motion can be derived from (16.26), (16.27) imposing that vc = v∗

c .
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Therefore, (16.30) becomes:

σ̇
(
v∗

c , v̇∗
c

) = φ2

[
v∗

c − Eu

L
+ v̇∗

c

R
+ Cv̈∗

c

]
,

and ρ+
∗k and ρ−

∗k are finally given by:

ρ+
∗k =

[
σ̇

(
v∗

c , v̇∗
c

)
u=−1

]−1 = φ−1
2

[
v∗

c + E

L
+ v̇∗

c

R
+ Cv̈∗

c

]−1

ρ−
∗k = [

σ̇
(
v∗

c , v̇∗
c

)
u=1

]−1 = φ−1
2

[
v∗

c − E

L
+ v̇∗

c

R
+ Cv̈∗

c

]−1

.

According to Theorem 16.2, the previous expressions allow to select the value
of γ which ensures stability. In the top plot, Fig. 16.14 shows the desired output
voltage, v∗

c , and the dynamic evolution of ρ+
∗k, ρ−

∗k in the mid plot. Finally, the set of

Fig. 16.14 VSI Converter. From top to bottom. 1- Desired output voltage, v∗
c . 2- Dynamic evolution

of ρ+
∗k and ρ−

∗k . 3- Groups of roots produced by the conditions given in Theorem 16.2
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Fig. 16.15 VSI Converter. From top to bottom. 1- Desired and real output voltage (v∗
c , vc).

2- Inductor current, il . 3- Switching surface, σ . 4- Desired and real switching period of the control
action (T ∗, T )

solutions of the condition stated at Theorem 16.2 for the resulting values of ρ+
∗k, ρ−

∗k
are presented in the bottom plot. With such signals, it is straightforward to find the
maximumandminimumvalueswhich guarantee stability of theSFC.Specifically, the
exact values that define the stability margin are γM = 1.14 · 105 and γm = 9.3 · 104,
i.e. 9.3 · 104 < γ < 1.14 · 105. The chosen value for the simulations is γ = 1 · 105.

16.3.3.3 Simulation Results

The simulations are performed with Matlab-Simulink. Figure16.15 shows the
response of the system under slidingmotionwhen some variations are introduced. On
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the one hand, at the beginning of the simulations a fixed value for the hysteresis band
is used, which leads to an expected time-varying switching period. At time instant
t = 0.02 s the proposed SFC structure is enabled. In the bottom plot in Fig. 16.15 one
can observe how the switching period converges to the desired value, confirming a
proper performance of the SFC. Additionally, a load transient is introduced at time
t = 0.05s, from R = 1 k� to R = 10�. Notice how the output voltage vc tracks
perfectly the desired voltage v∗

c during the entire test. The use of the feedforward
signal Ω (see (16.13)) implies knowledge of ρ±

k , but when the SFC is implemented
the information to calculate Δk is related to the last interval measured k − 1, since
ρ±

k is not available until the kth interval ends. Specifically, ρ±
k are approximated by

the immediately preceding values:

ρ+
k−1 = T +

k−1

Δk−1 + Δk−2
, ρ−

k−1 = T −
k−1

2Δk−1
.

The last test, shown in Fig. 16.16, presents the switching period response when
some parameters are varied, as the amplitude and frequency of the time-varying
reference signal, and the desired switching frequency. An overall good performance
of the system is confirmed. However, it is worthwhile commenting on the switching
period oscillation that appears when the desired frequency, ω, of the tracking signal
is set to 200Hz (see second plot in Fig. 16.16 at t = 0.07s). When the frequency
signal increases, the values of ρ±

k have a higher time variation, and the assumption

Fig. 16.16 VSI Converter. From top to bottom. 1- Desired and real output voltage (v∗
c , vc).

2- Desired and real switching period of the control action (T ∗, T )
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of constant slopes during the switching interval is not completely fulfilled. As a
consequence, the variable hysteresis band provided by the SFC does not perfectly
reject the period oscillations. In the same way, notice that when the desired switching
frequency is increased (t = 0.09s), the assumption is newly met, and the switching
period recovers the desired fixed value.

16.4 Conclusions

Fixing the switching frequency is a key issue in sliding mode control implemen-
tations when it is applied in inherently switched systems. This chapter presented
a hysteresis band controller capable of setting a constant value for the steady-state
switching frequency of a sliding mode controller in regulation and tracking tasks.
Problem statement, practical assumptions, stability proofs and control parameters
design criteria were also provided. The proposal was numerically validated through
a set of simulations in power converters such as a Buck converter, a Boost converter,
and a voltage source inverter.
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