
Chapter 14
Speed Control of Induction Motor Servo
Drives Using Terminal Sliding-Mode
Controller

Yong Feng, Minghao Zhou, Fengling Han and Xinghuo Yu

14.1 Introduction

The induction motor (IM) is one of the most common electrical motor used in most
applications. This motor runs at a speed less than its synchronous speed, therefore
it is also called as asynchronous motor. The synchronous speed is the speed of
rotation of the magnetic field in a rotary machine and it depends upon the frequency
and number poles of the IM. The IM has been extensively used in many practical
applications due to its simply construction, lower repair and maintenance costs, high
reliability and relatively low manufacturing cost, etc [1]. With the development of
power electronics, electrical technique and control theories, IMs have been able to be
used in high-performance servo systems, such as speed servo systems, even position
servo systems.

Three methods can be used for the control of IMs: the scalar control, the direct
torque control (DTC) and the field oriented control (FOC). The former method is
very simple method for controlling the speed of IM compared to the vector control
which is more complex. The latter two methods can be utilized to implement the
high-performance IM servo systems.
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In DTC-based IM servo systems both the stator flux and the torque are regulated
respectively using the bang-bang control strategies. This control method may lead to
the torque ripple. If the IM runs at low speed, its performances will become poorer,
and the speed range will be limited.

FOC is widely used in high performance control of IM servo systems. Since
the torque and flux of an IM are decoupled using FOC, the IM systems can yield
faster dynamic response and lower steady-state error. The mathematical model of
an IM in a three-dimensional stationary reference frame (abc) can be converted into
a model in a two-dimensional rotating reference frame (dq) using the Clarke-Park
transformation. The d-axis current in the stator represents the rotor flux and the q-axis
current represents the torque. Therefore, the decoupled rotor flux and the torque of an
IM can be separately controlled like as a decoupled excited DCmotor. Consequently
it is possible to achieve good steady-state and dynamic performances of IMs [2, 3].

However, an accurate information on both the magnitude and the angular position
of the rotor flux are needed by FOC for the transformation between the rotating
and the stationary reference frames. There are two main methods for obtaining the
magnitude and the angular position of the rotor flux, the direct measurements or
the indirect estimation. The former needs special sensors, therefore it is difficult
in practical applications. The latter is popular and widely used [4]. It applies the
measurements of the stator currents, stator voltages and the motor speed into some
estimation algorithms to estimate the magnitude and the angular position of the rotor
flux. A lot of estimation methods for the rotor flux have been proposed, such as
Luenberger observer-based methods [5, 6], model reference methods [7, 8], Kalman
filter-based methods [9], and neural networks [10].

The high performance control of IMs is a challenge due to multi-variable, strong
coupling, and nonlinearities in themodel of IMs [11, 12]. So far, a lot of controlmeth-
ods have been proposed to improve the robustness and dynamical performances of
IMs, such as neural network control, fuzzy control, optimal control, adaptive control
and sliding-mode control [13, 14]. Sliding-mode control has attractive advantages
compared to other control methods, such as low sensitivity to the system parame-
ter variations and strong robustness to external disturbances [15, 16]. However, the
chattering phenomena limit the practical applications of conventional sliding-mode
control [17]. In this chapter, a nonsingular terminal sliding-mode control (NTSM)
method is applied for IM velocity servo systems. To implement the FOC of IMs,
an NTSM observer is designed in the chapter to estimate the rotor flux of IMs with
equivalent smooth control signals [18, 19]. Additionally, the speed sensorless tech-
nology is also utilized in this chapter, afterwards an NTSM observer is utilized in the
FOC system of IMs to estimate the speed instead of practical sensors.The simulations
have been carried out to validate the applied method.
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14.2 Mathematical Model of Induction Motor

An accurate mathematical model of IMs is the basic factor for the implementation
of high-performance servo systems of IMs, especially for the FOC algorithms. For
simplicity of the analysis some assumptions for IMs can be described as follows:

(1) the effect of magnetic saturation is neglected.
(2) the three-phase windings have the same structure and the fringe effect is

neglected.
(3) the slots effect is ignored.
(4) the iron core loss is not taken into account.

14.2.1 Mathematical Model of IM in Three-Dimensional
Stationary Coordinate (abc)

Themathematical model of IMs is usually composed of the voltage, flux, and motion
equations. Based on the assumptions above, the voltage equations of the IMs in three-
dimensional stationary coordinate (abc) are below:

⎡
⎢⎢⎢⎢⎢⎢⎣

usa

usb

usc

ura

urb

urc

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Rs 0 0 0 0 0
0 Rs 0 0 0 0
0 0 Rs 0 0 0
0 0 0 Rr 0 0
0 0 0 0 Rr 0
0 0 0 0 0 Rr

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

isa

isb

isc

ira

irb

irc

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ̇sa

ψ̇sb

ψ̇sc

ψ̇ra

ψ̇rb

ψ̇rc

⎤
⎥⎥⎥⎥⎥⎥⎦

(14.1)

where usa , usb and usc are three stator voltages in abc axes;
ura , urb and urc are three rotor voltages in abc axes;
isa , isb and isc are three stator currents in abc axes;
ira , irb and irc are three rotor currents in abc axes;
ψsa , ψsb and ψsc are three stator fluxes in abc axes;
ψra , ψrb and ψrc are three rotor fluxes in abc axes;
Rs is the stator resistance;
Rr is the rotor resistance.

Therefore the flux equations of an IM in the three-dimensional stationary coordi-
nate (abc) include both the stator and rotor flux equations and describe the relation-
ships between the currents and the fluxes in the stator and rotor. They are given by
the following equations:

[
ψs

ψr

]
=

[
Lss Lsr

Lrs Lrr

] [
is

ir

]
(14.2)
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with

Lss =
⎡
⎢⎣

Lsm + Lsl − 1
2 Lsm − 1

2 Lsm

− 1
2 Lsm Lsm + Lsl − 1

2 Lsm

− 1
2 Lsm − 1

2 Lsm Lsm + Lsl

⎤
⎥⎦, Lrr =

⎡
⎢⎣

Lsm + Lrl − 1
2 Lsm − 1

2 Lsm

− 1
2 Lsm Lsm + Lrl − 1

2 Lsm

− 1
2 Lsm − 1

2 Lsm Lsm + Lrl

⎤
⎥⎦,

Lsr = LT
rs = Lsm

⎡
⎣

cos θ cos(θ − 120◦) cos(θ + 120◦)
cos(θ + 120◦) cos θ cos(θ − 120◦)
cos(θ − 120◦) cos(θ + 120◦) cos θ

⎤
⎦

where ψs and ψr are the stator flux phase and the rotor flux phase in abc axes
respectively, by ψs = [ψsa, ψsb, ψsc]T , ψr = [ψra, ψrb, ψrc]T

is and ir are the stator current vector and the rotor current vector in abc axes
respectively, by is = [isa, isb, isc]T , ir = [ira, irb, irc]T ;

Lsl and Lrl are the stator and rotor leakage inductance respectively;
Lsm and Lrm are the mutual inductance between the stator and rotor windings;
θ is the electric angle between the stator and rotor windings.
The torque equation of IMs can be given as follows:

Te = n p Lsm[(isaira + isbirb + iscirc) sin θ + (isaira + isbirb + iscirc) sin(θ + 120◦)
+ (isaira + isbirb + iscirc) sin(θ − 120◦)]

(14.3)
where n p is the number of pole pairs.

Finally the mechanical equation of an IM can be described as follows:

Te = TL + J

n p
ω̇ (14.4)

where ω is the electric angular velocity of the rotor;
J is the inertia of the motor;
TL is the load torque.

14.2.2 Mathematical Model of IM in Two-Dimensional
Stationary Coordinate (αβ)

BasedonClarke transformation, themathematicalmodel of IMs in a three-dimensional
stationary coordinate (abc) can be converted into a two-dimensional stationary coor-
dinate (αβ). The Clarke transformation is given by the following equation:

C3/2 =
√
2

3

[
1 − 1

2 − 1
2

0
√
3
2

√
3
2

]
(14.5)

Subsequently, the voltage equations of the IMs in a two-dimensional stationary
coordinate (αβ) can be described as follow:
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⎧⎪⎪⎨
⎪⎪⎩

usα = Rsisα + Ls i̇sα + Lmi̇rα

usβ = Rsisβ + Ls i̇sβ + Lmi̇rb

urα = Rr irα + Lr i̇rα + Lmi̇rα + ω(Lmisβ + Lr irβ)

urβ = Rr irβ + Lr i̇rβ + Lmi̇sβ + ω(Lmisα + Lr irα)

(14.6)

where usα and usβ are two stator voltages in αβ axes;
urα and urβ are two rotor voltages in αβ axes;
isα and isβ are two stator currents in αβ axes;
irα and irβ are two rotor currents in αβ axes;
Ls , Lr , and Lm the stator inductance, the rotor inductance and the mutual

inductance between the stator and rotor windings, which are described by

Ls = Lm + Lls, Lr = Lm + Llr , Lm = 3

2
Lms

Then the flux equations of IMs in a two-dimensional stationary coordinate (αβ)
can be described as follow:

⎧⎪⎪⎨
⎪⎪⎩

ψsα = Lsisα + Lmirα

ψsβ = Lsisβ + Lmirβ

ψrα = Lmisα + Lr irα

ψrβ = Lmisβ + Lr irβ

(14.7)

where ψsα and ψsβ are the stator fluxes in αβ axes respectively;
ψrα and ψrβ are the rotor fluxes in axes respectively.

The torque equation of IMs in a two-dimensional stationary coordinate (αβ) is
described as follows:

Te = n p Lm(isβ irα − isαirβ) (14.8)

14.2.3 Mathematical Model of IMs in Two-Dimensional
Rotating Coordinate (dq)

The FOC strategy can decouple the d-axis and q-axis currents in the stator of an
IM applying the Park transformation, and make the rotor flux and torque of the IM
controlled separately like as decoupled excited DCmotors. The relationship between
the two-dimensional stationary and rotating coordinates can be shown in Fig. 14.1,
where θe represents the electric angle between the d-axis and the α-axis. The speed
of the two-dimensional rotating coordinate equals to ω1 which is the synchronous
electric angular velocity of the IM.

The Park transformation is given by

C2s/2r =
[

cos θe sin θe

− sin θe cos θe

]
(14.9)
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Fig. 14.1 αβ and dq coordinates

Then the voltage equations of the IMs in a two-dimensional rotating coordinate
(dq) can be described as follow:

⎧⎪⎪⎨
⎪⎪⎩

usd = Rsisd + ψ̇sd − ω1ψsq

usq = Rsisq + ψ̇sq + ω1ψsd

urd = Rr ird + ψ̇rd − ωsψrq

urq = Rr irq + ψ̇rq − ωsψrd

(14.10)

where usd and usq are two stator voltages in dq axes;
urd and urq are two rotor voltages in dq axes;
isd and isq are the stator currents in d- and q- axes;
ird and irq are the rotor currents in d- and q- axes;
ψsd and ψsq are the stator fluxes in d- and q- axes;
ψrd and ψrq are the rotor fluxes in d- and q- axes;
ωs is the slip angle velocity;
ω1 is the synchronous angular velocity.

The flux equations of the IMs in a two-dimensional rotating coordinate system
(dq) can be described as follow:

⎧⎪⎪⎨
⎪⎪⎩

ψsd = Lsisd + Lmird

ψsq = Lsisq + Lmirq

ψrd = Lmisd + Lr irq

ψrq = Lmisq + Lr irq

(14.11)



14 Speed Control of Induction Motor Servo Drives Using … 347

The torque equation of IMs in a two-dimensional rotating coordinate (dq) is
given by

Te = n p Lm

Lr
(isqψrd − isdψrq) (14.12)

Summarizing, the mathematical model of IMs in a three-dimensional stationary
coordinate (abc) is described by Eqs.(14.1)–(14.4), which is further transferred to the
model in a two-dimensional stationary coordinate (αβ), as shown as in Eqs. (14.6),
(14.7) and (14.8), by the Clark transformation (14.5). Finally, the model of IMs in a
two-dimensional rotating coordinate (dq) is obtained in Eqs. (14.4), (14.10), (14.11)
and (14.12) by the Park transformation (14.9).

14.3 Field Oriented Control System

For squirrel cage IMs, the rotor voltages are

urd = urq = 0 (14.13)

The mathematical model of the IMs in the FOC systems can be finally described
in dq axes as follows by using Eqs. (14.4), and (14.10)–(14.13):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i̇sd = ξ 1
Tr

ψrd + ξωψrq − λisd + ω1isq + K usd

i̇sq = −ξωψrd + ξ 1
Tr

ψrq − ω1isd − λisq + K usq

ψ̇rd = − 1
Tr

ψrd + (ω1 − ω)ψrq + Lm
Tr

isd

ψ̇rq = −(ω1 − ω)ψrd − 1
Tr

ψrq + Lm
Tr

isq

ω̇ = n2
p Lm

J Lr

(
isqψrd − isdψrq

) − n p

J TL

(14.14)

where σ = 1 − L2
m/Ls Lr is the leakage coefficient; Tr = Lr/Rr is the rotor time

constant; and K = 1/σ Ls , ξ = K (Lm/Lr ), λ = K (Rs + L2
m/Tr Lr ).

Based on the FOC strategy, the d-axis is orientated in accord with the axis of the
rotor flux. Therefore d- and q- axis rotor flux can be determined as follows

{
ψrd = ψr

ψrq = 0
(14.15)

where ψr is the rotor flux.
The FOC of IMs is based on their mathematical model (14.14) and the field

orientated principle (14.15). It can be seen that the control of IMs is decoupled into
the rotor flux control and torque control. Then the FOC-based speed servo system
of IMs can be built using four nonsingular terminal sliding-mode controllers in
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Fig. 14.2 An FOC-based speed closed-loop control system of IMs

the speed-, flux-, d-axis current- and q-axis current-loops respectively, as shown in
Fig. 14.2.

In Fig. 14.2, ωmref is the required speed of the IM. The outputs of the speed and
flux controllers are the references of the stator currents in d- and q-axes respectively.
To implement high-performance control of the FOC position servo system of IMs,
four full-order sliding-mode controllers will be designed in the next section.

14.4 NTSM Controllers for IM Servo System

14.4.1 Speed Controller

The motion equation of the IMs can be obtained from the model of the IMs (14.14)
as follows:

ω̇m = n p Lm

J Lr
isqψr − 1

J
TL (14.16)

where ωm = ω/n p is the mechanical angular velocity of the rotor.
Defining the desired mechanical velocity of the motor as ωmref , which should be

smooth enough up to the second order time derivative, the error between the actual
velocity and the given velocity eω is:

eω = ωmref − ωm (14.17)
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Then the speed error dynamics can be obtained as follows using Eqs.(14.16) and
(14.17):

ėω = ω̇mref − ω̇m = ω̇mref − n p Lm

J Lr
ψr isq + 1

J
TL (14.18)

A NTSM manifold [7] is designed as follows:

sω = eω + γ1ė
p1/q1
ω (14.19)

where γ1 > 0; p1 and q1 are odd, and 1 < p1/q1 < 2.

Theorem 14.1 The NTSM surface (14.19) and the following control assure that
finite-time convergence of the speed error dynamics (14.18):

isqre f = isqeq + isqn (14.20)

isqeq = J Lr

n p Lmψr
ω̇mref (14.21)

i̇sqn + T isqn = vω (14.22)

vω = J Lr

n p Lmψr

⎛
⎜⎝ sωė p1/q1−1

ω∣∣∣sωė p1/q1−1
ω

∣∣∣
2 |sω| ∣∣ė p1/q1−1

ω

∣∣ (k1 + η1) + q1

γ1 p1
ė2−p1/q1
ω

⎞
⎟⎠ (14.23)

where k1 > 0, η1 > 0 are design parameters, and k1 >
(∣∣ 1

J ṪL

∣∣ +
∣∣∣ n p Lmψr

J Lr
T isqn

∣∣∣
)

.

Proof The following Lyapunov function is considered Vω(t) = 0.5sω
2(t). We have:

V̇ω(t) = sω(t)ṡω(t) = sω

[
ėω + γ1 p1

q1
ė p1/q1−1
ω ëω

]

= sωγ1 p1

q1
ė p1/q1−1
ω

[
−n p Lm

J Lr
ψr i̇sqn + 1

J
ṪL + q1

γ1 p1
ė2−p1/q1
ω

]

= sωγ1 p1

q1
ė p1/q1−1
ω

[
−n p Lmψr

J Lr
vω + n p Lmψr

J Lr
T isqn + 1

J
ṪL + q1

γ1 p1
ė2−p1/q1
ω

]
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= sωγ1 p1
q1

ė p1/q1−1
ω

⎡
⎢⎣− sω ė p1/q1−1

ω∣∣∣sω ė p1/q1−1
ω

∣∣∣2
|sω| ∣∣ė p1/q1−1

ω

∣∣ (k1 + η1) + n p Lmψr

J Lr
T isqn + 1

J
ṪL

⎤
⎥⎦

= γ1 p1

q1

[
− |sω| ∣∣ė p1/q1−1

ω

∣∣ (k1 + η1) + sωė p1/q1−1
ω

(
1

J
ṪL + n p Lmψr

J Lr
T isqre f

)]

≤ γ1 p1

q1
|sω| ∣∣ė p1/q1−1

ω

∣∣
[
−(k1 + η1) +

∣∣∣∣
1

J
ṪL

∣∣∣∣ +
∣∣∣∣
n p Lmψr

J Lr
T isqre f

∣∣∣∣
]

≤ γ1 p1

q1
η1

∣∣ė p1/q1−1
ω

∣∣ |sω|

since k1 >
(∣∣ṪL/J

∣∣ + ∣∣(n p Lmψr/J Lr )T isqre f

∣∣), therefore

V̇ω(t) ≤ −γ 1(p1/q1)η1
∣∣ė p1/q1−1

ω

∣∣ |sω| | < 0 for |sω| �= 0

which means that the speed error dynamics (14.18) can reach the sliding-mode sur-
face in finite time, and then both eω and ėω can converge to zero within infinite time.
This completes the proof.

14.4.2 Rotor Flux Controller Design

Define the desired rotor flux as ψrre f = sconst, the error between the actual rotor flux
and the desired flux is eψ :

eψ = ψrre f − ψr (14.24)

The rotor flux error system can be obtained as follows according to the mathe-
matical model (14.14):

ėψ = −ψ̇r = 1

Tr
ψr − Lm

Tr
isd (14.25)

The sliding-mode surface sψ is designed as the follows:

sψ = eψ + γ2ė p2/q2
ψ (14.26)

where γ2 > 0, p2, q2 are odd, and 1 < p2/q2 < 2.

Theorem 14.2 The NTSM surface (14.26) and the following control assure the finite-
time convergence of the rotor flux error system (14.25):
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isdre f = isdeq + isdn (14.27)

isdeq = ψr

Lm
(14.28)

i̇sdn + T isdn = vψ (14.29)

vψ = J Lr

n p Lmψr

⎛
⎜⎝

sψ ė p2/q2−1
ψ∣∣∣sψ ė p2/q2−1
ψ

∣∣∣2
∣∣sψ

∣∣ ∣∣∣ė p2/q2−1
ψ

∣∣∣ (k2 + η2) + q2
γ2 p2

ė2−p2/q2
ψ

⎞
⎟⎠ (14.30)

where k2 > 0, η2 > 0 is the design parameter.

Proof This follows straightforwardly from Theorem 14.1.

14.4.3 q-axis Current Controller Design

Define the error between the desired current in q-axis (isqre f ) and the actual current
in q-axis (isq ) as follows:

esq = isqre f − isq (14.31)

The q-axis current error system can be obtained as the follow according to the
mathematical model (14.14):

ėsq = i̇sqre f − i̇sq = i̇sqre f + ξωψr + ω1isd + λisq − K usq (14.32)

A NTSM manifold ssq is designed as the follow:

ssq = esq + γ3ė
p3/q3
sq (14.33)

where γ3 > 0, p3, q3 are odd, and 1 < p3/q3 < 2.

Theorem 14.3 The NTSM surface (14.33) and the following control assure the finite-
time convergence of the q-axis current error system (14.32):

usq = usqeq + usqn (14.34)

usqeq = (
i̇sqre f + ξωψr + ω1isd + λisq

)
/K (14.35)

u̇sqn + T usqn = vsq (14.36)
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vsq = 1

K

⎛
⎜⎝ ssq ė p3/q3−1

sq∣∣∣ssq ė p3/q3−1
sq

∣∣∣
2

∣∣ssq

∣∣ ∣∣ė p3/q3−1
sq

∣∣ (k3 + η3) + q3

γ3 p3
ė2−p3/q3

sq

⎞
⎟⎠ (14.37)

where k3 > 0, η3 > 0 are design parameters.

Proof This follows straightforwardly from Theorem 14.1 as well.

14.4.4 d-axis Current Controller Design

Define the error between the desired and the actual d-axis current as the follow:

esd = isdre f − isd (14.38)

The d-axis current error system can be obtained as follows according to the math-
ematical model (14.14):

ėsd = isdre f − ξ
1

Tr
ψr + λisd − ω1isq − K usd (14.39)

A NTSM manifold is designed as the follow:

ssd = esd + γ4ė p4/q4
sd (14.40)

where γ4 > 0, p4 and q4 are odd, and 1 < p4/q4 < 2.

Theorem 14.4 The NTSM surface (14.40) and the following control assure the finite-
time convergence of the d-axis current error system (14.39):

usd = usdeq + usdn (14.41)

usdeq =
(

i̇sdre f − ξ
1

Tr
ψr + λisd − ω1isq

)
/K (14.42)

u̇sdn + T usdn = vsd (14.43)

vsd = 1

K

⎛
⎜⎝ ssd ė p4/q4−1

sd∣∣∣ssd ė p4/q4−1
sd

∣∣∣
2 |ssd |

∣∣∣ė p4/q4−1
sd

∣∣∣ (k4 + η4) + q4

γ4 p4
ė2−p4/q4

sd

⎞
⎟⎠ (14.44)

where k4 > 0, η4 > 0 are parameters to design.

Proof This follows straightforwardly from Theorem 14.1.
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14.5 Numerical Simulation Test

Some simulations are carried out for an IM control system to validate the applied
NTSM controllers in MATLAB-Simulink. The parameters of the IM are give as
follows:

PN = 1.1 kW , IN = 2.8 A, UN = 380 V , fN = 50 H z, n p = 2, Rs = 5.9�, Rr =
5.6�, Lr = 37.94m H , Ls = 0.58 H , Lm = 0.55 H , J = 0.021 kg · m2, ψre f =
0.7 W b.

And the NTSM controllers are designed with the following parameters:
p1 = 5, q1 = 3, γ1 = 50, k1 = 5000, T1 = 10; p2 = 5, q2 = 3, γ2 = 30, k2 =

3000, T2 = 10; p3 = 7,q3 = 5,γ3 = 20, k3 = 6000, T3 = 5; p4 = 13,q4 = 11,γ4 =
10, k4 = 3000, T4 = 5.

The desired speed is 20sin(4t) rpm and the desired rotor flux is 0.7W b.
The motor speed and the its tracking error are displayed in Fig. 14.3. For clear

observation, the desired speed is shifted a little bit manually. It can be seen that the
motor speed can track its reference fast and accurately. The rotor flux and its tracking
error are shown in Fig. 14.4. It is clear that the rotor flux can track its reference value
reference. The desired flux is shifted a little as well. The stator currents are displayed
in Fig. 14.5. Both of the two currents track their references quickly and accurately.
The control signals of the NTSM current controllers are shown in Fig. 14.6. It can
be seen that the two control signals are smooth, which means that the chattering is
attenuated by the applied new high-order NTSM method, and better performances
of IM systems can be obtained.

Fig. 14.3 The motor speed and its tracking error
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Fig. 14.4 The rotor flux and its tracking error

Fig. 14.5 The stator currents in dq

14.6 Conclusion

This chapter has introduced a nonsingular terminal sliding-mode control method for
IM velocity servo systems. The NTSM controllers are applied into the speed, flux
and current closed loop of the FOC-based IM velocity servo systems. The designed
NTSM control law can suppress the chattering which exists in conventional sliding-
mode control. The results of simulation have proved that the applied method is
corrective and effective.
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Fig. 14.6 The control signals of the NTSM current controllers
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