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Preface

Variable structure systems (VSS) and its main mode of operation sliding mode
control (SMC) are recognized as one of the most efficient tools to deal with uncertain
systems due to their robustness and even insensitivity to perturbations [1–3].

The main advantages of VSS/SMC methodology are:

• theoretical insensitivity with respect to the matched perturbations;
• reduced order of sliding mode dynamics;
• finite-time convergence to zero for sliding mode variables.

However, the development of the VSS/SMC theory has shown their main
drawbacks: the chattering phenomenon, namely high-frequency oscillations
appearing due to the presence of parasitic dynamics of actuators, sensors, and other
non-ideality.

During the last decade, one of the main lines in development of the SMC theory
was development of the homogeneous higher-order sliding mode controllers
(HOSMC) (see [4–6]). At the first stage, the proof of such algorithm was based on
the arguments of homogeneity and geometry.

The main driver of development in recent two years is the new Lyapunov-based
approaches for HOSMC design and gain selection [7, 8]. Moreover, the develop-
ment of Lyapunov function approaches allows to design continuous sliding mode
algorithms [9–13].

Different properties of SMC algorithms are investigated, like properties of
HOSMC for wider classes of homogeneous systems, as well as properties of SMC
for stochastic systems [14] and properties of SMC in frequency domain [15, 16].
Different adaptive algorithms were recently developed [17, 18]. These new
algorithms were actively used to both ensure the tracking in different control
problems and implement it for control in different real-life systems.

This book is an attempt to reflect the recent developments in VSS/SMC theory
and reflect the results which are presented. The book consists of three parts: in
the first part (i.e., Chaps. 1–7), new VSS/SMC algorithms are proposed and its
properties are analyzed; in the second part (i.e., Chaps. 8–13), the usage of
VSS/SMC techniques for solutions of different control problems is given; in the
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third part (i.e., Chaps. 14–16), applications of VSS/SMC to real-time systems are
exhibited.

Part I: New VSS/SMC Algorithms and Their Properties (Chaps. 1–7)

In Chap. 1 “Lyapunov-Based Design of Homogeneous High-Order Sliding Modes”
by Prof. Jaime A. Moreno, the author provides a Lyapunov-based design
of homogeneous high-order sliding mode (HOSM) control and observation
(differentiation) algorithms of arbitrary order for a class of single-input-
single-output uncertain nonlinear systems. First, the authors recall the standard
problem of HOSM control, which corresponds to the design of a state feedback
control and an observer for a particular differential inclusion (DI), which represents
a family of dynamic systems including bounded matched perturbations/
uncertainties. Next, the author provides a large family of zero-degree homoge-
neous discontinuous controllers solving the state feedback problem based on a
family of explicit and smooth homogeneous Lyapunov functions. The author shows
the formal relationship between the control laws and the Lyapunov functions. This
also gives a method for the calculation of controller gains ensuring the robust and
finite-time stability of the sliding set. The required unmeasured states can be esti-
mated robustly and in finite time by means of an observer or differentiator, origi-
nally proposed by Prof. A. Levant. The author gives explicit and smooth Lyapunov
functions for the design of gains ensuring the convergence of the estimated states to
the actual ones in finite time, despite the non-vanishing bounded perturbations or
uncertainties acting on the system. Finally, it is shown that a kind of separation
principle is valid for the interconnection of the HOSM controller and observer, and
the author illustrates the results by means of a simulation on an electromechanical
system.

In Chap. 2 “Robustness of Homogeneous and Homogeneizable Differential
Inclusions” by Dr. Emmanuel Bernuau, Prof. Denis Efimov, and Prof. Wilfrid
Perruquetti, the authors study the problem of robustness of sliding mode control and
estimation algorithms with respect to matched and unmatched disturbances. Using
the homogeneous theories and locally homogeneous differential inclusions, two sets
of conditions are developed to verify the input-to-state stability property of dis-
continuous systems. The advantage of the proposed conditions is that they are not
based on the Lyapunov function method, but more related to algebraic operations
over the right-hand side of the system.

In Chap. 3 “Stochastic Sliding Mode Control and State Estimation” by
Prof. Alex S. Poznyak, the author deals with the SMC technique applied to
stochastic systems affected by additive as well as multiplicative stochastic white
noise. The existence of a strong solution to the corresponding stochastic differential
inclusion is discussed. It is shown that this approach is workable with the gain
control parameter state-dependent on norms of system states. It is demonstrated that
under such modification of the conventional SMC, the exponential convergence
of the averaged squared norm of the sliding variable to a zone (around the sliding
surface) can be guaranteed, of which the bound is proportional to the diffusion
parameter in the model description and inversely depending on the gain parameter.
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The behavior of a standard super-twist controller under stochastic perturbations is
also studied. For system quadratically stable in the mean-squared sense, a sliding
mode observer with the gain parameter linearly depending on the norm of the
output estimation error is suggested. It has the same structure as deterministic
observer based on “the Equivalent Control Method.” The workability of the
suggested observer is guaranteed for the group of trajectories with the probabilistic
measure closed to one. All theoretical results are supported by numerical
simulations.

In Chap. 4 “Practical Stability Phase and Gain Margins Concept” by Prof. Yuri
Shtessel, Prof. Leonid Fridman, Dr. Antonio Rosales, and Dr. Chandrasekhara
Bharath Panathula, the authors present a new concept of chattering characterization
for the systems driven by finite-time convergent controllers (FTCC) in terms of
practical stability margins. Unmodeled dynamics of order two or more incite
chattering in FTCC-driven systems. In order to analyze the FTCC robustness to
unmodeled dynamics, the novel paradigm of tolerance limits (TL) is introduced to
characterize the acceptable emerging chattering. Following this paradigm, the
authors introduce a new notion of Practical Stability Phase Margin (PSPM) and
Practical Stability Gain Margin (PSGM) as a measure of robustness to cascade
unmodeled dynamics. Specifically, PSPM and PSGM are defined as the values that
have to be added to the phase and gain of dynamically perturbed system driven by
FTCC so that the characteristics of the emerging chattering reach TL. For practical
calculation of PSPM and PSGM, the harmonic balance (HB) method is employed,
and a numerical algorithm to compute describing functions (DFs) for families of
FTCC (specifically, for nested, and quasi-continuous higher-order sliding mode
(HOSM) controllers) was proposed. A database of adequate DFs was developed.
A numerical algorithm for solving HB equation using the Newton–Raphson method
is suggested to obtain predicted chattering parameters. Finally, computational
algorithms to that identify PSPM and PSGM for the systems driven by FTCC were
proposed. The algorithm of a cascade linear compensator design that corrected the
FTCC, making the values of PSPM and PSGM to fit the prescribed quantities, is
suggested. In order to design the flight-certified FTCC for attitude for the F-16 jet
fighter, the proposed technique was employed as a case study. The prescribed
robustness to cascade unmodeled actuator dynamics was achieved.

In Chap. 5 “On Inherent Gain Margins of Sliding-Mode Control Systems” by
Prof. Igor Boiko, the author defines notion of inherent gain margin of sliding mode
control systems. It is demonstrated through analysis and examples that an inherent
gain margin depends on the sliding mode control algorithm and not on the plant.
This property makes the inherent gain margin a characteristic suitable for
comparison of different control algorithms. Analysis of the first-order sliding mode,
hysteresis relay control, twisting algorithm, and suboptimal algorithm is presented.

In Chap. 6 “Adaptive Sliding Mode Control Based on the Extended Equivalent
Control Concept for Disturbances with Unknown Bounds” by Prof. Tiago Roux
Oliveira, Prof. José Paulo V.S. Cunha, and Prof. Liu Hsu, the authors propose an
adaptive sliding mode framework based on extended equivalent control to deal with
disturbances of unknown bounds. Nonlinear plants are considered with a quite
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general class of (non)smooth disturbances. The proposed adaptation method is able
to make the control gain large when the disturbance grows and decrease it if the
latter vanishes, allowing for a minimized chattering occurrence. Global stability
of the closed-loop system is demonstrated using the proposed adaptive sliding
mode control law. Simulations are presented to show the potential of the new
adaptation scheme in this adverse scenario of possibly growing or temporarily large
disturbances.

In Chap. 7 “Indirect Adaptive Sliding-Mode Control Using the Certainty-
Equivalence Principle” by Dr. Alexander Barth, Prof. Markus Reichhartinger,
Prof. Kai Wulff, Prof. Johann Reger, Prof. Stefan Koch, and Prof. Martin Horn, the
authors address the design of adaptive sliding mode controllers. The presented
controllers compensate uncertainties acting on the input channel of the considered
system and are characterized by a possible separation into a structured and an
unstructured part. The latter class of uncertainty may affect the system in terms of
an external disturbance, whereas a structured uncertainty typically occurs in the
case of uncertain plant parameters. The presented controller design methodology
enhances standard sliding mode controllers by an additional control action
generated from an adaptation mechanism. Applying the certainty equivalence
principle, it is possible to systematically handle both classes of uncertainties. The
controller design is introduced step by step and demonstrated in detail for systems
designated to be controlled by the super-twisting algorithm. The deviation of the
adaptive part of the controller is thoroughly demonstrated by deriving three
different types of adaptation laws. The requirement to enhance sliding mode
controllers by the presented adaptive scheme is underpinned by a simulation
scenario demonstrating cascaded feedback loops used for speed and current control
of a DC motor. Experimental results obtained by a laboratory test-rig consisting
of a motor with unbalanced load demonstrate the applicability of the discussed
controller design method.

Part II: The Usage of VSS/SMC Techniques for Solutions of Different Control
Problems (Chaps. 8–13)

In Chap. 8 “Variable Structure Observers For Nonlinear Interconnected Systems”
by Dr. Mokhtar Mohamed, Prof. Xing-Gang Yan, Prof. Sarah K. Spurgeon, and
Prof. Zehui Mao, the authors are concentrated on observer design for nonlinear
interconnected systems in the presence of nonlinear interconnections and uncer-
tainties. An approach to deal with nonlinear interconnections is proposed by sep-
arating the interconnections to linear and nonlinear parts based on an appropriate
transformation. Using the structure property of the interconnected systems, novel
variable structure dynamics are designed to observe the state variables of the
interconnected systems asymptotically with low conservatism. A simulation
example and a case study are presented to demonstrate the effectiveness and the
feasibility of the developed results.

In Chap. 9 “A Unified Lyapunov Function for Finite Time Stabilization of
Continuous and Variable Structure Systems with Resets” by Dr. Harshal B. Oza,
Prof. Yury V. Orlov, and Prof. Sarah K. Spurgeon, the authors present a unified
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Lyapunov function for finite-time stabilization of continuous and variable structure
systems with resets. This chapter aims to uniformly stabilize a perturbed dynamics
of the double integrator in the presence of impacts due to the constraints on the
position variable. A non-smooth transformation is proposed to first transform the
system into a variable structure system that can be studied within the framework of
a conventional discontinuous paradigm. Then, a finite-time stable continuous
controller is utilized, and stability of the closed-loop dynamics is proven by
identifying a new set of Lyapunov functions. The chapter thus contributes to the
VSS and SMC theory by the developing mathematical tools for the finite-time
stability analysis of such systems in the presence of impacts.

In Chap. 10 “Robustification of Cooperative Consensus Algorithms in Perturbed
Multi-Agents Systems” by Prof. Alessandro Pilloni, Prof. Alessandro Pisano, and
Prof. Elio Usai, the authors exploit the integral sliding mode design paradigm in
the framework of multi-agent systems. Particularly, it is shown how to redesign
standard distributed algorithms for estimating the average value and the median
value of the agent's initial conditions in spite of perturbations acting on the
agent’s dynamics. Constructive Lyapunov-based analysis is presented along with
simulation results corroborating the developed treatment.

In Chap. 11 “Finite-Time Consensus for Disturbed Multi-Agent Systems
with Unmeasured States via Nonsingular Terminal Sliding-Mode Control” by
Dr. Xiangyu Wang and Prof. Shihua Li, the authors study the finite-time output
consensus problem for leader–follower higher-order multi-agent systems with
mismatched disturbances and unmeasured states. This problem is solved by using a
feedforward–feedback composite control method which combines the integral-type
non-singular terminal sliding mode control approach and a finite-time observer
technique together. The main contributions include three aspects: Firstly, in the
presence of mismatched disturbances and unmeasured states, the finite-time output
consensus is realized by utilizing the distributed active anti-disturbance control for
the first time. Secondly, the results extend the applicable scope of the distributed
active anti-disturbance control from state feedback to output feedback. Thirdly, the
disturbances considered in this chapter are allowed to be faster time-varying or have
higher-order forms, which are not limited to slow time-varying types any more.

In Chap. 12 “Discrete Event-Triggered Sliding Mode Control” by
Prof. Abhisek K. Behera and Prof. Bijnan Bandyopadhyay, the authors present a
discrete event-triggered SMC strategy for linear systems. Generally, in the
event-triggered control, the state is continuously monitored to generate the possible
triggering instant, which may incur additional cost and complexity. To overcome
this, a discrete event-triggered SMC is proposed which evaluates event periodically
and also guarantees the robust performance of the system. The discrete-time SMC is
designed considering the triggering rule that ensures the stability with the discrete
event-triggering strategy.

In Chap. 13 “Fault Tolerant Control Using Integral Sliding Modes” by
Prof. Christopher Edwards, Dr. Halim Alwi, and Dr. Mirza Tariq Hamayun, the
authors consider so-called integral sliding modes (ISM) and demonstrate how they
can be employed in the context of fault-tolerant control. Two distinct classes
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of problems are considered: Firstly, a fault-tolerant ISM controller is designed for
an over-actuated linear system; secondly, an ISM scheme is retrofitted to an existing
feedback control scheme for an over-actuated uncertain linear system with the
objective of retaining the preexisting nominal performance in the face of faults and
failures. The chapter includes with a case study describing the implementation of an
LPV extension of one of the ISM schemes on a motion simulator configured to
represent a Boeing 747 aircraft subject to realistic fault scenarios.

Part III: Applications of VSS/SMC to Real-Time Systems (Chaps. 14–16)

In Chap. 14 “Speed Control of Induction Motor Servo Drives Using Terminal
Sliding-Mode Controller” by Prof. Yong Feng, Dr. Minghao Zhou, Prof. Fengling
Han, and Prof. Xinghuo Yu, the authors apply a non-singular terminal sliding mode
control method for the servo system of induction motors. The non-singular terminal
sliding mode controllers for speed, flux, and currents are presented, respectively.
The switching signals in the controller are softened to generate the continuous
output signals of the controllers using the equivalent low-pass filters. Therefore,
both the chattering is attenuated and the singularity is eliminated, which means that
the controllers can be used in the practical applications.

In Chap. 15 “Sliding Modes Control in Vehicle Longitudinal Dynamics Control”
by Prof. Antonella Ferrara and Dr. Gian Paolo Incremona, the authors present
recent developments produced at the University of Pavia on application of sliding
mode control to the automotive field. Specifically, the chapter focuses on the use of
advanced SMC schemes to efficiently solve traction control and vehicle platooning
control problems. A slip ratio SMC scheme is described, analyzed, and assessed in
simulation. Then, the vehicle platooning control problem is introduced as an
extended case of the previously described problem. A vehicle longitudinal
dynamics control scheme, based on a suboptimal second-order SMC, is presented
and coupled with the slip rate control scheme which allows to generate the correct
traction control. The validation in simulation on a realistic scenario of the overall
scheme is also discussed.

In Chap. 16 “Sliding Mode Control of Power Converters with Switching
Frequency Regulation” by Dr. Víctor Repecho, Dr. Domingo Biel, Dr. Josep M.
Olm, and Prof. Enric Fossas, the authors introduce a hysteresis band control loop
that provides fixed switched frequency in sliding mode controlled systems while
keeping the beneficial properties of sliding motion. The proposal is exemplified in
DC-to-DC and DC-to-AC power converters carrying out regulation and tracking
tasks, respectively, in the face of load disturbances and input voltage variations.

Nanjing, China
Melbourne, Australia
Mexico City, Mexico
Melbourne, Australia
Nanjing, China
March 2017

Shihua Li
Xinghuo Yu

Leonid Fridman
Zhihong Man

Xiangyu Wang
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Chapter 1
Lyapunov-Based Design of Homogeneous
High-Order Sliding Modes

Jaime A. Moreno

1.1 Introduction

Sliding Mode (SM) Control (SMC) [65, 66] aims at designing a sliding variable
σ and to force it to σ ≡ 0 in finite time and to keep it in zero for all future times
despite uncertainties and perturbations. For this it is required a discontinuous control
action. Classical (or First Order (FO)) SMC achieves this objective when the sliding
variable has relative degree ρ = 1 with respect to the control variable. Higher Order
Sliding Mode (HOSM) Control [24, 38, 40, 41, 43, 65] extends these results to
sliding variables σ with arbitrary relative degree ρ > 1. Since the implementation of
a SMC requires the values of the sliding variable and all its derivatives up to order
ρ − 1, i.e. σ (t) , σ̇ (t) , . . . , σ (ρ−1) (t), in HOSMC it has been necessary to develop
HOSM Differentiators [4, 5, 16, 20, 22, 35, 37, 39, 64] capable of estimating these
derivatives of the sliding variable also in finite time and despite of the uncertain-
ties and perturbations present in the system. These Exact Differentiators make also
use of discontinuous output injection to achieve this goal, since smooth observers
or differentiators are not able to achieve the objective in the presence of non van-
ishing uncertainties/perturbations. Since the classical FOSMC does not require any
derivative of the sliding variable to be implemented, the Exact Differentiators are a
particular development of HOSM’s.

Due to the uncertainties and perturbations present in the system, the description
of the dynamics of the ρ sliding variables σ, σ̇ , . . . , σ (ρ−1) is naturally described not
by a differential equation (DE) but by a Differential Inclusion (DI). One of the main
tasks of SMC consists in designing an appropriate sliding variable σ . The sliding
variable σ is selected in such a way that the reduced dynamics living on the sliding

J.A. Moreno (B)
Instituto de Ingeniería, Universidad Nacional Autónoma de México (UNAM),
04510 Coyoacán, Ciudad de México, Mexico
e-mail: JMorenoP@ii.unam.mx
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4 J.A. Moreno

set σ (t) ≡ 0, σ̇ (t) ≡ 0, . . . , σ (ρ−1) (t) ≡ 0 has the desired behavior, as e.g. it has
a robust and asymptotically stable equilibrium point. And thus the main problem of
HOSMC reduces to the Finite Time (FT) stabilization of the sliding set for the DI
describing its behavior, and this task includes also the FT estimation of the sliding
variables.

One of the main ingredients of SMC, the discontinuous control action, becomes
also its main disadvantage for the applications: forcing a sliding mode induces a
high frequency switching of the control variable and this produces the infamous
“chattering” effect, which has undesirable effects as reducing the life of the actua-
tors and exciting high frequency dynamics of the system. HOSM Control helps in
mitigating the chattering effect, because introducing extra integrators in the control,
and therefore increasing artificially the relative degree of the plant, a continuous
(or even smooth) control action can be achieved, at the cost of a higher order sliding
set. A further benefit of SMC is the order reduction of the plant’s dynamics, since
the main design work has to be done on the (reduced) dynamics living on the sliding
set. Classical FOSMC allows a reduction of only one dimension (in the Single Input
case) while HOSMC permits a reduction of an arbitrary number of degrees up to the
order of the system.

(Weighted) Homogenous Differential Equations (HDE) are a very special class of
nonlinear systems having very nice and simple properties [2, 3, 10, 28]. For exam-
ple, for homogeneous systems: (i) local attractivity is equivalent to global asymptotic
stability, (ii) internal stability of a system with inputs is equivalent to external sta-
bility, (iii) asymptotic stability with negative degree of homogeneity is equivalent
to FT stability, etc. These nice properties are also valid for DI’s [6, 8, 9, 40, 44].
The FT stabilization and the FT and exact estimation of the sliding variables of the
DI describing them requires discontinuous control actions in the controller and dis-
continuous injection terms in the observer (differentiator). The design and analysis
of the robustness, accuracy and convergence properties of the discontinuous con-
troller and observer becomes much simpler if the homogeneity property is imposed
on the controlled system and on the estimation error of the observer. This explains
that homogeneity has become the main ingredient of HOSMs: essentially all HOSM
controllers and observers designed up to now are homogenous.1

In fact, the design of discontinuous (and so called quasi-continuous) HOSM con-
trollers and differentiators has been based on geometric methods (which are usually
effective for low order or low relative degree systems) [36–39] or, more recently, on
the use ofHomogeneity and contraction properties ofDifferential Inclusions [40–43].
It is precisely the homogeneity [3, 8, 40] the property allowing to establishing basic
qualitative properties of homogeneous HOSM algorithms, as e.g. globality, finite-
time convergence, robustness and the type of accuracy.

In contrast,Modern Control Theory is based on the use of Lyapunov or Lyapunov-
like Functions (LF) for analysis and design [23, 50]. This is due to the tight con-
nections of this formalism with optimal control, robustness and the diverse internal

1For FOSM homogeneity does not play an important role.
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and external stability concepts [23, 50]. In particular, for the design of feedback
controllers the concept of (Robust) Control Lyapunov Functions (CLFs) has played
a major role in the development of control design methods in the last twenty five
years [23]. In particular, Classical SMC design is based on the use of Lyapunov func-
tions. One advantage of LF’s is that they provide quantitative measures which are
helpful in the design of controllers and observers. Many of the modern and numer-
ically effective design methods have at their core LF’s, as e.g. LMI’s for linear and
nonlinear systems. It is therefore a natural idea to try to combine homogeneity with
a Lyapunov-based design to enhance the modern HOSM control theory, rendering it
more quantitative.

In recent years some efforts have been devoted to build explicit smooth and
non-smooth, weak and strong Lyapunov functions for some Second Order Slid-
ing Mode (SOSM) Controllers and observers, such as Twisting and Super-Twisting
Algorithms [45, 47–49, 54–57]. In [46] a Lyapunov-based design of an output feed-
back controller, comprising homogeneous SOSM controller and observer, has been
obtained. For HOSMC in [27] the authors use the basic idea of the Lyapunov redesign
[34] to render a nominal finite-time convergent controller, as e.g. those proposed in
[2, 30, 31, 61], and for which a Lyapunov function is already known, robust against
matched and bounded perturbations by means of an extra discontinuous control.
Unfortunately, the resulting closed loop system is not homogeneous, so that it does
not have the nice properties of classical HOSMC [40].

Homogeneous HOSM controllers of arbitrary order based on (explicit) Lyapunov
functions were obtained for the first time in [12] (see also [11, 13, 15]) while for
arbitrary order HOSM differentiators explicit and smooth Lyapunov Functions were
obtained in [14]. Very recently, a new family of so called relay or quasi-continuous
polynomial HOSM controllers has been introduced in [18, 19], and a Lyapunov
function is obtained for some relay polynomial cases, but no Lyapunov approach
is developed for the HOSM differentiator. In [58, 59] Finite-Time convergent con-
trollers have been designed by means of implicit Lyapunov functions (ILF), and
(quasi-continuous) HOSM controllers can be obtained if some Matrix Inequalities
are fulfilled. However, the quasi-continuous controller is also implicitly defined,
so that for its implementation the Lyapunov function has to be calculated on-line.
The ILF method provides only quasi-continuous controllers, and it has not been yet
possible to design exact HOSM differentiators using ILFs.

Themain purpose of this chapter is to present some recent advances towards devel-
oping a Lyapunov-based approach to the design of homogeneous HOSM control and
observation. We develop explicit LFs for HOSM controllers and Observers (Differ-
entiators) for the DI describing the dynamics of the sliding variables in HOSM. The
use of Lyapunov functions provides a procedure for the gain tuning of the HOSM
controllers and observers, it allows the estimation of the convergence time; and it
permits the extension to variable-gain discontinuous and quasi-continuous HOSM
controllers. Our results are inspired by and constitute a generalization to the discon-
tinuous case of the results for continuous systems [2, 30, 31, 61, 62, 68–70].

The rest of the chapter is organized as follows. In the Sect. 1.2, we give some
preliminaries on homogeneous functions and systems. In Sect. 1.3 we formulate the



6 J.A. Moreno

(standard HOSM) problem to be solved. Section1.4 presents the Lyapunov-based
HOSM controllers along with the explicit Lyapunov Functions associated to them.
Section1.5 presents the proofs of themain results of the previous section, and it can be
skipped from the first reading without loosing the main track of the ideas. In Sect. 1.6
we show that for discontinuous, homogeneous differentiators there exist smooth LFs
for the differentiators for appropriate values of the gains. The proof of this important
fact is given in Sect. 1.7. Although this has been shown for the first time in the
discontinuous case in [14] we provide here a different Lyapunov function that allows
to design the gains of the differentiator independently of the order. In Sect. 1.8 it is
shown that the combination of a homogeneousHOSMcontrollerwith a homogeneous
HOSM observer leads to a globally FT stable output feedback controller, and that a
kind of separation principle is available in the global case. Section1.9 presents some
numerical results and in Sect. 1.10 we draw some final comments and conclusions.
The Appendix “Some Technical Lemmas on Homogeneous Functions” contains
some technical results.

1.2 Preliminaries: Differential Inclusions and Homogeneity

We recall some important concepts about DI’s, homogeneity and homogeneous DI’s
[2, 3, 6–10, 17, 21, 29, 40, 44], which are used in the chapter.

Uncertain or discontinuous systems are more appropriately described by Differ-
ential Inclusions (DI) ẋ ∈ F (t, x) than byDifferential Equations (DE). A solution of
this DI is any function x (t), defined in some interval I ⊆ [0, ∞), which is absolutely
continuous on each compact subinterval of I and such that ẋ (t) ∈ F (t, x (t)) almost
everywhere on I . Thus, for a discontinuous DE ẋ = f (t, x) the function x (t) is said
to be a generalized solution of the DE if and only if it is a solution of the associated
DI ẋ ∈ F (t, x). We will consider the DI ẋ ∈ F (t, x) associated to ẋ = f (t, x), as
the one given by the approach of A.F. Filippov [3, 21, Sect. 1.2]. So, we refer to such
DI as Filippov DI and to its solutions as Filippov solutions.

The multivalued map F (t, x) satisfies the standard assumptions if: (H1) F (t, x)

is a nonempty, compact, convex subset of Rn , for each t ≥ 0 and each x ∈ R
n;

(H2) F (t, x) as a set valued map of x , is upper semi-continuous for each t ≥ 0;
(H3) F (t, x) as a set valued map of t , is Lebesgue measurable for each x ∈ R

n . (H4)
F (t, x) is locally bounded.Recall that a set valuedmapG : Rn1 ⇒ R

n2 with compact
values is upper-semicontinuous if for each x0 and for each ε > 0 there exists δ > 0
such that G (x) ⊆ G (x0) + Bε, provided that x ∈ Bδ (x0). It is well-known that,
see [21] or [3, Theorem 1.4], if the multivalued map F (t, x) satisfies the standard
assumptions then for each pair (t0, x0) ∈ [0, ∞) × R

n there is an interval I and
at least a solution x (t) : I → R

n such that t0 ∈ I and x (t0) = x0. A DI ẋ ∈ F (x)

(a DE ẋ = f (x)) is called globally uniformly finite-time stable (GUFTS) at 0, if
x (t) = 0 is a Lyapunov-stable solution and for any R > 0 there exists T > 0 such
that the trajectory starting within the ball ‖x‖ < R reaches zero in the time T .
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Continuous and discontinuous homogeneous functions and systems have a long
history [2, 3, 6, 8–10, 25, 28, 40, 44, 51–54, 71]. We recall this important property.
For a given vector x = [x1, . . . , xn]	 ∈ R

n and for every ε > 0, the dilation operator
is defined as Δr

εx := [εr1 x1, . . . , εrn xn]	, where ri > 0 are the weights of the coor-
dinates, and let r = [r1, . . . , rn]	 be the vector of weights. A function V : Rn → R

(respectively, a vector field f : Rn → R
n , or a vector-set field F(x) ⊂ R

n) is called
r-homogeneous of degree l ∈ R if the identity V (Δr

εx) = εl V (x) holds for every
ε > 0 (resp., f (Δr

εx) = εlΔr
ε f (x), or F(Δr

εx) = εlΔr
ε F(x)). Along this paper we

refer to this property as r-homogeneity or simply homogeneity. A system is called
homogeneous if its vector field (or vector-set field) is r-homogeneous of some degree.

Given a vector r and a dilation Δr
εx , the homogeneous norm is defined by

‖x‖r, p :=
(∑n

i=1 |xi |
p
ri

) 1
p
, ∀x ∈ R

n , for any p ≥ 1, and it is an r-homogeneous

function of degree 1. The set S = {x ∈ R
n : ‖x‖r, p = 1} is the corresponding homo-

geneous unit sphere. The following Lemma provides some important properties of
homogeneous functions and vector fields (some others are recalled in the Appendix).

Lemma 1.1 ([3, 10, 29]) For a given family of dilations Δr
εx, and continuous real-

valued functions V1, V2 on R
n (resp., a vector field f ) which are r-homogeneous of

degrees m1 > 0 and m2 > 0 (resp., l ∈ R), we have:

(i) V1V2 is homogeneous of degree m1 + m2.

(ii) For every x ∈ R
n and each positive-definite function V1, we have c1V

m2
m1
1 (x) ≤

V2 (x) ≤ c2V
m2
m1
1 (x), where c1 � min{z:V1(z)=1} V2 (z) and c2 � max{z:V1(z)=1} V2 (z).

Moreover, if V2 is positive definite, there exists c1 > 0.
(iii) ∂V1 (x) /∂xi is homogeneous of degree m1 − ri , with ri being the weight of xi .
(iv) The Lie’s derivative of V1(x) along f (x), L f V1 (x) := ∂V1(x)

∂x · f (x), is homo-
geneous of degree m1 + l.

It is worth to recall that for homogeneous systems the local stability implies global
stability and if the homogeneous degree is negative asymptotic stability implies
finite-time stability [3, 8, 40, 44]. (Asymptotic) stability of homogeneous systems
and homogeneous DI’s can be studied by means of homogeneous LFs (HLFs), see
for example [3, 6, 8–10, 25, 28, 40, 44, 51, 63, 71]: Assume that the origin of a
homogeneous Filippov DI ẋ ∈ F(x) is strongly globally AS. Then, there exists a
C∞ homogeneous strong LF.

The following robustness result of asymptotically stable homogeneous Filippov
Differential Inclusions is of paramount importance for the assertion of the accu-
racy properties of HOSM algorithms in presence of measurement or discretization
noise or also delay and external perturbations. They have been established by Levant
[8, 39, 40, 44].

Theorem 1.1 Let ẋ ∈ F (x) be a globally uniformly finite-time stable homogeneous
Filippov inclusion with homogeneity weights r = (r1, . . . , rn) and degree l < 0, and
let τ > 0. Suppose that a continuous function x (t) is defined for any t ≥ −τ l and
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satisfy some initial conditions x (t) = ξ (t) for t ∈ [−τ l , 0
]
. Then if x (t) is a solution

of the perturbed differential inclusion

ẋ (t) ∈ Fτ

(
x
(
t + [−τ l , 0

]))
, 0 < t < ∞,

then the inequalities |xi | < γiτ
ri are established in finite time with some positive

constants γi independent of τ and ξ .

Along this paper we use the following notation. For a real variable z ∈ R and a real
number p ∈ R the symbol z�p = |z|psign[z] is the sign preserving power p of z.
According to this z�0 = sign [z], d

dz z�p = p |z|p−1 and d
dz |z|p = p z�p−1 almost

everywhere for z. Note that z� 2 = |z|2sign[z] �= z2, and if p is an odd number then
z� p = z p and |z|p = z p for any even integer p. Moreover, z�p z�q = |z|p+q ,
z�p z�0 = |z|p, and z�0 |z|p = z�p. We also use the following notation: For
a vector x ∈ R

n we denote by x̄i ∈ R
i the vector of the first i components, i.e.

x̄i = [x1, . . . , xi ]T . Similarly, we denote by xi ∈ R
n−(i−1) the vector of the last com-

ponents, i.e. xi = [xi , . . . , xn]T . Note that x = x̄n = x1 are equivalent.

1.3 SISO Regulation and Tracking Problem

Consider a SISO dynamical system affine in the control

ż = f (t, z) + g (t, z) u , y = h (t, z) , (1.1)

where z ∈ R
n defines the state vector, u ∈ R is the control input, y ∈ R is the output

and h (t, z) : R × R
n → R is a smooth output function. A standard problem of con-

trol is the output tracking problem [32], consisting in forcing the output y to track
a (time-varying) signal yR (t). Usually this problem has associated a (robust) distur-
bance decoupling or attenuation property [32, 33]. For our purposes we assume that
the functions f (t, z) and g (t, z) are uncertain smooth vector fields on R

n and the
dimension n can also be unknown. The control objective, i.e. the standard HOSM
control problem [38, 40, 65], consists in making the output σ = y − yR vanishes in
finite time and to keep σ ≡ 0 exactly by a bounded (discontinuous) feedback control.
All differential equations are understood in the Filippov’s sense [21].

When the relative degree ρ with respect to σ is known, well defined and constant
this is equivalent to designing a controller for the DI

∑
DI :

{
ẋi = xi+1, i = 1, . . . , ρ − 1,
ẋρ ∈ [−C, C] + [Km, KM ]u ,

(1.2)

where x = (x1, . . . , xρ)
T = (σ, σ̇ , . . . , σ (ρ−1))T and σ (i) = di

dt i h (z, t). Note that
ΣDI does not depend on the particular properties of the original systems’ dynamics
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and the DI only retains the constants ρ, C , Km and KM . Due to the persisting uncer-
tainty/perturbation causing the constant C > 0 the stabilization of x = 0 requires a
control discontinuous at x = 0, and therefore the classical nonlinear control tech-
niques, that aim at designing a continuous controller as e.g. [32–34], cannot be
applied.

For homogenous HOSM [40] the problem is solved by designing a bounded
memoryless feedback r-homogeneous control law of degree 0 (called also ρ-sliding
homogeneous)

u = ϕ
(
x1, x2, . . . , xρ

) = ϕ
(
εr1 x1, εr2 x2, . . . , ε

rρ xρ

)
, ∀ε > 0 , (1.3)

with r = (ρ, ρ − 1, . . . , 1), that renders the origin x = 0 finite-time stable for ΣDI .
The motion on the set x = 0, which consists of Filippov trajectories [21], is called an
ρth-order sliding mode. The function ϕ is discontinuos at the ρ-sliding set (x = 0).
The closed-loop inclusion (1.2)–(1.3) is an r-homogeneous Filippov DI of degree
−1 satisfying standard assumptions. In the next Sect. 1.4 we provide some families
of homogeneous HOSM controllers that solve the problem for any set of parameters
(ρ, C, Km, KM). They are similar to the ones proposed by A. Levant but are char-
acterized by the fact that they are obtained by means of explicit smooth (Control)
Lyapunov Functions.

Since the implementation of the controller (1.3) requires the values of σ and its
derivatives up toσ (ρ−1), i.e. the state x ofΣDI , we provide in Sect. 1.6 a homogeneous
HOSM observer, able to estimate in finite time and robustly the states of ΣDI for
any set of parameters (ρ, C, Km, KM). Again this observer corresponds to Levant’s
robust and exact differentiator [39, 40], but our results are distinguished by the fact
that the design is based on explicit homogeneous smooth Lyapunov functions.

Finally we note that if the control enters the system (1.1) non affinely the problem
can be reduced to the affine form by introducing an integrator and extending the
relative degree to ρ + 1.

1.4 Lyapunov Based HOSM Controllers

In a series of (by now) classical works, and using basically geometric tools and
homogeneous differential equations, A. Levant has derived some families of homo-
geneous Second and Higher Order Sliding Mode Controllers [36, 38–43]. Recently,
in [18, 19] (see also [11–13, 18, 19]), he has obtained also Lyapunov functions for
some “relay polynomial” controllers.

Based on smooth (Control) Lyapunov functions we derive a full family of
homogeneous HOSM Controllers, which are different from Levant’s families (see
[11–13]). Given the relative degree ρ ≥ 2 we assign the homogeneity weights
ri = ρ − i + 1 to the variables xi , obtaining the vector r = (ρ, ρ − 1, . . . , 1), and
we define an arbitrary non-decreasing sequence of positive real numbers αi , so that
0 ≤ α1 ≤ · · · ≤ αρ−1 ≤ αρ . Furthermore, we define recursively, for i = 2, . . . , ρ,
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the C 1 r-homogeneous functions

σ1 (x̄1) = x1�
ρ+α1

ρ , . . . , σi (x̄i ) = xi�
ρ+αi
ρ−i+1 + k

ρ+αi
ρ−i+1

i−1 σi−1 (x̄i−1)�
ρ+αi

ρ+αi−1 , (1.4)

with constants ki > 0. Recall that x̄i = [x1, . . . , xi ]T .
For any constant m ≥ max1≤i≤ρ {2ρ + 1 + αi−1 − i} we also define recursively,

for i = 2, . . . , ρ, the C 1 r-homogeneous functions

V1 (x1) = ρ

m
|x1| m

ρ , . . . , Vi (x̄i ) = γi−1Vi−1 (x̄i−1) + Wi (x̄i ) (1.5)

Wi (x̄i ) = ri

m
|xi |

m
ri − νi−1 (x̄i−1)�

m−ri
ri xi +

(
1 − ri

m

)
|νi−1 (x̄i−1)|

m
ri , (1.6)

ν1 (x1) = −k1 σ1�
r2

ρ+α1 = −k1 x1� ρ−1
ρ , . . . , νi (x̄i ) = −ki σi (x̄i )�

ri+1
ρ+αi , (1.7)

with (arbitrary) constants γi > 0. σi (x̄i ), νi (x̄i ) and Vi (x̄i ) are r-homogeneous of
degrees ρ + αi , ri+1 and m, respectively. As it will be shown in Sect. 1.5 Vc (x) =
Vρ

(
x̄ρ

)
is a smooth (Control) Lyapunov Function for the uncertain plant (1.2).

From Vc (x) we can derive different controllers for (1.2). In particular, we obtain
the following family of Discontinuous and Quasi-continuous controllers

uD = −kρϕD (x) = −kρ

⌈
σρ (x)

⌋0
, (1.8)

uQ = −kρϕQ (x) = −kρ

σρ (x)

M(x)
, (1.9)

where M (x) is any continuous r-homogeneous positive definite function of degree

ρ + αρ , and (for simplicity) we assume that it is scaled so that
∣∣∣ σρ(x)

M(x)

∣∣∣ ≤ 1. The

homogeneous controllers (1.8)–(1.9) are derived from Vc (x) = Vρ

(
x̄ρ

)
by imposing

the condition ∂Vc(x)

∂xρ
ϕ (x) > 0 at all points where ∂Vc(x)

∂xρ
�= 0.

The values of ki , for i = 1, . . . , ρ − 1 can be fixed depending only on ρ and αi ,
they are the same for the Discontinuous and the Quasi-continuous controllers, and
they are independent of Km , KM and C . kρ in contrast is selected depending on the
values Km , KM and C to induce the rth order sliding mode, and they are different for
the Discontinuous and the Quasi-continuous controllers. Discontinuous controllers
are discontinuous not only on the sliding set {x = 0} but also when σρ (x) = 0, while
Quasi-Continuous controllers are discontinuous only on the sliding set. Due to this
fact they produce less chattering.

Depending on the selection of the free parameters 0 ≤ α1 ≤ · · · ≤ αρ we obtain
different families of controllers. We illustrate them presenting the controllers of
orders ρ = 2, 3, 4:
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• Discontinuous Controllers

– Nested Sliding Controllers: when some of the αi are different

u2D = −k2
⌈
x2�2+α2 + k2+α2

1 x1�
2+α2
2

⌋0

u3D = −k3

⌈
x3�3+α3 + k3+α3

2

⌈
x2�

3+α2
2 + k

3+α2
2

1 x1�
3+α2
3

⌋ 3+α3
3+α2

⌋0

(1.10)

u4D = −k4

⌈
x4�4+α4 + k4+α4

3

⌈
x3�

4+α3
2 + k

4+α3
2

2

⌈
x2�

4+α2
3 +

k
4+α2
3

1 x1�
4+α2
4

⌋ 4+α3
4+α2

⌋ 4+α4
4+α3

⎥⎥⎥⎥⎦
0

– Relay Polynomial Controllers: when αρ = αρ−1 = · · · = α1 = α ≥ 0

u2R = −k2sign
[
x2�2+α + k̄1 x1� 2+α

2

]
,

u3R = −k3sign
[
x3�3+α + k̄2 x2� 3+α

2 + k̄1 x1� 3+α
3

]
(1.11)

u4R = −k4sign
[
x4�4+α + k̄3 x3� 4+α

2 + k̄2 x2� 4+α
3 + k̄1 x1� 4+α

4

]

where for ρ = 2, k̄1 = k2+α
1 ; for ρ = 3, k̄1 = k3+α

2 k
3+α
2

1 , k̄2 = k3+α
2 ; and for gen-

eral ρ, k̄i =∏ρ−1
j=i k

ρ+α

ρ− j

j , for i = 1, . . . , ρ − 1. Relay Polynomial controllers are
specially simple in its form.

• Quasi-Continuous Controllers

– Nested Sliding Controllers: when some of the αi are different. The parameters
βi > 0 are arbitrary

u2Q = −k2
x2�2+α2 + k2+α2

1 x1�
2+α2
2

|x2|2+α2 + β1 |x1|
2+α2
2

,

u3Q = −k3

x3�3+α3 + k3+α3
2

⌈
x2�

3+α2
2 + k

3+α2
2

1 x1�
3+α2
3

⌋ 3+α3
3+α2

|x3|3+α3 + β2 |x2|
3+α3
2 + β1 |x1|

3+α3
3

(1.12)

u4Q = −k4

x4�4+α4 + k4+α4
3

⎡
⎢⎢⎢

x3�
4+α3
2 + k

4+α3
2

2

⌈
x2�

4+α2
3 + k

4+α2
3

1 x1�
4+α2
4

⌋ 4+α3
4+α2

⎥⎥⎥⎦
4+α4
4+α3

|x4|4+α4 + β3 |x3|
4+α4
2 + β2 |x2|

4+α4
3 + β1 |x1|

4+α4
4
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– Relay Polynomial Controllers: when αi = α ≥ 0

u2Q R = −k2
x2�2+α + k2+α

1 x1� 2+α
2

|x2|2+α + β1 |x1| 2+α
2

,

u3Q R = −k3
x3�3+α + k̄2 x2� 3+α

2 + k̄1 x1� 3+α
3

|x3|3+α + β2 |x2| 3+α
2 + β1 |x1| 3+α

3

(1.13)

u4Q R = −k4
x4�4+α + k̄3 x3� 4+α

2 + k̄2 x2� 4+α
3 + k̄1 x1� 4+α

4

|x4|4+α + β3 |x3| 4+α
2 + β2 |x2| 4+α

3 + β1 |x1| 4+α
4

All these controllers solve the problem posed in the previous Sect. 1.3.

Theorem 1.2 For any ρ ≥ 2 each controller of the families of Discontinuous
or Quasi-continuous controllers in (1.8)–(1.9), with arbitrary parameters 0 ≤ α1

≤ · · · ≤ αρ , is ρ-sliding homogeneous, and for kρ sufficiently large the ρth order
sliding mode x = 0 is established in Finite-Time for the uncertain system (1.2) for
properly chosen gains k1, . . . , kρ−1 and β1, . . . , βρ−1.

In the case of measurement noise and/or perturbations we obtain (from the homo-
geneity [39, 40, 44]) the following accuracy properties (see Theorem 1.1).

Theorem 1.3 Consider the uncertain plant (1.2) with any of the (state) feedback
controllers (1.8) or (1.9) and suppose that conditions of Theorem 1.2 are satisfied.
Suppose that the control is realized with a sampling interval τ. In this case the state
x reaches after a finite time a neighborhood of the origin characterized by

|x1 (t)| ≤ δ1τ
ρ, |x2 (t)| ≤ δ2τ

ρ−1, . . . , |xi (t)| ≤ δiτ
ρ−(i−1),

∣∣xρ (t)
∣∣ ≤ δρτ,

and x stays in this vicinity of zero for all future times. Here δ1, . . . , δρ > 0 are
some (positive) constants depending only on the chosen controller, the parameters
(C, Km, KM , ρ) and the gains, but they are independent on τ and the initial con-
ditions.

Using the CLF (1.5) we show that the convergence time is a bounded function of the
initial states [8, Theorems 5.6, 5.7].

Proposition 1.1 Controllers (1.8)–(1.9), in closed-loop with system (1.2), enforce
the state trajectories, starting at initial state x0 = x(0) ∈ R

n, to reach x = 0 in a
finite time smaller than

T (x0) ≤ mηρV
1
m

ρ (x0) , (1.14)

where ηρ is a function of the gains (k1, . . . , kρ), Km and C.

When the bound of the perturbation [−C, C] is time-varying, it is possible to
design the following variable-gain controller, with a slight variation of the proof of
Theorem 1.2.
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Theorem 1.4 Consider that in (1.2) C = C̄ + Θ (t, z), where the function
Θ (t, z) ≥ 0 is known. Then the discontinuous and quasi-continuous controllers
(1.8)–(1.9), with kρ replaced by the variable-gain

(
K (t, z) + kρ

)
, stabilize the ori-

gin x = 0 in Finite-Time if the gain kρ is chosen large enough and Km K (t, z) ≥
Θ (t, z).

By making a linear change of variables ζ = Lx , L ≥ 1, it is easy to show that
if the vector of gains k = (k1, . . . , kρ) is stabilizing, then so is the scaled vector

of gains kL = (L
1
ρ k1, . . . , L

1
ρ+1−i ki , . . . , Lkρ) for any α j . For the Relay Polynomial

Controllers and the relative degree ρ, the gains k̄i =∏ρ−1
j=i k

ρ+α

ρ− j

j , for i = 1, . . . , ρ − 1

are scaled as k̄i → L
(ρ−i)(ρ+α)

ρ−i+1 k̄i . Moreover, the convergence will be accelerated for
L > 1, or the size of the allowable perturbation C will be incremented to LC . Note
that the gains obtained bymeans of the LF can be very large for practical applications,
so that a simulation-based gain design is eventually necessary (see [13]).

In next Sect. 1.5 it will be shown that the gains ki can be calculated recursively as

k1 > 0, . . . , ki+1 > Gi+1 (k1, . . . , ki ) , . . . , kρ >
1

Km

(
Gρ

(
k1, . . . , kρ−1

)+ C
)

,

where the functions Gi are obtained from the LF Vc (x) and they depend on ρ, γi

and αi . We can parametrize the gains in terms of k1 as

k1 > 0, . . . , ki = μi k
ρ

ρ−(i−1)

1 , kρ >
1

Km

(
μρkρ

1 + C
)
, (1.15)

for some positive constants μi depending on ρ, γi and αi . Some values, cal-
culated numerically for uD in (1.11), for α = 0, are: ρ = 2, μ2 = 1.62; ρ = 3,
(μ2 = 1.5, μ3 = 3.25); ρ = 4, (μ2 = 2, μ3 = 8.45, μ4 = 30). We note that this
parametrization can be used for all controllers, except the value of kρ , which is dif-
ferent for the discontinuous and the quasi-continuous controllers. The values can
also be used with the variable gain controller.

Remark 1.1 We note that using the family of CLFs (1.5) we obtain a large fam-
ily of HOSM controllers, related to the ones proposed by A. Levant in his works.
However, not all Levant’s controllers have been provided with a Lyapunov func-
tion. For example, [19] derive Polynomial controllers for arbitrary α > −ρ, while
the Lyapunov functions proposed here (and also in [19]) are only valid for α ≥ 0.
The construction of Lyapunov functions for the controllers for the values of α in the
interval −ρ < α < 0 is an open problem.

Remark 1.2 It is easy to see that controllers (1.8) and (1.9) can be modified without
changing their properties: suppose that ςρ (x) is a continuous r-homogeneous func-
tion of degree ρ + αρ such that (i)

{
x ∈ R

ρ | ςρ (x) = 0
} = {x ∈ R

ρ | σρ (x) = 0
}
,

i.e. σρ and ςρ vanish at the same points, and (ii) ςρ (x) σρ (x) ≥ 0. In this case the
controllers
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uD = −kρ

⌈
ςρ (x)

⌋0
,

uQ = −kρ

ςρ (x)

M(x)
,

have the same properties as (1.8) and (1.9), respectively. For example, instead of the
controller u3D in (1.10) we can also implement the controller

u3D = −k3

⌈⌈
x3�3+α2 + k3+α2

2 x2�
3+α2
2

⌋ 3+α3
3+α2 + k

3+α3
2

1 k3+α3
2 x1�

3+α3
3

⌋0
.

1.5 The Lyapunov Function for the HOSM Controllers

This section can be skipped in a fast reading. We show that the continuously differ-
entiable function Vρ (x) (1.5) is an r-homogeneous Lyapunov Function of degree m
for the uncertain system (1.2) for all ρ ≥ 2, all γ j > 0 and sufficiently large values
of k j > 0, j = 1, 2, . . . , ρ − 1.

1.5.1 Proof by the Lyapunov Approach

In this subsection we establish the relationship between the proposed family of
controllers and the Control Lyapunov functions. First we present some preliminary
results.

We define recursively the auxiliary variables

s1 = x1, . . . , si = xi − νi−1 (x̄i−1) ,

s1, d = x1�
m−r1

r1 , . . . , si, d = xi�
m−ri

ri − νi−1 (x̄i−1)�
m−ri

ri .

Lemma 1.2 For α > 1 and β > 0 consider the function of the two real variables
x, y ∈ R

F (x, y) = 1

α
|x |α − x y�β + (1− 1

α ) |y|β α
α−1 . (1.16)

Then F (x, y) ≥ 0 and F (x, y) = 0 if and only if x�α = y�β α
α−1 .

Proof The conclusion follows immediately from Young’s inequality (see
Lemma 1.4), since it implies

x y�β ≤ 1

α
|x |α +

(
1 − 1

α

)
|y|β α

α−1 .

�
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From Lemma 1.2 it follows that Wi (x̄i ) ≥ 0 and Wi (x̄i ) = 0 iff xi = νi−1 (x̄i−1),
so that Vi (x̄i ) is positive definite for any γi−1 > 0. The following relations will be
used in the sequel: for 1 ≤ j ≤ i − 1

∂Wi (x̄i )

∂x j
= − m − ri

ρ + αi−1
k

ρ+αi−1
ri

i−1 |νi−1|
m−ri −ρ−αi−1

ri si
∂σi−1 (x̄i−1)

∂x j
, (1.17)

∂Wi (x̄i )

∂xi
= xi�

m−ri
ri − νi−1 (x̄i−1)�

m−ri
ri = si, d . (1.18)

Notice also that si = 0 ⇔ σi = 0 ⇔ si, d = 0, and that they have the same sign, i.e.
siσi > 0, si si, d > 0 and σi si, d > 0 when si �= 0, σi �= 0, si, d �= 0.

For i = 1, . . . , ρ − 1 we introduce also the functions

Z1 (x̄1) = ν1 (x̄1)
dV1 (x1)

dx1
, Zi (x̄i ) �

i−1∑
j=1

x j+1
∂Vi (x̄i )

∂x j
+ νi (x̄i )

∂Vi (x̄i )

∂xi
.

(1.19)

Using (1.5) in (1.19), and with (1.17), (1.18) we obtain

Zi (x̄i ) = γi−1

⎛
⎝

i−2∑
j=1

x j+1
∂Vi−1 (x̄i−1)

∂x j
+ xi

∂Vi−1 (x̄i−1)

∂xi−1

⎞
⎠

− m − ri

ρ + αi−1
k

ρ+αi−1
ri

i−1 |νi−1|
m−ri −ρ−αi−1

ri si

i−1∑
j=1

x j+1
∂σi−1 (x̄i−1)

∂x j
+ si, dνi .

Using xi = νi−1 + si in the first line we can obtain the recursive expression

Zi (x̄i ) = γi−1Zi−1 (x̄i−1) + siΨi−1 (x̄i ) + si, dνi (1.20)

Ψi−1 � γi−1si−1, d − m−ri
ρ+αi−1

k
ρ+αi−1

ri
i−1 |νi−1|

m−ri −ρ−αi−1
ri

i−1∑
j=1

x j+1
∂σi−1 (x̄i−1)

∂x j

Note that if in (1.19) we set ∂Vi (x̄i )

∂xi
= si−1, d = si = 0 it follows from (1.20) that

i−1∑
j=1

x j+1
∂Vi (x̄i )

∂x j
= γi−1Zi−1 (x̄i−1) . (1.21)

The Main Argument

The proof can be divided in two parts. We take the derivative of Vρ (x) along the
trajectories of (1.2)
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V̇ρ (x) ∈
ρ−1∑
j=1

∂Vρ (x)

∂x j
x j+1 + ∂Vρ (x)

∂xρ

([−C, C] + [Km, KM ]u) ,

with the controller (1.8) or (1.9). Note that

∂Vρ (x)

∂xρ

= ∂Wρ (x)

∂xρ

= sρ, d (x) = ⌈xρ

⌋ m−rρ
rρ − ⌈νρ−1

(
x̄ρ−1

)⌋ m−rρ
rρ

and

σρ (x) = ⌈xρ

⌋ ρ+αρ

rρ − ⌈νρ−1
⌋ ρ+αρ

rρ = ⌈xρ

⌋ ρ+αρ

rρ + k
ρ+αρ

rρ

ρ−1

⌈
σρ−1

⌋ ρ+αρ

ρ+αρ−1 .

Moreover, sρ, d (x) σρ (x) ≥ 0 and it is zero only if sρ, d (x) = σρ (x) = 0.
We consider here only the Discontinuous controller (1.8), the proof for the Quasi-

Continuous one follows the same path. For (1.8) the multivalued function ψ (u) =
[−C, C] − kρ [Km, KM ] u, when evaluated at (1.8), i.e.

ψ
(
σρ (x)

) = [−C, C] − kρ [Km, KM ]
⌈
σρ (x)

⌋0
,

can be represented as

ψ
(
σρ (x)

) =

⎧
⎪⎪⎨
⎪⎪⎩

− [(C + kρ Km
)
,
(
kρ KM − C

)]
if σρ (x) > 0

[− (C + kρ KM
)
,
(
C + kρ KM

)]
if σρ (x) = 0

[(
kρ Km − C

)
,
(
C + kρ KM

)]
if σρ (x) < 0

If we assume that C
Km

< kρ then we conclude that

ψ
(
σρ (x)

)
σρ (x) ≤ 0 , and ψ

(
σρ (x)

)
sρ, d (x) ≤ 0 ,

and they are zero only if σρ (x) = 0.
Using these results we conclude that

V̇ρ (x) ≤
ρ−1∑
j=1

∂Vρ (x)

∂x j
x j+1 − kρ

(
Km − C

kρ

) ∣∣sρ, d (x)
∣∣ .

If we assume that

∀x ∈ {x ∈ R
ρ |sρ, d (x) = 0

} = {x ∈ R
ρ |σρ (x) = 0

}⇒
ρ−1∑
j=1

∂Vρ (x)

∂x j
x j+1 < 0

(1.22)
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then, due to homogeneity (Lemma 1.5), V̇ρ (x) < 0 for a sufficiently large value of
kρ . This value can be calculated from the previous inequality as

kρ >
1

Km

⎛
⎝
∑ρ−1

j=1
∂Vρ (x)

∂x j
x j+1∣∣sρ, d (x)
∣∣ + C

⎞
⎠ . (1.23)

The fulfilling of the hypothesis (1.22) can be shown for the function (1.5) in a
recursive manner. Note that since

{
x ∈ R

ρ |σρ (x) = 0
} =

{
x ∈ R

ρ | ⌈xρ

⌋ ρ+αρ
rρ = ⌈νρ−1

⌋ ρ+αρ
rρ = −k

ρ+αρ
rρ

ρ−1

⌈
σρ−1

⌋ ρ+αρ
ρ+αρ−1

}
,

we can rewrite (1.22) as

ρ−1∑
j=1

∂Vρ (x)

∂x j
x j+1 =

ρ−2∑
j=1

∂Vρ (x)

∂x j
x j+1 + ∂Vρ (x)

∂xρ−1
νρ−1 = Zρ−1

(
x̄ρ−1

)
< 0 ,

(1.24)
with Zi defined in (1.19).

The Induction Argument

We show recursively, using (1.20), that (1.24) is fulfilled for appropriate selected
gains ki .

First consider i = 1, i.e. Z1 (x̄1). Since Z1 (x̄1) = ν1 (x̄1)
dV1(x1)
dx1

= −k1 |x1| m−1
ρ <

0 it is negative definite for any k1 > 0.
From (1.20) we obtain in case i = 2 for Z2 (x̄2)

Z2 (x̄2) = −k1γ1 |x1| m−1
ρ + s2

(
γ1 x1� m−ρ

ρ − m − ρ + 1

ρ
k

m+1−ρ

ρ−1

1 |x1| m−2ρ+1
ρ x2

)

(1.25)

− k2s2, d σ2�
ρ−2

ρ+α2 .

Note that the last term in Z2 (x̄2) is negative, i.e. −k2s2, d σ2�
ρ−2

ρ+α2 < 0 and it is zero
only if σ2 = 0. Since when σ2 = 0 we obtain that

σ2 = 0 ⇒ Z2 (x̄2) = −k1γ1 |x1| m−1
ρ < 0

we conclude from Lemma 1.5 that Z2 (x̄2) < 0 everywhere for k2 > 0 sufficiently
large.
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By induction it is easy to see that from (1.20) we obtain in case i for Zi (x̄i )

Zi (x̄i ) = γi−1Zi−1 (x̄i−1) + siΨi−1 (x̄i ) − ki si, d σi�
ri+1
ρ+αi (1.26)

Ψi−1 (x̄i ) � γi−1si−1, d − m−ri
ρ+αi−1

k
ρ+αi−1

ri
i−1 |νi−1|

m−ri −ρ−αi−1
ri

i−1∑
j=1

x j+1
∂σi−1 (x̄i−1)

∂x j

Note that the last term in Zi (x̄i ) is negative, i.e. −ki si, d σi�
ri+1
ρ+αi < 0 and it is zero

only if σi = 0. Since when σi = 0 we obtain that

σi = 0 ⇒ Zi (x̄i ) = γi−1Zi−1 (x̄i−1) .

Since by the induction hypothesis Zi−1 (x̄i−1) < 0we conclude fromLemma 1.5 that
Zi (x̄i ) < 0 everywhere for ki > 0 sufficiently large. By induction we can therefore
conclude that Zρ (x) < 0. �

In the last step of the proof it is shown that Zi−1 < 0. This can be interpreted
as rendering the origin of the system ẋ1 = x2 , ẋi−1 = xi GFTS with the virtual
controller xi = νi−1 (x̄i−1). This is the typical Backstepping method [34], also used
in [30, 31] for continuous controllers. However, since controller νi−1 (x̄i−1) is not
differentiable, the standard Backstepping procedure fails. To overcome this problem
we use the desingularization method proposed in [60]. For this, instead of using the

function si = xi − νi−1, a desingularization function si, d = xi�
m−ri

ri − νi−1�
m−ri

ri is
introduced, which vanishes at the same set as si .

1.5.2 Gain Calculation

The controller gains ki , for i = 1, . . . , ρ − 1, have to be calculated such that Vρ is a
CLF, while kρ is selected large enough so that inequality (1.23) holds. After fixing the
parameters m, ρ, αi and γi , the values of the required ki can be obtained recursively
from the condition that Zi in (1.26) has to be negative definite. We require k1 > 0
and for i = 2, . . . , ρ − 1 we can calculate ki as

ki > max
x̄i ∈Si

{
γi−1Zi−1 (x̄i−1) + siΨi−1 (x̄i )

si, d (x̄i ) σi (x̄i )�
ri+1
ρ+αi

}
=: Gi (k1, . . . , ki−1) , (1.27)

where Si = {x̄i ∈ R
i : ‖x̄i‖r,p = 1} is the unit homogeneous sphere, which is a com-

pact set. The maximizations are feasible since the function to be maximized has the
following properties: (i) It is r-homogeneous of degree 0, so that it achieves all its
values on the unit sphere Si , and (ii) it is upper-semicontinuous, since it is continu-
ous at the points where the denominator does not vanish, and when the denominator
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vanishes the numerator is negative, as shown in the previous proof. It is well-known
that an upper-semicontinuous function has a maximum on a compact set (see Lemma
1.6).

1.5.3 Analytical Gain Calculation

Instead of the maximization approach presented above, it is possible to provide for
anyorder an analytical estimationof the values of the gains using classical inequalities
to verify the condition that Zi in (1.26) has to be negative definite (or (1.23) holds
for kρ). Since the general derivation and expressions are lengthy, we illustrate the
procedure with the simplest case for Z2(x̄2), that provides an explicit parametrization
of the set of gains (k1, k2) for ρ = 3, i.e. u3D , u3R and u3Q .

Lemma 1.3 For any values of α3 ≥ α2 ≥ 0, m ≥ r2 + ρ + α2, γ1 > 0, 0 < η < 1
and k1 > 0, Z2 in (1.25) can be rendered negative definite for any k2 such that

k2 >
2

m−2r2
ρ+α2 r2

m − 1

(
2

ρ+α2−r2
ρ+α2 (m − r1)

m − 1

) m−r1
r2

(
γ1 + m−r2

r1
k

m
r2
1

) m−1
r2

(ηγ1k1)
m−r1

r2

. (1.28)

Proof Recalling from (1.4) that σ1 (x̄1) = x1�
ρ+α1

ρ , and using x2 = −k1 σ1�
r2

ρ+α1 +
s2 in (1.25) we can write

Z2(x̄2) = −k1γ1 |σ1|
m−1
ρ+α1 − m − r2

r1
k

m−r2
r2

1 |σ1|
m−r2−r1

ρ+α1 |s2|2 +
(

γ1 + m − r2
r1

k
m
r2
1

)
σ1�

m−r1
ρ+α1 s2 − k2 |σ2|

r2−1
ρ+α2

∣∣s2, d

∣∣ .

Recall the fact (see e.g. [19]) that for any two reals x1, x2 and any positive real
numbers 0 < p ≤ q

∣∣x1�p − x2�p
∣∣ 1p ≤ 2

1
p − 1

q
∣∣x1�q − x2�q

∣∣ 1q .

From it follows that

|si | ≤ 2
ρ+αi −ri

ρ+αi |σi |
ri

ρ+αi ≤ 2
m−2ri
m−ri

∣∣si, d

∣∣ ri
m−ri

As a consequence we get that

∣∣si, d

∣∣ ≥ 2− m−ri −ρ−αi
ρ+αi |σi |

m−ri
ρ+αi
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and

σ1�
m−r1
ρ+α1 s2 ≤ 2

ρ+α2−r2
ρ+α2 |σ1|

m−r1
ρ+α1 |σ2|

r2
ρ+α2 .

These results and the classical Young’s inequality (Lemma 1.4) imply that for any
c > 0

Z2 ≤ −
[

k1γ1 − 2
ρ+α2−r2

ρ+α2

(
γ1 + m − r2

r1
k

m
r2
1

)
m − r1
m − 1

c
m−1
m−r1

]
|σ1|

m−1
ρ+α1

−
[

k2

2
m−r2−ρ−α2

ρ+α2

− 2
ρ+α2−r2

ρ+α2

(
γ1 + m − r2

r1
k

m
r2
1

)
r2c− m−1

r2

m − 1

]
|σ2|

m−1
ρ+α2

For any k2 fulfilling (1.28) it is possible to select c such that Z2 is negative definite. �

1.6 The Arbitrary-Order Exact Differentiator

Let the input signal f (t) to the differentiator be a Lebesgue-measurable func-
tion defined on [0,∞). The signal f (t) is assumed to be decomposed as f (t) =
f0(t) + ν(t). The first term is the unknown base signal f0(t), to be differentiated, and
belonging to the classS n

L of signals which are (n − 1)-times differentiable and with

a (n − 1)th time derivative having a knownLipschitz constant L > 0, i.e.
∣∣∣ f (n)

0 (t)
∣∣∣ ≤

L . The second term ν(t) corresponds to a Lebesgue-measurable uniformly bounded
noise signal |ν(t)| ≤ ε,∀t ≥ 0.Defining the variablesς1 = f0 (t) , ς2 = ḟ0 (t) , . . . ,

ςn = f (n−1)
0 (t), where f (i)

0 (t) = di

dt i f0 (t), for all i = 1, . . . , n, a state representation

of the base signal is given by ς̇i = ςi+1 , i = 1, . . . , n − 1, ς̇n = f (n)
0 (t). To estimate

the derivatives of the base signal, consider Levant’s (n − 1)th order homogeneous
discontinuous exact differentiator [39, 40] (i = 1, . . . , n − 1)

ẋi = −λi L
i
n x1 − f � n−i

n + xi+1 ,

ẋn = −λn L x1 − f �0 . (1.29)

Since (1.29) is discontinuous, its solutions are understood in the sense of Filippov
[21].

Defining the differentiation error as ei � xi − f (i−1)
0 and performing the state

transformation

z1 = e1
L

, . . . , zi = ei

λi−1L
, i = 1, . . . , n,



1 Lyapunov-Based Design of Homogeneous High-Order Sliding Modes 21

the error dynamics is (for i = 1, . . . , n − 1)

żi = −λ̃i

(
z1 + ν̃(t)� n−i

n − zi+1

)
, (1.30)

żn ∈ −λ̃n

(
z1 + ν̃(t)�0 + 1

λn
[−1, 1]

)
,

where ν̃(t) = ν(t)
L ∈ [−1, 1] ε

L and

λ0 = 1, λ̃i = λi

λi−1
, i = 1, . . . , n .

For ε = 0 system (1.30) is a homogeneous DI with homogeneity degree d = −1
and weights r = [r1, . . . , rn], where ri = n + 1 − i for i = 1, . . . , n. For n ≥ 2 fix
pi such that pi > ri + ri+1 = 2 (n − i) + 1 and p = p1 > r1 + r2 = 2n − 1 > 1.
Note that pi ≥ pi+1 for all i = 1, . . . , n.

Consider as Lyapunov Function candidate for (1.30) the r-homogeneous of degree
p1 and continuously differentiable function V (z) = V1 (z), defined (backwards)
recursively for i = n, . . . , 1 as (we define the vector of the last (n − i) components
of z as zi � (zi , . . . , zn))

Vi
(
zi

) = βi Zi (zi , zi+1) + V
pi

pi+1
i+1

(
zi+1

)
(1.31)

where the recursion starts with i = n

Vn (zn) = βn
1

pn
|zn|pn

and with βi > 0 , i = 1, . . . , n and

Zi (zi , zi+1) = n + 1 − i

pi
|zi |

pi
n+1−i − zi zi+1�

pi −n−1+i
n−i + (

pi −n−1+i
pi

) |zi+1|
pi

n−i .

(1.32)

which for i = 1, . . . , n − 1 are continuously differentiable r-homogeneous of degree
pi and positive semidefinite functions.

The main result of this section is the following

Theorem 1.5 Under the stated assumptions for the signal f (t), in the absence of
noise (ν (t) ≡ 0) and for properly chosen gains λi > 0 , i = 1, . . . , n, the origin
z = 0 of the differentiation error dynamics (1.30) is Finite-Time stable and V (z) in
(1.31) is a smooth Lyapunov function for every p ≥ 2n − 1 and βi > 0. Moreover,
V (z) satisfies, for some κ > 0, the differential inequality

V̇ ≤ −κV (z)
p−1

p . (1.33)
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A convergence time estimation is given by

T (z0) ≤ p

κ
V

1
p (z0) . (1.34)

The proof of this Theorem and of the following Proposition 1.2 are given in Sect. 1.7.
The result of Theorem 1.5 has been already obtained in [14], but we provide a
different Lyapunov function allowing the design of gains independently of the order
of the differentiator. From the Lyapunov Function V (z) (1.31) we can obtain not
only an estimation of the convergence time, but also a method of calculating gains
λi assuring the convergence of the differentiator. This is of paramount importance
for applications. Until now this has been only possible (in general) by means of
simulations [39, 40]. The following proposition provides a method to calculate gains
for differentiators of any order.

Proposition 1.2 For a given order n − 1 > 1 of the differentiator select pi such that
pi > ri + ri+1 = 2 (n − i) + 1 and p = p1 > r1 + r2 = 2n − 1 > 1:

(1) The sequence of (positive) gains λ̃1, . . . , λ̃n can be calculated backwards as
follows: (a) Select λn > 1, and λ̃n > 0. (b) For i = n, n − 1, . . . , 2 select λ̃i−1 such
that

λ̃i−1 > ωi−1(λ̃i , . . . , λ̃n)

where ωi−1 is a function obtained from the Lyapunov Function and depending only
on (λ̃i , . . . , λ̃n), pi and βi−1, . . . βn.

(2) For any j = 1, . . . , n − 1 the gains (λ̃ j , . . . λ̃n) are appropriate for the dif-
ferentiator of order n − j .

A method to calculate the gains λ̃i using the Lyapunov function is described in
Sect. 1.7.2 below, where functions ωi are derived from the Lyapunov function V (z).
We see from the previous Proposition that the gains can be parametrized in terms of
the last one k̃n .

Item (2) in Proposition 1.2 corresponds to the affirmation in [37, 39, 40] that the
gains of the differentiator can be designed as an infinite sequence independent of the
order of differentiation.

As a consequence of homogeneity (see Theorem 1.1) we obtain

Proposition 1.3 For a uniformly bounded noise (|ν (t)| ≤ ε) and appropriate gains
for the differentiation error xi (t) − f (i−1)

0 (t), i = 1, . . . , n, the following inequali-
ties are achieved in finite time

∣∣∣xi (t) − f (i−1)
0 (t)

∣∣∣ ≤ ϑi L
i−1

n |ε| n−i+1
n . (1.35)

ϑi depend on the gains λi and ϑ1 > 1.

The proof of this Proposition has been given in [40, 44]. Alternatively, the results
of [8] show that the differentiation error is ISS with respect to the noise signal ν(t),
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and homogeneity implies the inequalities (1.35). The advantage of having an explicit
Lyapunov Function, is that it is possible to estimate the constants ϑi appearing in
(1.35). The calculation can be done in the following form: For L = 1 and ε = 1
find the infimum value c such that for the level set Lc = {z ∈ R

n|V (z) ≤ c} of the
Lyapunov function the inequality V̇ < 0 is fulfilled on the border ofLc. This implies
that the trajectories of the differentiator subject to measurement noise will reachLc

in finite time and will remain there for all future times. The constants λi are then
given by

ϑi = max
Lc

|zi | . (1.36)

We obtain the accuracy with respect to noise (1.35) reported in [37] for the first order
and in [39] for the arbitrary order differentiator. And the orders obtained with respect
to ε and L are the optimal ones, according to the discussion in [37].

Note that the due to the discontinuous term Levant’s differentiator (1.29) has an
astonishing distinguishing feature: in the absence of noise it is exact (i.e. it converges
in finite time) to a much larger class of signalsS n

L than its continuous counterparts,
which are only exact for the much thinner set S n

p = {∣∣ f (n) (t)
∣∣ = 0

} ⊂ S n
L . For a

more detailed discussion see [36, 37, 67].

1.7 Proofs of Main Results on Differentiators

In this section we provide the proofs of Theorem 1.5 and Proposition 1.2. We make
use of some properties of continuous homogeneous functions, Lemmas1.4–1.6, con-
tained in the Appendix “Some Technical Lemmas on Homogeneous Functions”.

1.7.1 Proof of Theorem 1.5

Due to Lemma 1.2 for i = 1, . . . , n − 1 functions (1.32) are positive semidefinite,
i.e. Zi (zi , zi+1) ≥ 0 and Zi (zi , zi+1) = 0 if and only if zi�

pi
n+1−i = zi+1�

pi
n−i .

For simplicity we introduce the variables

σi = zi�
pi −(n+1−i)

n+1−i − zi+1�
pi −(n+1−i)

n−i

si = zi − zi+1� n+1−i
n−i ,

ϕi = − pi −(n+1−i)
n−i |zi+1|

pi −1−2(n−i)
n−i si .

Note that Zi , σi , si and ϕi vanish on the same set. The partial derivatives of Zi are

∂ Zi (zi , zi+1)

∂zi
= σi ,

∂ Zi (zi , zi+1)

∂zi+1
= ϕi ,
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which are continuous and become zero at the points where Zi achieves its minimum.
V (z) in (1.31) is non negative, since it is the sum of non negative terms, and it is
positive definite since V (z) = 0 implies z = 0. Due to homogeneity it is radially
unbounded [10].

Its derivative is

V̇ (z) = β1 (σ1 ż1 + ϕ1 ż2) +
n−1∑
j=2

β j
p1

p j

j∏
k=2

V
pk−1−pk

pk
k

(
zk

) (
σ j ż j + ϕ j ż j+1

)

+ βn
p1

pn

n∏
k=2

V
pk−1−pk

pk
k

(
zk

) |zn|pn−1 żn

or taking terms together we get

V̇ (z) =
n−2∑
j=0

υ j+1 ż j+1 + υn żn

where for j = 1, . . . , n − 2

υ1 = β1σ1

υ2 = β1ϕ1 + β2
p1

p2

2∏
k=2

V
pk−1−pk

pk
k

(
zk

)
σ2

υ j+1 = β j
p1

p j

j∏
k=2

V
pk−1−pk

pk
k

(
zk

)
ϕ j + β j+1

p1

p j+1

j+1∏
k=2

V
pk−1−pk

pk
k

(
zk

)
σ j+1

υn = βn−1
p1

pn−1

n−1∏
k=2

V
pk−1−pk

pk
k

(
zk

)
ϕn−1 + βn

p1

pn

n∏
k=2

V
pk−1−pk

pk
k

(
zk

) |zn|pn−1 .

Using the dynamics (1.30), in the absence of noise (ν (t) ≡ 0), we obtain

V̇ ∈ −
n−2∑
j=0

λ̃ j+1υ j+1

(
z1� n− j−1

n − z j+2

)
− λ̃nυn

(
z1�0 + 1

λn
[−1, 1]

)
.

Note that since System (1.30) is a DI V̇ is amultivaluedmap. Lyapunov’s Theorem of
asymptotic stability for DI (see e.g. [3, Theorem 4.1]) requires that ∀z �= 0, V̇ < 0
for all possible values of the right hand side. To simplify this analysis we find a
single-valued and continuous upper bound for V̇ . For this it is enough to consider the
multivalued last term, since all other terms in V̇ are single-valued and continuous.
When λn > 1 the multivalued map can be written as



1 Lyapunov-Based Design of Homogeneous High-Order Sliding Modes 25

z1�0 + 1

λn
[−1, 1] = z1�0

[
1 − 1

λn
, 1 + 1

λn

]

From this expressionwe easily find the following single-valued and continuous upper
bounds

−z1�
p1−1

n

(
z1�0 + 1

λn
[−1, 1]

)
≤
(

1

λn
− 1

)
|z1|

p1−1
n ,

∣∣∣∣z1�0 + 1

λn
[−1, 1]

∣∣∣∣ ≤
(
1 + 1

λn

)
.

From them and adding and subtracting βn z1�
p1−1

n to υn in V̇ we get the following
single-valued and continuous upper bound for the last term of V̇

−λ̃nυn

(
z1�0 + 1

λn
[−1, 1]

)
≤ λ̃nθn

(
1 + 1

λn

)
− λ̃nβn

(
1 − 1

λn

)
|z1|

p1−1
n ,

θn = βn−1
p1

pn−1

n−1∏
k=2

V
pk−1−pk

pk
k

(
zk

) |ϕn−1| +

βn

∣∣∣∣∣
p1

pn

n∏
k=2

V
pk−1−pk

pk
k

(
zk

) |zn|pn−1 − z1�
p1−1

n

∣∣∣∣∣ ≥ 0 .

We can therefore write
V̇ (z) ≤ −W (z) , (1.37)

with the single-valued, continuous and homogeneous function W

W (z) =
n−2∑
j=0

λ̃ j+1υ j+1

(
z1� n− j−1

n − z j+2

)

− λ̃nθn

(
1 + 1

λn

)
+ λ̃nβn

(
1 − 1

λn

)
|z1|

p1−1
n . (1.38)

We show that there exist values of λ̃i > 0 such that W (z) > 0. For this consider the
values of W restricted to some surfaces: for i = 1, . . . , n − 1

Z1 =
{
z1� n−1

n = z2
}

,

Zi =
{
z1� n−1

n = z2 ∧ · · · ∧ z1� n−i
n = zi+1

}
.

These sets are related as Zn−1 ⊂ · · · ⊂ Z1.
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We have that σi = si = ϕi = 0 on Z j , for every j ≥ i . Let Wi = WZi represent
the function W (z) restricted to the manifold Zi . We can obtain the value of W1

by replacing in W (z) the variable z1 by z1 = z2� n
n−1 , so that W1 becomes a func-

tion of (z2, . . . , zn). In general, we obtain the value of Wi , for i = 1, . . . , n − 1,
by replacing in W (z) the variables (z1, . . . , zi ) by their values in terms of zi+1,
i.e. z1 = zi+1� n

n−i , . . . , zi = zi+1� n+1−i
n−i , so that Wi becomes a function of zi+1 �

(zi+1, . . . , zn). For example, the value of the expression
(
z1� n−i−1

n − zi+2

)
onZi is(

zi+1� n−i−1
n−i − zi+2

)
.

Our strategy to prove that there exist gains k̃i such that W (z) > 0 is as follows: we
show (recursively) that if Wi > 0 then, using homogeneity, we can render Wi−1 > 0
by selecting λ̃i sufficiently large. To start we see from (1.38) that we can write W (z)
as

W (z) = λ̃1η1 (z1, z2) + μ1 (z) ,

η1 (z1, z2) = υ1

(
z1� n−1

n − z2
)

= β1

(
z1�

p1−n
n − z2�

p1−n
n−1

) (
z1� n−1

n − z2
)

μ1 (z) =
n−2∑
j=1

λ̃ j+1υ j+1

(
z1� n− j−1

n − z j+2

)
− λ̃nθn

(
1 + 1

λn

)
+

λ̃nβn

(
1 − 1

λn

)
|z1|

p1−1
n .

η1 (z1, z2) is positive everywhere except on the set Z1, where it vanishes, i.e.
η1 (z1, z2) = 0 for z ∈ Z1. Note also thatμ1 does not depend on the gain λ̃1. Accord-
ing to Lemma 1.5 there exists a sufficiently large positive value of λ̃1 such that
W (z) > 0 if the value of μ1 restricted to Z1, i.e. μ1Z1 = W1

(
z2
)
, is positive.

W1
(
z2
)
can be written as

W1
(
z2
) = λ̃2η2 (z2, z3) + μ2

(
z2
)
,

where

η2 (z2, z3) = β2
p1

p2

2∏
k=2

V
pk−1−pk

pk
k

(
zk

) (z2�
p2−n+1

n−1 − z3�
p2−n+1

n−2

) (
z2� n−2

n−1 − z3
)

μ2
(
z2
) =

n−2∑
j=2

λ̃ j+1υ j+1

(
z2� n− j−1

n−1 − z j+2

)
− λ̃nθn

(
1 + 1

λn

)
+

λ̃nβn

(
1 − 1

λn

)
|z2| p−1

n−1 ,
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where everywhere we set z1 = z2� n
n−1 . η2 (z2, z3) is positive on Z1 except on the

setZ2, where it vanishes, and μ2
(
z2
)
does not depend on the gain λ̃2. According to

Lemma 1.5 there exists a sufficiently large positive value of λ̃2 such that W1
(
z2
)
is

positive definite on Z1 if μ2Z2 = W2
(
z3
)
is positive.

Doing this recursively, we see that Wi
(
zi+1

)
, for i = 1, . . . , n − 2, can be written

as

Wi
(
zi+1

) = λ̃i+1ηi+1 (zi+1, zi+2) + μi+1
(
zi+1

)
, (1.39)

ηi+1 (·) = βi+1
p1

pi+1

i+1∏
k=2

V
pk−1−pk

pk
k

(
zk

) (zi+1�
pi+1−n+i

n−i − zi+2�
pi+1−n+i

n−i−1

)
×

(
zi+1� n−i−1

n−i − zi+2

)
(1.40)

μi+1
(
zi+1

) =
n−2∑

j=i+1

λ̃ j+1υ j+1

(
zi+1� n− j−1

n−i − z j+2

)
− λ̃nθn

(
1 + 1

λn

)
+ (1.41)

λ̃nβn

(
1 − 1

λn

)
|zi+1|

p1−1
n−i ,

where everywhere we set z1 = zi+1� n
n−i , . . . , zi = zi+1� n+1−i

n−i . Since ηi+1(zi+1,

zi+2) is positive on Zi except on the set Zi+1, where it vanishes, and μi+1
(
zi+1

)
does not depend on the gain λ̃i+1, Lemma 1.5 assures the existence of a suffi-
ciently large positive value of λ̃i+1 such that Wi

(
zi+1

)
is positive definite on Zi

if μi+1,Zi+1 = Wi+1
(
zi+2

)
is positive.

Finally, since

Wn−1 (zn) = λ̃nβn

(
1 − 1

λn

)
|zn|p1−1 ,

which is positive onZn−1 for all positive values of λ̃n , βn , and λn > 1, we conclude

that there exist positive values of
(
λ̃1, . . . , λ̃n

)
such that W (z) > 0. Lyapunov’s

theorem for DI [3] implies the stated stability property.

Moreover, Lemma1.6 implies thatW (z) ≥ κV (z)
p−1

p for somepositive κ . Apply-
ing this in inequality (1.37) leads to (1.33). Since the solution of the differential

equation v̇(t) = −κv(t)
p−1

p , v(0) = v0 > 0 is given by t = p
/
κ

(
v

1
p

0 − v(t)
1
p

)
we

obtain that the time T such that v(T ) = 0 is T = p
/
κv

1
p

0 . Using the comparison
principle for (1.33) we conclude (1.34).
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1.7.2 Selection of the Gains. Proof of Proposition 1.2

From the proof of Theorem1.5 the gains λ̃i should be selected backwards, i.e. from λ̃n

to λ̃1. First select λn > 1, in order to compensate the effect of f (n)
0 , and λ̃n > 0, so that

Wn−1 (zn) > 0. Given λn > 1 select λ̃n−1 large enough such that Wn−2
(
zn−1

)
> 0,

i.e. such that

λ̃n−1 > ωn−1(λ̃n) := max

{−μn−1
(
zn−1

)

ηn−1
(
zn−1

)
}

.

Recursively, for i = n, n − 1, . . . , 2 and given the gains (λ̃i , . . . , λ̃n) select λ̃i−1

large enough such that Wi
(
zi−1

)
> 0 (see (1.39)), i.e. such that

λ̃i−1 > ωi−1(λ̃i , . . . , λ̃n) := max

{−μi−1
(
zi−1

)

ηi−1
(
zi−1

)
}

,

where ηi and μi are given by (1.40) and (1.41), respectively.
Functions μi−1

(
zi−1

)
/ηi−1

(
zi−1

)
are homogeneous of degree 0, so that they

achieve their maximum value on the unit sphere S.
Item (2) of the Proposition follows immediately from the following observation:

Setting z1 = z2� n
n−1 in the error system (1.30) of differentiator of order n − 1 one

obtains the error system for the differentiator of order n − 2. The same is true for the
Lyapunov function and its derivative. Note also that when z1 = z2� n

n−1 the Lyapunov

function V1 (z) reduces to V
p1
p2

2

(
z2
)
, which is a Lyapunov Function exactly when

V2
(
z2
)
is. And this is obviously valid recursively.

1.8 Output Feedback HOSM Control

Given the state feeback HOSM controllers and the differentiators it is possible to
construct an output feedback HOSM control. Consider the system (1.2) with the
feedback (1.8) or (1.9). Suppose that the states x are estimated by means of the
differentiator (1.29), so that we obtain the following output feedback

∑
I D :

{
ẋi = xi+1, i = 1, . . . , ρ − 1,
ẋρ ∈ [−C, C] + [Km, KM ]u ,

u = −kρϕ
(
x̂
) =

⎧
⎨
⎩

−kρ

⌈
σρ

(
x̂
)⌋0

,

−kρ
σρ(x̂)
M(x̂)

,
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˙̂xi = −ki L
i
ρ

⌈
x̂1 − y

⌋ ρ−i
ρ + x̂i+1 ,

˙̂xρ = −kρ L
⌈

x̂1 − y
⌋0

.

Defining the estimation errors as ei � x̂i − xi andperforming the state transformation

z1 = e1
L

, . . . , zi = ei

λi−1L
, i = 1, . . . , ρ,

it is possible to write the dynamics of the closed loop in the state variables (x, z)
(see (1.30) for the estimation error dynamics)

ẋi = xi+1,

ẋρ ∈ [−C, C] − kρ[Km, KM ]ϕ (x + e) ,

żi = −λ̃i

(
z1� ρ−i

ρ − zi+1

)
, (1.42)

żρ ∈ −λ̃ρ

(
z1�0 + C + KM kρ

Lλρ

[−1, 1]
)

.

We prove the convergence of the closed output feedback

Theorem 1.6 Consider the Output Feedback system (1.42), composed of the uncer-
tain plant (1.2) and the observer (differentiator) (1.29), where ϕ (x) is any dis-
continuous (1.8) or Quasi-Continuous (1.9) controller. Suppose that the gains of the
controller

(
k1, . . . , kρ

)
are selected large enough so that Theorem 1.2 is satisfied and

the observer gains
(
λ1, . . . , λρ

)
and L > C + kρ KM are such that Theorem 1.5 is

fulfilled. Under these conditions the ρth order sliding mode (x, e) = 0 is established
in Finite-Time.

Proof In the absence of noise under the stated conditions Theorem 1.5 assures that
z (t) → 0 in finite time, i.e. for t ≥ To (z0), and so will also e (t) → 0. Therefore,
for t ≥ To (z0) it happens that e (t) ≡ 0. It is easy to see that for any Lebesgue-
measurable uniformly bounded control u (t) the solutions of (1.2) exist for all future
times, i.e. there is no escape to infinity in finite time. Since the controller ϕ (x) is
homogeneous of degree zero and is locally bounded, it is also globally bounded, and
therefore the solutions of (1.2) with the controller exist for all future times, even in
the case when e (t) �= 0. During the time interval t ∈ [0, To (z0)] when the observer
has not converged, the trajectories of the plant will exist and its state will reach a finite
value x (To (z0)). And then Theorem 1.2 assures the convergence of x (t) to zero in
finite time, i.e. for t ≥ Tc (x (To (z0))) it happens that x (t) ≡ 0 (in the absence of
noise). �

This result is a kind of separation principle forHOSMcontrol, since any stabilizing
HOSM controller and any robust HOSM observer (satisfying additionally the gain
condition L > C + kρ KM ) leads to a globally stable closed loop. It is important
to remark that for this separation result the model (1.2) has to be valid globally,
otherwise the separation is not valid anymore.
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In the case of measurement noise and/or perturbations we obtain from the homo-
geneity [39, 40, 44] the following accuracy properties.

Theorem 1.7 Consider the Output Feedback controlled system (1.42) satisfying the
conditions of Theorem 1.6. Suppose that the measurement is realized without noise
but it is sampled with a sampling interval τ. In this case the states x reach after a
finite time a neighborhood of the origin and stay there for all future times

|x1 (t)| ≤ δ1τ
ρ, |x2 (t)| ≤ δ2τ

ρ−1, . . . , |xi (t)| ≤ δiτ
ρ−(i−1),

∣∣xρ (t)
∣∣ ≤ δρτ,

where δ1, . . . , δρ > 0 are some (positive) constants. If the measurement is done con-
tinuously but with a noise of maximal magnitude ε > 0 then the obtained accuracies
are

|x1 (t)| ≤ δ̃1ε, |x2 (t)| ≤ δ̃2ε
ρ−1
ρ , . . . , |xi (t)| ≤ δ̃iε

ρ−i+1
ρ ,

∣∣xρ (t)
∣∣ ≤ δ̃ρε

1
ρ ,

where δ̃1, . . . , δ̃ρ > 0 are some (positive) constants. In all cases the constants depend
only on the chosen controller, the parameters (C, Km, KM , ρ) and the controller
and observer gains, but they are independent of τ, ε and the initial conditions.

1.9 Application Example: The Magnetic Levitation System

To illustrate the results consider the dynamics of a magnetic levitation system (see
[34])

ẋ1 = x2

ẋ2 = − k

m
x2 − aL0

2m

x2
3

(a + x1)
2 + g

ẋ3 = 1

L (x1)

(
−Rx3 + aL0

x2x3
(a + x1)

2 + u

)

where x1 = y ∈ R+ is the the vertical (downward) distance of the ball measured from
the coil (when the ball is next to the coil x1 = 0), x2 = ẏ is the velocity, m is the mass
of the ball, g is the gravity acceleration, k is a viscous friction coefficient, L(x1) =
L1 + aL0

a+x1
is the inductance of the electromagnet, which changes with the position

of the ball, x3 = i ∈ R+ is the electric current, R is the electric resistance on the
circuit and the control u is the voltage applied.All parameters k, m, a, L0, L1, g, R
are positive constants. We assume that the only measured (output) signal is the
position x1.

Our control objective is that the ball’s position x1 tracks a desired signal r (t), i.e. to
render σ (t) = x1 (t) − r (t) ≡ 0 robustly and in finite time. σ has full relative degree
with respect to the control u, i.e. ρ = 3, so that there is no zero dynamics, and the
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system is brought to the normal form (1.2) by using as state variables (z1, z2, z3) =
(σ, σ̇ , σ̈ ), i.e.

z1 = x1 − r, z2 = x2 − ṙ , z3 = − k

m
x2 − aL0

2m

x2
3

(a + x1)
2 + g − r̈

and therefore the inverse transformation is

x1 = z1 + r, x2 = z2 + ṙ , x2
3 = 2m

aL0

(
g − z3 − k

m
z2 −

(
r̈ + k

m
ṙ

))
(a + x1)

2 .

Note that the quadratic term x2
3 in the dynamics imposes the restriction that

g − z3 − k

m
z2 −

(
r̈ + k

m
ṙ

)
≥ 0 .

The transformation is well defined under the restrictions x1 ≥ 0 and x3 > 0. The
dynamics becomes

ż1 = z2
ż2 = z3
ż3 = f (t, z) − γ (t, z) u

where

f (t, z) = − k

m
z3 + aL0

m

x2x23
(a + x1)3

−
(
...
r + k

m
r̈

)
− γ (t, z)

(
−R + aL0

x2
(a + x1)2

)
x3

= − k

m
z3 + aL0

m

(z2 + ṙ) h2 (t, z)

(a + z1 + r)3
− γ (t, z) h (t, z)

(
−R + aL0

z2 + ṙ

(a + z1 + r)2

)
+

−
(
...
r + k

m
r̈

)

γ (t, z) = aL0

m

x3
(a + x1)2

1

L (x1)
= aL0

m

h (t, z)

(a + z1 + r)2 L (z1 + r)

h (t, z) = x3 =
√

2m

aL0

(
g − z3 − k

m
z2 −

(
r̈ + k

m
ṙ

))
(a + z1 + r)

Note that for the tracking (z (t) ≡ 0) the control variable is required to be

utk (t) = f (t, 0)

g (t, 0)
=
√

m
2aL0

(a + r) L (r)
√

g − (r̈ + k
m ṙ
)
[
2

(
g −

(
r̈ + k

m
ṙ

))
×

{
ṙ

a + r
− 1

L (r)

(
−R + aL0ṙ

(a + r)2

)}
−
(
...
r + k

m
r̈

)]
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and for regulation (ṙ = r̈ = ...
r = 0) this reduces to

u = R

√
2mg

aL0
(a + r) .

Note that (1.2) is not a global model of the actual plant, and thus the control and
observation results are only valid locally. In particular, the separation principle for the
controller/observer is not valid globally. AsHOSMcontroller we use a discontinuous
relay polynomial of order ρ = 3 with α = 0 (see (1.11)). The controller is therefore
given by

u = utk (t) + k3Lsign
(
x3�3 + k2L

3
2 x2� 3

2 + k1L2x1
)

.
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Fig. 1.1 Upper graph time evolution of the plant’s states (x1, x2, x3). The ball’s position x1 tracks
perfectly after ca. 1 s the reference signal r (t) = 0.05 + 0.025 sin (t). Lower graph behavior of the
estimation errors e = x̂ − x
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The observer is given by

˙̂z1 = −λ1l
1
3
⌈

ẑ1 − z1
⌋ 2

3 + ẑ2

˙̂z2 = −λ2l
2
3
⌈

ẑ1 − z1
⌋ 1

3 + ẑ3
˙̂z3 = −λ3l

⌈
ẑ1 − z1

⌋0 + f
(
t, ẑ
)− g

(
t, ẑ
)

u .

For the simulations we used as parameters of the plant: L1 = 0.02 [H]; L0 = 0.01
[H], a = 0.05 [m], k = 0.001 [N/m/s], m = 0.1 [Kg], g = 9.81 [m/s2], R = 1[Ω].
The ball should track a reference signal r (t) = 0.05 + 0.025 sin (t). Following the
design rules presented in the previous sections, we have selected the controller gains
as k1 = 1.5, k2 = 5, k3 = 25, L = 4, while the observer (differentiator) gains were
set to λ1 = 3, λ2 = 1.5

√
3, λ3 = 1.1, and l = 700. The initial conditions for the

plant were z0 = [0.1, 0, 0.3] and for the observer ẑ0 = [0.2, 0.3, 0]. We consider
the parameters k, m, R uncertain, so that for the observer their values were set 10%
above their nominal ones. The simulation was performed with a fixed step Euler
algorithm, with a step size of 10−5.
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Fig. 1.2 Upper Graph time evolution of the sliding variables z. The sliding set z ≡ 0 is reached in
finite time. Lower graph behavior of the control signal u
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Figure1.1 shows a simulation result of the output feedback control, i.e. the dis-
continuous polynomial controller with the observer. The upper graphs present the
three states of the plant and, for the output x1 = z1 the value of the reference signal
r (t) = 0.05 + 0.025 sin (t). We see that the ball’s position x1 tracks perfectly the
reference r (t) after a short period of time (about 1 s) despite of the uncertainties on
the model of the system, which was the control objective. The lower graphs show
the observer’s estimation errors for the original states x (t) of the plant. The observer
converges exactly after a finite time smaller than 0.2 s. This is critical for this system,
since otherwise the ball can go out of the physical zone if the control does not act
appropriately. The upper graph in Fig. 1.2 shows the time evolution of the sliding
variables z (t). The sliding set z ≡ 0 is reached in less than (2) two seconds. The
lower graph in Fig. 1.2 shows the control variable u, which shows the characteristic
chattering of the SM control.

1.10 Concluding Remarks

In this chapterwe have presented an explicit Lyapunov-based design of homogeneous
HOSM controllers and observers (differentiators) for the standard HOSM problem.
This allows to put the HOSM design in the same framework as the modern nonlinear
control methods, which are pretty much based on Lyapunov approach. In fact, this
has been achieved as an extension of previous results in control and observer design
for continuous homogeneous systems to discontinuous ones [1, 2, 61, 62, 68–70].
This opens an avenue to find gains for HOSM controllers and observers to meet
not only stability and robustness specifications but also other optimal performance
requirements.
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Appendix: Some Technical Lemmas on Homogeneous
Functions

We recall or prove some useful Lemmas needed for the development of our main
results. Lemmas 1.5 and 1.6 are extensions of classical results for homogeneous
continuous functions to semicontinuous ones [29, Theorems 4.1 and 4.4].

Lemma 1.4 ([26]) (Young’s inequality)For any positive real numbers a > 0, b > 0,
c > 0, p > 1 and q > 1, with 1

p + 1
q = 1, the following inequality is always satisfied
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ab ≤ cp

p
a p + c−q

q
bq ,

and equality holds if and only if a p = bq .

Lemma 1.5 Let η : Rn → R and γ : Rn → R+ be two lower (upper) semicontinu-
ous single-valued r-homogeneous functions of degree m > 0. Suppose that γ (x) ≥ 0
(γ (x) ≤ 0) on R

n. If η (x) > 0 (η (x) < 0) for all x �= 0 such that γ (x) = 0, then
there is a constant λ∗ ∈ R and a constant c > 0 such that for all λ ≥ λ∗ and for all
x ∈ R

n \ {0},
η(x) + λγ (x) ≥ c ‖x‖m

r,p

(
η(x) + λγ (x) ≤ −c ‖x‖m

r,p

)
.

Proof By virtue of the homogeneity of η and γ , it is sufficient to establish the result
on the unit sphere S = {x ∈ R

n : ‖x‖r,p = 1}. Suppose that this relation is not valid.
Then for every integer q there is a point xq in S such that

η(xq) + qγ (xq) <
1

q
. (1.43)

The sequence
{

xq
}
, being bounded, has a subsequence converging to a point x0,

and we can accordingly suppose that
{

xq
}
converges to x0. Since γ (x) ≥ 0 on S, it

follows from (1.43) and the lower semicontinuity of η and γ , i.e. lim inf x=x0 η (x) ≥
η (x0) , lim inf x=x0 γ (x) ≥ γ (x0) , that η (x0) ≤ 0, γ (x0) = 0. This contradicts
our hypothesis, and the first part of the Lemma is established. The second part is
proved in the same manner since if η (x) is lower semicontinuous then −η (x) is
upper semicontinuous. �
Lemma 1.6 Let η : Rn → R be an upper semicontinuous, single-valued
r-homogeneous function, with weights r = [r1, . . . , rn]	 and degree m > 0. Then
there is a point x2 in the unit homogeneous sphere S = {x ∈ R

n : ‖x‖r,p = 1} such
that the following inequality holds for all x ∈ R

n

η(x) ≤ η (x2) ‖x‖m
r,p . (1.44)

Under the same conditions, if η is lower semicontinuous, there is a point x1 in the
unit homogeneous sphere S such that the following inequality holds for all x ∈ R

n

η (x1) ‖x‖m
r,p ≤ η(x) . (1.45)

Proof By virtue of the homogeneity of η, it is sufficient to establish the inequal-
ity (1.44) on the unit homogeneous sphere S = {x ∈ R

n : ‖x‖r,p = 1}, i.e. η(x) ≤
η (x2). Since S is compact and non empty, the latter inequality is a consequence
of the fact that an upper semicontinuous function has a finite maximum value on a
compact set and it achieves it at some point x2 [29, Theorem 3.2]. The second part
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of the Lemma, i.e. inequality (1.45), is obtained by applying the same arguments to
−η (x), which is upper semicontinuous. If η is continuous, then we obtain item (ii)
in Lemma 1.1. �
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Chapter 2
Robustness of Homogeneous
and Homogeneizable Differential
Inclusions

Emmanuel Bernuau, Denis Efimov and Wilfrid Perruquetti

2.1 Introduction

The problem of robustness and stability analysis with respect to external inputs
(like exogenous disturbances or measurement noises) for dynamical systems is in
the center of attention of many research works [8, 13, 22, 24, 26, 28]. One of the
most popular theories, which can be used for this robustness analysis of nonlinear
systems, was originated more than 20 years ago [23] and it is based on the Input-
to-State Stability (ISS) property and many related notions. The advantages of ISS
theory include a complete list of necessary and sufficient conditions, existence of the
Lyapunov method extension, a rich variety of stability concepts adopted for different
control and estimation problems.

The main tool to check the ISS property for a nonlinear system consists in a
Lyapunov function design satisfying sufficient conditions. As usual, there is no
generic approach to select a Lyapunov function for nonlinear systems. Therefore,
computationally tractable approaches for ISS verification for particular classes of
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nonlinear systems are of great importance, and they are highly demanded in applica-
tions. In this chapter we are going to propose and extend such techniques for check-
ing ISS and Input-to-State Practical Stability (ISpS) for a class of homogeneous and
homogenizable discontinuous systems.

The homogeneity is an intrinsic property of an object on which the flow of a
particular vector field, called Euler vector field, operates as a scaling. This property
entails a lot of qualitative results for a homogeneous object, and is of particular inter-
est in view of stability purposes. The notion of homogeneity was found useful by
many authors [1, 6, 7, 11, 12, 15, 20, 29]. The main feature of this property is that
any local property of the system is in fact global. Obviously, some systems are not
homogeneous. The homogenization notion has been proposed in [2, 9, 29] and is
to homogeneous systems what linearization is to linear system: it allows a system
to be locally approximated by a homogeneous one. In the literature, this property is
sometimes called “local homogeneity” but we will prefer the terminology “homog-
enization” to highlight the parallel with linearization. Qualitative properties of the
homogeneous approximation are shown to persist locally for the starting system.

The ISS properties of homogeneous or homogenizable continuous systems have
been studied in [2, 14, 21]. But continuity assumption is not always verified. For
instance, mechanical systems with friction or systems controlled by a Sliding Mode
Control (SMC) induce a discontinuous vector field. In this chapter, ISS and ISpS
properties for discontinuous systems and systems which dynamics are given by a
Differential Inclusion (DI) are provided.

Numerous frameworks have been given to deal with discontinuous systems. We
will focus here on the Filippov’s solution [10]. Filippov’s idea is to replace a (dis-
continuous) vector field by a set-valued map, mapping a point to a set of admissi-
ble velocities. The solutions are then absolute continuous curves which derivative
belongs to this set of admissible velocities, leading hence to a DI. Different notions of
homogeneity for DI have been proposed [4, 10, 17, 18]. In the last paper, a converse
homogeneous Lyapunov theorem was proved, on which we shall rely to prove ISS
properties. This result was already used to get ISS properties for DI in [5].

In this chapter, our objective is twofold. First, we shall generalize the notion
of homogenization to differential inclusions and second we shall formulate condi-
tions of ISS and ISpS properties of discontinuous systems using homogeneity and
homogenization. We will present these results using geometric homogeneity to have
the most generic formulation.

The outline of the chapter is as follows. Section2.2 is devoted to the introduction
of notations and results that will be used in the sequel. Section2.3 presents the new
framework of homogenization of a DI and the associated stability results. Section2.4
gives the ISS and ISpS results obtained using homogeneity techniques. Finally, a
conclusion will sum up the chapter and will give some perspectives.
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2.2 Preliminaries

2.2.1 Notations

We denote n a positive integer and we will be interested in systems defined on R
n .

We endow R
n with the Lebesgue measure and denoteN the set of all zero-measure

subsets of Rn . For x ∈ R
n and ε > 0, we denote B(x, ε) = {x}+̇B(ε) the open ball

centered in x and of radius ε. If g : Rn → R
p is a differentiable mapping, we denote

dx g the value at point x ∈ R
n of the differential of g; hence, dx g is a linear form

on Rp.
We shall consider here locally essentially bounded vector fields. The set of locally

essentially bounded vector fields is denoted byL ∞
loc(R

n,Rn).

Definition 2.1 The set of nonempty compact subsets of Rn is denoted by H(Rn).
The Hausdorff distance between X, Y ∈ H(Rn) is defined by:

d(X, Y ) = max

(
sup
x∈X

d(x, Y ), sup
y∈Y

d(y, X)

)
, (2.1)

where the distance between a point and a compact set is defined by

d(x, Y ) = inf
y∈Y

‖x − y‖.

Proposition 2.1 The Hausdorff distance defines a distance on H(Rn). Endowed
with this distance, (H(Rn), d) is a complete metric space. Moreover, for all λ ∈ R,
d(λX, λY ) = |λ|d(X, Y ).

We will denote by ∂ A the boundary of a bounded set A and ‖A‖ = supa∈A ‖a‖.
If A is compact, ‖A‖ = d(A, {0}).
Definition 2.2 Let (E,d) be a metric space, and let uk : Rn → E be a sequence
of mappings. We say that this sequence converges uniformly on compact sets to

u : Rn → E , denoted uk
CUC−→

k→+∞ u, iff for any compact set K ⊂ R
n and for all ε > 0

there exists a k0 > 0 such that for all k > k0, supx∈K d(un(x), u(x)) < ε.

2.2.2 Differential Inclusions

We refer to [3, 10] for the basic definitions and the technical material on set-valued
maps and DI. In this section, we will only recall the definitions and results that will
be used hereafter, without any proof.

TheFilippov’s regularization procedure consists in the construction of a set-valued
map F starting with a vector field f ∈ L ∞

loc(R
n,Rn):
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F [ f ](x) =
⋂
ε>0

⋂
N∈N

conv( f (B(x, ε) \ N)). (2.2)

By construction, for all x ∈ R
n , the setF [ f ](x) is compact and convex. Moreover,

the set-valued map F [ f ] is upper semicontinuous.
In many applications, the DI is given by the set-valued map coming from the

Filippov’s procedure. We will therefore focus on set-valued map with the properties
inherited by this procedure.

Definition 2.3 Let F be a set-valued map. We say that F verifies the standard
assumptions (SA) if F is upper semicontinuous and if for any x ∈ R

n , F(x) is a
nonempty compact convex set.

2.2.3 Homogeneity

To introduce the notion of geometric homogeneity, the class of Euler vector fields
has to be defined.

Definition 2.4 [16]Avector field ν ∈ C 1(Rn,Rn) is said to beEuler if it is complete
and if the origin is a GAS equilibrium of −ν.

We will always write Φ the flow of ν, that is Φs(x) is the current state at time s
of the trajectory of ν starting from x at s = 0. We also denote dxΦ

s the differential
of the diffeomorphism Φs at a fixed s ∈ R, taken at x ∈ R

n . We are now able to state
the classical definitions of geometric homogeneity.

Definition 2.5 Let ν be an Euler vector field.

• A function V : Rn → R is ν-homogeneous of degree κ ∈ R if:

V (Φs(x)) = eκs V (x) ∀x ∈ R
n, ∀s ∈ R.

• A vector field f : Rn → R
n is ν-homogeneous of degree κ ∈ R if:

f (Φs(x)) = eκsdxΦ
s f (x) ∀x ∈ R

n, ∀s ∈ R. (2.3)

The relation (2.3) can be recast under a more compact form H s
κ ( f ) = f , where

the vector field H s
κ ( f ) is defined by:

H s
κ ( f ) : x �→ e−κs

(
dxΦ

s
)−1

f (Φs(x)). (2.4)
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2.2.4 Homogeneous Differential Inclusions

In this subsection, we recall some definitions and results obtained in [4] that we will
need in the sequel.

Definition 2.6 [4] Let ν be an Euler vector field. A set-valued map F : Rn ⇒ R
n

is ν-homogeneous of degree κ ∈ R if for all s ∈ R we have:

H s
κ (F) = F,

where we extend the operator H s
κ defined in (2.4) by:

H s
κ (F) : x �→ e−κs

(
dxΦ

s
)−1 · F(Φs(x)).

Proposition 2.2 Let f ∈ L ∞
loc(R

n,Rn) be a vector field. Then for all s ∈ R and all
κ ∈ R we have:

H s
κ (F [ f ]) = F [H s

κ ( f )].

Proof Since for all ε > 0 there exist ε− > 0 and ε+ > 0 such that Φs(B(x, ε−)) ⊂
B(Φs(x), ε) ⊂ Φs(B(x, ε+)) we have

F [ f ](Φs(x)) =
⋂
ε>0

⋂
N∈N

conv( f (y), y ∈ B(Φs(x), ε) \ N )

=
⋂
ε>0

⋂
N∈N

conv( f (y), y ∈ Φs(B(x, ε)) \ N )

=
⋂
ε>0

⋂
N∈N

conv( f (Φs(z)), z ∈ B(x, ε) \ N )

Hence we find that

H s
κ (F [ f ])(x) =

⋂
ε>0

⋂
N∈N

conv((dxΦ
s)−1dzΦ

sH s
κ ( f )(z), z ∈ B(x, ε) \ N ).

Let us denote by σmax ((dxΦ
s)−1dzΦ

s) the biggest singular value of the linear map-
ping (dxΦ

s)−1dzΦ
s . The functionφ : z �→ |σmax ((dxΦ

s)−1dzΦ
s) − 1| is continuous

and therefore bounded onB(x, ε) andmoreover vanishes at z = x . For all z ∈ B(x, ε)

we have:

‖(dxΦ
s)−1dzΦ

sH s
κ ( f )(z) − H s

κ ( f )(z)‖ ≤ M(ε),

where

M(ε) = sup
B(x,ε)

φ ess sup
B(x,ε) ‖H s

κ ( f )‖.
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The function M is continuous at zero and M(0) = 0. We have proved that

(dxΦ
s)−1dzΦ

sH s
κ ( f )(z) ∈ H s

κ ( f )(z)+̇B(0, M(ε)).

It follows that

H s
κ (F [ f ])(x) =

⋂
ε>0

⋂
N∈N

conv((dxΦ
s)−1dzΦ

sH s
κ ( f )(z), z ∈ B(x, ε) \ N )

⊂
⋂
ε>0

⋂
N∈N

conv(H s
κ ( f )(z) + B(0, M(ε)), z ∈ B(x, ε) \ N )

=
⋂
ε>0

[( ⋂
N∈N

conv(H s
κ ( f )(z), z ∈ B(x, ε) \ N )

)
+ B(0, M(ε))

]

=
⋂
ε>0

⋂
N∈N

conv(H s
κ ( f )(z), z ∈ B(x, ε) \ N )

= F [H s
κ ( f )](x).

The proof of the converse inclusion is similar. �

Corollary 2.1 Let f ∈ L ∞
loc(R

n,Rn) be a vector field. Suppose f is ν-homogeneous
of degree κ . Then F [ f ] is ν-homogeneous of degree κ .

Proof Since f is ν-homogeneous of degree κ , we haveH s
κ ( f ) = f . HenceF [ f ] =

F [H s
κ ( f )] = H s

κ (F [ f ])byProposition2.2 and thereforeF [ f ] isν-homogeneous
of degree κ . �

The following theorem asserts that a strongly globally asymptotically stable
homogeneous differential inclusion admits a homogeneous Lyapunov function. This
result is a generalization of the theorem proved for ODE in [20].

Theorem 2.1 [4] Let F be a ν-homogeneous set-valued map of degree κ , satisfying
the SA. Then the following statements are equivalent:

• The origin is (strongly) GAS for the system ẋ ∈ F(x).
• For all μ > max(−κ, 0), there exists a pair (V, W ) of continuous functions, such

that:

1. V ∈ C∞(Rn,R), V is positive definite and ν-homogeneous of degree μ;
2. W ∈ C∞(Rn \ {0},R), W (x) > 0 for all x 
= 0 and W is ν-homogeneous of

degree μ + κ;
3. maxv∈F(x) dx V v ≤ −W (x) for all x 
= 0.
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2.3 Homogenization of a Differential Inclusion

The following definition extends the notion of homogenization to DI.

Definition 2.7 Let F be a set-valued map and ν be an Euler vector field.

• The set-valued map H : Rn → H(Rn) is the ν-homogenization of F at the origin
if H 
= {0} and if there exists κ ∈ R such that:

H s
κ (F)(x)

CUC−→
s→−∞ H(x) ∀x ∈ R

n. (2.5)

• The set-valued map H : Rn → H(Rn) is the ν-homogenization of F at infinity if
H 
= {0} and there exists κ ∈ R such that:

H s
κ (F)(x)

CUC−→
s→+∞ H(x) ∀x ∈ R

n. (2.6)

Proposition 2.3 Let F be a set-valued map, ν be an Euler vector field and H be
the ν-homogenization of F at the origin (resp. at infinity). The following properties
hold:

1. H is unique;
2. H is ν-homogeneous;
3. If the standard assumptions hold for F, they hold for H.

Proof We will only give the proofs in the case of homogenization at the origin, the
case of homogenization at infinity being similar.

By uniqueness of the limit, for a given κ ∈ R, the possible limit of H s
κ (F) is

unique. Assume now that there exists a degree μ 
= κ such that H s
μ (F) converges

to H̃ . We will consider two cases.
If μ > κ , we have:

d(H s
μ (F)(x), {0}) = e(κ−μ)sd(H s

κ (F)(x), {0})
≤ e(κ−μ)s[d(H s

κ (F)(x), H(x))

+d(H(x), {0})],

and therefore for all compact set X ⊂ R
n:

sup
x∈X

d(H s
μ (F)(x), {0}) ≤ e(κ−μ)s[sup

x∈X
d(H s

κ (F)(x), H(x))

+ sup
x∈X

d(H(x), {0})].

Since supx∈X d(H(x), {0}) is finite and supx∈X d(H s
κ (F)(x), H(x)) tends to zero

when s → −∞, we conclude that supx∈X d(H s
μ (F)(x), {0}) → 0, that is H̃ = {0},

which is a contradiction.
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If κ > μ, consider z ∈ R
n such that H(z) 
= {0}. The application X ∈ H(Rn) �→

supx∈X ‖x‖ is continuous, hence supv∈H s
κ (F)(z) ‖v‖ → α > 0 when s → −∞ and

therefore supv∈H s
μ (F)(z) ‖v‖ = e(μ−κ)s supv∈H s

κ (F)(z) ‖v‖ → +∞when s → −∞, but

supv∈H s
μ (F)(z) ‖v‖ converges to supv∈H̃(z) ‖v‖ as well and thus H̃(z) is not bounded,

which is a contradiction. This proves the first point.
The homogeneity of H is a consequence of the following computation:

H(Φσ (x)) = lim
s→−∞H s

κ (F)(Φσ (x))

= lim
s→−∞ e−κs

(
dΦσ (x)Φ

s
)−1 · F(Φs+σ(x))

= lim
s→−∞ eκσ dxΦ

σ e−κ(s+σ)
(
dxΦ

s+σ
)−1 · F(Φs+σ(x)(x))

= lim
u→−∞ eκσ dxΦ

σ e−κ(u)
(
dxΦ

u
)−1 · F(Φu(x))

= eκσ dxΦ
σ · lim

u→−∞H u
κ (F)(x)

= eκσ dxΦ
σ · H(x)

Finally, H(x) is a nonempty compact set by construction. It is well known that
the convexity is preserved at the limit by the Hausdorff distance (see for instance
[27]), so H(x) is convex. Only the USC remains to prove.

Consider V an open neighborhood of H(x). We can assume that V is bounded;
if not, we replace it by V ∩ B(r) for r > 0 such that H(x) ⊂ B(r). Denote

α = inf{d(h, v), h ∈ H(x), v ∈ ∂V } > 0.

We have

H(x)+̇B(α) ⊂ V .

By the uniform convergence, there exists s such that for all y ∈ B(x, 1), we have

d(H s
κ (F)(y), H(y)) < ε/3.

In particular,

H(y) ⊂ H s
κ (F)(y)+̇B(ε/3)

and

H s
κ (F)(x) ⊂ H(x)+̇B(ε/3).

By USC of H s
κ (F), there exists a neighborhood of x , U ⊂ B(x, 1), such that for

all y ∈ U ,
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H s
κ (F)(y) ⊂ H s

κ (F)(x)+̇B(ε/3).

Hence, for all y ∈ U ,

H(y) ⊂ H s
κ (F)(y)+̇B(ε/3) ⊂ H s

κ (F)(x)+̇B(2ε/3) ⊂ H(x)+̇B(ε) ⊂ V .

�

The Definition 2.7 allows us to build a local approximation of a given set-valued
map. But we can also apply this procedure to a vector field. Denoting f a locally
essentially bounded vector field with a ν-homogenization h, F the regularization
of f via the Filippov’s procedure and H the ν-homogenization of F , then we can
naturally wonder whetherF (h) = H . The following proposition answers positively
to this question.

Proposition 2.4 Consider a locally essentially bounded vector field f with a
ν-homogenization h of degree κ . ThenF [ f ] admits a ν-homogenization H of degree
κ and moreover H = F [h].
Proof Consider a sequence of locally essentially bounded vector fields ( fk) converg-
ing to f uniformly on compact sets. Let us prove that F ( fn) converges to F [ f ]
uniformly on compact sets.

For every compact set Y , for all ε > 0, there exists N (Y ) > 0 such that for
all k ≥ N (Y ), supy∈Y ‖ fn(y) − f (y)‖ ≤ ε, that is fn(y) ∈ f (y)+̇B(ε) and f (y) ∈
fn(y)+̇B(ε).
Consider a compact set X and fix ε > 0. Denote Y = X + B̄(1). For all x ∈ X

and all δ < 1 we have B(x, δ) ⊂ Y . Thus for n ≥ N (Y ):

F [ fn](x) =
⋂
δ>0

⋂
N∈N

conv( fn(y), y ∈ B(x, δ) \ N)

⊂
⋂
δ>0

⋂
N∈N

conv( f (y)+̇B(ε), y ∈ B(x, δ) \ N)

⊂
⋂
δ>0

⋂
N∈N

conv( f (y), y ∈ B(x, δ) \ N) + B(ε)

⊂ F [ f ](x)+̇B(ε).

The converse inclusionF [ f ](x) ⊂ F [ fn](x) + B(ε) is obtained similarly. Finally,
for n ≥ N (Y ), for all x ∈ X , d(F [ f ](x),F [ fn](x)) < ε and we get the uniform
convergence.

Now, by Proposition 2.2, for all s ∈ Rwe haveH s
κ (F [ f ]) = F [H s

κ ( f )]. Since
H s

κ ( f ) is converging uniformly on compact sets to h,F [H s
κ ( f )] converges toF [h]

and hence H s
κ (F [ f ]) converges to F [h]. Since h is ν-homogeneous of degree κ ,

so is F [h] and then by definition F [h] is the ν-homogenization of F [ f ], that is
F [h] = H . �
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Theorem 2.2 Let F be a set-valued map for which the standard assumptions hold
and H be its homogenization at the origin. If the origin is a GAS equilibrium of H,
it is a LAS equilibrium of F. If moreover the degree of H is negative, the origin is a
locally finite-time stable equilibrium of F.

Proof Let (V, W ) be a ν-homogeneous Lyapunov pair for H , with V of degree
μ > max{0,−κ}. Let us denote S = {V = 1} and fix x ∈ S and s ∈ R. For the
homogenization of F at the origin H , we have:

∀ε > 0 ∃g(ε) ∈ R, ∀s ≤ g(ε)∀x ∈ S

d(H s
κ (F)(x), H(x)) < ε.

Hence, denoting a = infS W and b = sup
S
‖dx V ‖, for all s ≤ g( a

2b ) and all v ∈
F(Φs(x)), there exists w ∈ H(x) such that ‖e−κs (dxΦ

s)−1 v − w‖ < a
2b . Therefore,

for all s ≤ g( a
2b ) and all v ∈ F(Φs(x)):

dΦs (x)V v = dΦs (x)V (v − eκsdxΦ
sw) + dΦs (x)V (eκsdxΦ

sw)

= e(κ+μ)s
[
e−μsdΦs (x)V dxΦ

s
(

e−κs
(
dxΦ

s
)−1

v − w
)

+ e−μsdΦs (x)V dxΦ
sw

]
= e(κ+μ)s

[
dx V

(
e−κs

(
dxΦ

s
)−1

v − w
)

+ dx V w
]

≤ e(κ+μ)s
[
b‖e−κs

(
dxΦ

s
)−1

v − w‖ − a
]

≤ −a

2
e(κ+μ)s = −a

2
V (Φs(x))

κ+μ

μ .

Thus, for all y 
= 0 such that V (y) ≤ eκg( a
2 ), we find that for all v ∈ F(y):

dy V v ≤ −a

2
V (y)

κ+μ

μ . (2.7)

The relation (2.7) proves that V is a local Lyapunov function for F , and then the
origin is a LAS equilibrium of F . Moreover, if κ < 0 then 0 <

κ+μ

μ
< 1. Classical

techniques then show that the convergence to the origin is performed in a finite
time. �

Example 2.1 Consider the following system from [19] (with the particular choice
of ε = 1/2): {

ė1 = e2 − k1e
[1/2]
1 − k2e1

ė2 = −k3sign[e1] − k4e1
.
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Taking ν = 2x1
∂

∂x1
+ x2

∂
∂x2

, we can compute the ν-homogenization of the system at
the origin.Adirect computation yields the following ν-homogenization of degree−1:

{
ė1 = e2 − k1e

[1/2]
1

ė2 = −k3sign[e1] .

The origin is known to be globally finite-time stable for this system, and we conclude
by the Theorem 2.2 that the origin is a locally finite-time stable equilibrium of the
initial system.

Corollary 2.2 Let F be a set-valued map for which the standard assumptions hold
and H be its homogenization at the origin. If the origin is a GAS equilibrium of both
F and H and if the degree of H is negative, then the origin is a globally finite-time
stable equilibrium of F.

Proof Theorem 2.2 yields that the origin is a locally finite-time stable equilibrium
of F . Given that we also assumed the origin to be asymptotically stable, the origin
is therefore globally finite-time stable.

2.4 Robustness of Homogeneous and Homogenizable
Systems

In this section we consider a measurable set-valued map F : Rn × R
m ⇒ R

n . We
denote FΔ(x) = F(x,Δ). We will be interested in proving robustness properties of
the system defined by:

ẋ ∈ F(x,Δ), x ∈ R
n, Δ ∈ L ∞

loc(R,Rm). (2.8)

2.4.1 ISS Definitions and Properties

In this chapter, we will be interested in the following stability properties [23, 25].

Definition 2.8 The system (2.8) is called input-to-state practically stable (ISpS), if
for any input Δ ∈ L ∞

loc(R,Rm) and any x0 ∈ R
n there are some functions β ∈ KL ,

γ ∈ K and c ≥ 0 such that for any solution x of (2.8):

‖x(t)‖ ≤ β(‖x0‖, t) + γ ( sup
τ∈[0,t]

‖Δ(τ)‖) + c ∀t ≥ 0.

The function γ is called nonlinear asymptotic gain. The system is called ISS if c = 0.

These properties have the following Lyapunov function characterizations.



50 E. Bernuau et al.

Definition 2.9 A smooth function V : Rn → R+ is called ISpS Lyapunov function
for the system (2.8) if for all x ∈ R

n ,Δ ∈ R
m and some r ≥ 0, α1, α2, α3 ∈ K∞ and

θ ∈ K :

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖),
sup

v∈F(x,Δ)

dx V v ≤ r + θ(‖Δ‖) − α3(‖x‖).

Such a function V is called ISS Lyapunov function if r = 0.

Note that an ISpS Lyapunov function can also satisfy the following equivalent con-
dition for some α4 ∈ K∞, χ ∈ K and ρ ≥ 0:

‖x‖ > χ(‖Δ‖) + ρ ⇒ sup
v∈F(x,Δ)

dx V v ≤ −α4(‖x‖).

Proposition 2.5 If there exists an ISpS (resp. ISS) Lyapunov function for the system
(2.8), then the system is ISpS (resp. ISS).

2.4.2 ISS of Homogeneous Differential Inclusions

In the following results, we will need some assumptions on F .

Assumption 2.1 For all Δ ∈ R
m the set-valued map FΔ verifies the SA.

This assumption ensures that solutions of the system (2.8) exist.

Assumption 2.2 There exists a ν-homogeneous set-valued map H of degree κ ver-
ifying the SA such that

A. the origin is a GAS equilibrium of H . We denote (V, W ) a ν-homogeneous
Lyapunov pair for H given by Theorem 2.1.

B. for all ε > 0 and for all D ≥ 0 there exists η > 0 such that for all s ≥ η, for all
x ∈ S = {V = 1} and for all ‖Δ‖ ≤ D, we have H s

κ (FΔ)(x) ⊂ H(x) + B(ε).

Following the notations used in Sect. 2.3, we denote

a = inf
S

W and b = sup
S

‖dx V ‖.

We also denote

h(D) = inf
{
η ∈ R : ∀s ≥ η ∀‖Δ‖ ≤ D, H s

κ (FΔ)(x) ⊂ H(x) + B(
a

2b
)
}

.

By Assumption 2.2 B, h(D) < +∞. We allow h(D) = −∞, denote � = limD→0+

h(D).
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Theorem 2.3 Under Assumptions 2.1 and 2.2, the system (2.8) is:

ISS if � = −∞,
ISpS if � 
= −∞.

Remark 2.1 The following hint for a selection of H can be proposed. When F0 is
ν-homogeneous of degree μ, Assumption 2.2B gives, for x ∈ S:

lim
s→+∞ e(μ−κ)s F0(x) ⊂ H(x).

Ifμ > κ , e(μ−κ)s F0(x) diverges when s → +∞, and ifμ < κ , we get that 0 ∈ H(x),
which is a contradiction to the global asymptotic stability of H (Assumption 2.2A).
Thus μ = κ and F0 ⊂ H . Similarly, if F0 admits a ν-homogeneization H0 of degree
μ, we find that μ = κ and H0 ⊂ H . This remark gives us a candidate for H in some
situations and it will be used in Theorem 2.4.

To prove the Theorem 2.3, we need some technical lemmas.

Lemma 2.1 Let σ : R+ → R be an increasing function such that limx→0+ σ(x) =
0. Then there exists a class K function σ̄ such that for all x ∈ R+, σ(x) ≤ σ̄ (x).

Proof Let us first remark that σ(x) ≥ 0 for all x > 0.

• For all n ∈ N
∗ and all x ∈ [n, n + 1[, let us define:

σ̄ (x) = (σ (n + 2) − σ(n + 1) + 1)(x − n) + σ(n + 1) + n.

We find σ̄ (n) = σ(n + 1) + n and

lim
x→n+1;x<n+1

σ̄ (x) = σ(n + 2) + n + 1 = σ̄ (n + 1).

Hence σ̄ is continuous on [1,+∞[ and clearly strictly increasing. Moreover, for
all n ∈ N

∗ and all x ∈ [n, n + 1[:

σ̄ (x) ≥ σ̄ (n) = σ(n + 1) + n > σ(n + 1) ≥ σ(x).

• For all x ∈ [ 12 , 1[, we set σ̄ (x) = (2x − 1)(σ (2) − σ(1) + 1
2 ) + σ(1) + 1

2 . We

easily check that σ̄ (x) → σ̄ (1) when x → 1, x < 1, and we find σ̄ ( 12 ) = σ(1) +
1
2 . This construction proves that σ̄ is continuous and strictly increasing on [ 12 ,+∞[.
For x ∈ [ 12 , 1[, we have σ̄ (x) ≥ σ̄ ( 12 ) = σ(1) + 1

2 > σ(x).

• For all n ∈ N, n ≥ 2, and all x ∈ [ 1
n+1 ,

1
n [ we set:

σ̄ (x) = n(n + 1)

(
x − 1

n + 1

)
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×
[
σ

(
1

n − 1

)
− σ

(
1

n

)
+ 1

n(n + 1)

]

+σ

(
1

n

)
+ 1

n + 1
.

We find σ̄
(

1
n+1

) = σ
(
1
n

) + 1
n+1 and σ̄ (x) → σ

(
1

n−1

) + 1
n when x → 1

n , x < 1
n .

Thus σ̄ is continuous and strictly increasing on ]0,+∞[. For x ∈ [ 1
n+1 ,

1
n [, we

have σ̄ (x) ≥ σ̄ ( 1
n+1 ) = σ

(
1
n

) + 1
n+1 > σ

(
1
n

) ≥ σ(x).
• The function σ̄ being increasing on ]0,+∞[, the limit of σ̄ at 0 is the limit of

σ̄
(

1
n+1

)
when n → +∞. But σ̄

(
1

n+1

) = σ
(
1
n

) + 1
n+1 converges to zero when

n → +∞.

Finally setting σ̄ (0) = 0 proves that σ̄ is a classK function such that σ̄ (x) ≥ σ(x)

for all x ≥ 0. �

Lemma 2.2 Let V : Rn → Rbe a continuous positive definite ν-homogeneous func-
tion of degree κ > 0. There exist σ− and σ+ two functions of class K such that for
all x ∈ R

n:

σ−(‖x‖) ≤ V (x) ≤ σ+(‖x‖).

Proof Denote σ+(r) = sup‖x‖≤r V (x). The function σ+ is clearly continuous,
increasing and verifies σ+(0) = 0. Let us show that σ+ is strictly increasing. It
is enough to prove that for any x0 such that ‖x0‖ ≤ r and V (x0) = σ+(r) veri-
fies ‖x0‖ = r . Assume by contradiction that ‖x0‖ < r . By continuity of the flow
Φ, there exists ε > 0 such that for all s ∈ [0, ε[, we have ‖Φs(x0)‖ < r and
thus V (Φs(x0)) ≤ σ+(r) = V (x0). But V (Φs(x0)) = eκs V (x0) > V (x0) for s > 0,
which is a contradiction.

The function σ− is defined by σ−1
− (r) = supV (x)≤r ‖x‖. We similarly prove that

σ−1
− ∈ K .
Finally,

V (x) ≤ sup
‖y‖≤‖x‖

V (y) = σ+(‖x‖)

and

‖x‖ ≤ sup
V (y)≤V (x)

‖y‖ = σ−1
− (V (x)),

that is V (x) ≥ σ−(‖x‖). �

We can now prove Theorem 2.3.

Proof (of Theorem 2.3) Let x ∈ S, s ∈ R and v ∈ FΔ(Φs(x)) be fixed. We have
e−κs (dxΦ

s)−1 v ∈ H s
κ (FΔ)(x), thus for s ≥ h(‖Δ‖) and by Assumption 2.2 there

exists w ∈ H(x) such that:
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‖e−κs
(
dxΦ

s
)−1

v − w‖ <
a

2b
.

Hence for s ≥ h(‖Δ‖):

dΦs (x)V v = e(κ+μ)sdx V e−κs
(
dxΦ

s
)−1

v

= e(κ+μ)s
[
dx V w + dx V

(
e−κs

(
dxΦ

s
)−1

v − w
)]

≤ e(κ+μ)s
[
−a + b‖e−κs

(
dxΦ

s
)−1

v − w‖
]

≤ −a

2
e(κ+μ)s = −a

2
V (Φs(x))

κ+μ

μ .

Finally, for all y ∈ R
n such that V (y) ≥ eμh(‖Δ‖) we have:

sup
v∈Fd (y)

dy V v ≤ −a

2
V (y)

κ+μ

μ . (2.9)

Let us define � = eμ� if � 
= −∞, and � = 0 else, and then σ(D) = eμh(D) − � .
Since h is clearly increasing and μ > 0, σ is increasing and positive. Moreover
limD→0+ σ(D) = 0. By Lemma 2.1, there exists σ̄ ∈ K such that σ̄ (D) ≥ σ(D).
Therefore, for all y ∈ R

n such that V (y) ≥ σ̄ (‖Δ‖) + � , in equation (2.9) holds.
Denoting now γ (s) = σ−1

− (σ̄ (s) + �) − σ−1
− (�), where σ− is the classK function

given by Lemma 2.2, we have that if ‖y‖ ≥ γ (‖Δ‖) + σ−1
− (�) then inequality (2.9)

holds. We conclude by standard arguments on ISS/ISpS Lyapunov functions. �
Inequality (2.9) gives one straightforward Corollary.

Corollary 2.3 Under Assumptions 2.1 and 2.2, if κ > 0, then the system (2.8) is
ISS. If moreover we denote γ the asymptotic gain, then any trajectory of the system
converges to the ball of radius γ (supt≥0 ‖Δ(t)‖) in a uniform finite-time.

The following Corollary of Theorem 2.3 shows how to use it when dealing with
more concrete systems.

Corollary 2.4 Consider the system ẋ ∈ F0(x)+̇B(‖Δ‖). Assume that:

1. F0 verifies the SA;
2. the origin is a GAS equilibrium of F0;
3. there exists a linear Euler vector field ν(x) = Ax such that F0 is ν-homogeneous

of degree κ;
4. if ρ denotes the smallest real part of the eigenvalues of A, κ + ρ > 0.

Then the system ẋ ∈ F0(x)+̇B(‖Δ‖) is ISS.

Proof Assumption 1 and 2A are clearly verified, taking H = F0. Noting that
H s

κ (FΔ)(x) = F0(x) + exp((−κ I − A)s) · B(‖Δ‖), we see that Assumption 2B
holds because thematrix−κ I − A isHurwitz (ρ + κ > 0). Finally, limD→0+ h(D) =
−∞ follows from classical matrices considerations.
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Theorem 2.4 Consider a set-valued map F : Rn × R
m ⇒ R

n verifying Assumption
2.1. Assume moreover that the following hypothesis hold:

1. The origin is a GAS equilibrium of F0. We denote (V, W ) a ν-homogeneous
Lyapunov pair for F0 given by Theorem 2.1.

2. There exists an Euler vector field ν̃ on R
m, which flow is denoted Φ̃, such that:

F(Φs(x), Φ̃s(Δ)) = eκsdxΦ
s F(x,Δ).

3. There exists a function σ ∈ K such that for all x ∈ S = {V = 1} we have
FΔ(x) ⊂ F0(x)+̇B(σ (‖Δ‖)).

Then the system (2.8) is ISS.

Proof Let us showfirst thatAssumption 2.2 holds for H = F0. The pointAssumption
2.2A is given by the point 1 of the hypothesis of this theorem.

By the point 2 of the hypothesis, H s
κ (FΔ)(x) = FΦ̃−s (Δ)(x). Consider N a con-

tinuous positive definite ν̃-homogeneous function of degree 1 on R
m and denote

η(ε, D) = ln
(

σ+(D)

σ−◦σ−1(ε)

)
, where the functions σ− and σ+ are given by Lemma

2.2 with respect to the function N . Consider s ≥ η(ε, D). Then e−sσ+(D) ≤
σ− ◦ σ−1(ε) and for all ‖Δ‖ ≤ D we have

‖Φ̃−s(Δ)‖ ≤ σ−1
− (N (Φ̃−s(Δ))) ≤ σ−1

− (e−s N (Δ)) ≤ σ−1
− (e−sσ+(‖Δ‖)) ≤ σ−1(ε).

Hence for all s ≥ η(ε, D), for all x ∈ S and all ‖Δ‖ ≤ D we have

H s
κ (FΔ)(x) = FΦ̃−s (Δ)(x) ⊂ F0(x)+̇B(ε)

by hypothesis 3. Therefore Assumption 2.2 holds for H = F0. Since h(D) ≤
η( a

2b , D) and limD→0+ η( a
2b , D) = −∞, we conclude by Theorem 2.3.

Example 2.2 Consider the following disturbed system:

{
ẋ1 = x2 + Δ

ẋ2 = −k1sign[x1] − k2sign[x2]

where k1 > k2 > 0 are fixed gains. When d = 0, it is well-known that the system
is ν-homogeneous of degree κ = −1 with ν = 2x1

∂
∂x1

+ x2
∂

∂x2
and GAS, that is

hypothesis 1 holds. Taking ν̃ = Δ ∂
∂Δ

, we see that hypothesis 2 holds. Finally the
hypothesis 3 also holds with σ(D) = D and the system is ISS by Theorem 2.4.

Corollary 2.5 Let f : Rn × R
m → R

n be a continuous vector field. Assume that
there exists an Euler vector field ν̃ on R

m, which flow is denoted Φ̃, such that:

f (Φs(x), Φ̃s(Δ)) = eκsdxΦ
s f (x,Δ),
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and assume moreover that the origin is a GAS equilibrium of f0, where f0(x) =
f (x, 0). Then the system ẋ = f (x,Δ) is ISS.

Proof We take FΔ(x) = { fΔ(x)}. The hypothesis 1 and 2 of Theorem 2.4 are clearly
satisfied. The continuity of f and the compactness of S give that the function σ(Δ) =
supx∈S,‖Δ‖≤D ‖ fΔ(x) − f0(x)‖ belongs to class K , which gives in turn hypothesis
3 and concludes the proof.

2.5 Conclusion

In this chapter, we achieved two objectives. First, we introduced homogenization
for DI. We proved that this notion is consistent with the Filippov’s procedure and
that the local stability is inherited by a system which has a GAS homogenization.
Second, we applied homogeneity and homogenization techniques to prove ISS and
ISpS properties of systems defined by DI. All these results were presented using
geometric homogeneity.

In the future, we plan to use these results and techniques for designing SMC
and getting a good understanding of the associated robustness properties of such
systems. In particular, controlling the asymptotic gain could give a way of reducing
the chattering effect.

Acknowledgements This chapter is supported by ANR Finite4SoS (ANR 15 CE23 0007).
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Chapter 3
Stochastic Sliding Mode Control
and State Estimation

Alex S. Poznyak

3.1 Stochastic Sliding Mide Control: Basic Features
and Notions

3.1.1 Brief Review

The classical publications on SMC (see [1, 2]) have been devotes to the stability
analysis of a class of nonlinear discontinuous feedback systems containing bounded
deterministic uncertainties.

On our opinion, the paper [3] (which has also been discussed later in Chap.14 (4)
of [2]) may be considered as the first publication dealing with stochastic SMC, more
exactly, with the filtering problem of linear systems with time-varying parameters.
Instead of the residual term (the difference between the measured output and its
estimate) as in the Kalman filter this paper suggested to use the sign-function of
this residual multiplied by the scalar gain matrix proportional to ε−1 (ε is a small
positive parameter). It was shown that for ε → 0, that is, increasing the gain matrix,
the behavior of such sliding-mode observer became close (in probability) to one of
the Kalman filter which is optimal for this problem in mean-square sense.

In [4] the SMC design for a class of nonlinear Itô-type stochastic systems with
actuator nonlinearities and possible time-delay terms is considered. The control input
may contain both sector nonlinearities and dead-zones. Unknown nonlinear func-
tions are not required to satisfy the matching condition. An integral-type sliding sur-
face is constructed, and, the reachability of the specified sliding surface is ensured
by the proposed SMC law. Sufficient conditions for the globally asymptotic stability
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(in probability) of the sliding motion are derived via linear matrix inequality. The
paper [5] investigates the design of reliable SMC for uncertain stochastic systems
with possible occurrence of actuator faults. A SMC law with a fixed gain is firstly
designed. Then, both the reachability of the specified sliding surface and the stability
of slidingmode dynamics are analyzed in the presence of actuator faults. Because the
fixed reliable control may bring more conservativeness, an adaptive reliable SMC
law is further proposed in this work. By means of the on-line estimation of effective-
nessloss values of faulty actuators, SMC gain is adoptively updated to compensate
the effects of actuator faults. In both papers the external noise is multiplicative one.

The paper [6] addresses the problem of H∞ control for a class of uncertain sto-
chastic systems with Markovian switching and time-varying delays. The considered
model is subject to time-varying norm-bounded parameter and unknown nonlinear
function in the state. An integral sliding surface corresponding to every mode is first
constructed, and the given sliding mode controller concerning the transition rates
of modes can deal with the effect of Markovian switching. The synthesized sliding
mode control law ensures the reachability of the sliding surface for corresponding
subsystems and the global stochastic stability of the sliding mode dynamics.

In [7] there is studied the sliding mode control (SMC) of nonlinear singular sto-
chastic systems with Markovian switching. An integral sliding surface function is
designed, and the resulting sliding mode dynamics is a full-order Markovian jump
singular stochastic system. By introducing some specified matrices, a new sufficient
condition is proposed in terms of strict linear matrix inequality (LMI), which guar-
antees the stochastic stability of the sliding mode dynamics. Then, a SMC law is
synthesized for reaching motion. Moreover, when there exists an external distur-
bance, theL2 disturbance attenuation performance is analyzed for the sliding mode
dynamics. Some related sufficient conditions are also established. Here again the
external white noise is supposed to be multiplicative.

The paper [8] addresses the optimal controller problem for a polynomial sys-
tem over linear observations with respect to different Bolza–Meyer criteria, where
the integral control and state energy terms are quadratic and the non-integral term
is of the first degree, or the control energy term is quadratic and the state energy
terms are of the first degree. The optimal solutions are obtained as sliding mode
controllers, each consisting of a sliding mode filter and a sliding mode regulator,
whereas the conventional feedback polynomial-quadratic controller fails to provide
a causal solution.

In this section

• we consider the additive stochastic noise effect;
• it is shown that the special design of the sliding mode gain parameters (in fact,
linearly depending on the norm of the function s(x), defining the sliding surface)
may guarantee the exponential convergence of the averaged squared-norm of the
state vector to aμ-zone (i.e.,μ-neighborhood) around the sliding surface s(x) = 0;
such convergence is suggested to be referred to as μM S-convergence;
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• this μ-zone is exactly defined by the diffusion parameter σ in the model descrip-
tion: smaller σ - smaller μ-zone of the means square convergence; this zone is
also inversely depending on the gain parameter.

3.1.2 SMC for a Simplest Scalar Itô Dynamic Model

3.1.2.1 Model Description

• Consider a filtered probability space (Ω, F, {Ht }t≥0, P) where σ − algebra H0

contains all the P-null sets from F , the filtration {Ht }t≥0 is right continuous,
that is, Ht+ := ∩s>t Hs = Ht . Let {(Wt , Ft )}t≥0, be scalar standard Brownian
motion, Ft ⊂ F . Ht ⊂ F stands for the smallestσ− algebra containingσ−algebras
Ft := σ (Fs : 0 ≤ s < t).

• In this probability space consider the simplest scalar controllable stochastic model
given in the Itô form:

dxt
a.s.= [ut + f (xt , t)] dt + σ (xt , t) dWt , x0

a.s.= x̄ (3.1)

– xt = xt (ω) ∈ R (ω ∈ Ω) is the system state at time t ≥ 0,
– ut ∈ R is a control (Ft -measurable random variable),
– f (xt , t) is Ft -measurable (but may be uncertain (unavailable on-line) term

satisfying | f (xt , t)| a.s.≤ L ,
– Wt - a standard Wiener process, σ (xt , t) > 0 is alsoFt -measurable.

3.1.2.2 Discontinuous SM-Controller

Select the sliding surface s (x) as

s (x) = x = 0

and the control as

ut = −K xt − k (xt , t) sign(s (xt ))

= −K xt − k (xt , t) sign(xt )

K ≥ 0, k (x, t) > 0 for all t ≥ 0 and x ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

(3.2)

In the classical formulation (see [2]) the gain parameter k (x, t) is selected as a
positive constant, that is,

k (x, t) = k > 0
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and

K = 0

Here

sign(x) :=
⎧
⎨

⎩

−1 if x < 0
∈ [−1, 1] if x = 0

1 if x > 0
(3.3)

3.1 Our aim is to design k (x, t) in (3.2) which guarantees the stabilization of the
system (3.1) in a neighborhood of the origin in some probabilistic sense.

3.1.2.3 Close-Loop Dynamics

Model of the Process as a Stochastic Differential Inclusion

Take K = 0. Substitution (3.2) in (3.1) leads to the following description of the
closed-loop dynamics:

dxt = [−k (x, t) sign(xt ) + f (xt , t)
]
dt + σ (xt , t) dWt , x0

a.s.= x̄ (3.4)

Here
[−k (x, t) sign(xt ) + f (xt , t)

]
is the drift set-valued function and σ =

σ (xt , t) is the diffusion parameter. In fact, (3.4) is an stochastic differential inclu-
sion [9] since the function sign(xt ) (see Fig. 3.1) is a set-valued upper semicontinuos
mapping.

Fig. 3.1 The upper
semicontinuos function
sign(x)
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More exactly, the set-value function F : Rn → R is said to be upper semi-
continuos at the point x̃ ∈ R

n if for every set U ⊂ R such that F (x̃) ⊂ U , there
exists a set V ⊂ R

n such that x̃ ∈ V and F (x) ⊂ U for every x ∈ V .

The relation (3.4) may be represented in the integral form, as

xt − xs
a.s.∈

t∫

τ=s

F (xτ , τ ) dτ +
t∫

τ=0

G (xτ , τ ) dWτ (3.5)

with

F (xτ , τ ) := −k (xτ , τ ) sign(xτ ) + f (xτ , τ )

G (xτ , τ ) = σ (xτ , τ )

(3.6)

Here
t∫

τ=s
F (xτ , τ ) dτ and

t∫

τ=0
G (xτ , τ ) dWτ denote the Aumann [10] and Itô set-

valued integrals [11] of the set-valuedprocesses F ◦ x := (F (xτ , τ ))τ≥0 andG ◦ x :=
(G (xτ , τ ))τ≥0, respectively.

3.1.2.4 On the Extension of the Filippov’s Theorem to the Class
of Stochastic Differential Inclusions

The conditions of existence and uniqueness of the strong (or weak) solution xt of
(3.5) may be found in [9, 11–13]. To define exactly what we mean when talk about
a solution of a stochastic differential inclusion we need the following definitions.

Strong Solution of the Differential Inclusion

Definition 3.1 (Strong solution of (3.5) [12]) A stochastic process Xt (ω), defined
on (Ω,F , {Ht }t≥0,P), is referred to as a strong solution of the differential inclusion
(3.5) if

(1) there exist Ft -measurable (predictable) stochastic processes ft (ω) and gt (ω),
also defined on (Ω,F , {Ht }t≥0,P), such that for all t ∈ [0, T ]

ft (ω)
a.s.∈ F (xt (ω) , t) , gt (ω)

a.s.∈ G (xt (ω) , t)

Pω ∈ Ω :
t∫

τ=0

{‖F (xτ (ω) , τ )‖2 + ‖G (xτ (ω) , τ )‖2} dτ < ∞ = 1

(2) for all t ∈ [0, T ]
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Xt (ω)
a.s.= x̄ (ω) +

t∫

τ=0

fτ (ω) dτ +
t∫

τ=0

gτ (ω) dWτ (3.7)

(3) Xt (ω) is continuos for almost all trajectories ω ∈ Ω .1

Remark that the stochastic processes

{Xt (ω)}t≥0 , { ft (ω)}t≥0 and {gt (ω)}t≥0

are uniquely determined by (3.7) if take into account that two stochastic processes
{Xt (ω)}t≥0 and {Yt (ω)}t≥0 are indistinguishable if

P {Xt (ω) = Yt (ω)} = 1

for all t ∈ [0, T ].

Remark 3.1 The comparisons between weak and strong solutions may be found in
[14, 15].

H -Conditions

Introduce some notions which will be useful in the following considerations.

Definition 3.2 Following [10], we say the set-valued mappings F : Rn× [0, T ] →
Cl (R) and G : Rn× [0, T ] → Cl (R) (where Cl (R) is the space of all nonempty
closed subsets of Rn and T < ∞) satisfy the H -conditions if

(i) F and G are Ft -measurable (predictable),
(ii) F and G are uniformely square integrably bounded, namely, for any 0 ≤ t < T

P

⎧
⎨

⎩
ω ∈ Ω :

t∫

τ=0

(‖F (xτ , τ )‖2 + ‖G (xτ , τ )‖2) dτ < ∞
⎫
⎬

⎭
= 1

Definition 3.3 (Hausdorff–Lipschitz continuity) A set-value mapping F (·, t) is
said to be H L -continuos for almost all fixed t ∈ [0, T ] if there exists l ∈
L
2
(
[0, T ] ,R+) such that

h (F (x, t) , F (z, t)) ≤ l (t) ‖x − z‖ (3.8)

for almost all t ∈ [0, T ] and all x, z ∈ R
n. Here the Hausdorff distance between

two sets A and B is defined as

1By the Kolmogorov’s theorem (see, for example, [11]) the continuos modification of a sto-
chastic process {Xt (ω)}t≥0 always exists (under the corresponding bounded moments) if
E
{‖Xt − Xs‖α ≤ γ |t − s|1+β

}
for all s, t ∈ [0, T ] and some positive α, β and γ . The process

(3.7) obviously satisfies this condition.
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h (A, B) := inf
ε>0

{ε : A ⊂ Vε (B) andB ⊂ Vε (A)}

Vε (C) := {x ∈ R
n : dist (x, C) ≤ ε}

denotes the ε-neighborhood of C ⊂ R
n

(3.9)

Obviously that a Lipschitz continuity implies H L - continuity, but not inverse.
The Existance of a Strong Solution

The following theorem state the sufficient conditions of the existance of a strong
solution of (3.5).

Theorem 3.1 (Chap. 4, Theorem1.1 in [11]) If F and G in (3.5) satisfy
H -conditions (see Appendix) and F (·, t) and G (·, t) are H L - continuos with
the Lipschitz constant l ∈ L

2
(
[0, T ] ,R+) such that

(√
T + 1

)

√
√
√
√
√

T∫

t=0

l2 (t) dt < 1

then the set Xx̄ (F, G, W, ) of strong solutions of the differential inclusion (3.5) on
[0, T ] with the initial condition x̄ (ω) is non-empty, i.e., X x̄ (F, G, W, ) �= ∅.

Remark 3.2 It is important to note that the set-valued mapping

F (x, t) := −k (x, t) sign(x) + f (x, t)

isH L -continuos if

• f (x, t) isH L -continuos,
• k (x, t) sign(x) isH L -continuos.

In spite of the fact that the set-valuedmapping sign(x) (3.3) is notH L -continuos,
the product k (x, t) sign(x) may satisfy this condition by the adequate selection of
the gain parameter k (x, t) which should be obligatoryH L -continuos. So, in some
sense, k (x, t) may be treated as a “stochastic corrector” providing the existence of
a strong solution for the considered differential inclusion (3.5).

3.1.2.5 Deterministic Dynamics

In the deterministic case (σ (x, t) = 0) for k (x, t) = k = const > 0 the Eq. (3.4)
becomes

ẋt = −ksign(xt ) + f (xt , t)

Its solution is intended in the Filippov’s sense [16]. Then for the Lyapunov function
Vt := 1

2 x2
t we have
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V̇t = xt ẋt = xt
[−ksign(xt ) + f (xt , t)

] =

−k |xt | + xt f (xt , t) ≤ −k |xt | + |xt | L =

−√
2 (k − L)

√
Vt

implying under k = L + ρ, ρ > 0

dVt√
Vt

≤ −√
2ρdt, 0 ≤ √

Vt ≤ √
V0 − ρ√

2
t

Vt = 0 for all t ≥ treach =
√

V0

ρ
= 1

k − L
|x0|

3.1.2.6 Stochastic Dynamics and the Itô Formula

In the stochastic case (σ (x, t) := σ = const > 0), corresponding the additive noise
affect, for any twice differentiable function V : R → R the following Itô formula
takes place

dV (xt ) = V ′ (xt ) dxt + 1

2
σ 2V ′′ (xt ) dt

︸ ︷︷ ︸
the Itô term

Particularly, for V (x) := 1
2 x2 on the trajectories of (3.4) we have

dV (xt ) =
(

xt
[−k (x, t) sign(xt ) + f (xt , t)

] + 1

2
σ 2

)

dt + σ xtdWt

or, in the integral form,

V (xt+Δt ) − V (xt )
a.s.=

t+Δt∫

τ=t

(
xτ

[−k (x, τ ) sign(xτ ) + f (xτ , τ )
] + 1

2σ
2
)
dτ

+ σ
t+Δt∫

τ=t
xτdWτ

(3.10)
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3.1.2.7 Storage Function and Its Evaluation

By the Itô integral property

E

⎧
⎨

⎩

t+Δt∫

τ=t

xτdWτ

⎫
⎬

⎭
= 0

and, applying the mathematical expectation operator E {·} to both sides of (3.10),
for Vt := E {V (xt )} we obtain

Vt+Δt − Vt =
t+Δt∫

τ=t
E

{

xτ

[−k (x, τ ) sign(xτ ) + f (xτ , τ )
] + 1

2
σ 2

}

dτ
(3.11)

Dividing both sides in (3.11) by Δt and taking Δt → +0, we finally get

V̇t = E
{

xt
[−k (x, t) sign(xt ) + f (xt , t)

]} + 1

2
σ 2

≤ E {[−k (x, t) |xt | + |xt | | f (xt , t)|]} + 1

2
σ 2

≤ E {[−k (x, t) |xt | + |xt | L]} + 1

2
σ 2

(3.12)

Now take

k (x, t) = Lϕε (x) + k̃ (x, t)

ϕε (x) :=
{

1 if |x | > ε

ε−1 |x | if |x | ≤ ε
, ε > 0

(3.13)

which transforms (3.12) in to

V̇t ≤ E
{[

L |xt | [1 − ϕε (x)] − k̃ (x, t) |xt |
]}

+ 1

2
σ 2

≤ E
{[

L |xt | χ (|x | ≤ ε) − k̃ (x, t) |xt |
]}

+ 1

2
σ 2

≤ E
{
−k̃ (x, t)

√
2V (xt ) + 1

2σ
2 + Lε

}

(3.14)
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3.1.2.8 The Lyapunov’s Zone Function Analysis

Introduce the Lyapunov’s zone function

V̄t :=
[
Vt − μ

2

]1+ε

+
, μ, ε > 0

[z]+ :=
{

z if z ≥ 0
0 if z < 0

(3.15)

The inequality (3.14) leads to

d

dt
V̄t = (1 + ε) [Vt − μ]ε+ V̇t ≤

(1 + ε) [Vt − μ]ε+ E
{
−k̃t

√
2V (xt ) + 1

2σ
2 + Lε

}
(3.16)

Select

k̃ (x, t) := k0

√
V (xt )

2
, μ = 1

k0

(
σ 2

2
+ Lε

)

, k0 > 0 (3.17)

Substitution (3.17) in (3.16) gives

d

dt
V̄t ≤ (1+ε) [Vt − μ]ε+ E

{

−k̃ (x, t)
√
2V (xt ) + 1

2
σ 2 + Lε

}

= − (1 + ε) [Vt − μ]ε+

[

k0Vt − 1

2
σ 2 − Lε

]

= − (1 + ε) k0

[

Vt − 1

k0

(
σ 2

2
+ Lε

)]1+ε

+

Corollary 3.1 Selection

k (x, t) = Lϕε (x) + k0

√
V (xt )

2
= Lϕε (x) + k0

2
|xt | (3.18)

guarantees the exponential μ-zone convergence for the 2-nd moment of the state,

i.e., for μ = 1

k0

(
σ 2

2
+ Lε

)

.
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[
E
{

x2
t

} − μ
]

+ =

2V̄ 1/(1+ε)
t ≤ (

2V̄0
)1/(1+ε)

e−t → 0 when t → ∞

The zone μ may be done smaller taking k0 bigger.

3.1.3 SMC for a Conventional Multi-dimensional System

3.1.3.1 Model Description

Now let us consider the following Itô model

dx1,t = x2,tdt

dx2,t = (u + f (xt , t)) dt + σdWt

⎫
⎬

⎭
(3.19)

where

xt := (
xᵀ
1,t , xᵀ

2,t

)ᵀ ∈ R
2n, ‖ f (xt , t)‖ ≤ L

and σ ∈ Rn×n is a diffusion matrix of the standard n-dimensional Wiener process,
i.e.,

E {Wt | Ft−0} a.s.= 0, E
{
Wt W

ᵀ
t | Ft−0

} a.s.= t In×n

3.1.3.2 Sliding Surface, the Discontinuous Control Structure
and Problem Formulation

Define the following sliding surface s (x):

s (x) := x2 + x1 = ẋ1 + x1 = 0 (3.20)

and the sliding mode control as

ut = −K xt − k (x, t) SIGN (s (xt )) , 0 < k (xt , t) ∈ R
1

SIGN (s) := (sign(s1), . . . , sign(sn))
ᵀ , 0 < K ∈ R

n×2n (3.21)

Problem 3.1 Design K and k (x, t) in (3.21) which guarantee the stabilization of
the system (3.19) in aμ-neighborhood of the sliding surface s (x) = 0 (3.20) in some
probabilistic sense.
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3.1.3.3 The Deterministic Case

For σ = 0 the model (3.19) becomes

ẋ1,t = x2,t

ẋ2,t = −K xt − k (xt , t) SIGN (s (xt )) + f (xt , t)

⎫
⎬

⎭
(3.22)

Such model describes behavior of a wide class of mechanical systems and has a great
spectrum of practical applications. Analogously, for V (s (xt )) := 1

2 ‖s (xt )‖2 using
the inequality

n∑

i=1

|si (xt )| ≥ ‖s (xt )‖

for

kt = k = L + ρ, ρ = const > 0

and

K = [
0 I

]
so that K xt = x2,t

one has

V̇t = sᵀ (xt ) ṡ (xt ) =

sᵀ (xt )
[
x2,t − K xt − kSIGN (s (xt )) + f (xt , t)

]

= −k
n∑

i=1
|si (xt )| + sᵀ (xt ) f (xt , t)

≤ −k ‖s (xt )‖ + ‖s (xt )‖ L =

= −ρ ‖s (xt )‖ = −√
2ρ

√
Vt

implying Vt = 0 for all

t ≥ treach = √
2

√
V0

ρ
= 1

(k − L)
‖s (x0)‖
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3.1.3.4 The Zone Lyapunov Function and Its Evaluation
in the Stochastic Case

Again, by the Itô formula

dV (s (xt )) = ∇ᵀV (s (xt )) ds+
1

2
tr
{
σσᵀ∇2V (s (xt ))

}
dt = sᵀ (xt )

[
dx1,t + dx2,t

]+

1

2
tr {σσᵀ} dt = sᵀ (xt )

(
x2,t dt + [u + f (xt , t)] dt + σdWt

)

+ 1

2
tr {σσᵀ} dt =

[

sᵀ (xt )
(
x2,t + u + f (xt , t)

) + 1

2
tr {σσᵀ}

]

dt

+ sᵀ (xt ) σdWt

Repeating the same manipulations as in the scalar case for Vt := E {V (s (xt ))} we
obtain

V̇t=E {sᵀ (xt ) [−k (x, t) SIGN (s (xt ))+ f (xt , t)]} + 1

2
tr {σσᵀ}

≤ E {‖s (xt )‖ (−k (x, t) + L)} + 1

2
tr {σσᵀ}

(3.23)

Taking in (3.23)

k (x, t) = Lϕε (‖s‖) + k̃ (x, t)

ϕε (‖s‖) :=
{

1 if ‖s‖ > ε

ε−1 ‖s‖ if ‖s‖ ≤ ε
, ε > 0

(3.24)

we get

V̇t ≤ E
{[

L ‖s (xt )‖ [1 − ϕε (‖s‖)] − k̃ (x, t) ‖s (xt )‖
]}

+ 1

2
tr {σσᵀ} ≤ E

{[
L ‖s (xt )‖ χ (‖s‖ ≤ ε) − k̃ (x, t) |xt |

]}

+ 1

2
tr {σσᵀ} ≤ E

{

−k̃ (x, t)
√
2V (xt ) + 1

2
tr {σσᵀ} + Lε

}
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and with

k̃ (xt , t) := k0
‖s (xt )‖

2
= k0

∥
∥x1,t + x2,t

∥
∥

2

it follows

V̇t ≤ E
{
−‖s (xt )‖ k̃ (x, t) + 1

2 tr {σσᵀ} + Lε
}

= −k0E {V (s (xt ))} + 1
2 tr {σσᵀ} + Lε =

−
(

k0Vt −
[
1

2
tr {σσᵀ} + Lε

])

(3.25)

Substitution (3.25) in (3.16)

V̄t := [Vt − μ]1+ε
+ , μ, ε > 0

with

μ = k−1
0

[
1

2
tr {σσᵀ} + Lε

]

(3.26)

gives

d

dt
V̄t ≤ − (1 + ε) [Vt − μ]ε+

(
k0Vt − [

1
2 tr {σσᵀ} + Lε

])

= − (1 + ε) k0 [Vt − μ]1+ε
+ = − (1 + ε) k0V̄t

and, as the result,

V̄t ≤ V̄0e−(1+ε)k0t

Corollary 3.2 Selection

ut = −x2,t − k (xt , t) SIGN (s (xt ))

k (xt , t) = Lϕε

(∥
∥x1,t + x2,t

∥
∥
) + k0

2

∥
∥x1,t + x2,t

∥
∥

(3.27)

guarantees the exponential μ-zone convergence for the 2-nd moment of the state,
i.e.,

[
E
{‖s (xt )‖2

} − k−1
0 tr {σσᵀ}]+ =

2V̄ 1/(1+ε)
t ≤ 2V̄ 1/(1+ε)

0 e−k0t → 0 when t → ∞
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Fig. 3.2 The state x(t), the control u(t) and the estimate of E{x2t } for the stochastic process (1.4)

3.1.4 Numerical Examples

3.1.4.1 Example 1

Figure3.2 presents the results of the numerical simulation of the process (3.4),
obtained by the Euler–Maruyama method [17]) with k (x, t) given by (3.13) where

L = 0.3, σ = 0.5, x0 = 3, k0 = 1, ε = 0.5

and

f (x, t) = Lp(t)

√|x |
1 + |x |

with p(t) = triangle (0.1, 90) which is the triangle signal of the amplitude 1, the fre-
quency 0.1 and the phase 900. The “white noise” is approximated as (Wt − Wt−h) h−1

with h = 10−3 and Wt as the standard Gaussian noise with zero-mean and variance
equal to 1. The mean squared value of the process is estimated as

E
{

x2
t

} � t−1

t∫

τ=0

x2
τ dτ

One can see that the suggested control

ut = −k (x, t) sign(xt )

with k (x, t) (3.13) provides the convergence of the mean squared sliding variable
s(xt ) in the predefined μ-zone.

http://dx.doi.org/10.1007/978-3-319-62896-7_1
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Fig. 3.3 The states x1,t and
x2,t behavior in time and
their zoom

3.1.4.2 Example 2

Here in Fig. 3.3 the states x1,t and x2,t and the sliding surface s(xt ) for the stochastic
process (3.19) are depicted. All parameters are as in Example 1 except k0 which here
is equal to 20. The initial values are x1,0 = 30 and x2,0 = 25.

3.2 Stochastic Super-Twist Sliding Mode Controller

3.2.1 Structure of Super-Twist Controller

During the last decademany publications have been dedicated to the stability analysis
of the, so-called, Super-Twist Controller (STC) which was suggested in [18]. Many
important application of this controller can be found in ([19]). Its dynamic is governed
by the following scalar ODE

ẋ(t) = u (x(t), t) + F(x(t), t), x(0) = x0 ∈ R

where F(x, t) is uncertain dynamics with bounded derivative, namely,

∣
∣Ḟ(x, t)

∣
∣ ≤ L (3.28)



3 Stochastic Sliding Mode Control and State Estimation 73

and the controller u (x, t) is continuos one and has the structure

u (x, t) = −α
√|x(t)|sign(x(t)) − β

t∫

τ=0
sign(x(τ ))dτ

α, β - positive constants

(3.29)

This system may be represented equivalently as a 2-nd order dynamics, that is,

⎧
⎨

⎩

ẋ(t) = −α
√|x(t)|sign(x(t)) + y(t)

ẏ(t) = f (x(t), t) − βsign(x(t))

f (x(t), t) := Ḟ(x, t), | f (x(t), t)| ≤ L , α > 0, β > 0

(3.30)

Stability analysis of this dynamics, based on Lyapunov function approach, was pre-
sented in several publications (see, for example, [20–23]). In these papers there is
shown that for special parameters selection α, β such system is finite-time stable.
The main assumption, used in this analysis, is that the uncertain term f (x(t), t) is
bounded. In the presence of stochastic unbounded (normally distributed) noise this
assumptions can not be accepted and therefore the stability analysis, applied for a
deterministic case, falls and new technique should be designed.

Belowwe show one of possible approaches for solving this problem. It is based on
the ideas of the analysis developed in previous sections (see also [24]) for standard
first-order Sliding Mode Controllers subject additive stochastic perturbations.

3.2.2 Stochastic Super-Twist Model

The stochastic analogue of the deterministic system (3.30) may be expressed as
follows

⎧
⎨

⎩

dx(t) = [−α
√|x(t)|sign(x(t)) + y(t)

]
dt

dy(t) = [
f (x(t), t) − βsign(x(t))

]
dt + σdW (t)

| f (x(t), t)| a.s.≤ L , σ > 0

α = α (x, y, t) , β = β (x, y, t)

(3.31)

Stochastic processes x (t) = xt (ω) ∈ R and y (t) = yt (ω) ∈ R are the system states
at time t ≥ 0 with a random realization ω ∈ Ω . They are defined on a filtered
probability space (Ω,F , {Ht }t≥0, P) defined before. The functions f (x (t) , t) ,

α (x (t) , y (t) , t) , α (x (t) , y (t) , t) are assumed to be Ft -measurable.
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The “parameters” α = α (x, y, t) , β = β (x, y, t) should be designed to provide
the stability property of the system (3.31) in some probabilistic sense.

3.2.3 Lyapunov Functions Approach

3.2.3.1 Lyapunov Functions for Deterministic ST (σ = 0)

There are known several different functions V (x, y) which in the deterministic case
(σ = 0)may serve as Lyapunov functions for the stability analysis of (see, for exam-
ple, [20–23]). All of them posses the property

V̇ (x, y) ≤ −qV ρ (x, y) , q > 0, ρ ∈ [0, 1) (3.32)

3.2.3.2 Analysis of Lyapunov Functions Designed for Deterministic
Systems on the Trajectories of Stochastic Dynamics

By the Itô formula the differential of a function V (x, y) on the trajectories of the
stochastic system (3.31) is as follows:

dV = ∂V
∂x dx + ∂V

∂y dy+

1

2
tr

{(
0
σ

)(
0
σ

)ᵀ
∇2V

}

dt
︸ ︷︷ ︸

the Itô term

= ϕdt + ∂V

∂y
σdW

(3.33)

where

ϕ = ϕ0 + 1
2σ

2 ∂2

∂y2
V

ϕ0 := ∂V

∂x

[−α
√|x |sign(x) + y

] + ∂V

∂y

[
f − βsign(x)

]

Here the term ϕ0 corresponds to the regular part of the stochastic dynamics and we
will suppose that it satisfies the inequality

ϕ0 ≤ −kφt , φt ≥ 0 (3.34)
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for some function φt . Particularly, with k = q and φt = V ρ (x (t) , y (t)) we obtain
the property (3.32).

Defining then Vt := V (x (t) , y (t)), the Eq. (3.33) may be represented in the
integral form as

Vt+Δt − Vt
a.s.=

t+Δt∫

τ=t

ϕ (τ) dτ +
t+Δt∫

τ=t

∂Vτ

∂y
σdW (τ )

Taking the mathematical expectation of both sides of this equation and denoting
V̄t = E {Vt } , in view of the Itô integral property

E

⎧
⎨

⎩

t+Δt∫

τ=t

∂Vτ

∂y
σdW (τ )

⎫
⎬

⎭
= 0

we get

V̄t+Δt − V̄t =
t+Δt∫

τ=t

E {ϕ (τ)} dτ

Dividing both parts by Δt and taking Δt → 0, in view of (3.34) we finally obtain
(the Dynkin’s formula)

d

dt
V̄t = E {ϕ (t)} = E {ϕ0} + E

{
1

2
σ 2 ∂2

∂y2
Vt

}

≤ E {−kφt } + E

{
1

2
σ 2 ∂2

∂y2
Vt

}
(3.35)

Take

α = α0, β = β0ϕε (x) + βad (x, y, t)

α0 = const > 0, β0 = const > 0

ϕε (|x |) :=
{

1 if |x | > ε

ε−1 |x | if |x | ≤ ε
, ε > 0

(3.36)

where α0 and β0 are positive functions making the function V (x, y) the Lyapunov
function for the deterministic version (σ = 0) of the supert-twist algorithm (3.31)
and providing a finite-time convergence of this function to zero, namely, guarantying
the property



76 A.S. Poznyak

V̇
σ=0= ϕ0 = ∂V

∂x

[−α0
√|x |sign(x) + y

]+

∂V

∂y

[
f − β0sign(x)

] ≤ −kφt = −qV ρ (ρ ∈ [0, 1))

(3.37)

with k = q > 0 andφt = V ρ . The function ϕε (|x |) is a regularization term providing
theH L (Hausdorff–Lipschitz)-property of the term ϕε (x) sign(x) and guarantying
the existence of the solution of stochastic differential inclusion (3.31). In view of that
modification instead of (3.37) we have

V̇
σ=0= ϕ0 = ∂V

∂x

[−α0
√|x |sign(x) + y

]+

∂V

∂y

[
f − β0ϕε (|x |) sign(x)

] =

∂V

∂x

[−α0
√|x |sign(x) + y

] + ∂V

∂y
fεsign(x) ≤ −kφt

with the new constraint to the modified uncertainty

fε := f − β0ϕε (|x |) sign(x)

fulfilling | fε| ≤ L + 2β0. Thus the Eq. (3.35) becomes

d

dt
V̄t≤ −E

{

kφt + ∂Vt

∂y
βadsign(xt )

}

+E

{
1

2
σ 2 ∂2

∂y2
Vt

}

(3.38)

In (3.36) the gain parameter βad = βad (x, y, t) should be adapted to provide the
system (3.31) with desired properties.

3.2.4 State-Depended Gain Parameter

If additionally, there exists a nonnegative definite function vt = v (xt , yt ) ≥ 0 such
that

1

2

∂2

∂y2
Vt ≤ c0 + c1vt (3.39)

then the right-hand side in (3.38) may be estimated as

d

dt
V̄t ≤ −E

{

kφt+∂Vt

∂y
βadsign(xt ) − c1σ

2vt

}

+c0σ
2 (3.40)
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Select βad as

βad = − st
∣
∣
∣
∂Vt
∂y

∣
∣
∣ + εt

sign

(
∂Vt

∂y

)

sign(xt )

st := kφt − θVt − c1σ 2vt , θ > 0, εt > 0

(3.41)

Substitution βad (3.41) into the first term in (3.40) leads to the following relation

kφt + ∂Vt
∂y βadsign(xt ) − c1σ 2vt=kφt −

∣
∣
∣
∂Vt
∂y

∣
∣
∣

st
∣
∣
∣ ∂V

∂y

∣
∣
∣ + εt

−c1σ 2vt = θVt + εt
st

∣
∣
∣
∣
∂Vt

∂y

∣
∣
∣
∣ + εt

and (3.40) becomes

d

dt
V̄t ≤ −E

⎧
⎪⎪⎨

⎪⎪⎩

θVt + εt
st

∣
∣
∣
∣
∂Vt

∂y

∣
∣
∣
∣ + εt

⎫
⎪⎪⎬

⎪⎪⎭

+ c0σ
2

Select now εt in such a way that for a prespecified ε > 0 the following inequality
holds:

−εt
st

∣
∣
∣
∣
∂Vt

∂y

∣
∣
∣
∣ + εt

≤ ε

or, equivalently,

−εt (st + ε) ≤ ε

∣
∣
∣
∣
∂Vt

∂y

∣
∣
∣
∣

This always may be fulfilled if

εt =
{
any positive value if st + ε ≥ 0

ε

∣
∣
∣ ∂V

∂y

∣
∣
∣ / |st + ε| if st + ε < 0

(3.42)

Therefore, finally for any θ > 0 we obtain

d

dt
V̄t ≤ −θ V̄t + ε + c0σ

2 (3.43)

Now we are ready to formulate the main result.
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3.2.5 Main Theorem on μ-MS Convergence

Theorem 3.2 (Main result) Selecting in (3.31)

α = α0, β = β0ϕε (x) + βad

with α0, β0 providing the property (3.37) and

βad = − st
∣
∣
∣
∣
∂Vt

∂y

∣
∣
∣
∣ + εt

sign

(
∂Vt

∂y

)

sign(x) (3.44)

where st and εt are defined by (3.41) and (3.42), we may guarantee the means square

(MS) exponential convergence of Vt in the prespecified zone μ = c0σ 2 + ε

θ
, that is,

[
V̄t − μ

]2
+ = O

(
e−2θ t

) →
t→∞ 0, [z]+ :=

{
z if z ≥ 0
0 if z < 0

(3.45)

Proof For Wt := 1
2

[
V̄t − μ

]2
+ we have

Ẇt = [
V̄t − μ

]

+
d

dt
V̄t ≤

[
V̄t − μ

]

+
(−θ V̄t + ε + c0σ 2

) = −θ
[
V̄t − μ

]

+
[
V̄t − μ

]

= −θ
[
V̄t − μ

]2
+ = −2θWt

which leads to (3.45).

3.2.6 State-Dependence of Gain Parameter for Different
Lyapunov Functions (LF)

3.2.6.1 The Polyakov–Poznyak’s LF

To analyze the finite-time convergence effect for Super-Twisting second order sliding
mode controller in [21] there was suggested to use the following Lyapunov Function



3 Stochastic Sliding Mode Control and State Estimation 79

VP P(x, y) =
⎧
⎪⎪⎨

⎪⎪⎩

k2

4

(
y
γ
sign (x) +k0em(x,y)

√
s(x, y)

)2
if xy �= 0

2α−2k̄2y2 if x = 0

|x | /2 if y = 0

β > 5L , α2 ∈ (32L , 8 [β − L]) , γ ≥ β + L

(3.46)

where 0 < k0 (a piece-wise constant function), k̄ is large enough and s(x, y) and
m(x, y) are as follows

s(x, y) = y2−α
√|x |y sign (x) +2γ |x |

m(x, y) =
arctan

(
αg

√|x | sign(x)

2
√

g−1

1

y
− 1√

g−1

)

√
g − 1

, g > 1

(3.47)

Remark 3.3 The inequality (3.32) is fulfilled with ρ = 1
2 and some positive q = q∗

(see details in [21]).

For this function

• if xy �= 0

∂VP P

∂y
= k2

2

(
γ −1y sign (x) +k0em(x,y)

√
s(x, y)

) [ sign(x)

γ
+

k0em(x,y)

(√
s(x, y)

∂m(x,y)

∂y + 1√
s(x, y)

∂s(x,y)

∂y

)]

• if x = 0

∂VP P

∂y
= 4α−2k̄2y

• if y = 0

∂VP P

∂y
= 0
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In this presentation

∂m(x, y)

∂y
= − c (x)

√
g − 1

gy2 − 2c (x)
√

g − 1y + c2 (x) (g − 1)

c (x) := αg
√|x | sign (x)

2
√

g − 1

∂s(x, y)

∂y
= −α

√|x | sign (x) +2y

and in the case when xy �= 0 we have

∂2VP P

∂y2
= k2

2

[
γ −1y sign (x) +

k0em(x,y)

(√
s(x, y)

∂m(x,y)

∂y +
∂s(x,y)

∂y√
s(x,y)

)]2

+

k2k0
2

(
γ −1y sign (x) +k0em(x,y)

√
s(x, y)

)
em(x,y)×

[(√
s(x, y)

∂m(x,y)

∂y + 1√
s(x,y)

∂s(x,y)

∂y

)
∂m(x,y)

∂y +

∂s(x,y)

∂y
∂m(x,y)

∂y√
s(x,y)

+
∂2m(x,y)

∂y2√
s(x,y)

((
∂s(x,y)

∂y

)2 + ∂2s(x,y)

∂y2

)]

∂2VP P

∂y2
= 4α−2k̄2 if x = 0, and

∂2VP P

∂y2
= 0 if y = 0 with the properties

|m(x, y)| ≤ π

2
√

g−1
,

∣
∣
∣
∂m(x,y)

∂y

∣
∣
∣ ≤ αg

2
√

g−1

√|x |

∂2m(x,y)

∂y2 = 0,
√

s(x, y) ≤ √
2γ |x | + |y| if γ ≥ α2/8

∣
∣
∣
∂s(x,y)

∂y

∣
∣
∣ ≤ ∣

∣−α
√|x | sign (x) +2y

∣
∣ ≤ α

√|x |+2 |y|

∂2s(x,y)

∂y2 = 2,
∣
∣
∣ 1√

s(x,y)

∂s(x,y)

∂y

∣
∣
∣ ≤ 2
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and ∣
∣
∣ ∂2V

∂y2

∣
∣
∣ ≤

k2

2

[
γ −1 + k0e

π

2
√

g−1

(
αg

2
√

g−1

√
s(x, y)

√|x |+2
)]2

+ k2k0
2

(
γ −1 |y| +k0e

π

2
√

g−1
√

s(x, y)
)

e
π

2
√

g−1 ×
[√

s(x, y)
(

αg
2
√

g−1

)2 |x | + 2αg√
g−1

√|x | + 2√
s(x,y)

]

≤
{
by ax+ b

x ≤ 2
√

ab for any x > 0 and a, b ≥ 0
}

≤ 2k2k0αg√
g − 1

e
π

2
√

g−1

[(
γ −1 + 2k0e

π

2
√

g−1

)
|y| √|x |

+ k0e
π

2
√

g−1 α |x |
]

= θ0
(
θ1 |y| √|x | + θ2 |x |)

with

θ0 := 2k2k0
αg√
g − 1

e
π

2
√

g−1 , θ1 := γ −1 + 2k0e
π

2
√

g−1

θ2 := k0αe
π

2
√

g−1

Lemma 3.1 If γ ≥ α2/8 then when xy �= 0 we have

∣
∣
∣
∣
∂2VP P

∂y2

∣
∣
∣
∣ ≤ θ0

(
θ1 |y|√|x | + θ2 |x |

)
(3.48)

and when xy = 0
∣
∣
∣
∣
∂2VP P

∂y2

∣
∣
∣
∣ =

{
4α−2k̄2 i f x = 0

0 i f y = 0
(3.49)

Finally, we have the fulfilling (3.39) with

c0 = 2α−2k̄2, c1 = 1

2
and vt = θ0

(
θ1 |y|√|x | + θ2 |x |

)

For the Lyapunov function VP P the adaptation parameter βad is as follows

βad= −k
√

VP P−θVP P−c1σ 2vt
∣
∣
∣
∣
∂VP P

∂y

∣
∣
∣
∣ + εt

sign
(

∂VP P
∂y

)
sign(x)

vt = θ0
(
θ1 |y| √|x | + θ2 |x |)
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3.2.6.2 The Moreno-Osorio’s LF

In [20] for the deterministic case (σ = 0) therewas suggested the followingLyapunov
function

VM O (x, y) =
(√|x |sign (x)

y

)ᵀ
P

(√|x |sign (x)

y

)

P = 1

2

[
4β + α2 −α

−α 2

]

with

∂VM O (x, y)

∂y
= −2α

√|x |sign (x) + 2y

∂2VM O (x, y)

∂y2
= 2

which in (3.39) leads to

c0 = 1, c1 = 0

If

β > 3L + 2L2α−2
1

then the inequality (3.32) is fulfilled with

ρ = 1

2
, q =

√
λmin(P)

λmax(P)
λmin(Q)

where the matrix Q is defined as

Q = 1

2

⎡

⎢
⎣
2β + α2

1 − L −α − 2

α

−α − 2

α
1

⎤

⎥
⎦ > 0

For the Lyapunov function VM O the adaptation parameter βad is as follows

βad = − k
√

VM O − θVM O
∣
∣
∣
∣
∂VM O (x, y)

∂y

∣
∣
∣
∣ + εt

sign

(
∂VM O

∂y

)

sign(x)

∂VM O (x, y)

∂y
= −2α

√|x | sign (x) + 2y
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3.2.6.3 The Orlov–Aoustin–Chevellereau’s LF

To analyze the stability of the system (3.31) without stochastic noise the authors of
[22] suggested to use the following Lyapunov function candidate

VO ACh (x, y) = 2β |x | + 1

2
y2 + 1

2

[
y − α

√|x |sign (x)
]2

with

∂VO ACh (x, y)

∂y
= 2y − α

√|x |sign (x)

∂2

∂y2
VO ACh (x, y) = 2

which in (3.39) leads to

c0 = 1, c1 = 0

If

min

{
α

2
,

αβ

1 + α

}

> L

then the inequality (3.32) is fulfilled with

ρ = 1

2
, q = √

2β min

{
2 (αβ − L − Lα)

3α2 + 4β
,
α − 4L

1 + α

}

For the Lyapunov function VO ACh the adaptation parameter βad is as follows

βad = −k
√

VO ACh − θVO ACh
∣
∣
∣
∣
∂VO ACh

∂y

∣
∣
∣
∣ + εt

sign

(
∂VO ACh

∂y

)

sign(x)

∂VO ACh

∂y
= 2y − α

√|x | sign (x)

3.2.6.4 The Utkin’s LF

In the book [23] one of the authors suggested the following Lyapunov function for
the deterministic version of the system (3.31)
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VU (x, y) = 2

√
1

2
y2 + M0 |x |, M0 = const > 0

Its the first and second derivatives, participating in the adaptation procedure (3.44)
are

∂

∂y
VU (x, y) = y

√
1
2 y2 + M0 |x |

∂2

∂y2
VU (x, y) =

√
2

2

y
[
V 2 − 2y

]

V 3
=

√
2

2

y

V
− √

2
y2

V 3
≤

√
2

2

|y|
V

≤ 1

which in (3.39) leads to

c0 = 1

2
, c1 = 0

and some q > 0. For the Lyapunov function VU the adaptation parameter βad is

βad = −k
√

VU − θVU
∣
∣
∣
∣
∂VU

∂y

∣
∣
∣
∣ + εt

sign

(
∂VU

∂y

)

sign(x)

∂

∂y
VU (x, y) = y

√
1
2 y2 + M0 |x |

= 2
y

VU (x, y)

3.2.7 Simulation Results

All simulations presentedbellowhavebeen completedbasedon theEuler–Maruyama
Method which detail description may be found in ([17]).

The results of simulation are depicted at the Figs. 3.4, 3.5, 3.6 and 3.7 where
the right-hand graphics of each figure illustrates the behavior of the corresponding
Lyapunov function Vt and the approximation of its mathematical expectation (the
dashed line) Vav.

V̄t = E {Vt } � Vav = 1

t + 0.01

t∫

τ=0

Vτdτ
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Fig. 3.4 Behavior of the system with the controller based on the Polyakov–Poznyak’s LF
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Fig. 3.5 The behavior of the system with the controller based on the Moreno-Osorio’s LF
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Fig. 3.6 The behavior of the systemwith the controller based on theOrlov–Aoustin–Chevellereau’s
LF
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Fig. 3.7 The behavior of the system with the controller based on the Utkin’s LF
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The following parameters of the stochastic controller (3.29), (3.41) were selected for
all tested versions:

k = 0.5 θ = 0.1 ε = 0.5
σ = 0.3 α = 1.5 β0 = 5

The upper bounds of |x (t)| and |y (t)| for t ≥ 20 s. are given in the table below

Lyapunov function max
t∈[20,50]s

|x (t)| max
t∈[20,50]s

|y (t)|
VP P 0.3 0.6
VM O 0.3 0.7

VO ACh 0.6 1.6
VU 0.3 0.6

The corresponding μ-zone values were obtained for super-twist controllers with
different adaptive gain parameters:

V : VP P VM O VO ACh VU

μ 0.55 4.3 8.1 1.6

One can see that μ-zone under the adaptive gain βad (3.44), corresponding the Lya-
punov function VP P , is less than other ones. This effect may be explained by the
fact that the Lyapunov function VP P “dominates” other ones, namely, possesses the
property

VP P (x, y) > Vs (x, y)

for all x, y and s = M O, O ACh, U

since it is designed directly by the application of the “Characteristic Function
Method” (see [21, 25]) satisfying the inequality (3.32) with more precise upper
bound.

3.3 Sliding Mode Observer for Simplest Uncertain Model

3.3.1 Briefly on State Observation Problem

The classical state estimation (filtering) problem for stochastic differential models
with complete knowledge of all functions, participating in their descriptions, was
solved in 60-es and the obtained state-observer is known as the filter of Dunkan–
Mortensen–Zakai. The solution of this problem is given by the Zakai equation [26]
which is a bilinear stochastic partial differential equation for the un-normalized
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density of a hidden state. In contrast, the Kushner equation [27] gives a non-linear
stochastic partial differential equation for the normalized density of the hidden state.
In principle either approach allows one to estimate a quantity function (the state
of a Dynamic system) from noisy measurements, even when the system is non-
linear, generalizing the earlier results of Wiener and Kalman for linear systems, and
solving a central problem in estimation theory. The application of this approach
to a specific engineering situation may be problematic since these equations are
quite complex. When the complete information on the dynamics of the system is
unavailable robust control methods are required for state estimation designing. One
of possible approaches to its realization is the Sliding Mode (SM) approach [2].

Themost advanced results have been obtained for deterministic uncertain systems
[28]. Sliding mode observers have unique properties, in that the ability to generate
a sliding motion on the error between the measured plant output and the output of
the observer ensures that a sliding mode observer produces a set of state estimates
that are precisely commensurate with the actual output of the plant. It is also the
case that analysis of the average value of the applied observer injection signal, the
so-called equivalent injection signal, contains useful information about themismatch
between the model used to define the observer and the actual plant. These unique
properties, coupled with the fact that the discontinuous injection signals which were
perceived as problematic for many control applications have no disadvantages for
software-based observer frameworks, have generated a ground swell of interest in
sliding mode observer methods in recent years. So, in [29] the equivalent control
concept, applied for a wide class of nonlinear systems, makes it possible to develop
finite-time observers. In [30] there is considered the problemof designing an observer
for a linear system subject to unknown inputs. This section shows how the relative
degree condition can be weakened if a classical sliding mode observer is combined
with slidingmode exact differentiators to essentially generate additional independent
output signals from the available measurements. In the paper [31], sliding mode
observer design principles based on the equivalent control approach are discussed
for a linear time invariant system both in continuous and discrete time. For the
continuous case, the observer is designed using a recursive procedure; however, the
observer is eventually expressed as a replica of the original systemwith an additional
auxiliary input with a certain nested structure. A direct discrete time counterpart of
the slidingmode realization of a reduced order asymptotic observer using the discrete
time equivalent control is also developed. The super-twisting second-order sliding-
mode algorithm is modified in order to design a velocity observer for uncertain
mechanical systems [32]. The finite time convergence of the observer is proved. Thus,
the observer can be designed independently of the controller. A discrete version of
the observer is considered and the corresponding accuracy is estimated.

As it was mentioned before, the paper [3] (which has also been discussed later in
Chap.14 (4) of [2] may be considered as the first publication dealing with stochas-
tic SM approach. The paper [33] investigates the problem of fault estimation and
fault-tolerant control against sensor failures for a class of nonlinear Itô stochastic
systems with simultaneous input and output disturbances. By using the descriptor
sliding mode approach, an accurate estimation of the system states, fault vector and
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disturbances can be obtained simultaneously. The paper [34] deals with the output
feedback sliding mode control for Itô stochastic time-delay systems. The system
states are unmeasured, and the uncertainties are unmatched. A sliding mode control
scheme is proposed based on the state estimates. By utilizing a special switching
function, the derivative of the switching function is ensured to be finite variation. It
is shown that the sliding mode in the estimation space can be attained in finite time.
The sufficient condition for the asymptotic stability (in probability) of the overall
closed-loop stochastic system is derived.

Herewe intend to extend the ideas of the equivalent control method for the class of
mechanical models subjected the stochastic external perturbations of both additive
and multiplicative types. The motivation of this study is based on the following
remarks:

• Under stochastic perturbations, which are unbounded by its nature, it is impossible
to talk about sliding mode surfaces as well as on finite-time convergence to it: only
the approachment (in some probabilistic sense) to some neighborhood to a sliding
surface may be discussed.

• The classical equivalent control method also can not be applied directly because
of the main reason: any random trajectory can not be differentiable and therefore
to talk about its values equal to zero on the sliding surface (which also does not
exist) no makes any sense.

We suggest some ideas how to extend the traditional deterministic notions, used
in deterministic SlidingMode theory, to the class of stochastic models where the half
of coordinates are not measurable and should be estimated on-line.

3.3.2 Model Description and Problem Formulation

3.3.2.1 Stochastic Model

Consider a filtered probability space (Ω,F , {Ht }t≥0, P) and let {(Wt ,Ft )}t≥0, be
vector standard Brownian motion. In this probability space consider the simplest
stochastic model given in the Itô form:

dx1,t
a.s.= x2,tdt,

dx2,t
a.s.= f (xt ) dt + Ξ (x, t) dWt

yt
a.s.= x1,t

x0 = (
x1,0, x2,0

) a.s.= x̄

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3.50)

• x1,t = x1,t (ω) ∈ R
n, x2,t = x2,t (ω) ∈ R

n (ω ∈ Ω) are the coordinates at time
t ≥ 0; the components of the vector x1,t will be referred to as the states of the
system and the components of the vector x2,t as their velocities that corresponds
to the standard mechanical interpretation,
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• Wt - a standard Wiener process, that is,

E {Wt/Ft } a.s.= 0, E
{
Wt W

ᵀ
t /Ft

} a.s.= t In×n (3.51)

3.3.2.2 Main Assumptions

• The mappings Ξ : Rn×n × R+ → R
n×n and f : Rn×n × R+ → R

n satisfy for all
x ∈ R

n and t ≥ 0 the inequalities

‖Ξ (x, t)‖2 ≤ d0 + d1 ‖x‖2 (3.52)

• The model (3.50) is assumed to be globally quadratically stable, i.e.,

E
{‖xt‖2

} ≤ X+ < ∞ (3.53)

(the upper bound X+ is supposed to be known).

Remark 3.4 Notice that if d0 = 0 we deal with multiplicative noise, and if d1 = 0
this case corresponds with the additive noise effect.

3.3.2.3 Problem Formulation

The problem of state estimation consists in the designing a vector function x̂2,t such
that the error state estimates e2,t = x2,t − x̂2,t , obtained by the designed observer,
would be as less as possible in some probabilistic sense sense.

3.3.3 SM Observer for Stochastic Models

3.3.3.1 Structure of the Observer

Consider the following observer structure

dx̂1,t = vtdt
vt = −ρt Sign

(
e1,t

)
, ρ > 0

ρt = ρ
∥
∥e1,t

∥
∥ , ρ > 0

e1,t := x̂1,t − x1,t
Sign

(
e1,t

) := (
sign(e11,t ), . . . , sign(e1n,t )

)ᵀ

x̂2,t = vt

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.54)
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3.3.3.2 Main Result

Theorem 3.3 Under the assumption above the observer (3.54) for large enough

ρ ≥
√

X+
2ε

, ε > 0

provides the “small” error of the state estimate et =
(

e1,t
e2,t = vt − x2,t

)

fulfilling

•
E

{
1

2

∥
∥e1,t

∥
∥2
}

≤ ε + O
(
e−ρt

)

• ∥
∥x2,t − vt

∥
∥ ≤ 2εα(1−β)

valid for any α ≤ (0, 1/2) , β ∈ (0, 1) and large enough t > 0 with probability
1 − 2ε1−2α .

Proof For e1,t we have
de1,t = (

vt − x2,t
)
dt

Notice that in this equation the diffusion term is absent. Defining

V
(
e1,t

) = 1

2

∥
∥e1,t

∥
∥2

we have

dV
(
e1,t

) = eᵀ
1,t de1,t = eᵀ

1,t

(
vt − x2,t

)
dt

which implies

V
(
e1,t+Δt

) − V
(
e1,t

) =
t+Δt∫

τ=t

eᵀ
1,τ

(
vτ − x2,τ

)
dτ (3.55)

Applying the mathematical expectation operator too both sides of (3.55), then dev-
iding by Δt tending to zero, we get

d

dt
E
{

V
(
e1,t

)} = E
{
eᵀ
1,t

(
vt − x2,t

)}

= E

{

−ρ
∥
∥e1,t

∥
∥

n∑

i=1

∣
∣e1i,t

∣
∣ − eᵀ

1,t x2,t

}
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In view of the inequality

n∑

i=1

∣
∣e1i,t

∣
∣ ≥ ∥

∥e1,t
∥
∥

and applying the Cauchy–Schwartz inequality, for

V̄t := E
{

V
(
e1,t

)}

we obtain

d

dt
V̄t = E

{

−ρ
∥
∥e1,t

∥
∥

n∑

i=1

∣
∣e1i,t

∣
∣ − eᵀ

1,t x2,t

}

≤

−E
{
ρ
∥
∥e1,t

∥
∥2
}

+
√

E
{∥
∥e1,t

∥
∥2
}√

E
{∥
∥x2,t

∥
∥2
}

≤ −E
{
ρ
∥
∥e1,t

∥
∥2
}

+ X1/2
+

√

E
{∥
∥e1,t

∥
∥2
}

or, equivalently,

d

dt
V̄t ≤ −2ρV̄t + √

2X+
√

V̄t

= 2ρ
√

V̄t

(√
X+/2

ρ
−

√
V̄t

)

If
√

V̄t >

√
X+/2

ρ
the right-hand side of this inequality is negative. Therefore the

attraction region is

lim sup
t→∞

√

V̄t ≤
√

X+/2

ρ

and moreover, by the integrating by parts we may conclude that V̄t exponentially
fulfills

V̄t ≤ X+
2ρ2

+ ce−ρt , c > 0

So, for large enough ρ we can make V̄t less than any desired ε, namely

V̄t = E
{

V
(
e1,t

)} ≤ ε + O
(
e−ρt

)
(3.56)
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if

ρ ≥
√

X+
2ε

(3.57)

By the Chebyshev inequality

P
{∥
∥e1,t

∥
∥ > ε

} ≤ 1

ε2
E
{∥
∥e1,t

∥
∥2
}

= 2

ε2

(
ε + O

(
e−ρt

))

For ε := εα (α ∈ (0, 1/2)) we have

P
{∥
∥e1,t

∥
∥ > ε

} ≤ O
(
ε1−2α

) →
ε→0

0 (3.58)

Consider now the set Ω0 ⊂ Ω of the realizations ω ∈ Ω containing only the trajec-
tores satisfying

∥
∥e1,t (ω)

∥
∥ ≤ ε, that is,

Ω0 := {
ω ∈ Ω | ∥∥e1,t (ω)

∥
∥ ≤ ε

}

By (3.58)

P {Ω0} = 1 − P
{∥
∥e1,t

∥
∥ > ε

} ≥ 1 − O
(
ε1−2α

)
(3.59)

and hence, the right-hand side of (3.59) may be done closed to one by the special
selection of ρ, satisfying (3.57). In view of that for almost all ω ∈ Ω0

de1,t (ω) = dx̂1,t (ω) − dx1,t (ω)

= (
vt (ω) − x2,t (ω)

)
dt

or, in the integral format for any continuous trajectory

e1,t+Δt (ω) − e1,t (ω) =
t+Δt∫

τ=t

(
vτ (ω) − x2,τ (ω)

)
dτ

= (
vτ ′ (ω) − x2,τ ′ (ω)

)
Δt, τ ′ ∈ (t, t + Δt)

This is equivalent to

1

Δt

(
e1,t+Δt (ω) − e1,t (ω)

) = vτ ′ (ω) − x2,τ ′ (ω)
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which leads for small enough Δt = εβ (β ∈ (0, 1)) to the following relation

∥
∥vτ ′ (ω) − x2,τ ′ (ω)

∥
∥ =

1

Δt

∥
∥e1,t+Δt (ω) − e1,t (ω)

∥
∥ ≤ 2ε

Δt

= 2ε1−β = 2εα(1−β) = o
(
ε1/2

)

This means that x2,t (ω) may be estimated as

x̂2,t (ω) = vt (ω) + o
(
ε1/2

) � vt (ω)

for almost all ω ∈ Ω0. According to (3.59) measure of such relation is closed to 1
for large enough ρ (3.57). Theorem is proven.

Remark 3.5 One may consider also the, so-called, smooth version of the estimate
x̂2,t (ω) obtained as

x̂2sm,t = v̂sm,t

τ d
dt v̂sm,t = −v̂sm − vt , 0 < τ � 1

⎫
⎬

⎭
(3.60)

Remark 3.6 Notice that when we have no stochastic noise (d0 = d1 = 0) the sug-
gested state estimation method exactly coincides with the classical equivalent con-
trol method with adjusted gain parameter (ρt = ρ

∥
∥e1,t

∥
∥) and in this case vt = veq,t ,

where veq,t is the equivalent control for deterministic case, as well as v̂sm,t = ṽeq,t

where ṽeq,t is the smooth realization of veq,t obtained as the output of the first-order
low-pass filter (3.60).

3.3.4 Numerical Simulation

3.3.4.1 Single Dimensional State Component

Now for simulation purposes, consider the simple plant with n = 1, i.e., one state
x1,t and its velocity x2,t :

dx1,t
a.s.= x2,tdt

dx2,t = −0.5x2
[
tan−1 (x1)

]
dt + [16 + x2] dWt

yt = x1,t

The stochastic noise is assumed to be both additive and multiplicative nature. In
the suggested observer with x̂2,t = v̂sm,t we took ρ = 90, and in the low-pass filter
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Fig. 3.8 The state x1,t and
its estimate x̂1,t
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Fig. 3.9 The state x2,t and
its estimate x̂2,t
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the parameter is taken as τ = 0.001. The results of the numerical simulation are
shown in Figs. 3.8 and 3.9.

One can see that the estimates x̂1,t of the state x1,t are practically ideal from
the first moments of the process. As for the estimates of the velocity component
x2,t , subjected to stochastic perturbation, we can see the sufficiently good estimation
process excepting the first moments in the beginning of the process that may be
related to the initial value selection v̂sm,0 in the low-pass filter.

3.3.4.2 Two Dimensional State Component Vector

Consider nowmore complex model containing 2 coordinates x1,t =
(

x11,t
x12,t

)

and the

velocities x2,t =
(

x21,t
x22,t

)

connected by the following relation

⎛

⎝
dx11,t

dx12,t

⎞

⎠ a.s.=
⎛

⎝
x21,t

x22,t

⎞

⎠ dt
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dx21,t

dx4,t
=

⎛

⎜
⎜
⎝

−0.5x21
[
tan−1

(
x11,t

)]

∣
∣x21,t

∣
∣ + ∣

∣x22,t
∣
∣

1 + ∣
∣x21,t

∣
∣ + ∣

∣x22,t
∣
∣

⎞

⎟
⎟
⎠ dt

+
([

16 + x21,t
]

0.5x12,t

)

dWt

and

yt =
(

x11,t
x21,t

)

The parameters of the filter are taken as in the previous example. We obtained the
following behavior of the plant and observer coordinates:

The presented Figs. 3.10, 3.11, 3.12 and 3.13 clearly demonstrate a good worka-
bility of the suggested observer (3.54).

Fig. 3.10 The state x11,t and
its estimate x̂11,t
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Fig. 3.11 The state x12,t and
its estimate x̂12,t
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Fig. 3.12 The state x21,t and
its estimate x̂21,t
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Fig. 3.13 The state x22,t and
its estimate x̂22,t
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3.3.5 Conclusion

Here we demostrate that

• in the case of stochastic systems, governed by the stochastic differential equations
of the Itô type, which contain stochastic unbounded and deterministic bounded
perturbations, we can not speak on SMC in the traditional deterministic sense.
Sliding Mode dynamics on the sliding surface s (x) = 0 may be understood only
as the asymptotic convergence of the mean squared value E

{‖s (xt )‖2
}
to the

μ-zone suggested to be referred to as μM S-convergence;
• to realize this convergence the gain parameter of discontinuous controller should
be state-dependent on norms ‖s (xt )‖ (if we deal with multi sliding surfaces)
considered on the system trajectories;

• the exponential convergence of the square-norm of the averaged squared norm of
the sliding variable to μ-zone (around the sliding surface) is guaranteed. It can be
done small enough by higher gain parameter selection k0;

• for stability analysis of the stochastic version of super-twist controller we suggest
to apply a new technique, based on the Lyapunov functions suggested for the
deterministic versions of the same system. It is shown that the special selection of
one of gain-parameters of such controller provides it with an “adaptivity property”
which guarantees the mean-square convergence of the applied Lyapunov function
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to the prespecified zone depending on the diffusion parameter and parameters of
the controller;

• we suggest the sliding mode observer with the gain parameter linearly depending
on the norm of the output estimation error which is available during the process. It
is shown that for any desired ε > 0 the selection of the large enough gain parameter

ρ ≥
√

X+
2ε

may guarantee for large enough t > 0 the quality of the second vector-

component ∥
∥x2,t − vt

∥
∥ ≤ 2εα(1−β), α ≤ (0, 1/2) , β ∈ (0, 1)

with the probability

P
{
ω ∈ Ω | ∥∥x2,t (ω) − vt (ω)

∥
∥ ≤ 2εα(1−β)

} ≥ 1 − 2ε1−2α

closed to one.

The numerical simulations show a good workability of the suggested technique.
Stochastic Sliding Mode Control and State Estimation Approach, discussed in

this chapter, may be considered and spread in the following directions: the Equiv-
alent Control Method for stochastic SM, Stochastic Twist, Super-Twist and Nested
controllers, Stochastic Integral SM, Stochastic SM observers, Output based SMwith
stochastic perturbations, Adaptive stochastic SM and etc. The deterministic versions
of some problems mentioned above can be found in [2, 21, 35, 36].

Acknowledgements The author would like to express his appreciation to Prof. V. Utkin for his
critical comments and suggestions concerning the first part of this chapter and to my MS-student
Edgar Pelaez for his help with the simulations of the stochastic observer examples.
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Chapter 4
Practical Stability Phase and Gain
Margins Concept

Yuri Shtessel, Leonid Fridman, Antonio Rosales
and Chandrasekhara Bharath Panathula

4.1 Introduction

Finite-Time Convergent Controllers (FTCC), specifically, Sliding Mode/Higher
Order Sliding Mode (SM/HOSM) controllers provide finite-time convergence for
sliding set (sliding variable and consecutive time sliding variable derivatives) of
any arbitrary relative degree system to the origin in the presence of matched and
bounded perturbations, which significantly affects sliding variable dynamics [1, 2].
The advantages of FTCC have been investigated and reported by many works, some
of which are [1–5].

A compelling issue is with the certification of FTCC robustness to unmodeled
dynamics for practical application. In classical control theory, robustness of linear
controllers to unmodeled dynamics is characterized by PhaseMargin (PM) and Gain
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Margin (GM). It is to be worth noting that controller must achieve prescribed values
on PM and GM for obtaining deployment certification [6]. For example, according
to Goddard space flight center [6], required PM = 30◦ and GM = 12 dB in order
for controller to be eligible for flight space control. Unfortunately, these classical
robustness metrics (PM and GM) are hard to justify for nonlinear FTCC.

A side effect of finite-time convergence provided by FTCC is chattering/limit-
cycle (self-sustained oscillations exhibited by sliding variable with non-zero ampli-
tude and high, but finite, frequency) that may occur due to the presence of unmodeled
dynamics, which are exists in any mathematical model used for control design [7],
and due to theoretical infinite gain at the origin. Chattering in systems controlled by
FTCCdue to unmodeled dynamics of physical actuators, such as, hydraulic and pneu-
matic actuators, etc., was investigated by several authors, including but not limited
to [3, 8–17].

The predicted chattering in systems controlled by FTCC due to the presence of
unmodeled dynamics can be analyzed using time domain techniques like Poincare
maps [11, 18, 19]. Note that such techniques are often used for analysis of second
order systems, and are hard to determine chattering/limit-cycle parameters (ampli-
tude and frequency of main harmonic). On the other hand, frequency domain tech-
niques like Tsypkin Locus [20], LPRS [3], the method of solving Harmonic Balance
equation using Describing Function of FTCC (DF-HB) [21, 22] can be used to deter-
mine predicted chattering parameters. However, Tsypkin Locus [20] and LPRS [3]
methods are mostly limited to relay controlled system.

DF-HB method is the only engineering method that is heavily used for predicting
limit-cycle parameters (amplitude and frequency of main harmonic) in nonlinear
systems [21, 22]. The exactness of DF-HBmethod to dynamically perturbed systems
controlled by FTCC in predicting and analyzing chattering parameterswas confirmed
by many works, such as [3, 9].

DFs for second order FTCC, such as, twisting and super-twisting SM controllers
(see [23, 24], for example), were realized analytically by representing the controllers
with known nonlinearities, whose DFs are available in DF tables [14, 21, 22, 25],
since the complexity of controllers is less. Analytical computation of DFs for higher
order FTCC, specifically, nested [26] and quasi-continuous [27] HOSM controllers
is very hard due to the complexity of control algorithms.

A certain level of chattering/limit-cycle parameters (maximum value of amplitude
and minimum value of frequency for main harmonic), which are acceptable in prac-
tical control system in the sense of practical stability, is defined as Tolerance Limits
(T L). Then, based on T L , acceptable chattering is characterized in terms of Practical
Stability Phase Margin (PSPM) and Practical Stability Gain Margin (PSGM) as
maximum additional phase lag and maximum additional gain that can be added to
FTC-controlled system, while sliding variable exhibits chattering/limit-cycle satis-
fying T L , respectively. These robustness metrics (PSPM and PSGM) acts as a
tool for FTCC to present robustness to unmodeled dynamics to obtain deployment
certification.
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The main contributions of this work are as follows:

1. A new concept of chattering characterization for the systems driven by finite-time
convergent controllers (FTCC) in terms of practical stabilitymargins is presented.
Specifically,

a. The notion of Tolerance Limits (T L) is proposed as the admissible level of
chattering exhibited by sliding variable due to the presence of unmodeled
dynamics in systems controlled by FTCC.

b. The metrics of robustness, Practical Stability Phase Margins (PSPM) and
Practical StabilityGainMargin (PSGM), are proposed for quantifyingFTCC
robustness to unmodeled dynamics.

c. It is proposed to cascade FTCC with linear compensator for achieving pre-
scribed values of PSPM and PSGM .

2. The numerical algorithms for identifying proposed robustness metrics (PSPM
and PSGM) are developed and proposed using DF-HB method.

a. A numerical algorithm for the identification of DF of FTCC is proposed. A
database of DFs for FTCC, specifically, N-HOSM and Q-HOSM controllers
is developed.

b. A numerical algorithm for obtained chattering parameters, amplitude and
frequency, by solving HB equation is proposed.

c. Numerical algorithms for the identification of proposed robustness metrics
(PSPM and PSGM) are proposed.

3. It is shown how the concept of practical stability margin can close the gap of
certification for FTCC robustness to unmodeled dynamics. Proposed approach is
validated on a case study of controlling attitude of F-16 aircraft.

4.2 Problem Formulation

Consider SISO continuous-time dynamic system

ẋ(t) = a(t, x) + b(t, x)v, σ (t) = σ(t, x), (4.1)

where x(t) ∈ R
n is a vector of system states, a(t, x), b(t, x) ∈ R

n are partially known
smooth enough and known Lipschitz vector fields, respectively, σ(t) ∈ R is a sliding
variable or a system output, and v ∈ R is a small constant characterizing unmodeled
dynamics. Let rd be relative degree of system (4.1).

The input-output dynamics of system (4.1) are derived as

σ (rd ) = g(t, x) + h(t, x)v, rd ≤ n, (4.2)
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where g(t, x) = σ (rd )|v=0 is unknown smooth function, and h(t, x) = ∂
∂v (σ

(rd )) �= 0
is a known smooth function. Assuming that g(t, x) does not depend on x , g(t, x) =
ζ(t) and ζ̇ (t) is bounded, i.e., |ζ̇ (t)| ≤ L , L > 0, h(t, x)v = u(t), and internal/zero
dynamics are stable, input-output dynamics in Eq. (4.2) are rewritten as

σ (rd ) = u(t) + ζ(t). (4.3)

Suppose system (4.1) is actuated by unmodeled dynamics

μż = f (z, u); v = v(z), (4.4)

where z ∈ R
m , u ∈ R is a FTCC, μ > 0 is a small time constant, output of v(z)

is a continuous function, and f (z, u) is a Lipschitz function. From [4, 26, 27], it
is known that FTCC of order r = rd , being applied to system (4.1), drives sliding
set {σ, σ̇ , σ̈ , . . . , σ (r−1)} to zero in finite time in the case of SM/HOSM control,
and to a small vicinity of the origin in the other FTCC cases. However, FTCC u
that is applied to dynamically perturbed system (4.1), (4.4) may not drive the set
{σ, σ̇ , σ̈ , . . . , σ (r−1)} → 0, and chattering (limit cycle with non-zero amplitude and
finite frequency) may occur due to theoretical infinite gain at the origin.

Dynamically perturbed system (4.1), (4.4) is linearized in the vicinity of the origin,

ẋ = Ax + Bu + ξ,

σ = Cx, (4.5)

where x ∈ R
n+m , u ∈ R, matrix A and vectors B,C have appropriate dimensions,

σ ∈ R, and ξ ∈ R
n+m represents a vector of uncertainties and perturbations, includ-

ing the difference between original and linearized systems. Usually, FTCC is able
to compensate the perturbations/uncertainties (SM/HOSM controllers compensate
them exactly, while the other FTCC attenuate them). A side effect of this con-
trol/compensation is chattering/limit-cycle (self-sustained oscillations exhibit by
sliding-variable/system-output σ ) that may occur due to cascade unmodeled dynam-
ics. In this chapter, the robustness of FTCC to unmodeled dynamics is quanti-
fied, while chattering in dynamically perturbed FTC-controlled systems is analyzed
assuming that the uncertainty/perturbation ξ is compensated completely by FTCC.

The following example illustrates the side effect (chattering) of finite-time conver-
gence provided byFTCC to system (4.1) output in the presence of cascade unmodeled
dynamics.

Example 4.1 Consider a linearized system (4.5) as

ẋ1 = x2, ẋ2 = −8x1 − 3x2 + u1, σ = x1. (4.6)
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(a)

(b)

Fig. 4.1 σ in the a dynamically unperturbed (4.6) and b dynamically perturbed (4.6), (4.8) system
controlled by FTCC (4.7)

The dynamically unperturbed system (4.6) is controlled by the FTCC [4]

u = −μ1|σ | α
2−α sign[σ ] − μ2|σ̇ |αsign[σ̇ ], (4.7)

with α = 0.5 and μ1, μ2 = 1, i.e., u1 = u.
Figure4.1a shows that the output σ is driven to zero in finite-time, when order of

control (4.7) is equal to relative degree of system (4.6), i.e., r = rd .
Next, cascade unmodeled dynamics are considered as

u̇1 = u2, u̇2 = − 1

T 2
u1 − 1

T
u2 + 1

T 2
u. (4.8)

Then, the samecontrol (4.7), including samecontrol gains, is given to the dynamically
perturbed system (4.6), (4.8) with T = 0.01.

Figure4.1b shows that the output σ of dynamically perturbed system (4.6), (4.8)
controlled by FTCC (4.7) exhibits chattering with non-zero amplitude and high, but
finite, frequency due to infinite gain at the origin.
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In this chapter, the robustness of FTCC to cascade unmodeled dynamics is charac-
terized in terms of chattering parameters (amplitude and frequency ofmain harmonic)
using DF-HB technique. The outlined problem is as follows:

(a) To introduce the notion of Tolerance Limits in terms of the amplitude Ac > 0 and
the frequency ωc > 0 that correspond to acceptable self-sustained oscillations
of sliding variable σ in dynamically perturbed system (4.1), (4.4) controlled by
FTCC.

(b) To introduce the notions of Practical StabilityMargins (PSPM and PSGM) that
characterize the practical stability of closed loop system (4.1), (4.4) controlled
by FTCC to additional dynamic perturbations.

(c) To develop the algorithms for computing PSPM and PSGM in the system
(4.1), (4.4) controlled by FTCC.

(d) To develop the design algorithm of cascade linear compensator to FTCC for
enforcing prescribed values of PSPM and PSGM .

(e) To validate the proposed theoretical developments on a case study of controlling
attitude of F-16 aircraft.

4.3 Frequency Domain Analysis of Systems
Controlled by FTCC

DF-HB technique, a frequency domain method, allows computing the predicted
chattering/limit-cycle parameters (amplitude A and the frequency ω of fundamental
harmonic) in dynamically perturbed FTC-controlled system (4.1), (4.4) by solving
HB equation [3, 9, 21, 22]:

W ( jω) = −N−1(A, ω), (4.9)

where N (A, ω) is DF of FTCC, and W ( jω) = C(s I − A)−1B. It is assumed that
the computed W ( jω) meets the following assumptions:

A1. W ( jω) has the low-pass filter properties, i.e., |W ( jω)| >> |W ( jnω)| for n =
2, 3, ...

A2. Amplitude and phase frequency characteristics of W ( jω) are monotonously
decreasing functions, i.e., for ω1 < ω2, |W ( jω1)| > |W ( jω2)| and arg
W ( jω1) > argW ( jω2).

4.3.1 Tolerance Limits in FTC-controlled Systems

Definition 4.1 The frequency 0 < ωc < ∞ and the amplitude Ac > 0 are said to be
the Tolerance Limits (T L) for the limit cycle of sliding variable σ , if the amplitude
A ≤ Ac and the frequency ω ≥ ωc of the limit cycle correspond to the acceptable
performance of the FTC-controlled dynamically perturbed closed-loop system.
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Note that σ -limit cycle may not satisfy T L in all the cases loosing practical stabil-
ity due to the presence of unmodeled dynamics, which are inescapable in any math-
ematical model used for control design. Therefore, it is proposed to quantify FTCC
robustness to unmodeled dynamics by using practical stability Margins (PSPM and
PSGM), whose definitions are introduced in the next section, like in classical linear
control systems.

4.3.2 Practical Stability Margins in FTC-controlled Systems

Definition 4.2 (Practical Stability Gain Margin) The PSGM in the closed loop
system controlled by FTCC is the maximum additional gain added to the frequency
characteristic of the linear (linearized) plant W ( jω), while the output σ exhibits
a limit cycle with marginally reached amplitude A = Ac and/ frequency ω = ωc

whichever comes first.

Definition 4.3 (Practical Stability Phase Margin) The PSPM in the closed loop
system controlled by FTCC is themaximal additional phase shift that can be added to
the frequency characteristic of the linear (linearized) plant W ( jω), while the output
σ exhibits a limit cycle with marginally reached amplitude A = Ac and/ frequency
ω = ωc whichever comes first.

The metrics (PSPM and PSGM) are used to quantify FTCC robustness to
unmodeled dynamics, and are used as a tool for obtaining control certification for
practical implementation. The algorithms for the identification of robustness metrics
(PSPM and PSGM) are developed using DF-HB method in the next section.

4.3.3 Development of Algorithms for the Identification
of Practical Stability Margins

DF-HB method is used to develop algorithms for the identification of practical sta-
bility margins (PSPM and PSGM), while assuming A1 and A2.

4.3.3.1 Numerical Algorithm for DF Identification

It is very hard to compute analytical DFs for higher order (r ≥ 2) FTCC, since the
complexity of control algorithms will be increased. So, it is proposed to use the
following numerical algorithm for the identification of DF for FTCC [28]:
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1. Isolate the FTCC from the frequency characteristics of the linearized dynamically
perturbed system (4.5), i.e., W ( jω).

2. Excite the FTCC by a set of sinusoidal inputs Ek,i = Ak sin(ωi t) of the known
amplitude Ak and the known frequency ωi , where k, i = 1, 2, 3, . . .

3. Compute the output uk,i of the FTCC.
4. Using the Fourier series technique, compute the DF of the FTCC as follows

[21, 22],

Nk,i (Ak, ωi ) = 2

T Ak

∫ T

0
fk,i (Ak sin(ωi t), t) (sin(ωi t) + j cos(ωi t)) dt,

(4.10)

where T = 2π
ωi

and fk,i (Ak sin(ωi t), t) = uk,i .

Negative reciprocals ofDF,−N−1
i,k (Ak, ωi ), for FTCC is represented in the form of

a look-up Table4.1, where each element Re(−N−1(Ak, ωi )) + jIm(−N−1(Ak, ωi ))

corresponds to the sinusoidal input Ek,i = Ak sin(ωi t).
A database of DFs for higher order FTCC, specifically, Nested [26] (N-HOSM)

and Quasi-continuous [27] (Q-HOSM) controllers (upto r ≤ 4) is developed using
the proposed numerical algorithm as follows:

The family of N-HOSM control algorithms for any arbitrary value of r is given
by [26]

u = −λ
r−1,r
(
σ, σ̇ , .., σ (r−1)

)
, (4.11)

where

Ei,r = (|σ |κ/r + |σ̇ |κ/(r−1) + ... + |σ (i−1)|κ/(r−i+1)
)
,


0,r = sign[σ [, 
i,r = sign[σ (i) + χi Ei,r
i−1,r ],

λ > 0 is a controller gain, κ > 1 and χi > 0 (i = 1, 2, .., r − 1) represent the control
parameters.

Table 4.1 −N−1(Ak , ωi )

look-up table representation
ω A

A1 · · · Ak

ω1 Re(−N−1(A1, ω1)) +
jIm(−N−1(A1, ω1))

· · · Re(−N−1(Ak , ω1)) +
jIm(−N−1(Ak , ω1))

ω2 Re(−N−1(A1, ω2)) +
jIm(−N−1(A1, ω2))

· · · Re(−N−1(Ak , ω2)) +
jIm(−N−1(Ak , ω2))

.

.

.
.
.
.

.

.

.
.
.
.

ωi Re(−N−1(A1, ωi )) +
jIm(−N−1(A1, ωi ))

· · · Re(−N−1(Ak , ωi )) +
jIm(−N−1(Ak , ωi ))
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For instance, the N-HOSM control algorithms for r ≤ 4 can be written as [26]

r = 1; u = − λsign [σ ] ,

r = 2; u = − λsign
[
σ̇ + |σ |1/2sign [σ ]] ,

r = 3; u = − λsign
[
σ̈ + 2 (|σ̇ |3 + |σ |2)1/6sign [σ̇ + |σ |2/3sign [σ ]]] ,

r = 4; u = − λsign
[...
σ + 3 (σ̈ 6 + σ̇ 4 + |σ |3]1/12sign [

σ̈ + (σ̇ 4 + |σ |3)1/6×
sign

[
σ̇ + 0.5|σ |3/4sign [σ ]]]] , (4.12)

where λ > 0 is a controller gain.
The family of Q-HOSM control algorithms for any arbitrary value of r is given

by [27]

u = −λ
r−1,r (σ, σ̇ , .., σ (r−1)), (4.13)

where

E0,r = σ, D0,r = |σ |, 
0,r = E0,r

D0,r
= sign [σ ] , 
i,r = Ei,r

Di,r
,

Ei,r = σ (i) + χi D
(r−i)/(r−i+1)
i−1,r 
i−1,r ; Di,r = |σ (i)| + χi D

(r−i)/(r−i+1)
i−1,r ,

λ > 0 is the controller gain, and χi > 0 (i = 1, 2, .., r − 1) represents the control
parameters.

For instance, the Q-HOSM control algorithms for r ≤ 4 can be written as [27]

r = 1; u = − λsign [σ ] ,

r = 2; u = − λ
(
σ̇ + |σ |1/2sign [σ ]) /

(|σ̇ | + |σ |1/2) ,

r = 3; u = − λ
(
σ̈ + 2 (|σ̇ | + |σ |2/3)−1/2(σ̇ + |σ |2/3sign[σ ])) /

(|σ̈ | + 2 (|σ̇ | + |σ |2/3)1/2) ,

r = 4; u = − λE3,4/D3,4,

E3,4 = ...
σ + 3

(
σ̈ + (|σ̇ | + 0.5|σ |3/4)−1/3(σ̇ + 0.5|σ |3/4sign [σ ]))×

(|σ̈ | + (|σ̇ | + 0.5|σ |3/4)2/3)1/2 ,

D3,4 = |...σ | + 3
(
σ̈ + (|σ̇ | + 0.5|σ |3/4)2/3)1/2 , (4.14)

where λ > 0 is a controller gain.
DFs for N-HOSM (4.12) and Q-HOSM (4.14) controllers with r = 2, 3, 4 and

λ = χ = 1 are computed using the proposed numerical procedure. The controllers
are excited by a set of sinusoidal inputs Ek,i = Ak sin(ωi t)with Ak ∈ [0.0001, 0.01]
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Table 4.2 −N−1(Ak , ωi ) look-up table for N-HOSM (r = 2)

ω A

0.0001 · · · 0.00998 0.01

30 −7.821 × 10−5 +
j7.046 × 10−6

· · · −2.555 × 10−3 +
j7.406 × 10−3

−0.002.560 × 10−3 +
j7.421 × 10−3

30.541 −7.819 × 10−5 +
j7.339 × 10−6

· · · −2.510 × 10−3 +
j7.421 × 10−3

−0.002.515 × 10−3 +
j7.436 × 10−3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

298.917 −2.667 × 10−5 +
j7.333 × 10−5

· · · −0.445 × 10−3 +
j7.772 × 10−3

−0.000.446 × 10−3 +
j7.787 × 10−3

299.458 −2.736 × 10−5 +
j7.343 × 10−5

· · · −0.380 × 10−3 +
j7.811 × 10−3

−0.000.381 × 10−3 +
j7.826 × 10−3

300 −2.586 × 10−5 +
j7.382 × 10−5

· · · −0.298 × 10−3 +
j7.799 × 10−3

−0.000.298 × 10−3 +
j7.815 × 10−3

Table 4.3 −N−1(Ak , ωi ) look-up table for N-HOSM (r = 3)

ω A

0.0001 · · · 0.00998 0.01

30 −4.826 × 10−5 +
j6.192 × 10−5

· · · 7.777 × 10−3 +
j0.974 × 10−3

7.792 × 10−3 +
j0.976 × 10−3

30.541 −3.867 × 10−5 +
j7.989 × 10−5

· · · 7.779 × 10−3 +
j0.951 × 10−3

7.795 × 10−3 +
j0.953 × 10−3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

298.917 7.8247 × 10−5 +
j6.243 × 10−6

· · · 7.825 × 10−3 +
j0.393 × 10−3

7.841 × 10−3 +
j0.394 × 10−3

299.458 7.8280 × 10−5 +
j6.136 × 10−6

· · · 7.833 × 10−3 +
j0.267 × 10−3

7.848 × 10−3 +
j0.267 × 10−3

300 7.8235 × 10−5 +
j6.539 × 10−6

· · · 7.831 × 10−3 +
j0.300 × 10−3

7.846 × 10−3 +
j0.301 × 10−3

and ωi ∈ [30, 300], and the corresponding negative inverse of DFs are tabulated in
Tables4.2, 4.3, 4.4, 4.5, 4.6 and 4.7.

4.3.3.2 Numerical Algorithm for Computing Predicted Chattering
Parameters

The parameters of predicted chattering in dynamically perturbed FTC-controlled
system (4.1), (4.4) are computed by solving DF-HB eq. numerically as follows.
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Table 4.4 −N−1(Ak , ωi ) look-up table for N-HOSM (r = 4)

ω A

0.0001 · · · 0.00998 0.01

30 2.597 × 10−5 −
j7.432 × 10−5

· · · 0.302 × 10−3 −
j7.852 × 10−3

0.303 × 10−3 −
j7.868 × 10−3

30.541 2.507 × 10−5 −
j7.462 × 10−5

· · · 0.297 × 10−3 −
j7.852 × 10−3

0.285 × 10−3 −
j7.868 × 10−3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

298.917 4.698 × 10−6 −
j8.020 × 10−5

· · · 0.468 × 10−3 −
j8.005 × 10−3

0.469 × 10−3 −
j8.020 × 10−3

299.458 4.011 × 10−6 −
j8.062 × 10−5

· · · 0.278 × 10−3 −
j8.051 × 10−3

0.279 × 10−3 −
j8.067 × 10−3

300 3.137 × 10−6 −
j8.055 × 10−5

· · · 0.313 × 10−3 −
j8.039 × 10−3

0.279 × 10−3 −
j8.067 × 10−3

Table 4.5 −N−1(Ak , ωi ) look-up table for Q-HOSM (r = 2)

ω A

0.0001 · · · 0.00998 0.01

30 −8.289 × 10−5 +
j2.837 × 10−5

· · · −4.453 × 10−3 +
j7.774 × 10−3

−4.460 × 10−3 +
j7.791 × 10−3

30.541 −8.285 × 10−5 +
j2.876 × 10−5

· · · −4.408 × 10−3 +
j7.790 × 10−3

−4.415 × 10−3 +
j7.806 × 10−3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

298.917 −4.527 × 10−5 +
j7.672 × 10−5

· · · −1.038 × 10−3 +
j7.956 × 10−3

−1.040 × 10−3 +
j7.972 × 10−3

299.458 −4.560 × 10−5 +
j7.696 × 10−5

· · · −1.035 × 10−3 +
j7.994 × 10−3

−1.036 × 10−3 +
j8.010 × 10−3

300 −4.498 × 10−5 +
j7.706 × 10−5

· · · −1.015 × 10−3 +
j7.978 × 10−3

−1.016 × 10−3 +
j7.994 × 10−3

Table 4.6 −N−1(Ak , ωi ) look-up table for Q-HOSM (r = 3)

ω A

0.0001 · · · 0.00998 0.01

30 9.441 × 10−6 +
j0.155 × 10−3

· · · 8.515 × 10−3 +
j2.468 × 10−3

8.532 × 10−3 +
j2.471 × 10−3

30.541 1.375 × 10−5 +
j0.155 × 10−3

· · · 8.501 × 10−3 +
j2.419 × 10−3

8.517 × 10−3 +
j2.422 × 10−3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

298.917 8.069 × 10−5 +
j1.345 × 10−5

· · · 7.852 × 10−3 +
j0.513 × 10−3

7.868 × 10−3 +
j0.514 × 10−3

299.458 8.082 × 10−5 +
j1.302 × 10−5

· · · 7.860 × 10−3 +
j0.435 × 10−3

7.876 × 10−3 +
j0.435 × 10−3

300 8.071 × 10−5 +
j1.295 × 10−5

· · · 7.858 × 10−3 +
j0.447 × 10−3

7.873 × 10−3 +
j0.448 × 10−3
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Table 4.7 −N−1(Ak , ωi ) look-up table for Q-HOSM (r = 4)

ω A

0.0001 · · · 0.00998 0.01

30 5.268 × 10−5 −
j9.213 × 10−5

· · · 0.942 × 10−3 −
j8.083 × 10−3

0.943 × 10−3 −
j8.099 × 10−3

30.541 5.112 × 10−5 −
j9.181 × 10−5

· · · 0.918 × 10−3 −
j8.076 × 10−3

0.920 × 10−3 −
j8.092 × 10−3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

298.917 5.813 × 10−6 −
j8.045 × 10−5

· · · 0.480 × 10−3 −
j8.007 × 10−3

0.481 × 10−3 −
j8.023 × 10−3

299.458 4.961 × 10−6 −
j8.090 × 10−5

· · · 0.310 × 10−3 −
j8.053 × 10−3

0.311 × 10−3 −
j8.069 × 10−3

300 4.906 × 10−6 −
j8.079 × 10−5

· · · 0.335 × 10−3 −
j8.042 × 10−3

0.335 × 10−3 −
j8.058 × 10−3

HB Eq. (4.9) is rewritten as

W ( jωi ) + N−1(Ak, ωi ) = 0, (4.15)

where N−1(Ak, ωi ) is presented in the table look-up format, see Table4.1, where Ak

and ωi are the amplitude and the frequency of the predicted limit cycle that are to be
identified. By equating real and imaginary parts of the both sides of Eq. (4.15) we
obtain

F1(ωi , Ak) = Re {W ( jωi )} + Re
{
N−1(Ak, ωi )

} = 0,

F2(ωi , Ak) = Im {W ( jωi )} + Im
{
N−1(Ak, ωi )

} = 0.

Next, two equations with two variables are solve numerically using the Newton–
Raphson method [29].

ωi+1 = ωi − 1

Ji,k

[
F1

∂F2

∂Ak
− F2

∂F1

∂Ak

]
, (4.16)

Ak+1 = Ak + 1

Ji,k

[
F1

∂F2

∂ωi
− F2

∂F1

∂ωi

]
, (4.17)

where Ji,k = ∂F1
∂ωi

∂F2
∂Ak

− ∂F1
∂Ak

∂F2
∂ωi

�= 0. Since analytical representation of F1 and F2 is
not available, partial derivatives are obtained numerically as well,

∂F1,2

∂ω
= F1,2(ωi−1, Ak) − F1,2(ωi , Ak)

ωi−1 − ωi
,

∂F1,2

∂A
= F1,2(ωi , Ak−1) − F1,2(ωi , Ak)

Ai−1 − Ai
. (4.18)
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Given an initial solution guess Ak = A0 and ωi = ω0, Eqs. (4.16) and (4.17) are
solved iteratively. The iterations stop when the conditions

∣∣∣∣ωi+1 − ωi

ωi+1

∣∣∣∣ < εω;
∣∣∣∣ Ak+1 − Ak

Ak+1

∣∣∣∣ < εA,

re satisfied, where εω > 0 and εA > 0 are tolerance errors for frequency and ampli-
tude, respectively, and the solution of Eq. (4.15) is approximately identified. If the
error conditions are not satisfied in a reasonable amount of iterations, the iterative
algorithm is to start from a new initial solutions guess, A0 and ω0.

4.3.3.3 Stability of Predicted Limit Cycles

Proposition 4.1 If the predicted limit cycle of dynamically perturbed linearized
system (4.5) with W ( jω) satisfying the assumptions A1 and A2 and controlled by
FTCC is locally stable, then the following inequality holds,

(ρ� + γ�)|Ao,ωo
> |W ( jωo)|2 �|Ao,ωo

, (4.19)

where Ao, ωo are the parameters of the limit cycle,

ρ = Re{W ( jω)}Re{N (A, ω)} + Im{W ( jω)}Im{N (A, ω)},
γ = Re{W ( jω)}Im{N (A, ω)} − Im{W ( jω)}Re{N (A, ω)},
� = ∂(Re{N (A, ω)})

∂A

∂(Im{W ( jω)})
∂ω

− ∂(Im{N (A, ω)})
∂A

∂(Re{W ( jω)})
∂ω

,

� = ∂(Re{N (A, ω)})
∂A

∂(Re{W ( jω)})
∂ω

+ ∂(Im{N (A, ω)})
∂A

∂(Im{W ( jω)})
∂ω

,

� = ∂(Im{N (A, ω)})
∂A

∂(Re{N (A, ω)})
∂ω

− ∂(Re{N (A, ω)})
∂A

∂(Im{N (A, ω)})
∂ω

,

N (A, ω) is the DF of FTCC and W ( jω) is the frequency characteristics of linearized
system (4.5).

Proof Consider the Cartesian complex form of HB Eq. (4.9),

H =
U (A,ω)︷ ︸︸ ︷

1 + Re{N (A, ω)}Re{W ( jω)} − Im{N (A, ω)}Im{W ( jω)} +
j [Re{N (A, ω)}Im{W ( jω)} + Im{N (A, ω)}Re{W ( jω)}]︸ ︷︷ ︸

V (A,ω)

, (4.20)

From Loeb criterion (see [21] pages 122–123), the analysis of Eq. (4.20) in the
presence of the small amplitude disturbances gives the next necessary condition of
stability for a limit cycle
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∂U

∂A

∂V

∂ω
− ∂U

∂ω

∂V

∂A

∣∣∣∣
Ao,ωo

> 0 (4.21)

Then, the stability condition ofEq. (4.19) is obtained by replacingU andV in inequal-
ity (4.21).

Remark 4.1 The Eq. (4.19) gives necessary condition only, since the Loeb criterion,
which Eq. (4.19) is based on, represents the necessary stability condition.

4.3.3.4 Numerical Algorithms for Computing Practical Stability
Margins

In this section, the numerical algorithms for the identification of FTCC robustness
metrics (PSPM and PSGM) to unmodeled dynamics are developed and proposed.

I. PSPM computation method

Thephase shift θ ≥ 0◦ is introduced into the linearized system (4.5) due to unmodeled
dynamics. Then, the HB Eq. (4.9) becomes

e− jθW ( jωi ) = −N−1(Ak, ωi ). (4.22)

From the Eq. (4.22),

|W ( jωi )| = ∣∣N−1(Ak, ωi )
∣∣ , (4.23)

arg{W ( jωi )} − θ = arg
{−N−1(Ak, ωi )

}
, (4.24)

where θ is identified based on the given system T L , amplitude Ac and frequency ωc.
The PSPM computational algorithm consists of the following steps:

Step 1. Assume that Ak = Ac, then a solution ωi = ωAc of Eq. (4.23) is to be
obtained. If ωAc ≥ ωc, then the PSPM is to be identified from Eq. (4.24) as

PSPM = arg{W ( jωAc)} − arg
{−N−1(Ac, ωAc)

}
. (4.25)

If ωAc < ωc, then proceed to Step 2.
Step 2. Assume that ωi = ωc, then a solution Ak = Aωc of Eq. (4.23) is to be

obtained. Here, Aωc ≤ Ac and the PSPM is to be identified from Eq. (4.24) as

PSPM = arg{W ( jωc)} − arg
{−N−1(Aωc , ωc)

}
. (4.26)

II. PSGM computation method

The gain K �= 1 is introduced into the linearized system (4.5) due to unmodeled
dynamics. Then, the HB Eq. (4.9) becomes

KW ( jωi ) = −N−1(Ak, ωi ). (4.27)
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From the Eq. (4.27),

K |W ( jωi )| = ∣∣N−1(Ak, ωi )
∣∣ , (4.28)

arg{W ( jωi )} = arg
{−N−1(Ak, ωi )

}
, (4.29)

where K is identified based on the given system T L , amplitude Ac and frequency
ωc. The PSGM computational algorithm consists of the following steps:

Step 1. Assume that Ak = Ac, then a solution ωi = ωAc of Eq. (4.23) is to be
obtained. If ωAc ≥ ωc, then the PSGM is to be identified from Eq. (4.28) as

PSGM =
∣∣N−1(Ac, ωAc)

∣∣∣∣W ( jωAc)
∣∣ . (4.30)

If ωAc < ωc, then proceed to Step 2.
Step 2. Assume that ωi = ωc, then a solution Ak = Aωc of Eq. (4.23) is to be

obtained. Here, Aωc ≤ Ac and the PSGM is to be identified from Eq. (4.28) as

PSGM =
∣∣N−1(Aωc , ωc)

∣∣
|W ( jωc)| . (4.31)

4.3.4 Achieving Prescribed Values of Practical Stability
Margins by Cascading FTCC with Linear Compensator

The practical stability margins (PSPM and PSGM) for system (4.1) controlled
by FTCC may not satisfy the prescribed values due to the presence of unmodeled
dynamics. For instance, the prescribed values can be (see page 33 of [6]): PSPM =
30◦ and PSGM = 12 dB. Then, the prescribed values on practical stability margins
can be achieved in couple of ways.

1. By cascading FTCC with linear compensator, when the transfer function of lin-
earized system (4.5) is available.

2. By artificially increasing the order of FTCC.

Following the option 1, the cascade linear compensator to FTCC takes the form

Wc(s) = s + 1
μτ

s + 1
τ

, (4.32)

whereμ is the attenuation parameter. If 0 < μ < 1, then the Eq. (4.32) is a phase-lag
compensator. If μ > 1, then the Eq. (4.32) is a phase-lead compensator.
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The design procedure for a phase-lead dynamic compensator [30, 31], which is
based on the classical Bode plots methodology [32], is as follows:

Step 1. Obtain the PSPM of dynamically perturbed system (4.1), (4.4) controlled
by FTCC: PSPMun .

Step 2. Determine the maximum phase-lead angle of the compensator as

φm = PSPM◦
c − PSPM◦

un + 〈5, 12〉◦,

where PSPMc is the required PSPM and 〈5, 12〉 is an interval.
Step 3. Obtain the parameter μ, which satisfies

sin φm = μ − 1

μ + 1
.

Step 4. From the Bode magnitude plot of the dynamically perturbed system (4.1),
(4.4), identify the frequency ωm corresponding to the magnitude

− [
10 logμ + 20 log |N (Ac, ωc)|

]
.

Step 5. Find the pole and zero of the compensator Wc(s) using

Pole:1
τ

= ωm
√

μ; Zero: 1

μτ
= Pole

μ
.

Step 6. Compute the PSPMnew, after cascading the dynamic compensator with
the FTCC for verification.

4.4 Simulation Examples

In this section, a couple of examples are presented validating the proposed theoretical
developments on quantifying robustness of FTCC to unmodeled dynamics in terms
of practical stability margins (PSPM and PSGM).

4.4.1 Robustness Study of FTCC to Unmodeled Dynamics

It has been shown in Example 1 that the dynamically perturbed system (4.6), (4.8)
with T = 0.01 controlled by FTCC (4.7) exhibits chattering. The robustness metrics
for FTCC (4.7) to cascade unmodeled dynamics (4.8) are obtained, while analyzing
the chattering, as follows.



4 Practical Stability Phase and Gain Margins Concept 117

(a) Computing parameters of chattering

DF is numerically obtained for FTCC (4.7) with α = 0.5 and μ1, μ2 = 1 based on
the proposed numerical algorithm in the Sect. 4.3.3.1. Note that the DF method is
applied with the assumptions A1 and A2 are hold.

Then, the transfer function for the system dynamics (4.6) in sliding mode are

W (s) = σ(s)

u(s)
= 1

s2 + 3s + 8
. (4.33)

Next, the transfer function for dynamically perturbed system (4.6), (4.8) is

W (s) =
(

1

T 2s2 + T s + 1

)
·
(

1

s2 + 3s + 8

)
, (4.34)

where T = 0.01.
The chattering parameters, amplitude A and frequency ω of main harmonic, are

predicted by solving HB Eq. (4.9) via NR method, as shown in the Sect. 4.3.3.2, for
the dynamically perturbed system (4.6), (4.8) controlled by FTCC (4.7). Table4.8
shows the comparison of σ -limit cycle parameters that are obtained numerically
using NR method with the simulations and the accuracy of the proposed method.
Note that the predicted limit cycle using DF-HBmethod is stable in accordance with
the Loeb’s criterion in Proposition 4.1.

(b) Practical stability margins

The Tolerance Limits (T L), reasonable amplitude and frequency of chattering, for
the system (4.35) controlled by FTCC (4.7) are defined as Ac = 0.001 and ωc =
40 rad/s. Then, the proposed robustness metrics (PSPM and PSGM) are identified
for the FTC-controlled dynamically perturbed system (4.6), (4.8) by following the
steps presented in the Sect. 4.3.3.4.

To compute PSPM : Step 1. The solution of Eq. (4.23) for Ac = 0.001 is obtained
as: ωAc = 44.073 rad/s > ωc. Therefore,

PSPM = 2.709 − 2.369 = 0.3405 rad = 19.51◦.

To compute PSGM : Step 1. The solution of Eq. (4.29) for Ac = 0.001 is obtained
as: ωAc = 63.328 > ωc. Therefore,

Table 4.8 Parameters of
σ -limit cycle in FTCC (4.7)
system

Parameter Simulations Numerical solution

A 5.21 × 10−4 5.05 × 10−4

ω (rad/s ) 62.832 63.784
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PSGM = 5.639 × 10−4

2.863 × 10−4
= 5.88 dB.

The prescribed values of practical stabilitymargins for the system (4.6) are defined
as: PSPM ≥ 30◦ and PSGM ≥ 5 dB. Note that the computed PSPM has not
satisfied the required value. The prescribed value on PSPM is achieved by cascading
a phase-lead compensator with the designed FTCC (4.7).

(c) Cascade linear compensator for FTCC

The cascaded phase-lead compensator is designed by following the steps presented
in the Sect. 4.3.4 as follows.

Step 1. PSPMun = 19.51◦; Step 2. φm = 30◦ − 19.51◦ + 9◦ = 19.49◦; Step 3.
μ = 2.01; Step 4. |W ( jωm)| = −(3.013 + 65.02) = −68.033 dB =⇒ ωm =
54 rad/s; Step 5. Pole = 76.39 and Zero = 38.17. Therefore, the phase-lead com-
pensator to FTCC is obtained as

Wc(s) = 76.39

38.17
× s + 38.17

s + 76.39
;

Step 6. Then, PSPMnew = 30.54◦ is obtained. Note that the PSPMnew satisfies the
required specification on PSPM , i.e., PSPM ≥ 30◦.

4.4.2 Robustness Study of HOSM to Unmodeled Dynamics

A nonlinear SISO system is considered as

ẋ1 = x2, ẋ2 = x3,

ẋ3 = −50x1 − 180x2 − 20x3 + 35 sin(x1) + 50u1, σ = x1, (4.35)

where u1 is an unmodeled dynamics control input, and σ is a system output.

Then, input-output dynamics for system (4.35) are obtained as

σ (3) = −50σ − 180σ̇ − 20σ̈ + 35 sin(σ ) + 50u1. (4.36)

The dynamics in Eq. (4.36) are rewritten as

1

50
× (

σ (3) + 20σ̈ + 180σ̇ + 50σ
) = u1(t) + ζ, (4.37)

where ζ = 0.7 sin(σ ), and |ζ | ≤ 0.7.
Note that the system (4.35) has relative degree rd = 3. By taking u1 from

N-HOSM control in Eq. (4.12) with r = 3 and λ = 1, the system (4.35) is simulated
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(a)

(b)

Fig. 4.2 σ in a dynamically unperturbed system (4.35) and b dynamically perturbed system (4.35),
(4.8) controlled by N-HOSM controller

for σ(0) = 0.5. The N-HOSM control has efficiently driven σ to zero in finite-time
in the presence of bounded disturbance ζ as shown in Fig. 4.2a.

By defining the same N-HOSM control to u, the sliding variable σ in the dynam-
ically perturbed system (4.35), (4.8) with T = 0.2 exhibits chattering as shown in
Fig. 4.2b.

The robustnessmetrics forN-HOSMcontrol (4.12) to cascade unmodeled dynam-
ics (4.8) are obtained, while analyzing the chattering, as follows.

(a) Computing Parameters of Chattering

DF is numerically obtained for N-HOSM (r=3) in Eq. (4.12) with λ = 1 based on
the proposed numerical algorithm in the Sect. 4.3.3.1. Note that the DF method is
applied by assuming ζ(t) in Eq. (4.37) has exactly been compensated by the designed
N-HOSM control and the assumptions A1 and A2 are hold.

Then, the transfer function for the system dynamics (4.37) are written as

W (s) = σ(s)

u(s)
= 50

s3 + 20s2 + 180s + 50
. (4.38)
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Table 4.9 Parameters of
σ -limit cycle in N-HOSM
controlled system

Parameter Simulations Numerical solution

A 5.81 × 10−3 4.98 × 10−3

ω (rad/s ) 11.220 11.473

Next, the transfer function for dynamically perturbed system (4.35), (4.8) is

W (s) =
(

1

T 2s2 + T s + 1

)
·
(

50

s3 + 20s2 + 180s + 50

)
, (4.39)

where T = 0.2.
The chattering parameters, amplitude A and frequency ω of main harmonic, are

predicted by solvingHBEq. (4.9) viaNRmethod, as shown in theSect. 4.3.3.2, for the
dynamically perturbed system (4.35), (4.8) controlled byN-HOSMcontrol. Table4.9
shows the comparison ofσ -limit cycle parameters that are obtained numerically using
NRmethod with the simulations and the accuracy of the proposed method. Note that
the predicted limit cycle usingDF-HBmethod is stable in accordancewith the Loeb’s
criterion in Proposition 4.1.

(b) Practical Stability Margins

The Tolerance Limits (T L), reasonable amplitude and frequency of chattering, for
the system (4.35) controlled by N-HOSM control are defined as Ac = 0.01 andωc =
8 rad/s. Then, the proposed robustness metrics (PSPM and PSGM) are identified
for the N-HOSM controlled dynamically perturbed system (4.35), (4.8) by following
the steps presented in the Sect. 4.3.3.4.

To compute PSPM : Step 1. The solution of Eq. (4.23) for Ac = 0.01 is obtained
as: ωAc = 9.537 rad/s > ωc. Therefore,

PSPM = 1.078 − 0.6607 = 0.4168 rad = 23.88◦.

To compute PSGM : Step 1. The solution of Eq. (4.29) for Ac = 0.01 is obtained
as: ωAc = 13.476 > ωc. Therefore,

PSGM = 7.852 × 10−3

2.050 × 10−3
= 11.67 dB.

The prescribed values of practical stability margins for the system (4.35) are
defined as: PSPM ≥ 35◦ and PSGM ≥ 6 dB. Note that the computed PSPM has
not satisfied the required value. The prescribed value on PSPM is achieved by
cascading a phase-lead compensator with the designed N-HOSM controller.

(c) Cascade Linear Compensator for HOSM Controller

The cascaded phase-lead compensator is designed by following the steps presented
in the Sect. 4.3.4 as follows.
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Step 1. PSPMun = 23.88◦; Step 2. φm = 35◦ − 23.88◦ + 5◦ = 16.12◦; Step 3.
μ = 1.77; Step 4. |W ( jωm)| = −(2.476 + 42.10) = −44.576 dB =⇒ ωm =
10.3 rad/s; Step 5. Pole = 13.70 and Zero = 7.745. Therefore, the phase-lead com-
pensator to N-HOSM control is obtained as

Wc(s) = 13.70

7.745
× s + 7.745

s + 13.70
;

Step 6. Then, PSPMnew = 35.01◦ is obtained. Note that the PSPMnew satisfies the
required specification on PSPM , i.e., PSPM ≥ 35◦.

4.5 Case Study: Attitude HOSM Control of F-16 Aircraft

A nonlinear model of an F-16 aircraft [33] at Mach = 0.7 and height h = 10, 000 ft
is considered as:

θ̇ = q cos(ϕ) − r sin(ϕ),

ϕ̇ = p + q sin(ϕ) tan(θ) + r cos(ϕ) tan(θ),

α̇ = −βp + 0.0427 cos(θ) cos(ϕ) + 0.083589 + Z̃αα + Z̃qq + Z̃δδe, (4.40)

β̇ = −0.9973r + αp + 0.0427 cos(θ) sin(ϕ) + Ỹββ + Ỹp p + Ỹδr δr + Ỹδaδa,

ṗ = −0.1345pq − 0.8225qr + L̃ββ + L̃ p p + L̃rr − 50.933δa + L̃δr δr + ζp(t),

q̇ = 0.9586pr − 0.0833(r2 − p2) − 1.94166 + M̃αα + M̃qq + M̃δδe + ζq(t),

ṙ = −0.7256pq + 0.1345qr + Ñββ + Ñp p + Ñrr + 4.125δa + Ñδr δr + ζr (t),

where θ, ϕ, α, β are pitch, roll, attack, and sideslip angles, respectively; p, q, r are
roll, attack, and sideslip angular rates, respectively; δa, δe, and δr are aileron, ele-
vator, and rudder deflections, respectively; αtr im = θtr im = 0.106803 rad, δetrim =
−0.0295 rad, ϕtr im = βtr im = ptrim = qtrim = rtrim = δatrim = δrtrim = 0; ζp(t),
ζq(t), and ζr (t) represent disturbance terms due to external wind gusts, and are
defined for simulations as: ζp(t) = 0.005 sin(t), ζq(t) = 0.005 cos(t), ζr (t) = 0.005
(sin(t) + cos(t)), and

∣∣ζp(t)∣∣ ≤ 0.005,
∣∣ζ̇p(t)∣∣ ≤ 0.005,

∣∣ζq(t)∣∣ ≤ 0.005,
∣∣ζ̇q(t)∣∣ ≤

0.005, |ζr (t)| ≤ 0.01,
∣∣ζ̇r (t)∣∣ ≤ 0.01; Z̃α = −1.15, Z̃q = 0.9937, Ỹβ = −0.297,

Ỹp = 0.00085, L̃β = −53.48, L̃ p = −4.324, L̃r = −0.224, L̃δr = 10.177, M̃α =
3.724, M̃q = −1.26, M̃δ = −19.5, Ñβ = 17.67, Ñp = 0.234, Ñr = −0.649, Ñδr =
−6.155; Z̃δ, Ỹδr , Ỹδa that have small control perturbations are neglected, and thus
forming a square cascade structure of the aircraft model.
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The unmodeled dynamics are given as

ηρδ̇ρ = −(δρ − uρ) ∀ρ = a, e, r, (4.41)

where ηρ = [0.02, 0.02, 0.02]T .

The deflection and deflection rate limits of unmodeled dynamics are given as

∣∣δρ

∣∣ ≤ 0.37 rad, |δ̇ρ | ≤ 1 rad/s ∀ρ = a, e, r. (4.42)

The following filters are used to obtain the desired command profiles αc, βc, and ϕc

by applying αre f , βre f , and ϕre f , respectively:

αc

αre f
= 4

s2 + 3s + 4
,

βc

βre f
= 16.98

s2 + 6.18s + 16.98
,

ϕc

ϕre f
= 2

s2 + 2.2s + 2
.

(4.43)

The problem formulation for this case study is as follows:

• To design single-loop trajectory tracking FTCC, specifically, Q-HOSM control
that asymptotically drives attitude angles ϕ, α, β to angular commands ϕc, αc, βc,
respectively, in presence of bounded perturbations.

• To certify the aircraft attitude FTCC robustness to unmodeled dynamics using
proposed robustness metrics (PSPM and PSGM).

4.5.1 Design of Aircraft Attitude HOSM Control

Based on relative degree approach, the aircraft model (4.40) is expressed as

ϕ̈ = −53.48β − 4.324p − 0.224r − 0.1345pq − 0.8225qr

−50.9333δa + 10.177δr + Fϕ(x, t),

α̈ = −1.15α̇ + 3.7α − 1.252q + 0.9526pr (4.44)

−0.0828(r2 − p2) − 1.9294 − 19.3772δe + Fα(x, t),

β̈ = −0.297β̇ − 17.66775β − 0.237p + 0.6471r

+0.7235pq − 0.1348qr − 4.1572δa + 6.147δr + Fβ(x, t),

where x = [ϕ, α, β, p, q, r ]T , and the perturbation terms are defined

Fϕ(x, t) = ζp(t) + d fϕ(x, t)

dt
, Fα(x, t) = 0.9937ζq(t) + d fα(x, t)

dt
,
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Fβ(x, t) = 0.00085ζp(t) − 0.9973ζr (t) + d fβ(x, t)

dt
,

fϕ(x, t) = q sin(ϕ) tan(θ) + r cos(ϕ) tan(θ),

fα(x, t) = −βp + 0.0427 cos(θ) cos(ϕ) + 0.083589,

fβ(x, t) = αp + 0.0427 cos(θ) sin(ϕ).

The trajectory tracking errors are defined as

e� = �c − � ∀� = ϕ, α, β. (4.45)

Then, the sliding variables are defined as

σ� = ė� + c�e� ∀� = ϕ, α, β, (4.46)

where cϕ, cα, cβ > 0 give asymptotic convergence of sliding variables to zero.
In this case study, Q-HOSM control (4.13) is used to control the attitude of F-16

aircraft (4.40). Since the Q-HOSM control is a discontinuous control, the HOSM
control is designed in terms of angular deflection rates δ̇a, δ̇e, δ̇r .

The system (4.44) is rewritten as

σ (2)
ϕ = 
11 + 
12 + 50.933δ̇a − 10.177δ̇r ,

σ (2)
α = 
21 + 
22 − 1.15σ̇α + 3.7σα + 19.37715δ̇e,

σ
(2)
β = 
31 + 
32 − 0.297σ̇β − 17.6677σβ + 4.1572δ̇a − 6.147δ̇r , (4.47)

where 
11, 
21, 
31 are known terms; 
12, 
22, 
32 are unknown terms, but are
assumed to be bounded in a reasonable flight domain |
12| ≤ λa, |
22| ≤ λe, and
|
32| ≤ λr . Then, Eq. (4.47) is written in input-output decouple format as

σ (2)
ϕ = 
11 + 
12 + νa,

σ (2)
α = 
21 + 
22 − 1.15σ̇α + 3.7σα + νe,

σ
(2)
β = 
31 + 
32 − 0.297σ̇β − 17.6677σβ + νr , (4.48)

where
⎡
⎢⎣

νa

νe

νr

⎤
⎥⎦ =

⎡
⎢⎣
50.933 0 −10.177

0 19.3772 0

4.1572 0 −6.147

⎤
⎥⎦

⎡
⎢⎣

δ̇a

δ̇e

δ̇r

⎤
⎥⎦ . (4.49)

In this case study, the Q-HOSM (4.14) with r = 2 is taken and is defined as

νa = −
11 + ν̂a, νe = −
21 + ν̂e, νr = −
31 + ν̂r ,
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where

ν̂a = −λa

(
σ̇ϕ + ∣∣σϕ

∣∣1/2 sign[σϕ]
)

/
(∣∣σ̇ϕ

∣∣ + ∣∣σϕ

∣∣1/2) ,

ν̂e = −λe
(
σ̇α + |σα|1/2 sign[σα]) /

(|σ̇α| + |σα|1/2) ,

ν̂r = −λr

(
σ̇β + ∣∣σβ

∣∣1/2 sign[σβ]
)

/
(∣∣σ̇β

∣∣ + ∣∣σβ

∣∣1/2) .

The unknown terms 
12, 
22, 
32 are assumed to be exactly compensated by the
HOSM controllers ν̂a, ν̂e, ν̂r , and then Eq. (4.48) becomes

σ (2)
ϕ = ν̂a, σ (2)

α = −1.15σ̇α + 3.7σα + ν̂e,

σ
(2)
β = −0.297σ̇β − 17.6677σβ + ν̂r . (4.50)

The single-loop trajectory tracking FTCC in terms of angular deflections is
obtained as

⎡
⎢⎣

δa

δe

δr

⎤
⎥⎦ =

⎡
⎢⎣
50.933 0 −10.177

0 19.3772 0

4.1572 0 −6.147

⎤
⎥⎦

−1 ⎡
⎢⎣

∫ t
0 νadτ∫ t
0 νedτ∫ t
0 νr dτ

⎤
⎥⎦ . (4.51)

The system (4.40) is simulated with the designed HOSM controller (4.51), while
analyzing the robustness of the HOSM control to cascade unmodeled dynamics
(4.41).

Note that in the two scenarios, dynamically unperturbed (4.40) and dynamically
perturbed (4.40), (4.41) systems, the controller gains are taken as λa = 7, λe = 16,
and λr = 7 to satisfy the angular rate limits in Eq. (4.42), cϕ = cα = cβ = 3, and
simulated for initial conditions ϕ(0) = 0.2, α(0) = 0.1, and β(0) = 0.1. In other
words, the robustness of the HOSM controlled aircraft system (4.40), (4.51) to cas-
cade unmodeled dynamics (4.41) is studied by having these parameters unchanged.

The high tracking accuracy given by the continuous single-loop aircraft attitude
HOSM control (4.51) in the presence of bounded external perturbations is shown in
Fig. 4.3a–c, and corresponding angular deflections that satisfying constraints (4.42)
are shown in Fig. 4.3d.

The evolution of sliding variables σϕ , σα , and σβ in the dynamically unperturbed
system (4.40) controlled by HOSM control (4.51) are shown in Fig. 4.4. The HOSM
control (4.51) is successful in driving the sliding variables to zero in finite-time in
the presence of bounded external perturbations.

The evolution of sliding variables σϕ , σα , and σβ in the dynamically perturbed
system (4.40), (4.41) controlled by HOSM control (4.51) are shown in Fig. 4.5. The
sliding variables are converged to acceptable limit cycles. The robustness of HOSM
control (4.51) to unmodeled dynamics (4.41) is quantified using PSPM and PSGM
in the following section.
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(a)

(b)

(c)

(d)

Fig. 4.3 a–c Trajectory tracking and d angular deflections of dynamically unperturbed aircraft
(4.40)
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(a)

(b)

(c)

Fig. 4.4 Sliding variables in the dynamically unperturbed system (4.40)

4.5.2 Robustness Study of Aircraft Attitude FTCC to Cascade
Unmodeled Dynamics

In this section, the robustness of designedHOSMcontroller (4.51) to cascade unmod-
eled dynamics (4.41) is analyzed using the tools developed in the Sect. 4.3.3.

(a) Computing Parameters of Chattering/Limit-Cycles

With the help of the proposed numerical algorithm for computingDFs inSect. 4.3.3.1,
the DFs for Q-HOSM controllers ν̂ρ (ρ = a, e, r ) are obtained numerically, and the
negative reciprocals of DFs are tabulated as Table4.1.
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Fig. 4.5 a–c Sliding variables and d angular deflections in the dynamically perturbed system (4.40),
(4.41)
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Note that the perturbations are assumed to be compensated exactly by the HOSM
control ν̂ρ ∀ρ = a, e, r . Then, the dynamically perturbed system (4.40), (4.41) in
sliding mode is written as

Wϕ( jω) = 1

0.02s + 1
· 1

s2

∣∣∣∣
s= jω

, Wα( jω) = 1

0.02s + 1
· 1

s2 + 1.15s − 3.7

∣∣∣∣
s= jω

,

Wβ( jω) = 1

0.02s + 1
· 1

s2 + 0.297s + 17.66775

∣∣∣∣
s= jω

. (4.52)

Using the proposed procedure in the Sect. 4.3.3.2, the parameter of predicted limit
cycles for sliding variables are numerically obtained and are compared with the
simulations as shown in Table4.10.

Note that theTL are somewhat easy to introduce as the acceptable limit cycle para-
meters, amplitude and frequency, that may occur due to cascade unmodeled dynam-
ics for attitude angle tracking errors. In this case study, the admissible Tolerance
Limits for the attitude angle tracking errors are defined as T L: Ae�

= 4.5 × 10−5

and ωe�
= 45 rad/s ∀� = ϕ, α, β. However, the proposed analysis estimates the

parameters of predicted limit cycles for sliding variables σϕ , σα and σβ , but not for
the attitude angle tracking errors.

Then, the frequency characteristics of the errors e� ∀� = ϕ, α, β that correspond
to inputs σ� = Aσ�

sin(ωσ�
t) are written using Eq. (4.46) as

e�( jωσ�
)

σ�( jωσ�
)

= 1

( jωσ�
) + c�

∀� = ϕ, α, β. (4.53)

Therefore, the parameters of limit cycles for the attitude angle tracking errors
are obtained from Eq. (4.53) as Ae�

= Aσ�
/(c2� + ω2

σ�
)1/2 and ωe�

= ωσ�
, where

Ae�
and ωe�

are the amplitude and the frequency of limit cycle, respectively. Then,
corresponding parameters are computed as in Table4.11.

Next, T L for sliding variables (4.46) are computed from the T L for the attitude
angle tracking errors using Eq. (4.53) as

Table 4.10 Parameters of
limit cycles σϕ , σα , and σβ

Sliding
variable

Simulations Numerical solution

σϕ Aσϕ = 1.094 × 10−3 Aσϕ = 9.461 × 10−4

ωσϕ = 69.81 rad/s ωσϕ = 69.03 rad/s

σα Aσα = 1.169 × 10−3 Aσα = 1.108 × 10−3

ωσα = 89.75 rad/s ωσα = 88.82 rad/s

σβ Aσβ = 9.735 × 10−4 Aσβ = 9.303 × 10−4

ωσβ = 69.81 rad/s ωσβ = 69.55 rad/s
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Table 4.11 Parameters of
limit cycles eϕ , eα , and eβ

Tracking
error

Simulations Numerical solution

eϕ Aeϕ = 1.565 × 10−5 Aeϕ = 1.369 × 10−5

ωeϕ = 69.81 rad/s ωeϕ = 69.03 rad/s

eα Aeα = 1.302 × 10−5 Aeα = 1.246 × 10−5

ωeα = 89.75 rad/s ωeα = 88.82 rad/s

eβ Aeβ = 1.393 × 10−5 Aeβ = 1.331 × 10−5

ωeβ = 69.81 rad/s ωeβ = 69.55 rad/s

Table 4.12 Practical stability
margins for σϕ , σα , and σβ

Sliding variable PSPM PSGM (dB)

σϕ 9.669◦ 24.01

σα 7.048◦ 18.66

σβ 9.993◦ 24.44

Table 4.13 PSPM of σϕ ,
σα , and σβ after cascading
linear compensators with the
designed HOSM controllers

Sliding variable PSPMnew

σϕ 33.07◦

σα 31.75◦

σβ 32.92◦

Aσ�
= Ae�

(c2� + ω2
e�

)1/2 = 2 × 10−3,

ωσ�
= ωe�

= 45 rad/s ∀� = ϕ, α, β. (4.54)

(b) Practical Stability Margins

The robustness metrics are obtained for the aircraft (4.40) controlled by HOSM
control to cascade unmodeled dynamics (4.41) using Sect. 4.3.3.4.

Table4.12 presents the robustness metrics, PSPM and PSGM , that are deduced
using the T L for the sliding variables in Eq. (4.54).

Note that the identified PSPMs do not satisfy the prescribed value [6] (see page
33 of [6]): PSPM� ≥ 30◦ ∀� = ϕ, α, β. Then, the required PSPMs are achieved
(see Table4.13) by cascading phase-lead compensators with the designed HOSM
controllers.

(c) Cascade Compensator for HOSM Controlled F-16 Aircraft

The phase-lead compensators that cascade with the HOSM controllers are designed
for the roll angle ϕ, angle of attack α, and sideslip angle β, respectively as follows:
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(a)

(b)

(c)

(d)

Fig. 4.6 a–c Sliding variables and d angular deflections in the dynamically perturbed aircraft
system (4.40), (4.41) after cascading compensator with HOSM control
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Wdcϕ
(s) = 97.94

39.25
× s + 39.25

s + 97.94
, Wdcα

(s) = 118.10

42.70
× s + 42.70

s + 118.10
,

Wdcβ
(s) = 95.76

38.86
× s + 38.86

s + 95.76
.

The obtained PSPMnews (see Table4.13) are satisfied the prescribed value of
PSPMs for the attitude angle control. Moreover, Fig. 4.6a–c shows that the chatter-
ing in the dynamically perturbed aircraft system (4.40), (4.41) is alleviated, while
satisfying the prescribed values of PSPM and PSGM , after cascading phase-lead
compensator with corresponding HOSM control. The chattering of angular deflec-
tions is also alleviated as shown in Fig. 4.6d.

4.6 Conclusion

The gap in the certification of Finite TimeConvergent Control (FTCC) for robustness
to unmodeled dynamicswas closed for the first time in this work. The robustnessmet-
rics, Practical Stability Phase Margin (PSPM) and Practical Stability Gain Margin
(PSGM), for FTCC to cascade unmodeled dynamics were introduced, presiding
the tool for FTCC certification. The tools/algorithms to identify these robustness
metrics using Describing Function-Harmonic Balance (DF-HB) method were devel-
oped. A numerical algorithm to compute DFs for FTCC was proposed. A database
of DFs for FTCC, specifically for nested, quasi-continuous Higher Order Sliding
Mode (HOSM) controllers was developed. A numerical algorithm that solves HB
equation using Newton Raphson method to obtain predicted chattering parameters
was proposed. The computational algorithms to identify the FTCC robustness met-
rics (PSPM and PSGM) were proposed. When the obtained values of PSPM
and PSGM do not satisfy the prescribed values, a cascade linear compensator to
FTCC was suggested to achieve the prescribed values. The proposed technique was
applied to certify the FTC attitude controller of an F-16 aircraft for robustness to
cascade unmodeled dynamics as a case study. Several other simulation examples
were presented to validate the proposed method.
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Chapter 5
On Inherent Gain Margins of Sliding-Mode
Control Systems

Igor Boiko

5.1 Introduction

Stabilitymargins, and specifically gain and phasemargins, play a crucial role in linear
systems design. Through the selection of margins the trade-off between stability and
robustness of a linear system can be ensured. The situation is quite different in
sliding mode (SM) control. If parasitic dynamics of a certain form are present in
the loop of the sliding mode control system (and they are always present in real
control systems) then a stable equilibrium point does not exist, and chattering occurs
instead. Therefore, the same approach to stability analysis, which is used in linear
control, cannot be applied to a sliding mode control system. However, similar to
the approach used in linear systems analysis can also be used in SM systems if,
instead of the actual dynamics, averaged dynamics are analyzed. Therefore, this
problem is more complex than the one of the linear system analysis. As a result, it
has become a commonpractice thatmost of research dealingwith SMcontrol systems
is usually limited to the ideal sliding mode. And only in a relatively small number
of publications, attempts are made to address the effect of chattering. Yet, very rare
publications try to deal with the effects of the parasitic dynamics on the closed-
loop performance. It was shown in [1] that parasitic dynamics, which inevitably
exist in real control systems, result not only in generation of chattering but also
in non-ideal closed-loop performance with respect to the propagation of external
input signals and disturbances (averaged dynamics): non-ideal tracking and non-ideal
disturbance rejection. The mechanism that explains the deterioration of the closed-
loop performance is revealed through either the describing function (DF) analysis [2]
or the locus of a perturbed relay system (LPRS) analysis [3]. Thismechanism involves
finding the so-called equivalent gain of the relay, which describes propagation of
signals that are slower (have much lower spectrum) than chattering through the SM
control systems.Theuse of the equivalent gain results in the averaged (on the periodof
chattering) dynamics of the SMsystem. Themathematical description of the obtained
averaged dynamics is linear differential equations (subject to the plant being linear),
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which allows one to analyze such characteristics of this linear dynamics as gain and
phase stability margins. Another approach to obtaining amodel of averagedmotions,
through the singular perturbation method, provides results that are well correlated
with the previous two approaches [4].

The same analysis can be done in second- and higher-order SM control systems
[5–9]. In terms of the method of obtaining an averaged model of a second-order SM
system, it is not much different from that of the first-order SM system. However,
the technique of analysis may be significantly more complex: the use of the LPRS
method becomes difficult (if possible at all), and the DF analysis becomes complex.
It should be noted that some attempts of obtaining an averaged model of a second-
order SM system were made in the past: the model of the sub-optimal algorithm was
obtained in [10].

In this book chapter, analysis is done via the describing function method and,
where possible, through the locus of a perturbed relay system method. First-order
SM, the hysteresis relay control, the twisting algorithmand the sub-optimal algorithm
are analyzed and compared in terms of the gain margins of the averaged dynamics
that can describe the propagation of external signals through a SM control system.
The chapter is illustrated by examples and concluded with observations derived from
the presented analysis.

5.2 Gain Stability Margin of Averaged Dynamics of a Relay
Feedback System

5.2.1 LPRS Analysis of a Relay Feedback System

We shall consider the following analysis of the relay feedback system, which illus-
trates the approach to treatment of chattering and averaged motions. Let the system
be described by the following equations (Fig. 5.1):

ẋ = Ax + Bu
y = Cx

, (5.1)

u(t) =
{
c if σ = f − y > b or σ > −b , u(t−) = c
−c if σ = f − y < −b or σ < b , u(t−) = −c

where x ∈ R
n is a state vector, y output, σ error signal, f input (set point), u control,

c relay amplitude, 2b hysteresis value of the relay,A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n

are matrices, A is nonsingular, the time t− refers to time immediately preceding
time t .

Amethod of analysis of self-excited oscillations and averaged (on the period of the
self-excited oscillation) motions in relay feedback systems (Fig. 5.1) was proposed
in [3]. The method is developed based on the assumption of the infinitely small
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Fig. 5.1 Relay feedback system

Fig. 5.2 Asymmetric
oscillations in relay feedback
system

asymmetry of the oscillations in the system, which is a result of the infinitely small
value of the input signal f . If a constant input signal f �= 0 is applied to the system,
self-excited oscillations that feature unequally-spaced switchings (Fig. 5.2) will be
generated in the system.

With asymmetric oscillations as shown in Fig. 5.2, the averaged on the period of
these oscillations control u(t) can be found as

u0 = 1

θ1 + θ2

∫ θ1+θ2

0
c(θ1 − θ2)dt

A function showing the dependence of u0 on the value of the constant input
f0 ≡ const is named the bias function. A plot of a typical bias function is given in
Fig. 5.3.
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Fig. 5.3 Bias function

Fig. 5.4 Analysis through
locus of a perturbed relay
system

A complex function named LPRS was introduced in [3] as follows to carry out
analysis of self-excited oscillations and of averaged dynamics:

J (ω) = −0.5C[A−1 + 2π
ω

(I − e
2π
ω
A)−1e

π
ω
A]B

+ j π
4C(I + e

π
ω
A)−1(I − e

π
ω
A)A−1B .

(5.2)

A typical plot of an LPRS is given in Fig. 5.4.
It was shown in [3] that exact value of the frequency of self-excited oscillations

Ω can be found through LPRS from the following equation:

ImJ (Ω) = −πb

4c
. (5.3)
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or by finding the point of intersection of the LPRS and of the horizontal line drawn
below the real axis at the distance of πb

4c (Fig. 5.4).
Averaged dynamics can be modeled by the so-called equivalent gain of the non-

linearity, with respect to the constant (or slowly varying) component in the error
signal. The equivalent gain of the relay kn that describes propagation of signals that
are slow in comparison with the self-excited oscillations through the relay can be
computed as:

kn(LPRS) = − 1

2ReJ (Ω)
= lim

f →0

u0
σ0

, (5.4)

where Ω is the frequency of the self-excited oscillations found per (5.3), and σ0 is
the average on the period of the self-excited oscillations value of the error:

σ0 = 1

θ1 + θ2

∫ θ1+θ2

0
σ(t)dt.

The graphic interpretation of Eq. (5.4) is that the equivalent gain is inversely
proportional to the distance between the point Ω of the LPRS and the real axis
(Fig. 5.4).

As a result, propagationof the harmonic input signal f (t)of frequencyωin (subject
to ωin � Ω) through the relay feedback system, which provides the averaged on
the period of the oscillations motions, can be described by the following complex
frequency response function (transfer function having s replaced with jωin):

W ( jωin) = knWl( jωin)

1 + knWl( jωin)
, (5.5)

where Wl(s) = C(Is − A)−1B.
Analysis of averaged motions, therefore, includes analysis of self-excited oscil-

lations (frequency Ω). And these two aspects make overall analysis of a SM system
complete.

5.2.2 Gain Stability Margins

Let us analyze the gain stability margin of the relay system. We start with the system
having ideal relay (b = 0). According to the definition of the gain margin γm , the
following equation must hold:

γmkn(LPRS/DF)Wl( jωπ) = −1 (5.6)

Using (5.4) and considering the equality ImWl( jωπ) = 0, we transform it into:
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γm

2

ReWl( jωπ)

ReJ (Ω)
= 1 (5.7)

Considering the series formula of the LPRS [11]:

J (ω) =
∞∑
k=1

(−1)k+1Re Wl(kω)

+ j
∞∑
k=1

Im Wl[(2k − 1)ω]/(2k − 1)
, (5.8)

we can now rewrite formula (5.7) as

γm

2

ReWl( jωπ)

ReWl( jΩ) +
∞∑
k=2

(−1)k+1Re Wl(kΩ)

= 1. (5.9)

Given the closeness of the two frequencies: ωπ ≈ Ω , (5.9) is rewritten as:

γm ≈ 2

ReWl( jΩ) +
∞∑
k=2

(−1)k+1ReWl(kΩ)

ReWl( jΩ) .

(5.10)

For systems having relative degree three (if relative degree is less than three, oscilla-
tions cannot be excited), which are considered as an example, all terms in the infinite
series of (5.10) are negative: ReWl(kΩ) < 0, with diminishing magnitudes. How-
ever, they are multiplied by either 1 or −1, with the first term of the series multiplied
by −1. As a result, the whole sum is a positive quantity:

∞∑
k=2

(−1)k+1ReWl(kΩ) > 0.

Therefore, given that ReWl( jΩ) < 0, the gain margin is:

γm < 2. (5.11)

Approximate DF analysis can be produced from the development presented above
by simple discounting of the higher terms in the series of (5.8). In this case, LPRS
can be simply replaced with the DF that is defined as:

N (a) = 2

πa

π∫
0

f (a sinψ) sinψdψ + j
2

πa

π∫
0

f (a sinψ) cosψdψ.

Application of this formula to the relay nonlinearity leads to the following describ-
ing function formula:
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N (a) = 4c

πa
. (5.12)

The equivalent gain of the nonlinearity, with respect to the constant (or slowly
varying) component in the error signal, computed within the DF method, is defined
by the following equation:

kn(DF)(a) = ∂u0
∂σ0

∣∣∣∣
σ0=0

= 2

π

∂

∂σ0

∣∣∣∣
σ0=0

π∫
0

f (σ0 + a sinψ)dψ

For the ideal relay, the equivalent gain is computed as:

kn(DF) = 2c

πa
(5.13)

Considering together the harmonic balance condition

Wl( jΩ)N (a) = −1, (5.14)

the equality ωπ = Ω , and Eqs. (5.6), (5.12), (5.13), we come to the following
conclusion:

γm = 2. (5.15)

This remarkable property of the relay feedback system, which is approximate due
to the DF analysis, was noted in [12]. The relay feedback system has some adaptive
properties: parameters of the plant may change, but the gain stability margin would
always stay equal to 2.

5.3 Gain Stability Margins in Systems with Second-Order
SM Algorithms

Let us analyze stability margins of two second-order SM (SOSM) algorithms, in par-
ticular. We shall carry out analysis of the twisting and the sub-optimal, and compare
gain margins of these algorithms with that of the relay control.

5.3.1 Gain Stability Margin of Averaged Dynamics of System
with Sub-Optimal Algorithm

The version of the sub-optimal algorithm called generalized sub-optimal algorithm
was proposed in [13, 14], which is given as follows:



140 I. Boiko

u = csign (σ − βσMi ) ,

where c is control amplitude, σ = f − y an error signal, β positive constant para-
meter of the algorithm, σMi is the latest “singular point” of σ , i.e. the value of σ at
the most resent time ti such that σ̇ (ti ) = 0.

DF of the generalized sub-optimal algorithm was found in [15]:

N (a) = 4c

πa

(√
1 − β2 + jβ

)
. (5.16)

And the input-output properties of the algorithm were studied in [16]. Specifically,
it was found that the equivalent gain can be computed through the LPRS as:

kn(LPRS) = 1 + β

−2ReJ (Ω) + 2βR(Ω) ,

(5.17)

where R(Ω) is computed as an infinite series containing even harmonics of the
frequency response Wl( jkΩ) [16]. DF analysis of the input-output properties of
the sub-optimal algorithms can be obtained from the LPRS analysis by setting R to
zero and replacing the LPRS with the transfer function (frequency response), which
leads to:

kn(DF) = 2c

πa
(1 + β). (5.18)

Gain stability margin, as in the case of the relay controller, is given by Eq. (5.6),
which, with account of the DF-based formulas (5.16) and (5.18), will result in:

γm = − 1
Wl ( jωπ )

πa
2c

1
1+β

=
= − 1

Wl ( jωπ )
πa
4c

2
1+β

√
1−β2+ jβ√
1−β2+ jβ

=

= − 1
Wl ( jωπ )

2
(√

1−β2+ jβ
)

(1+β)N (a)

(5.19)

Considering the harmonic balance Eq. (5.14), which is valid for the sub-optimal
algorithm too, we transform (5.19) into:

γm = Wl( jΩ)

Wl( jωπ)

2
(√

1 − β2 + jβ
)

1 + β
(5.20)

In (5.20), unlike in the case of the relay controller, the two frequencies are different:
Ω > ωπ . Also, it should be noted that gain margin γm is a real but not a complex
quantity. Therefore, complex quantities in (5.20) can be replaced with their absolute
values:

γm = |Wl( jΩ)|
Wl( jωπ)

2

1 + β
(5.21)
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Given the fact that, due to the decreasing character of the magnitude characteristic
of the plant, the following inequality normally holds: |Wl( jΩ)| < |Wl( jωπ)|. As a
result, gain margin of the generalized suboptimal algorithm is always smaller than
that of the relay control (smaller than 2).

5.3.2 Gain Stability Margin of Averaged Dynamics of System
with Twisting Algorithm

The twisting algorithm is given as follows [5]:

u = c1sign (σ ) + c2sign (σ̇ ) ,

where c1 > 0 and c2 > 0 are control amplitudes, σ = f − y an error signal.
DF of the twisting algorithm was found in [17]:

N (a) = 4

πa
(c1 + jc2) . (5.22)

Analyze now the input-output properties of a system with the twisting algorithm by
finding first the equivalent gain.We shall consider the twisting algorithm as a parallel
connection of two ideal relays. Each of these relays can be brought (separately) to an
asymmetric oscillation if a certain constant bias signal is applied to each relay input.
Propagation of this bias signal through a particular relay is described as an equivalent
gain of this relay. Therefore, the methodology of a conventional relay system can be
used in this case too. This allows us to write the formula for the equivalent gain of
the twisting algorithm as:

kn(DF) = 2c1
πa

+ jωin
2c2
πa2 ,

(5.23)

where a2 is the amplitude of the oscillation of σ̇ ; ωin comes from the s at the input
of the second relay (differentiation of σ). It should be noted that the frequency
of the input signal must be used when replacing s with jω because kn describes
the propagation of the forced component of the motion. Taking into account that
a2 = Ωa (see [5]), we rewrite (5.23) as follows:

kn(DF) = 2

πa

(
c1 + j

ωin

Ω
c2

)
.

(5.24)

Considering the gain margin Eq. (5.6) together with the harmonic balance Eq. (5.14),
and the expressions for the DF (5.22) and the equivalent gain (5.24), we obtain a
formula for the gain margin as follows:
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γm = Wl( jΩ)

Wl( jωπ)

2 (c1 + jc2)

c1 + j ωin
Ω
c2

(5.25)

Chattering is a results of the presence of parasitic dynamics. Lower effect of parasitic
dynamics would correspond to a higher frequency of chattering. In fact, no parasitic
dynamics would correspond to infinite frequency of chattering. Therefore, one could
assume that parasitic dynamics has low contribution to overall dynamics of the sys-
tem, or equivalently, that the frequency of chattering is high. At least one can assume
that the frequency of chattering is much higher than the spectrum of possible input
signals. The following assumption regarding the relationship between the frequency
of the input signal and the frequency of chattering ωin � Ω results in the following
approximate formula:

γm = 2
Wl( jΩ)

Wl( jωπ)

(
1 + j

c2
c1

)
, (5.26)

which is produced from (5.25) by settingωin/Ω to zero. Considering that gainmargin
γm is a real but not a complex quantity, we take absolute values of the complex
multipliers in (5.26):

γm = 2
|Wl( jΩ)|
Wl( jωπ)

√
1 + c22

c21
(5.27)

Usually the following holds|Wl( jΩ)| < |Wl( jωπ)|, which may lead to both possi-
bilities: of the gain margin being larger (γm > 2) and smaller (γm < 2) than that of
the relay control.

5.4 Inherent Gain Margin and Closed-Loop Performance
of SM Control Systems

In this section, we aim to relate the derived formulas of the gain stability margins
for the analyzed three controllers and the closed-loop performance with respect to
tracking of set points and rejection of external disturbances. In doing so, we proceed
from the following assumptions and statements:

• Parasitic dynamics always exist in real SM control systems. Therefore both first-
order and higher-order SM control systems exhibit chattering.

• Amplitude of oscillations due to chattering in the control signal, which is equal
(first harmonic) to au = 4c

π
for the first-order SM control and sub-optimal algo-

rithm, and au = 4
√

c21+c22
π

for the twisting algorithm, can be set to a necessary value
and, therefore, the amplitude of chattering of the systemoutput can also be adjusted
by the same means: ay = au |Wl( jΩ)|. As a result, the amplitude of chattering ay
cannot be used as a comprehensive metric allowing one to compare performance
of different SM control algorithms.
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• On the other hand, if the amplitude of chattering of control au is set the same
for all algorithms being compared then the amplitude of chattering of the output
ay characterizes performance of an algorithm: the smaller ay , subject to a certain
fixed value of au , the better.

• Yet, amplitude of chattering does not describe input-output properties of an algo-
rithm. Low-frequency loop gain, which is related with the gain stability margin,
can serve as a characteristic of closed-loop performance: a steady-state error as a
reaction to a unity step of the control signal is given by σ0 = 1/ (1 + knWl(0)).

In linear control systems, the meaning of gain and phase stability margins is two-
fold. Firstly, it is related to the robustness of a system: the larger these gains the
higher changes of the plant dynamics (due to operating conditions, aging, etc.) are
allowedwithout loss of stability of the system. And secondly, gain and phasemargins
are related with the quality of transient processes: the smaller the margins the more
oscillatory the transientmotionwould be. Therefore, there are some reasonable lower
limits for these margins even if the plant dynamics are not subject to any variations.

In SM control systems, as shown above, the DF N (a) and equivalent gain kn are
related. This relationship can be characterized by the gain margin, which is given
by (5.15), (5.20), (5.26) for the relay control, the sub-optimal algorithm and the
twisting algorithm, respectively. Formulas (5.15), (5.20), (5.26) show that the gain
margin of SM control systems does not reflect robustness the way linear systems do:
if the gain of the plant is increased, the value of γm would stay unchanged. However,
gain margin defines the closed-loop performance, because its value would reflect the
disturbance-attenuation properties.

Let us write the transfer function relating the averaged motions in the error signal
and the system input:

We( jωin) = 1

1 + knWl( jωin)
, (5.28)

where the equivalent gain is given by formulas (5.13), (5.18), or (5.24) for the relay
control, the sub-optimal algorithm and the twisting algorithm, respectively. At zero
and low frequencies of the input signal (ωin � Ω) and given that the plant is type-0
servo the following holds:

We( jωin) ≈ We(0) = 1

1 + knWl(0)
. (5.29)

It is obvious that higher values of the equivalent gain entail smaller errors or better
tracking quality. However, equivalent gains are not suitable for comparison of dif-
ferent SM control algorithms in terms of their closed-loop performance. Yet, gain
margins are well suitable for that purpose, because instead of showing the error in a
particular case, it shows how much the errors would differ if the plant is controlled
by different SM algorithms. Because the gain stability margin cannot be changed by
increasing or decreasing the plant gain, we shall call it inherent gain margin. This
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term refers to the fact that the gain depends on the control algorithms rather than on
the plant or process. The following summary of the results can be given as follows:

• The lower the value of the inherent gainmargin the higher the loop gain is knWl(0),
and the lower the steady-state error σ0 is.

• Since stability with respect to external signals is maintained automatically in a SM
system, a smaller value of the inherent gain margin is beneficial, because it does
not endanger stability but results in a better closed-loop performance with respect
to external signals. However, the quality of transients, that may be affected by the
gain margin, must be considered too.

• Other means of enhancement of closed-loop performance, such as introduction
of phase lag and lead-lag filters, can be used too, so that advantages of using a
particular SM control algorithm must be weighed for every particular application
against the use of compensating filters; their use in combination can be considered
too.

5.5 Examples

We shall consider the following three examples of applications of the considered
controllers to a plant having principal dynamics of relative degree two Wp(s) =

1
s2+s+1 andparasitic dynamics (actuator) givenby the followingfirst-order-plus–time-

delay transfer function: Wa(s) = e−0.1s

0.02s+1 . Principal and parasitic dynamics together
results in the following dynamics of the linear part of the system:

Wl(s) = e−0.1s

(0.02s + 1)
(
s2 + s + 1

) , (5.30)

To design the three controllers that would provide results suitable for comparison,
we need to satisfy two requirements:

• The amplitude of the oscillations of the control signal au = a |N (a)| must be the
same for all three controllers;

• The sub-optimal and the twisting controllers must provide the same phase shift
φN = arg N (a) = −π + ImN (a)

ReN (a)
of the frequency of the oscillations (this cannot

be required from the relay control by definition).

Therefore, we can write for the amplitudes of the control signal:

4c

π
= 4

π

√
c21 + c22 (5.31)

and for the phase angles:
β√

1 − β2
= c2

c1
. (5.32)



5 On Inherent Gain Margins of Sliding-Mode Control Systems 145

Fig. 5.5 Symmetric
oscillations in relay feedback
system

Considering (5.31) and (5.32) as equations for c1 and c2, one can find equivalent para-
meters for the twisting controller from known c and β of the sub-optimal controller:

c1 = c
√
1 − β2, (5.33)

c2 = cβ. (5.34)

Simulations for c = 0.2, β = 0.2 of the relay and sub-optimal controllers, and
c1 = 0.196 and c2 = 0.040 computed per (5.33), (5.34) for the twisting controller,
showing symmetric oscillations (chattering), are presented in Figs. 5.5, 5.6 and
5.7, respectively. The observed values of the oscillation parameters are: for the
relay controller a = 0.0327, Ω = 2.848; for the sub-optimal controller a = 0.0191,
Ω = 3.696; and for the twisting controllera = 0.0188,Ω = 3.696 rad/s.One can see
that the parameters of the oscillations for the sub-optimal and twisting controllers are
nearly identical, which is an expected outcome of the design through (5.33), (5.34).
Even the transients are similar in the sub-optimal and twisting algorithms, that can
be explained by the same shape of the describing functions [16, 17].

What concerns the inherent gain margins, if the parameters of the twisting algo-
rithm are selected per (5.33) and (5.34) then substitution into (5.27) yields for the
twisting algorithm:

γmTwist = 2
|Wl( jΩ)|
Wl( jωπ)

1√
1 − β2

, (5.35)

which is always larger than the inherent gain margin for the sub-optimal algorithm
(5.21).

Bias functions and equivalent gains of the systems with the considered three SM
algorithms are presented in [1, 3, 16, 17].
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Fig. 5.6 Chattering in the
system with sub-optimal
controller chattering in the
system with sub-optimal
controller

Fig. 5.7 Chattering in the
system with twisting
controller

5.6 Conclusion

The notion of inherent gain margin, applicable to sliding mode control algorithm
performance, is introduced. Analysis of three different SM control algorithms: the
relay control, the sub-optimal algorithm and the twisting algorithm, with respect to
their closed-loop performance, is presented. It is shown that these algorithms have
different values of inherent gain margin. Particularly, the sub-optimal algorithm has
the lowest value of all. It is shown that having a low value of inherent gain margin is
beneficial, as leading to higher accuracy of tracking and higher degree of disturbance
rejection. However, other effects, such as the quality of transients, and other possible
methods of increasing the open-loop gain, such as phase-lag and lead–lag filters,
must be considered too when conclusion is made about closed-loop performance of
different control algorithms. This would make the comparison more comprehensive,
yet the comparison processmore complex too. This is not done in the present chapter,
and can be considered as a possible direction for future research.
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Chapter 6
Adaptive Sliding Mode Control Based
on the Extended Equivalent Control Concept
for Disturbances with Unknown Bounds

Tiago Roux Oliveira, José Paulo V.S. Cunha and Liu Hsu

6.1 Introduction

Many authors have been dedicating their work to remove the obstacle of consider-
ing bounded disturbances with known bounds in the sliding mode control design
[2–5, 14, 17, 18, 22, 23]. This research topic is of practical significance because the
control magnitude is often related with the chattering intensity in actual applications.
Overestimated disturbances may lead to nonminimum chattering [22].

Generally, adaptive sliding mode controllers can be classified as follows:

1. Schemes based on monotonically increasing gains [14, 17, 23];
2. Strategies with increasing and decreasing gains [2, 5, 18]; and
3. Approaches based on the equivalent control [3, 4, 22].

The benefit of the latter approach is that once the sliding motion begins, an accu-
rate estimate of the disturbance can be obtained. If the disturbance decreases, the
equivalent control does automatically the same. It means that if the control gain is
updated according to the equivalent control, a less conservative controller in terms of
control effort and improved performance can be obtained. Although the equivalent
control cannot be measured precisely in practice due to model mismatches, a good
approximation is the average control signal [21].

In this chapter, a novel adaptive sliding mode control strategy based on the
extended equivalent control [8, 9] is developed [15]. The adaptation rule combines
the qualities of monotonically increasing gains and the equivalent control. During
the reaching phase, a positive feedback loop increases the control gain (modulation
signal) until the disturbances are dominated. After that, the conditions for the sliding
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mode phase can be satisfied. Thus, the disturbances bounds can be satisfactorily esti-
mated by the equivalent control which updates the proposed modulation function.
The modulation gain is adapted in such a way that it is small as possible to mitigate
chattering effects, but large enough to ensure the existence of the sliding mode in the
presence of bounded exogenous disturbances.

The new adaptation law seems simpler than earliermethods found in the literature.
The restriction of assuming only smooth disturbances in previous works [3, 4, 22]
can be overcome. In addition, the new adaptive scheme does not require knowledge
of the minimum and maximum allowed values of the adaptive gain [22], and do not
require any information about the bound on the disturbances [3]. When compared
with the adaptive methodologies applied to [2, 5, 18], no mechanism is necessary
to detect the sliding mode and adapt the control gain in order to make it increase or
decrease. Additionally, perfect stabilization and ideal slidingmode can be guaranteed
rather than only the convergence to a neighborhood of the origin and intermittent
loss of the sliding motion.

6.2 Discontinuous Differential Equations

Since we shall deal with discontinuous systems, it is necessary to define precisely the
meaning of a solution for such systems. Here, Filippov’s definition is assumed [6].
Note that the control signal u is not necessarily a function of t in the usual sense when
sliding modes take place. In order to avoid clutter, we will denote by u(t) the locally
integrable functions which are equivalent to u, in the sense of equivalent control
[21], along any given Filippov solution z(t) of the closed-loop system. It should be
stressed that z(t) is, by definition, absolutely continuous. This definition is motivated
by the adequate representation of the behavior of physical systems when the actual
switching mechanism tends to an ideal switching device which corresponds to the
given discontinuous differential equation [21]. Then, along any such solution, u can
be replaced by u(t) in the right-hand side of the governing differential equations.
Although the equivalent control u(t) = ueq(t) is not directly available, for affine
systems filtering u with any causal linear time-invariant filter with impulse response
g(t) gives g(t) ∗ u = g(t) ∗ u(t) = g(t) ∗ ueq(t). Here, the symbol “∗” stands for
the convolution operator defined as:

g(t) ∗ u(t) :=
∫ t

0
g(t − s)u(s)ds . (6.1)

6.2.1 Extended Equivalent Control

The extended equivalent control [8, 9] is defined as an equivalent control which
applies for a complete system motion, i.e., on and outside the sliding mode
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surface σ(x(t), t) = 0, σ : Rn × R+ → R
m . Consider the class of nonlinear sys-

tems described by
ẋ = f (x, t) + B(x, t)u , (6.2)

where f : Rn × R+ → R
n and B : Rn × R+ → R

n×m are smooth. Let x(t) be a
solution of this system, for t ∈ [0, T ). Then, the extended equivalent control is a
locally integrable function, defined almost everywhere in the interval [0, T ), and is
given by

ueq(t) = −[G B(x(t), t)]−1

[
G f (x(t), t) − d

dt
σ(x(t), t) + ∂

∂t
σ(x(t), t)

]
, (6.3)

whereG = ∂
∂x σ(x(t), t). The above expression is well defined since the solution x(t)

is absolutely continuous by definition and, thus, has derivatives almost everywhere.

6.2.2 Average Control

The ideal equivalent control signal is not available for controller realization. Since
the extended equivalent control ueq(t) in systems affine in control (such as (6.2))
coincides with the slow component of the actual sliding mode control u, the average
control denoted by uav(t) can be estimated by applying the real control signal to a low-
pass filter with unit DC gain and time constant τ > 0 small enough as compared with
the slow component, but yet large enough to attenuate the high-frequency switching
in u [21]. Thus, the low-pass filter

τ u̇av(t) = −uav(t) + u , (6.4)

gives the average control which is an estimate of ueq(t) satisfying [22]

|uav(t) − ueq(t)| ≤ O(τ ) → 0 , (6.5)

as τ → +0, provided that ueq(t) is a continuous signal.

6.3 Motivating Example

In order to illustrate the proposed approach, consider the simplest scalar integrator
example inspired by [22]:

ẋ = u + d(t) (6.6)
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subject to an input disturbance d(t), which is piece-wise continuous and uniformly
bounded by an unknown constant d̄ > 0 such that |d(t)| ≤ d̄ , ∀t > 0. Differently
from [22], no known constant upper bound is imposed on |ḋ(t)|.

Our objective is to apply the first-order sliding mode controller

u = −ρ(t)sign[x] , (6.7)

into the system (6.6) and design the modulation function ρ(t) > 0 in an adaptive
fashion so that the state x can be driven to zero.

Basically, the modulation function ρ must satisfy the differential equation:

ρ̇(t) = −γ f ρ(t) + c f |ueq(t)| , ρ(0) > 0 , (6.8)

with constants satisfying the inequalities

c f > γ f > 0 . (6.9)

The signal ueq(t) is the extended equivalent control [9], which is assumed available
to simplify this presentation.

The idea is very intuitive: outside of the sliding motion |ueq(t)| = ρ(t), almost
everywhere, whereas during the sliding motion |ueq(t)| = |d(t)|. Thus, during the
reaching phase, the differential equation (6.8) can be rewritten as

ρ̇(t) = (
c f − γ f

)
ρ(t) . (6.10)

Since c f − γ f > 0, ρ increases exponentially in order to dominate the disturbance
(ρ(t)≥ d̄) in some finite time, such that the sliding surface x ≡0 is reached.

Once the sliding mode is achieved, the adaptation is given by the input-to-state
stable (ISS, see Appendix) filter (6.8) with input being the estimate of |d(t)| given by
the equivalent control, that is |ueq(t)| = |d(t)|. The modulation signal is the solution
of (6.8) given by

ρ(t) = e−γ f tρ(0) + c f e−γ f t ∗ |ueq(t)| . (6.11)

If
c f e−γ f t ∗ |d(t)| > |d(t)| , ∀t ≥ t0 , (6.12)

for some t0 ≥ 0, then it can be concluded from (6.11) andρ(0) > 0 thatρ(t) > |d(t)|,
which is a sufficient condition for the existence of sliding modes. Inequality (6.12)
means that the output signal of a first order low-pass filter with transfer function
c f /(s + γ f ) dominates its input signal |d(t)|.

In the proposed adaptation law, if the amplitude of the disturbance d(t) decreases,
then ρ(t)will eventually decrease due to the forgetting factor−γ f ρ in the adaptation
law (6.8). This is an advantage over earlier adaptive schemes [14, 17, 23] based on
non decreasing gains.
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6.4 Problem Formulation

6.4.1 Nonlinear Plant

Consider a nonlinear system in the normal form [11]:

η̇ = f0(η, ξ, t) , (6.13)

ξ̇1 = ξ2 , (6.14)
...

ξ̇r−1 = ξr , (6.15)

ξ̇r = f (x, t) + g(x, t) [u + d(t)] , (6.16)

where η ∈ R
n−r , ξ = [ξ1 , . . . , ξr ]T ∈ R

r and x = [ηT , ξ T ]T ∈ R
n is the state, u ∈

R is the control signal, f (x, t)∈R is a state dependent nonlinear term, d(t)∈R is an
exogenous input disturbance, g(x, t) > g (∀x ∈ R

n , ∀t ∈ R+) is the input gain, and
g > 0 is a constant lower bound. In order to satisfy the minimum-phase condition,
the nonlinear subsystem (6.13) with partial state η and input signal ξ is assumed to
be ISS (see Appendix).

6.4.2 Allowable Disturbance Signals

The fundamental assumption for the unknown input disturbance d(t) is stated below:

(A1) The input disturbance d(t) is assumed to be unknown, locally integrable and
norm bounded by |d(t)| ≤ d̄ , ∀t , where d̄ ≥ 0 is an unknown scalar. Moreover,
there exist a finite time t0 ≥ 0 and known constants c f > γ f > 0 such that

|d(t)| ≤ c f e−γ f t ∗ |d(t)| , ∀t ≥ t0 . (6.17)

Note that (A1) relaxes the knowledge of upper bounds for disturbances usu-
ally assumed in standard sliding mode control designs. In addition, it allows for
some classes of piece-wise continuous disturbance signals. Inequality (6.17) does
not impose extra conditions on the disturbance time derivatives either, as the bound-
edness of ḋ(t) assumed in [4, 22].

It seems not easy to fully characterize the classes of disturbance signals, their
waveforms and relationship with the constants c f and γ f , such that assumption (A1)
can be verified. Some examples of disturbances are presented in the simulation
tests of Sect. 6.8. In order to illustrate a class of disturbance signals that ver-
ify inequality (6.17), assume that the time derivative d|d(t)|

dt exists almost every-
where. If at a given instant t1 ≥ t0 the modulation signal verifies ρ(t1) > |d(t1)|
and the sliding mode exists, then |ueq(t1)| = |d(t1)|. A sufficient condition to main-
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tain ρ(t1 + ε) > |d(t1 + ε)| (ε → 0+) is ρ̇(t) ≥ d|d(t)|
dt when t = t1, thus, from (6.8),

one has

ρ̇(t) = −γ f ρ(t) + c f |ueq(t)| ≥ d|d(t)|
dt

. (6.18)

Since ρ(t1) ≥ |d(t1)| = |ueq(t1)|, the previous inequality is implied by

− γ f |d(t)| + c f |d(t)| ≥ d|d(t)|
dt

, (6.19)

when t = t1. Therefore, the following inequality can be obtained:

1

|d(t)|
d|d(t)|
dt

= d [ln |d(t)|]
dt

≤ c f − γ f (> 0) . (6.20)

From this inequality, we can conclude that some classes of non smooth and even
unbounded exponentially growing disturbances satisfying

|d(t)| < d0 e(c f −γ f )t , ∀t ≥ t1 , (6.21)

d0 > 0, could be considered, provided that the coefficients in (6.9) are properly
chosen. Piecewise-continuous disturbances d(t) with continuous |d(t)| and d|d(t)|

dt
defined almost everywhere may belong to this class, e.g., square wave and sawtooth.

6.5 Adaptive Sliding Mode Control

First, define the relative degree one sliding variable:

σ(t) = S ξ(t) , S = [s0 , s1 , . . . , sr−1] , (6.22)

where S is chosen such that the polynomial sr−1λ
r−1 + · · · + s1λ + s0 is Hurwitz.

Without loss of generality, we will fix sr−1 = 1 to obtain a monic polynomial.
By computing σ̇ , one has

σ̇ = fσ (x, t) + g(x, t) [u + d(t)] , (6.23)

with fσ (x, t) = ∑r−2
i=0 siξi+2 + f (x, t).

Let us consider the control law:

u = uc + us , (6.24)

uc = − fσ (x, t)

g(x, t)
, (6.25)

us = −ρ(t)sign[σ ] . (6.26)
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If the modulation function is designed such that ρ(t) > |d(t)| + δd (∀t ≥ t1 ≥ 0,
δd > 0), so that it can be concluded that σ σ̇ ≤ −δσ |σ | < 0 for some constant δσ > 0,
the sliding surface σ = 0 will be reached in finite time. Since the polynomial λr−1 +
· · · + s1λ + s0 is Hurwitz, then the reduced order equation which governs the closed-
loop system during the sliding motion is exponentially stable and, consequently, the
state ξ will converge exponentially to the origin. Due to the ISS condition imposed
on the internal dynamics (6.13), we can also conclude that η → 0 as ξ → 0 and
guarantee global stabilization.

On the other hand, if no upper bound for the input disturbance is known as assumed
in (A1), we apply the following adaptive modulation function described by

ρ̇(t) = −γ f ρ(t) + c f
(|useq(t)| + δ

)
, ρ(0) ≥ 0 , (6.27)

where useq(t) is the extended equivalent control of us, and δ > 0 is a constant which
guarantees a desired minimum control level for start-up.

As discussed before, the condition c f > γ f > 0 is used in (6.27) to guarantee the
control loop is unstable and exponentially growing before the sliding mode takes
place, so that it can be indeed attained. The convolution inequality in (A1) is a suffi-
cient condition for the sliding mode existence, that is, it guarantees the modulation
function (6.27) to become an upper bound for |d(t)| after the sliding mode takes
place.

Figure6.1 describes the proposed adaptive sliding mode controller. Since the
extended equivalent control signal useq(t) is unavailable, it is approximated by the
average control signal uav(t) given by the low-pass filter

τ u̇av(t) = −uav(t) + us , (6.28)

for the purpose of implementation of the adaptive law (6.27).

uavuav|      |

−    sgn(   )ρ        σ

us

uc

S

law
Adaptive

filter
Averaging

σ

|   |.

ρ

Adaptive modulation function

Plant
x

d

+
++

+

control
Continuous

Fig. 6.1 Block diagram of the proposed adaptive sliding mode controller
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6.6 Stability Analysis

The main stability results of the proposed adaptive sliding mode controller are sum-
marized in the following theoremassuming the availability of the extended equivalent
control signal useq(t) needed in the adaptive modulation function (6.27).

Theorem 6.1 Consider the nonlinear system (6.13)–(6.16) presented in Sect.6.4.1,
where the unknown matched disturbance d(t) satisfies Assumption (A1). The state-
feedback based sliding mode control law u is given by (6.24)–(6.26), with adaptive
modulation function ρ (6.27) and sliding variable σ in (6.22). Under these condi-
tions, the sliding surface σ = 0 is reached in finite time and the closed-loop system is
uniformly globally exponentially stable in the sense that the state x = [ηT , ξ T ]T con-
verges exponentially to the origin and all remaining signals are uniformly bounded.

Proof The term uc given by (6.25) in the control law (6.24) cancels out the harmful
nonlinearities in the system (6.16) and eliminates any possibility of finite-time escape
of the state trajectories. Thus, the system signals will be regular and can grow at
most exponentially [20]. This fact leads us to the second step of the proof.

The modulation signal ρ(t) verifies the differential equation (6.27). Assuming no
initial slidingmode, useq(t) = us(t). Thus, |useq(t)| = ρ(t) and the solution of (6.27)
is given by

ρ(t) = e(c f −γ f )t
[
ρ(0) + c f δ

] − c f δ , (6.29)

grows exponentially because c f − γ f > 0. Since assumption (A1) holds, there exists
a finite-time instant T1 > 0 such that ρ(t) ≥ |d(t)| is satisfied ∀t > T1. Then, from
[10, Lemma 1], the ideal sliding mode σ(t) ≡ 0 is achieved in finite time.

The signal σ is a relative degree one output for (6.13)–(6.16). Therefore, it is
possible to apply an invertible transformation and rewrite it into a particular relative
degree one regular form [21] such that all the state variables of the transformed
nonlinear system are exponentially ISS with respect to σ . Thus, x = [ηT , ξ T ]T

tends exponentially to zero since the sliding mode on the manifold σ = 0 is reached
and the polynomial λr−1 + · · · + s1λ + s0 is Hurwitz.

Finally, from the ISS nature of the adaptive law (6.27), it can be concluded that the
modulation signal ρ(t) is also uniformly bounded since in finite time useq(t) = d(t),
and d(t) is uniformly bounded. �

6.7 Extensions of the Proposed Adaptive Law

In this section, some extensions of the proposed adaptive law are discussed.
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6.7.1 Global Differentiation and Output-Feedback

The generalization of the tools introduced here to the output-feedback framework
are still possible if we apply the global higher-order sliding mode (HOSM) dif-
ferentiator with dynamic gains recently developed in [16]. As usual, the idea is to
define the output signal y = ξ1 of relative degree r and replace its upper derivatives
ξ2 = ẏ , ξ3 = ÿ , . . . , ξr = y(r−1) by their estimates ξ̂2 , ξ̂3 , . . . , ξ̂r obtained with
the exact differentiator [12]. The stability analysis is straightforward since the finite-
time convergence of the differentiator with dynamic gains is demonstrated and the
separation principle is fulfilled independently [13].

6.7.2 Non Input-to-State-Stable Zero Dynamics

Consider r = 1 and ξ =ξ1 in (6.13)–(6.16), and assume the internal dynamics η̇ =
f0(η, ξ, t) is linear and time invariant such that it could be written as η̇= A0η+
B0ξ . Then, the proposed approach can be extended to systems with non ISS zero
dynamics (A0 non-Hurwitz) [1] by redefining the sliding variable σ =ξ−Kη, as in
[7]. Assuming the pair (A0 , B0) is controllable, when the state variables are restricted
to the manifold σ = 0, the reduced-order model becomes η̇ = (A0 + B0K )η, which
is exponentially stable for an appropriate feedback matrix K T ∈ R

n−1. Once η → 0,
the convergence of ξ to zero would also be proved. The only change needed in the
control design is the modification of the term fσ (x, t) which appears in (6.23) and
(6.24) to

fσ (x, t) = f (x, t) − K (A0η + B0ξ) . (6.30)

6.7.3 Adaptive Twisting Algorithm

The first and simplest second order sliding mode (SOSM) algorithm is the so-called
“twisting algorithm (TA)” [14]. For (6.13)–(6.16) with r = 2, our adaptive version
of the TA would be given by:

u = −a(t)sign[ξ2] − b(t)sign[ξ1] , b(t) ≥ 2a(t) , (6.31)

where a(t) = ρ(t) in (6.27) is defined analogously to satisfy ρ(t) ≥ |d(t)|. The
proposed adaptive twisting algorithmwould ensure the finite-time exact convergence
of both ξ1 and ξ2, i.e., there exists T > 0 such that ξ1(t) = ξ2(t) = 0, ∀t > T .
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6.8 Simulation Results

We seize the opportunity to consider the integrator example (6.6) already studied in
Sect. 6.3 to focus the features of the proposed adaptation scheme and present some
numerical results.

In the following simulations, the controller parameters applied to (6.24)–(6.28)
and (6.22) were: fσ (x, t) = 0, g(x, t) = 1, S = 1, δ = 0.2, c f = 1.7, γ f = 0.8 rad/s
and τ = 0.01s. Notice that c f > γ f > 0, such that inequality (6.9) is verified.

Distinct profiles for the disturbance signal d(t) were evaluated, including smooth
and non smooth disturbances.

6.8.1 Smooth Disturbances

Figure6.2 presents simulation results obtained for a sinusoidal disturbance d(t) =
5 sin(4t). It can be seen that after an initial exponential growth of the modulation
signal ρ(t), it becomes larger than the absolute value of the sinusoidal disturbance
(|d(t)|), then the sliding mode takes place when σ ≡ 0. Thereafter, the amplitude
of the switching control signal u is maintained larger than the amplitude of the
disturbance.
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Fig. 6.2 Performance of the proposed adaptation scheme under sinusoidal disturbance: sliding
variable σ , control signal u (gray), average control uav (black), modulation signal ρ (gray) and
absolute value of the disturbance |d| (black)
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Fig. 6.3 Performance of the proposed adaptation scheme under an exponentially decaying sinu-
soidal disturbance: sliding variable σ , control signal u (gray), average control uav (black), modu-
lation signal ρ (gray) and absolute value of the disturbance |d| (black)

Figure6.3 presents simulation results obtained for an exponentially decaying sinu-
soidal disturbance. The sliding mode takes place (σ ≡ 0) after the modulation signal
ρ(t) becomes larger than the absolute value of the disturbance (|d(t)|). It can be seen
that the proposed adaptation scheme reduces the modulation signal amplitude as the
disturbance vanishes exponentially.

6.8.2 Non Smooth Disturbances

Figures6.4, 6.5 and 6.6 present simulation results obtained for discontinuous periodic
disturbances of rectangular shape, peak value 2, always positive, frequency 2Hz, and
different duty cycles.

In Fig. 6.4 the duty cycle is 50%, such that the disturbance verifies assump-
tion (A1). It can be seen that after an initial exponential growth of the modulation
signal ρ(t), it becomes larger than the disturbance d(t), which allows the sliding
mode in the manifold σ = 0. Therefore, the amplitude of the switching control sig-
nal u is maintained larger than the peak of the pulsed disturbance.

In Fig. 6.5 the duty cycle is 80%, such that its mean value is greater than in the
previous case. Thus, the amplitude of the modulation signal ρ(t) becomes much
larger than the disturbance d(t).
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Fig. 6.4 Performance of the proposed adaptation scheme under rectangular pulsed disturbances
with 50% duty cycle: sliding variable σ , control signal u (gray), average control uav (black),
modulation signal ρ (gray) and disturbance d (black)
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Fig. 6.5 Performance of the proposed adaptation scheme under rectangular pulsed disturbances
with 80% duty cycle: sliding variable σ , control signal u (gray), average control uav (black),
modulation signal ρ (gray) and disturbance d (black)
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Fig. 6.6 Performance of the proposed adaptation scheme under rectangular pulsed disturbances
with 20% duty cycle: sliding variable σ , control signal u (gray), average control uav (black),
modulation signal ρ (gray) and disturbance d (black)

In Fig. 6.6 the duty cycle is 20%. In this case, the disturbance does not verify
assumption (A1), which impairs the effectiveness of the adaptation scheme and the
sliding mode cannot be guaranteed. This causes the repetitive pulses in the sliding
variable σ .

6.9 Conclusion

A new adaptive sliding mode controller to circumvent (non) smooth input exogenous
disturbances with unknown constant bounds has been addressed. The cases of state
dependent disturbances and uncertain parameters are left for future research.

The proposed controller is based on the extended equivalent control concept.
The modulation function (control gain) is designed to dominate the disturbances. It
decreases with the disturbance and, consequently, the precision of the stabilization
is improved, while preserving in theory the sliding mode occurrence. In practice, if
the gains decrease, the sensitivity of the overall closed-loop system is also reduced.

The main steps of the proof for uniform and global exponential stability as well
as perfect disturbance rejection were carried out assuming the availability of the
equivalent control. The effects of the averagingfilter needed to estimate the equivalent
control signal is a current research topic.
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Although only the stabilization under full-state feedback and no parametric uncer-
tainties are being considered to keep the focus on disturbanceswith unknown bounds,
the developed method can be extended to more general uncertain systems where
trajectory tracking via output-feedback is also pursued. We will leave these gen-
eralizations for future works. The generalization of the proposed tools for fixed-
time algorithms [19] or HOSM based controllers and their combination with other
non-overestimated adaptive strategies also seem to be interesting topics for future
investigation.
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for the financial support.

Appendix

To define the concept of input-to-state stability/stable (ISS) [11, Sect. 4.9], consider
the system

ẋ = f (x, u, t) , (6.32)

where f : Rn × R
m × R+ → R

n is piecewise continuous in t and locally Lipschitz
in x and u. The input signal u(t) is piecewise continuous and uniformly bounded.
Assume that this system has a globally uniformly asymptotically stable equilibrium
point at x = 0 when u(t) ≡ 0.

Definition 6.1 The system (6.32) is said to be input-to-state stable (ISS) if there
exist a classK L function β and a classK function γ such that for any initial state
x(t0) and any bounded input signal u(t), the solution x(t) exists ∀t ≥ t0 ≥ 0 and
satisfies

‖x(t)‖ ≤ β (‖x(t0)‖, t − t0) + γ

(
sup

t0≤τ≤t
‖u(τ )‖

)
. (6.33)
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Chapter 7
Indirect Adaptive Sliding-Mode Control
Using the Certainty-Equivalence Principle

Alexander Barth, Markus Reichhartinger, Kai Wulff, Johann Reger,
Stefan Koch and Martin Horn

7.1 Introduction

For many controller design problems a precise mathematical model of the plant
to be controlled is not available. This may be due to a lack of insight into the plant
dynamics, too complex relations between toomany interacting components or simply
uncertain parameters or unknown disturbances. Against this background, in adaptive
control, it is distinguished between parametric or structured uncertainty and inherent
or unstructured uncertainty, see e.g. [7, 24]. Indeed, the former describes the effect of
uncertain system parameters, the latter accounts for unmodeled dynamics or external
disturbances.

Sliding-mode controller design, typically, does not distinguish these natures of
uncertainty. In fact, all uncertainties are regarded as unstructured. Robustness is
ensured as long as certain conditions with respect to the uncertainties are fulfilled.
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The common design paradigm requires worst case bounds on the uncertainty for an
appropriate controller tuning. Consequently, this approach often results in unnec-
essary high controller gains and may lead to undesired pronounced chattering [5].
Adaptive and variable-gain controllers based on sliding-mode concepts tackle this
issue by adapting the gains of the control law depending on the actual perturba-
tions, e.g. [8, 20–22]. The main idea of the prominent adaptive-gain algorithms is
to increase the sliding-mode controller gains whenever the sliding variable leaves a
certain domain around the sliding surface, see e.g. [8, 20, 21]. This approach gener-
ally results in smaller controller gains compared to constant-gain algorithms. In any
case, the class of uncertainty, the algorithms can cope with, cannot be extended by
these adaptive-gain methods. Consider exemplarily the simple dynamical system

dx

dt
= Δ(t, x) − k(t) signx, (7.1)

with the uncertainty Δ(t, x). The time-varying parameter k is governed by any of
the adaptation laws discussed e.g. in [17]. Hence, as long as the absolute value of the
uncertainty does not exceed a possibly unknown upper bound, system (7.1) exhibits
a sliding-mode at x = 0. However, even in the case of Δ(t, x) = δx , with a con-
stant δ, the required boundedness is violated and global stability of x = 0 cannot be
guaranteed. The main idea of our approach is to exploit the available information
about the nature of the uncertainty as much as possible by distinguishing between
its structured and unstructured parts. The principle idea presented in this work is to
design a sliding-mode controller coping with the unstructured uncertainty whereas
the structured part of the uncertainty is compensated by an adaptive part. While this
concept may work with any stabilizing sliding-mode algorithm we choose the super-
twisting algorithm (STA) as nominal controller in a certainty-equivalence principle
design of the adaptive controller. The super-twisting algorithm is particularly suitable
for such combination as there have been a number of Lyapunov functions proposed
in the recent past, that are inevitably needed for the design procedure of the adap-
tive part pursued in this chapter. As a result the class of admissible uncertainties
covered by the proposed control concept is considerably enlarged with respect to
the considered sliding-mode controls, including adaptive-gain super-twisting algo-
rithms. Initial results of this approach have shown that the gains of the sliding-mode
controller may be reduced significantly while maintaining its robustness [1–3].

For the remainder of this section we discuss classes of uncertainties that can be
handled by popular sliding mode concepts. An introductory example illustrates how
unstructured uncertainties affect the robustness properties of the controller and may
lead to unstable motions in the case of a super-twisting controller applied to a simple
DC-motor control problem. Section7.2 introduces a formal problem description and
casts the robustness problem into the sliding-mode control concept. In Sect. 7.3 we
present the design procedure of the certainty-equivalence based super-twisting algo-
rithm (CESTA). A central role in the design of this controller plays the Lyapunov
function for the nominally stabilizing part of the controller. In Sect. 7.4 we thus con-
sider various Lyapunov functions recently proposed for sliding-mode controllers.
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We derive the respective different adaptation laws and discuss their impact on the
resulting control law. Finally in Sect. 7.6 we present a case study to demonstrate the
efficiency of the proposed control concept applied to an experimental test rig and
compare its performance with conventional super-twisting algorithms.

7.1.1 Classes of Uncertainties

Consider the scalar control system given by

ẋ = u + Δ (7.2)

with x, u, Δ ∈ R. Therein Δ is an external, Lebesgue-measurable time-dependent
disturbance. The objective is to design the control u such that the state x vanishes
within finite time despite the disturbance. Note that even in the nominal case, i.e.
Δ = 0, the specification of finite time convergence of x requires a control law u =
u(x) that is non-Lipschitz continuous at the origin x = 0. Popular options are the
algorithms proposed in [4]. However, in the general case robustness against Δ �= 0
may be achieved by a sliding-mode controller for specific classes of disturbances.
Bounded disturbances, i.e.

sup
t

|Δ(t, x)| ≤ δb, (7.3)

where δb is a known positive constant, without any additional restriction may be
handled by a conventional sliding-mode controller

u = −k0 sign[x] with k0 > δb, (7.4)

see [23]. A system (7.2) subject to disturbances bounded by

|Δ(t, x)| ≤ δr
√|x |, (7.5)

may be controlled by the super-twisting algorithm

u = − k1
√|x |sign[x] + v

dv

dt
= − k2 sign[x]

(7.6)

where the controller gains k1 and k2 are all positive and satisfy k1 > δr. Applying
control law (7.6) to system (7.2) yields the closed loop dynamics
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dx

dt
= − k1

√|x |sign[x] + v + Δ,

dv

dt
= − k2 sign[x].

(7.7)

This control algorithm also is capable of rejecting Lipschitz-continuous disturbances
characterized by

sup
t

∣
∣
∣
∣
dΔ(t)

dt

∣
∣
∣
∣ ≤ δl with δl > 0. (7.8)

This requires a choice of the gains k1 and k2 as discussed in [10, 12, 13]. In contrast
to the discontinuous control signal (7.4) the super-twisting algorithm provides an
absolutely continuous control signal which may be beneficial in many real world
applications. The adaptive gains version of the super-twisting algorithm presented
in [6] also copes with an unknown upper bound δl. Note that the disturbances satis-
fying inequality (7.8) are assumed to be independent of the state variable x . If this
assumption does not hold, the control signal u appears in the time derivative ofΔ, i.e.

dΔ(t, x)

dt
= ∂Δ

∂x

dx

dt
+ ∂Δ

∂t
= ∂Δ

∂x
(u + Δ(t, x)) + ∂Δ

∂t
. (7.9)

Proving stability then relies on an appropriate choice of the controller gains which
depend on some upper bound on the uncertainty. However, its derivative (7.9) itself
contains k1, k2. Typically, the state dependency of Δ results only in local stability
[11]. This issue is addressed in more detail in the following introductory example.

7.1.2 Introductory Example (Control of a DC Motor)

In this example a standard DC motor control setup is discussed. It consists of an
inner current loop controller and an outer angular velocity feedback loop. The overall
control task is to make the angular velocity track a given reference. The design of
the current controller depends on the known electrical characteristics of the motor.
Hence, the current controller including the selection of the gains often is designed
independent of the underlying application of the motor. In the example the inner loop
controller is realized by a super-twisting algorithm. The outer loop controller is a
standard PI controller where the tuning is left to the operating engineer.

A lumped parameter model which describes the dynamics of the DC motor is
derived from the equivalent circuit model shown in Fig. 7.1. Applying Kirchhoff’s
voltage law yields the first-order differential equation

u(t) − R i(t) − Lm
di(t)

dt
− km ω(t) = 0 (7.10)
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Fig. 7.1 Schematic diagram
of the DC motor consisting
of an ideal resistor R, an
inductance Lm and the
control voltage u

where the positive parameters R, Lm, km are the winding resistance, the inductance
and themotor constant of theDC-drive, respectively.Making use ofNewton’s second
law of motion yields the differential equation

J
dω(t)

dt
= −b ω(t) + km i(t) (7.11)

that describes the dynamics of the mechanical subsystem. The parameter b is a
positive friction coefficient which represents viscous friction, J is the moment of
inertia of the rotating parts, i.e. the armature and the external load.

The design requirement of the sliding-mode based current control loop is to track
a reference input id which is generated by the outer control loop. Therefore, the
sliding variable is introduced as the difference of the measured and the reference
current, i.e.

s := id − i. (7.12)

Taking the derivative of the sliding variable with respect to time and using (7.10)
yields

ds

dt
= did

dt
+ R

Lm
i + km

Lm
ω − 1

Lm
u. (7.13)

Assuming that the motor inductance is known, a control law of the form

u = −Lm(us + uc) (7.14)

shall be proposed. The control law is composed of two parts, where us denotes the
sliding-mode based control and uc accounts for the known dynamics. The control us

is obtained from the super-twisting algorithm

us = − k1
√|s|sign[s] + v,

dv

dt
= − k2 sign[s].

(7.15)
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Substituting control law (7.14) in view of (7.15) into (7.13) and selecting

uc = − R

Lm
i (7.16)

leads to the closed loop dynamics

ds

dt
= −k1

√|s| sign[s] + v + did

dt
+ km

Lm
ω

︸ ︷︷ ︸
Δ

,

dv

dt
= −k2 sign[s],

(7.17)

which matches the super-twisting structure presented in (7.7).
The super-twisting algorithm achieves finite time stabilization of the sliding vari-

able s and keeps s ≡ 0 for all subsequent times if the perturbation Δ satisfies any
condition discussed in the previous paragraph. In the problem at hand, the pertur-
bation involves the term did

dt which is introduced by the outer control loop. Hence
the properties of the perturbation regarding growth conditions and boundedness will
obviously depend on the design of this loop. Therefore, providing an estimate of the
bounds in advance represents a challenging task. As mentioned above, the motor
angular velocity tracking error

e := ωd(t) − ω(t) (7.18)

is regulated by a PI controller. In this regard, the reference current signal is

id(t) = kp e(t) + ki

∫ t

0
e(τ ) dτ. (7.19)

In order to investigate the performance of the cascaded control structure, three dif-
ferent simulations are carried out. The motor is supposed to track a smooth reference
signalwhere |ω̈d | ≤ δ1 = 2 rad/s3. The initial conditions are chosen as i(0) = −0.5A
and ω(0) = −2 rad/s. The parameters of the super-twisting algorithm are chosen as

k1 = 1.5
√

N , k2 = 1.1N (7.20)

and N = 20, see e.g. [10]. These parameters remain unchanged throughout the exper-
iments. For the first experiment the parameters of the outer control loop are selected
as kp,1 = 0.45 and ki,1 = 0.9.

The simulation results are shown in Fig. 7.2. The plot on the top shows the angular
velocity and the desired trajectory, the lower plot depicts the current tracking error,
i.e. the sliding variable s. The left column provides the results obtained by the first
experiment. It is observed that the super-twisting algorithm is capable to maintain
the sliding variable at zero, i.e. track the reference current in the presence of the



7 Indirect Adaptive Sliding-Mode Control … 171

Fig. 7.2 Results obtained with a cascaded control structure with various settings for the outer PI
control loop

perturbation. However, depending on the specific application, the velocity tracking
error for the ramp reference signal might be undesirably large. Therefore, one might
seek for a more “aggressive” tuning of the PI control loop. Selecting kp,2 = 4.1
and ki,2 = 8.2 yields the results provided in the second column. With this tuning, the
performance regarding the velocity tracking error is significantly improved.However,
the initial transient shows very little damping. Increasing the controller gains further
to kp,3 = 9.6 and ki,3 = 32.8 causes the closed-loop system to get unstable, see third
column in Fig. 7.2.

The reason for this unstable motion is found in the structure of the perturbation
Δ of the closed-loop dynamics (7.17). Taking a closer look at the perturbation and
substitute (7.11) into (7.19). With (7.18) and differentiation we obtain

did

dt
= kp

(
ω̇d + b

J
ω − km

J
i

)
+ ki e. (7.21)

Thus, the perturbation acting on the closed-loop dynamics (7.17) is

Δ =
(

kpb

J
+ km

Lm

)
ω − kpkm

J
i + ki e + kpω̇d . (7.22)

Note that the perturbation in fact depends on the state of the system and in particular
grows linearly with s = id − i . Therefore, neither of the requirements (7.5), (7.8)
of the super-twisting algorithm are met without further assumptions. Of course, so
as to insure (7.5) we might consider some worst-case scenario for the system states
and select the sliding-mode controller parameters accordingly. However, this foils
one major advantage that this method enjoys over classical sliding mode control.
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Furthermore, the perturbation Δ in (7.22) also depends on the controller gains kp, ki

of the outer loop. In a decentralized design scenario where the inner loop is designed
without any knowledge about the outer loop it seems impossible to guarantee the
requirement (7.5) or (7.8) in all situations and hence, unstable behavior as demon-
strated in our simulation example cannot be ruled out.

7.2 Problem Formulation

The major aim of the approach presented in this contribution is to extend the class of
uncertainties that can be compensated in the closed-loop control (7.7) by distinguish-
ing between a structured and an unstructured part. Before we present our approach
in Sect. 7.3 we shall give a formal problem definition in the following.

We consider nonlinear systems of the form

ẋ = f (x) + g(x)
(
Δ(t, x) + u

)
, x(0) = x0 ∈ R

n (7.23)

where u ∈ R denotes a scalar input and x ∈ R
n the state vector. The vector fields

g, f : Rn → R
n are supposed to be known. Furthermore, the system is affected by

a matched disturbance Δ(t, x) ∈ R that is composed of two parts:

Δ(t, x) = Δs(t, x) + Δu(t) . (7.24)

Δs(t, x) describes the structured uncertainty and Δu(t) denotes an unstructured
uncertainty. The latter shall be norm bounded,1 i.e.

‖ Δu(t) ‖ < δ for all t > 0 , (7.25)

and the structured uncertainty can be decomposed into the form

Δs(t, x) = ΘTφ(t, x) (7.26)

where Θ ∈ R
p is an unknown but constant parameter vector and φ : R × R

n → R
p

a known base function.
The design goal for the control law is to force the system (7.23) onto some

desired manifold s(t, x) = 0 for all possible uncertainties Δ(t, x). Note, that the
overall uncertainty Δ(t, x) considered in (7.24) is not norm bounded.

For the control design we shall adopt a sliding-mode control scheme in combi-
nation with a certainty-equivalence approach. For the sliding variable we choose
s : R × R

n → R such that |s(t, x)| describes the distance to the desired manifold
s(t, x) = 0. The function s(t, x) should be designed such that s is differentiable with

1This requirementmay be relaxed according to the sliding-mode algorithm chosen for the stabilizing
part in Sect. 7.3.
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respect to t and x and imposes desirable, stable dynamic behavior of the system states
x for s ≡ 0. Moreover we assume relative-degree one of the sliding variable with
respect to the input u, i.e.

∂s

∂x
g(x) �= 0. (7.27)

Considering the evolution of the sliding variable s,

ṡ(t, x) = ∂s

∂t
+ ∂s

∂x

(
f (x) + g(x) (Δs(t, x) + Δu(t) + u)

)

= ∂s

∂t
+ ∂s

∂x
f (x) + ∂s

∂x
g(x)Δs(t, x) + ∂s

∂x
g(x)Δu(t) + ∂s

∂x
g(x)u, (7.28)

and using the description (7.26) for the structured uncertainty, we obtain

ṡ(t, x) = ∂s

∂t
+ ∂s

∂x
f (x) + ΘTφ(t, x)

∂s

∂x
g(x) + ∂s

∂x
g(x)Δu(t) + ∂s

∂x
g(x)u.

(7.29)

In terms of the abbreviations

w(t, x, u) := ∂s

∂t
+ ∂s

∂x
f (x) + ∂s

∂x
g(x)u ,

α(t, x) := φ(t, x)
∂s

∂x
g(x) ,

β(t, x) := ∂s

∂x
g(x)Δu(t)

for system (7.29) we obtain

ṡ(t, x) = ΘTα(t, x) + β(t, x) + w(t, x, u) , (7.30)

where w acts as new control input and s may be seen as some virtual output.
The control objective is now to reach the manifold s(t, x) ≡ 0 and to render the

internal dynamics of (7.30) with respect to the output s asymptotically stable for
all uncertainties of the class (7.25)–(7.26). For this task we shall consider w as the
control signal to be designed. The original control is then obtained by

u =
(

∂s

∂x
g(x)

)−1 (
−∂s

∂t
− ∂s

∂x
f (x) + w

)

which reveals that s needs to satisfy the common relative-degree-one condition given
in Eq. (7.27).
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Comparing this to the standard sliding-mode control problem (7.2) we see that

ṡ(t, x) = Δ(t, x) + w , (7.31)

where the (modified) uncertainty

Δ(t, x) = ΘTα(t, x) + β(t, x). (7.32)

Note that this uncertaintyΔ(t, x) is neither normbounded nor bounded by some func-
tion of the sliding variable s, which is a common requirement for sliding-mode control
as shown in Sect. 7.1.1. We will show in the following that our control approach only
requires an upper bound on the unstructured uncertainty β(t, x). Note further, that
the linearity in the parameter Θ is also visible in the dynamics (7.30). This will help
us in the design of a suitable adaptation law.

7.3 Combining Certainty-Equivalence
and Super-Twisting SMC

This section presents the main idea of combining certainty-equivalence adaptation
and sliding-mode control. We give a brief description of the steps in the design
procedure.

Consider the new control

w =wCE + wSMC (7.33)

where wSMC is generated by some sliding-mode control law and wCE denotes the
certainty-equivalence adaptive control given by

wCE = − Θ̂Tα(t, x) , (7.34)

where Θ̂ ∈ R
p denotes an estimate of the parameter vector Θ .

The sliding-mode control part will cope with the unstructured uncertainty, the
adaptive control part is to compensate the structured uncertainty. We may use any
sliding-mode control method for wSMC that is able to deal with relative-degree-one
systems. For example, consider again the super-twisting algorithm [10]

wSMC = − k1 |s| 1
2 sign[s] + v

v̇ = − k2 sign[s]
(7.35)
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with constant parameters k1, k2 > 0. Note, that the application of the super-twisting
algorithm requires that

|β(t, x)| < β̄
√|s(t, x)|, for all t > 0 , (7.36)

where β̄ is some positive constant. To shorten formulas and improve readability, in
the sequel we use the notation

	a
b := |a|b sign[a] . (7.37)

Substituting (7.34) and (7.35) into (7.33) we obtain for the complete control law

w = − k1 	s
 1
2 + v − Θ̂Tα(t, x)

v̇ = − k2 sign[s] .
(7.38)

Inserting control law (7.38) into the system (7.30) we obtain the closed-loop
dynamics

ṡ = − k1 	s
 1
2 + v + Θ̃Tα(t, x) + β(t, x)

v̇ = − k2 sign[s]
(7.39)

where Θ̃ = Θ − Θ̂ denotes the parameter estimation error.
In order to obtain the adaptation law for the parameter estimate Θ̂ , we will resort

to the certainty-equivalence principle, see e.g. [9, 15]. Themain idea of this approach
can be summarized by the following steps:

1. Localize the structured uncertainty and separate it according to (7.24) by choosing
an appropriate base function φ(t, x).

2. Design a nominal controller assuming perfect knowledge of the parameter vector
Θ in the structured uncertainty. This controller has to stabilize the system for all
unstructured uncertainties considered.

3. Choose a nominal Lyapunov function for the nominal closed-loop system.
4. Extend the nominal Lyapunov function by a quadratic term of the estimation

error Θ̃ .
5. Calculate the time-derivative of the extended Lyapunov function and separate

all terms containing the parameter estimation error Θ̃ . Choose the adaptation
law for Θ̂ to cancel all unknown terms of the structured uncertainty, rendering
the convergence to the sliding manifold independent of the parameter estimation
error.

The idea is to combine this design procedure with sliding-mode controllers and
improve their robustness features. The focus lies mainly on disturbances that do not
have an upper bound or are bounded by a function of the sliding variable.
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7.4 Impact of the Choice of Lyapunov Function
on the Adaptive Part

The design procedure for the certainty-equivalence approach reveals the key role of
the nominal Lyapunov function chosen in step 3. In our case the stabilizing controller
is given by the sliding-mode control wSMC. While any design method may be used,
the super-twisting algorithm considered above is particularly convenient for this
purpose because various Lyapunov functions have been proposed for this method in
the recent past, [12, 13, 16, 18]. In the following we design adaptation laws using
different Lyapunov functions that have been suggested for sliding-mode algorithms
and discuss their properties.

7.4.1 Weak Lyapunov Function

The first Lyapunov function that we consider has been proposed in [16] for the STA.
The authors consider the following, Lipschitz continuous, Lyapunov function

Vnom,1 =k2|s| + 1

2
v2 . (7.40)

We shall use this approach for the closed-loop system with certainty-equivalence
super-twisting algorithm (CESTA) in (7.39).

Taking the derivative and substituting (7.39) yields

V̇nom,1 = k2 sign[s]
(
−k1 	s
 1

2 + v + Θ̃Tα(t, x) + β(t, x)
)

− k2 sign[s] v (7.41)

= k2 sign[s]
(
−k1 	s
 1

2 + Θ̃Tα(t, x) + β(t, x)
)

. (7.42)

We now assume that the parameters of the plant are perfectly known. Then Θ̃ is
equal to zero and the structured uncertainty disappears from the right-hand side.
With (7.36) we may rewrite (7.42) as

V̇nom,1 ≤ k2
(−k1 + β̄

) |s| 1
2 . (7.43)

If the controller parameter k1 is chosen larger than the upper bound β̄ and k2 > 0 then
the time-derivative of the Lyapunov function will always be negative semi-definite
in the variables s and v.

In a next step let us extend the Lyapunov function by a quadratic form in terms
of the parameter estimation error, i.e.

Vex,1 = k2|s| + 1

2
v2 + 1

2 γ
Θ̃TΘ̃. (7.44)
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The variable γ is a positive constant that can be used to tune the dynamic behavior
of the adaptation law. Differentiating equation (7.44) with respect to time yields

V̇ex,1 = k2 sign[s]
(
−k1 	s
 1

2 + Θ̃Tα(t, x) + β(t, x)
)

+ 1

γ
Θ̃T ˙̃

Θ (7.45)

= k2 sign[s]
(
−k1 	s
 1

2 + Θ̃Tα(t, x) + β(t, x)
)

− 1

γ
Θ̃T ˙̂

Θ. (7.46)

Note that ˙̃
Θ = − ˙̂

Θ due to the assumption of a constant parameter Θ . Rendering the
derivative of the Lyapunov function independent of the parameter estimation error
we may show convergence to the desired sliding-manifold, whatever the structured
uncertainty is. We may achieve this by choosing

˙̂
Θ = γ k2sign[s]α(t, x). (7.47)

This adaptation law eliminates the influence of the parameter estimation error, i.e.

V̇ex,1 = −k1 k2 |s| 1
2 + k2 sign[s]β(t, x) ≤ k2

(−k1 + β̄
) |s| 1

2 (7.48)

in which neither the estimation error Θ̃ nor the parameter Θ is appearing. As in the
nominal case, given by (7.43), the right-hand side of (7.48) can be rendered non-
positive by choosing k1>β̄. A closer look at (7.48) reveals that it neither contains Θ̃

nor v. Thus, convergence can only be guaranteed for the sliding variable s. The other
states, namely v and Θ̃ may not vanish. Therefore the convergence of the parameter
estimation Θ̂ to the actual value is in general not given.

Moreover note that already the right-hand side of (7.43) does not depend on the
controller variable v. This makes clear that also the first Lyapunov function is not
suited for showing asymptotic convergence of both closed-loop state variables s and
v. This issue is addressed in the following sections.

7.4.2 Non-differentiable Strict Lyapunov Function

In this section we consider the Lyapunov function candidate first proposed in [13]:

Vnom,2 = zTP z (7.49)

with P = PT > 0 and z ∈ R
2 constructed from the state variables s and v of the

closed-loop system (7.39):

z1 = 	s
 1
2

z2 = v .
(7.50)
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It turns out that Vnom,2 is not continuously differentiable along the solutions of
(7.39). Nevertheless it can be shown that Vnom,2 constitutes a strict Lyapunov function
for (7.39) using a theorem of Zubov when following the reasoning of [14, Proof of
Theorem1]. It can be shown that Vnom,2 is absolutely continuous in t along the
solutions of (7.39).2 It remains to be shown that the derivative V̇nom,2 is negative
definite almost everywhere with respect to t .

At points t with z1(t) �= 0 the derivative is given by:

V̇nom,2 = zTP ż + żTP z . (7.51)

where

ż =
⎛

⎜
⎝

∂z1
∂s

ṡ

∂z2
∂v

v̇

⎞

⎟
⎠ =

⎛

⎝
ṡ

2
√|s|

−k2sign[s]

⎞

⎠ = 1

|z1|

(
1
2 ṡ

−k2 z1

)

. (7.52)

Using inequality (7.36), we may rewrite β(t, x) as

β(t, x) = β̃(t, x, s)	s
 1
2 (7.53)

with the function β̃(t, x, s) satisfying the inequality

|β̃(t, x, s)| ≤ β̄ . (7.54)

In order to show that (7.49) is a strict Lyapunov function for the closed-loop system
(7.39) in the nominal case, i.e. Θ̃ ≡ 0, we have to proof that

V̇nom,2 = 1

|z1| zT
(

AT(t, x, s)P + P A(t, x, s)
)

z < 0 (7.55)

for all z, z1 �= 0 with the time-varying matrix A(t, x, s) defined as

A(t, x, s) :=
(− 1

2 (k1 − β̃(t, x, s)) 1
2−k2 0

)
. (7.56)

The derivative V̇nom,2 is negative if P defines a quadratic Lyapunov function
for A(t, x, s) with arbitrary β̃(t, x, s) ∈ [−β̄, β̄]. Note that A(t, x, s) is within the
convex hull of

A1 =
(

− 1
2 (k1 + β̄) 1

2

−k2 0

)

and A2 =
(

− 1
2 (k1 − β̄) 1

2

−k2 0

)

.

2The solutions of (7.39) either cross points of s = 0 or remain on s = 0, v = 0. In each case Vnom,2
is absolutely continuous and monotonically decreasing in t .
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Thus V̇nom,2 in (7.55) is negative if there exists a common quadratic Lyapunov func-
tion for A1 and A2. The following theorem comes handy for this problem [19].

Theorem 7.1 Given A1, A2 ∈ R
n×n, Hurwitz with rank(A1 − A2) = 1. There exists

a common quadratic Lyapunov function for the LTI Systems with A1 and A2 if and
only if the matrix product A1A2 has no eigenvalue on the negative real axis.

For A1, A2 being Hurwitz we require k1, k2 > 0. Applying the theorem above we
obtain for the matrix product:

A1A2 =
(

1
4 (k

2
1 − β̄2) − k2

2 − 1
4 (k1 + β̄)

k2
2 (k1 − β̄) − k2

2

)

.

It can be readily verified that A1A2 has complex conjugate eigenvalues if k2
1 > β̄2.

For the case of two real eigenvalues the product A1A2 will always have at least one
negative eigenvalue for k2 > 0. Thus for stability of the nominal system we require
for the controller parameters: k1 > β̄, k2 > 0.

We obtain the same conditions on the controller parameters as for the first nominal
Lyapunov function Vnom,1 in (7.43). Note however, that the derivative of Vnom,2 is
negative definite almost everywhere. Thus Vnom,2 is a strict Lyapunov function for
(7.39) and guarantees convergence of both states s and v, [14].

In view of this, we may now repeat the design procedure for the certainty-
equivalence adaptive part. Again, the nominal Lyapunov function (7.49) is extended
by a quadratic term:

Vex,2 =zTP z + 1

2 γ
Θ̃T Θ̃ (7.57)

with a constant parameter γ > 0. At points t with z1(t) �= 0 the derivative is given by:

V̇ex,2 ≤ − 1

|z1| zTQ0z + 1

|z1| zTP Λ(t, x)Θ̃ + 1

γ

˙̃
ΘT Θ̃ (7.58)

with the matrix Λ(t, x) defined as

Λ(t, x) :=
(

α(t, x)

0

)
∈ R

2×p . (7.59)

In order to eliminate the influence of the structured uncertainty contained in
Λ(t, x) from (7.58), we choose

˙̂
Θ = γ

|z1| Λ(t, x)T P z (7.60)

for the adaptation law. This yields V̇ex,2 = V̇nom,2 and thus makes the convergence of
s and v independent of the parameter estimation error. But again convergence of the
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parameter estimation to the actual values cannot be ensured as V̇ex,2 does not contain
the estimation error Θ̃ .

Note that this adaptation law contains a singularity for z1 at zero. In [3] the authors
present two possible solutions for this issue: Choosing P as diagonal matrix will
cancel the singularity due to the structure ofΛ(t, x).However, this reproduces exactly
the first nominal Lyapunov function (7.40) exhibiting only a negative semi-definite
time-derivative. The second approach imposes the following additional condition on
the structured uncertainty:

αi (t, x) ≤ |s|ρi (7.61)

where ρi > 1
2 for all elements αi (t, x) in α(t, x). If (7.61) holds, then α(t, x) goes

faster to zero than |z1| = √|s|. Consequently, the adaptation law (7.60) remains
bounded.

7.4.3 Differentiable Strict Lyapunov Function

So far the presented adaptation laws show properties that may be troublesome in
some cases: In the first approach the adaptation law is devoid of the controller state
v, which is caused by the negative semi-definiteness of the right-hand side of (7.43).
Thus, convergence of both, the sliding variable s and the controller state v, cannot be
shown. The second Lyapunov function (7.49) resolves this problem. However, the
adaptation law (7.60) which is imposed by the specific choice of quadratic Lyapunov
function may exhibit a singularity. In order to avoid this, an additional condition on
the structured uncertainty is required. In the following we advocate a third approach
that is able to tackle the afore-mentioned issues.

Stability Proof for the Nominal System

We use the Lyapunov function

Vnom,3 = 2

3
k1|s| 3

2 − s v + 2

3 k2
1

|v|3 (7.62)

for proving stability of the nominal closed loop system. This Lyapunov function was
first presented in [18] together with a detailed proof of its positive definiteness.

Let us briefly recapitulate the stability analysis of the nominal system, i.e. Θ̃ ≡ 0.
Without loss of generality we further assume β ≡ 0 for brevity of the expressions.
As first step we calculate the derivative of (7.62) and obtain

V̇nom,3 = − (
k2
1 − k2

) |s| + 2k1	s
 1
2 v − |v|2 − 2 k2

k2
1

	s v
0|v|2 (7.63)
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with k1, k2 > 0 controller parameters regarding (7.35). Using

η1 := k2
1 − k2, η2 := 2k1,

η3 := 1 − 2k2
k2
1

, η4 := 1 + 2k2
k2
1

(7.64)

and the state vector z as in (7.50), we may express (7.63) as

V̇nom,3 ≤
{

−η1 z21 + η2|z1||z2| − η3|z2|2, z1z2 ≥ 0

−η1 z21 − η2|z1||z2| − η4|z2|2, z1z2 < 0
(7.65)

which can be also written as

V̇nom,3 ≤
{

−zTW1 z, z1z2 ≥ 0

−zTW2 z, z1z2 < 0
(7.66)

where

W1 =:
(

η1 − η2
2

− η2
2 η3

)

and W2 :=
(

η1
η2
2

η2
2 η4

)

. (7.67)

Weare left to show that thematricesW1 andW2 are positive definite and then conclude
that V̇nom is negative definite and finally the nominal system asymptotically stable.
As shown in [18], if the parameters satisfy the inequality

k2
1 > 2 k2 (7.68)

then both matrices W1 and W2 are positive definite. Note, that V̇nom,3 does not contain
any singular point as we obtained in (7.55). The result will be discussed in the
following section.

Adaptive Extension

The intention of using the third Lyapunov function (7.62) is to avoid the drawbacks
in the adaptation law that stymied the first two design approaches. Again we rely on
the certainty-equivalence principle as our design guideline. As before, we extend the
nominal Lyapunov function by a quadratic term, i.e.

Vex,3 = Vnom,3 + 1

2 γ
Θ̃T Θ̃ . (7.69)

The derivative reads

V̇ex,3 =V̇nom,3 + Θ̃T

(
1

γ

˙̃
Θ + α(t, x)

(
k1	z1
 1

2 − z2
))

. (7.70)
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By choosing the following adaptation law

˙̂
Θ = γ α(t, x)

(
k1	z1
 1

2 − z2
)

(7.71)

we are able to remove the influence of Θ̃ on (7.70). Consequently, the convergence
of the system states s, v to zero is independent of the parameter estimation error Θ̃ .

Choosing Vnom,3 for the nominal case yields two advantage over the previous
approaches. The derivative of the nominal Lyapunov function is strictly negative
definite, thus, convergence of both system states is guaranteed. Furthermore, the
adaptation law exhibits no singularity. As before, the derivative of the extended
Lyapunov function (7.70) does not contain the estimation error Θ̃ and thus conver-
gence of the parameter estimation Θ̂ to the actual value is not guaranteed.

7.4.4 Discussion

In the previous section we presented three different approaches to design an adapta-
tion law to the same nominal STA. Choosing different Lyapunov function approaches
for the nominal controller results in three different adaptation laws for the certainty
equivalence part: In the first casewe consider a Lyapunov functionwith only negative
semi-definite derivative (7.43) along the nominal closed-loop systems’ solutions. As
a result convergence is only guaranteed for the controller state s but not for v. Fur-
thermore, the adaptation law (7.47) for the certainty-equivalence approach does not
contain the controller state v.

This problem is addressed by the quadratic Lyapunov function in the second
approach. For the nominal system this strict Lyapunov function renders the origin
asymptotically stable. However the adaptation lawobtained (7.60) has a singularity at
z1 = s = 0. This requires an additional bound on the structured uncertainty in order
to keep the adaptation law bounded. On the other hand, the quadratic Lyapunov
function offers the possibility to combine the certainty-equivalence adaptation with
the adaptive-gain super-twisting controller as nominal part, see e.g. [5]. A detailed
discussion of this combination is found in [3].

Avoiding the singularity is the main motivation for using the third Lyapunov
function (7.62). In conjunction with the closed-loop system, Vnom,3 is differentiable
everywhere with negative definite time-derivative. The adaptation law (7.71) gen-
erated by this Lyapunov function has no singularity and contains all states of the
nominal closed-loop system, which guarantees convergence of the sliding variable s
and the controller state v to the origin even for the extended controller.

All three approaches have in common that they allow us to combine sliding-
mode and certainty-equivalence adaptive control. In contrast to existing adaptive
approaches for sliding-mode control, our design makes explicit use of the structure
of the uncertainty. Instead of varying the gains of the sliding-mode part directly, we
propose to adapt the parameters of the uncertainty. This procedure has two main
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advantages: Firstly, we can compensate uncertainties of the form (7.26) that are
neither required to be bounded by a constant value nor bounded with respect to the
sliding variable. Secondly, the sliding-mode gains remain constant until we are able
to dominate the disturbance. This may avoid effects that come with high gains in
sliding-mode control.

The latter two approaches use the parametrization z in (7.50) for the Lyapunov
function. Existing Lyapunov approaches [14, 18, 22] for the conventional super-
twisting algorithm use a slightly different parametrization, namely

z2 = v − β(t) (7.72)

where the unstructured disturbance β(t) is only required to be Lipschitz continuous
in time (as opposed to (7.36)), see e.g. [22] for a detailed discussion of this require-
ment. In [14, 18], the Lyapunov functions (7.49) and (7.62) have been studied to show
the robustness of the super-twisting controller against such Lipschitz time varying
disturbances. In our approaches presented above, we are not able to use this para-
metrization (7.72), as z2 will appear in the adaptation laws (7.60) and (7.71). With
β(t) unknown such adaptation cannot be applied. Therefore our requirement (7.36)
on the unstructured uncertainty β(t, x) differs from the conventional condition.

The following sections illustrates the application of our proposed approach. First
we revisit the simulation example from Sect. 7.1.2 followed by a case study using
a laboratory test-bench. We will discuss the differences between the conventional
super-twisting algorithm and our proposed approach.

7.5 Introductory Example - Revisited

In order to illustrate the control concept proposed we resume the DC motor example
of Sect. 7.1.2. Recall the explicit formulation of the disturbance (7.22) acting on the
closed-loop system:

Δ =
(

kpb

J
+ km

Lm

)
ω − kpkm

J
i + ki e + kpω̇d . (7.73)

In context of our problem formulation this disturbance acts on the system (7.31),
that is

ṡ(t, x) = Δ(t, x) + w ,

where w is the control signal and

Δ(t, x) = ΘTα(t, x) + β(t, x).
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We identify the unstructured part of the disturbance as β(t) := kpω̇d leaving
the remainder for the structured disturbance. For the certainty-equivalence part we
choose the following parametrisation

ΘTα(t, x) = [
θ1 θ2 θ3

]
⎡

⎣
ω

i
e

⎤

⎦ . (7.74)

The complete control law (7.33)

w = wCE + wSMC

with super-twisting control part (7.35) and certainty-equivalence part (7.34) using
the adaptation law (7.47) reads:

wSMC = −k1 |s| 1
2 sign[s] + v,

v̇ = −k2 sign[s],
wCE = −Θ̂Tα(t, x) ,

˙̂
Θ = γ k2sign[s]α(t, x).

The controller parameters k1, k2 are selected as in the introductory example of
Sect. 7.1.2. For the adaptation rate we choose γ = 50.

Figure7.3 shows the simulation result with PI controller gains kp,3 = 9.6 and
ki,3 = 32.8. The certainty-equivalence adaptation combined with the super-twisting
sliding-mode controller is capable of driving the sliding variable to the origin despite
that nobound for the overall perturbation is known.The third plot inFig. 7.3 illustrates
the evolution of Θ̂ . Note that the estimation errors Θ̃i may not converge to zero. For
the overall control performance we note that the initial transients as well as the
tracking behavior is superior to the results of the simple super-twisting algorithms,
c.f. Fig. 7.2.

Note that applying solely the constant gains super-twisting algorithm, only local
stability results have been achieved. This becomes evident by inspecting the uncer-
tainty Δ(t, x) which has to have a bounded time-derivative, i.e.

sup
t

∣
∣
∣
∣
dΔ(t, x)

dt

∣
∣
∣
∣ ≤ δl, ∀x . (7.75)

Hence the motion of the system has to be restricted to some area of the state space
which also depends on the controller parameters of the super-twisting algorithm.
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Fig. 7.3 Results obtained
for the cascaded DC motor
control problem with the
certainty equivalence based
super-twisting algorithm

7.6 Case Study (Speed Control with Unbalanced Load)

Using a laboratory test-bench we illustrate some advantages of our proposed con-
troller design in comparison with existing sliding-mode approaches. The test-bench
employed is shown in Fig. 7.4. It consists mainly of a DC motor to which an unbal-
anced mass is attached. The unbalanced mass is a metal cuboid with center of mass
not in line with the rotary axis, similar to a washing machine whose loaded drum
rotates at a certain angular velocity.

The system may be represented by the following differential equation

J ω̇ + d sin[ϕ] + Δ(ϕ,ω) = τ (7.76)

where ω is the angular velocity, ϕ the angle of the imbalance and τ the torque
generated by the motor. The system parameters are the moment of inertia J and the
displacement d of the imbalance’s center of mass from the rotation axis. It is assumed
that the parameter d is unknown at the time of the controller design. Moreover there
exists an uncertainty Δ(ϕ,ω) that cannot be modeled accurately due to friction
effects.

Motor Sensor Unbalanced Mass

Fig. 7.4 Image of the test-bench
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7.6.1 Controller Design

The control task is to track a specified angular velocity ωd . Therefore we define the
sliding variable as the difference between the actual velocity and its reference, i.e.

s := ω − ωd . (7.77)

We identify the structured and unstructured uncertainty by analyzing the system
(7.76). The unbalanced load can be modeled as structured uncertainty since it can be
rewritten in the form (7.30) with

α(t, x) = sin[ϕ] (7.78)

where Θ ∈ R and ϕ are directly available from measurements. The remaining parts
in (7.76) are modeled as unstructured uncertainty that the sliding-mode part of the
controller has to take care of.

For the first experiment we implemented a CESTA according to the methodology
presented in Sect. 7.3. The adaptation law is generated using the first version (7.47)
of the three approaches presented. We chose γ = 2 for the adaptation rate. The
controller parameters of the sliding-mode part were selected as

k1 = 0.12, k2 = 1.2 . (7.79)

The controller parameters are a result of experimental tuning. Note that the design
rule (7.20) in [10] considers a class of disturbances different from (7.36) and thus is
not directly applicable for the CESTA.

7.6.2 Experimental Results

The controllers have been implemented on a real-time platform running at a sampling
frequency of 5 kHz. An underlying current controller was used in order to command
torques directly.

The results of the first experiment are shown in Fig. 7.5. For comparison we
included an experiment using a STAwith the same parameters (7.79) but without the
adaptive part (7.34). The graphs show the evolution of the angular velocities and the
controller outputs over a time-span of 10s. In the first plot, the grey line indicates the
reference angular velocity. The experimental data for the CESTA is printed as solid
black line, the values for the controller without adaptation approach as dash-dotted
line. Additionally, the controller states are shown in the third plot.

The reference velocity resembles a rapid acceleration and is kept constant at
360 deg/s afterwards. The first plot in Fig. 7.5 shows that the CESTA with adaptation
law (7.47) for the structured uncertainty achieves very good output results with a
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Fig. 7.5 Tracking performance comparison between conventional STA and CESTA

slight overshoot at around 1s and shows very little deviation from the reference
value afterwards. Without the adaptive part the STA is not able to solve the given
task. The velocity oscillates around the reference value with peaks up to 900 deg/s.

The second plot in Fig. 7.5 displays the control signals of the CESTA as solid
line and the non-adaptive STA as dash-dotted line. The graphic underscores that the
difference in the overall control signal amplitude between both controllers is very
small. However, using the information about the structured uncertainty, the CESTA
generates a control signal that fits almost perfectly to the uncertainty and therefore
keeps the velocity at the desired level.
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Fig. 7.6 Different components of the CESTA control signal

For a better illustration of this effect, we printed the two components wSMC and
wCE according to (7.33) of the CESTA separately in Fig. 7.6. Comparing the wSMC

in Fig. 7.6 with the control signal of the non-adaptive STA in Fig. 7.5 leads to an
interesting observation: Amuch lower amplitude is needed to track the desired refer-
ence speed since the structured uncertainty is mostly compensated by the certainty-
equivalence part wCE of the controller. This is caused by the small error of the
parameter estimation Θ̃ . The actual value of ≈0.4 for Θ was estimated in an addi-
tional experiment where we hold the unbalanced load in a steady state at an angle
of π/2. Comparing this value to the estimated value Θ̂ in the third plot in Fig. 7.5
indicates a small estimation error. Therefore the sliding-mode part of the CESTA
only compensates the unstructured part of the disturbance which has significantly
lower amplitude.

The parameters of the STA (7.79) in the first experiment where tuned for good
performance in conjunction with the adaptive part. In order to challenge our advo-
cated approach we tried to find the best set of parameters for the conventional STA
without adaptation in a second experiment.

Considering the parameter design rule (7.20) we obtain an estimate of N from the
controller output in Fig. 7.5. The CESTA generates a control signal from about −0.2
to 0.6 for a good tracking of the reference speed. For the desired speed of 360 deg/s

the disturbance from (7.78) is estimated by N ≈ 2.2. The design rule (7.20) results
in the parameter combination

k1 = 2.2, k2 = 2.42 . (7.80)

However, we were not able to verify this controller experimentally due to strong
chattering effects.

The best output-performance we obtained for the parameter combination

k1 = 0.4, k2 = 2.4 . (7.81)
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Fig. 7.7 Tracking of the STA with increased gains

A further increase led to chattering which generates a loud noise in the test-bench
indicating strong physical strain. This audible effects can also be seen in the time
response of the second experiment shown in Fig. 7.7 including the velocity and the
control signal of the conventional STA with higher controller gains compared to the
first implementation.

The tracking error is significantly reduced compared to the conventional STA in
the first experiment and reaches almost the same level as the CESTA. As mentioned
before, this does not come for free with the conventional STA. Taking a closer look
at the second plot of Fig. 7.7 indicates that the control signal contains a larger portion
of high frequency parts compared to the controllers in Fig. 7.5. This chattering phe-
nomenon is caused by the higher controller gains and the non-Lipschitz continuous
terms in the control law (7.35).

Note that this experiment also emulates the behavior of adaptive- and variable-gain
sliding-mode control approaches, [6, 20]. The adaptive-gain super-twisting control
(AGSTA) presented in [20] increases the gains k1, k2 of the sliding-mode control law
(7.7) until the disturbance is dominated and decreases them subsequently if possible.
Another approach is the variable-gain STA (VGSTA), see [6], where the gains of the
sliding-mode part of the controller are a function of the sliding variable or time itself
and thus allows to adjust the gains accordingly. However, both approaches lead to
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high gains similar to the ones given in (7.81) since they are required for dominating
the overall disturbance. Due to the periodicity of the disturbance, the gains cannot
back off. Essentially, this will lead to similar chattering effects as shown in Fig. 7.7.

From the results it may be concluded that the CESTA approach is able to improve
the control performance significantly. If the structured uncertainty can be expressed
linear in an unknown parameter and a known function then an adaptive extension is
given to the nominal STA.Thevariable-structure part of this combined controller only
has to take care of the unstructured uncertainty and allows to reduce the controller
gains which also reduces the occurrence of undesired effects like chattering.

7.7 Concluding Remarks

In this chapter we have presented a method to improve the robustness of sliding-
mode control with an adaptive extension. Contrary to existing adaptive methods, we
do not adapt the gains of the sliding-mode controller itself. Instead we extend the
controller by an adaptive part that fits to the structured uncertainty. We have shown
the influence of the Lyapunov function for the nominal controller on the adaptation
law that we generate with our method. This should be understood as motivation to
keep searching for other Lyapunov functions for higher-order sliding-mode control
since this is the key ingredient to our method. The improved robustness properties
of our approach are demonstrated via a simple but effective case study. Here we
showed that our method is able to achieve better reference tracking with even lower
controller gains compared to the conventional approach. In addition, the smaller
controller gains of the sliding-mode part of the controller helps to reduce chattering
effects in the closed-loop system.
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Chapter 8
Variable Structure Observers for Nonlinear
Interconnected Systems

Mokhtar Mohamed, Xing-Gang Yan, Sarah K. Spurgeon
and Zehui Mao

8.1 Introduction

The advancement of modern technologies has produced many complex systems. An
important class of such systems, which is frequently called a system of systems or
large-scale system, can be expressed by sets of lower-order ordinary differential equa-
tions which are linked through interconnections. Such models are typically called
large-scale interconnected systems (see, e.g. [4, 22, 44, 46]). In order to achieve
the desired performance of the closed-loop system in the presence of uncertainties,
robust control methods are needed. In recent decades, much of the literature has
focused on designing advanced robust controllers for such systems using H∞ con-
trol [5], backstepping techniques [17], robust adaptive control [28], and slidingmode
control [8, 30].

Increasing requirements for system performance have resulted in increasing com-
plexity within system modelling and it becomes of interest to consider nonlinear
large-scale interconnected systems. Such models are then used for controller design.
In order to obtain required levels of performance from the controllers, it is desirable
to have knowledge of all the system states for use by the control scheme. This state
information may be difficult or expensive to obtain and it becomes of interest to
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design an observer to estimate all the system states using only the subset of infor-
mation available from the measured and known inputs and outputs of the system.

8.1.1 Interconnected Systems

Large-scale interconnected systems have been studied since the 1960s (see [2] and
references therein) due to their relevance in a number of practical application areas
and the availability of pertinent theoretical results. Large-scale interconnected sys-
temswidely exist in the real world, for example, power networks, ecological systems,
transportation networks, biological systems and information technology networks
[21, 22]. A large-scale system is composed of several subsystems with intercon-
nections, whereby the dynamics interact [13]. The application of centralised control
[48] to prescribe stability of an interconnected system particularly when the system is
spread over awide geographical areamay require additional costs for implementation
and careful consideration of the required information sharing between subsystems.
This motivates considering the design of decentralized control strategies whereby
each subsystem has a local control based only upon locally available information.

Early work focussed on linear systems [3, 27]. However, due to the uncertainties
and disturbances present in large-scale interconnected systems, study of the stability
of such systems is a very challenging task [45]. Subsequent results used decentralised
control frameworks for nonlinear large-scale interconnected systems. The study of
such decentralised controllers has stimulated a wide literature (e.g. [26, 50]) and
recently [19, 52]. In much of this work, however, it is assumed that all the system
state variables are available for use by the controller [4, 22, 39, 53]. However, this
assumption can limit practical application as usually only a subset of state variables
may be available/measureable [49]. It becomes of interest to establish observers to
estimate the system states and then use the estimated states to replace the true system
states in order to implement state feedback decentralised controllers. It should also
be noted that such observer design has been applied for fault detection and isolation
[25, 43, 49]. This further motivates the study of observer design for nonlinear large-
scale interconnected systems.

8.1.2 Observer Design

The concept of an observer was first introduced by Luenberger (1964) where the
difference between the output measurements from the actual plant and the output
measurements of a corresponding dynamical model were used to develop an injec-
tion signal to force the resulting output error to zero [20]. In the 1970s the problem
of designing observers for estimating system states for large-scale interconnected
systems was addressed in [3]. Subsequently, many methods have been developed
to design observers for large-scale interconnected linear systems [31, 33]. The
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methodology of Luenberger was extended to nonlinear systems [51] where uncer-
tainties are rarely considered. However, many approaches such as the sliding mode
approach in [47], the adaptive technique in [40] and an error linearisation approach
in [41] have been successfully used in observer design. Note, results concerning
observer design for nonlinear interconnected systems are very few when compared
with the corresponding results available on controller design for interconnected sys-
tems.

Sliding mode techniques have been used to design observers for nonlinear inter-
connected power systems in [24]. In [18] state estimation and sliding mode control
for a special class of stochastic dynamic systems, so-called semi Markovian jump
systems, is presented. The authors designed a state observer to generate an estimate of
the unmeasured state components, and then a slidingmode control law is synthesized
based on these estimated states. The authors in [38] discussed the regulation problem
of a permanentmagnet synchronousmotor servo systembased on adaptive fuzzy slid-
ing mode control. They used an adaptive method to estimate the upper bound of the
approximation error between the equivalent control law and the fuzzy controller. An
adaptive observer is designed for a class of interconnected systems in [40] in which
it is required that the isolated nominal subsystems are linear. Observer schemes for
interconnected systems are proposed in [16, 25, 29, 43] where the obtained results
are unavoidably conservative as it is required that the designed observer can be used
for certain fault detection and isolation problems. For example, it is required that
the uncertainty can be decoupled from any faults in [43] and the considered system
is not an interconnected system. Robust observer design is considered in [23] for
a class of linear large scale dynamical systems where it is required that the inter-
connections satisfy quadratic constraints. In [35], a decentralized control scheme
which uses estimated states obtained from a decentralised observer is proposed. This
design framework is based on linear matrix inequalities and is thus only applicable
to linear systems. A robust observer for nonlinear interconnected systems based on a
constrained Lyapunov equation has been developed in [42]. A proportional integral
observer is utilized for nonlinear interconnected systems for disturbance attenuation
in [12] and interconnected nonlinear dynamical systems are considered in [6] where
the authors combine the advantages of input-to-state dynamical stability and use
reduced order observers to obtain quantitative information of the state estimation
error. This work does not, however, consider uncertainties. It should be noted that
in all the existing work relating to observer design for large scale interconnected
systems, it is required that either the isolated subsystems are linear or the intercon-
nections are linear. Moreover, most of the designed observers are used for special
purposes such as fault detection or stabilization and thus some specific limitations
are unavoidably required on the interconnected systems as a result of the problem
class considered.
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8.1.3 Contribution

In this chapter, a class of nonlinear interconnected systems with disturbances is
considered where both the nominal isolated subsystems and interconnections are
nonlinear. It is not required that either the nominal isolated subsystems or the inter-
connections are linearisable. A robust variable structure observer is established based
on a simplified system structure by using a Lyapunov analysis methodology. The
structure of the internal dynamics, the structure of uncertainties and the bounds on
uncertainties are fully used in the observer design to reduce conservatism. These
bounds are allowed to have a general nonlinear form. The observer states converge
to the system states asymptotically. A numerical simulation example is given to
demonstrate the application of the proposed approach. A case study of a coupled
inverted pendulum system shows the practicality of the designed observer.

8.1.4 Notation

For a square matrix A, A > 0 denotes a symmetric positive definite matrix, and
λmin(A)(λmax(A)) denotes the minimum (maximum) eigenvalues of A. The symbol
In represents the nth order unit matrix and R

+ represent the set of nonnegative real
numbers. The set of n × m real matrices will be denoted by R

n×m . The Lipschitz
constant of the function f will be written as � f . For any mapping h(x) : Rn → R

and vector field f (x) : Rn → R
n , L f h(x) denotes the Lie derivative of h(x) along

the vector field f (x) and Lr
f denotes the r -th order Lie derivative of h(x) along the

vector field f (x). Finally, ‖ · ‖ denotes the Euclidean norm or its induced norm.

8.2 Preliminaries

Consider the single-input-single-output nonlinear system

ẋ(t) = f (x) + g(x)u (8.1)

y(t) = h(x) (8.2)

where x ∈ Ω ⊂ R
n (Ω is a neighborhood of the origin), y ∈ R and u ∈ U ⊂ R (U is

an admissible control set) are the state, output and input respectively, f (x), g(x) ∈ R
n

are smooth vector fields defined in the domainΩ , and h(x) ∈ R is a smooth function
in the domain Ω .

First, some key elements of the geometric approach in [15] are recalled. These
will be used in the later analysis.

Definition 8.1 ([15]) System (8.1) and (8.2) is said to have uniform relative degree
r in the domain Ω if for any x ∈ Ω ,
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(i) Lg Lk
f h(x) = 0, for k = 1, 2, . . . , r − 2

(ii) Lg Lr−1
f h(x) �= 0

Now consider system (8.1) and (8.2). It is assumed that system (8.1) and (8.2) has
uniform relative degree r in the domain Ω . Construct a mapping φ : x → z as fol-
lows:

φ(·) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 = h(x)

z2 = L f h(x)
...

zr = Lr−1
f h(x)

zr+1 = φr+1
...

zn = φn(x)

(8.3)

where φ(·) = col(φ1(x), φ2(x), . . . , φn(x)), φ1(x) = h(x), φ2(x) = L f h(x), . . . ,

φr (x) = Lr−1
f h(x) and the functions φr+1(x), . . . , φn(x) need to be selected such

that

Lgφi (x) = 0, i = r + 1, r + 2, . . . , n

and the Jacobian matrix

Jφ := ∂φ(x)

∂x

is nonsingular in the domainΩ .Then themappingφ : x → z forms a diffeomorphism
in the domain Ω (see Proposition 4.1.3 in [15]). For the sake of simplicity, let

ζ = [
ζ1 ζ2 . . . ζr

]T := [
z1 z2 . . . zr

]T

η = [
ζr+1 ζr+2 . . . ζn

]T := [
zr+1 zr+2 . . . zn

]T

Then, from [15], it follows that in the new coordinates z, system (8.1) and (8.2) can
be described by

ζ̇1 = ζ2
ζ̇2 = ζ3

...

ζ̇r−1 = ζr

ζ̇r = a(ζ, η) + b(ζ, η)u
η̇ = q(ζ, η)

(8.4)

where
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a(ζ, η) = Lr
f h(φ−1(ζ, η))

b(ζ, η) = Lg Lr−1
f h(φ−1(ζ, η))

and

q(ζ, η) =

⎡

⎢
⎢
⎢
⎣

qr+1(ζ, η)

qr+2(ζ, η)
...

qn(ζ, η)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

L f φr+1(φ
−1(ζ, η))

L f φr+2(φ
−1(ζ, η))

...

L f φn(φ
−1(ζ, η))

⎤

⎥
⎥
⎥
⎦

It should be noted that the coordinate transformation (8.3) will be available if φi (x)

are available for i = r + 1, . . . , n, and in this case, the system (8.4) can be obtained
directly.

8.3 Problem Formulation

Consider the set of nonlinear interconnected systems

ẋi (t) = fi (xi ) + gi (xi )ui + Δ fi (xi ) +
N∑

j=1
j �=i

Di j (x j ) (8.5)

yi (t) = hi (xi ), i = 1, 2, . . . , N (8.6)

where xi ∈ Ωi ⊂ R
ni (Ωi is a neighbourhood of the origin), yi ∈ R and ui ∈ Ui ⊂

R (Ui is an admissible control set) are the state, output and input of the i-th subsystem
respectively, fi (xi ) ∈ R

ni and gi (xi ) ∈ R
ni are smooth vector fields defined in the

domain Ωi , and hi (xi ) ∈ R are smooth in the domain Ωi for i = 1, 2, . . . , N . The
term Δ fi (xi ) includes all the uncertainties experienced by the i-th subsystem. The
term

∑N
j=1
j �=i

Di j (x j ) is the nonlinear interconnection of the i-th subsystem.

Definition 8.2 The systems

ẋi (t) = fi (xi ) + gi (xi )ui + Δ fi (xi ) (8.7)

yi (t) = hi (xi ), i = 1, 2, . . . , N (8.8)

are called the isolated subsystems of the systems (8.5) and (8.6), and the systems

ẋi (t) = fi (xi ) + gi (xi )ui (8.9)

yi (t) = hi (xi ), i = 1, 2, . . . , N (8.10)

are called the nominal isolated subsystems of the systems (8.5) and (8.6).
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In this chapter, under the assumption that the isolated subsystems (8.9) and (8.10)
have uniform relative degree ri in the considered domain Ωi , the interconnected
systems (8.5) and (8.6) are to be analysed. The objective is to explore the system
structure based on a geometric transformation to design a robust asymptotic observer
for the interconnected system (8.5) and (8.6).

It should be noted that the following results can be extended to the case where
the isolated subsystems are multi-input and multi-output using the corresponding
framework in Sect. 8.2 for the multi-input and multi-output case provided in [15].

8.4 System Analysis and Assumptions

In this section, some assumptions are imposed on the system (8.5) and (8.6) to
facilitate the observer design.

Assumption 8.1 The nominal isolated subsystem (8.9) and (8.10) has uniform rel-
ative degree ri in the domain xi ∈ Ωi for i = 1, 2, . . . , N .

Under Assumption 8.1, it follows from Sect. 8.2 that there exists a coordinate
transformation

Ti : xi → col(ζi , ηi ) (8.11)

where

ζi =

⎡

⎢
⎢
⎢
⎣

ζi1

ζi2
...

ζiri

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

hi (xi )

L f hi (xi )
...

Lri −1
f hi (xi )

⎤

⎥
⎥
⎥
⎦

∈ R
ri (8.12)

and ηi ∈ R
ni −ri is defined by

ηi =

⎡

⎢
⎢
⎢
⎣

ηi1

ηi2
...

ηni −ri

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

φi(ri +1)(xi )

φi(ri +2)(xi )
...

φini (xi )

⎤

⎥
⎥
⎥
⎦

∈ R
ni −ri (8.13)

for i = 1, 2, . . . , N . The functions φi(ri +1)(xi ), φi(ri +2)(xi ), . . . , φini (xi ) can be
obtained by solving the following partial differential equations:

Lgi φi (xi ) = 0, xi ∈ Ωi , i = 1, 2, . . . , N . (8.14)

From Sect. 8.2, it follows that in the new coordinate system (ζi , ηi ), the nominal
isolated subsystem (8.9) and (8.10) can be described by
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ζ̇i = Aiζi + βi (ζi , ηi , ui ) (8.15)

η̇i = qi (ζi , ηi ) (8.16)

yi = Ciζi (8.17)

where

Ai =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
ri ×ri , Ci = [

1 0 . . . 0
] ∈ R

1×ri (8.18)

βi (ζi , ηi , ui ) =

⎡

⎢
⎢
⎢
⎣

0
...

0
Lri

fi
hi (T

−1
i (ζi , ηi )) + Lgi L

ri −1
fi

hi (T
−1

i (ζi , ηi ))ui

⎤

⎥
⎥
⎥
⎦

(8.19)

It is clear to see that the pair (Ai , Ci ) is observable. Thus, there exists a matrix Li

such that Ai − Li Ci is Hurwitz stable. This implies that, for any positive definite
matrix Qi ∈ R

ri ×ri , the Lyapunov equation

(Ai − Li Ci )
T Pi + Pi (Ai − Li Ci ) = −Qi (8.20)

has a unique positive-definite solution Pi ∈ R
ri ×ri for i = 1, 2, . . . , N .

Assumption 8.2 The uncertainty Δ fi (xi ) in (8.5) satisfies

∂Ti

∂xi
Δ fi (xi ) =

[
EiΔΨi (xi )

0

]

(8.21)

where Ti (·) is defined in (8.11), Ei ∈ R
ri ×ri is a constant matrix satisfying

E T
i Pi = Hi Ci (8.22)

for some matrix Hi , with Pi satisfying (8.20), and ‖ΔΨi (xi )‖ ≤ κi (xi ), where κi (xi )

is continuous and Lipschitz about xi in the domain Ωi for i = 1, 2, . . . , N .

Remark 8.1 Solving the Lyapunov equation (8.20) in the presence of the constraint
(8.22) constitutes the well known constrained Lyapunov problem [10]. Although
there is no general solution available for this problem, associated discussion and an
algorithm can be found in [9].

Remark 8.2 Assumption 8.2 is a limitation on the uncertaintyΔ fi (xi ), which is used
to guarantee the existence of asymptotic observers. Denote the nonlinear uncertain
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term ΔΨi (xi ) in (8.21) in the new coordinate frame (ζi , ηi ) by ΔΦi (ζi , ηi ) i.e.

ΔΦi (ζi , ηi ) = [ΔΨi (xi )]xi =T −1
i (ζi ,ηi )

(8.23)

From Assumption 8.2, there exists a function ρi (ζi , ηi ) such that

‖ΔΦi (ζi , ηi )‖ ≤ ρi (ζi , ηi ) (8.24)

and ρi (ζi , ηi ) satisfies the Lipschitz condition in Ti (Ωi ). Thus for any (ζi , ηi ) and
(ζ̂i , η̂i ) ∈ Ti (Ωi ),

‖ρi (ζi , ηi ) − ρi (ζ̂i , η̂i )‖ ≤ la
i ‖ζi − ζ̂i‖ + lb

i ‖ηi − η̂i‖ (8.25)

where both la
i and lb

i are nonnegative constants.

Consider the interconnections Di j (x j ) in system (8.5). Partition ∂Ti
∂xi

Di j (x j ) as
follows

∂Ti

∂xi
Di j (x j )

∣
∣
x j =T −1

j (ζ j ,η j )
=

[
Γ a

i j (ζ j , η j )

Γ b
i j (ζ j , η j )

]

(8.26)

where Γ a
i j (ζ j , η j ) ∈ R

ri , Γ b
i j (ζ j , η j ) ∈ R

ni −ri for i = 1, 2, . . . , N and i �= j .

Assumption 8.3 The nonlinear terms Γ a
i j (ζ j , η j ) ∈ R

ri and Γ b
i j (ζ j , η j ) ∈ R

ni −ri in
(8.26) satisfy the Lipschitz condition in Ti (Ωi ).

Assumption 8.3 implies that there exist nonnegative constants αa
i j , αb

i j , μa
i j and

μb
i j such that

‖Γ a
i j (ζi , ηi ) − Γ a

i j (ζ̂i , η̂i )‖ ≤ αa
i j‖ζ j − ζ̂ j‖ + αb

i j ‖ η j − η̂ j‖ (8.27)

‖Γ b
i j (ζi , ηi ) − Γ b

i j (ζ̂i , η̂i )‖ ≤ μa
i j‖ζ j − ζ̂ j‖ + μb

i j ‖ η j − η̂ j‖ (8.28)

for i = 1, 2, . . . , N and i �= j .

Remark 8.3 It should be noted that Assumptions 8.2 and 8.3 have limitations to the
coordinate transformation Ti in (8.11). However, in local case, the corresponding
limitation is trivial and the Lipschitz conditions in Assumptions 8.2 and 8.3 can be
satisfied if all the associated functions are smooth.

From (8.15)–(8.17) and the analysis above, it follows that under Assumption 8.2, in
the new coordinate system (ζi , ηi ), the system (8.5) and (8.6) can be described by

ζ̇i = Aiζi + βi (ζi , ηi , ui ) + EiΔΨi (ζi , ηi ) +
N∑

j=1
j �=i

Γ a
i j (ζ j , η j ) (8.29)
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η̇i = qi (ζi , ηi ) +
N∑

j=1
j �=i

Γ b
i j (ζ j , η j ) (8.30)

yi = Ciζi (8.31)

where Ai and Ci are given in (8.18), βi (·) is defined in (8.19) and Γ a
i j (·) and Γ b

i j (·)
are defined in (8.26).

Remark 8.4 Since βi (·) is continuous in the domain Ti (Ωi ), it is straightforward to
see that there exists a subset in the domain Ti (Ωi ) such that the function βi (·) is
Lipschitz in the subset

‖ βi (ζi , ηi , ui ) − βi (ζ̂i , η̂i , ui ) ‖≤ va
i (ui ) ‖ ζi − ζ̂i ‖ +vb

i (ui ) ‖ ηi − η̂i ‖ (8.32)

where va
i (ui ) and vb

i (ui ) are known nonnegative functions of ui for i = 1, 2, . . . , N .

Assumption 8.4 The function qi (ζi , ηi ) in Eq. (8.30) has the following decompo-
sition

qi (ζi , ηi ) = Miηi + θi (ζi , ηi ) (8.33)

where Mi ∈ R
(ni −ri )×(ni −ri ) is a Hurwitz matrix and θi (ζi , ηi ) is Lipschitz in the

domain Ti (Ωi ).
Under Assumption 8.4, there exist nonnegative constants τ a

i and τ b
i such that.

‖ θi (ζi , ηi ) − θi (ζ̂i , η̂i ) ‖≤ τ a
i ‖ ζi − ζ̂i ‖ +τ b

i ‖ ηi − η̂i ‖ (8.34)

for i = 1, 2, . . . , N . Further, from the fact that Mi is Hurwitz stable for Λi > 0, the
following Lyapunov equation has a unique solution Πi > 0

MT
i Πi + Πi Mi = −Λi , i = 1, 2, . . . , N . (8.35)

8.5 Nonlinear Observer Synthesis

In this section, an observer is designed for the transformed systems (8.29)–(8.31)
which provides asymptotic estimation of the states of the interconnected systems
(8.29)–(8.31). For the system (8.29)–(8.31), construct dynamical systems

˙̂
ζi = Ai ζ̂i + Li (yi − Ci ζ̂i ) + βi (ζ̂i , η̂i , ui ) + Ki (y, ζ̂i , η̂i )

+
N∑

j=1
j �=i

Γ a
i j (ζ̂ j , η̂ j ) (8.36)
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˙̂ηi = Mi η̂i + θi (ζ̂i , η̂i ) +
N∑

j=1
j �=i

Γ b
i j (ζ̂ j , η̂ j ) (8.37)

where the term Ki (yi , ζ̂i , η̂i ) is defined by

Ki (yi , ζ̂i , η̂i ) =
{

P−1
i CT

i (yi −Ci ζ̂i )

‖yi −Ci ζ̂i ‖ ‖ Hi ‖ ρi (ζ̂i , η̂i ), yi − Ci ζ̂i �= 0

0, yi − Ci ζ̂i = 0
(8.38)

where Pi and Hi satisfy (8.20) and (8.22) respectively.
The following results are ready to be presented.

Theorem 8.1 Suppose Assumptions 8.1– 8.4 hold. Then, the dynamical system
(8.36) and (8.37) is a robust asymptotic observer of system (8.29), (8.30) and (8.31),
if the function matrix W

T (·) + W(·) is positive definite in the domain T (Ω) ×
U := T (Ω1) × U1 × T (Ω2) × U2 × . . . × T (ΩN ) × UN , where the matrix W(·) =[
wi j (·)

]

2N×2N , and its entries wi j (·) are defined by

wi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λmin(Qi ) − 2λmax(Pi )va
i (·) − 2la

i ‖Ci‖‖Hi‖, i = j, 1 ≤ i ≤ N

−2λmax(Pi )α
a
i j , i �= j, 1 ≤ i ≤ N , 1 ≤ j ≤ N

λmin(Λi−N ) − 2λmax(Πi−N )τ b
i−N , i = j, N + 1 ≤ i ≤ 2N

−2λmax(Π(i−N ))μ
b
(i−N )( j−N ),

i �= j, N + 1 ≤ i ≤ 2N , N + 1 ≤ j ≤ 2N

−2[λmax(Pi )vb
i (·) + lb

i ‖Ci‖‖Hi‖ + λmax(Πi )τ
a
i ],

j − i = N , 1 ≤ i ≤ N , N + 1 ≤ j ≤ 2N

−2λmax(Pi )α
b
i( j−N ), j − i �= N , 1 ≤ i ≤ N , N + 1 ≤ j ≤ 2N

0, i − j = N , N + 1 ≤ i ≤ 2N , 1 ≤ j ≤ N

−2λmax(Πi−N )μa
(i−N ) j , i − j �= N , N + 1 ≤ i ≤ 2N , 1 ≤ j ≤ N

Proof Let eζi = ζi − ζ̂i and eηi = ηi − η̂i for i = 1, 2, . . . , N . Compare systems
(8.29), (8.30) and (8.36), (8.37). It follows that the error dynamical systems are
described by

ėζi = (Ai − Li Ci )eζi + βi (ζi , ηi , ui ) − βi (ζ̂i , η̂i , ui ) + EiΔΨi (ζi , ηi )

−Ki (yi , ζ̂i , η̂i ) +
N∑

j=1
j �=i

Γ a
i j (ζ j , η j ) −

N∑

j=1
j �=i

Γ a
i j (ζ̂ j , η̂ j ) (8.39)

ėηi = Mi eηi + θi (ζi , ηi ) − θi (ζ̂i , η̂i ) +
N∑

j=1
j �=i

Γ b
i j (ζ j , η j )
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−
N∑

j=1
j �=i

Γ b
i j (ζ̂ j , η̂ j ) (8.40)

Now, for the system (8.39) and (8.40) consider the following candidate Lyapunov
function

V =
N∑

i=1

eT
ζi

Pi eζi +
N∑

i=1

eT
ηi
Πi eηi (8.41)

Then, the time derivative of the candidate Lyapunov function can be described by

V̇ =
N∑

i=1

[(ėT
ζi

Pi eζi + eT
ζi

Pi ėζi ) + (ėT
ηi
Πi eηi + eT

ηi
Πi ėηi )] (8.42)

Substituting both ėζi in (8.39) and ėηi in (8.40) into Eq. (8.42), it follows by direct
computation that the time derivative of the function V in (8.41) can be described by

V̇ =
N∑

i=1

{
eT
ζi
[(Ai − Li Ci )

T Pi + Pi (Ai − Li Ci )]eζi + 2eT
ζi

Pi [βi (ζi , ηi , ui )

−βi (ζ̂i , η̂i , ui )] + 2[eT
ζi

Pi EiΔΨi (ζi , ηi ) − eT
ζi

Pi Ki (yi , ζ̂i , η̂i )] + 2eT
ζi

Pi

×
N∑

j=1
j �=i

[Γ a
i j (ζ j , η j ) − Γ a

i j (ζ̂ j , η̂ j )] + eT
ηi
(MT

i Πi + Πi Mi )eηi + 2eT
ηi
Πi

×[θi (ζi , ηi ) − θi (ζ̂i , η̂i )] + 2eT
ηi
Πi

N∑

j=1
j �=i

[Γ b
i j (ζ j , η j ) − Γ b

i j (ζ̂ j , η̂ j )]
}

(8.43)

From (8.22) and (8.38), it follows that:
(i) If yi − Ci ζ̂i = 0, then from (8.22) and eT

ζi
CT

i = (yi − Ci ζ̂i )
T

eT
ζi

Pi EiΔΦi (ζi , ηi ) − eT
ζi

Pi Ki (yi , ζ̂i , η̂i ) = eT
ζi

CT
i H T

i ΔΦi (ζi , ηi ) (8.44)

= (Hi (yi − Ci ζ̂i ))
T ΔΦi (ζi , ηi ) = 0 (8.45)

(ii) If yi − Ci ζ̂i �= 0, then from (8.22), (8.24), (8.25) and (8.38)

eT
ζi

Pi EiΔΦi (ζi , ηi ) − eT
ζi

Pi Ki (yi , ζ̂i , η̂i )

= eT
ζi

CT
i H T

i ΔΦi (ζi , ηi ) − eT
ζi

Pi
P−1

i CT
i (yi − Ci ζ̂i )

‖yi − Ci ζ̂i‖
‖ Hi ‖ ρi (ζ̂i , η̂i )
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= (Ci eζi )
T H T

i ΔΦi (ζi , ηi ) − eT
ζi

CT
i Ci eζi

‖Ci eζi ‖
‖Hi‖ρi (ζ̂i , η̂i )

≤ ‖Ci eζi ‖‖Hi‖
{
ρi (ζi , ηi ) − ρi (ζ̂i , η̂i )

}

≤ ‖Ci eζi ‖‖Hi‖
{
la
i ‖ζi − ζ̂i‖ + lb

i ‖ηi − η̂i‖
}

Then, from (i) and (ii) above, it follows that

eT
ζi

Pi EiΔΦi (ζi , ηi ) − eT
ζi

Pi Ki (yi , ζ̂i , η̂i )

≤ ‖Ci eζi ‖‖Hi‖
(
la
i ‖eζi ‖ + lb

i ‖eηi ‖
)

(8.46)

Substituting (8.27), (8.28), (8.32), (8.34), and (8.46) into (8.43) yields

V̇ ≤
N∑

i=1

{
− eT

ζi
Qi eζi + 2‖eζi ‖‖Pi‖

[
va

i ‖eζi ‖ + vb
i ‖eηi ‖

] + 2‖eζi ‖‖Ci‖‖Hi‖

×[
la
i ‖eζi ‖ + lb

i ‖eηi ‖
] + 2‖eζi ‖‖Pi‖

N∑

j=1
j �=i

[
αa

i j‖eζ j ‖ + αb
i j‖eη j ‖

] − eT
ηi
Λi eηi

+ 2eT
ηi
‖Πi‖

[
τ a

i ‖eζi ‖ + τ b
i ‖eηi ‖

] + 2eT
ηi
‖Πi‖

N∑

j=1
j �=i

[
μa

i j‖eζ j ‖ + μb
i j‖eη j ‖

]}

≤
N∑

i=1

{
− eT

ζi
Qi eζi + 2va

i ‖eζi ‖2‖Pi‖ + 2vb
i ‖eζi ‖‖eηi ‖‖Pi‖ + 2la

i ‖eζi ‖2‖Ci‖

×‖Hi‖ + 2lb
i ‖eζi ‖‖eηi ‖Ci‖‖Hi‖ +

N∑

j=1
j �=i

[
2αa

i j‖eζi ‖‖eζ j ‖‖Pi‖ + 2αb
i j‖eζi ‖

×‖eη j ‖‖Pi‖
] − eT

ηi
Λi eηi + 2τ a

i ‖Πi‖‖eζi ‖‖eηi ‖ + 2τ b
i ‖Πi‖‖eηi ‖2

+
N∑

j=1
j �=i

[
2μa

i j‖Πi‖‖eζ j ‖‖eηi ‖ + 2μb
i j‖Πi‖‖eηi ‖‖eη j ‖

]}

≤
N∑

i=1

{
− [

λmin(Qi ) − 2λmax(Pi )v
a
i − 2la

i ‖Ci‖‖Hi‖]‖eζi ‖2

+
[ N∑

j=1
j �=i

2λmax(Pi )α
a
i j ]‖eζi ‖‖eζ j ‖ + [

2λmax(Pi )v
b
i + 2lb

i ‖Ci‖‖Hi‖

+ 2λmax(Πi )τ
a
i ]‖eζi ‖‖eηi ‖ + 2

N∑

j=1
j �=i

λmax(Pi )α
b
i j‖eζi ‖‖eη j ‖
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+
N∑

j=1
j �=i

2λmax(Πi )μ
a
i j‖eζ j ‖‖eηi ‖ − [

λmin(Λi ) − 2λmax(Πi )τ
b
i ]‖eηi ‖2

+
[ N∑

j=1
j �=i

2λmax(Πi )μ
b
i j ]‖eηi ‖‖eη j ‖

}

≤ −
N∑

i=1

{[
λmin(Qi ) − 2λmax(Pi )v

a
i − 2la

i ‖Ci‖‖Hi‖
]‖eζi ‖2

−
[ N∑

j=1
j �=i

2λmax(Pi )α
a
i j ]‖eζi ‖‖eζ j ‖ − [

2λmax(Pi )v
b
i + 2lb

i ‖Ci‖‖Hi‖

+ 2λmax(Πi )τ
a
i ]‖eζi ‖‖eηi

]‖ − 2
N∑

j=1
j �=i

λmax(Pi )α
b
i j‖eζi ‖‖eη j ‖]

−
N∑

j=1
j �=i

2λmax(Πi )μ
a
i j‖eζ j ‖‖eηi ‖ + [

λmin(Λi ) − 2λmax(Πi )τ
b
i ]‖eηi ‖2

−[
N∑

j=1
j �=i

2λmax(Πi )μ
b
i j

]‖eηi ‖‖eη j ‖
}

Then, from the definition of the matrixW(·) and the inequality above, it follows that

V̇ ≤ −1

2
X T [WT (·) + W(·)]X

where X = [‖eζ1‖, ‖eζ2‖, . . . , ‖eζN ‖, ‖eη1‖, ‖eη2‖, . . . , ‖eηN ‖]T . Since W
T (·) +

W(·) is positive definite in the domain T (Ω) × U , it is clear that V̇ |(8.39)−(8.40)

is negative definite. Therefore, the error system (8.39) and (8.40) is asymptotically
stable, that is,

lim
t→∞ ‖ζi (t) − ζ̂i (t)‖ = 0 and lim

t→∞ ‖ηi (t) − η̂i (t)‖ = 0 (8.47)

Hence, the conclusion follows.

Remark 8.5 It is clear that the structure of system (8.36) and (8.37) is variable due to
the term in (8.38). Theorem 8.1 shows that system (8.36) and (8.37) is an asymptotic
observer of the interconnected system (8.29)–(8.31). Therefore, system (8.36) and
(8.37) is called a variable structure observer throughout this chapter.

Now, consider the interconnected system (8.5) and (8.6). Assume that ∂T −1
i (ζi ,ηi )

∂(ζi ,ηi )
is

bounded in Ti (Ωi ) for i = 1, 2, . . . , N . There exists a positive constant γi such that
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∥
∥
∥
∥
∥

∂T −1
i (ζi , ηi )

∂(ζi , ηi )

∥
∥
∥
∥
∥

≤ γi , (ζi , ηi ) ∈ Ti (Ωi ), i = 1, 2, . . . , N

Define x̂i = T −1
i (ζ̂i , η̂i ), i = 1, 2, . . . , N . Then,

‖xi − x̂i‖ = ‖T −1
i (ζi , ηi ) − T −1

i (ζ̂i , η̂i )‖ ≤ γi (‖ζi − ζ̂i‖ + ‖ηi − η̂i‖) (8.48)

From (8.47) and (8.48), it follows that

lim
t→∞ ‖xi (t) − x̂i (t)‖ = 0

This implies that x̂i is an asymptotic estimate of xi for i = 1, 2, . . . , N . Therefore,

x̂i = T −1
i (ζ̂i , η̂i )

provides an asymptotic estimate of the states xi of the system (8.5) and (8.6), where
ζ̂i and η̂i are given by (8.36) and (8.37) for i = 1, 2, . . . , N .

Remark 8.6 From the analysis above, it is clear to see that, in this chapter, it is
not required that either the nominal isolated subsystems or the interconnections are
linearisable. The uncertainties are bounded by nonlinear functions and are fully
used in the observer design in order to reject the effects of the uncertainties, and
thus robustness is enhanced. Although the designed observer is a local asymptotic
observer, the developed results can be extended to the global case if the associated
conditions hold globally.

8.6 Simulation Examples

8.6.1 A Numerical Example

Consider the nonlinear interconnected systems:

ẋ1 =
⎡

⎣
x12

−0.1 sin x12
−3x2

11 − 3.25x13 − 2x12

⎤

⎦

︸ ︷︷ ︸
f1(x1)

+
⎡

⎣
0
1
0

⎤

⎦

︸ ︷︷ ︸
g1(x1)

u1 +
⎡

⎣
Δσ1

0.5Δσ1

−2Δσ1

⎤

⎦

︸ ︷︷ ︸
Δ f1(x1)

+
⎡

⎣
0.2(x2

21 + x22)
0

0.1 sin x21

⎤

⎦

︸ ︷︷ ︸
D12(x2)

(8.49)
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y1 = x11︸︷︷︸
h1(x1)

(8.50)

ẋ2 =
⎡

⎣
−x21

−x2
21 − 3x22 + cos(x2

21 + x22) − 1
−2x23 + 0.2x2

21

⎤

⎦

︸ ︷︷ ︸
f2(x2)

+
⎡

⎣
1

−2x21
0

⎤

⎦

︸ ︷︷ ︸
g2(x2)

u2 +
⎡

⎣
−Δσ2

2x21Δσ2

0

⎤

⎦

︸ ︷︷ ︸
Δ f2(x2)

+
⎡

⎣
0

0.1 sin(x13 + 2x11)
0

⎤

⎦

︸ ︷︷ ︸
D21(x1)

(8.51)

y2 = x21︸︷︷︸
h2(x2)

(8.52)

where x1 = col(x11, x12, x13) and x2 = col(x21, x22, x23), h1(x1) and h2(x2), and
u1(t) and u2(t) are the system state, output and input respectively, D12(·) and D21(·)
are interconnected terms and Δ f1(x1) and Δ f2(x2) are the uncertainties experienced
by the system which satisfy

||Δ f1(x1)|| = 0.1|x13 + 2x11| sin2 t (8.53)

||Δ f2(x2)|| = 0.1x2
21| cos t | (8.54)

The domain considered is

Ω = {
(x11, x12, x13, x21, x22, x23),

∣
∣
∣ |x11| < 3,

|x21| ≤ 1.3, x12, x13, x22, x23 ∈ R
}

(8.55)

By direct computation, it follows that the first subsystem has uniform relative degree
2, and the second subsystem has uniform relative degree 1. The corresponding trans-
formations are obtained as follows:

T1 :
⎧
⎨

⎩

ζ11 = x11
ζ12 = x12
η1 = x13 + 2x11

, T2 :
⎧
⎨

⎩

ζ2 = x21
η21 = x2

21 + x22
η22 = x23

In the new coordinates, the system (8.49)–(8.52) can be described by:

ζ̇1 =
[
0 1
0 0

]

︸ ︷︷ ︸
A1

[
ζ11
ζ12

]

+
[

0
−0.1 sin ζ11 + u1

]

︸ ︷︷ ︸
β1

+
[

Δσ1(ζ1, η1)

0.5Δσ1(ζ1, η1)

]

︸ ︷︷ ︸
E1ΔΨ (ζ1,η1)



8 Variable Structure Observers for Nonlinear Interconnected Systems 211

+
[
0.2η21

0

]

︸ ︷︷ ︸
Γ a
12

(8.56)

η̇1 = −3.25η1 + 0.25ζ 2
11︸ ︷︷ ︸

q1(ζ1,η1)

+ 0.4η21 + 0.1 sin ζ2︸ ︷︷ ︸
Γ b
12

(8.57)

y1 = [
1 0

]
[

ζ11
ζ12

]

(8.58)

ζ̇2 = −
︸︷︷︸

A2

ζ2 + u2︸︷︷︸
β2

−Δσ2(ζ2, η2)︸ ︷︷ ︸
E2ΔΨ (ζ2,η2)

(8.59)

η̇2 =
[−3 0

0 −2

] [
η21
η22

]

+
[
cos η21 − 1

0.2ζ 2
2

]

︸ ︷︷ ︸
q2(ζ2,η2)

+
[
0.1 sin η1

0

]

︸ ︷︷ ︸
Γ b
21

(8.60)

y2 = ζ2 (8.61)

where ζ1 = (ζ11, ζ12)
T , η1 ∈ R, ζ2 ∈ R, and η2 = (η21, η22)

T .
From (8.53) and (8.54)

‖ΔΨ1(ζ1, η1)‖ ≤ ||Δσ1(ζ1, η1)|| ≤ 0.1|η1|2 cos t
︸ ︷︷ ︸

ρ1(·)
‖ΔΨ2(ζ2, η2)‖ ≤ ||Δσ2(ζ2, η2)|| ≤ 0.1ζ2| sin t |2

︸ ︷︷ ︸
ρ2(·)

Then, for the first subsystem, choose L1 = [
3 2

]T
and Q = I . It follows that the

Lyapunov Eq. (8.20) has a unique solution:

P1 =
[

0.5 −0.5
−0.5 1

]

and the solution to Eq. (8.22) is H1 = 0.25. As M1 = −3.25, let Λ1 = 3.25. Thus
the solution of equation (8.35) is Π1 = 0.5. Now, for the second subsystem, choose
L2 = 0 and Q2 = 2. It follows that the Lyapunov equation (8.20) has a unique
solution P2 = 1 and the solution to Eq.(8.22) is H2 = −1. As

M2 =
[−3 0

0 −2

]

, let Λ2 =
[
1 0
0 1

]

Then

Π2 =
[
0.1667 0

0 0.25

]
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By direct computation, it follows that the matrixWT (·) + W(·) is positive definite in
the domainΩ defined in (8.55). Thus, all the conditions of Theorem 8.1 are satisfied.
This implies that the dynamical system

˙̂
ζ1 =

[
0 1
0 0

] [
ζ̂11

ζ̂12

]

+
[
3
2

]

(y1 − C1ζ̂1) +
[
0
u1

]

+ K1(·) +
[
0.2η̂21

0

]

(8.62)

˙̂η1 = −3.25η̂1 + 0.25ζ̂ 2
11 + 0.4η̂21 + 0.1 sin ζ̂2 (8.63)

˙̂
ζ2 = −ζ̂2 + u2 + K2(·) (8.64)

˙̂η2 =
[−3 0

0 −2

] [
η̂21
η̂22

]

+
[
cos η̂21 − 1

0.2ζ̂ 2
2

]

+
[
0.1 sin η̂1

0

]

(8.65)

is a robust observer of the system (8.56)–(8.61) where ζ̂1 = col(ζ̂11, ζ̂12), η̂2 =
col(η̂21, η̂22), and K1(·) and K2(·) defined in (8.38) are as follows

K1(y1, ζ̂1, η̂1) =
⎧
⎨

⎩

[
0.1
0.05

]
(ζ11−ζ̂11)

‖ζ11−ζ̂11‖ |η1| sin
2 t, ζ11 − ζ̂11 �= 0

0, ζ11 − ζ̂11 = 0

K2(y2, ζ̂2, η̂2) =
{
0.1 (ζ2−ζ̂2)

‖ζ2−ζ̂2‖ζ
2
2 | cos t |, ζ2 − ζ̂2 �= 0

0, ζ2 − ζ̂2 = 0

Therefore,

x̂11 = ζ̂11

x̂12 = ζ̂12

x̂13 = η̂1 − 2ζ̂11

and
x̂21 = ζ̂2

x̂22 = η̂21 − ζ̂ 2
2

x̂23 = η̂22

with ζ̂1 = col(ζ̂11, ζ̂12), η̂1, ζ̂2 and η̂2 = col(η̂21, η̂22) given by system (8.62)–(8.65),
provide an asymptotic estimate for x1 and x2 of system (8.49)–(8.52).

For simulation purposes, the controllers are chosen as:

u1 = −ζ11 − 2ζ12 and u2 = −ζ21 (8.66)

The simulation results in Figs. 8.1 and 8.2 show that the designed observer esti-
mates the states of the interconnected system in (8.49)–(8.52), x1 = col(x11, x12,
x13) and x2 = col (x21, x22, x23) respectively, very well. Figure8.3 shows the error
between the actual states and the estimated states in both subsystems.
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estimation of x13

Fig. 8.1 The time response of the states of the first subsystem, x1 = col (x11, x12, x13), and their
estimates x̂1 = col (x̂11, x̂12, x̂13)

8.6.2 Case Study: Observer Design for Coupled Inverted
Pendula

Consider the system given in Fig. 8.4 formed by two identical inverted pendula which
are connected by a spring and subject to distinct inputs u1 and u2 (see, e.g. [11]).
A salient feature of the system is that the point of attachment of the spring can
change along the full length (l) of the pendulum. The input to each pendulum is the
torque ui applied at the pivot point. The pay-loads are assumed to be both known
and equal to m. Let xi = col(xi1, xi2) = col(θi , θi − ωi ) for i = 1, 2 where ωi := θ̇i

is the corresponding angle velocity. From [11], the dynamic equations of the system
can be described as

ẋ1 =
[

1 −1
1 − g

l −1

]

︸ ︷︷ ︸
A1

[
x11
x12

]

+
[

0
−1
ml2

]

u1 +
[

0
ka2

ml2 x11

]

︸ ︷︷ ︸
β1

+
[

0
1.8033 Δσ1(ζ1, η1)

]

︸ ︷︷ ︸
E1ΔΨ (x1)
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state x23
estimation of x23

Fig. 8.2 The time response of the states of the second subsystem, x2 = col (x21, x22, x23), and
their estimates x̂2 = col (x̂21, x̂22, x̂23)

+
[

0 0
−ka2

ml2 0

]

︸ ︷︷ ︸
Γ a
12

x2 (8.67)

y1 = [
1 0

]
[

x11
x12

]

(8.68)

ẋ2 =
[

1 −1
1 − g

l −1

]

︸ ︷︷ ︸
A2

[
x21
x22

]

+
[

0
−1
ml2

]

u1 +
[

0
− ka2

ml2 x21

]

︸ ︷︷ ︸
β2

+
[

0
1.8033 Δσ2(ζ2, η2)

]

︸ ︷︷ ︸
E2ΔΨ (x2)

+
[

0 0
ka2

ml2 0

]

︸ ︷︷ ︸
Γ a
21

x1 (8.69)
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Fig. 8.3 The time response of the estimates errors

y2 = [
1 0

]
[

x21
x22

]

(8.70)

where k and g are the spring and gravity constants, and a is a parameter explained
in Fig. 8.4. It is assumed the only measurable state is

yi = [
1 0

]
xi , i = 1, 2 (8.71)

and the parameters are chosen as

g

l
= 9.8,

1

ml2
= 0.5,

ka2

ml2
= 2.268 (8.72)
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Fig. 8.4 Coupled inverted
pendula

‖ΔΨ1(x1)‖ ≤ ||Δσ1(x1)|| ≤ 0.5 cos(t)
︸ ︷︷ ︸

ρ1(·)
‖ΔΨ2(x2)‖ ≤ ||Δσ2(x2)|| ≤ 0.1 sin(t)

︸ ︷︷ ︸
ρ2(·)

Then, for both subsystems, choose Li = [11 − 8.8]T and Qi = I where i = 1, 2.
It follows that the Lyapunov equation (8.20) has unique solutions:

Pi =
[

0.0545 −0.0455
−0.0455 0.5

]

, i = 1, 2 (8.73)

and the solutions to equation (8.22) are Hi = [0 1]T for i = 1, 2.
By direct computation, it follows that the matrix W

T (·) + W(·) is symmetric
positive definite. Thus, all the conditions of Theorem 8.1 are satisfied. This implies
that the dynamical system

˙̂x1 =
[

1 −1
−8.81 −1

] [
x̂11
x̂12

]

+
[

11
−8.8

]

(y1 − C1 x̂1) +
[

0
−0.5

]

u1

+
[

0
2.268x̂11

]

+ K1(·) +
[

0 0
−2.268 0

] [
x̂21
x̂22

]

(8.74)

˙̂x2 =
[

1 −1
−8.81 −1

] [
x̂21
x̂22

]

+
[

11
−8.8

]

(y2 − C2 x̂2) +
[

0
−0.5

]

u2

+
[

0
−2.268x̂21

]

+ K2(·) +
[

0 0
2.268 0

] [
x̂11
x̂12

]

(8.75)
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is a robust observer of the system (8.67)–(8.70) where x̂1 = col(x̂11, x̂12), x̂2 =
col(x̂21, x̂22), and the K1(·) and K2(·) defined in (8.38) are

K1(y1, x̂1) =
{
[
9.918
0.9016

]
(x11−x̂11)
‖x11−x̂11‖ cos t), x11 − x̂11 �= 0

0, x11 − x̂11 = 0

K2(y2, x̂2) =
{
[
1.9836
0.1803

]
(x21−x̂21)
‖x21−x̂21‖ sin t), x21 − x̂21 �= 0

0, x21 − x̂21 = 0

For simulation purposes, the controllers are chosen as:

ui = −61.6xi1 + 22xi2, i = 1, 2 (8.76)
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3

4
system 1

Time [sec]

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

Time [sec]

State x11
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Fig. 8.5 The time response of the states of the first subsystem, x1 = col (x11, x12), and their
estimates x̂1 = col (x̂11, x̂12)
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Fig. 8.6 The time response of the states of the second subsystem, x2 = col (x21, x22), and their
estimates x̂2 = col (x̂21, x̂22)

The simulation results in Figs. 8.5 and 8.6 show that the states x̂1 and x̂2 of the
designed dynamics approximate the states of the interconnected system (8.67)–
(8.70), x1 = col (x11, x12) and x2 = col (x21, x22) respectively, very well.

8.7 Conclusions

In this chapter, observer design for a class of nonlinear large scale interconnected
systems with uniform relative degree has been considered. An asymptotic observer
has been developed for nonlinear interconnected systems with uncertainties using
the Lyapunov approach together with a geometric transformation. It is not required
that either the isolated nominal subsystems or the interconnections are linearisable.
Robustness to uncertainties is enhanced by using the system structure and the struc-
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ture of the uncertainties within the design framework. The developed results are
applicable to a wide class of nonlinear interconnected systems.
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Chapter 9
A Unified Lyapunov Function for Finite
Time Stabilization of Continuous and
Variable Structure Systems with Resets

Harshal B. Oza, Yury V. Orlov and Sarah K. Spurgeon

9.1 Introduction

Uniform finite time stabilization of a perturbed double integrator system is consid-
ered in the presence of a unilateral constraint on the position variable. Unilaterally
constrained systems give rise to hard non-linearities due to jumps or resets in the
velocity and are quite challenging from the point of view of stabilization. Such sys-
tems occur in various feedback control disciplines [1, 2]. The practical motivation
for proposing a synthesis framework for such systems has been demonstrated by
applications to biped robots [3, 4], where the generalized velocities of the robot
inherently undergo a reset when the swing leg collides with the ground. Studying
systems with resets also finds natural application in the area of hybrid systems [5].
Developing a clear understanding of Lyapunov based stability and robustness prop-
erties of a closed-loop system when resets with (or without) a finite accumulation
point is a challenging and interesting area of study [6].

It is well-known, as described in [7, Sect. 3], that real-life implementation of dis-
continuous control for synthesizing joint torques for robot manipulators causes high
frequency oscillations. This work is motivated by the use of continuous second order
sliding mode control for biped robots and extends previous work on discontinuous
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stabilization published in [8] to the case of continuous homogeneous controllers. A
recent survey in [9] details the chronology in this area of control engineering. The
reference [10] is also relevant where the proofs of continuous finite time stability
are achieved via a similar route to that proposed in this work for systems without
impacts.

The main contribution of this work is that it unifies the Lyapunov stability proofs
for both continuous and discontinuous caseswhilemaking use of a continuous homo-
geneous controller. Similar to the work in [8], it is assumed that the restitution or
reset map relating to the velocities just before and after the time of impact is fully
known. No such assumption is made on the time of impact. The main difference
between the work in [8] and the results presented here is that the later generalizes the
results of [8] in that both discontinuous and continuous controllers are admissible
by the proposed Lyapunov analysis and synthesis.

A continuous homogeneous controller is used for finite time stabilization of the
closed-loop system in the presence of resets. The Zhuravlev–Ivanov non-smooth
transformation [11, 12] is used to first transform the system into a variable-structure
system without jumps. Within engineering applications, this transformation is very
useful in the analysis of vibro-impact systems [11, 13]. The transformed system is
a time varying variable structure homogeneous system with negative homogeneity
degree [14] where the solutions are well-defined in the sense of Filippov’s defini-
tion [15], an attribute absent in the case of the original jump system (see [16] for the
solution concept of systems with jumps and friction). It is important to note that the
use of finite time stability of discontinuous systems [14] is the most natural method
for proving uniform finite time stability due to the variable structure nature of the
transformed system despite the continuous controller. This is because all the existing
frameworks for continuous homogeneous systems [17, 18] require continuity of the
vector field, a condition unavoidably violated at the time of jumps.

The remainder of the chapter is organized as follows. Section9.2 provides all the
mathematical preliminaries necessary for the development of the subsequent theo-
retical concepts. Section9.3 states the mathematical problem formulation including
the definition of the non-smooth transformation. Section9.3.2 further motivates the
developments by showing mathematically why existing approaches are not suitable
for application to the problem under consideration. Section9.4 identifies a parame-
terized set of Lyaunov functions to prove uniform finite time stability. Section9.5
concludes the chapter.

9.2 Mathematical Preliminaries

This chapter will establish uniform finite time stabilisation of variable structure and
continuous non-smooth systems in the presence of unilateral constraints that give
rise to resets. It is important to first clearly describe what is meant by each of the
mathematical terms that will be used.

Consider the discontinuous dynamical system
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ẋ = φ(x, t), (9.1)

where x = (x1, x2, . . . , xn)
T is the state vector, t ∈ R is the time variable and the

function φ(x, t) is piece-wise continuous. The function φ : R
n+1 → R

n is piece-wise
continuous iff R

n+1 is partitioned into a finite number of domains Gj ∈ R
n+1, j =

1, ..., N , with disjoint interiors and boundaries ∂Gj of measure zero such that φ is
continuous within each of these domains and for all j = 1, ..., N it has a finite limit
φj(x, t) as the argument (x∗, t∗) ∈ Gj approaches a boundary point (x, t) ∈ ∂Gj.

For example, the function φ(x, t) = sign(x) for x ∈ R defines two domains
G1 = {x : x ≥ 0}, G2 = {x : x ≤ 0} in R with the common boundary of zero mea-
sure ∂Gj = {x : x = 0}, j = 1, 2. Of course,φ(x) is a piece-wise continuous function
since the limits limx∗

1→x+ ∂G1 = 1 and limx∗
2→x− ∂G2 = −1 are finite∀x∗

1 ∈ G1, x∗
2 ∈

G2, x ∈ ∂Gj, j = 1, 2.

Definition 9.1 (Solutions in the sense of Filippov [15]) Given the differential equa-
tion (9.1), let the smallest convex closed set Φ(x, t) be introduced for each point
(x, t) ∈ R

n × R such that Φ(x, t) contains all the limit points of φ(x∗, t) as x∗ → x,
t = constant, and (x∗, t) ∈ R

n+1\(∪N
j=1∂Gj). An absolutely continuous function x(·)

defined on the interval I is said to be a solution of (9.1) if it satisfies the differential
inclusion

ẋ ∈ Φ(x, t) (9.2)

almost everywhere on the interval I.

Solutions to differential equations will be understood as defined in Definition
9.1 throughout the chapter. For the example of φ(x, t) = sign(x) where the state
x ∈ R, the closed convex set Φ is obtained as Φ(x, t) = [−1, 1]. The solution to the
differential equation (9.1) exists for an arbitrary initial condition x(t0) on an interval
I = [t0, t1) and is non-unique in general [15, Theorem 10].

This work studies robustness of variable structure and non-smooth systems in
order for these controllers to be applied to unilaterally constrained systems. It is
important to define the class of perturbations that will be studied. Let the perturbed
version of (9.1) be given as follows:

ẋ = φ(x, t) + ψ(x, t) (9.3)

where,ψ(x, t) is a piece-wise continuous function with componentsψ1, ψ2, . . . , ψn.
When studying variable structure systems, the components ψi, i = 1, 2, . . . , n are
assumed to be locally uniformly bounded by upperbounds

ess sup |ψi(x, t)| ≤ Mi, i = 1, 2, . . . , n, (9.4)

for almost all (x, t) ∈ Bδ × R, where Bδ ⊂ R is a ball of radius δ > 0, and some pos-
itive constants Mi ≥ 0 fixed a priori. When studying a continuous non-smooth vector
field φ(x, t) along with piece-wise continuous perturbationsψ(x, t), the components
ψi, i = 1, 2, . . . , n are assumed to possess local uniform upperbounds
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ess sup |ψi(x, t)| ≤ Miᾱ(‖x‖)), i = 1, 2, . . . , n, (9.5)

where ᾱ(‖x(x, t)‖) is a continuous positive definite function such that

lim‖x‖→0
ᾱ(‖x‖)) → 0. (9.6)

Definition 9.2 (Differential inclusions for uncertain discontinuous systems [14])An
absolutely continuous function x(·), defined on an interval I, is said to be a solution of
the uncertain differential equation (9.3) with the rectangular uncertainty constraints
(9.4) (sectorial constraints (9.5)) iff it is a solution of (9.3) on the interval I in the
sense of Definition 9.1 for some piece-wise continuous function ψ subject to (9.4)
(respectively, (9.5)).

An uncertain system (9.3) can be represented as a differential inclusion of the
form

ẋ ∈ Φ(x, t) + Ψ (x, t), (9.7)

whereΦ(x, t) is the same as defined inDefinition 9.1,Ψ is the cartesian product of the
intervalsΨi = [−Mi, Mi] for the uncertainty constraints (9.4),Ψ is cartesian product
of the intervals Ψ = [−Miᾱ(x, t), Miᾱ(x, t)] for the uncertainty constraints (9.5)
with (x, t) ∈ ∂Gj, j = 1, 2, . . . , n representing the discontinuity (or limit) points of
φ(x∗, t) as x∗ → x and the set

Φ(x, t) + Ψ (x, t) = {φ + ψ : φ ∈ Φ(x, t), ψ ∈ Ψ (x, t)}. (9.8)

Continuing with an example (see [19]) of a vector field to highlight where the
above Definition 9.2 is applicable, a planar non-smooth system ẋ1 = x2,
ẋ2 = −|x1|α1 sign(x1) − |x2|α2 sign(x2) where α1, α2 are positive scalars belong-
ing to the interval (0, 1) has the right hand side φ1 = x2, φ2 = −|x1|α1 sign(x1) −
|x2|α2 sign(x2). Consider the uncertainty ψ1 = 0, ψ2(x, t) = M2|x2|α2 sign(x1)
sin(t), M2 > 0. It can be verified that ψ2 belongs to the class of uncertainties with
upperbound (9.4) when α2 = 0 and to the class of uncertainties with upperbound
(9.5) when α2 ∈ (0, 1). In the latter case, the inclusion (9.7) can be obtained by con-
sidering Ψ as the cartesian product (0,−M2|x2|α2) × (0, M2|x2|α2) on the set of all
discontinuity points {(x, t) : x1 = 0}.

The focus of this work from the viewpoint of stability analysis is on uniform finite
time stability with respect to initial time t0 as well as uncertainty ψ(x, t). It is impor-
tant to highlight what is meant by uniformity. This is a well studied area for systems
with Lipschitz dynamics and many references are available [20–22] with regard to
uniformity with respect to initial time. It can be seen from the above references,
however, that emphasis is seldom given to uniformity with respect to uncertainty.
Definitions [14, Definitons 2.3, 2.4, 2.5] of (uniform) stability, (uniform) asymptotic
stability and (uniform) finite time stability of the inclusion (9.2) for the discontin-
uous vector field can be seen as the counterparts of the definitions available in the
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references [20–23] for similar stability concepts in the case of continuous vector
field. Hence, definitions [14, Definitons 2.3, 2.4, 2.5] are not included here as they
only focus on uniformity of stability with respect to initial conditions. The follow-
ing definitions are inherited from [14, Definitons 2.6, 2.7, 2.8] and accommodate
uniformity of stability with respect to the uncertainty ψ . It should be noted that the
word ‘equiuniform’ appearing in [14] is utilised in the following definitions to refer
to uniformity of various stability concepts with respect to the initial conditions as
well as to the uncertainty ψ .

Suppose that x = 0 is an equilibrium point of the uncertain system (9.3), (9.4)
(or similarly (9.3), (9.5)), i.e., x = 0 is a solution of (9.3) for some function ψ0,
admissible in the sense of either (9.4) or (9.5), and let x(·, t0, x0) denote a solution
x(·) of (9.3) for some admissible function ψ under the initial conditions x(t0) = x0.

Definition 9.3 (Equiuniform stability [14]) The equilibrium point x = 0 of the
uncertain system (9.3), (9.4) (or similarly (9.3), (9.5)) is equiuniformly stable iff
for each t0 ∈ R, ε > 0 there exists δ = δ(ε), dependent on ε and independent of t0
andψ , such that each solution x(·, t0, x0) of (9.3), (9.4) (or similarly (9.3), (9.5)) with
the initial data x0 ∈ Bδ exists on the semi-infinite time interval [t0,∞) and satisfies
the inequality

‖(x(t, t0, x0))‖ ≤ ε ∀ t ∈ [t0,∞). (9.9)

Definition 9.4 (Equiuniform asymptotic stability [14]) The equilibrium point x = 0
of the uncertain system (9.3), (9.4) (or similarly (9.3), (9.5)) is said to be equiuni-
formly asymptotically stable if it is equiuniformly stable and the convergence

lim
t→∞ ‖(x(t, t0, x0))‖ → 0 (9.10)

holds for all the solutions x(·, t0, x0) of the uncertain system (9.3), (9.4) (or similarly
(9.3), (9.5)) initialized within some Bδ (uniformly in the initial data t0 and x0). If
this convergence remains in force for each δ > 0, the equilibrium point is said to be
globally equiuniformly asymptotically stable.

Definition 9.5 (Equiuniform finite time stability [14]) The equilibrium point x = 0
of the uncertain system (9.3), (9.4) (or similarly (9.3), (9.5)) is said to be globally
equiuniformly finite time stable if, in addition to the global equiuniform asymptotical
stability, the limiting relation

x(t, t0, x0) = 0 (9.11)

holds for all the solutions x(·, t0, x0) and for all t ≥ t0 + T(t0, x0), where the settling
time function

T(t0, x0) = sup
x(·,t0,x0)

inf{T ≥ 0 : x(t, t0, x0) = 0 for all t ≥ t0 + T} (9.12)
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is such that

T(Bδ) = sup
x0∈Bδ ,t0∈R

T(t0, x0) < ∞ for all δ > 0, (9.13)

where δ = δ(ε) is independent of t0 and ψ .

The infimum in (9.12) is to detect the first instant t = T such that x(t, t0, x0) =
0, ∀t ≥ t0 + T and the suppremum is for taking the worst case trajectory that takes
the longest time to arrive at the origin.

The chapter will also use the concept of geometric homogeneity. The following
definitions are inherited from [14, Definitions 2.9, 2.10].

Definition 9.6 (Homogeneity of differential inclusions and equations [14]) The dif-
ferential inclusion (9.2) (the differential equation (9.1), the uncertain systems (9.3),
(9.4) or the uncertain systems (9.3), (9.5)) is called locally homogeneous of degree
q ∈ R with respect to dilation (r1, r2, . . . , rn), where ri > 0, i = 1, 2, . . . , n, if there
exist a constant c0 > 0, called a lower estimate of the homogeneity parameter, and a
ball Bδ ⊂ R

n, called a homogeneity ball, such that any solution x(·) of (9.2) (respec-
tively, that of the differential equation (9.1), the uncertain systems (9.3), (9.4) or the
uncertain systems (9.3), (9.5)) evolving within the ball Bδ , generates a parameterised
set of solutions xc(·) with components

xc
i (t) = cri xi(c

qt) (9.14)

and any parameter c ≥ c0.

Definition 9.7 (Homogeneous piece-wise continuous functions [14]) A piece-wise
continuous function φ : R

n+1 → R
n is called locally homogeneous of degree q ∈ R

with respect to dilation (r1, r2, . . . , rn), where ri > 0, i = 1, 2, . . . , n, if there exists
a constant c0 > 0 and a ball Bδ ⊂ R

n such that

φi(c
r1x1, cr2x2, . . . , crn xn, c−qt) = cq+riφi(x1, x2, . . . , xn, t) (9.15)

for all c ≥ c0 and almost all (x, t) ∈ Bδ × R.

The global homogeneity concept for the inclusions (9.2) and the piece-wise contin-
uous functions φ can be formally introduced using Definitions 9.6 and 9.7 by taking
δ = ∞. It should be noted that geometric homogeneity defined in Definition 9.7 is a
stronger concept than that appearing in [24] and the references therein since the for-
mer additionally covers differential inclusions arising from discontinuous right hand
sides. Definition 9.7 is inspired from [14, 25]which present homogeneity approaches
for systems with discontinuous right hand sides.
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Definition 9.8 (Quasi-homogeneity principle [26, Theorem 4.2]) Let the following
conditions be satisfied:

1. a piece-wise continuous function φ is locally homogeneous of degree q ∈ R with
respect to dilation (r1, r2, . . . rn),

2. componentsψi, i = 1, 2, . . . , n of a piece-wise continuous functionψ are locally
uniformly bounded by constants Mi ≥ 0,

3. Mi = 0 whenever q + ri > 0.
4. the uncertain system (9.3), (9.4) is globally equiuniformly asymptotically stable

around the origin.

Then, the uncertain system (9.3), (9.4) is globally equiuniformly finite time stable
around the origin.

Several definitions relating to Lyapunov functions are also presented. The follow-
ing three definitions relating to the weak, strong and strict Lyapunov functions can
be found in various texts and papers [21], [22, Chap. 4], [14, 23, 27].

Definition 9.9 (Weak Lyapunov function and uniform stability [22, Theorem 4.8])
Consider the non-autonomous system (9.1) with φ(x, t) locally Lipschitz in x and
piece-wise continuous in t. Let x = 0 be an equilibrium point for (9.1) and D ⊂ R

n

be a domain containing x = 0. Let V : [0,∞) × D → R be a continuously differ-
entiable function such that

W1(x) ≤V (x, t) ≤ W2(x)

∂V

∂t
+∂V

∂x
φ(x, t) ≤ 0

(9.16)

∀ t ≥ 0 and ∀x ∈ D, where W1(x) and W2(x) are continuous positive definite func-
tions on D. Then, x = 0 is uniformly stable.

Extension of the Definition 9.9 to Lipschitz-continuous (or locally Lipschitz) non-
smooth function V (x, t) and to piece-wise continuous φ(x, t) can be found in [26,
Theorem 3.1, Lemmas 3.1, 3.2].

Definition 9.10 (Strong Lyapunov function and uniform asymptotic stability [22,
Theorem 4.9]) Consider the non-autonomous system (9.1) with φ(x, t) locally
Lipschitz in x and piece-wise continuous in t. Let x = 0 be an equilibrium point
for (9.1) and D ⊂ R

n be a domain containing x = 0. Let V : [0,∞) × D → R be a
continuously differentiable function such that

W1(x) ≤V (x, t) ≤ W2(x)

∂V

∂t
+∂V

∂x
φ(x, t) ≤ −W3(x)

(9.17)

∀ t ≥ 0 and ∀x ∈ D, where W1(x), W2(x) and W3(x) are continuous positive definite
functions on D. Then, x = 0 is uniformly asymptotically stable. If the conditions
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D = R
n, W1(0) = 0 and lim‖x‖→∞ W1(x) → ∞ hold true, then x = 0 is globally

uniformly asymptotically stable.

Definition 9.11 (Strict Lyapunov functions and uniform finite time stability [23,
Theorem 4.1]) Consider the non-autonomous system (9.1) with φ(x, t) continuous
in x and t. Let x = 0 be an equilibrium point for (9.1) and D ⊂ R

n be a domain
containing x = 0. LetV : [0,∞) × D → R be a continuously differentiable function
such that

W1(x) ≤V (x, t) ≤ W2(x)

∂V

∂t
+∂V

∂x
φ(x, t) ≤ −k(t)(V (x, t))α

(9.18)

∀ t ≥ 0 and ∀ x ∈ D, where W1(x) and W2(x) are continuous positive definite
functions on D, k : [0,∞] → R

+ such that k(t) > 0 ∀ t ≥ 0 and α ∈ (0, 1). Then,
x = 0 is uniformly finite time stable. If the conditions D = R

n, W1(0) = 0 and
lim‖x‖→∞ W1(x) → ∞, lim‖x‖→∞ W2(x) → ∞ hold true, then x = 0 is globally uni-
formly finite stable.

The reader is referred to [27]wherefinite time stability of autonomous systemswas
studied using strict Lyapunov functions. It can be seen from the definitions presented
thus far that finite time stability is only meaningful when asymptotic stability is
proven first. This chapter also uses the term [14] semi-global Lyapunov functions
frequently. The following definition of semi-global stabilisation can be found in [22,
Sect. 12.1]:

Definition 9.12 (Semi-global stabilisation [22, Sect. 12.1]) If feedback control does
not achieve global stabilisation, but can be designed such that any given compact set
Br = {x : ‖x‖ < r}, with 0 < r < ∞ chosen arbitrarily large, can be included in the
region of attraction, the resulting stabilisation is said to be semi-global stabilisation.

9.3 Problem Statement

Consider the following system:

ẋ1 = x2 (9.19)

ẋ2 = u(x1, x2) + ω(x1, x2, t) (9.20)

x1 ≥ 0 (9.21)

x2(t
+
k ) = −ē x2(t

−
k ) if x2(t

−
k ) < 0, x1(tk) = 0, (9.22)

where x1, x2 are the position and the velocity respectively, u is the control input,
ω(x1, x2, t) is a piece-wise continuous disturbance [14, Sect. 2], [15], tk is the time
instant of the kth jump where the velocity undergoes a reset or jump, ē represents
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the loss of energy and x2(t
+
k ) and x2(t

−
k ) represent right and left limits respectively

of x2 at the jump time tk . The equalities (9.19) and (9.20) represent the continuous
dynamics without jumps in the velocity. The inequality (9.21) represents the unilat-
eral constraint on the position x1 which evolves in a domain with a boundary [1].
It is assumed that the jump event occurs instantaneously within an infinitesimally
small time and hence mathematically can be represented by Newton’s restitution rule
[1, 28] given by (9.22) where it is assumed that ē ∈ (0, 1).

The piece-wise continuous disturbanceω(x1, x2, t) is assumed to admit a uniform
upper bound

ess sup
t≥0

|ω(x, t)| ≤ M|x2|α (9.23)

on its magnitude such that 0 < M < μ1 < μ2 − M. The finite time controller
[18, 29]

u(x1, x2) = −μ2|x1| α
2−α sign(x1) − μ1|x2|α sign(x2) (9.24)

is used with α ∈ [0, 1) and μ2 > μ1 > 0. The aim is to establish uniform finite-time
stability of the closed-loop system (9.19), (9.24). This work employs Zhuravlev–
Ivanov’s method of non-smooth transformation [11, 12], [1, Sect. 1.4.2] to transform
the impact system (9.19) into a jump-free system. Although this method has been
explained for a similar problem in [8], details are included here for completeness.
Let the non-smooth coordinate transformation be defined as follows:

x1 = |s|, x2 = R v sign(s),

R = 1 − k sign(s v), k = 1 − ē

1 + ē
. (9.25)

The variable structure transformed system

ṡ = R v

v̇ = R−1 sign(s)u(|s|, Rv sign(s)) (9.26)

+ R−1 sign(s)ω(|s|, Rv sign(s), t)

is then obtained by employing (9.25) and using the dynamics (9.19), (9.20). The
controller (9.24) can be represented in the transformed coordinates as follows:

u(|s|, R v sign(s)) = −μ1|Rv sign(s)|α sign(Rv sign(s)) (9.27)

−μ2

∣
∣|s|∣∣ α

2−α sign(|s|)

Substituting (9.27) into (9.26), the closed-loop system in the coordinate frame (s, v)
can be obtained as follows:
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ṡ = R v

v̇ = −μ1Rα−1|v|α sign(v) − μ2R−1|s| α
2−α sign(s) (9.28)

+ R−1 sign(s)ω(|s|, Rv sign(s), t)

Furthermore, the upper-bound (9.23) can be revised in the new coordinates as fol-
lows:

ess sup
t≥0

|ω(s, v, t)| ≤ M|Rv sign(s)|α = MRα|v|α (9.29)

Unlike the existing literature on hybrid systems [5], this work does not regularize
the Zeno motion temporally or dynamically. In the context of the bouncing ball
analogy, the temporal regularization as described in [5, Sect. 4] and subsequently
utilized in [30, Sect. 5.C] means that the impact takes a small, but not infinitesimally
small, time ε > 0 and the dynamic regularization means that the impact is elastic
but is more like that with a highly stiff spring. No such regularization is employed
here and ideal Zeno modes due to non-elastic impacts are allowed giving rise to
instantaneous jumps in zero time1. Furthermore, existing Lyapunov approaches on
the study of ‘uniformly small ordinary time’ [31] that lead to finite time stabilization
results and computation of finite settling time inherently differ in that the jumps in
a corresponding Lyapunov function [31, Theorem 3.3, Example 3.4] always need to
be analyzed at the reset time instant. More importantly, the decrease in successive
jumps also have to belong to classK∞ (see [31, Theorem 3.3]). This work does not
need such assumptions while proving robust finite time stability without analyzing
the jumps in the Lyapunov function due to the jump-free system produced by the
non-smooth transformation.

9.3.1 Equivalence of Jump-Free and Unilateral Systems

Consider the non-smooth change of coordinates (9.25). The original dynamical sys-
tem is given by (9.19)–(9.22), (9.24). The transformed system is given by (9.28). It
is of interest to ensure the equivalency of the systems.

Zhuravlev [11]first proposed the non-smooth transformation (9.25) to avoid jumps
in the solutions. The concept was later utilised in [12] to study periodic solutions and
stability of planar vibro-impact systems.All these theorems assumed differentiability
of the planar vector field f (x)where ẍ = f (x). However, differentiabilitywas required
for the proof of asymptotic stability and not by the definition of the non-smooth
transformation itself (see [12, Theorem 1]).

1Themeasure of time is in fact better represented by theDiracmeasure [1] and theDirac distribution.
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The main idea of the transformation (9.25) is to use the mirror of the original
trajectory x1(t) with the mirror placed on the constraint x1 = 0 [1, Chap. 1]. The
following analysis is included here from [1, Chap. 1] and from [12, Sect. 1] for
completeness. Consider the transformation x = |s| = s sign(s) for the position and
ẋ = R v sign(s) for the velocity. Let the dynamical equations of the planar system ẍ =
f (t, x, ṡ) + σẋ(tk)δtk be analysed in transformed coordinates, where σẋ(tk) represents
a jump in the velocity at time tk . The definition x = |s| = s sign(s) dictates that
ṡ = d

dt {s(t) sign(s(t))} + σx(tj)δtj , where tj specifies an instant when the sign of s(t)
undergoes a change, σ(·) represents a jump in the quantity, δ(·) denotes the Dirac delta
measure and {Ḟ} represents the derivative of any function F(t) calculated ignoring
the points of discontinuity and which is not defined at the points of discontinuity.
From the fact that σx(t

+
j ) = s(t+j ) sign(s(t+j )) − s(t−j ) sign(s(t−j )) and since s(t) is

continuous (due to continuity of x(t)), it follows that

ẋ = d

dt
{s(t) sign(s(t))} sign(s) � R v sign(s), (9.30)

where the definition of the new coordinate ẋ � R v sign(s) is used. Since, there is no
jump in x, σx = σs = 0. Furthermore, the equality d

dt {s sign(s)} = ṡ sign(s) holds
true ignoring the points of discontinuity (i.e. s = 0). Hence, (9.30) produces the first
equation in (9.25) by canceling sign(s) on both sides, so that ṡ = R v. As for the
velocity equation, it can be obtained that

ẍ = f (t, x, ẋ) + σẋ(tk)δtk = d

dt
{R v sign(s)} + σR v sign(s)(tj)δtj , (9.31)

where tj denotes an instant where ẋ = R v sign(s) may be discontinuous. Inspection
of (9.25) shows that this can occur when either s(t) or v(t) crosses zero. In the
case when v(tj) = 0, it follows that σẋ(tj) = σR v sign(s)(tj) = 0. The following can be
obtained from the last term of (9.31):

ẍ = R v̇ sign(s) (9.32)

In other words, the jump σẋ(tk) has to equal zero, since σR v sign(s)(tj) is equal to zero
due to v(j) = 0, for the equality (9.31) to hold true. Substituting ẍ = f from (9.31) into
(9.32) and simplifying, v̇ = R−1 sign(s) f is obtained as given in the second equation
in (9.25).However, if the trajectory intersects the v-axiswith v �= 0, then the changeof
sign is due to s and the jump can be computed asσẋ(tj) = 2 v(tj) sign(s(t

+
j )) = σẋ(tk),

where tk and tj coincide. The quantity 2 v(tj) sign(s(t
+
j )) is obtained as follows. The

jump occurs only when the variable s changes sign [12, Sect. 1].When s changes sign
from positive to negative with v < 0 on the s = 0 axis (i.e. from the fourth quadrant
of the (s, v) plane to the third quadrant) at time t = tj, the following can be obtained:
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v(t+j ) = lim
t→t+j

v(tj) = lim
t→t−j

v(tj) = v(t−j )

lim
t→t+j

sign(s(tj)) = − lim
t→t−j

sign(s(tj)) = −1

R(t+j ) = lim
t→t+j

(1 − k sign(s(t+j )) sign(v(t+j ))) = 1 − k

R(t−j ) = lim
t→t−j

(1 − k sign(s(t−j )) sign(v(t−j ))) = 1 + k

σR v sign(s)(tj) = R(t+j ) v(t+j ) sign(s(t+j )) − R(t−j ) v(t−j ) sign(s(t−j ))

⇒ σR v sign(s)(tj) = − 2 v(t+j ) = 2 v(t+j ) sign(s(t+j ))

(9.33)

The same analysis can be carried out when s changes sign from negative to positive
with v > 0 and σR v sign(s)(tj) = 2 v(t+j ) sign(s(t+j )) is obtained.

The coincidence of tk and tj above is due to the fact that there is no jump in s or x for
all times and the fact that the contact occurs on the constraint x = 0 when s changes
sign with non-zero v. In this case σẋ(tk) = σR v sign(s)(tj) = 2 v(tj) sign(s(t

+
j )) holds

true and the same second equation of (9.25) is arrived due to cancellation of the
equal jump terms on both sides of (9.31). Substituting ẍ from (9.31) into (9.32) and
simplifying again produces v̇ as given in the second equation in (9.25).

Hence, starting from the transformed system in (9.25), it follows that no impact
occurs if the (s, v) trajectory crosses the s-axis (i.e. {(s, v) : v = 0}). If it crosses the
v-axis, then this occurs when s = 0 (i.e. x = 0, the constraint is attained), and an
impact occurs with magnitude 2 v(tj) sign(s(t

+
j )).

Before beginning with the proof of finite time stability, a summary of the stabi-
lization characteristics is given. The following four facts are summarized:

1. The point (0, 0) = (x1, x2) is the equilibrium of the dynamical system (9.19)–
(9.22), (9.24). This is because ẋ1 = 0, ẋ2 = 0 is obtained when, for example,
ω(t) = 0 and (x1(0), x2(0)) = (0, 0). Similarly, the point (0, 0) = (s, v) is the
equilibrium of the dynamical system (9.28). This is because

ṡ = R v = 0, ẋ2 = R−1 sign(s) u(|s|, R v sign(s)) = 0

is obtained, for example, when ω(t) = 0 and (s(0), v(0)) = (0, 0). Hence, the
trivial solution (0, 0) is a unique solution and is the equilibrium point for both
dynamical systems.

2. The non-smooth transformation (9.25) is such that the coordinates (s, v) cannot
be retrieved from the (x1, x2) as it is a singular transformation. However, the point
(0, 0) is an exception in that it is uniquely transformed from (x1, x2) system to
the (s, v) representation and vice versa. This claim can be verified as follows: v =
0 ⇒ ẋ = R v sign(s) = 0. Also, the expression ẋ = 0 ⇒ v = (R sign(s))−1 ẋ =
0 holds true. Furthermore, expressions x = 0 ⇒ s = ±x = 0 and s = 0 ⇒ x =
|s| = 0 hold true.

3. The boundedness of (s, v) guarantees boundedness of (x1, x2). This can be
shown as follows. Within the compact set DR̃ = {(s, v) ∈ R

2 : V (s, v) ≤ R̃}, the
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following is obtained by utilizing the inequalities |s| ≤ R̃
μ2

, |v| ≤
√

2R̃:

|x1| = |s| ≤ R̃

μ2
, |x2| = |Rv sign(s)| = |√R2v2| ≤ R

√

2R̃ (9.34)

4. There exists, as shown in the following sections, a semi-global Lyapunov function
proving equiuniform finite time stability of (9.28), thereby proving equiuniform
finite time stability of (9.19)–(9.22), (9.24) due to points 1, 2 and 3.

9.3.2 Consideration of Existing Lyapunov Functions

This section analyzes a class of existing continuous finite time controllers with regard
to their potential to solve the problem statement presented in Sect. 9.3. It turns out,
as shown in the following, that underlying Lyapunov proofs do not hold. Recall that
the control law in the original coordinates is given in [17] as follows:

u(x1, x2) = − sign(x2)|x2|α
− sign(φα(x1, x2))|φα(x1, x2)| α

2−α (9.35)

where, φα(x1, x2) = x1 + 1
2−α

sign(x2)|x2|2−α . The closed-loop system is then given
by (9.19), (9.35). The following transformed closed-loop system can be obtained by
applying the non-smooth coordinate transformation (9.25):

ṡ = Rv

v̇ = R−1 sign(s) (u(|s|, Rv sign(s))) (9.36)

= − Rα−1 sign(v)|v|α − R−1 sign(s) sign(φα)|φα| α
2−α ,

where φα(s, v) = |s| + R2−α

2−α
sign(sv)|v|2−α . Let the Lyapunov function proposed

in [17] be defined in the transformed coordinates as V (s, v) = 2−α
3−α

|φα| 3−α
2−α + r2vφα +

r1
3−α

|v|3−α where r1 > 1, r2 < 1 are arbitrary scalars. The temporal derivative of
V (s, v) along the trajectories of the transformed closed-loop system (9.36) can be
obtained as follows:

V̇ (s, v) = −Rα−1r1v2 − R1−α|v|1−α|φα| 1+α
2−α

− R−1r2|φα| 2
2−α sign(s)

− Rα−1r2φα sign(v)|v|α (9.37)

− (R1−αr2 + R−1r1 sign(s)) sign(vφα)|v|2−α|φα| α
2−α

Although the homogeneity properties

V (k2−αs, kv) = k3−αV (s, v),V̇ (k2−αs, kv) = k2V̇ (s, v) (9.38)
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hold true for the transformed system, it is not mathematically correct to restrict the
analysis on the closed curve (s, v) : max

s,v �=(0,0)
(|φα| 1

2−α , |v|) = 1 encircling the origin

of the closed-loop system (9.36) as was done in [17]. This is because it is always
possible to have initial conditions either starting from or intersecting with the semi-
axis (s, v) : v = 0, s < 0 of the transformed system (9.36) thereby causing (9.37) to
take positive values due to an additional ‘sign(s)’ in the third term on the right hand
side of (9.37). This is clearly in contrast to the negative definiteness of the derivative
of the Lyapunov function obtained in [17] which enabled analysis to be performed
only on the closed curve encircling the origin when combined with the homogeneity
property (9.38).

Thus, motivated by the fact that the Lyapunov framework presented in [17] is
applicable neither to the original jump-system (9.19), (9.35) due to the violation of
the continuity requirements at the time of a jump nor to the transformed system (9.36)
due to the non-negative definiteness of the derivative of the Lyapunov function, a
proof of finite time stability of the closed-loop system (9.19), (9.24) is now presented.

9.4 Uniform Finite Time Stability

This section achieves the aim as stated in Sect. 9.3. The following Lemma is first
presented from [8, Lemma 1]:

Lemma 9.1 Assume ē ∈ (0, 1), then the following is true:

sign(sv) sign(R − R−1) = −1 (9.39)

It is of interest to note that the discontinuity and in turn Filippov’s inclusion [15]
in (9.28) is caused by the fact that R switches between two positive values on sets
{(s, v) : s = 0}, {(s, v) : v = 0} of Lebesgue measure zero. Let the two values of R
be defined as follows:

R =
⎧

⎨

⎩

R1 = 2
1+ē , if sign(sv) = −1;

R2 = 2ē
1+ē , if sign(sv) = 1.

(9.40)

Then, it is trivial to note that given ē ∈ (0, 1), the following is true from the compu-
tations in Lemma 9.1:

R1 > R2 > 0 , R−1
1 < R−1

2 , |R1 − R−1
1 | < |R2 − R−1

2 |

|R1 − R−1
1 | = 3 + ē

2
|k| , |R2 − R−1

2 | = 3ē + 1

2ē
|k| (9.41)

It is now possible to state the main results of this chapter.
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Theorem 9.1 Given M = 0, α ∈ [0, 1), the impact system (9.19), (9.20), (9.21),
(9.22), (9.24) and its transformed version (9.28) are globally finite time stable.

Proof Lyapunov stability analysis can be performed in the transformed coordinates
since both represent the same system. Let a Lyapunov function candidate be given
as follows:

V (s, v) = μ2
2 − α

2
|s| 2

2−α + 1

2
v2 (9.42)

Note that the function V (s, v) is a globally radially unbounded C 1 smooth positive
definite function. By computing the temporal derivative of this function along the
system trajectories of (9.28) with M = 0, it is obtained that,

V̇ ≤ μ2|v||s| α
2−α |R − R−1| sign(sv) sign(R − R−1)

−μ1Rα−1|v|α+1 (9.43)

From Lemma 9.1, (9.43) can be simplified as follows:

V̇ ≤ −μ2|v||s| α
2−α |R − R−1| − μ1Rα−1|v|α+1 (9.44)

It can be verified that Rα−1 > 0 for either sign of sign(s v) since ē ∈ (0, 1). Fur-
thermore, the trajectories of the closed-loop system (9.28) in the (s, v) plane never
generate a slidingmode on v = 0 since vv̇ ≮ 0. Since the equilibriumpoint s = v = 0
is the only trajectory of (9.28) on the invariance manifold v = 0 where V̇ (s, v) = 0
and since (9.44) holds true for almost all t, the differential inclusion (9.28) is glob-
ally equiuniformly asymptotically stable by applying the invariance principle [32].
Moreover, the system described in (9.28) is globally homogeneous of negative degree
q = −1 with respect to the dilation r = (

2−α
1−α

, 1
1−α

)

and is globally equiuniformly
finite time stable according to [14, Theorem 3.1]. The proof is complete by noting
that the proof of Theorem 9.1 for the case α = 0 coincides with that appearing in [8,
Theorem 1]. ��

The closed-loop system (9.28) is a globally homogeneous system if ω(x, t) =
0 ∀t ≥ 0. Consider next the case when M takes a nonzero value. The control law
(9.27) can reject any disturbanceωwith a uniformupper bound (9.29).Global asymp-
totic stability was established in [18]. However, to establish finite time stability, uni-
form asymptotic stability is required [14]. The next theorem achieves this objective
for the transformed system (9.28) (and equivalently for the jump system (9.19)–
(9.22), (9.24)).

Theorem 9.2 Given α ∈ {{0} ∪ ( 12 , 1)}, the closed-loop impact system (9.19)–
(9.22), (9.24) and its transformed version (9.28) are globally equiuniformly finite
time stable, regardless of whichever disturbance ω, satisfying condition (9.29) (or
equivalently (9.23)) with M < μ1 < μ2, affects the system.

Proof The proof is given in several steps. Consider the case α ∈ ( 12 , 1).
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1. Global Asymptotic Stability

Under the conditions of the theorem, the time derivative of the Lyapunov function
(9.42), computed along the trajectories of (9.28) is estimated as follows:

V̇ ≤ −μ2|v||s| α
2−α |R − R−1| − (μ1 − M)Rα−1|v|α+1 (9.45)

The first term on the right hand side of (9.45) follows fromLemma9.1. SinceM < μ1

by a condition of the Theorem, the global asymptotic stability of (9.28) is then estab-
lished by applying the invariance principle [32] as discussed in Theorem 9.1.

2. Semiglobal Strong Lyapunov Functions.

The goal of this step is to show the existence of a parameterized family of local
Lyapunov functions VR̃(s, v), with an a-priori given R̃ > 0, such that each VR̃(s, v)
is well-posed on the corresponding compact set

DR̃ = {(s, v) ∈ R
2 : V (s, v) ≤ R̃}. (9.46)

In other words, VR̃(s, v) is to be positive definite on DR̃ and its derivative, computed
along the trajectories of the uncertain system (9.28) with initial conditions within
DR̃, is to be negative definite in the sense that,

V̇R̃(s, v) ≤ −WR̃(s, v) (9.47)

for all (s, v) ∈ DR̃ and for some WR̃(s, v), positive definite on DR̃. A parameter-
ized family of Lyapunov functions VR̃(s, v), R̃ > 0 with the properties defined above
are constructed by combining the Lyapunov function V of (9.42), where the time
derivative along the system motion is only negative semi-definite, with the indefinite
function

U (s, v) = U1(s, v) + U2(s, v) = s v|v|α + κ1αs3v, (9.48)

as follows:

VR̃(s, v) =V (s, v) + κR̃U (s, v), (9.49)

where the weight parameters κR̃, κ1 are chosen small enough, namely,

κR̃ < min

⎧

⎪⎪⎨

⎪⎪⎩

1
(√

2R̃

)2α

+κ1α

,
(2−α)μ2

ρ(1−α) (1+κ1αρ2(2−α))
,

μ2|R1−R−1
1 |

Θ
,

μ1−M

R1

√
2R̃

⎫

⎪⎪⎬

⎪⎪⎭

κ1 <
μ2R−1

1 (1 + α)

3α(μ1 + M)Rα−1
1 ρ

4−3α
2

√

2R̃
(9.50)
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ρ = 2R̃

(2 − α)μ2

Θ = (μ1 + M)(1 + α)Rα−1
1 (2R̃)

2α−1
2 ρ1−α+

3κ1αR1ρ
4−3α
2

√

2R̃

(9.51)

and R1 is defined in (9.40). Noting that, due to (9.45), all possible solutions of the
uncertain system (9.28), initialized at t0 ∈ R within the compact set (9.46), are a-
priori estimated by

sup
t∈[t0,∞)

V (s, v) ≤ R̃, (9.52)

the following inequalities hold true:

|s| 2
2−α ≤ ρ, |v| ≤

√

2R̃. (9.53)

The Lyapunov function (9.49) is positive definite on the compact set (9.46), for
all (s, v) ∈ DR̃ and κR̃ > 0 satisfying (9.50) as shown below:

VR̃(s, v) = μ2
2 − α

2
|s| 2

2−α + 1

2
v2 + κR̃s v|v|α + κR̃κ1αs3v

≥ μ2
2 − α

2
|s| 2

2−α + 1

2
v2 − 1

2
κR̃s2 − 1

2
κR̃ |v|2αv2

−1

2
κR̃κ1αs6 − 1

2
κR̃κ1αv2 ≥ LR̃V (s, v) (9.54)

where,

LR̃ < min

{
μ2

2−α
2 − 1

2κR̃ ρ(1−α)
(

1 + κ1αρ2(2−α)
)

,

1 − κR̃(
√

2R̃
2α + κ1α)

}

,

the trivial inequality 2ab > −(a2 + b2),∀a, b ∈ R, the equalities

s6 = |s| 2(1−α)

2−α |s| 2
2−α |s|4, |v|2(α+1) = v2|v|2α (9.55)

and the bound (9.53) are utilized. It should be noted that LR̃ > 0 due to (9.50) and
hence positive definiteness of VR̃ is ensured from (9.54) on DR̃. Similarly, it can be
shown that the following inequality holds:

VR̃(s, v) ≤ MR̃V (s, v) (9.56)
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where,

MR̃ > max

{
μ2

2−α
2 + 1

2κR̃ ρ(1−α)
(

1 + κ1αρ2(2−α)
)

,

1 + κR̃(
√

2R̃
2α + κ1α)

}

. (9.57)

The time derivative of the indefinite function U (s, v) along the trajectories of the
uncertain system (9.28) is obtained as follows:

U̇1(s, v) ≤ R|v|α+2 + (μ1 + M)(1 + α)Rα−1|s||v|2α
−μ2(1 + α)R−1|s| 2

2−α |v|α (9.58)

Similarly,

U̇2(s, v) ≤ 3κ1αRs2v2 + κ1α(μ1 + M)Rα−1|s|3|v|α
− κ1αR−1μ2|s| 6−2α

2−α

(9.59)

It should be noted that the inequality

|s| = |s| 2(1−α)

2−α |s| α
2−α ≤ ρ1−α|s| α

2−α ,

|v|2α = |v||v|2α−1 ≤ |v|
√

2R̃
2α−1 (9.60)

holds true for the case α ∈ ( 12 , 1) of the Theorem. The inequalities of (9.58) and
(9.59) are re-written by utilizing (9.53) and (9.60) as follows:

U̇1(s, v) ≤ (μ1 + M)(1 + α)Rα−1|s| α
2−α |v|

√

2R̃
2α−1

ρ1−α

+ R|v|α+1
√

2R̃ − μ2(1 + α)R−1|s| 2
2−α |v|α (9.61)

U̇2(s, v) ≤ 3κ1αR|s| α
2−α |v| ρ 4−3α

2

√

2R̃ − κ1αμ2R−1|s| 6−2α
2−α

+ κ1α(μ1 + M)Rα−1|s|3|v|α (9.62)

where the corresponding upper bound on |v| and |s| from (9.53) are utilized. The
parameter R in (9.45) and (9.61) is a state function and keeps switching between the
two values as shown in Lemma 9.1. This corresponds to the fact that the rate of decay
of the Lyapunov function (9.49) switches depending on R. Hence, by combining
(9.45) and (9.61) and by considering the slowest decay by utilizing (9.41), the time
derivative of (9.49) can be obtained as follows:

V̇R̃ ≤ −β1|v||s| α
2−α − β2|v|α+1 − κR̃β3|v|α|s| 2

2−α

− κR̃κ1αμ2R−1|s| 6−2α
2−α ,

(9.63)
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where β1 = μ2|R1 − R−1
1 | − κR̃Θ , β2 = (μ1 − M)Rα−1

1 − κR̃R1

√

2R̃, β3 = μ2R−1
1

(1 + α) − κ1α(μ1 + M)Rα−1
1 ρ

4−3α
2

√

2R̃, (9.53) and the equality |s|3 = |s| 2
2−α |s| 4−3α

2−α

are utilised. It should be noted that the expressions β1 > 0, β2 > 0, β3 > 0 hold true
due to (9.50). Ignoring the negative semi-definite terms with β1, β3, (9.63) can be
rewritten as follows:

V̇R̃ ≤ −β2|v|α+1 − κR̃κ1αμ2R−1|s| 6−2α
2−α (9.64)

Furthermore, the following inequalities hold true within the compact set (9.46):

v2 = |v|2 = |v|α+1|v|1−α ≤ |v|α+1
(√

2R̃
)1−α

⇒ −|v|α+1 ≤ − v2
(√

2R̃
)1−α

(9.65)

Hence, (9.64) can be simplified as follows:

V̇R̃ ≤ −cR̃

[

|s| 6−2α
2−α + v2

]

(9.66)

where,

cR̃ = min

⎧

⎪⎨

⎪⎩

β2
(√

2R̃
)1−α

, κR̃κ1αμ2R−1
1

⎫

⎪⎬

⎪⎭

> 0. (9.67)

Case 1: |s| ≥ 1: The following inequality holds true for |s| ≥ 1:

6 − 2α

2 − α
≥ 2

2 − α
⇔ |s| 6−2α

2−α ≥ |s| 2
2−α (9.68)

Also, the following can be obtained from (9.56):

MR̃

2
max{1, μ2(2 − α)}(|s| 2

2−α + v2) ≥ VR̃(s, v) (9.69)

Hence, the following inequality is then obtained for |s| ≥ 1 by combining (9.66),
(9.68) and (9.69):

V̇R̃ ≤ −κ̄1VR̃ (9.70)

where, κ̄1 = 2cR̃
MR̃ max{1,μ2(2−α)} .
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Case 2: |s| < 1: Noting that the following inequalities hold true for |s| < 1:

|s| 6−2α
2−α > |s| 2γ

2−α ⇔ 6 − 2α

2 − α
<

2γ

2 − α
⇔ γ > 3 − α, (9.71)

for some γ > 3 − α. As 3 − α < 5
2 always holds true due to α ∈ ( 12 , 1), γ ≥ 5

2 is
a valid choice. In the following, γ = 3 is chosen. It can be seen that the following
equality holds:

(

|s| 2
2−α + v2

)3 = |s| 6
2−α + 3|s| 4

2−α v2 + 3|s| 2
2−α v4 + v6

≤ max{ρα, K1}
(

|s| 6−2α
2−α + v2

) (9.72)

where the bounds (9.53) have been utilised resulting in the definition

K1 = max
{

3 ρ2, 3 ρ(2R̃), (2R̃)2
}

> 0.

Note that the following can be obtained from (9.56):

(
MR̃

2
max{1, μ2(2 − α)}(|s| 2

2−α + v2)

)3

≥ (

VR̃(s, v)
)3 (9.73)

Then, combining (9.66), (9.72) and (9.73):

V̇R̃(s, v) ≤ −cR̃

(

|s| 6−2α
2−α + v2

)

≤ −κ̄
(

VR̃

)3
(9.74)

where,

κ̄ = cR̃
(

MR̃
2 max{1, μ2(2 − α)}

)3
max{ρα, K1}

> 0.
(9.75)

Hence, the desired uniform negative definiteness (9.47) is obtained by combining

(9.70) and (9.74) as WR̃(s, v) = min
{

κ̄1VR̃, κ̄
(

VR̃

)3
}

.

3. Global Equiuniform Asymptotic Stability

Since the inequality (9.74) holds on the solutions of the uncertain system (9.28),
initialized within the compact set (9.46), the decay of the function VR̃(s, v) can be
found by considering the majorant solution ν(t) of VR̃ as follows:

ν̇(t) =
{−κ̄1ν, |s| ≥ 1;

−κ̄2ν
γ , |s| < 1.

(9.76)
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where, γ > 3 − α is introduced for generality. A more conservative decay than that
in (9.76) can be computed. There are two possible sub-cases, namely, ν(t) ≥ 1 and
ν(t) < 1 for each of the cases |s| ≥ 1 and |s| < 1. The following expressions hold
true for a positive definite function ν(t) and a scalar γ > 1:

ν(t)γ ≥ ν(t) ⇒ −ν(t)γ ≤ −ν(t) if ν(t) ≥ 1;
ν(t)γ ≤ ν(t) ⇒ −ν(t) ≤ −ν(t)γ if ν(t) < 1.

(9.77)

Hence, the decay (9.76) is modified by utilising (9.77) independent of the magnitude
of |s| and dependent on ν(t) as follows:

ν̇(t) =
{−κ̄ν, if ν(t) ≥ 1;

−κ̄νγ , if ν(t) < 1.
(9.78)

where κ̄ = min{κ̄1, κ̄2} > 0. The solution for the case ν(t) < 1 can be integrated as
follows:

ν(t)∫

ν0

dν(t)

νγ
= −κ̄

t∫

t0

dt (9.79)

where ν0 = ν(t0). The general solution of ν(t) of (9.78) can then be obtained by
utilising (9.78) and by combining the solutions of both (9.70) and (9.79):

ν(t) =
⎧

⎨

⎩

ν(t0) e−κ̄(t−t0), if ν(t) ≥ 1;
ν(t1)

(
1

κ̄(t−t1)(γ−1)νγ−1
0 +1

) 1
γ−1

, if ν(t) < 1.
(9.80)

It can be easily seen that the solution ν(t) → 0 as t → ∞ and that the decay rate
depends on the gain parametersμ1, μ2, boundM on the disturbanceω and the system
property R1. On the compact set (9.46), the following inequality holds (see (9.54),
(9.56)):

LR̃V (s, v) ≤ VR̃(s, v) ≤ MR̃V (s, v) (9.81)

for all (s, v) ∈ DR̃ and positive constants LR̃, MR̃. The above inequalities (9.80) and
(9.81) ensure that the globally radially unbounded function V (x1, x2) decays asymp-
totically

V (s(t), v(t)) ≤
⎧

⎪⎨

⎪⎩

L−1
R̃

MR̃R̃e−κ̄(t−t0), if VR̃ ≥ 1;

L−1
R̃

MR̃R̃
(

1
κ̄(t−t1)(γ−1)νγ−1

0 +1

) 1
γ−1

, if VR̃ < 1.
(9.82)
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on the solutions of (9.28) uniformly in ω and the initial data, located within an
arbitrarily large set (9.46). This proves that the uncertain system (9.28) is globally
equiuniformly asymptotically stable around the origin (s, v) = (0, 0).

4. Global Equiuniform Finite Time Stability.

Due to (9.29), the piece-wise continuous uncertainty Rα−1
1 ω(t) sign(s) on the right

hand side of the system (9.28) is locally uniformly bounded by Rα−1
1 M|v|α whereas

the remaining part of the feedback is globally homogeneous with homogene-
ity degree q = −1 with respect to dilation r = ( 2−α

1−α
, 1
1−α

). It remains to verify,
however, whether the existing quasi-homogeneity result [14, Theorem 3.2] can
be extended to the continuous case in question. Let the piece-wise continuous
function Rα−1

1 ω(s, v, t) sign(s) = Rα−1
1 ωc(s, v, t) sign(s) be defined for an arbitrary

c ≥ max{1, c0}, where c0 is lower homogeneity parameter, as follows:

ωc(s, v, t) = cq+r2ω(c−r1s, c−r2v, cqt) (9.83)

where the right hand side represents a parameterised set of uncertainties. Then the
following holds true:

|ωc(s, v, t)| ≤ cq+r2−αr2MRα|v|α (9.84)

It follows that all parameterised uncertainties represented by the right hand side of
(9.83) are admissible in the sense of (9.29) if the inequality cq+r2−αr2 ≤ 1 holds
true. From the definitions r2 = 1

1−α
, q = −1, it is obtained that q + r2 − αr2 =

0 ⇒ cq+r2−αr2 ≤ 1. Appealing to [14, Definitions 2.9, 2.10], the solutions sc(t) =
cr1s(cqt), vc(t) = cr2v(cqt) are solutions of the system (9.28) with the piece-wise
continuous function ω(s, v, t) = ωc(s, v, t). It follows that any solution of the differ-
ential equation (9.28) evolving within a homogeneity ball Bδ , generates a parame-
terised set of solutions sc(t), vc(t) with the parameter c large enough. Hence, (9.28)
is locally homogeneous of degree q = −1 with the dilation (r1, r2) = ( 2−α

1−α
, 1
1−α

).
Thus, the globally equiuniformly asymptotically stable system (9.28) and in turn
the original impact system (9.19), (9.24) are globally equiuniformly finite time
stable according to [14, Theorem 3.1]. The proof is completed by noting that
the proof of Theorem 9.2 for the case α = 0 coincides with that appearing in
[8, Theorem 2]. ��

9.5 Conclusion

It can be seen from the results presented that setting α = 0 is admissible by the main
claims of this chapter. The resulting analysis produces a discontinuous controller
and a non-smooth Lyapunov function given by (9.24) and (9.42) respectively. The
Lyapunov analysis presented here then coincides with recent results in [8] as can be
seen from (9.48) which produces U (s, v) = sv as given in [8]. Hence, this work is
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a generalization of variable structure systems parameterised by α both in the sense
of encompassing continuous and discontinuous right hand sides as well as in the
sense of unifying the Lyapunov analysis when resets are present in the dynamics.
A possible extension of the approach can be studied for the more general case of
dynamical systems where the non-smooth transformation is applied to one or more
generalized position variables [1, Chapter 7] for co-dimension one constraints. A
related future direction is to establish homogeneity results and their connections to
finite time stability for impact systems.
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Chapter 10
Robustification of Cooperative Consensus
Algorithms in Perturbed Multi-agents
Systems

Alessandro Pilloni, Alessandro Pisano and Elio Usai

10.1 Introduction

Multi-Agent Systems (MAS) consists of a set of dynamical systems interconnected
by a communication network. One of the most challenging and studied topics in this
area consists in the coordination of the whole system in a cooperative, distributed
way. This problem is commonly referred to as consensus problem, i.e., the problem
of understanding how to force the states of the agents operating over a network to
converge to (or “agree upon”) a common decision (or “value”), while meeting the
communication constraints.

When the objective is to distributedly achieve the agreement on some averaged
quantity related to the local initialization of the network (such as the positions of a
platoon of mobile systems, the sensed temperatures or humidity values on a wide
area, or in general any set of local quantities taken from the field where the agents
are deployed) this problem is commonly referred to as average consensus.

The consensus on an averaged information is a problem that finds applications
in different fields, e.g., distributed computing [1, 2] and optimization [3–5], motion
coordination [6, 7], sensor-fusion [8] and many more.

After the seminal work on decentralized algorithms solving the average consensus
problem [9], more sophisticated protocols able to work under different network
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topologies, and featuring different convergence properties, have been also proposed.
Among them, in [10, 11] the so-called ratio-consensus was proposed to achieve
average consensus in directed graphs. Then, nonlinear protocols able to fulfill the
task in finite-time under undirected [12, 13] and time-varying network topologies
[14] have been also presented in more recent times.

All these protocols suffer, however, from two significant problems. Firstly, the
potential existence of a single “outlier agent”, i.e., an agent whose initial state holds
an abnormal value and that can arbitrarily affects the whole network behavior.

This issue has been firstly investigated in [15–17]. There, the main idea was to
identify themisbehaving agents in a decentralizedway and then, recover a correct net-
work state after the outlier agent was removed. In spite of these remarkable attempts
to design clever reconfigurable interaction rules, the average value remain, from a
statistical point of view, highly sensitive against the presence of outlier agents [18].

More recently, the development of algorithms providing the distributed compu-
tation of different, more robust, statistical measures, such as the median value, has
become an interesting research issue (see [19, 20] and the references therein).

The second problem to be taken into account is that, whenever the agents consist of
physical systems, e.g. mobile robots, unmodeled dynamics or external perturbations
may affect the local agents dynamics. It follows that the presence of these pertur-
bations shifts the steady-equilibrium of the network with respect to the expected
“nominal” one. To deal with this problem, robust sliding-mode concepts have been
involved in the designing of communication protocols for consensus purposes. In
particular, the problem of steering the system’s states to a common steady-behavior
in spite of the heterogeneous, unknown perturbations has been addressed, in [21–23]
for network of first-order agents, and in [24–26] for network of second order agents,
to cite a few. Although all those algorithms preserve the network synchronization
in spite of disturbances, due to the exogenous nature of the disturbance signals,
the steady equilibrium of the network cannot be predicted a-priori because of these
perturbations [27]. In general, in the perturbed scenario the network equilibrium
becomes a time-varying unpredictable trajectory.

In the current literature, the achievement of consensus on a pre-specified function
(or value) of the initial conditions of the network, such as the average or the median
value of the agents’ initial conditions, in spite of heterogenous perturbations is studied
in [28, 29].

Thus motivated, in this chapter we discuss two schemes, that allow to establish,
respectively, the average-consensus, and, the median-consensus, with the agents
dynamics being governed by perturbed integrators under undirected communica-
tions. Both these schemes are based on the Integral Sliding-Mode Control (ISMC)
design paradigm. In contrast to the conventional sliding mode control (SMC)
schemes, the constrained sliding motion under ISMC has the same dimension of
the original state space. Thus, no order reduction is achieved throughout the sliding
motion. However, since the parameters of the sliding surface can be chosen arbitrar-
ily, e.g., such that the system trajectories will slide on the surface from the initial
time instant on, the reaching phase is eliminated [30]. Some interesting applica-
tions of ISMC solution can be found in [31–33]. More recently, the ISMC is also
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employed in the contest of MAS in [34], to achieve the network synchronization in a
leader-follower scenario. However, the distributed tracking problem is a completely
different task with respect to make consensus on same a-priory unknown function
of the system states. In fact, the leader profile represents the reference steady profile
for the whole MAS and this value is known at least from some agent operating over
the network. In contrast, in the average (or median) consensus problem, the network
itself cooperatively estimates such an aggregated information, and this information
will become the global equilibrium for the networked system.

Summarizing, in this chapter we present from a unified perspective the two
approaches in [28, 29], thereby allowing the reader to more clearly understand the
basic principles of the underlying common ideas and permitting their generalization
to more involved scenarios and “robust consensus” problems.

The Chapter is organized as follows: the notation used throughout, along with
some concepts from the Graph Theory are outlined in Sect. 10.2. The problem for-
mulation and the proposed algorithms are presented in Sect. 10.3. Simulation results,
supporting the proposed design, are given in Sect. 10.4. Finally, conclusions and per-
spectives for future investigations are collected in the final Sect. 10.5.

10.2 Notations and Mathematical Preliminaries

10.2.1 Mathematical Notation

Hereinafter the mathematical notation used throughout the paper is listed.We denote
by R the set of real numbers. A vector x = [xi ] ∈ R

n is viewed as a column vec-
tor, and xi (i = 1, 2, . . . , n) represents the i th component of x. The transpose of
matrix A ∈ R

n×m and of a vector x ∈ R
n are denoted as A′ and x′, respectively.

The spectrum of eigenvalues of a square matrix B ∈ R
n×n is denoted by eig{B}.

The scalar product of two vectors with compatible dimension, respectively, x, and,
y ∈ R

n , is denoted by x′ y. ‖x‖p denotes the p-norm of the vector x. We write ‖x‖∞
to denote the max norm, ‖x‖∞ = max1≤i≤n |xi |. The all-one and all-zero vectors are
denoted as 1n = [1, . . . , 1]′ ∈ R

n and 0n = [0, . . . , 0]′ ∈ R
n . In ∈ R

n×n stands for
the identity matrix. A block-diagonal matrix is denoted by diag(D1, . . . , Dn)where
D1,…,Dn are square matrices with arbitrary dimensions. Let S = {s1, . . . , sp} be
a set of p arbitrary elements, card(S) = p denotes its cardinality. ⊗ denotes the
Matrix Kronecker Product.

10.2.2 Graph Theory

Here, a short overview of the main concepts and essential properties related with the
Graph Theory, which are employed and referred throughout the paper, is presented.
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For further details the reader is referred to [35]. Aweighted directed graph (or simply
a digraph) G(V,E,A) consists of a vertex set V = {1, . . . , n}, and an edge set E ⊆
{V × V} having cardinalitym = card(E), whereasA ∈ R

n×n
≥0 denotes its adjacency

matrix, with ai j = 1 iff (vi , v j ) ∈ E . The set of neighbors of the node i is denoted
by Ni = { j ∈ V : (vi , v j ) ∈ E}. A digraph is undirected (or simply a graph), if
(v, u) ∈ E whenever (u, v) ∈ E . A path is a sequence of vertices connected by edges.
A digraph is strongly connected (resp., a graph is connected) if there is a path between
any pair of vertices. The topology of graph G is encoded by the Laplacian Matrix
L = [�i j ] ∈ R

n×n , whose entries are defined as follows

�i j �

⎧
⎪⎨

⎪⎩

∑n
j=1, j 
=i ai j , if i = j,

−ai j , if (i, j) ∈ E and i 
= j,

0, otherwise.

(10.1)

By construction, L is a positive semi-definite matrix and satisfies L1n = 0n .
If G is a strongly connected (resp. connected) digraph (resp. graph), then 0 is a
simple eigenvalue ofL. IfL = L′ we can conclude that G is undirected. Let G be a
graphwith unitary weights, i.e. ai, j ∈ {0, 1}, the incidence matrix D = [di j ] ∈ R

n×m

associated with G is a rectangular matrix whose entries satisfies

di j �

⎧
⎪⎨

⎪⎩

1/
√
2, if arc j = (i, k) ∈ E

−1/
√
2, if arc j = (k, i) ∈ E

0, otherwise.

(10.2)

The incidence matrix D of an undirected graph G with unitary weight is strictly
related with the Laplacian Matrix L. In particular, the next relations result to be
satisfied by construction

L = DD′ (10.3)

D′1n = 0m (10.4)

10.3 Problem Formulation and Main Results

10.3.1 Problem Formulation

Consider a network consisting of n agents communicating to each other over an
undirected communication network whose topological constraints are encoded by a
connected graphG. Let each agent be governed by the following first-order perturbed
dynamics

ẋi (t) = wi (t) + ui (t), i ∈ V, (10.5)
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where xi ∈ R and ui ∈ R are respectively the state and the control input of the i th
agent, whereas wi ∈ R is an unknown time-varying perturbation. Without loss of
generality, agents are labeled in ascending order according to their initial conditions,
i.e., x1(0) ≤ x2(0) ≤ · · · ≤ xn(0). The objective is to present two ISMC-based local
interaction protocols such that, in spite of the exogenous time-varying perturbations
and in accordance with the topological constraints, all agents states will eventually
agree upon a common steady-state value denoted by x∗ ∈ R, i.e.,

lim
t→∞ xi (t) = lim

t→∞ x j (t) = x∗ ∀ i, j ∈ V, t ∈ R

where x∗ ∈ R corresponds, for the first scenario under analysis, to the average value
of the agent’s initial conditions, i.e.,

x̄ ≡ 1

n
·

n∑

i=1

xi (0) (10.6)

whereas, for the second use case, it corresponds to the median value x̃ of the agents’
initial conditions, i.e.,

x̃ ≡
{
if n is even x̃ ∈ [

xk(0), xk+1(0)
]
with k = n

2 ,

if n is odd x̃ = xk(0) with k = n+1
2 .

(10.7)

In the following two subsections the two proposed algorithms will be presented
and their convergence properties evaluated by employing Lyapunov tools. From now
on, the next assumption are assumed to be in force.

Assumption 10.1 The network topology is described by a connected undirected
graph G and the local perturbations wi (t) are supposed to fulfill the following
inequality

‖wi (t)‖∞ ≤ Πi ≤ Π, ∀ i ∈ V, ∀ t ≥ 0. (10.8)

where

Π = max
i∈V

{Πi } < ∞ (10.9)

is an a-priori known constant.

10.3.2 Robust ISMC-Based Average-Consensus Protocol

In this subsection we present a communication protocol able to estimate the averaged
value of the agent’s initial conditions given by (10.6), in spite of the presence of
unknown, bounded perturbations affecting the local agents’ dynamics. The proposed
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coordination algorithm meets the communication constraints given by G, and it is
designed as follows

ui (t) = −α ·
∑

j∈N i

(xi (t) − x j (t)) − k · SIGN(xi (t) + zi (t))

żi (t) = α ·
∑

j∈N i

(xi (t) − x j (t)), zi (0) = −xi (0) (10.10)

where the SIGN(·) operator denotes the discontinuous and multi-valued function

SIGN (S) �

⎧
⎪⎨

⎪⎩

1 if S > 0
[−1, 1

]
if S = 0

−1 if S < 0
S ∈ R (10.11)

Remark 10.1 Due to the discontinuous local interaction rule (10.10) (resp. (10.31)),
and the possibly discontinuous nature of the perturbations wi (t) in (10.5) (which
are supposed to be only uniformly bounded, according to Assumption 10.1), the
resulting closed loop network dynamics (10.5), (10.10) (resp. (10.5), (10.31)) will
be discontinuous aswell. Thus, the resulting solution notion needs to be discussed and
clarified. Following [36], we will understand these solutions in the so-called Filippov
sense, i.e., as the solution of an appropriate differential inclusion the existence of
which is guaranteed (owing on mild properties of the original discontinuous system
which are fulfilled in the present scenario) and for which noticeable properties, such
as absolute continuity, are in force. The reader is referred to [37] for a comprehensive
account of the notions of solution for discontinuous dynamical systems.

We are now in position to state the first main result of this study.

Theorem 10.1 Consider the collective dynamics given by (10.5) and let Assump-
tion 10.1 be satisfied. If the tuning parameters of the local interaction rule (10.10)
satisfy the next relations

α > 0 , k > Π (10.12)

then the multi-agent system (10.5), (10.10) cooperatively estimates the average value
of the agents initial conditions. According to the next relation

lim
t→∞ x(t) = 1n ⊗ x̄ ∀ i ∈ V (10.13)

where x(t) = [x1, x2, . . . , xn]′ ∈ R
n denotes the vector of the agent’s states and x̄ is

the average value (10.6) of the agent’s initial conditions.

Proof The proof is split into two consecutive steps. First, it will be demonstrated that,
thanks to the discontinuous part of proposed protocol (10.10), the perturbed MAS
(10.5), (10.10) features after a finite transient time a sliding motion while rejecting
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the perturbations wi (t). Then, by exploiting the concept of equivalent control [38], it
will be shown that, during the sliding motion, the agents trajectories xi (t), ∀ i ∈ V ,
will tend to the desired consensus value x̄ in (10.6).

Let us substitute (10.10) into (10.5). Then, a compact representation of the col-
lective dynamics of the networked system can be provided, as follows

ẋ(t) = w(t) − α · L x(t) − k · SIGN(x(t) + z(t))

ż(t) = α · L x(t), z(0) = −x(0), (10.14)

where x(t) = [x1, x2, . . . , xn]′, z(t) = [z1, z2, . . . , zn]′, and, w(t) = [w1, w2, . . . ,

wn]′. The operator SIGN(·) is now understood component-wise, i.e.,

SIGN(x) = [
SIGN(x1), · · · ,SIGN(xn)

]′
. (10.15)

Let σ (t) = [σ1, σ2, . . . , σn]′ be a vector of switching manifolds designed as
follows

σ (t) = x(t) + z(t). (10.16)

Now,we can rewrite the collective dynamics (10.14) in the new (x, σ ) coordinates
as next

ẋ(t) = w(t) − α · L x(t) − k · SIGN(σ (t)) (10.17)

σ̇ (t) = w(t) − k · SIGN(σ (t)), σ (0) = 0n. (10.18)

Consider the candidate Lyapunov function

V (t) = 1

2
‖σ (t)‖22 (10.19)

By evaluating V̇ (t) along the trajectories of (10.18), and by invoking the Hölder’s
Inequality [39], it yields the following chain of inequalities

V̇ (t) = σ (t)′σ̇ (t)

= σ (t)′w(t) − k · ∑n
i=1 σi (t)SIGN(σi (t))

≤ ∣
∣σ (t)′w(t)

∣
∣ − k · ‖σ (t)‖1

≤ −(k − ‖w(t)‖∞) · ‖σ (t)‖1
≤ −(k − Π) · ‖σ (t)‖1 ≺ 0 ∀ k > Π.

(10.20)

Note that, when σi (t) 
= 0 for all i ∈ V , the time derivative of (10.19) exists in
the conventional sense. On the contrary, whenever any entry of σ (t) is zero, we need
to consider the generalized time derivative of V (t) which is set-valued according
to the right-hand side of (10.20) and to the definition (10.11) of the multi-valued
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SIGN operator [36]. On the other hand, whenever an element σi (t) is zero for any
interval of time of positive measure, this implies that its time derivative σ̇i (t) is zero
as well, during the same interval of time. This, allows us to substitute σi (t)σ̇i (t) = 0
in the first row of (10.20), whenever the argument of the discontinuous operator is
zero. This reasoning derives from the closely related example studied in [36, Th.
3, pp. 157–158]). From that, it follows that, in the case under investigation, the
generalized time derivative of the Lyapunov function in (10.20) is a singleton, every
t , whereas its set-valued nature can safely be disregarded throughout the analysis
during the isolated time instants where V̇ (t) is set-valued.

Thanks to the appropriate selection of the initial condition for the auxiliary control
variable in (10.10), i.e., zi (0) = −xi (0), it follows from (10.18) and (10.19) that the
system trajectory lies from the initial time t = 0 onto the slidingmanifold σ (t) = 0n.
Thus from (10.19), it yields that V (0) = 0. However, since the right-hand side of
(10.20) is always non-positive, then the condition V (t) = 0 is maintained at all ∀
t ≥ 0. As a consequence, the closed loop system exhibits a sliding motion along the
manifold

σ (t) = 0n (10.21)

from the initial time instant on regardless of the presence of the bounded perturbation
wi (t) acting at the local level of each agent operating over the MAS.

By virtue of this, we are in a position to exploit the equivalent control method (see
[38]) to study the corresponding sliding mode trajectories of system (10.17)–(10.18)
subject to the constraint σ (t) = 0n ∀ t ≥ 0.

Particularly, it results that during the sliding motion, the discontinuous term
SIGN(σ (t)) in the right-hand side of (10.17) can be replaced by the correspond-
ing continuous “equivalent value” SIGNeq(σ (t)). Such “equivalent behavior” can be
derived by simply imposing the right-hand side of (10.18) to be identically zero, i.e.,

σ̇ = 0n ⇒ SIGNeq(σ (t)) = 1

k
· w(t) (10.22)

Then, by substituting SIGNeq(σ (t)) in (10.22) into the right-hand side of the
motion Eq. (10.17), during the sliding motion, the following collective agents
dynamic arises

ẋ(t) = −α · L x(t) t ≥ 0 (10.23)

Let us now define the following auxiliary variable

q(t) =
n∑

i=1

xi (t) = 1′
nx(t) (10.24)
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From (10.23), and due to the positive semi-definitiveness of L � 0, along with
its zero column-sum property 1′

nL = 0n , it results that

q̇(t) = −α · 1′
nLx(t) = 0 (10.25)

Thus, let a be a constant real value, it follows that

q(t) = q(0) =
n∑

i=1

xi (0) ∀ t ≥ 0 (10.26)

and

lim
t→∞ q(t) = lim

t→∞ 1′
nx(t) = a · 1′

n1n = a · n (10.27)

Hence we obtain

1′
nx(0) = a · n (10.28)

and so

a =
(
1′

nx(0)

1′
n1n

)

· 1n = x̄ = 1

n
·

n∑

i=1

xi (0) (10.29)

As a consequence, we have

lim
t→∞ x(t) = 1n ⊗ x̄ (10.30)

that confirms the global asymptotical convergence of the state variables of the (10.23)
towards the expected value x̄ given by (10.6). This conclude the proof.

Remark 10.2 Since the chosen Lyapunov function (10.19) is smooth, and σ (t) in
(10.16) (resp. (10.39)) is, by definition of Filippov solution, absolutely continuous,
then V (σ (t)) is absolutely continuous as well. In fact it is the composition of a
smooth function with an absolutely continuous function. Furthermore, since the
discontinuous terms in the right-hand side of (10.20) (resp. (10.42)) are vanishing
with the same arguments of the sign function, i.e.σ (t). Thus, in spite of the potentially
set-valued nature of V̇ (t), that would have required special tools of non-smooth
analysis (see e.g. [20]), here V̇ (t) is uniquely defined in the conventional sense. As
a consequence of that, neither special derivative notions nor advanced non-smooth
analysis tools need to be invoked to support the achievement of condition (10.20)
(resp. (10.43)).

Remark 10.3 It is worth to remark that finite-time convergence towards the expected
averaged value of the agents’ initial conditions, aswell as, application to different dis-
tributed consensus-based computational problems (see e.g. [3]) can easily be derived
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by simple modification of the proposed algorithm (10.10). In particular, in accor-
dance with the ISMC paradigm, the idea is to re-design (10.10) in a such way that the
resulting “equivalent dynamic” during the sliding motion (e.g., see (10.23)) solves
the problem under nominal unperturbed conditions.

10.3.3 Robust ISMC-Based Median-Consensus Protocol

Let us now discuss the second scenario of this chapter, which deals with the problem
of estimating themedian value of the agent’s initial conditions given by (10.7), in spite
of the presence of the bounded perturbations wi (t) corrupting the agents’ dynamics
(10.5). To solve this problem, we take inspiration from [20], where the Authors solve
the median consensus problem in the unperturbed scenario (i.e., with wi (t) = 0 ∀
i ∈ V). Then, according toRemark 10.3,we design the local communication protocol
ui (t) ∈ R as follows

ui (t) = −yi (t) − k · SIGN (xi (t) + zi (t)) ,

żi (t) = yi (t), zi (0) = −xi (0), (10.31)

yi (t) = α · sign (xi (t) − xi (0)) + λ ·
∑

j∈N i

sign
(
xi (t) − x j (t)

)
,

where the SIGN(·) operator is the multi-valued signum function given by (10.11),
whereas, the sign(·) operator is the single-valued function

sign (S) �

⎧
⎨

⎩

1 if S > 0,
0 if S = 0,

−1 if S < 0,
S ∈ R. (10.32)

We now present the second main result of this study.

Theorem 10.2 Consider the collective dynamics (10.5) and let Assumption 10.1 be
satisfied. If the tuning parameters of the local interaction rules (10.31) satisfy the
next relations

α > 0, λ > α, k > Π, (10.33)

then, the multi-agent system (10.5), (10.31) cooperatively estimates the median value
of the agents initial conditions after a finite time T . Thus, it follows that

lim
t→T

x(t) = 1n ⊗ x̃ ∀ i ∈ V, t ≥ T ∈ R (10.34)

holds, where x(t) = [x1, x2, . . . , xn]′ ∈ R
n denotes the vector of the agent’s states

and x̄ is the median value of the agent’s initial conditions (10.7).
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Proof With the same spirit of the Proof of Theorem 10.1, by substituting (10.31)
into (10.5), a compact representation of the resulting perturbed closed-loop network
dynamics is derived

ẋ(t) =w(t) − α · sign (x(t) − x(0)) − λ
√
2 · Dsign

(√
2 · D′x(t)

)

− k · SIGN (x(t) + z(t)) , (10.35)

ż(t) = α · sign (x(t) − x(0)) + λ · √2 · Dsign
(√

2 · D′x(t)
)

,

z(0) = − x(0),

where x = [x1, x2, . . . xn]′, z = [z1, z2, . . . zn]′, and w = [w1, w2, . . . wn]′. x(0) =
{x1(0), . . . , xn(0)} collects the agents’ initial conditions. Thediscontinuous operators
SIGN(·), and sign(·) are now generalized in terms of element-wise operators, i.e.,

sign(x) = [
sign(x1), · · · , sign(xn)

]′
(10.36)

SIGN(x) = [
SIGN(x1), · · · ,SIGN(xn)

]′
(10.37)

Furthermore, it is worth to note that, according to the definition of the Incidence
Matrix in (10.2), the following equivalence

√
2 · Dsign

(√
2 · D′x(t)

)
=

⎡

⎢
⎣

∑
j∈N 1

sign(x1(t) − x j (t))
...∑

j∈N n
sign(xn(t) − x j (t))

⎤

⎥
⎦ (10.38)

holds by construction. Then, by considering as a vector of local switching manifolds
the same combination of states considered in (10.16), i.e.,

σ (t) = x(t) + z(t), (10.39)

we can rewrite the collective closed-loop dynamics (10.35) in the new set of coordi-
nates (x, σ ) as follows

ẋ(t) =w(t) − α · sign (x(t) − x(0))

− λ
√
2 · Dsign

(√
2 · D′x(t)

)
− k · SIGN(σ (t)), (10.40)

σ̇ (t) =w(t) − k · SIGN (σ (t)) , σ (0) = 0n. (10.41)

It should be stressed that, due to the proper selection of z(0) = −x(0), which
implies σ (0) = 0n (see (10.39)), then σ (t) holds the zero value from the initial time
instant t = 0. Let us now study the stability of the closed-loop dynamics (10.40)–
(10.41). Following a similar treatment as in the Proof of Theorem 10.1, we choose as
a candidate Lyapunov function the same function (10.19). By differentiating (10.19)
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along the trajectories of (10.40)–(10.41), by simple computations, and by making
straightforward manipulations taking the advantages of the Hölder Inequality, it
yields

V̇ (t) ≤ ∣
∣σ (t)′w(t)

∣
∣ − k · ‖σ (t)‖1

≤ −(k − ‖w(t)‖∞) · ‖σ (t)‖1
≤ −(k − Π)‖σ (t)‖1

(10.42)

Thus, due to the tuning constraints in (10.33), in particular k > Π , one readily
verifies that

V̇ (t) ≺ 0, ∀ t ≥ 0. (10.43)

According to the ISMC design paradigm, it can be seen that, from (10.41), it holds

V (0) = 1

2
‖σ (0)‖22 = 0 (10.44)

then, by coupling (10.44) with (10.43), it follows that

V (t) = 0, ∀t ≥ 0. (10.45)

which means that the reaching phase is eliminated, in spite of any bounded pertur-
bation w(t) ∈ R

n . By exploiting the equivalent control method, we can now evaluate
the state trajectories of the system along the sliding manifold σ(t) = 0n . The equiv-
alent value associated to the discontinuous term SIGN(σ (t)) can be easily derived
from (10.41) as follows

σ̇ = 0n ⇒ SIGNeq(σ (t)) = 1

k
· w(t). (10.46)

By replacing the term SIGN(σ (t)) in (10.40) with its equivalent value (10.46),
it results that from the initial time instant t = 0, the network evolutions follow the
next perturbation-free evolutions law

ẋ(t) = −α · sign(x(t) − x(0)) − λ
√
2 · Dsign(

√
2 · D′x(t)). (10.47)

A complete convergence analysis of the resulting dynamics (10.47) goes beyond
the scope of this study, focused on the robustification of cooperative consensus algo-
rithms. However, following [20, Theorem 3.3], and by selecting the coefficients
λ > α as in (10.33), it results that the collective dynamic (10.47) exhibits a two step
convergence process outlined as follows:
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1. There exists a finite time instant τ1 ∈ R>0, with τ1 < ∞, such that

xi (t) = c(t), ∀ i ∈ V, t ≥ τ1, (10.48)

where c(t) is the common time-varying profile for the agents state variables.
2. There exists a finite time instant τ2 ≥ τ1, τ2 < ∞, such that

c(t) = x̃, ∀ i ∈ V, t ≥ τ2. (10.49)

This concludes the proof. The reader is referred to [20] for a detailed non-smooth
Lyapunov analysis of the discontinuous differential equation (10.47).

10.4 Simulations and Discussion

To demonstrate the efficacy of the proposed protocols (10.10) and (10.31), in this
Section the performance of these algorithms is tested via computer simulations.

It is worth to remark that the presence of perturbation in (10.5), modifies the equi-
librium of the network and thus any standard algorithm for estimating the averaged
or the median value of the agents initial conditions will fail. The scenario under test
consists in a connected network of n = 9 agents, whose topology is displayed in
Fig. 10.1. Agents’ dynamics are governed by (10.5). The disturbances are selected
as exogenous, time-varying biased sinusoidal signals

wi (t) = bi + ai cos(2π fi t) (10.50)

Fig. 10.1 Communication
topology for a network of ten
agents
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with randomly selected coefficients

ai ∈ [1, 9] , bi ∈ [−4, 4] , fi ∈ [1, 10]. (10.51)

Letw = [w1, . . . , wn] be the column-wise collection of the local perturbations, by
simple computations, from (10.50), and (10.51), we can easily derive that ‖w‖∞ ≤
Π = 13.

The initial states of the agents for the following simulative tests are intentionally
chosen as xi (0) = i for i = 1, . . . , 8 and x9(0) = 100. As it can be seen, the initial
condition of the 9th agent is much bigger than that of the remaining agents in order to
simulate an outlier agent. It follows that the average andmedian values of the agents’
initial conditions, following (10.6) and (10.7) are x̄ ≈ 15.11 x̃ = 5, respectively.

As expected, it the median value is less sensitive to the presence of the 9th outlier
agent with respect to the average value.

The set of parameters for the proposed algorithms are selected, according to
Theorems 10.1 and 10.2, respectively, as α = 1, λ = 3, and k = 15.

In Figs. 10.2, 10.3, 10.4 and 10.5, we can observe the performance of the reference
algorithms proposed in [9], i.e.,

ui = −α ·
∑

j∈N i

sign(xi − x j ) (10.52)

and [20], i.e.,

ui = −α · sign(xi − xi (0)) − λ ·
∑

j∈N i

sign(xi − x j ) (10.53)

Fig. 10.2 Performance of
the average consensus
protocol (10.52) in the
absence of perturbations
(i.e., with wi (t) = 0 ∀ i ∈ V)
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Fig. 10.3 Performance of
the average consensus
protocol (10.52) under the
effect of the perturbations
(10.50)–(10.51) (i.e., with
wi (t) 
= 0 ∀ i ∈ V)

Fig. 10.4 Performance of
the median consensus
protocol (10.53) in the
absence of perturbations
(i.e., with wi (t) = 0 ∀ i ∈ V)

Fig. 10.5 Performance of
the median consensus
protocol (10.53) under the
effect of the perturbations
(10.50)–(10.51) (i.e., with
wi (t) 
= 0 ∀ i ∈ V)
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Fig. 10.6 Performance of
the proposed ISMC-based
average consensus protocol
(10.10) under the effect of
the perturbations
(10.50)–(10.51) (i.e., with
wi (t) 
= 0 ∀ i ∈ V)

Fig. 10.7 Performance of
the proposed ISMC-based
median consensus protocol
(10.31) under the effect of
the perturbations
(10.50)–(10.51) (i.e., with
wi (t) 
= 0 ∀ i ∈ V)

in achieving average- and median-consensus, respectively in the ideal scenario, i.e.,
no perturbation (see Figs. 10.2, 10.4), and in the perturbed scenario, i.e. wi (t) 
= 0 ∀
i ∈ V (see Figs. 10.3 and 10.5). It is apparent that these standard algorithms estimate
correctly the expected averaged andmedian value of the networks’s initialization only
in the unperturbed case.

The temporal evolutions of the agent’s states under the proposed ISMC-based pro-
tocol (10.10) and (10.31) in the presence of perturbations are depicted in Figs. 10.6,
10.7, respectively. It is evident that the proposed algorithms, in accordance with their
respective convergence analysis, correctly estimate the average and median value of
the agent’s initial condition.

Particularly, it can be noted that, due to the intrinsic feature of the ISMC design
paradigmof eliminating the reaching phase, the agents behavior depicted in Figs. 10.6
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and10.7 result to be identical to that obtainedbyusing the standard algorithms (10.52)
and (10.53) during the unperturbed (ideal) scenario depicted in Figs. 10.2 and10.4.

10.4.1 Chattering Alleviation

Due to the discontinuous nature of the proposed local interaction rules (10.10) and
(10.31), high-frequency chattering on the agents state variables arises in practical
implementation. To alleviate this phenomenon, smooth approximations of the dis-
continuous sign functions are commonly used. Particularly, in the following the
sign(·) and SIGN(·) functions in the proposed local interaction protocols (10.10)
and (10.31) will be replaced by the sigmoidal smooth approximation

Sigμ(S) �
S

μ + |S| with S ∈ R, μ ∈ R>0, (10.54)

where the smoothing parameter μ > 0 has to be be taken smaller and smaller to get
a more and more accurate approximation of the original discontinuous functions.

It yields the following smooth approximations of the local interaction rules (10.10)
and (10.31) are, respectively,

ui (t) = −yi (t) − k · Sigμ(xi (t) + zi (t)),

żi (t) = yi (t), zi (0) = −xi (0), (10.55)

yi (t) = α ·
∑

j∈N i

(xi (t) − x j (t)).

for the consensus on the averaged value of the agent’s initial conditions, and

ui (t) = −yi (t) − k · Sigμ(xi (t) + zi (t)),

żi (t) = yi (t), zi (0) = −xi (0), (10.56)

yi (t) = α · Sigμ(xi (t) − xi (0)) + λ ·
∑

j∈N i

Sigμ(xi (t) − x j (t)).

for the consensus on the resulting median value. Using the smooth approximation
(10.54) with μ = 0.1 (see Figs. 10.8 and 10.9) it is seen that a small vicinity of the
average and median value, respectively, is attained for both the proposed algorithms.

Thanks to the approximation (10.54), the convergence towards the expected aver-
age/median value of the agents initial condition is preserved with accuracy that pro-
portional to the deadzone layer μ. Thus, the chattering is alleviated at the expense
of robustness and accuracy (see e.g. the bottom plots of Figs. 10.8 and 10.9). More
effective chattering alleviation techniques were suggested in [30], however deeper
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Fig. 10.8 Performance of
the chattering-free consensus
protocol (10.55) under the
effect of the perturbations
(10.50)–(10.51) (i.e., with
wi (t) 
= 0 ∀ i ∈ V)

Fig. 10.9 Performance of
the chattering-free consensus
protocol (10.56) under the
effect of the perturbations
(10.50)–(10.51) (i.e., with
wi (t) 
= 0 ∀ i ∈ V)
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Fig. 10.10 Temporal
evolution of the control
signals u1(t) and u9(t) using
the smooth approximation
(10.56)

analysis into this topic goes beyond the aims of this study. Finally, in Fig. 10.10 the
local control inputs u1(t) and u9(t) of protocol (10.56) are shown, and one can easily
verify that these control actions are continuous signals.

10.5 Conclusions

In this chapter we have shown how the IMSC design paradigm can be usefully
applied in the framework of MAS to allow the agents dynamics to be affected by
unknown disturbances. Our solution, with respect the existing algorithms allows the
distributed computation of quantities such as, e.g., the average or median value of
the agents initial conditions, even when the network is perturbed. We show that
a suitable redesign of the original “non robust” algorithm can be made, owing on
integral sliding mode ingredients, allowing to restore the ideal performance (e.g.,
convergence to the median or average value). Further investigations will focus on the
extension of this solution towards application that involve consensus as a prerequisite
for the accomplishment of more sophisticated tasks in a distributed way, such as
distributed multi-objective optimization for application involving network of high-
order systems.
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Chapter 11
Finite-Time Consensus for Disturbed
Multi-agent Systems with Unmeasured States
via Nonsingular Terminal Sliding-Mode
Control

Xiangyu Wang and Shihua Li

11.1 Introduction

During the past decade, distributed cooperative control has become a more and more
active research field because of its broad applications and advantages compared with
conventional centralized control [1–3]. Specifically, its typical applications include
coordination control of multiple robots [4, 5], attitude alignment of multiple space-
crafts [6], and distributed filtering of sensor networks [7], to name just a few. Fur-
thermore, its advantages lie in higher robustness, less communication cost and better
efficiency [8].

Consensus is a basic issue in distributed cooperative control field, which aims to
design appropriate protocols via neighboring information for the agents such that
some of their state elements (e.g., attitudes or velocities) reach a common value
[2]. On the consensus problem, there are usually two factors in agent dynamics
which bring great challenge for the distributed control design, namely, the influence
of disturbances (including both system uncertainties, unmodelling dynamics and
external disturbances) and the lack of full-state information.

On the consensus problem ofmulti-agent systemswith disturbances, several kinds
of anti-disturbance control approaches have been proposed, such as sliding-mode
control [3, 9, 10], adaptive control [11], H∞ control [12], and output regulation
theory [13]. A common point of these results is that they are focused on the
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agent dynamics with matched disturbances, namely, the disturbances enter the agent
dynamics through the same channels as the control inputs. Then, a question arises nat-
urally, that is how to achieve consensus ofmulti-agent systems subject tomismatched
disturbances? On one hand, the consensus problem with mismatched disturbances
is important, because lots of practical multi-agent systems suffer from the adverse
effects of such disturbances, e.g., multi-missile systems [14] and multi-hydraulic
manipulator systems [15]. On the other hand, it is doubtless that the consensus prob-
lem in the presence of mismatched disturbances is more difficult, because the mis-
matched disturbances (which are in different channels from the control inputs) cannot
be directly suppressed by feedback controllers [16, 17]. Inspired by both aspects,
some researchers have been devoted to consensus with mismatched disturbances and
a few control schemes have been presented, such as adaptive backstepping control
for multi-agent systems subject to boundedmismatched disturbances [18] and output
regulation theory for multi-agent systems with mismatched disturbances generated
from exosystems [19].

From the point view of control patterns to cope with disturbances, all the afore-
mentioned control methods belong to passive anti-disturbance control methods. In
detail, these control methods realize disturbance rejection goal through feedback
regulation on the tracking errors between the measured outputs and their reference
signals. In this way, they are not prompt enough when facing strong disturbances
and they usually achieve disturbance rejection robustly by sacrificing the nominal
control performances.

To improve the above-mentioned drawbacks in disturbance rejection, an effec-
tive way is to utilize active anti-disturbance control, which is feedforward-feedback
composite control rather than pure feedback control. Usually, the feedforward com-
pensations are made based on direct measurements (e.g., by using sensors) or soft
measurements (e.g., by developing disturbance estimators), and the baseline feed-
back control is performed on the basis of existing feedback control methods. Among
active anti-disturbance control, there are two most popular approaches, namely, dis-
turbance observer based control (DOBC) [20, 21] and active disturbance rejection
control (ADRC) [22]. Specifically, DOBC uses disturbance observers to estimate
the disturbances and ADRC utilizes extended-state observers to observe the distur-
bances. In dealing with disturbances, both DOBC and ADRC have faster responses
and less conservativeness than passive anti-disturbance control. Motivated by these
nice features, DOBC [23, 24] and ADRC [25] have been employed into consensus
control design with disturbances. However, these results are still limited to consensus
with matched disturbances. In [26, 27], DOBC schemes were constructed to solve
asymptotic output consensus for higher-order multi-agent systems with mismatched
disturbances.

It is worth noticing that most of the above reported results are obtained based on
full-state information, that is, all the system state elements are assumed to bemeasur-
able. In practice, the systems usually contain unmeasured states, due to the absence
of sensors or some other reasons. In such cases, to obtain the state information for
control design, a common way is to design observers for reconstructing state infor-
mation. Similar cases also happen in consensus control field. To solve the consensus
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problem without disturbances but with unknown states, some state observers were
designed in [28, 29] and corresponding output feedback protocols were proposed.
Nevertheless, if the disturbances are involved into the agent dynamics, the consensus
control schemes proposed in [28, 29] do not work anymore. Not only the observer
tracking error systems but also the whole closed-loop consensus error systems are
not convergent or even not stable. To this end, it is desirable and meaningful to
work on the consensus problem of multi-agent systems with both disturbances and
unmeasured states.

In this chapter, the output consensus problem of leader-follower higher-order
multi-agent systems with mismatched disturbances and unmeasured states are inves-
tigated. By combining a finite-time observer technique and the nonsingular terminal
sliding-mode control method together, a feedforward-feedback composite consen-
sus control scheme is developed. The developed distributed control scheme realizes
finite-time output consensus for all the agents. The main contributions of this chapter
are threefold. First of all, for the first time, the finite-time output consensus of higher-
ordermulti-agent systemswith bothmismatched disturbances and unmeasured states
is solved by using distributed active anti-disturbance control. Secondly, the results
obtained in this chapter extend the applicable scope of the baseline feedback con-
trol part in distributed active anti-disturbance control from state feedback control to
output feedback control. The last but not the least, the mismatched/matched distur-
bances considered in the systems are no longer limited to slow time-varying types
and they are allowed to be faster time-varying or have higher-order forms.

The rest parts of this chapter are organized as follows. In Sect. 11.2, some useful
preliminary knowledge and problem formulation are given. In Sect. 11.3, the detailed
consensus control design and the main result are shown. Then in Sect. 11.4, a simula-
tion example is exhibited to validate the proposed consensus control scheme. Finally,
some conclusions of this chapter are drawn in Sect. 11.5.

11.2 Preliminaries and Problem Formulation

11.2.1 Notations

Denote 1n=[1, . . . , 1]T ∈Rn . Given a vector x=[x1, . . . , xn]T ∈ R
n and α∈R, denote

sigα(x) = [sigα(x1), . . . , sigα(xn)]T , especially, sign(x)=[sign(x1), . . . , sign(xn)]T ,
where sigα(z)=|z|αsign(z),∀z, α ∈ R and sign(·) is the standard sign function.
Moreover, denote the 1-norm, Euclidean norm and infinity norm of vector x as
‖x‖1 = ∑n

i=1 |xi |, ‖x‖2 = √
xTx and ‖x‖∞ = maxi=1,...,n{|xi |}, respectively.A fun-

damental property is that ‖x‖2 ≤ ‖x‖1 ≤ √
n‖x‖2,∀x ∈ R

n . Given a symmetric
matrix P ∈ R

n×n , denote its eigenvalues as λmin(P) = λ1(P) ≤ λ2(P) ≤ · · · ≤
λn(P) = λmax(P), which are in non-decreasing order. Let In denote n × n identity
matrix.
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11.2.2 Some Lemmas and Definitions

Lemma 11.1 ([30]) For any xi ∈ R, i = 1, . . . , n and 0 < q ≤ 1, it holds that

(
n∑

i=1

|xi |
)q

≤
n∑

i=1

|xi |q .

Lemma 11.2 ([30]) If c > 0, d > 0 and γ (x, y) > 0 is a real-valued function for
x ∈ R, y ∈ R, then

|x |c|y|d ≤ cγ (x, y)|x |c+d

c + d
+ dγ −c/d(x, y)|y|c+d

c + d
.

Consider the following autonomous system

ẋ = f (x), x ⊆ R
n, f (0) = 0, (11.1)

where f : D → R
n is continuous on an open neighborhood D ⊆ R

n of the origin.

Definition 11.1 ([31]) The origin is a finite-time convergent equilibrium of sys-
tem (11.1) if there are an open neighbourhood U ⊆ D of the origin and a func-
tion Tx : U\{0} → (0,∞), such that every solution trajectory x(t, x0) of system
(11.1) starting from the initial point x0 ∈ U\{0} is well-defined for t ∈ [0, Tx (x0)),
and limt→Tx (x0) x(t, x0) = 0. Here Tx (x0) is called as the convergence-time function
(with respect to x0). The origin is said to be a finite-time stable equilibrium if it is
finite-time convergent and Lyapunov stable. If U = D = R

n , the origin is said to be
a globally finite-time stable equilibrium.

Lemma 11.3 ([32]) Let c1, . . . , cn > 0 be such that the polynomial sn + cnsn−1 +
· · · + c2s + c1 is Hurwitz, and consider

ẋi = xi+1, i = 1, . . . , n − 1, ẋn = u. (11.2)

There exists ε ∈ (0, 1) such that, for every α ∈ (1 − ε, 1), the origin is a globally
finite-time stable equilibrium for system (11.2) under the feedback control law

u = −c1sig
α1(x1) − · · · − cnsig

αn (xn), (11.3)

where αi−1 = αi αi+1

2αi+1−αi
, i = 2, . . . , n, αn+1 = 1 and αn = α.

Consider the system

ẋk = xk+1, k = 1, . . . , m − 1,

ẋm = u + d, (11.4)
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where xk, k = 1, . . . , m are state elements, u is the control input, and d(t) is the
external disturbance.

Lemma 11.4 If d(t) is differentiable and ḋ(t) has a known Lipschitz constant L > 0,
and a nonlinear observer is designed as

ż0 = v0, v0 = −λ0L
1

m+1 sig
m

m+1 (z0 − x1) + z1,

żl = vl , vl = −λl L
1

m+1−l sig
m−l

m+1−l (zl − vl−1) + zl+1, l = 1, . . . , m − 2,

żm−1 = vm−1 + u, vm−1 = −λm−1L
1
2 sig

1
2 (zm−1 − vm−2) + zm,

żm = −λm Lsign(zm − vm−1), (11.5)

where λ0, . . . , λm are positive gains, z0 = x̂1 is the estimate of x1, zl = x̂l+1, l =
1, . . . , m − 2 are the estimates of xl+1, and zm = d̂ is the estimate of d. Then by
choosing appropriate gains λ0, . . . , λm, observer (11.5) is finite-time convergent.

Proof Denote observation errors as w0 = x1 − z0, . . . , wm−1 = xm − zm−1, wm =
d − d̂. Then the observation error dynamics are

ẇ0 = −λ0L
1
m sig

m
m+1 (w0) + w1

ẇl = −λl L
1

m−l sig
m−l

m+1−l (wl − ẇl−1) + wl+1, l = 1, . . . , m − 1

ẇm = −λm Lsign(wm − ẇm) + ḋ. (11.6)

According to [33], there are appropriate gains λ0, . . . , λm such that observation error
dynamics (11.6) are finite-time stable.

Remark 11.1 Observer gainsλ0, . . . , λm canbe chosen recursively andonlyλ0 needs
to be assigned in advance [33].

11.2.3 Graph Theory Notions

Let G = (V ,E ,A ) be a directed graph, where V = {1, . . . , n} is the node set, E ⊆
V × V is the edge set and A = [ai j ] ∈ R

n×n is the weighted adjacency matrix of
G. ForA , ai j > 0 if ( j, i) ∈ E while ai j = 0 otherwise. Moreover, aii = 0,∀i ∈ V .
The neighbor set of node i is denoted as Ni = { j ∈ V |( j, i) ∈ E }. An undirected
graph G is defined such that ( j, i) ∈ E ⇔ (i, j) ∈ E and ai j = a ji . The Laplacian
matrix of the graph G is defined as L = [li j ] ∈ R

n×n , where lii = ∑n
j=1 ai j and

li j = −ai j for i �= j . In a directed graph, a directed path is an edge sequence as
(k1, k2), (k2, k3), . . . , ki ∈ V . If there is a directed edge from node i to node j , then
node i is the parent and node j is the child. A directed tree is a graph, where every
node has and only has one parent except for the root node, which has no parent, and
the root has a directed path to every other node. A directed spanning tree of a graph is
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a directed tree formed by graph edges connecting all the nodes of the graph. A graph
has a directed spanning tree if there exists at least one node having a directed path
to all the other nodes.

For the leader-follower multi-agent systems, the leader is denoted by node 0 and
the followers are denoted by nodes 1, . . . , n. The undirected communication topol-
ogy graph of the followers is denoted by G = (V ,E ,A ) and its Laplacian matrix
is denoted by L . The communication topology graph for all the agents including
the leader is denoted as Ḡ = (V̄ , Ē , ¯A ) with the node set V̄ = V ∪ {0}. The com-
munication between the leader and a follower is unidirectional from the leader to
the follower. The edge weights between the leader and the followers are denoted by
bi , i ∈ V . If the i-th follower is connected with the leader, then bi > 0, otherwise,
bi = 0. MatricesB = diag{b1, . . . , bn} and L̄ = L + B ∈ R

n×n are called as the
leader adjacency and Laplacian matrices of the graph Ḡ, respectively.

Assumption 11.1 For a leader-follower multi-agent system, the communication
topology graph Ḡ contains at least one directed spanning tree.

Lemma 11.5 ([34]) For a leader-follower multi-agent system, if Assumption 11.1
holds, then the Laplacian matrix L̄ is positive definite.

11.2.4 Problem Formulation

The agent dynamics to be studied in this chapter are (i ∈ V )

ẋi,k = xi,k+1 + di,k(t), k = 1, . . . , m − 1,

ẋi,m = ui + di,m(t), (11.7)

where xi,1, . . . , xi,m are state elements, yi = xi,1 is output, ui is control input to be
designed, and di,1(t), . . . , di,m−1(t) and dm(t) are mismatched and matched distur-
bances, respectively. In system (11.7), only the output yi is measurable and the other
state elements xi,2, . . . , xi,m are unknown. The leader dynamics are

ẋ0,k = x0,k+1, k = 1, . . . , m − 1,

ẋ0,m = u0, (11.8)

where x0,1, . . . , x0,m are leader state elements, y0 = x0,1 is output, and u0 is the
predefined control input, which is independent from the followers.

The objective of this chapter is to design finite-time consensus protocols through
output feedback for leader-follower multi-agent system (11.7) and (11.8) such that
the outputs of all the n + 1 agents reach consensus in finite time.
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11.3 Control Design

The consensus control design is composed of two parts, namely, finite-time observer
design and composite finite-time consensus protocols design.

11.3.1 Finite-Time Observer Design

The motivation to design an observer for each follower is natural, because in order
to achieve the output consensus goal, information exchanges are needed among the
neighboring agents. However, for the agents described by (11.7), only the outputs
are available and can be directly used for transferring, which is not enough to realize
consensus. Under this circumstance, it is necessary to design an observer for each
follower to estimate the unknown state elements and the disturbances.

Assumption 11.2 The disturbance di,l , i ∈ V , l = 1, . . . , m in system (11.7) is
(m − l + 1) times differentiable and d(m−l+1)

i,l has a bounded Lipschitz constant Li,l .

Remark 11.2 Assumption 11.2 is motivated by [33, 35]. Under this assumption, the
result of Lemma 11.4 can be used to design observers for the followers. In practice,
several kinds of disturbances satisfy Assumption 11.2, such as constant disturbances,
ramp disturbances, high-order disturbances, and sinusoidal disturbances.

Denote χi,1=xi,1, χi,k+1=xi,k+1 + ∑k
l=1 d(k−l)

i,l , k=1, . . . , m − 1, i ∈ V . Under
Assumption 11.2, system (11.7) can be rewritten as

χ̇i,k = χi,k+1, k = 1, . . . , m − 1,

χ̇i,m = ui + di , (11.9)

where di = ∑m
l=1 d(m−l)

i,l . The derivative ḋi of the lumped disturbance di has a Lip-
schitz constant Li = ∑m

l=1 Li,l . For system (11.9), to estimate the unknown state
elements and the disturbances, the following observer is designed

żi,0 = vi,0, vi,0 = −λi,0L
1

m+1
i sig

m
m+1 (zi,0 − xi,1) + zi,1,

żi,l = vi,l , vi,l = −λi,l L
1

m+1−l

i sig
m−l

m+1−l (zi,l − vi,l−1) + zi,l+1, l = 1, . . . , m − 2,

żi,m−1 = vi,m−1 + ui , vi,m−1 = −λi,m−1L
1
2
i sig

1
2 (zi,m−1 − vi,m−2) + zi,m,

żi,m = −λi,m Li sign(zi,m − vi,m−1), (11.10)

where zi,0 = χ̂i,1 is the estimate of χi,1, zi,l = χ̂i,l+1, l = 1, . . . , m − 1 are the esti-
mates of χi,l+1, and zi,m = d̂i is the estimate of di . Denote observation errors as
wi,l = χi,l+1 − χ̂i,l+1, l = 0, . . . , m − 1, wi,m = di − d̂i . Then the error dynamics
are
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ẇi,0 = −λi,0L
1
m
i sig

m
m+1 (wi,0) + wi,1

ẇi,l = −λi,l L
1

m−l

i sig
m−l

m+1−l (wi,l − ẇi,l−1) + wi,l+1, l = 1, . . . , m − 1

ẇi,m = −λi,m Li sign(wi,m − ẇi,m−1) + ḋi . (11.11)

Proposition 11.1 By choosing appropriate gains λi,0, . . . , λi,m, observer (11.10) is
finite-time convergent, namely, there is a finite time instant To such that wi,0(t) =
. . . = wi,m(t) = 0, i ∈ V ,∀t ≥ To.

Proof By Lemma 11.4, the result of Proposition 11.1 follows directly. Thus, the
proof is omitted.

Remark 11.3 For a follower described by (11.7), both its state elements (expect
for the output) and the disturbances are unknown, and they are in the same mis-
matched/matched channels. Consequently, it is very difficult or even impossible to
separately estimate the unknown state elements and the disturbances in the same
channels by using observers. In such a case, observation of the combination vari-
ables of the unknown state elements and the disturbances, e.g., χi,k , is feasible and
efficient. This is the essential reason to construct an observer as (11.10) for each
follower to estimate the combination variables of unknown state elements and the
disturbances.

11.3.2 Consensus Protocol Design

Denote ηk=[χ̂1,k, . . . , χ̂n,k]T , k=1, . . . , m, u = [u1, . . . , un]T , d = [d1, . . . , dn]T ,

d̂ = [d̂1, . . . , d̂n]T and Wl = [χ1,l+1, . . . , χn,l+1]T − ηl+1, l = 0, . . . , m − 1, Wm =
d − d̂. Denote the consensus tracking errors as Ek = [e1,k, . . . , en,k]T , where

ei,k =
n∑

j=1

ai j (χ̂i,k − χ̂ j,k) + bi (χ̂i,k − x0,k), k = 1, . . . , m,

Then Ek = L̄ ηk − B1n x0,k, k = 1, . . . , m. Because L 1n = 0 and L̄ = L + B,
then L̄ 1n x0,k = B1n x0,k, k = 1, . . . , m. As a result, Ek = L̄ ηk − L̄ 1n x0,k, k =
1, . . . , m. From (11.7) and (11.8), the consensus tracking error dynamics are
described as

Ėk = Ek+1 + W̃k−1, k = 1, . . . , m − 1,

Ėm =L̄ u + L̄ (d − Ẇm−1 − 1nu0) (11.12)

where W̃k−1 = L̄ (Wk − Ẇk−1), k = 1, . . . , m − 1.
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Assumption 11.3 The state estimates χ̂i,k, i ∈ V , k = 1, . . . , m and disturbance
estimate d̂i generated from observer (11.9) can be exchanged between neighbor-
ing agents, namely, each agent can receive such information sent from its neighbors.

Assumption 11.4 The leader state elements x0,k, k = 1, . . . , m are bounded in any
finite time and there exists ū0 such that ‖u0(t)‖2 ≤ ū0,∀t ≥ 0.

The main result of this chapter is given in the following theorem.

Theorem 11.1 For leader-follower multi-agent system (11.7) and (11.8), under
Assumptions 11.1–11.4, the consensus protocol for each follower is designed as

ui = −ki sign

⎛

⎝
n∑

j=1

ai j (si − s j ) + bi si

⎞

⎠ − d̂i , i ∈ V , (11.13)

where ki ≥ max j∈V
[
b j ū0 +

∣
∣
∣
∑M

k=1 c j,ksigα j,k (e j,k)

∣
∣
∣ + δ j

]
/(λmin(L̄ )/

√
n), δi > 0,

d̂i is the estimate of the disturbance di generated from observer (11.10), and the
sliding-mode surface si is designed as

si = ei,m +
∫ t

0

[
m∑

k=1

ci,ksig
αi,k (ei,k)

]

dτ, i ∈ V , (11.14)

where αi,k−1 = αi,kαi,k+1

2αi,k+1−αi,k
, k = 2, . . . , m, αi,m+1 = 1, αi,m = αi,0 ∈ (1 − εi , 1), εi ∈

(0, 1), and ci,k > 0 satisfy that polynomial λm + ci,mλm−1 + · · · + ci,2λ + ci,1 is
Hurwitz. Then there are εi ∈ (0, 1) such that under protocol (11.13), the agents’
outputs reach consensus in finite time, namely, yi − y0 → 0,∀i ∈ V in finite time.

Proof Denote S = [s1, . . . , sn]T . From (11.14), it follows that

S = Em +
∫ t

0

(
m∑

k=1

Ckζk

)

dτ, (11.15)

where Ck = diag{c1,k, . . . , cn,k}, ζk = [sigα1,k (e1,k), . . . , sigαn,k (en,k)]T . Based on
(11.13), the control input vector u can be written as

u = −K sign(L̄ S) − d̂, (11.16)

where K = diag{k1, . . . , kn}. By substituting (11.16), the derivative of S along sys-
tem (11.12) satisfies
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Ṡ = Ėm +
m∑

k=1

Ckζk

= L̄
(−K sign(L̄ S) + Wm − Ẇm−1 − 1nu0

) +
m∑

k=1

Ckζk . (11.17)

Simultaneously, system (11.12) can be rewritten as

Ėk = Ek+1 + W̃k−1, k = 1, . . . , m − 1,

Ėm = −
m∑

k=1

Ckζk + Ṡ. (11.18)

The following proof consists of two steps: the first step is to prove state bounded-
ness of closed-loop system (11.18) in t ∈ [0, To), where To is the finite convergence
time of observer (11.9), and the second step is to prove global finite-time stability of
the closed-loop system (11.18).

Step 1 State boundedness in [0, To) of the closed-loop system (11.18)

Denote a function Vb = 1
2 ST S + 1

2

∑m
k=1 E

T
k Ek . Then the derivative of Vb along

system (11.18) satisfies

V̇b = ST Ṡ +
m∑

k=1

E T
k Ėk

= − ST L̄ K sign(L̄ S) + ST L̄ (Wm − Ẇm−1 − 1nu0) + ST
m∑

k=1

Ckζk

+
m−1∑

k=1

E T
k (Ek+1 + W̃k−1) + E T

m L̄ (−K sign(L̄ S) + Wm − Ẇm−1 − 1nu0).

(11.19)

From the basic properties of 1-norm and Euclidean norm, it follows that

−ST L̄ K sign(L̄ S) ≤ −λmin(L̄ )√
n

k
n∑

i=1

|si | ≤ 0, (11.20)

where k = mini∈V {ki }. It is straightforward to obtain that

ST L̄ (Wm − Ẇm−1 − 1nu0) ≤ (‖Wm‖2 + ‖Ẇm−1‖2 + √
nū0)‖L̄ ‖2‖S‖2, (11.21)

m−1∑

k=1

E T
k (Ek+1 + W̃k−1) ≤

m−1∑

k=1

‖W̃k−1‖2
m∑

k=1

‖Ek‖2 +
m∑

k=1

‖Ek‖22, (11.22)
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E T
m L̄ (−K sign(L̄ S) + Wm − Ẇm−1 − 1nu0) ≤ [√

n(k̄ + ū0) + ‖Wm‖2 + ‖Ẇm−1‖2
]

× ‖L̄ ‖2‖Em‖2, (11.23)

where k̄ = maxi∈V {ki }. Since ST
∑m

k=1 Ckζk = ∑n
i=1

∑m
k=1 ci,ksi sigαi,k (ei,k), by

Lemma 11.2, it holds that

si sig
αi,k (ei,k) ≤ |si |1+αi,k

1 + αi,k
+ αi,k |ei,k |1+αi,k

1 + αi,k

≤ s2i
2

+ αi,ke2i,k
2

+ 1 − αi,k

2
.

Then it can be verified that

ST
m∑

k=1

Ckζk ≤
n∑

i=1

(
m∑

k=1

ci,k

2

)

s2i +
m∑

k=1

(
n∑

i=1

ci,kαi,k

2
e2i,k

)

+
m∑

k=1

n∑

i=1

ci,k(1 − αi,k)

2

≤ σ1‖S‖22 + σ2

m∑

k=1

‖Ek‖22 +
m∑

k=1

n∑

i=1

ci,k(1 − αi,k)

2
, (11.24)

where σ1 = maxi∈V
{∑m

k=1
ci,k

2

}
and σ2 = maxi∈V ,k=1,...,m

{ ci,kαi,k

2

}
. Substituting

(11.20)–(11.24) into (11.19) yields

V̇b ≤
⎧
⎨

⎩

m−1∑

k=1

‖W̃k−1‖2 + [√
n(k̄ + ū0) + ‖Wm‖2 + ‖Ẇm−1‖2

] ‖L̄ ‖2
⎫
⎬

⎭

×
⎛

⎝‖S‖2 +
m∑

k=1

‖Ek‖2
⎞

⎠ + (1 + σ2)

m∑

k=1

‖Ek‖22 + σ1‖S‖22 +
m∑

k=1

n∑

i=1

ci,k(1 − αi,k)

2
.

(11.25)

By Lemma 11.2, the following inequalities hold

‖S‖2 ≤ 1 + ‖S‖22
2

, ‖Ek‖ ≤ 1 + ‖Ek‖22
2

.

Then it follows from (11.25) that

V̇b ≤ σ3Vb + σ4, (11.26)
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where

σ3 =
m−1∑

k=1

‖W̃k−1‖2 + [√
n(k̄ + ū0) + ‖Wm‖2 + ‖Ẇm−1‖2

] ‖L̄ ‖2 + 2σ1 + 2σ2 + 2,

σ4 = m + 1

2

{
m−1∑

k=1

‖W̃k−1‖2 + [√
n(k̄ + ū0) + ‖Wm‖2 + ‖Ẇm−1‖2

] ‖L̄ ‖2
}

+
m∑

k=1

n∑

i=1

ci,k(1 − αi,k)

2
.

Since observer (11.9) is finite-time convergent, Wm(t), Ẇm−1(t) and W̃k−1(t), k =
1, . . . , m − 1 are all bounded ∀t ∈ [0,+∞). Therefore, both S(t) and Ek(t), k =
1, . . . , m are bounded ∀t ∈ [0, To).

Step 2 Global finite-time stability of the closed-loop system (11.18)

When t ≥ To, by Proposition 11.1, W0(t) = 0, . . . , Wm(t) = 0, which means that
W̃k−1(t) = 0, k = 1, . . . , m − 1 and Ẇm−1(t) = 0. Take the Lyapunov function as
VS = 1

2 ST S. From (11.17), it can be obtained that

V̇S = ST L̄ (−K sign(L̄ S) − 1nu0) + ST
m∑

k=1

Ckζk

≤ −
n∑

i=1

[
λmin(L̄ )√

n
k − bi ū0 −

∣
∣
∣
∣
∣

m∑

k=1

ci,ksig
αi,k (ei,k)

∣
∣
∣
∣
∣

]

|si |

≤ −δ

n∑

i=1

|si | ≤ −√
2δ(VS)

1
2 , (11.27)

where δ = mini∈V {δi }. Hence, the agents’ states reach the sliding-mode surface
S = 0 in finite time TS ≥ To. On S = 0, from (11.18), the equivalent dynamics are

Ėk = Ek+1, k = 1, . . . , m − 1,

Ėm = −
m∑

k=1

Ckζk, (11.28)

which can also be written as

ėi,k = ei,k+1, k = 1, . . . , m − 1,

ėi,m = −
m∑

k=1

ci,ksig
αi,k (ei,k). (11.29)
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By Lemma 11.3, there are εi ∈ (0, 1) such that E1 converges to zero in finite time. By
noting that χ̂i,1(t) = xi,1(t) = yi (t), i ∈ V ,∀t ≥ To, then yi − y0, i ∈ V converge
to zero in finite time. This completes the proof.

Remark 11.4 When t ≥ To, by Proposition 11.1, it holds that Wk(t) = 0, Ẇk(t) =
0, k = 0, . . . , m − 1, Wm(t) = 0. On one hand, it follows from (11.17) that

Ṡ = −L̄ K sign(L̄ S) − L̄ 1nu0 +
m∑

k=1

Ckζk, (11.30)

which means that Ṡ is discontinuous and then the solution of the closed-loop system
(11.30) would be understood in the sense of Filippov. On the other hand, it has
been proved above that S(t) ≡ 0,∀t ≥ TS ≥ To, namely, for any t2 > t1 ≥ TS , the
integration of Ṡ(t) on [t1, t2] is

∫ t2
t1

Ṡ(t)dt = 0. In this way, Ṡ has an infinite switching
frequency and a zero average. Then it is naturally filtered out and does not bring
effects on the stability of the integration-based closed-loop system. As a result, the
equivalent dynamics (11.28) are obtained and Theorem 11.1 follows.

Remark 11.5 The proposed consensus protocol (11.13) is a feedforward-feedback
composite protocol. For the i-th follower, it utilizes the agent’s and its neighbors’ state
estimation information and the estimate of its disturbances. In detail, the switching

law is us
i = −ki sign

(∑n
j=1 ai j (si − s j ) + bi si

)
, which guarantees that the agents’

states converge to the sliding-mode surface S = [s1, . . . , sn]T in finite time.

The block diagram of the closed-loop system under the proposed distributed con-
trol scheme in Theorem 11.1 is shown in Fig. 11.1.

Fig. 11.1 Block diagram of the closed-loop multi-agent system under the proposed distributed
control scheme
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11.4 Numerical Simulations

In this section, to illustrate the effectiveness of the proposed consensus control
scheme in Theorem 11.1, a simulation example is given on a leader-follower multi-
agent system with 4 followers. The dynamics of the i-th (i = 1, 2, 3, 4) follower are

ẋi,1 = xi,2 + di,1,

ẋi,2 = xi,3 + di,2,

ẋi,3 = ui + di,3,

yi = xi,1. (11.31)

The leader dynamics are

ẋ0,1 = x0,2, ẋ0,2 = x0,3, ẋ0,3 = u0, y0 = x0,1. (11.32)

The communication topology of the agents is shown in Fig. 11.2.
The motion function of the leader is

x0,1(t) =
{− (t−6)4

324 + 10, 0 s ≤ t ≤ 6 s.
10, t > 6 s.

(11.33)

It is not difficult to obtain that ū0 = 0.5. The initial states of the followers are

follower 1 : x1,1(0) = 3, x1,2(0) = 0, x1,3(0) = 0,

follower 2 : x2,1(0) = 2, x2,2(0) = 0, x2,3(0) = 0,

follower 3 : x3,1(0) = 6, x3,2(0) = 0, x3,3(0) = 0,

follower 4 : x4,1(0) = 7, x4,2(0) = 0, x4,3(0) = 0.

The disturbances are imposed on the agents at t = 15 s. For t ≥ 15 s, the distur-
bances are

follower 1 : d1,1(t) = 2 sin(1.5(t − 15)), d1,2(t) = −1.2(t − 15) + 3,

d1,3(t) = sin(2(t − 15)),

follower 2 : d2,1(t) = 0.2(t − 15)2 + (t − 15), d2,2(t) = 1.5(t − 15), d2,3(t) = −5,

Fig. 11.2 The
communication topology
(0 denotes the leader and
V = {1, 2, 3, 4})
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follower 3 : d3,1(t) = 1 + 2(t − 15), d3,2(t) = sin(4(t − 15)), d3,3(t) = 0.5(t − 15),

follower 4 : d4,1(t) = 1.2(t − 15)2 − 2(t − 15) + 3, d4,2(t) = 2(t − 15) − 2,

d4,3(t) = 2.

According to the sufficient conditions given in Theorem 11.1, the control para-
meters of protocol (11.13) are chosen as

follower 1 : δ1 = 0.04, c1,1 = 5, c1,2 = 9, c1,3 = 6, α1,0 = 7

10
,

follower 2 : δ2 = 0.038, c2,1 = 4, c2,2 = 9, c2,3 = 5, α2,0 = 4

5
,

follower 3 : δ3 = 0.045, c3,1 = 4, c3,2 = 8, c3,3 = 5, α3,0 = 3

4
,

follower 4 : δ4 = 0.05, c4,1 = 5, c4,2 = 8, c4,3 = 6, α4,0 = 3

5
.

The parameters of observer (11.10) are selected as

follower 1 : L1 = 18, λ1,0 = 12, λ1,1 = 25, λ1,2 = 9, λ1,3 = 26,

follower 2 : L2 = 13, λ2,0 = 9, λ2,1 = 10, λ2,2 = 8, λ2,3 = 7,

follower 3 : L3 = 19, λ3,0 = 11, λ3,1 = 12, λ3,2 = 9, λ3,3 = 15,

follower 4 : L4 = 17, λ4,0 = 12, λ4,1 = 10, λ4,2 = 11, λ4,3 = 15.

In simulations, the time step length is set as 0.01 s. The simulation results are
exhibited in Figs. 11.3, 11.4 and 11.5. It can be seen from Fig. 11.4 that observer
(11.10) provides accurate estimates of the unmeasured states and the disturbances in
finite time. FromFig. 11.3, on one hand, in the absence of disturbances (namely,when
t ∈ [0 s, 15 s)), all the followers’ outputs track the leader’s output in finite time. On
the other hand, when the disturbances are imposed on the followers at t = 15 s, the
followers’ outputs are suddenly pushed away from the leader’s output, but after a few
seconds, they come back and their outputs accurately track the leader’s output once
again. This nice feature mainly stems from the designed observer (11.10), because
the observer offers the state and disturbance estimates, which are organically and
effectively used to handle the effects caused by the unmeasured state elements and
disturbances.
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Fig. 11.3 Response curves of the agents outputs under the consensus protocol (11.13)
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Fig. 11.4 Observation errors of observer (11.10). aObservation errors of follower 1. bObservation
errors of follower 2. c Observation errors of follower 3. d Observation errors of follower 4
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Fig. 11.5 Time histories of
the agents inputs in the form
of the consensus protocol
(11.13)
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11.5 Conclusions

In this chapter, a solution has been worked out for the finite-time output consensus
problem of leader-follower higher-order multi-agent systems subject to both unmea-
sured states and mismatched disturbances. The main control design is composed of
two stages, namely, finite-time observer design and nonsingular terminal sliding-
mode consensus protocol design. In the first stage, a finite-time observer has been
constructed for each follower to estimate the unmeasured state elements and the
disturbances in finite time. In the second stage, nonlinear integral-type nonsingular
terminal sliding-mode surfaces have been designed for the followers, where the state
and disturbance estimates have been distributedly embedded. Then, based on such
surfaces, composite sliding-mode consensus protocols have been proposed, which
realize finite-time output consensus for all the agents. The most distinguished feature
of the proposed composite consensus control scheme lies in that it achieves finite-time
output consensus in the presence of both unmeasured states and fast time-varying
mismatched disturbances.
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Chapter 12
Discrete Event-Triggered Sliding
Mode Control

Abhisek K. Behera and Bijnan Bandyopadhyay

12.1 Introduction

Sliding mode control (SMC) is a robust control technique that achieves desired
control objective for a dynamical system by forcing the state trajectory onto a pre-
designed (sliding) manifold by the action of a discontinuous control law [1, 2]. The
motion on this manifold is often described as sliding mode for the dynamical system.
Generally, there are two phases in SMC, one is to bring the trajectory to the sliding
manifold and is known as reaching phase, and the other one is to force the trajec-
tory to remain on this manifold which is called sliding phase [3]. This sliding phase
must occur in finite-time only in a system to ensure the existence of sliding mode.
In this phase, the system becomes unaffected by the external disturbances and thus
robustness of the system is achieved [4]. The challenging task is to implement the
discontinuous control law due to limitations of actuators. So, the implementation of
SMC laws have drawn attention since last three decades.

The most important research in this direction has lead to so called discrete-time
sliding mode (DTSM). Broadly, in two ways DTSM is investigated namely, direct
discretization of continuous-time control laws [5] and the design of control law from
the discrete-time plant [6–14]. However, in both these cases, the system trajectory
remain bounded in the vicinity of sliding manifold. The band around this manifold
explicitly depends on sampling interval, system parameters and disturbance bound.
Many improvements have been suggested to reduce the size of this band resulting
in numerical chattering. Further, it may be noted that in all these cases the control is
implemented in periodic manner.
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Recently, a new control strategy has been proposed in literature, event-triggered
control, where the control signal is applied to the plant whenever it is required
[15–17]. In this technique, the state trajectory is continuously monitored and when it
crosses certain threshold value from its previous sampled value, the control signal is
updated. In most of the time, the periodic updating of control signal is not required
if the state trajectory changes barely. By avoiding the periodic control execution, the
computational burden is also reducedon the processor. So, event-triggered control has
become a more promising control implementation strategy in almost every resource
constrained systems [18–24]. To obtain robust performance of the system, event-
triggered SMC is designed that not only uses resources optimally but also ensures
robustness of the system during sliding mode [25–35].

Like other event-triggered control, in event-triggered SMC the state measure-
ments are continuously done for evaluating the triggering instant. To realize this, the
sophisticated sensors may be needed for measuring states continuously which may
incur an additional cost. Many variants of event-triggered strategy have been pro-
posed to avoid the continuous state measurement. One is the self-triggering strategy
where triggering instant is determined from the previous sampled value while main-
taining system stability [36–41]. So, the extra hardware circuit is also not needed to
evaluate the event. However, the price is paid in terms of reduced inter event time
(the time between any two consecutive triggering instants). Nevertheless, this is more
useful way of implementing event-triggered control. The self-triggered SMC is also
proposed in [28].

Another school of thought is to evaluate the event periodically rather than con-
tinuously. This strategy is more practical than the self-triggered control since the
triggering scheme is designed based on the available sensor measurements. In this
case, the cost of sensors may also be reduced as only periodic measurements are used
in the control design. The sensors send the sampled state information at periodic inter-
vals and that is used for the event-triggered control design. So, in this chapter, the
periodic evaluation of triggering rule is carried out by using the sampled information.
To analyse the closed loop system stability, we use discrete-time approach to design
SMC using event-triggering strategy. In literature, a similar design strategy has been
proposed called periodic event-triggered control [42, 43]. In this case also, the event
is evaluated at periodic time intervals and updated whenever it is violated. However,
event-triggered design of SMC is not discussed in literature.

12.2 System Description

Consider a single-input single output (SISO) linear time-invariant (LTI) system as
given below

ẋ = Ax + B(u + d), x ∈ R
n, x0 = x(0). (12.1)
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The system and input matrices are of appropriate dimensions. The disturbance,
d(t), is acting on the system through the input channel and is assumed to be bounded
for all time. So, the following assumption holds.

Assumption 12.1 There exists a constant d0 such that supt≥0 |d(t)| ≤ d0. In this
chapter, it is further assumed that d0 is a known constant.

Here, we discuss periodic evaluation of event-triggering rule such that the system
(12.1) is stable. To realize this approach, we use discrete-time approach to design
the SMC. Hence, we consider the discrete-time model of the system (12.1). In this
approach, it is considered that the disturbance does not change much in between
chosen sampling interval, so it can be assumed to be constant for a given sampling
interval. The zero-order hold (ZOH) discretization for some sampling interval, h,
can be obtained as

x(k + 1) = Φx(k) + Γ (u(k) + d(k)) (12.2)

where

Φ = eAh and Γ =
h∫

0

eAs ds B.

It is apparent from the above that the discrete-time model is not in regular form.
However, it can be transformed into regular formby some nonsingular transformation
z = T x . Thus, the system (12.2) can be transformed into regular form as

z(k + 1) = Φz(k) + Γ (u(k) + d(k)) (12.3)

where Φ = T ΦT −1 and Γ = T Γ . This system can also be written in the (regular)
form as

z1(k + 1) = Φ11z1(k) + Φ12z2(k) (12.4)

z2(k + 1) = Φ21z1(k) + Φ22z2(k) + Γ 2(u(k) + d(k)) (12.5)

where z1 ∈ R
n−1 and z2 ∈ R. In the subsequent discussions of this chapter, we

henceforth use either the system (12.3) or (12.4), (12.5) to design event-triggered
discrete-time SMC. First, we present the design of discrete-time SMC for the system
(12.3).

12.3 Discrete-Time Sliding Mode Control

In this section, we introduce DTSM control for LTI system. We present the design
of DTSM control using the reaching law proposed in [9] and the similar is used in
the design of event-triggered SMC.
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Consider the sliding variable s = c�z and the corresponding sliding manifold
given by

S = {
z ∈ R

n : s = c�z = 0
}
. (12.6)

The vector c = [
c�
1 1

]�
is deigned such that sliding motion dynamics is stable.

To see this, during sliding the system trajectory is constrained to the manifold S
and hence z2 = −c�

1 z1. So, the sliding motion dynamics can be given as

z1(k + 1) = (
Φ11 − Φ12c�

1

)
z1(k) (12.7)

z2(k) = −c�
1 z1(k). (12.8)

If the pair (Φ, Γ ) is controllable then so is the pair (Φ11, Φ12). This implies there
exist a gain c�

1 such that Φ11 − Φ12c�
1 is Schur1 stable. Then, the stability of closed

loop system follows immediately. So, the main objective is to bring the sliding mode
in the system, the stability of the system can be assured.

The following reaching law is considered in the design of DTSM control in this
chapter and is given as

s(k + 1) = d̃(k) (12.9)

where d̃(k) = c�Γ d(k). It may be noted that in a disturbance free case, i.e., d(k) = 0
for all k ∈ Z≥0, the system trajectory can be reached to the slidingmanifold using the
reaching law s(k + 1) = 0. This ensures in one sampling step the sliding trajectory
reaches the slidingmanifold and then stays there for all time. However, in presence of
disturbance the system trajectory remains in the vicinity of manifold. This is defined
as quasi sliding mode (QSM) and the corresponding band is called QSM band. A
formal definition of QSM is given below.

Definition 12.1 (Quasi Sliding Mode) The system (12.3) is said to be in QSM if for
some ε > 0 there exist k̄ ≥ 0 such that sliding trajectory s(k) = c�z(k) satisfies

|s(k)| ≤ ε

for all k ≥ k̄. The constant ε > 0 is the size of QSM band.

The control law can be designed as follows from the sliding variable dynamics
given by

s(k + 1) = c�Φz(k) + c�Γ u(k) + c�Γ d(k).

1A matrix is said to be Schur stable if all the eigenvalues of this matrix are located within an unit
disk in complex plane.
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The control law that brings sliding motion in the system in the vicinity of sliding
manifold is given as

u(k) = −(c�Γ )−1c�Φz(k). (12.10)

It may be noted that this control brings the trajectory to the vicinity of sliding
manifold in one discrete-time step. Once the trajectory reaches there, it remains
bounded within the band of size

∣∣c� B
∣∣ d0. This is the QSM band for the system

(12.3). However, in bringing the trajectory to QSM band in one discrete-time step, a
large control effort may be required. But, in practice only limited control magnitude
can be provided to any plant due to practical limitations of actuator. Due to this, in
this case, it may not be possible to bring the system trajectory to the QSM band.
But, the convergence of system trajectory to sliding manifold can be shown within a
region in the state space.

For a saturated actuator with saturation constraint u0, the control signal may be
given as

u(k) =
⎧⎨
⎩

u(k) if |u(k)| < u0,

u0
u(k)

|u(k)| if |u(k)| ≥ u0.
(12.11)

Now it is obvious that if the control signal is not saturated in some domain then
the sliding mode will be enforced in the system. Otherwise, the system stability may
not be ensured. However, we can find a domain of attraction for the system such that
sliding mode can be ensured even if the actuator is saturated. This can be shown as
follows.

Let the actuator is saturated, i.e., |u(k)| ≥ u0. Then, sliding variable dynamics
with the saturated control can be given below as proposed in [9],

|s(k + 1)| =
∣∣∣∣c�Φz(k) + c�Γ u0

u(k)

|u(k)| + c�Γ d(k)

∣∣∣∣
≤ ∣∣c�Φz(k)

∣∣
(
1 − u0

|u(k)|
)

+ ∣∣c�Γ
∣∣ d0

= ∣∣c�Φz(k)
∣∣ − u0

∣∣c�Φz(k)
∣∣∣∣(c�Γ )−1

∣∣ ∣∣c�Φz(k)
∣∣ + ∣∣c�Γ

∣∣ d0

= ∣∣(c�Φ − c�)
z(k) + s(k)

∣∣ − u0∣∣(c�Γ )−1
∣∣ + ∣∣c�Γ

∣∣ d0

≤ |s(k)| + ∣∣(c�Φ − c�)
z(k)

∣∣ − u0∣∣(c�Γ )−1
∣∣ + ∣∣c�Γ

∣∣ d0

≤ |s(k)|

if
∣∣(c�Γ )−1

∣∣ ∣∣(c�Φ − c�)
z(k)

∣∣ + d0 ≤ u0. Hence, the domain of attraction (DOA)
for the saturated control signal may be given below as
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Ω1 := {
z ∈ R

n : ∣∣(c�Γ )−1
∣∣ ∣∣(c�Φ − c�)

z
∣∣ + d0 ≤ u0

}
.

This shows that QSM occurs in the system in the region Ω1 even if the control
magnitude is saturated. Once the QSM occurs in the system, the system trajectory
remain bounded in the vicinity of sliding manifold. However, in the disturbance free
case, the DOA may be given as

{
z ∈ R

n : ∣∣(c�Γ )−1
∣∣ ∣∣(c�Φ − c�)

z
∣∣ ≤ u0

}
.

From this we observe that the presence of disturbance restricts the DOA than that
of disturbance free case.

12.4 Event-Triggered Sliding Mode Control

In this section, we present the design of event-triggered SMC using similar reaching
law as discussed in the previous section. Here the control is not updated periodically
but at aperiodic instants that is multiple of sampling interval. In this case, also the
system trajectory remain bounded within a band called practical QSM band which
is defined below.

Definition 12.2 (Practical Quasi Sliding Mode) The system (12.3) is said to be in
practical QSM if the system is in QSM with band size greater than the QSM band
(ε). That means for some ε1 > ε > 0 there exist k̄ > 0 such that the sliding trajectory
s(k) = c�z(k) satisfies

|s(k)| ≤ ε1

for all k ≥ k̄. The constant ε1 > 0 is the size of practical QSM band.

From this it implies that practical QSM band is larger than the QSM band. In
event-triggered strategy, the control law is implemented whenever certain conditions
are satisfied. In this chapter, we evaluate the triggering rule at discrete instants and
apply the controlwhen it is violated. So, the control is updated to the plant atmultiples
of sampling interval only. We propose here event-triggering strategy for the control
law (12.10). The event-triggered DTSM control is given as

u(k) = −(c�Γ )−1c�Φz(ki ) (12.12)

for all k ∈ [ki , ki+1). Here, ki denotes the triggering instant at which the control
signal is updated and it is equal to the some multiples of sampling interval. During
the time interval [ki , ki+1), the control signal is held constant. Now, we define e(k) =
x(ki ) − x(k)as the error introduced in the system due to aperiodic implementation
of discrete control law (12.10).
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The sufficient condition for existence of practical QSM for the system (12.3) and
is given in the following Theorem.

Theorem 12.1 Consider the system (12.3) and the control law (12.12). Let α > 0
be given such that

∣∣c�Φe(k)
∣∣ < α (12.13)

holds for all k ∈ Z≥0. Then, practical QSM occurs in the system in the finite number
of discrete time steps.

Proof Consider the sliding variable dynamics with the control law (12.12) in the
interval [ki , ki+1) as given below

s(k + 1) = c�Φz(k) + c�Γ u(k) + c�Γ d(k)

= −c�Φe(k) + c�Γ d(k).

Using (12.13) in the above relation, it gives

s(k + 1) < α + ∣∣c�Γ
∣∣ d0.

It is to be noted that in this discrete event-triggered SMC the system trajectory
reaches the practical QSM band in the first sampling instant, k0 + τ , as the control is
updated at k0 = 0. Define α1 = α + ∣∣c�Γ

∣∣ d0. However, for all discrete time instants
k ∈ [ki , ki+1) with i ≥ 1, the system trajectory remains bounded as

{
z ∈ R

n : |s| = ∣∣c�z
∣∣ < α1

}
.

It is concluded that in one discrete step, the trajectory reaches the practical QSM
band and remains there for all time. Hence, practical sliding mode in the system is
established and this completes the proof.

Remark 12.1 In the above theorem, we see that in the proposed discrete event-
triggered SMC the practical QSM band is reached in one discrete-time step similar
to the case of periodic control implementation. But, it remains bounded within the
practical QSM band for all subsequent triggering intervals.

One important consequence to the above Theorem is given below.

Corollary 12.1 Consider the system (12.3) with d(k) = 0 for all k ∈ Z≥0. Let
(12.13) holds for all k ∈ Z≥0 for some α > 0. Then, practical QSM occurs in the
system with a band given by

{
z ∈ R

n : |s| = ∣∣c�z
∣∣ < α

}
.

This shows that in discrete event-triggered SMC, the system trajectories remain
bounded in thevicinity of slidingmanifold even in the disturbance free case.However,
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in periodic control implementation, the trajectory reaches themanifold exactly due to
the reaching law s(k + 1) = 0. That means, in discrete event-triggered SMC there is
always a QSM band around the sliding manifold in disturbance free case. Moreover,
this band size can be designed apriori by suitable value of α.

The relation (12.13) is very essential for the existence of practical QSM in the
system. This relation must be ensured for all sampling period. So, this is used as
triggering mechanism for the discrete event-triggered SMC and is given by

ki+1 = {
k > ki : ‖c‖ ∥∥Φ

∥∥ ‖e(k)‖ ≥ σα
}

(12.14)

for some σ ∈ (0, 1). This triggeringmaintains the relation ‖c‖ ∥∥Φ
∥∥ ‖e(k)‖ < σα for

all k ∈ Z≥0. So, the stability of system is guaranteed.
In this case also, since the trajectory reaches practical QSM band in one triggering

instant, large control effort may also be required. So, the actuator can be saturated
and limited control signal is applied to the plant instead of actual control signal. This
may lead to system instability in some cases. However, there always exist a DOA
that ensures system stability in spite of saturated actuator. In the next, we provide an
estimate of DOA in case of event-triggered discrete-time SMC.

Let the control signal is saturated at the triggering instant ki , i.e., |u(ki )| ≥ u0.
Then, DOA can be obtained from the sliding variable dynamics in the time interval
[ki , ki+1) as given below

s(k + 1) = c�Φz(k) + c�Γ u0
u(ki )

|u(ki )| + c�Γ d(k)

= c�Φz(k) − c�Φz(ki )
u0

|u(ki )| + c�Γ d(k)

= c�Φz(k) − c�Φz(ki ) + c�Φz(ki )

(
1 − u0

|u(ki )|
)

+ c�Γ d(k)

≤ ∣∣c�Φe(k)
∣∣ + ∣∣c�Φz(ki )

∣∣
(
1 − u0

|u(ki )|
)

+ ∣∣c�Γ
∣∣ d0.

Here, we are interested in the DOA where the system stability is always ensured.
So, using the relation (12.13) in the above, one obtains

s(k + 1) < α1 + ∣∣c�Φz(ki )
∣∣ − u0

∣∣c�Φz(ki )
∣∣

|u(ki )|
≤ α1 + ∣∣c�Φz(ki ) − c�z(k) + c�z(k)

∣∣ − u0

∣∣c�Φz(ki )
∣∣∣∣(c�Γ )−1

∣∣ ∣∣c�Φz(ki )
∣∣

< |s(k)| + α1 + α + ∣∣(c�Φ − c�)
z(k)

∣∣ − u0∣∣(c�Γ )−1
∣∣ .
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So, |s(k + 1)| < |s(k)| if
∣∣(c�Γ )−1

∣∣ (α2 + ∣∣(c�Φ − c�)
z(k)

∣∣) ≤ u0

where α2 = 2α + ∣∣c�Γ
∣∣ d0. So, DOA can be given for the discrete event-triggered

SMC as

Ω2 := {
z ∈ R

n : ∣∣(c�Γ )−1
∣∣ (α2 + ∣∣(c�Φ − c�)

z
∣∣) ≤ u0

}
.

This shows that practical QSM can be ensured with saturated control signal if
trajectory starts within Ω2. Hence, system stability can be established.

It may be mentioned here that in disturbance free case, the DOA for the sliding
trajectory to reach the band in event-triggering strategy is obtained by setting d0 = 0
as

{
z ∈ R

n : ∣∣(c�Γ )−1
∣∣ (2α + ∣∣(c�Φ − c�)

z
∣∣) ≤ u0

}
.

We see that in the disturbance free case DOA depends on the event parameter α

which further restricts the DOA.

12.5 Simulation Results

Consider an LTI system

ẋ =
[
0 1
4 5

]
x +

[
0
1

]
(u + d).

We shall design the discrete event-triggered SMC for the above system. Select
τ = 0.1 as the sampling period for the system. The ZOH discrete-time model is
obtained as

x(k + 1) =
[
1.024 0.1306
0.5224 1.677

]
x(k) +

[
0.005969
0.1306

]
(u(k) + d(k)).

Note that ZOHmodel is not in regular formwhile the continuous-time plantmodel
is in regular form. We define a nonsingular transformation as given below

T =
[
1.0000 −0.0457

0 1.0000

]

that transforms the ZOHmodel into regular form. Then, the regular form is obtained
using this nonsingular transformation as
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x(k + 1) =
[

1 0.09967
0.5224 1.701

]
x(k) +

[
0

0.1306

]
(u(k) + d(k)).

The sliding surface parameter c is chosen such that reduced order system has eigen-
value at 0.9 and is given as

[
1.0033 1

]�
. The event parameters α and σ are selected

as 0.1 and 0.85, respectively. The objective is to bring the trajectory to the practical
QSM band in finite number of discrete steps. First we consider unsaturated case and
then the actuator saturation case. The initial condition is taken as z(0) = [

1 2
]�
.

Fig. 12.1 System
trajectories of discrete
event-triggered SMC without
actuator saturation, a State
trajectories with time and
b Sliding trajectory with
time

(a)

(b)
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12.5.1 Without Saturation

In this case, the event-triggered DTSM control that brings the system trajectory to
the vicinity of sliding manifold is given as

u(k) = − [
0.1993 0.2352

]
z(ki )

for all k ∈ [ki , ki+1). This control signal is directly applied to the plant whenever
event is triggered. The response of the system is shown in Fig. 12.1. The system
trajectory reaches the practical QSM band in one step as shown in Fig. 12.1b. Once
it reaches the band, it remains within the QSM band as claimed in earlier section.

Fig. 12.2 Performance of
discrete event-triggered
SMC without actuator
saturation, a Event-triggered
SMC signal and b Inter event
time versus time

(a)

(b)
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The corresponding state trajectories are plotted in Fig. 12.1a. The state trajectories
also converge to origin and remain ultimately bounded.

From Fig. 12.2a, it is observed that a large control effort is required to bring the
system trajectory to the practical QSM band in one triggering instant. The control
signal during initial time as high as 40 units but it significantly reduced to a small
value as the state is forced to the vicinity of sliding manifold. Figure12.2b shows the
plot of variation of inter event time with time. At initial time, the control is updated,
so the inter event time is found to be 0.1 unit of time. But, immediately after that
the event is not triggered at sampling intervals that leads to no update in the control
signal. The relation between Fig. 12.2a and b shows that if the inter event time is
increased, no changes in the control action is seen. So, if event parameter is properly

Fig. 12.3 System
trajectories of discrete
event-triggered SMC with
actuator saturation, a State
trajectories with time and
b Sliding trajectory with
time

(a)

(b)



12 Discrete Event-Triggered Sliding Mode Control 301

chosen the inter event time can be increased further subject to some satisfactory
system performance.

12.5.2 With Saturation

In this case actuator saturation is considered in the design of discrete event-triggered
SMC. To demonstrate the discussions of the previous section, consider the saturation
limit for the actuator as u0 = 20. That means the saturated control signal is applied

Fig. 12.4 Performance of
discrete event-triggered
SMC with actuator
saturation, a Event-triggered
SMC signal and b Inter event
time versus time

(a)

(b)
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to the plant instead of actual control signal whenever the control signal magnitude is
larger than the saturation limit of the actuator.

It is verified that the initial condition z(0) is locatedwithin the setΩ2. This implies
that even if the actuator is saturated the system trajectory would reach the practical
QSM band in finite number of steps. In Fig. 12.3b, it is seen that the system trajectory
does not reach the manifold in one triggering interval as the control signal crosses the
saturation limit. But, the control signal is reduced as the sliding trajectory decreases to
the practical QSM band at 0.3s and remain bounded henceforth. The state trajectory
is plotted in Fig. 12.3a which also shows the stability of the closed loop system and
similarly the saturated control signal is plotted in Fig. 12.4a. The inter event time is
shown in Fig. 12.4b. We observe that the inter event time is increased to same value
in both the cases considered in this simulation study.

12.6 Conclusion

In this chapter, a discrete event-triggered SMC is proposed that evaluates the event
periodically. So, continuous monitoring of state trajectory is avoided. In this case, the
control signal is updated whenever event is triggered at one of these periodic instants
only. It is also seen that in this triggering mechanism a positive lower bound for
triggering mechanism is always guaranteed. Finally, simulation results are presented
to demonstrate the performance of the system.
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Chapter 13
Fault Tolerant Control Using Integral
Sliding Modes

Christopher Edwards, Halim Alwi and Mirza Tariq Hamayun

13.1 Introduction

Sliding mode control schemes have a number of interesting properties, which fuelled
the continued research interest in this field since the 1960s. Perhaps the key property
is its inherent insensitivity (at least theoretically) to so-called matched uncertainty –
i.e. uncertainty acting in the channel of the input control signals [9, 23, 28]. In
conventional first order sliding modes, the order of the original open-loop dynamical
system is reduced by an amount equal to the number of input control signals, and
the associated reduced order dynamics are determined by the specific choice of
sliding surface/switching function – which forms a key part of the design process.
Many different paradigms for the design of linear sliding surfaces for uncertain
linear systems have been developed, and this area of research is quite mature [9,
23]. In conventional sliding modes the closed-loop behaviour can be split into two
well-defined distinguishable phases: (a) the pre-sliding phase in which the controller
drives the system states towards the sliding surface prior to achieving a sliding mode;
(b) the reduced order sliding motion that occurs once the surface is attained and the
states are forced to evolve along this surface. Note that the insensitivity (robustness)
properties only appear once the sliding mode has been achieved.

Integral sliding modes (ISM) were first discussed in the late 1980s and early
1990s [19, 27]. Fundamentally the key distinction between integral sliding modes
and conventional first order sliding modes is that during sliding, ISM systems retain
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the order of the original open-loop system, although the property of insensitivity
to matched uncertainty remains. Several other interesting and useful differences
from conventional sliding modes are observed – the key one perhaps being that
there is no reaching phase and sliding begins at time t = 0. Key subsequent work
has refined these ideas to combat unmatched uncertainty [8], investigated output
feedback formulations [5, 15] and extended these ideas to nonlinear systems [21].

This chapter focuses on the exploitation of these ideas for the development of fault
tolerant controllers– i.e. control lawswhich retain an acceptable level of performance
in the face of actuator or sensor faults [3, 6]. It is intuitively clear that certain classes
of actuator faults can be modelled as matched uncertainty. Consequently, for a class
of faults which merely deteriorate the capabilities of the actuators and in which some
level of functionality is retained post-fault, sliding mode controllers appear to offer
de-facto fault tolerance. This chapter explores these ideas for a wider class of over-
actuated systems and allows the possibility of total failure of certain actuators. Two
distinct classes of problems are considered: firstly a fault tolerant ISM controller is
designed for a class of over-actuated linear systems; and secondly an ISM scheme is
retrofitted to an existing feedback control scheme for a class of over-actuated linear
systems with the objective of retaining as close to nominal performance as possible,
in the face of actuator faults and failures. This chapter focusses on the situation in
which full state information is available: work considering the output case appears
in [15, 20].

13.2 ISM Control of Uncertain Linear Systems

Consider initially the uncertain linear system given by

ẋ(t) = Ax(t) + Bu(t) + f (t, x) (13.1)

where A ∈ R
n×n and B ∈ R

n×m are known, and the pair (A, B) is controllable. In
this section it is assumed that B has full column rank.1 Here f (t, x) is unknown and
represents lumped uncertainty in the model of the system. For the purpose of control
law design it is assumed that the states x(t) are measured and are available. Assume
initially that f (t, x) satisfies the matching condition

f (t, x) = Bξ(t, x) (13.2)

where ξ(t, x) is unknown but worst case norm bounded by a known function ξ̄ (t, x).
A so-called integral sliding mode surface for the uncertain system in (13.1) is

1This is usually the case in ‘typical’ control problems and can be interpreted as the control inputs
being distinct and non-redundant. However the situation where this is not the case will be discussed
at length later in the chapter, since actuator redundancy is very beneficial in safety critical systems
requiring fault tolerant control.
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σ(t, x) = Gx(t) − Gx(0) −
∫ t

0
G(A + BK )x(τ )dτ (13.3)

where G ∈ R
m×n is a fixed design matrix chosen to ensure that det(G B) �= 0 and

the matrix K ∈ R
m×n is chosen so that (A + BK ) is stable. The existence of K is

guaranteed from the assumption that (A, B) is a controllable pair. The switching
variable σ : R+ × R

n �→ R
m in (13.3) has the property that σ(0, x(0)) = 0 for any

initial condition x(0). The objective is to design a control law so that σ ≡ 0 for all
time; i.e. to ensure a sliding mode is enforced on

S = {x ∈ R
n : σ(t, x) = 0} (13.4)

A controller will now be describedwhich ensures the condition σ T σ̇ ≤ −η‖σ‖ holds
for all time. Such a condition is described in the sliding mode literature as the η-
reachability condition [9, 23]. Normally this is sufficient to ensure that a sliding
motion is attained in finite time and maintained for all subsequent time. Here, by
design the states are already on the sliding surface at time t = 0 because the expres-
sion in (13.3) is constructed to make σ(0, x(0)) = 0 for any initial condition x(0).
Taking the derivative of (13.3) it follows

σ̇ = G
(

Ax + B(u + ξ)
) − G(A + BK )x(t)

= G B(u + ξ − K x) (13.5)

Choose the control law as

u(t) = K x(t) − ρ(t, x)(G B)−1 σ(t)

‖σ(t)‖ for σ �= 0 (13.6)

where the modulation gain ρ(t, x) = ‖G B‖ξ̄ (t, x) + η (which is realistic since it is
assumed the upper-bound on the uncertainty represented by ξ̄ (t, x) is known). Then
substituting for u in (13.5) yields

σ T σ̇ = σ T

(
G Bξ(t, x) − ρ(t, x)

σ (t)

‖σ(t)‖
)

≤ ‖σ‖‖G Bξ(t, x)‖ − ρ(t, x)‖σ(t)‖
≤ −η‖σ(t)‖ (13.7)

by choice of ρ(t, x). Note during the sliding motion, the equivalent control [9, 28]
necessary to maintain a sliding motion on S , obtained by formally solving for the
control signal when σ̇ = 0 in (13.5), is given by

ueq(t) = K x(t) − ξ(t, x)

Substituting ueq(t) in (13.1) means sliding is governed by
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ẋ(t) = Ax(t) + B(ueq + ξ(t, x))

= (A + BK )x(t) (13.8)

which is stable by choice of K . It is clear from (13.8) that the sliding motion is
independent of the uncertainty. This is the classical property of sliding modes: viz,
the ability to completely reject the effect of matched uncertainty. It is also interesting
to note that the dynamics in (13.8) are independent of the choice of G.

Now consider the situation where f (t, x) is not matched to the input channels. In
this case the uncertainty can be written in the form

f (t, x) = Bξ(t, x) + B⊥φ(t, x) (13.9)

where ξ(t, x) and φ(t, x) encapsulate the uncertainty, and B⊥ ∈ R
n×(n−m) is a full

column rank matrix with the property that BT B⊥ = 0. (This is often termed the
annihilator of the matrix B and has the property that det

[
B B⊥ ] �= 0.) Thus it is

clear that any f (t, x) can be ‘factored’ into the form given in (13.9). In a situation
where there exists unmatched uncertainty

σ̇ = G B
(
u + ξ(t, x) − K x(t)

) + G B⊥φ(t, x) (13.10)

Suppose a sliding motion can be maintained onS . In this case the equivalent control
obtained from equating σ = σ̇ = 0 in (13.10) is given by

ueq = K (x) − ξ(t, x) − (G B)−1G B⊥φ(t, x) (13.11)

and so from (13.1), (13.9) and (13.11) the sliding motion is governed by

ẋ(t) = (A + BK )x(t) + (
I − B(G B)−1G

)
B⊥φ(t, x) (13.12)

Notice the impact of φ(t, x) is not rejected and in fact the scalar ‖I − B(G B)−1G‖ is
indicative of the amplification of the effects of the disturbance/uncertainty B⊥φ(t, x).
If G is selected as G = (BT B)−1BT then

(I − B(G B)−1G) = (I − B(BT B)−1BT ) (13.13)

Notice that the projection operator (I − B(BT B)−1BT ) in (13.13) is symmetric and
idempotent since

(
I − B(BT B)−1BT

)2 = (I − B(BT B)−1BT )

These properties of symmetry and idempotency imply that ‖I − B(BT B)−1BT ‖ =
1. As argued in [8], in general, for any given G, the norm ‖I − B(G B)−1G‖ ≥ 1 and
so the choice G = (BT B)−1BT is an optimal one in the sense of non-amplification
of the unmatched uncertainty. Note in this case G is a left pseudo-inverse of B.
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13.3 Applications to Fault Tolerant Control

Now consider a nominal LTI system with actuator faults/failures represented as

ẋ(t) = Ax(t) + BW (t)u(t) (13.14)

where W (t) = diag{w1(t), . . . , wm(t)} is a diagonal matrix in which the scalars
w1(t), . . . , wm(t)model the effectiveness level of the actuators. Ifwi (t) = 1, itmeans
that the i th actuator has no fault and is working perfectly, whereas if 1 > wi (t) > 0,
an actuator fault is present. If wi (t) = 0, the i th actuator has completely failed and
the control input component ui does not affect the dynamics.

Assume only l actuators are needed to give the requisite closed-loop performance
i.e. the system in (13.14) is over-actuated. The remaining m − l actuators can then
be used to induce fault tolerance. Assume an estimate of W (t) is available2 and
written as Ŵ (t) = diag{ŵ1(t), . . . , ŵm(t)}, where the scalars 0 ≤ ŵi (t) ≤ 1. This
will subsequently be used in the control law. However invariably the estimate Ŵ (t)
will not be a perfect copy of W (t), and here it is assumed to satisfy

W (t) = (I − �(t))Ŵ (t) (13.15)

where �(t) = diag{δ1(t), . . . , δm(t)} and the scalars δ1(t), . . . , δm(t) are unknown.
To cope with total failures of certain actuators, a control allocation structure will be
incorporated [17, 22]. The approach proposed in [1, 14] is to first reorder the states
so that the input distribution matrix in (13.14) can be partitioned as

B =
[

B1

B2

]
(13.16)

where B1 ∈ R
(n−l)×m , B2 ∈ R

l×m and the latter matrix is of rank l < m. Furthermore
as a result of reordering the states it is assumed that the elements of B2 have large
magnitude compared to ||B1||. Once this re-ordering has taken place, scale the last l
states so that B2BT

2 = Il . Now define a virtual control input as

ν(t) := B2u(t) (13.17)

If the physical control signal is chosen as

u(t) = B†
2 (t)ν(t) (13.18)

where B†
2 (t) ∈ R

m×l is any right pseudo-inverse of the matrix B2, then u(t) from
(13.18) clearly satisfies the condition in (13.17). One possible choice of B†

2 (t) is

2The information need to compute Ŵ can be supplied from a fault reconstruction scheme [3] or by
using extended Kalman filters [29]. Furthermore on many modern fly-by-wire aircraft sensors are
present to measure the actual surface deflections which can be used to create estimates of Ŵ .
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Fig. 13.1 Schematic of the overall control strategy

B†
2 (t) = Ŵ (t)BT

2 (B2Ŵ (t)BT
2 )−1 (13.19)

assuming det(B2Ŵ (t)BT
2 ) �= 0. The overall control structure is given in Fig. 13.1.

Note from (13.19) that if ŵi → 0 then ui (t) → 0 and the control signals are
redistributed to the ‘healthy’ actuators. Define

W = {(ŵ1, . . . , ŵm) : det(B2Ŵ BT
2 ) �= 0} (13.20)

Because l < m, it is possible that det(B2Ŵ BT
2 ) �= 0 even if up to m − l of the entries

ŵi (t) = 0 in the matrix Ŵ (t). In other words, up to m − l can totally fail and yet
det(B2Ŵ BT

2 ) �= 0. Define

ν̂(t) := (B2Ŵ 2(t)BT
2 )(B2Ŵ (t)BT

2 )−1ν(t) (13.21)

then the linear system with respect to the virtual input ν̂(t) can be written as

ẋ(t) = Ax(t) +
[

B1(I − �(t))B+
2 (t)

B2(I − �(t))B+
2 (t)

]
︸ ︷︷ ︸

B̂(t)

ν̂(t) (13.22)

where
B+
2 (t) := Ŵ 2(t)BT

2 (B2Ŵ 2(t)BT
2 )−1 (13.23)

Notice that B+
2 (t) is a right pseudo-inverse of B2 if Ŵ (t) ∈ W . Using the properties

of pseudo-inverses in [24], as argued in [1], there exists a scalar γo such that

‖B+
2 (t)‖ = ‖Ŵ 2(t)BT

2 (B2Ŵ 2(t)BT
2 )−1‖ < γo (13.24)

for all (ŵ1(t), . . . , ŵm(t)) ∈ W . In the case when the estimates of the efficiency are
perfect (i.e. �(t) = 0), and when the system is fault-free (i.e. Ŵ (t) = I ), the system
in (13.22) becomes
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ẋ(t) = Ax(t) +
[

B1BT
2

Il

]
︸ ︷︷ ︸

Bν

ν(t) (13.25)

since B+
2 (t)|Ŵ (t)=I = BT

2 . Equation (13.25)will be used todesign the control scheme.
Suppose that by design of the partition in (13.16), the pair (A, Bv) associated with
(13.25) is controllable, then there exists a state feedback controller ν(t) = −Fvx(t),
such that the nominal system

ẋ(t) = (A − Bν Fv)x(t) (13.26)

possesses an appropriate closed loop response. Then define

σ(t, x) := Gx(t) − Gx(t0) − G
∫ t

0

(
A − Bν Fv

)
x(τ )dτ (13.27)

where G ∈ R
l×n is design freedom. As in [14] choose

G := B2(BT B)−1BT (13.28)

This choice of G has the property that G Bν = Il . The derivative of Eq. (13.27) is

σ̇ (t) = Gẋ(t) − G Ax(t) + G Bν Fvx(t) (13.29)

where ẋ(t) is given by (13.22). Consequently the equivalent control whilst sliding is

ν̂eq(t) = −(G B̂(t))−1Fvx(t) (13.30)

Substituting (13.30) into equation (13.22) and adding and subtracting Bν Fvx(t)yields

ẋ(t) = (A − Bν Fv)x(t) + (
Bν − B̂(t)(G B̂(t))−1

)
Fvx(t) (13.31)

where Bν is defined in (13.25) and B̂(t) in (13.22). Using G from (13.28), further
manipulation of Eq. (13.31) yields

ẋ(t) = (A − Bν Fv)x(t) + B̃Φ̃(t)Fvx(t) (13.32)

where

Φ̃(t) := B1BT
2 − B1(I − �(t))B+

2 (t)(B2(I − �(t))B+
2 (t))−1 (13.33)

and

B̃ :=
[

In−l

0

]
(13.34)
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Remark 13.1 Notice in the case of perfect knowledge of the actuator efficiency
(i.e. �(t) = 0), and when there are no faults in the system (i.e. Ŵ (t) = I ), the
matrices B̂|Ŵ (t)=I = Bν and B+

2 (t)|Ŵ (t)=I = BT
2 . Then using the fact that G Bν = I ,

Eq. (13.32) becomes
ẋ(t) = (A − Bν Fv)x(t) (13.35)

However in the presence of faults/failures, the sliding motion is governed by

ẋ(t) = (A − Bν Fv + B̃Φ̃(t)Fv)x(t) (13.36)

which needs to be proved to be stable. To help achieve this goal define a transfer
function matrix G̃(s) = Fv(s I − (A − Bν Fv))

−1 B̃ and let

γ2 = ||G̃(s)||∞ (13.37)

Then the following can be proved:

Proposition 13.1 ([14]) Assume the effectiveness gain estimate Ŵ (t) is sufficiently
accurate so that �maxγo < 1 holds, where γo is defined in (13.24) and ‖�(t)‖ <

�max . Then during fault/failure conditions, for any (ŵ1(t), . . . , ŵm(t)) ∈ W , the
reduced order sliding motion is stable provided

γ2 γ3(1 + γo)

1 − �maxγo
< 1 (13.38)

where γo > ||B+
2 (t)||, γ3 = ||B1|| and γ2 is from (13.37). �

A control structure to guarantee sliding is maintained is

ν̂(t) = ν̂l(t) + ν̂n(t) (13.39)

where ν̂l(t) := −Fvx(t) and

ν̂n(t) :=
{−ρ(t, x) σ(x,t)

||σ(x,t)|| if σ(t) �= 0
0 otherwise

(13.40)

where ρ(t, x) is a scalar modulation function. Then provided �max < 1
γo
, where γo

is defined in (13.24), if

ρ(t, x) = �maxγo‖ν̂l‖ + η

1 − �maxγo
(13.41)

where η is a positive scalar, the control law proposed in (13.39) guarantees sliding
onS in (13.27). Finally, using Eqs. (13.18), (13.19) and (13.21), it follows that the
physical control law is given by
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u(t) = −Ŵ (t)BT
2 (B2Ŵ 2(t)BT

2 )−1

(
Fvx(t) + ρ

σ(t)

||σ(t)||
)

(13.42)

Note the design freedom Fv can be selected to ensure the conditions of Proposi-
tion 13.1 are fulfilled.

13.3.1 An Example

The problem of controlling the lateral axis of a large transport aircraft [10] will be
used to demonstrate the effectiveness of the proposed scheme. The states are roll rate,
yaw rate, side-slip angle and roll angle. The controlled outputs are side-slip angle and
roll angle (which means l = 2). The available control surfaces are anti-symmetric
aileron deflection (rad), rudder deflection (rad) and differential aggregated engine
pressure ratios (i.e. m = 3).

In the simulations which follow the aircraft undertakes a turning manoeuvre in
which the reference command requests a change in φ to 25◦ during the period of
time 60–90 s. A 0◦ reference command is applied to β throughout. Figures13.2 and
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Fig. 13.3 Aileron-fault: actuator deflections

13.3 show various levels of aileron faults (from 0–100%) each occurring at 80 s in
15% increments. It can be seen that the CA systematically redistributes the control
signals to the rudder and the engines, while maintaining the same level of tracking
performance as in the fault-free condition.

This section has demonstrated the development of an ISM based fault tolerant
control law with design parameters Fv (and G). In the next section it will be assumed
that fault tolerance needs to be induced in an existing feedback loop, and the designer
must incorporate an existing choice of feedback gain.

13.4 Retrofitting for FTC

Consider once again the system in (13.14) and partition the input distribution
matrix as

B = [
Bo Bs

]
(13.43)

where Bo ∈ R
n×l , Bs ∈ R

n×m−l and l represents the number of primary actuators.
Here Bo is the input distribution matrix associated with the primary actuators, whilst
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Bs is associated with secondary actuators (which impart redundancy). Assume Bo

has full column rank and let To ∈ R
n×n be an orthogonal matrix associated with a

coordinate change such that

To Bo =
[

0
B21

]
(13.44)

where B21 ∈ R
l×l (and det(B21) �= 0). Therefore in suitable coordinates the system

from (13.14) has a distribution matrix

B =
[

0 B12

B21 B22

]
(13.45)

where B22 ∈ R
l×(m−l). As before, scale the last l states to ensure that BT

21B21 = Il .
Assume the system (A, Bo) is controllable and a state feedback controller, based only
on the primary actuators, has been designed. Specifically assume a state feedback
gain matrix Fo ∈ R

l×n has been designed a-priori so that

ẋ(t) = (A + Bo Fo)x(t) (13.46)

has a suitable dynamic response. A control allocation scheme will now be retrofitted
to the existing controller (Fig. 13.4) without disturbing the existing feedback loop.

The physical control signals sent to the actuators are

u(t) = N (t)ν(t) (13.47)

where ν(t) ∈ R
l is the virtual control effort. Now partition the effectiveness matrix

from equation (13.14) as W (t) = diag{W1(t), W2(t)} where the sub-matrices

Fig. 13.4 Schematic of the
overall control strategy
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PlantActuator
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W1(t) = diag{w1(t), . . . , wl(t)} and W2 = diag{wl+1(t), . . . , wm(t)}. A suitable
choice of allocation matrix is

N (t) =
[

Il

N2(t)(Il − W1(t))

]
(13.48)

where
N2(t) = BT

22B21(BT
21B22W2(t)BT

22B21)
−1 (13.49)

In order that det(BT
21B22W2(t)BT

22B21)
−1 �= 0, because by construction det(B21) �= 0,

this constraint is equivalent to det(B22W2(t)BT
22) �= 0. This imposes a limitation on

the number of elements of W2 that can become zero and therefore limits the number
of total failures in the secondary actuators that can be accommodated.

With respect to the virtual control, after some manipulation

ẋ(t) = Ax(t) +
[

B12W2N2(Il − W1)

B21

]
︸ ︷︷ ︸

Bw

ν(t) (13.50)

and in a fault-free situation when W = I , Eq. (13.50) becomes

ẋ(t) = Ax(t) +
[

0
B21

]
︸ ︷︷ ︸

Bo

ν(t) (13.51)

Consequently if ν(t) = Fox(t), then the nominal baseline performance is achieved.
Furthermore when W = I , substituting in (13.47) and (13.48), it follows

u(t) =
[

Fox(t)
0

]

and only the primary actuators are used. Choose once again

σ(x, t) := Gx(t) − Gx(t0) − G
∫ t

0

(
A + Bo Fo

)
x(τ )dτ (13.52)

and this time define G := BT
o . With this choice of G it follows G Bo = Il and G Bw =

Il . It can be shown that the sliding motion is given by

ẋ(t) = (A + Bo Fo)x(t) + B̃Φ(t)Fox(t) (13.53)

where

B̃ :=
[

B12

0

]
(13.54)
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and Φ(t) := W2N2(Il − W1). It is clear that during fault-free conditions (i.e. when
W = I ), Φ(t) = 0, and Eq. (13.53) becomes (13.46), which is stable by design.
However the sliding motion in (13.53) depends on the matrix W (t), and a stability
analysis needs to be carried out to ensure closed-loop stability for different faults
and failures. Define

γ2 = ‖G̃(s)‖∞ (13.55)

where G̃(s) := Fo(s I − (A + Bo Fo))
−1 B̃. It can be verified that W2N2 is a pseudo-

inverse for BT
21B22, and so using arguments similar to those in [1], the properties

of the pseudo-inverse proved in [24] ensures ‖W2N2‖ < γ1 for some γ1 provided
det(B22W2BT

22) �= 0. Define a scalar γ ∗
1 (which is guaranteed to exist) to be the

smallest number satisfying
‖Φ(t)‖ < γ ∗

1 (13.56)

Proposition 13.2 ([16]) During faults or failures, for any combination of 0 < wi ≤
1, the closed loop system will be stable if γ2γ

∗
1 < 1 �

Again this can be extended to the case when W (t) is not known and is replaced
by Ŵ (t) in the control law. The proposed integral sliding mode control law, which
depends on the nominal system (13.51) is defined as

ν(t) = νl(t) + νn(t) (13.57)

where νl(t) = Fox(t) and

νn(t) = −ρ
σ(x, t)

‖σ(x, t)‖ for σ(x, t) �= 0 (13.58)

where ρ is a scalar gain to enforce the sliding motion. Finally the physical control
law is given by

u(t) =
[

Il

N̂2(t)(Il − Ŵ1(t))

] (
Fox(t) − ρ

σ(x, t)

‖σ(x, t)‖
)

(13.59)

where N̂2(t) is obtained from replacing W by Ŵ in N2.

Proposition 13.3 ([16]) Suppose that the condition

(1 + γ3γ
∗
1 )�max < 1 (13.60)

holds where γ3 = ‖B22‖. Then during fault/failure conditions, including failure of
all the primary actuators and for any ŵl+1(t), . . . , ŵm(t) ∈ Wo where

Wo = {(ŵl+1(t), . . . , ŵm(t)) : det(B22Ŵ2BT
22) �= 0}

the closed loop system will be stable if:
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γ2γ
∗
1 (1 + �max )

1 − (1 + γ3γ
∗
1 )�max

< 1 (13.61)

where γ2 is defined in (13.55). �

13.4.1 Example: Fault Tolerant Control Law for Yaw
Damping

Consider a yaw damper stability-augmentation system for the lateral equations of
motion of an aircraft [12]. Here the baseline control law Fo for the nominal system
(13.51) has been a-priori designed using eigenstructure assignment. The states com-
prise the washout filter state, roll angle, side slip angle, yaw rate and roll rate. The
available control inputs are aileron deflections, spoiler deflections (left: 1–4, 5 and
right: 8, 9–12), rudder deflection, and individual engine thrusts scaled by 105. For
details see [16]. The results presented here are based on a ‘real world’ model of a
B747-100/200 aircraft which has been used as the basis for the GARTEUR AG16
benchmark [10]. Figures13.5 and 13.6, show the states and actuators deflections
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Fig. 13.6 Primary failure: actuators deflections

when both the primary actuators become stuck at some offset positions. Figure13.5
shows that in this extreme failure case nominal performance is maintained.

13.5 RECOVER and the SIMONA Research Simulator

The design frameworks presented in the earlier sections has demonstrated that the
combination of the robustness properties of ISMC, and the ability of CA to redis-
tribute control signals, can create a single controller that has the ability to handle
both nominal fault-free and fault/failure conditions without changing the structure
of the controller. The designs described previously were however based on a single
LTI system obtained through linearization about a certain operating point. In order to
deal with the challenge of maintaining performance across a wide range of operating
conditions, recent years have seen the emergence of linear parameter varying (LPV)
based SMC design. LPV-based SMC design provides a natural extension of many
of the existing linear time invariant (LTI) based designs, and this can be seen as an
added advantage for industrial designers.

Despite the recent development in LPV-based SMC, there is still a lack of imple-
mentation results for these schemes to allow real-time assessment. Some of the recent
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SMCwork that has considered real-time aerospace implementations (especially on a
flight simulator) appears in [2]. However, the results in [2] are based on LTI designs.
The remainder of this chapter will showcase the implementation of an LPV integral
sliding mode scheme, evaluated by a pilot, on a motion simulator. This shows that
the proposed scheme can be implemented in real-time, and feedback from the pilot
provides an evaluation of the controller from a pilot’s operational point of view.

13.5.1 RECOVER Benchmark Model

The model considered for design, simulation and as the basis for the flight simulator
is called RECOVER (REconfigurable COntrol for Vehicle Emergency Return). The
RECOVERmodel represents a high fidelity nonlinear model of a B747-100/200 large
transport aircraft, and it has been used as a test-bed and evaluation benchmark for
the GARTEUR FM-AG16 project [10] (a consortium of academics, research institu-
tions and industry), which investigated state-of-the-art FTC schemes for aerospace
applications.

13.5.2 SIMONA Research Simulator (SRS)

The SRS is a realistic 6 degree-of-freedom (DOF) motion flight simulator at the
International Research Institute for Simulation, Motion and Navigation (SIMONA)
at Delft University of Technology, The Netherlands.

The SRS has a typical commercial aircraft cockpit with two side-by-side pilot
seats, and typical pilot controls. A mode control panel (MCP) allows the pilot to give
auto-pilot commands, with a primary flight display (PFD) and a navigation display
(ND). An engine indication and crew alerting system (EICAS) are also presented on
electronic displays. The latter is augmented with control surface deflections to allow
the pilot to monitor the controller’s actions. The SRS has an outside virtual world
projection with a 180 × 40◦ field of view, coupled with 6 large electro-hydraulic
motion actuators (configured in a hexapod configuration) (Figs. 13.7 and 13.8).

The motion cueing algorithm provides the pilot with a high level of immersion.
The SRS has a modular software and hardware architecture allowing the inclusion of
a wide variety of vehicle models, controllers and displays. The custom middleware
software DUECA (Delft University Environment for Communication and Activa-
tion) handles the real-time scheduling, computer synchronization, and data trans-
port. The custom-built motion and visualization system and its modular structure
have made the SRS a powerful tool for the research of human-machine interaction,
handling qualities [11, 25] as well as the study of FTC schemes [10, 26]. In this work,
the SRS has been configured to represent the RECOVERB747-100/200 aircraft with
an outside virtual world representation of the area around Amsterdam-Schiphol air-
port.
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Fig. 13.7 SIMONA
research simulator

Fig. 13.8 SIMONA
research simulator cockpit
configuration

13.6 Design

In this chapter, only the longitudinal axis of the B747-100/200 aircraft will be con-
sidered for the design of the LPV ISM FTC scheme. However the lateral controller
from earlier work will also be implemented to provide complete longitudinal, lateral
and directional control of the aircraft. The design is based on the longitudinal LPV
plant from [18]. Table13.1 shows the details of the LPVmodel. For design purposes,
the state h̄e has been removed and the remaining states from [18] have been reordered
as [θ̄ , ᾱ, V̄tas, q̄]T.

As in the RECOVER benchmark model, it will be assumed that the elevators
and the stabilizer are potentially prone to faults/failures. The LPV plant subject to
actuator faults or failures is represented by

˙̄x(t) = A(ρ)x̄(t) + B(ρ)W (t)u(t) (13.62)

where W = diag{w1(t), w2(t), w3(t)} represents the effectiveness levels of the ele-
vators, stabilizer and thrust respectively. The scheduling parameter ρ (defined in
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Table 13.1 Longitudinal LPV model from [18]. (The bar (·̄) represent the deviation from its trim.)

States\ctrl surf Description Trim value

ᾱ Angle of attack 1.05◦

q̄ Pitch rate 0 (◦/s)
V̄tas True air speed 227.02 (m/s)

θ̄ Pitch angle 1.05 (◦)
h̄e Altitude 7000 (m)

δ̄e, δ̄s Elevator, stabilizer 0.163, 0.590 (◦)
T̄n Total engine thrust 42291 (N)

LPV parameters Description Range

[ρ1, ρ2, . . . , ρ7] [ᾱ, V̄tas , V̄tas ᾱ, V̄ 2
tas , . . . , V̄ 2

tas ᾱ, V̄ 3
tas , V̄ 4

tas ] Vtas : [150, 250] m/s
α : [−2, 8]◦

Table13.1) is assumed to be available and to lie in a bounded compact set Ω ⊂ R
7.

For control purposes, all the states x̄(t) are assumed to be available. In (13.62),
A(ρ) ∈ R

4×4, B(ρ) ∈ R
4×3 are the time varying system and input matrices respec-

tively where

A(ρ) = A0 +
7∑

i=1

Aiρi and B(ρ) = B0 +
7∑

i=1

Biρi (13.63)

For further details of the LPV matrices see [4, 18]. For design purposes, the input
distribution matrix B(ρ) can be written as

B(ρ) =

⎡
⎢⎢⎣

0 0 0
0.01 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
B f

⎡
⎣100b31(ρ) 100b32(ρ) 100b33(ρ)

0 0 b23(ρ)

b41(ρ) b42(ρ) b43(ρ)

⎤
⎦

︸ ︷︷ ︸
E(ρ)

=
[

B1

B2

]
E(ρ) (13.64)

Note that (13.64) represents a factorisation of B(ρ) into a fixed and varying compo-
nent – which will be exploited during the design process. Also note that the term B1

(the top two rows of B f ) in (13.64) is smaller compared to the B2 term. This will be
exploited during the design of the ISM controller.

The control objectives are to manipulate the flight path angle (FPA) (γ̄ = θ̄ − ᾱ)

and speed V̄tas , and therefore the controlled output ȳc is defined as
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ȳc(t) =
[
1 −1 0 0
0 0 1 0

]
︸ ︷︷ ︸

Cc

x̄(t) =
[

γ̄

V̄tas

]
(13.65)

To include tracking of FPA and speed, the following integral action states [3] are
incorporated

ẋr (t) = r(t) − Ccx̄(t) (13.66)

Here r(t) is the command to be tracked, and Cc is the controlled output distribution
matrix defined in (13.65). The ISM control design will be based on the following
augmented system:

ẋa(t) = Aa(ρ)xa(t) + Bνa ν(t) + Brr(t) (13.67)

where the augmented states xa(t) = [
xT

r (t) x̄T(t)
]T

and

Aa(ρ) :=
[
0 −Cc

0 A(ρ)

]
, Bνa :=

[
0
Bν

]
, Br =

[
Il

0

]

In the above (using the fact that from (13.64) B2BT
2 = I2)

Bν :=
[

B1BT
2

Il

]

For the design of the ISM controller, the following sliding surface is considered

S = {xa ∈ R
6 : σa(xa, ρ, t) = 0}

where σa ∈ R
2 is the ISM switching function for the augmented system given by

σa(·):=Ga (xa(t)−xa(0))−Ga

∫ t

0

(
Aa(ρ)−Bνa Fa

)
xa(τ )dτ (13.68)

In (13.68) the matrix Fa must be chosen to make
(

Aa(ρ)−Bνa Fa
)
xa(t) stable for all

ρ ∈ Ω . (Details of the design of Fa will be discussed later). In (13.68) the design
freedom Ga has been chosen as

Ga := B2(BT
fa

B fa )
−1BT

fa
=

[
0 0 0 0 1 0
0 0 0 0 0 1

]
(13.69)

where

B fa =
[
02×3

B f

]
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and B2 represents the bottom two rows of B f defined in (13.64).
The physical control law is based on the augmented system from (13.67) and is

given by

u(t) = −E(ρ)−1BT
2

(
B2E(ρ)Ŵ (t)(E(ρ))−1BT

2

)−1

·
(

Fa xa(t) + κ(t)
σa

‖σa‖
)

(13.70)

for σa �= 0 where κ(t) represents an adapting gain and Ŵ (t) represents an estimate
of the actual actuator efficiency W (t). It is assumed the estimate of W (t) satisfies the
form in (13.15). Due to this imperfection, an adaptive scheme has been considered
for the positive scalar modulation function κ(t) in (13.70). This has the advantage of
allowing the modulation gain to be small in fault-free situations, but also to become
sufficiently large when faults are present. Here specifically κ(t) is given by

κ(t) = ‖Fa‖‖xa(t)‖κ̄(t) + η (13.71)

where η is a positive design scalar and the positive adaptation gain κ̄(t) evolves
according to

˙̄κ(t) = −βκ̄(t) + γ ε0‖Fa‖‖xa(t)‖‖σa(t)‖ (13.72)

In this chapter, the design scalars η, β, γ and ε0 have been chosen as η = 1, β = 1,
γ = 0.01 and ε0 = 0.01 respectively. Note that the adaptation scheme in (13.71)–
(13.72) is different from the one in [13, 14].

The tracking requirements are to decouple the FPA and true air speed Vtas dynam-
ics, and to provide demand tracking with fault-free settling times of 20 and 45 s
respectively. During faults/failures to any of the actuators, a slower degraded settling
time response of 30 s for the FPA is acceptable, while the settling time for Vtas should
remain unchanged. Based on this requirement, the fixed matrix Fa from (13.68) and
(13.70) has been obtained by using LMIs to achieve two main objectives.

The first objective is to ensure the required level of nominal performance for
all values of ρ using an LQR based design. The second objective is to ensure the
following stability condition

γ0γ1

(
1 + c√

ε

)
< 1 (13.73)

is satisfied for all permissible faults/failures which belong to the set

Wε={(w1, w3, w3)∈[ 0 1 ] × [ 0 1 ] × [ 0 1 ] : (Ga Bw(ρ))T(Ga Bw(ρ))>ε I }
(13.74)

where ε is a small positive scalar satisfying 0 < ε � 1 and

Ga Bw(ρ) = B2E(ρ)W (t)(E(ρ))−1BT
2 (13.75)
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The set Wε represents the class of actuator faults/failures for which stability of the
sliding motion can be maintained. In (13.73), c = maxρ∈Ω ‖E(ρ)‖‖(E(ρ))−1‖ rep-
resents the worst case condition number of E(ρ) from (13.64) and γ1 = ‖B1‖. The
positive scalar γ0 is the L2 gain associated with the nominal fault-free closed loop
sliding motion. Here both the LQR performance objective and the closed loop sta-
bility condition Bounded Real Lemma (BRL) have been formulated as LMIs. Since
the LPV system considered here is affine, the LMI formulation can be represented
by a polytopic system and the LMIs are solved for all the vertices of the polytope to
synthesize the state feedback gain Fa (see [13] for further details).

In this chapter the designmatrices associatedwith theLQRcost functionhavebeen
chosen as Q = diag{1.1, 0.04, 1, 1, 0.03, 5}, and R = diag{0.007, 1.1} respectively,
where the first two states in the Q matrix are the integral action states associated with
the augmented system in (13.67). The fixed state feedback matrix Fa resulting from
the LMIs is given by

Fa =
[−1.1161 −2.3532 −10.3807 3.8107 3.7409 −1.3623

−0.9891 0.0177 9.6902 −4.9097 −0.0222 3.3779

]

Here ε = 0.28 has been chosen since it is assumed that the engines are fault-free
(it is the only available actuator for Vtas tracking) while the elevator is considered
as the primary control surface for FPA tracking and the horizontal stabilizer acts as
redundancy. To satisfy the closed-loop stability condition in (13.73), γ0 associated
with (13.73) should satisfy γ0 <

√
ε

γ1(
√

ε+c)
= 14.8588. This has been obtained using a

numerical search. From the LMIs, γ0 = 11.0000 has been obtained during the design
process for Fa and the stability condition in (13.73) is satisfied.

For the SRS implementation, the discontinuous term in (13.70) has been smoothed
to ensure appropriate control signals are sent to the actuators. This is achieved by
using the sigmoidal approximation [3] given by σa

‖σa‖+δ
where δ is a small positive

scalar chosen as δ = 0.01. This sigmoidal approximation also allows extra design
freedom especially when a fault/failure has occurred.

Note that the control law in (13.70) requires the actuator effectiveness level W .
Since the actual actuator deflection is assumed to be available, the effectiveness of
the actuator can be estimated by comparing the actual actuator deflection with the
commanded signals from the controller. This is not an unrealistic assumption in
modern aircraft systems [7].

13.7 SRS Implementation

Before being implemented on the SRS, the controller was initially developed and
tested in a desktop simulation environment using the RECOVER software. This was
carried out under Matlab R2006b, the original version supported by the RECOVER
model, using a fixed time solver ODE4 with a time step of 0.01s.
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For implementation in the SRS, the same input/output interface to the SRS as
used in the GARTEUR FM-AG16 evaluation campaign has been considered. The
SIMULINK block of the ISM controller was converted into C code using the Real-
Time Workshop utility in Matlab. This C code was then implemented on the SRS
flight control computer, which is a PC with an Intel(R) Xeon(R) 3.07GHz processor.
The ISM controller has a relatively low computational load allowing the controller
to run in real-time using a 10ms per step size.

Figure13.9 shows the high level overview of the controller-SRS interconnection
which has been implemented. From Fig. 13.9, the ISM controller provides an inner-
loop FPA and speed tracking capability which can be directly controlled by the
pilot through the MCP dials in the centre of the cockpit. To emulate an actual aircraft
autopilot, outer-loop PID based control of altitude has been used to provide command
signals for the inner-loop FPA ISM controller. The gains associated with the outer-
loop PID altitude control have been selected as K p = 0.1, Ki = 0.07 and kd = 0.1.

The FTC scheme was later flown and evaluated by an experienced commercial
pilot, using the SRS, under several scenarios including fault-free and actuator failure
cases. Although the controller is designed based on an LPV model from [18], the
results obtained during the SRS evaluation (offline and piloted) involve the full high
fidelity nonlinear aircraft model.

Fig. 13.9 Controller interconnection
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13.8 SRS Offline Evaluation Results

The results presented in this section are based on the offline evaluation results which
have been obtained using the software architecture DUECA. The offline tests con-
ducted in DUECA represent the initial evaluations of the controller with real-time
scheduling to ensure synchronization between all the computers in the network com-
prising the SRS. A series of tests was carried out before the controller was evaluated
by the pilot on the SRSwith themotion system turned on. Apart from testing the real-
time synchronization of the controller, the offline tests also provide a valuable prelim-
inary evaluation of the controller performance under the same (consistent) conditions
and command inputs for the fault-free case and when faults/failures occur. Despite
the fact that the controller is designed based on the LPV model from [18] which is
obtained from a trim condition at 7000m as described in Table13.1, the controller
has been tested at the trim condition [5.53◦, 0.0017 ◦/s, 134 m/s, 5.53◦, 600 m]with
an input trim [2◦,−1.59◦, 45,568 N] with an initial mass of 317,000kg and with the
flaps fully retracted. This represents one of the trim conditions used for the GAR-
TEUR FM-AG16 benchmark problem and it is different to the trim conditions of the
model in [18].

The overall manoeuvre considered during the SRS offline evaluation is given in
Fig. 13.10. This covers a wide range of the flight envelope and includes significant
longitudinal (speed and altitude) and lateral (roll) deviations from the trim points to
highlight the efficacy of the proposed scheme – especially when dealing with faults
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Fig. 13.10 Offline evaluation: trajectory



328 C. Edwards et al.

and failures. In this chapter two benchmark failure scenarios will be considered [10]:
one is an elevator jam and the other is a stabilizer runaway. For consistency, the same
heading, altitude and speed (recorded) commands will be used for all the fault-free
and failure cases, while the failures are set to occur at approximately 260 s.

13.8.1 Elevator Jam

Figure13.11 shows a comparison between the fault-free case and a scenario when
an elevator jams at 260 s. The effect of the jammed elevator can be seen in the
plot of the control surface deflections (Fig. 13.11b) where from 260 s onwards, the
elevator does not move. The difference between the fault-free case and the failure
case can clearly be seen. Despite the elevator jam, there is no visible difference
in terms of the flight path angle γ and speed Vtas tracking performance (the lines
visually overlap), which highlights the efficacy of the proposed scheme. There is
also no visible difference in terms of the altitude change between the failure and the
fault-free case. From Fig. 13.11c, it can be seen that immediately after the failure
at 260 s, the elevator effectiveness level drops to 0%. The plot of the norm of the
switching function ‖σa(t)‖ in Fig. 13.11d also shows no visible difference between
the fault-free and the failure case. Finally, the plot of the adaptive gain in Fig. 13.11d
shows the variation of κ(t) in (13.71). Again, there is no visible difference in terms
of the adaptive gain between the fault-free and the failure case. Note that in the fault-
free case, the variations in the adaptive gain in Fig. 13.11d are due to the combination
of variations in ‖σa(t)‖ and ‖xa(t)‖ as described in (13.72).

13.8.2 Stabilizer Runaway

Figure13.12 shows the results for the case when a stabilizer runaway occurs. The
effect of the stabilizer runaway can be seen in the control surface plot in Fig. 13.12b
where the stabilizer moves at maximum rate to a maximum position of 3◦. The effect
of control reallocation can be seen as the elevator moves to around 8◦ immediately
after the failure occurs at 260 s. Despite the stabilizer runaway, there is no visible
difference in terms of tracking performance between the fault-free and the failure
case as shown in Fig. 13.12a. The plot of the norm of the switching function ‖σa(t)‖
in Fig. 13.12d shows the difference between the fault-free and the failure case. Here it
can be seen that the norm for the failure case is slightly higher than for the fault-free
case immediately after the failure at 260 s, but is still relatively small. Also note
that a stabilizer runaway fault is considered as a ‘catastrophic failure case’ in the
benchmark problem [10]. Finally, the plot of the adaptive gain in Fig. 13.12d shows
the variation of κ(t) in (13.71) and indicates there is a slight difference in terms of
the adaptive gain between the fault-free and the failure case, starting from the time
when the failure occurs.
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13.9 SRS Piloted Evaluation Results

The results presented in this section are based on the piloted evaluation results on
the SRS. The pilot has more than 9000 flying hours and served as a commercial air
transport captain for the Boeing 757-200 and Boeing 767-300. Valuable feedback
from the pilot, on the proposed controller from a practical and operational point of
view, will be discussed at the end of the chapter.

In this section, two sets of test results will be presented. As shown in Figs. 13.14,
13.15 and 13.16, the first set of results is associated with the perfect estimation
of actuator efficiency W , conducted under fault-free, elevator jam and stabilizer
runaway scenarios. These results are the actual pilot evaluation results. The second
set of results (also plotted on top of Figs. 13.14, 13.15 and 13.16 - i.e. overlapped) is
associated with a 10% imperfection in the estimate of actuator efficiency Ŵ . These
results are based on the ‘offline’ simulation where the pilot inner loop FPA and
speed commands, saved from the logged data from the SRS, have been used to drive
desktop simulations. These ‘offline’ results with imperfect estimation of Ŵ were not
tested during the piloted evaluation due to implementation issues associated with
additional hardware required for the activation of the imperfection. Despite being
tested using desktop simulations, the results with imperfect Ŵ estimation provide a
unique opportunity for an exact comparison with the case of perfect W knowledge.

Figure13.13 shows three different trajectories of the aircraft during the pilot eval-
uation associated with the fault-free, elevator jam and stabilizer runaway. For consis-
tency and to allow comparison between the three different cases, the same sequence
of manoeuvres were conducted by the pilot. Note that even though same sequence
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Fig. 13.14 Pilot evaluation - fault-free with perfect and imperfect Ŵ
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Fig. 13.15 Pilot evaluation - elevator jam with perfect and imperfect Ŵ
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Fig. 13.16 Pilot evaluation: stabilizer runaway with perfect and imperfect Ŵ
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of manoeuvres were carried out, the final manoeuvres shown in Fig. 13.13 are not
exactly the same as compared to the ones in Fig. 13.10 which use recorded com-
mands to reproduce the manoeuvres exactly. The difference in Fig. 13.13 is due to
the different time each sequence was executed as the pilot manually changes the
heading, altitude and speed commands from the dial on the MCP. It has to be noted
however that despite the different execution times, the magnitude of each command
is the same.

13.9.1 Pilot Evaluation: Fault-Free

Figure13.14 shows the piloted evaluation results of the proposed controller during
fault-free conditions. Figure13.14 also shows the comparison between perfect W and
imperfect Ŵ in fault-free conditions. Figure13.14c shows the nominal case when
W = 1 and the case of imperfect estimation of effectiveness level when Ŵ = 0.9.
FromFig. 13.14a, it can be seen that there are no visible differences between the states
associated with the perfect and imperfect levels of actuator effectiveness estimation.
This highlights the ability of the proposed controller to handle 10% imperfections
in the actuator effectiveness levels. In both perfect and imperfect situations, the
controller provides good altitude, FPA and speed tracking. Figure13.14b shows no
visible difference between perfect and imperfect estimation in the deflections of the
elevator and stabilizer during fault-free conditions. Finally Fig. 13.14d shows the
nominal variations in the sliding mode switching function σa and the adaptive gain
due to changes in operating condition for the fault-free case. Again there are no
visible differences between the perfect and imperfect case.

13.9.2 Pilot Evaluation: Elevator Jam

Figure13.15 shows the piloted evaluation for the case of an elevator jam. The effect
of the elevator jam can be seen in Fig. 13.15b where the elevator locks in place
from approximately 63 s onwards. After the elevator jam, the stabilizer becomes
more active compared to the fault-free case in Fig. 13.14b. Figure13.15 also shows
the comparison between the perfect and imperfect estimates of the effectiveness
level in the event of an elevator jam. The imperfect estimation of Ŵ can be seen
in Fig. 13.15c. The actual (perfect) elevator effectiveness in the event of a jam is
W = 0. However, in the imperfect case, Ŵ = 0.1. Despite this imperfection, it can
be seen from Fig. 13.15a that there are no visible differences in the states and tracking
performance. In fact, there is also no visible difference when compared to the fault-
free case in Fig. 13.14a.
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13.9.3 Pilot Evaluation: Stabilizer Runaway

Figure13.16 shows the piloted evaluation results in the event of a stabilizer runaway
at approximately 74 s. The effect of the stabilizer runaway can be seen in Fig. 13.16b
where the stabilizer moves at its maximum rate to its maximum deflection of 3◦.
After this point, it can be seen that the elevator becomes more active and moves
to −10◦ in order to compensate for the failed stabilizer. Figure13.16c shows the
comparison between the perfect W = 0 and imperfect Ŵ = 0.1 case. Despite the
stabilizer runaway and imperfect estimation of the stabilizer effectiveness level, there
is no visible difference in the states and tracking performance as seen inFig. 13.16a. In
fact, there is also no visible difference compared to the fault-free case in Fig. 13.14a.
Finally Fig. 13.16d shows that sliding is being maintained because ‖σa(t)‖ is close
to zero and the adaptive gain remains low, despite the challenging and critical failure
of a stabilizer runaway [10].

13.9.4 Piloted Evaluation: Pilot Feedback

General feedback from the pilot and the SRS researcher indicates that similar per-
formance was observed on all three scenarios being evaluated. In fact the pilot was
unable to notice a meaningful difference between the fault-free and the elevator and
stabilizer failure cases, and reported no transient behaviour when the failure occurs.
Furthermore the SRS researcher had to double check that the failure did occur and the
pilot only noticed that the failure had occurred when looking at the control surface
deflections on the SRS EICAS display at the centre of the cockpit.

13.10 Discussion

The offline and piloted evaluations show very similar tracking performance in the
nominal and failure conditions, which demonstrates the capability of the controller.
In the piloted evaluation, the controller was tested over a large part of the flight enve-
lope and in a realistic environment. Apart from demonstrating that the controller
can be implemented and flown in a real-time simulator, this evaluation also provided
feedback on its closed-loop behaviour from an operational standpoint. The pilot com-
ments confirmed very similar performance in both nominal and failure conditions,
but also indicated where this performance should be tuned to be more in line with
typical operational requirements. By tuning the outer loops of the controller, it is
expected that a second version will be able to fulfil all relevant performance criteria.

The results in Sect. 13.9 also provide a comparison between the piloted evaluation
results based on perfect knowledge of W and also imperfect estimation of Ŵ . This
comparison provides a measure of performance of the proposed controller when
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estimation of the actuator effectiveness level is not exactly known. In fact, as shown
in Figs. 13.14, 13.15 and 13.16 that there are no visible differences in the performance
of the aircraft between perfect W and imperfect Ŵ , even in the presence of elevator
and stabilizer failures. This indicates that the pilot will not see any difference in
terms of performance. Therefore despite being conducted on a desktop simulation,
the observation and comments given for the piloted evaluation also apply to the
desktop simulation with imperfect Ŵ .

13.11 Conclusions

The chapter has considered integral sliding modes and how they can be employed
in the context of fault tolerant control. Two distinct classes of problems were con-
sidered: firstly a fault tolerant ISM controller was designed for a class of faults
in an over-actuated linear system; and secondly an ISM scheme was retrofitted to
an existing feedback control scheme for an over-actuated uncertain linear system
with the objective of retaining the pre-existing nominal performance in the face of
faults and failures. Aerospace examples have been used throughout to demonstrate
the efficacy of the approach. In order to handle wider variations in the flight con-
ditions, the controller ideas have been extended using LPV ideas. These controllers
have been implemented and tested on the SIMONA research flight simulator. One
of the highlights of the piloted evaluation was the fact that the pilot was unable to
see any discernible difference between the fault-free and the failure cases whilst
flying the aircraft. Furthermore there was no transient observed when the elevator
jammed and when a more catastrophic stabilizer runaway was tested. The evaluation
results highlight the potential of the proposed scheme for actual real-time industrial
implementation.
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Chapter 14
Speed Control of Induction Motor Servo
Drives Using Terminal Sliding-Mode
Controller

Yong Feng, Minghao Zhou, Fengling Han and Xinghuo Yu

14.1 Introduction

The induction motor (IM) is one of the most common electrical motor used in most
applications. This motor runs at a speed less than its synchronous speed, therefore
it is also called as asynchronous motor. The synchronous speed is the speed of
rotation of the magnetic field in a rotary machine and it depends upon the frequency
and number poles of the IM. The IM has been extensively used in many practical
applications due to its simply construction, lower repair and maintenance costs, high
reliability and relatively low manufacturing cost, etc [1]. With the development of
power electronics, electrical technique and control theories, IMs have been able to be
used in high-performance servo systems, such as speed servo systems, even position
servo systems.

Three methods can be used for the control of IMs: the scalar control, the direct
torque control (DTC) and the field oriented control (FOC). The former method is
very simple method for controlling the speed of IM compared to the vector control
which is more complex. The latter two methods can be utilized to implement the
high-performance IM servo systems.
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In DTC-based IM servo systems both the stator flux and the torque are regulated
respectively using the bang-bang control strategies. This control method may lead to
the torque ripple. If the IM runs at low speed, its performances will become poorer,
and the speed range will be limited.

FOC is widely used in high performance control of IM servo systems. Since
the torque and flux of an IM are decoupled using FOC, the IM systems can yield
faster dynamic response and lower steady-state error. The mathematical model of
an IM in a three-dimensional stationary reference frame (abc) can be converted into
a model in a two-dimensional rotating reference frame (dq) using the Clarke-Park
transformation. The d-axis current in the stator represents the rotor flux and the q-axis
current represents the torque. Therefore, the decoupled rotor flux and the torque of an
IM can be separately controlled like as a decoupled excited DCmotor. Consequently
it is possible to achieve good steady-state and dynamic performances of IMs [2, 3].

However, an accurate information on both the magnitude and the angular position
of the rotor flux are needed by FOC for the transformation between the rotating
and the stationary reference frames. There are two main methods for obtaining the
magnitude and the angular position of the rotor flux, the direct measurements or
the indirect estimation. The former needs special sensors, therefore it is difficult
in practical applications. The latter is popular and widely used [4]. It applies the
measurements of the stator currents, stator voltages and the motor speed into some
estimation algorithms to estimate the magnitude and the angular position of the rotor
flux. A lot of estimation methods for the rotor flux have been proposed, such as
Luenberger observer-based methods [5, 6], model reference methods [7, 8], Kalman
filter-based methods [9], and neural networks [10].

The high performance control of IMs is a challenge due to multi-variable, strong
coupling, and nonlinearities in themodel of IMs [11, 12]. So far, a lot of controlmeth-
ods have been proposed to improve the robustness and dynamical performances of
IMs, such as neural network control, fuzzy control, optimal control, adaptive control
and sliding-mode control [13, 14]. Sliding-mode control has attractive advantages
compared to other control methods, such as low sensitivity to the system parame-
ter variations and strong robustness to external disturbances [15, 16]. However, the
chattering phenomena limit the practical applications of conventional sliding-mode
control [17]. In this chapter, a nonsingular terminal sliding-mode control (NTSM)
method is applied for IM velocity servo systems. To implement the FOC of IMs,
an NTSM observer is designed in the chapter to estimate the rotor flux of IMs with
equivalent smooth control signals [18, 19]. Additionally, the speed sensorless tech-
nology is also utilized in this chapter, afterwards an NTSM observer is utilized in the
FOC system of IMs to estimate the speed instead of practical sensors.The simulations
have been carried out to validate the applied method.
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14.2 Mathematical Model of Induction Motor

An accurate mathematical model of IMs is the basic factor for the implementation
of high-performance servo systems of IMs, especially for the FOC algorithms. For
simplicity of the analysis some assumptions for IMs can be described as follows:

(1) the effect of magnetic saturation is neglected.
(2) the three-phase windings have the same structure and the fringe effect is

neglected.
(3) the slots effect is ignored.
(4) the iron core loss is not taken into account.

14.2.1 Mathematical Model of IM in Three-Dimensional
Stationary Coordinate (abc)

Themathematical model of IMs is usually composed of the voltage, flux, and motion
equations. Based on the assumptions above, the voltage equations of the IMs in three-
dimensional stationary coordinate (abc) are below:

⎡
⎢⎢⎢⎢⎢⎢⎣

usa

usb

usc

ura

urb

urc

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Rs 0 0 0 0 0
0 Rs 0 0 0 0
0 0 Rs 0 0 0
0 0 0 Rr 0 0
0 0 0 0 Rr 0
0 0 0 0 0 Rr

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

isa

isb

isc

ira

irb

irc

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ̇sa

ψ̇sb

ψ̇sc

ψ̇ra

ψ̇rb

ψ̇rc

⎤
⎥⎥⎥⎥⎥⎥⎦

(14.1)

where usa , usb and usc are three stator voltages in abc axes;
ura , urb and urc are three rotor voltages in abc axes;
isa , isb and isc are three stator currents in abc axes;
ira , irb and irc are three rotor currents in abc axes;
ψsa , ψsb and ψsc are three stator fluxes in abc axes;
ψra , ψrb and ψrc are three rotor fluxes in abc axes;
Rs is the stator resistance;
Rr is the rotor resistance.

Therefore the flux equations of an IM in the three-dimensional stationary coordi-
nate (abc) include both the stator and rotor flux equations and describe the relation-
ships between the currents and the fluxes in the stator and rotor. They are given by
the following equations:

[
ψs

ψr

]
=

[
Lss Lsr

Lrs Lrr

] [
is

ir

]
(14.2)
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with

Lss =
⎡
⎢⎣

Lsm + Lsl − 1
2 Lsm − 1

2 Lsm

− 1
2 Lsm Lsm + Lsl − 1

2 Lsm

− 1
2 Lsm − 1

2 Lsm Lsm + Lsl

⎤
⎥⎦, Lrr =

⎡
⎢⎣

Lsm + Lrl − 1
2 Lsm − 1

2 Lsm

− 1
2 Lsm Lsm + Lrl − 1

2 Lsm

− 1
2 Lsm − 1

2 Lsm Lsm + Lrl

⎤
⎥⎦,

Lsr = LT
rs = Lsm

⎡
⎣

cos θ cos(θ − 120◦) cos(θ + 120◦)
cos(θ + 120◦) cos θ cos(θ − 120◦)
cos(θ − 120◦) cos(θ + 120◦) cos θ

⎤
⎦

where ψs and ψr are the stator flux phase and the rotor flux phase in abc axes
respectively, by ψs = [ψsa, ψsb, ψsc]T , ψr = [ψra, ψrb, ψrc]T

is and ir are the stator current vector and the rotor current vector in abc axes
respectively, by is = [isa, isb, isc]T , ir = [ira, irb, irc]T ;

Lsl and Lrl are the stator and rotor leakage inductance respectively;
Lsm and Lrm are the mutual inductance between the stator and rotor windings;
θ is the electric angle between the stator and rotor windings.
The torque equation of IMs can be given as follows:

Te = n p Lsm[(isaira + isbirb + iscirc) sin θ + (isaira + isbirb + iscirc) sin(θ + 120◦)
+ (isaira + isbirb + iscirc) sin(θ − 120◦)]

(14.3)
where n p is the number of pole pairs.

Finally the mechanical equation of an IM can be described as follows:

Te = TL + J

n p
ω̇ (14.4)

where ω is the electric angular velocity of the rotor;
J is the inertia of the motor;
TL is the load torque.

14.2.2 Mathematical Model of IM in Two-Dimensional
Stationary Coordinate (αβ)

BasedonClarke transformation, themathematicalmodel of IMs in a three-dimensional
stationary coordinate (abc) can be converted into a two-dimensional stationary coor-
dinate (αβ). The Clarke transformation is given by the following equation:

C3/2 =
√
2

3

[
1 − 1

2 − 1
2

0
√
3
2

√
3
2

]
(14.5)

Subsequently, the voltage equations of the IMs in a two-dimensional stationary
coordinate (αβ) can be described as follow:



14 Speed Control of Induction Motor Servo Drives Using … 345

⎧⎪⎪⎨
⎪⎪⎩

usα = Rsisα + Ls i̇sα + Lmi̇rα

usβ = Rsisβ + Ls i̇sβ + Lmi̇rb

urα = Rr irα + Lr i̇rα + Lmi̇rα + ω(Lmisβ + Lr irβ)

urβ = Rr irβ + Lr i̇rβ + Lmi̇sβ + ω(Lmisα + Lr irα)

(14.6)

where usα and usβ are two stator voltages in αβ axes;
urα and urβ are two rotor voltages in αβ axes;
isα and isβ are two stator currents in αβ axes;
irα and irβ are two rotor currents in αβ axes;
Ls , Lr , and Lm the stator inductance, the rotor inductance and the mutual

inductance between the stator and rotor windings, which are described by

Ls = Lm + Lls, Lr = Lm + Llr , Lm = 3

2
Lms

Then the flux equations of IMs in a two-dimensional stationary coordinate (αβ)
can be described as follow:

⎧⎪⎪⎨
⎪⎪⎩

ψsα = Lsisα + Lmirα

ψsβ = Lsisβ + Lmirβ

ψrα = Lmisα + Lr irα

ψrβ = Lmisβ + Lr irβ

(14.7)

where ψsα and ψsβ are the stator fluxes in αβ axes respectively;
ψrα and ψrβ are the rotor fluxes in axes respectively.

The torque equation of IMs in a two-dimensional stationary coordinate (αβ) is
described as follows:

Te = n p Lm(isβ irα − isαirβ) (14.8)

14.2.3 Mathematical Model of IMs in Two-Dimensional
Rotating Coordinate (dq)

The FOC strategy can decouple the d-axis and q-axis currents in the stator of an
IM applying the Park transformation, and make the rotor flux and torque of the IM
controlled separately like as decoupled excited DCmotors. The relationship between
the two-dimensional stationary and rotating coordinates can be shown in Fig. 14.1,
where θe represents the electric angle between the d-axis and the α-axis. The speed
of the two-dimensional rotating coordinate equals to ω1 which is the synchronous
electric angular velocity of the IM.

The Park transformation is given by

C2s/2r =
[

cos θe sin θe

− sin θe cos θe

]
(14.9)
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Fig. 14.1 αβ and dq coordinates

Then the voltage equations of the IMs in a two-dimensional rotating coordinate
(dq) can be described as follow:

⎧⎪⎪⎨
⎪⎪⎩

usd = Rsisd + ψ̇sd − ω1ψsq

usq = Rsisq + ψ̇sq + ω1ψsd

urd = Rr ird + ψ̇rd − ωsψrq

urq = Rr irq + ψ̇rq − ωsψrd

(14.10)

where usd and usq are two stator voltages in dq axes;
urd and urq are two rotor voltages in dq axes;
isd and isq are the stator currents in d- and q- axes;
ird and irq are the rotor currents in d- and q- axes;
ψsd and ψsq are the stator fluxes in d- and q- axes;
ψrd and ψrq are the rotor fluxes in d- and q- axes;
ωs is the slip angle velocity;
ω1 is the synchronous angular velocity.

The flux equations of the IMs in a two-dimensional rotating coordinate system
(dq) can be described as follow:

⎧⎪⎪⎨
⎪⎪⎩

ψsd = Lsisd + Lmird

ψsq = Lsisq + Lmirq

ψrd = Lmisd + Lr irq

ψrq = Lmisq + Lr irq

(14.11)



14 Speed Control of Induction Motor Servo Drives Using … 347

The torque equation of IMs in a two-dimensional rotating coordinate (dq) is
given by

Te = n p Lm

Lr
(isqψrd − isdψrq) (14.12)

Summarizing, the mathematical model of IMs in a three-dimensional stationary
coordinate (abc) is described by Eqs.(14.1)–(14.4), which is further transferred to the
model in a two-dimensional stationary coordinate (αβ), as shown as in Eqs. (14.6),
(14.7) and (14.8), by the Clark transformation (14.5). Finally, the model of IMs in a
two-dimensional rotating coordinate (dq) is obtained in Eqs. (14.4), (14.10), (14.11)
and (14.12) by the Park transformation (14.9).

14.3 Field Oriented Control System

For squirrel cage IMs, the rotor voltages are

urd = urq = 0 (14.13)

The mathematical model of the IMs in the FOC systems can be finally described
in dq axes as follows by using Eqs. (14.4), and (14.10)–(14.13):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i̇sd = ξ 1
Tr

ψrd + ξωψrq − λisd + ω1isq + K usd

i̇sq = −ξωψrd + ξ 1
Tr

ψrq − ω1isd − λisq + K usq

ψ̇rd = − 1
Tr

ψrd + (ω1 − ω)ψrq + Lm
Tr

isd

ψ̇rq = −(ω1 − ω)ψrd − 1
Tr

ψrq + Lm
Tr

isq

ω̇ = n2
p Lm

J Lr

(
isqψrd − isdψrq

) − n p

J TL

(14.14)

where σ = 1 − L2
m/Ls Lr is the leakage coefficient; Tr = Lr/Rr is the rotor time

constant; and K = 1/σ Ls , ξ = K (Lm/Lr ), λ = K (Rs + L2
m/Tr Lr ).

Based on the FOC strategy, the d-axis is orientated in accord with the axis of the
rotor flux. Therefore d- and q- axis rotor flux can be determined as follows

{
ψrd = ψr

ψrq = 0
(14.15)

where ψr is the rotor flux.
The FOC of IMs is based on their mathematical model (14.14) and the field

orientated principle (14.15). It can be seen that the control of IMs is decoupled into
the rotor flux control and torque control. Then the FOC-based speed servo system
of IMs can be built using four nonsingular terminal sliding-mode controllers in
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Fig. 14.2 An FOC-based speed closed-loop control system of IMs

the speed-, flux-, d-axis current- and q-axis current-loops respectively, as shown in
Fig. 14.2.

In Fig. 14.2, ωmref is the required speed of the IM. The outputs of the speed and
flux controllers are the references of the stator currents in d- and q-axes respectively.
To implement high-performance control of the FOC position servo system of IMs,
four full-order sliding-mode controllers will be designed in the next section.

14.4 NTSM Controllers for IM Servo System

14.4.1 Speed Controller

The motion equation of the IMs can be obtained from the model of the IMs (14.14)
as follows:

ω̇m = n p Lm

J Lr
isqψr − 1

J
TL (14.16)

where ωm = ω/n p is the mechanical angular velocity of the rotor.
Defining the desired mechanical velocity of the motor as ωmref , which should be

smooth enough up to the second order time derivative, the error between the actual
velocity and the given velocity eω is:

eω = ωmref − ωm (14.17)
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Then the speed error dynamics can be obtained as follows using Eqs.(14.16) and
(14.17):

ėω = ω̇mref − ω̇m = ω̇mref − n p Lm

J Lr
ψr isq + 1

J
TL (14.18)

A NTSM manifold [7] is designed as follows:

sω = eω + γ1ė
p1/q1
ω (14.19)

where γ1 > 0; p1 and q1 are odd, and 1 < p1/q1 < 2.

Theorem 14.1 The NTSM surface (14.19) and the following control assure that
finite-time convergence of the speed error dynamics (14.18):

isqre f = isqeq + isqn (14.20)

isqeq = J Lr

n p Lmψr
ω̇mref (14.21)

i̇sqn + T isqn = vω (14.22)

vω = J Lr

n p Lmψr

⎛
⎜⎝ sωė p1/q1−1

ω∣∣∣sωė p1/q1−1
ω

∣∣∣
2 |sω| ∣∣ė p1/q1−1

ω

∣∣ (k1 + η1) + q1

γ1 p1
ė2−p1/q1
ω

⎞
⎟⎠ (14.23)

where k1 > 0, η1 > 0 are design parameters, and k1 >
(∣∣ 1

J ṪL

∣∣ +
∣∣∣ n p Lmψr

J Lr
T isqn

∣∣∣
)

.

Proof The following Lyapunov function is considered Vω(t) = 0.5sω
2(t). We have:

V̇ω(t) = sω(t)ṡω(t) = sω

[
ėω + γ1 p1

q1
ė p1/q1−1
ω ëω

]

= sωγ1 p1

q1
ė p1/q1−1
ω

[
−n p Lm

J Lr
ψr i̇sqn + 1

J
ṪL + q1

γ1 p1
ė2−p1/q1
ω

]

= sωγ1 p1

q1
ė p1/q1−1
ω

[
−n p Lmψr

J Lr
vω + n p Lmψr

J Lr
T isqn + 1

J
ṪL + q1

γ1 p1
ė2−p1/q1
ω

]
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= sωγ1 p1
q1

ė p1/q1−1
ω

⎡
⎢⎣− sω ė p1/q1−1

ω∣∣∣sω ė p1/q1−1
ω

∣∣∣2
|sω| ∣∣ė p1/q1−1

ω

∣∣ (k1 + η1) + n p Lmψr

J Lr
T isqn + 1

J
ṪL

⎤
⎥⎦

= γ1 p1

q1

[
− |sω| ∣∣ė p1/q1−1

ω

∣∣ (k1 + η1) + sωė p1/q1−1
ω

(
1

J
ṪL + n p Lmψr

J Lr
T isqre f

)]

≤ γ1 p1

q1
|sω| ∣∣ė p1/q1−1

ω

∣∣
[
−(k1 + η1) +

∣∣∣∣
1

J
ṪL

∣∣∣∣ +
∣∣∣∣
n p Lmψr

J Lr
T isqre f

∣∣∣∣
]

≤ γ1 p1

q1
η1

∣∣ė p1/q1−1
ω

∣∣ |sω|

since k1 >
(∣∣ṪL/J

∣∣ + ∣∣(n p Lmψr/J Lr )T isqre f

∣∣), therefore

V̇ω(t) ≤ −γ 1(p1/q1)η1
∣∣ė p1/q1−1

ω

∣∣ |sω| | < 0 for |sω| �= 0

which means that the speed error dynamics (14.18) can reach the sliding-mode sur-
face in finite time, and then both eω and ėω can converge to zero within infinite time.
This completes the proof.

14.4.2 Rotor Flux Controller Design

Define the desired rotor flux as ψrre f = sconst, the error between the actual rotor flux
and the desired flux is eψ :

eψ = ψrre f − ψr (14.24)

The rotor flux error system can be obtained as follows according to the mathe-
matical model (14.14):

ėψ = −ψ̇r = 1

Tr
ψr − Lm

Tr
isd (14.25)

The sliding-mode surface sψ is designed as the follows:

sψ = eψ + γ2ė p2/q2
ψ (14.26)

where γ2 > 0, p2, q2 are odd, and 1 < p2/q2 < 2.

Theorem 14.2 The NTSM surface (14.26) and the following control assure the finite-
time convergence of the rotor flux error system (14.25):
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isdre f = isdeq + isdn (14.27)

isdeq = ψr

Lm
(14.28)

i̇sdn + T isdn = vψ (14.29)

vψ = J Lr

n p Lmψr

⎛
⎜⎝

sψ ė p2/q2−1
ψ∣∣∣sψ ė p2/q2−1
ψ

∣∣∣2
∣∣sψ

∣∣ ∣∣∣ė p2/q2−1
ψ

∣∣∣ (k2 + η2) + q2
γ2 p2

ė2−p2/q2
ψ

⎞
⎟⎠ (14.30)

where k2 > 0, η2 > 0 is the design parameter.

Proof This follows straightforwardly from Theorem 14.1.

14.4.3 q-axis Current Controller Design

Define the error between the desired current in q-axis (isqre f ) and the actual current
in q-axis (isq ) as follows:

esq = isqre f − isq (14.31)

The q-axis current error system can be obtained as the follow according to the
mathematical model (14.14):

ėsq = i̇sqre f − i̇sq = i̇sqre f + ξωψr + ω1isd + λisq − K usq (14.32)

A NTSM manifold ssq is designed as the follow:

ssq = esq + γ3ė
p3/q3
sq (14.33)

where γ3 > 0, p3, q3 are odd, and 1 < p3/q3 < 2.

Theorem 14.3 The NTSM surface (14.33) and the following control assure the finite-
time convergence of the q-axis current error system (14.32):

usq = usqeq + usqn (14.34)

usqeq = (
i̇sqre f + ξωψr + ω1isd + λisq

)
/K (14.35)

u̇sqn + T usqn = vsq (14.36)
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vsq = 1

K

⎛
⎜⎝ ssq ė p3/q3−1

sq∣∣∣ssq ė p3/q3−1
sq

∣∣∣
2

∣∣ssq

∣∣ ∣∣ė p3/q3−1
sq

∣∣ (k3 + η3) + q3

γ3 p3
ė2−p3/q3

sq

⎞
⎟⎠ (14.37)

where k3 > 0, η3 > 0 are design parameters.

Proof This follows straightforwardly from Theorem 14.1 as well.

14.4.4 d-axis Current Controller Design

Define the error between the desired and the actual d-axis current as the follow:

esd = isdre f − isd (14.38)

The d-axis current error system can be obtained as follows according to the math-
ematical model (14.14):

ėsd = isdre f − ξ
1

Tr
ψr + λisd − ω1isq − K usd (14.39)

A NTSM manifold is designed as the follow:

ssd = esd + γ4ė p4/q4
sd (14.40)

where γ4 > 0, p4 and q4 are odd, and 1 < p4/q4 < 2.

Theorem 14.4 The NTSM surface (14.40) and the following control assure the finite-
time convergence of the d-axis current error system (14.39):

usd = usdeq + usdn (14.41)

usdeq =
(

i̇sdre f − ξ
1

Tr
ψr + λisd − ω1isq

)
/K (14.42)

u̇sdn + T usdn = vsd (14.43)

vsd = 1

K

⎛
⎜⎝ ssd ė p4/q4−1

sd∣∣∣ssd ė p4/q4−1
sd

∣∣∣
2 |ssd |

∣∣∣ė p4/q4−1
sd

∣∣∣ (k4 + η4) + q4

γ4 p4
ė2−p4/q4

sd

⎞
⎟⎠ (14.44)

where k4 > 0, η4 > 0 are parameters to design.

Proof This follows straightforwardly from Theorem 14.1.
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14.5 Numerical Simulation Test

Some simulations are carried out for an IM control system to validate the applied
NTSM controllers in MATLAB-Simulink. The parameters of the IM are give as
follows:

PN = 1.1 kW , IN = 2.8 A, UN = 380 V , fN = 50 H z, n p = 2, Rs = 5.9�, Rr =
5.6�, Lr = 37.94m H , Ls = 0.58 H , Lm = 0.55 H , J = 0.021 kg · m2, ψre f =
0.7 W b.

And the NTSM controllers are designed with the following parameters:
p1 = 5, q1 = 3, γ1 = 50, k1 = 5000, T1 = 10; p2 = 5, q2 = 3, γ2 = 30, k2 =

3000, T2 = 10; p3 = 7,q3 = 5,γ3 = 20, k3 = 6000, T3 = 5; p4 = 13,q4 = 11,γ4 =
10, k4 = 3000, T4 = 5.

The desired speed is 20sin(4t) rpm and the desired rotor flux is 0.7W b.
The motor speed and the its tracking error are displayed in Fig. 14.3. For clear

observation, the desired speed is shifted a little bit manually. It can be seen that the
motor speed can track its reference fast and accurately. The rotor flux and its tracking
error are shown in Fig. 14.4. It is clear that the rotor flux can track its reference value
reference. The desired flux is shifted a little as well. The stator currents are displayed
in Fig. 14.5. Both of the two currents track their references quickly and accurately.
The control signals of the NTSM current controllers are shown in Fig. 14.6. It can
be seen that the two control signals are smooth, which means that the chattering is
attenuated by the applied new high-order NTSM method, and better performances
of IM systems can be obtained.

Fig. 14.3 The motor speed and its tracking error
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Fig. 14.4 The rotor flux and its tracking error

Fig. 14.5 The stator currents in dq

14.6 Conclusion

This chapter has introduced a nonsingular terminal sliding-mode control method for
IM velocity servo systems. The NTSM controllers are applied into the speed, flux
and current closed loop of the FOC-based IM velocity servo systems. The designed
NTSM control law can suppress the chattering which exists in conventional sliding-
mode control. The results of simulation have proved that the applied method is
corrective and effective.
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Fig. 14.6 The control signals of the NTSM current controllers
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Chapter 15
Sliding Modes Control in Vehicle
Longitudinal Dynamics Control

Antonella Ferrara and Gian Paolo Incremona

15.1 Introduction

The use of automatic control in ground vehicles has grown significantly over the
last two decades. The main control problems considered in the literature and stud-
ied in depth, providing several solutions, are engine control, driveline control and
vehicle dynamics control [31]. The problems related to vehicle dynamics control
can be distinguished in longitudinal, lateral, vertical and roll dynamics control
problems [57].

Several studies have been devoted to the design of traction/braking control sys-
tems, starting since the 80–90s [15]. This represents the basis to design the so-called
Anti-block Breaking Systems (ABS) and belongs to the class of longitudinal control
dynamics problems. It consists in enhancing the wheeled vehicle with all terrain
capabilities in order to prevent loss of traction of the driving wheels.

As for the lateral dynamics control, this is realized by making the yaw rate of the
vehicle track, at any time instant and for any road condition, the suitable reference
signal. The yaw rate control allows for oversteering and understeering prevention
[25, 26] and represents the basis to design the so-called Electronic Stability Program
(ESP).

Vertical dynamics control includes instead active/semi-active suspension control,
allowing for filtration of road irregularities for a better ride quality and car handling. In
particular, active suspensions use separate actuators which can exert an independent
force on the suspension. Semi-active ones can only change the viscous damping
coefficient of the shock absorber.
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Finally, anti-roll-over control systems allows for road holding, vertical comfort
and is the basis to design the on-hand systems meant to protect the vehicle from
excessive variation of the roll angle [24]. For instance, in some commercial systems,
if the system assesses the roll over risk, engine torque is lowered and some braking
force is applied to one or more wheels to counteract the roll-over tendency.

Automotive subsystems present substantial nonlinearities and their models are
subject to significant uncertainties and external disturbances [24]. Therefore, Sliding
Mode Control (SMC) is a very appropriate and effective methodology to cope with
this kind of systems [16, 58, 59]. In fact, SMC solutions have been developed since
the 90s and many proposals, among the more recent ones, have been successfully
tested on prototypes [2, 12, 15, 23, 27, 29, 32].

The implementation of a feedback control requires several quantities to be avail-
able to the controller at any sampling time instant (e.g., vehicle velocity, wheel-
slip, tire-road friction coefficient). Some of them are directly provided by sensors
which are available on the vehicle. As for traction/braking control and lateral control,
wheel speed sensors are fundamental. They consist of two hall effect sensors, a rare
earth magnet and an appropriate evaluation electronics. Accelerometers/gyroscopic
devices are typically used for yaw rate or roll rate measurements, while low-noise
linear potentiometers are applied as suspension movement monitoring sensors. In
contrast, there are quantities difficult to measure such as the longitudinal vehicle
velocity and the tire-road friction coefficient. In the literature, the velocity of the
vehicle has been estimated through Kalman filters, fuzzy logic, non-linear observers
or custom digital filtering of the vehicle acceleration in combination with wheel
speed measurements. As for the estimation of the tire-road friction coefficient, the
research is still ongoing. Acoustic sensors are used to gather information on road
condition by registering the acoustic waves emitted by the tires. Tire-road deforma-
tion sensors, or accelerometer glued inside the tire to estimate tire-road forces are
used for evaluating the tire-road coefficient.

The problemof estimation of these quantities has been studied in recent years, also
by means of sliding mode observers. In [56] a first order sliding mode observer has
been designed to estimate the wheel rotational speed, which is in fact a measurable
variable. The idea was to exploit the equivalent control of the observer to estimate
the vehicle acceleration. This variable can then be employed in existing algorithms
for vehicle speed estimation. Note that, a direct integration of vehicle acceleration
cannot be performed on experimental data due to measurement noise and sensors
nonidealities, such as biases and drifts, that cannot be perfectly compensated for by
calibration procedures. Further, a tire-road friction estimator was proposed, which
requires only the knowledge of the estimated vehicle acceleration. Other examples
of use of sliding mode observers in the automotive field can be found in [4, 17, 30,
40, 43, 45, 53, 54].

In all the problems of vehicle dynamics control, the measured or estimated con-
trolled variables are passed on to an electronic control unit (ECU) where the control
algorithm is embedded. Conventional control schemes are typically of closed loop
type and mainly based on PID controllers, often with feedforward components to
enhance their performance. In the literature, also robust controllers relying on sliding
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mode generation have been proposed [1, 18–20, 28, 44, 46, 55, 61]. Rather recently,
the assessment of some of these proposals through experimental tests has been per-
formed with satisfactory results [25].

This chapter focuses on the use of SMC to solve traction control and vehicle
platooning control problems. Traction control is an advanced driver assistance system
which increases vehicle drivability, that is the degree of smoothness and steadiness
of acceleration of an automotive vehicle, especially in difficult weather conditions
allowing anti-skid braking and anti-spin acceleration.

The traction force produced by a vehicle is strongly influenced by road conditions.
This is why it is necessary to design a robust traction force controller taking into
account the time-varying tire/road interaction. As a further requirement, the designed
control law has to prevent the generation of vibrations which could increase the
discomfort. The major design requirement for the controllers is to make the wheel
slip ratio follow a desired value, while guaranteeing that the control is stabilizing.

Platooning of vehicles can be useful in contexts where the air drag reduction can
optimize the fuel consumption and improve safety, such as in heavy trucks formations
in highways [39]. Even vehicle platooning can be realized through the solution of a
traction control problem [34] and therefore by applying SMC techniques [21].

The present chapter is organized as follows. The considered vehicle model is
introduced and the traction control problem is first discussed. A slip ratio SMC
scheme is described and simulation results on a realistic scenario are illustrated.
Then, the vehicle platooning control problem is described and a SMC scheme is
proposed based on a Suboptimal Second Order Sliding Mode (SSOSM) control. It
is also assessed in simulation, putting into evidence its capability of enhancing the
vehicle platooning even in presence of modelling uncertainties and disturbances,
typical of a real scenario.

Note that the present chapter is mainly based on [3, 4, 47] and the plenary talk
given by A. Ferrara at the 14th International Workshop on Variable Structure System
(VSS 2016).

15.2 The Vehicle Model

In order to suitably design a control algorithm for a vehicle subsystem, one has to
specify which model of the vehicle is appropriate to capture the relevant dynamical
effects. In the literature [24, 42], on the basis of the control problem of interest,
different models were developed. The most simplified is the 2-degrees of freedom
(DoF) model in which lateral and yaw motions are considered, and the presence of
longitudinal accelerations and slip effects is assumed negligible. The latter require
a 3-DoF model, while, if braking forces on handling maneuvers, wheel spin and
rotational effects are needed, a 5-DoF model has to be used. A model with 8-DoF
is instead appropriate when rolling motions and no symmetry is assumed between
right and left sides of the vehicle. Typically, in the context of traction control design,
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(a) single-track model (b) vehicle parameter

Fig. 15.1 Vehicle model. a Single-track model. b Vehicle parameters

the so-called bicycle single-track model [24] is adopted (see Fig. 15.1 where also the
vehicle parameters are reported).

More specifically, the bicycle single-trackmodel adopted in this chapter describes
the longitudinal dynamics of the vehicle through the following equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mv̇x = 2
[
Fx,f(λf) + Fx,r(λr)

] − Flossi (v) (15.1a)

Jf ω̇f = Tf − rfFx,f(λf) (15.1b)

Jrω̇r = Tr − rrFx,r(λr) (15.1c)

Floss(vx ) = Fair(vx ) + Froll = cxv
2
xsign(vx ) + frollmg (15.1d)

Fx,f = μf(λf)Fz,f (15.1e)

Fx,r = μr(λr)Fz,r (15.1f)

Fz,f = lrmg − lhmv̇x
2(lf + lr)

(15.1g)

Fz,r = lfmg + lhmv̇x
2(lf + lr)

(15.1h)

where vx is the longitudinal velocity, ω = [ωf , ωr]T is the wheel angular velocity
vector, T = [Tf , Tr]T is the input torque acting on the wheels, Fx is the traction force
on a wheel, Fz is the normal force on a wheel, Fair is the air drag, and Froll is the
rolling resistance. Note that the subscripts “f” and “r” stand for “front” and “rear”,
respectively. Moreover, m is the mass, cx is the longitudinal wind drag coefficient,
froll is the rolling resistance coefficient, J is the wheel moment of inertia,μι ∈ [0, 1]
is the tire-road friction coefficient, ι = {f, r}, r = [rf , rr]T is the wheels radius, lf is
the distance from the front axle to the center of gravity (CoG), lr is the distance from
the CoG to the rear axle, and lh is the vertical distance to the CoG.
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15.3 The Traction Force Control Problem

System (15.1) is expressed as a function of the slip ratio λ = [λf , λr]T which is
defined as follows

λι = ωιrι − vx
max(ωιrι, vx )

, ι = {f, r} . (15.2)

More precisely, two different cases can be distinguished. In case of acceleration, i.e.,
ωιrι > vx and ωι �= 0, the slip ratio results in being

λa,ι = ωιrι − vx
ωιrι

, (15.3)

with a corresponding slip ratio dynamics given by

λ̇a,ι = − v̇x
rιωι

− vx Fx,ι

Jιω2
ι

+ vx
Jιrιω2

ι

Tι . (15.4)

Analogously, in case of breaking, i.e., ωιrι < vx and vx �= 0, one has that

λb,ι = ωιrι − vx
vx

, (15.5)

with the slip ratio expressible as

λ̇b,ι = −rιωιv̇x
v2x

− r2ι Fx,ι

Jιvx
+ vx

Jιrιω2
ι

Tι . (15.6)

Note that the subscripts “a” and “b” stand for “acceleration” and “breaking”, respec-
tively.

In the considered model (15.1)–(15.6), roll and yaw moments, lateral and vertical
motions, brake, throttle, steering actuators and manifold dynamics are neglected.
Note that, although taking into account more DoF in the model may increase its
accuracy, it makes the controller design more complex, so that the control designer
chooses the simplest model sufficient to describe the dynamical aspects of interest.
As for the cx coefficient, in order to verify the effectiveness of the proposed control
schemes in presence of uncertainties, this is assumed to vary over time. Also the
mass of the vehicle and the tire-road friction coefficient are time-varying and rep-
resent the unmatched uncertainties affecting the system. Moreover, relying on the
control variables Tf and Tr, the total braking torque Tbrake, and the engine torque
exerted at the level of the driving shaft Tshaft can be calculated. For instance, for a
front-wheel-driven-car, these torques can be computed as

{
Tf = 0.5Tshaft − 0.3Tbrake
Tr = −0.2Tbrake .

(15.7)
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Table 15.1 Tire/road interaction models published in the literature [37]

Year Model name Properties Features

Piecewise linear model Empirical Cannot accurately fit
curves

Easy to identify

1993 Burckhardt model Semi-empirical Cannot accurately fit
curves

Has some revised
formula

Easy to identify

1994 Rill model Semi-empirical Easy to identify

1987 Magic formula Semi-empirical Cannot accurately fit
curves

Has some revised
formula

Can employ different
factors

1977 Dahl model Analytical Can describe Coulomb
friction

Can get smooth
transition around zero
velocity

1991 Bliman–Sorine model Analytical Can capture the
Stribeck effect

1995 LuGre model Analytical Can combine
pre-sliding and sliding

Tshaft and Tbrake are the reference signals for the throttle angle controller and for the
brake controller, respectively [35].

Finally, as for the traction force, this also depends on the tire/road interaction
which depends in turn on the road conditions. In the literature several models have
been developed (see, for instance, those reported in Table15.1). In this chapter we
refer to the so-called “Magic Formula” byBakker-Pacejka, whichmodels the traction
force as a function of the slip ratio, parametrized by the tire-road friction coefficient
μ, as follows

Fx = μ · ft(λ, Fz) . (15.8)

The coefficient μ depends on the road conditions and the traction force results in
being described by a family of plots, each of them corresponding to a different
road condition (see Fig. 15.2a). It is apparent that the estimation of the road friction
coefficient results in being a very determinant issue in traction control.
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15.3.1 Fastest Acceleration/Deceleration Control (FADC)
Problem

The classical way to design traction control is to solve the so-called Fastest Accelera-
tion/Deceleration Control (FADC) problem. More specifically, the control objective
for the FADC problem is to maximize the generated traction force. To this end, also
shown in Fig. 15.2b, the desired slip ratio λd must be chosen as the abscissa of the
extremal value of the λ − Fx curve corresponding to the current road conditions
identified by the estimated μ.

Thus, the FADC scheme must accomplish the following task:

• to estimate on-line the tire-road friction coefficientμ to identify the current λ − Fx

curve given the road condition;
• to calculate the desired slip ratio λd as the abscissa of the extremal value of the
actual λ − Fx curve;

• to design a control law that makes the current slip ratio λ track the desired value
λd.

Making reference to the single-track model, this procedure must be followed for
the front and rear wheel axles. Note that, the original control objective (i.e., that of
solving the FADC problem) has been transformed into a slip ratio control problem,
the objective of which is to steer the slip rate error, σι, ι = {f, r}, to zero, i.e.,

σι = λιd − λι = 0 . (15.9)
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Fig. 15.2 Bakker-Pacejka model. a Dependence of μ on road conditions. b Desired reference slip
ratio λd
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15.4 Design of Sliding Mode Slip Controller

In this section two SMC algorithms will be discussed to solve the aforementioned
traction control problem taking into account the vehicle model (15.1)–(15.6). SMC
is particularly effective in case of systems that are affected by hard uncertainties.
More specifically, SMC is able to make the controlled systems robust in front of the
so-called matched uncertainties [16, 58], i.e., uncertainties acting on the same chan-
nel of the control variable. Moreover, the controlled system present an “order reduc-
tion” and the desired stability properties can be “assigned” to the controlled system
in sliding mode by suitably selecting the so-called sliding manifold. So, in order
to apply the SMC methodology to solve the considered traction control problem,
the so-called sliding variable needs to be designed. In the following subsection,
some preliminaries on the design of SMC for the considered vehicle systems will
be recalled.

15.4.1 Preliminaries on Sliding Mode Control Design

Let ρ be the relative degree of the system, i.e., the minimum order of the time
derivative of the sliding variable,σ (ρ)

ι , inwhich the control input Tι explicitly appears.
Now, compute the first and the second time derivative of the sliding variable, so that,
by posing ξ1,ι = σι and ξ2,ι = σ̇ι, the so-called auxiliary system can be written as

{
ξ̇1,ι(t) = ξ2,ι(t)

ξ̇2,ι(t) = fς,ι(t) + gς,ι(t)w(t), ς = {a, b}, ι = {f, r} ,
(15.10)

wherew(t) = Ṫι is the auxiliary control variable, while the function fς,ι(·) and gς,ι(·)
are

fa,ι(t) = λ̈d,ι + v̈x
rιωι

− v̇x ω̇ι

rιω2
ι

+ v̇x Fx,ι

Jιω3
ι

+ v̇x Ḟx,ι

Jιω2
ι

+

−2vx Fx,ιω̇ι

J 2
ι ω3

ι

− vxTιω̇ι

J 2
ι rιω

3
ι

− v̇x Tι

J 2
ι rιω

2
ι

fb,ι(t) = λ̈d,ι + rιω̇ι

vx
+ rιωιv̇x

v2x
+ r2ι Ḟx,ι

Jιvx
− r2ι Fx,ιv̇x

Jιv2x
+

−2rιωιv̇x
v2x

− vxTιω̇ι

J 2
ι rιω

3
ι

− v̇x Tι

J 2
ι rιω

2
ι

gς,ι(t) = − vx
Jιrιω2

ι

.

(15.11)

Since velocities are assumed to be always positive and physical limits exist, such
as the limit characteristic curves of the torques which the engine can transfer to the
wheels, it is assumed that functions fς,ι(·) and gς,ι(·) are bounded, i.e.,

| fς,ι(t)| ≤ F (15.12)
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λ

Fig. 15.3 SMC slip control scheme

− Gmax ≤ gς,ι(t) ≤ −Gmin < 0 (15.13)

where F , Gmin and Gmax are positive constants, which in practical cases can be
estimated and are therefore assumed known. Note that, these bounds depend on
quantities which are typically provided by the manufacturer of the vehicle. In alter-
native, the bounds are estimated relying on data collection and analysis, through a
trial-and-error procedure.

At this point, we are in a position to introduce the sliding mode control strategies,
making reference to the proposed slip control scheme illustrated in Fig. 15.3. In the
following subsections the design of a First Order SlidingMode (FOSM) control [58],
and of a Suboptimal Second Order Sliding Mode (SSOSM) control [5, 6, 8–10] are
illustrated.

15.4.2 First Order Sliding Mode (FOSM) Control

The first strategy discussed in this chapter is the classical FOSM control [58]. Given
the choice of the sliding variable (15.9), the relative degree results in being ρ = 1 so
that a FOSM naturally applies. The control law in this case is

Tι(t) = −Uι,maxsign(σι(t)), ι = {f, r} (15.14)

where the control parameter Uι,max is a positive constant chosen so as to fulfill the
so-called “η-reachability condition”, i.e.,

σι(t)σ̇ι(t) ≤ −η|σι(t)| (15.15)

with η being a positive constant depending on the bound on the uncertain terms and
on Uι,max. The “reachability problem” is effectively the sufficient condition in order
to guarantee that an ideal sliding motion takes place. The sliding surface must be at
least locally attractive and the trajectories of σι(t) must be directed towards it, i.e.,
in some domain 
 ⊂ R

n it yields
{
limσι→0+ σ̇ι < 0

limσι→0− σ̇ι > 0 .
(15.16)
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As proved in [58], the control law (15.14) is able to guarantee the finite time conver-
gence of the error to zero. The following Lyapunov function depending on σι can be
selected

V (σι) = 1

2
σ 2

ι . (15.17)

In order to compute the “reaching time” tr [50], in which the sliding variable becomes
equal to zero, deriving (15.17) with respect to time and integrating from 0 to tr, one
has ∫ tr

0

1

2

d

dt
σ 2

ι ≤ −
∫ tr

0
η|σι| . (15.18)

Finally, it holds that
|σι(tr)| − |σι(0)| ≤ −ηtr , (15.19)

and the time necessary to reach the sliding surface, σι(tr) = 0, can be calculated as

tr ≤ |σι(0)|
η

. (15.20)

However, the main difficulty in applying this approach to solve the slip control
problem is the discontinuity of the control variable which can cause the so-called
chattering phenomenon [11, 22, 36], which may be hardly acceptable in practice. In
the next section this will be better clarified in view of simulation results.

15.4.3 Suboptimal Second Order Sliding Mode (SSOSM)
Control

Among the solution proposed in the literature to attenuate the chattering phenom-
enon, Higher Order Sliding Mode (HOSM) control [7] may represent an effective
solution [52]. The SSOSM control discussed in this chapter is a particular case of
HOSM control (see, for instance, [7, 14] for other second order sliding mode algo-
rithms). Given the auxiliary system (15.10), in which the relative degree is artificially
increased by introducing the auxiliary control variablew and bounds (15.12)–(15.13)
hold, according to a “Bang-Bang” control principle, the following “switching line”
(see Fig. 15.4a) is considered

ξ1,ι(t) + 1

2

ξ2,ι(t)|ξ2,ι(t)|
Wι,max

= 0 (15.21)

where Wι,max is the positive control gain. Then, the control law can be expressed as

Tι(t) = −
∫ t

t0

αιWι,maxsign
(
ξ1,ι(ζ ) − 1

2ξmax
)
dζ , (15.22)



15 Sliding Modes Control in Vehicle … 367

−1.5 −1 −0.5 0 0.5 1 1.5
−20

−15

−10

−5

0

5

10

15

20

(a) State portrait

0 1 2 3 4 5 6 7 8 9 10
−40

−30

−20

−10

0

10

20

30

40

(b) Auxiliary control w and control input u

Fig. 15.4 SSOSM control. aAuxiliary system state portrait in case of SSOSM control. bAuxiliary
discontinuous control and continuous control input

where ξmax is the last local minimum or maximum of the sliding variable, while the
control parameters αι = α∗

ι and Wι,max are chosen such that

Wι,max >max

(
F

α∗
ι Gmin

; 4F

3Gmin − α∗
ι Gmax

)

(15.23)

α∗
ι ∈ (0, 1] ∩

(

0,
3Gmin

Gmax

)

. (15.24)

Note that, the SSOSM algorithm requires the control w(t) = Ṫι(t) to be discontinu-
ous. Yet, the control actually fed into the plant is continuous (see Fig. 15.4b), which
is highly appreciable in case of mechanical plants.

Moreover, in [6] it has been proved that, under constraints (15.23), the convergence
of the auxiliary system trajectory to the origin takes place in a finite time. Observing
the state portrait of the auxiliary system on the phase plane illustrated in Fig. 15.4a, it
is apparent that the control law (15.22) implies a contraction property of the extremal
values of the sliding variable so that the slip rate error and its first time derivative are
steered to zero. More specifically, a sequence of states with coordinates

(
ξmaxi , 0

)

featuring the following contraction

|ξmaxi+1 | < |ξmaxi |, i = 1, 2, · · · (15.25)

is generated and the convergence of the system trajectory to the origin of the plane
takes place in a finite time.

Moreover, an important advantage of the SSOSM control algorithm is that the
knowledge of the first time derivative of the sliding variable is not required, but only
the computation of its extremal values, for instance through the methods described
in [9].
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Fig. 15.5 Matched and parameters uncertainties affecting the vehicle. a Sinusoidal torque distur-
bance. b Step friction coefficient variation. cRamp drag coefficient variation. d Step vehicle weight
variation

15.5 Simulation Results on Traction Control

In this section the sliding mode controllers previously presented are evaluated in a
step response test, where the wheel-slip is regulated to a fixed value.

API controller is also used in the same test for the sakeof comparison. It is assumed
that the maximum traction/braking force is obtained for λd,ι = ±0.2. Note that the
sign corresponds to the sign of the driver’s torque demand, which is considered as a
matched disturbance.

The presented controllers are evaluated on a more realistic model of the vehicle
dynamics, taking into account two different conditions:

1. matched uncertainties;
2. matched and parameters uncertainties.

Matched disturbances Tm are always included, as their rejection is the main advan-
tage of using sliding mode controllers. The sinusoidal torques induce an acceleration
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Table 15.2 Vehicle
parameters considered in
simulation

Parameter Value

g 9.81ms−2

m(0) 1202kg

Jf 1.07kgm2

Jr 1.07kgm2

cx 0.4

froll 0.013

rf 0.32m

rr 0.32m

lf 1.15m

lr 1.45m

lh 0.65m

vx (0) 30ms−1

λf (0) 0.01

λr(0) 0.01

or a braking phase on each axle, depending on the torque sign. With the purpose
of showing the controllers robustness against unmatched disturbances, time varying
uncertainties on vehicle mass, drag coefficient and road friction coefficient are taken
into account, as shown in Fig. 15.5. The vehicle performs an acceleration maneuver
for 20 s starting from velocity of 30ms−1. All the other simulation data are reported in
Table15.2. Since results on front and rear axles are almost identical and the only dif-
ferences affecting the respective dynamics are the geometric parameters introduced
in Eqs. (15.1g) and (15.1h), only the results relevant to the front axle are shown. All
controllers parameters have been tuned in order to obtain an adequate response for
each algorithm.

In Fig. 15.6 the step response of the controlled systems obtained including in the
loop the considered controllers is shown, together with the slip rate error, the front
torque and the corresponding shaft torque. It can be observed that FOSM has strong
oscillations, which do not vanish at all. The PI controller shows the highest overshoot
and longest settling time, but nevertheless they converge to the reference value at
steady state. In Fig. 15.6, it is also possible to appreciate the main advantage of using
a SSOSM control algorithm in terms of torques fed into the plant. As expected, the
SSOSM control signal is smooth and comparable with that obtainable through the PI
controller,while theFOSMis discontinuous and scarcely applicable in practice. It can
be seen that both FOSM and SSOSM controllers have a good performance versus the
matched uncertainties, as it is confirmedby theRootMeanSquare (RMS) error values
reported in Table15.3 (eRMS). Moreover, Table15.4 reports also the values of the
control effort, Ec, for all controllers. A graphic rendering of the performance indices
is instead reported in Fig. 15.7. The performance indices reported in Tables15.3
and 15.4 help us assessing the performance of the different controllers considered
in this chapter. The FOSM control is the most aggressive solution and surely the
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Fig. 15.6 Step response of the vehicle in presence of matched and parametric uncertainties when
FOSM, SSOSM and PI are used. a Front slip ratio. b Slip rate error. c Front torque. d Shaft torque

Table 15.3 RMS slip rate error

Test Axle FOSM SSOSM PI

1 front 0.0217 0.0364 0.0534

rear 0.0215 0.0359 0.0540

2 front 0.0216 0.0365 0.0553

rear 0.0221 0.0357 0.0554

most effective in zeroing the slip rate error. It ensures the minimum eRMS in all the
considered conditions, while at the same time it has a control signal, which is larger
than those of all other controllers by one order of magnitude. This fact could make
such a controller a non feasible solution, once the actuators limitations and dynamics
are taken into account. Instead, SSOSM represents a valid solution, able to guarantee
good tracking results with control actions really usable even in field implementations.
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Table 15.4 RMS value of control signal

Test Axle FOSM SSOSM PI

1 front 1300 146.1 133.9

rear 1300 150.4 138.2

2 front 1300 150.8 138.4

rear 1300 153.4 140.9
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Fig. 15.7 Graphic rendering of the computed performance indices for the front axle. a RMS error.
b RMS value of the control signal

15.6 Control of a Platoon of Vehicles

The previous traction control strategies could be exploited also in formation control.
A line formation of wheeled vehicles is called “platoon”. Several well-known studies
have focused on the impact of platooning on traffic flow regularization and road
safety enhancement [13, 33, 41]. More recently, some works have been devoted to
the evaluation of the advantage of vehicles platooning in terms of fuel consumption,
this especially in the case of freight transportation [39].

As for traction control, the performances of a “platooning control system” are
strongly influenced by road conditions. This implies that the “platooning control
problem” has to be solved in a robust way. As a further requirement, also in this case,
the designed control law has to prevent the generation of vibrations induced by the
controller, as well as guarantee the so-called “string stability” [62].

Note that, in this framework, the so-called Cruise Control (CC) system is a control
strategy devoted to track the desired velocity imposed by the driver, while the Adap-
tive CC (ACC) is a control strategy based on the velocity of the preceding vehicle and
on the measure of the relative distance between the vehicle and its predecessor. Thus,
the latter is the strategy used by all the vehicles of a platoon, apart from the leader
vehicle which is controlled via a standard CC. Note that, standard devices, such as
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radars, can be adopted in order to capture the position of the preceding vehicle, which
is assumed measurable in the following.

The main objective that an ACC vehicle has to attempt is to maintain a desired
spacing, called “spacing policy”, with respect to the preceding vehicle [47]. Typi-
cally, the spacing policy is a constant distance or a function of the vehicle velocity
or of the relative velocity between the controlled vehicle and the preceding one. Fur-
thermore, the spacing policy, according to which the control law is designed, plays
a fundamental role in the determination of the vehicle safety, string stability, traffic
flow stability and traffic flow capacity.

In the literature, several spacing policies have been proposed [47]. The simplest
choice is a constant safety distance with a suitable communication system in order
to provide the needed information about the leading vehicle of the platoon to the
followers [49]. However, themost used spacing policy is the so-called Constant Time
Gap (CTG) policy. Differently from the constant spacing policy, in CTG policy the
safety distance tracking can be obtained without any inter-vehicular communication
[48].

As for the stability properties guaranteed by using the CTG policy, in the literature
there are conflicting opinions [38, 51]. More precisely, the controversy was about
the stability for the traffic flow (under certain conditions) within which the platoon
of vehicles moves. The claim was, in particular, that an unattenuated upstream prop-
agation of disturbances may occur when a density perturbation is introduced into the
traffic flow [60]. In fact, the work [51] shows that the traffic flow obtained on a high-
way is unstable when all vehicles on the highway use the CTG policy. In contrast,
[38] states that the consequent traffic flow obtained with the CTG spacing policy is
stable.

The focus of this chapter is on longitudinal control of vehicles in platoon, such
that the spacing error between vehicles is steered to zero. The previously discussed
SSOSM control algorithm is conveniently used to this end, as clarified in the follow-
ing, relying on a spacing policy of CTG type. Note that string stability considerations
are not included in this chapter, but they can be easily made using standard argumen-
tations (see for instance [62]).

15.7 The Vehicle String Model

Consider a wirelessly interconnected vehicle platoon as schematically represented
in Fig. 15.8. Note that, in the following, the subscript i will indicate the i th vehicle
of the considered platoon, and it will be assumed that each vehicle can be adequately
modeled by system (15.1). The considered platooning problem consists in making
each vehicle of the string follow its predecessor while maintaining a pre-specified
safety distance. Solving the platooning problem, even in presence of possible changes
of road conditions, requires to re-formulate the problem as a traction control problem
and take again into account the tire/road interaction model.
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Fig. 15.8 Schematic representation of a string of n followers and the leader

In this chapter, as mentioned, the safety distance is determined according to the
CTG policy, as it is frequently done in ACC design. More specifically, such a policy
is given by

Si (vxi (t)) = L + hvxi (t) (15.26)

where Si denotes the desired inter-vehicle spacing of the i th vehicle, i = 1, 2, . . . , n,
L is a constant value depending on the vehicles length, h is the so-called headway
time, vxi is the velocity of the i th vehicle. The corresponding spacing error is given
by

δi (t) = εi (t) + L + hvxi (t) (15.27)

where εi = xi − xi−1 is the relative distance between the i th vehicle and its pre-
decessor. Then, assume that the longitudinal dynamics of the i th vehicle can be
approximated by the following first order dynamics

τa v̈xi + v̇xi = v̇xid (15.28)

where τa is the time constant characterizing the actuator dynamics, while v̇xid is the
desired value of acceleration to be attained in order to make the vehicle platoon string
stable, i.e., to steer to zero the spacing error in steady-state [62].

15.8 The Proposed Control Scheme

The control scheme designed in this chapter is shown in Fig. 15.9. It consists of
two nested control loops. As for the outer loop, on the basis of the spacing error,
the controller determines the desired traction force. Relying on this latter and on
the current tire/road friction coefficient, the desired slip ratios are calculated. These
are used as references for the inner control loop. This latter has the objective of
attaining the desired slip ratios by acting on the torques at the front and rear wheels,
as illustrated in the previous sections.

15.8.1 Sliding Mode Longitudinal Controller

The longitudinal external controller has the role to generate the reference value of the
slip ratio for the inner loop, while regulating to zero the spacing error. Analogously
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Fig. 15.9 SMC scheme for vehicles platoon

to the inner loop, the sliding variable for the i th vehicle is selected as the spacing
error (15.27). In this second case, the effective input of the system is an acceleration
expressed as v̇xid so that it is possible to verify that the natural relative degree of the
system is equal to 1. Specifically, by defining the auxiliary variable ξ1i = δi one has

{
ξ̇1i (t) = ξ2i (t)

ξ̇2i (t) = ϕi (t) + wi (t)
(15.29)

where wi = hv̈xi is the so-called auxiliary control, while function ϕi = v̇xi − v̇xi−1

takes into account the difference of the velocity between two subsequent vehicles
which is limited for physical reasons, so that it is reasonable to consider

|ϕi (·)| ≤ Φi , (15.30)

Φi being a positive constant assumed to be known. Note that, only the knowledge
of the upperbound is necessary to design the control law. The control laws, which is
proposed to steer ξ1i (t) and ξ2i to zero in a finite time in spite of the uncertainties, in
this second case, can be expressed as follows

v̇xid (t) = −1

h

∫ t

t0

Wimax sign
(
ξ1i (t) − 1

2ξmaxi

)
(15.31)

with ξmaxi the local minima andmaxima of the sliding variable, and control gain such
that

Wimax > 2Φi (15.32)

in order to enforce the sliding mode. As a consequence, the spacing error between
two subsequent vehicles vanishes in a finite time, i.e.,
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δi (t) = εi (t) + L + hvxi (t) = 0 . (15.33)

On the basis of the auxiliary signal wi (t), the desired traction force Fx,ιid
(i.e., the

actual control signal) can be determined as

Fx,fid
+ Fx,rid

= 1

2

(
mi v̇xid + Flossi

)
(15.34)

where v̇xid as in (15.31). Note that, as usual in this context, it is assumed that the
force distribution is described by

Fx,fi

Fx,ri
=

lri + lhi
(

Flossi
mi g

+ μi

)

lfi − lhi
(

Flossi
mi g

− μi

) . (15.35)

Furthermore, from (15.8), in the acceleration case, the following relationship should
be maintaned

Fx,fi <μi Fz,fi (15.36)

Fx,ri <μi Fz,ri . (15.37)

By substituting (15.1g) and (15.1h) in (15.36) and (15.37), one obtains

Fx,fi <μi
lri mi g − 2lhi Fx,ri + lhi Flossi

2(lfi + lri + μi lhi )
(15.38)

Fx,ri <μi
lri mi g + 2lhi Fx,fi + lhi Flossi

2(lfi + lri − μi lhi )
. (15.39)

Note that, the optimal tire force distribution to achieve the best acceleration response
(15.35) corresponds to the intersection point of the two boundary lines of (15.38)
and (15.39).

Finally, combining (15.34) and (15.35), it is possible to compute the desired
value of longitudinal forces Fx,fid

and Fx,rid
. The latter are the forces necessary to

steer the spacing error to zero. Moreover, these values are needed to find the slip
ratio reference for the inner loop of the i th vehicle control system, λιd , ι = {f, r}. In
particular, considering the Magic Formula by Bakker-Pacejka, the desired slip ratio
λιd is selecetd as the abscissa of the λ − Fx curve corresponding to the computed
value of desired longitudinal force Fx,ιid

and to the current road condition identified
by the estimated μ (see Fig. 15.10). Note that, in order to avoid stability problems,
the slip ratio reference is constrained to lie inside a “stability zone” (see Fig. 15.10b)
of the λ − Fx curve. Future developments will be devoted to the analysis of the string
stability in order to prove that the spacing errors are guaranteed not to amplify as
they propagate towards the tail of the vehicle string.
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Fig. 15.10 The slip rate reference for the inner loop of the i th vehicle control system. a Determi-
nation of λιd , ι = {f, r}. b Stability zone
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Fig. 15.11 Time behavior of the vehicle platoon. a Longitudinal acceleration. b Longitudinal
velocity. c Longitudinal position. d Distance and safety distance
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Fig. 15.12 Time behavior of the vehicle platoon. a Front traction forces. b Rear traction forces. c
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Fig. 15.14 Inner control loop. a Time evolution of the front slip ratio. b Time evolution of the rear
slip ratio. c Time evolution of the front slip rate error. d Time evolution of the rear slip rate error

15.9 Simulation Results on Vehicles Platooning

In this section the vehicle platoon control scheme previously presented is evaluated
in a test, where three front-wheel-driven cars (FWD) are involved, one leader and two
followers. For the sake of simplicity, we assume that all the vehicles are identical and
the parameters of the model used in simulation are the same reported in Table15.2.
Moreover, the subscript i will be omitted when obvious. The initial velocity is equal
to 30ms−1 for all the vehicles, while the acceleration profile of the leader is reported
in Fig. 15.11 on the top left. The initial distance among vehicles is 7m and the safety
distance is computed according to the CTG spacing policy reported in (15.26), with
L = 2m and the headway time equal to h = 0.3 s. The parameterμ is assumed to be
known and equal to 0.85, that corresponds to a dry asphalt condition. Note that, this
parameter, in practical cases, should be correctly estimated, for instance by using the
approach described in [56].
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Fig. 15.15 Inner control loop. a Time evolution of the front torques. b Time evolution of the rear
torques. c Time evolution of the shaft torques. d Time evolution of the brake torques

Figure15.11 on the top left shows the acceleration of the leader and the followers.
It is possible to see that this profile is more oscillatory for the last follower. This is due
to the effect of the higher control gain used for the last vehicle of the string. On the top
right the longitudinal velocity is illustrated, while on the bottom from the left, the run
distance and the evolution in time of the distance among the leader and the followers
are illustrated. One can note that the safety distance among vehicles is reached in
a finite time (about 5 s), as expected. Figure15.12 shows the time evolution of the
front and rear traction forces and the corresponding angular velocities for all the
vehicles. The traction forces are not discontinuous since a SSOSM control is used.
This strategy allows one to steer the spacing error to zero in a finite time, reaching the
platooning condition as shown in Fig. 15.13 on the left, and generating the reference
for acceleration profile, as shown on the right. Note that this last signal is however
oscillating, but this does not represent a critical aspect since it is not directly fed into
the plant but it is used to find the desired value of the slip ratio for the inner loop of
the proposed control scheme.
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Figure15.14 reports, on the top, the time evolution of the slip ratio with respect
to the reference values generated by the external loop, and on the bottom, the sliding
variable for the front and rear axle, corresponding to the difference between the slip
ratio and its reference value. Also in this case one can note that the sliding variables
are steered to zero in a finite time, as expected. Finally, Fig. 15.15 shows the time
evolution of the front and rear torques and the computed shaft and brake torques.
Note that, as desired, the torque profiles are smooth so as to make the application of
the proposed algorithm really feasible in field implementation.

15.10 Conclusions

In this chapter, the application of the sliding mode methodology to vehicle dynam-
ics control is discussed, focusing, in particular, on traction control problems. Two
approaches, a first order and a second order SMC (the latter belonging to the class
of suboptimal algorithms), are presented, indicated in the chapter with the acronyms
FOSM and SSOSM, respectively. The advantage of SSOSM over FOSM control is
its capability of solving the control problem through the generation of a continuous
control action, which makes this control methodology appropriate to be applied to
a real vehicle. In this chapter the SSOSM control previously designed as a solution
to the traction control problem is used to solve a vehicles platooning problem. The
control objective is to make each vehicle of the platoon travel maintaining a desired
safety distance with respect to the preceding vehicle, according to a predefined spac-
ing policy. Simulation results both on traction control and platooning control have
demonstrated the effectiveness of the proposals. Future works will be devoted to
implement the proposed algorithm even on real vehicles in order to assess their per-
formance. Moreover, the complexity of a real vehicle will require the introduction
of advanced observers and control schemes capable of detecting the effective rel-
ative degree of the plant, thus suitably switching the control algorithm in order to
guarantee better performance. Furthermore, the presence of a communication net-
work makes worth further investigating the design of networked control schemes for
this kind of systems. Some of these perspectives are among the main targets of the
ITEAM project, in which the University of Pavia is involved. The project has the aim
to train strong specialists skilled in research and development of novel technologies
for multi-actuated ground vehicles.
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Chapter 16
Sliding Mode Control of Power Converters
with Switching Frequency Regulation

Víctor Repecho, Domingo Biel, Josep M. Olm and Enric Fossas

16.1 Introduction

Sliding mode control (SMC) constitutes a natural control tool for variable structure
systems (VSS), such as power converters, which are nonlinear systems where the
control inputs are inherently discontinuous functions of time. Several first order SMC
applications for linear and nonlinear systems can be found in the literature [21].

In most cases SMC designs assume an infinite switching frequency of the control
action in accordance with the sign of a certain function, but this entails issues when
implemented in real systems. In the field of power converters, the first realistic SMC
implementations are reported in [2, 22]. In these works, the sign function is replaced
by a hysteresis comparator, and the control action is enforced to switch at finite fre-
quency, but variable and system dependent [3, 4]. However, power converters require
a fixed switching frequency operation since the design of their reactive components
is highly dependent on the switching frequency of the system.
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Several different approaches have been proposed to regulate the SMC switching
frequency to a fixed value. Some of them adapt the comparator hysteresis band,
adjusting its level in accordance with the system state [5, 7, 8, 10, 12, 17]. The
procedure provides good results, but requires perfect knowledge of the plant, and it
is not robust in the face of parametric variations. Additional sensors and/or observers
can be included to get a proper adaptation of the hysteresis band amplitude but, in
this case, the system reliability decreases and the cost raises.

Fixed switching frequency can also be achieved by using an external signal to
force the switching instants [11, 18]. This approach needs some additional hardware
on the controller and requires the switching frequency to be low enough with respect
to the system time constants, otherwise the state dynamics drifts away from the ideal
sliding mode and an unexpected steady-state error appears.

The Zero Averaged Dynamics (ZAD) concept was presented in [6]. The method
computes a duty cycle that guarantees zero T -periodic mean value of the switching
function, with T denoting the switching period. Therefore, fixed switching frequency
is reached in the steady-state, and the averaged behaviour is close to the ideal sliding
mode one. The ZAD strategy has been successfully implemented in [13]. The results
presented therein show a good performance of the ZAD, but also point out the
requirement of a fast digital processor to solve the complex calculations involved
in the duty cycle computation, which in the end constitute the main drawbacks of
ZAD-based SMC fixed frequency implementations.

Pulse Width Modulators (PWM) at fixed frequency have been used to imple-
ment the so-called PWM-SMC. Initially proposed in [9, 19], the method imple-
ments directly the equivalent control and obtains the switching instants comparing
the equivalent control with the fixed frequency saw-tooth waveform at the PWM.
The results presented in [20] show overall good performance, but it should be noted
that the same solution can also be derived by calculating the duty cycle required to
obtain the desired system dynamics. Moreover, some sliding mode properties, such
as order reduction or robustness in the face of disturbances, could be lost.

Alternatively, a simple hysteresis band controller in charge of fixing the switching
frequency of a slidingmode controller is presented in the next sections. The controller
is based on a variable hysteresis band comparator which regulates the switching
frequency to a desired constant value. The analysis allows to develop a large signal
model for the frequency control loop, and the controller parameters design guarantees
stability and asymptotic tendency to a fixed switching frequency when the system
is on the sliding surface. Furthermore, in order to cover the case of tracking time-
varying references, the switching frequency controller design has also been extended
with the addition of a feedforward term which, once properly designed following the
guidelines presented here, is able to provide the desired switching frequency in the
steady state.
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16.2 Hysteresis Band Controller for Switching
Frequency Regulation

Let us consider a single input single output (SISO) system, with dynamics given by

ẋ = f (x) + g(x)u, (16.1)

where x denotes the state vector, f (x), g(x) are smooth nonlinear functions, and
u ∈ {u+, u−} is the control input. According to [3, 21], a system with the structure
presented in (16.1), where a sliding motion is enforced over a switching surface
σ(x) = 0 in a comparator with a fixed hysteresis band value Δ > 0, see Fig. 16.1, as

u =
{

u+ if σ < −Δ, or (|σ | < Δ & σ̇ > 0)
u− if σ > Δ, or (|σ | < Δ & σ̇ < 0)

(16.2)

produces a series of consecutive kth switching periods (k > 0), corresponding to

Tk = T +
k + T −

k = 2Δ
(
ρ+

k − ρ−
k

)
, (16.3)

where ρ+
k , ρ−

k are defined as the inverses of σ̇ for each control input state:

ρ+
k = 1

σ̇ku=u+
, ρ−

k = 1

σ̇ku=u−

The obtaining of (16.3) relies on the assumption of piecewise linear behavior
for σ , which implies that ρ+

k , ρ−
k are constant during the switching interval. This

is a standard hypothesis in the SMC literature [3, 21] which holds if the switching
frequency is high enough with respect to the system dynamics.

Fig. 16.1 Behavior of σ within a constant amplitude boundary layer
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Notice that the expected switching period depends onρ+
k , ρ−

k , which are inversely
proportional to the switching function slopes, and this implies that the switching
period varies as the state vector does. This phenomenon is sometimes disadvanta-
geous for specific systems, as happens with power converters. Hence, a solution is
provided hereafter.

16.2.1 Control Architecture

The proposed structure, already presented in [14–16], includes a control loop that
regulates the switching period of the control action under slidingmotion, thus achiev-
ing a fixed switching frequency in the steady state. The idea is sketched in Fig. 16.2.
The control loop measures each switching period of the control action and compares
it with the desired switching period, T ∗. The difference is processed by the switch-
ing frequency controller (SFC), which will update the hysteresis band value of the
hysteretic comparator in such a way that Tk → T ∗.

16.2.2 Discrete-Time Modelling of the Control Loop

It is assumed that the hysteresis band amplitude can be updated at the beginning
of each switching interval by the SFC, keeping it constant up to the next switch-
ing interval. The behavior of σ when confined in a time-varying boundary layer is
represented in Fig. 16.3. Therefore, the expression of the switching period needs to
be revisited. Following an analogue procedure to the derivation of (16.3), the kth
switching period in the time-varying case is now given by:

Tk = T +
k + T −

k = ρ+
k (Δk + Δk−1) − 2ρ−

k Δk = ρ̂kΔk + (
ρ̃k − ρ̂k

)
Δk−1, (16.4)

Fig. 16.2 Overall controller architecture
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Fig. 16.3 Behavior of σ within a time-varying amplitude boundary layer

with

ρ̂k = ρ+
k − 2ρ−

k ,

ρ̃k = 2
(
ρ+

k − ρ−
k

)
.

Let us define the switching period error as e := T ∗ − T . Therefore, using (16.4)
one easily finds out that

ek − ek−1 = ρ̂k (Δk−1 − Δk) + ρ+
k−1 (Δk−2 − Δk−1) + (ρ̃k−1 − ρ̃k)Δk−1. (16.5)

Next subsections will particularize expression (16.5) in two different working
conditions, namely: the regulation case and the tracking case.

16.2.2.1 The Regulation Case

In regulation tasks the state vector reference, x∗, is constant. Assuming that the
amplitude of the ripple, 2Δ, of σ in the vicinity of σ = 0 is small, the steady state
vector can be considered also constant, and hence x = x∗. As a consequence, the
switching function derivatives and their inverses are constant in the steady state as
well. Therefore, from a certain discrete-time instant k0 it results that:

ρ±
k = ρ

(
x∗, u±) := ρ±

∗ , ρ̂k := ρ̂∗, ρ̃k := ρ̃∗, ∀k ≥ k0. (16.6)

With these approximations, (16.5) can be simplified up to the following expression:

ek − ek−1 = ρ̂∗ (Δk−1 − Δk) + ρ+
∗ (Δk−2 − Δk−1) . (16.7)
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Fig. 16.4 Switching frequency regulation control loop with feedforward action. The inherent time
delay due to the switching period measurement is represented by z−1, see [14] for details

The control law proposed for the hysteresis band amplitude in the regulation case
is of integral type and answers to the following difference equation:

Δk = Δk−1 + γ ek−1, (16.8)

with γ > 0 denoting the integral constant. Notice that taking (16.8) to (16.7) results
in the following linear homogeneous difference equation with constant coefficients:

ek = (
1 − γ ρ̂∗) ek−1 − γρ+

∗ ek−2. (16.9)

The stability of the zero solution of (16.9), which means Tk → T ∗, is studied in
Sect. 16.2.3.

16.2.2.2 The Tracking Case

When the system tracks a time-varying reference x∗ = x∗(t), the time derivatives
of the switching functions can not be considered constant values, i.e. ρ+

k �= ρ+
k−1,

ρ−
k �= ρ−

k−1. Hence, when using the integral action (16.8) as SFC, the corresponding
closed-loop response given by (16.5) results in:

ek = (
1 − γ ρ̂k

)
ek−1 − γρ+

k−1ek−2 + Δk−1 (ρ̃k−1 − ρ̃k) . (16.10)

Notice that (16.10) is non-homogeneous, and does not have ek = 0 as an equi-
librium solution. In order to overcome this drawback the proposal presented here
adds a feedforward loop that compensates the undesirable effect of the last term of
(16.10). Therefore, the new SFC structure for systems under tracking tasks is shown
in Fig. 16.4 and consists of setting

Δk = Ψk + Ωk, (16.11)
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where Ψk is the integral control action

Ψk = Ψk−1 + γ ek−1, (16.12)

while the feedforward term Ωk responds to:

Ωk = ρ̂k−1 − ρ+
k

ρ̂k
Ωk−1 + ρ+

k−1

ρ̂k
Ωk−2 + ρ̃k−1 − ρ̃k

ρ̂k
Ψk−1. (16.13)

Merging (16.11)–(16.13) the new closed-loop error dynamics is given by

ek = (
1 − γ ρ̂k

)
ek−1 − γρ+

k−1ek−2. (16.14)

Now the equation of the switching period error boils down to a homogeneous time-
varying discrete-time linear system recovering ek = 0 as the desired equilibrium
solution. Under sliding motion and in the steady state, the state vector profile x∗(t)
will produce time-varying values for ρk :

ρ+
k = ρk

(
x∗(t), u+) := ρ+

∗k,

ρ−
k = ρk

(
x∗(t), u−) := ρ−

∗k,

ρ̂k = ρ̂k (x∗(t)) := ρ̂∗
k ,

ρ̃k = ρ̃k (x∗(t)) := ρ̃∗
k ,

(16.15)

∀k ≥ k0, and the preceding error equation becomes

ek = (
1 − γ ρ̂∗

k

)
ek−1 − γρ+

∗k−1ek−2. (16.16)

The stability analysis of the zero solution of (16.16) is conducted in Sect. 16.2.3.

16.2.3 Stability Analysis and Design Criteria

The obtained results rely upon the hypotheses established in the above analysis.
These can be summarized as follows:

Assumption 16.1 The control law (16.2) induces system (16.1) to evolve within a
boundary layer defined by |σ (x, x∗(t))| < Δ. Moreover, sliding motion exists on
the switching hyperplane σ (x, x∗(t)) = 0 for Δ → 0, with x∗(t) ∈ R

n being the
steady state of the ideal sliding dynamics. Finally, σ (x, x∗(t)) shows constant time
derivatives at either sides of the switching hyperplane during a complete switching
period within the boundary layer.
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16.2.3.1 The Regulation Case

Theorem 16.1 Let Assumption 16.1 be fulfilled, with x∗ being a constant regulation
point, and let the hysteresis band amplitude, Δ, be updated according to (16.8). If
the integral gain γ is selected as

0 < γ < min
{(

ρ+
∗
)−1

,
∣∣ρ−

∗
∣∣−1

}
,

with ρ±∗ defined in (16.6), then the switching period, Tk, converges asymptotically to
its reference value, T ∗, in the steady state.

Proof It follows applying Jury stability criterion to the characteristic polynomial
associated to the difference equation (16.5), see [14] for details.

16.2.3.2 The Tracking Case

Theorem 16.2 Let Assumption 16.1 be fulfilled, with x∗ = x(t) being a time-varying
reference signal, and let the hysteresis band amplitude, Δ, be updated according to
(16.11)–(16.13). If the integral gain γ is selected as

γm :=max

⎧⎪⎪⎨
⎪⎪⎩

ρ̂∗
k −

√
1
2

(
ρ̂∗2

k − ρ+2

∗k

)

ρ̂∗2
k + ρ+2

∗k

, ∀k ≥ 0

⎫⎪⎪⎬
⎪⎪⎭

,

γM :=min

⎧⎪⎪⎨
⎪⎪⎩

ρ̂∗
k +

√
1
2

(
ρ̂∗2

k − ρ+2

∗k

)

ρ̂∗2
k + ρ+2

∗k

, ∀k ≥ 0

⎫⎪⎪⎬
⎪⎪⎭

,

with ρ̂∗
k and ρ+

∗k defined in (16.15), then the switching period, Tk, converges asymp-
totically to its reference value, T ∗, in the steady state.

Proof It follows using a Lyapunov-based discrete time approach, see [15] for details.

16.3 Application to Power Electronics

In this section, the previously proposed structures for switching frequency regulation
in SMC are designed for several power converters. Specifically, three different cases
are considered: a SMC in a regulation task for a buck converter, a SMC in a regu-
lation case for a boost converter, and a SMC in a tracking task for a voltage source
inverter (VSI).
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Fig. 16.5 Buck converter

16.3.1 Output Regulation of a Linear System: The Buck
Converter

Abuck converter circuit scheme is shown in Fig. 16.5, and the values of its parameters
are listed in Table16.1.

The converter state space equations are:

C
d vc

dt
= il − vc

R

L
d il

dt
= E u − vc,

where u is the control signal and takes values in the set {0, 1}. The power switches
M1 and M2work in a complementary way, remaining closedwhen u takes the values
showed in Fig. 16.5.

16.3.1.1 Sliding Mode Control

Taking into account that the relative degree of the buck converter with respect to the
output voltage is two, the chosen switching surface for output voltage regulation is:

Table 16.1 Buck converter parameters

Parameter Symbol Value

Input voltage E 48 V

Desired output voltage v∗
c 12–24V

Inductor L 22 µH

Output capacitor C 50 µF

Load resistance R 2 �

Switching period reference T ∗ 10 µs
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σ(vc, il) := λ1ev + λ2ėv = 0, λ1,2 > 0,

where vc
∗ and ev = vc

∗ − vc are the output voltage reference and the voltage error,
respectively. The switching function derivative becomes:

σ̇ (vc, il) = f1(vc, il) − λ2

LC
E u (16.17)

where

f1(vc, il) = il

(
λ2

R C2
− λ1

C

)
+ vc

(
λ1

RC
+ λ2

LC
− λ2

R2 C2

)
.

From (16.17), it is clear that sliding motion exists if λ2 E
LC > f1 > 0. In turn, the

equivalent control results in:

ueq = LC

E λ2
f1(vc, il),

and the control law that enforces a real sliding motion in the vicinity of
|σ(vc, il)| < Δ is:

u =
{
0 if σ < −Δk or (|σ | < Δk & σ̇ > 0)
1 if σ > Δk or (|σ | < Δk & σ̇ < 0) .

Under sliding motion the system dynamics are governed by:

d vc

dt
= −λ1

λ2
vc + λ1

λ2
v∗

c + v̇∗
c (16.18)

d il

dt
=

(
1

RC
− λ1

λ2

)(
il − vc

R

)
, (16.19)

which is a linear system with equilibrium point vc = v∗
c , il = v∗

c
R . From (16.18),

(16.19) it is evident that system will be asymptotically stable if λ1
λ2

> 1
RC . According

to Table16.1, the selected values for the sliding coefficients are: λ1 = 0.2, λ2 =
1.9 · 10−5, which ensures stability and delivers a good transient response.

16.3.1.2 Switching Frequency Regulation

In order to select γ for the SFC, ρ+
k and ρ−

k have to be evaluated. This requires
(16.17) to be particularized for the ideal steady-state sliding mode dynamics, namely
vc = v∗

c , il = v∗
c

R :

σ̇ (v∗
c , i∗

l ) = λ2

LC

(
v∗

c − E u
)
,
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which yields

ρ+
∗k = [

σ̇ (v∗
c , i∗

l )u=u−
]−1 = LC

λ2v∗
c

ρ−
∗k = [

σ̇ (v∗
c , i∗

l )u=u+
]−1 = LC

λ2
(
v∗

c − E
) .

Then, with the data given in Table1.1, one gets:

v∗
c = 12V → ρ+

∗k = 4.82e−6; ρ−
∗k = −1.61e−6,

v∗
c = 24V → ρ+

∗k = 2.41e−6; ρ−
∗k = −2.41e−6.

According to Theorem 16.1, the values of γ within the range (0, 207470) provide
stability for the SFC. It should be noted that this range corresponds to 12 V at the
output, corresponding to the worst case for the SFC stability. Consequently, the
chosen value is γ = 2 · 104.

16.3.1.3 Simulation Results

The simulations are performed using Matlab Simulink, with the data shown in
Table16.1 and with the previously selected control parameters, namely λ1 = 0.2,
λ2 = 1.9 · 10−5, and γ = 2 · 104.

Figure16.6 shows the response of the system with different initial conditions,
Δini , for the hysteresis value. From the top plots it can be seen how the system
always reaches the desired steady state, Δss , i.e. when Δini < Δss and also when
Δini > Δss . The second and third plots show the evolution of the hysteresis band
and the corresponding switching period, respectively, confirming a good regulation
to the desired value, 10−5 s i.e. 100kHz, in both cases.

In Fig. 16.7 the system response to a variation of the voltage reference between 24
and 12V is plotted. Besides a correct regulation of the output voltage, it is possible
to confirm how, after the sliding transient, the desired switching frequency is reached
in both cases.

The results shown in Fig. 16.8 correspond to the variation of the switching period
reference when the value of γ brings the system close to the unstable region. Such
tests are performed in order to numerically verify the theoretical values that ensure
stable behaviour of the SFC. Specifically, γ is set to 2 · 105. In the test, the switching
period reference is step varied from 14 to 12 µs and from 10 to 12 µs, respectively.
From the results, it is clear that this value of γ is close to the ones which would
produce instability, as Theorem 16.1 claims.
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Fig. 16.6 BuckConverter: start-upwith different initial values forΔ. From top to bottom. 1- Output
voltage, vc, and reference voltage, v∗

c . 2- Switching function σ . 3- Desired and real switching period
(T ∗, T )

Fig. 16.7 Buck Converter: output voltage response to a step-changing reference. From top to
bottom. 1- Output voltage, vc, and reference voltage, v∗

c . 2- Switching function σ . 3- Desired and
real switching period (T ∗, T )
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Fig. 16.8 Buck Converter: switching period regulation. From top to bottom. 1- Output voltage, vc,
and reference voltage, v∗

c . 2- Switching function σ . 3- Desired and real switching period (T ∗, T )

Fig. 16.9 Boost converter

Table 16.2 Boost Converter
Parameter

Parameter Symbol Value

Input voltage E 12V

Desired output voltage range v∗
c 36–48V

Output capacitor C 50 µF

Inductance L 22 µH

Load Resistance R 20 �

Switching period reference T ∗ 10 µs

16.3.2 Output Regulation of a Nonlinear System: The Boost
Converter

Aboost converter circuit scheme is shown inFig. 16.9, and the values of its parameters
are listed in Table16.2.
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The nonlinear state space equations of the converter are:

L
dil

dt
= E − vc(1 − u)

C
dvc

dt
= il(1 − u) − vc

R
,

where u is the control signal and takes values in {0, 1}. The power switches M1 and
M2 work in a complementary way, as in the Buck converter case.

16.3.2.1 Sliding Mode Control

The relative degree between the output voltage and the control input is one. However,
imposing a sliding dynamics directly over the output voltage results in an unstable
behaviour of the inductor current, which prevents its practical use [1]. An alternative
solution in order to regulate the output voltage, vc, is to consider the following
switching function:

σ(vc, il) := κ1ev + κ2

∫
evdt − κ3 il , κ1,2,3 > 0

where ev = v∗
c − vc.

The switching function derivative results in

σ̇ (vc, il) = −ψ1(vc, il) + (1 − u) ψ2(vc, il), (16.20)

where

ψ1(vc, il) = κ3 E

L
− κ1

R C
vc − κ2ev, ψ2(vc, il) = κ3

L
vc − κ1

C
il . (16.21)

Notice from (16.20) that sliding motion can be enforced on σ(vc, il) = 0 if 1 >
ψ1(vc,il )

ψ2(vc,il )
> 0. Using the last expression, the equivalent control is easily derived:

ueq = ψ2(vc, il) − ψ1(vc, il)

ψ2(vc, il)
. (16.22)

Therefore, the equivalent system in sliding mode is:

L
dil

dt
= E − vc

ψ1(vc, il)

ψ2(vc, il)
(16.23)

C
dvc

dt
= il

ψ1(vc, il)

ψ2(vc, il)
− vc

R
, (16.24)
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which is highly nonlinear. It is straightforward to check that (i∗
l , v∗

c ), with

i∗
l = v∗

c
2

E R
,

is an equilibrium point for this system. In the following, conditions will be obtained
to guarantee local asymptotic stability of such equilibrium.

Indeed, defining the error variables e1 = il − i∗
l , e2 = vc − v∗

c , the linearized
model of the error system corresponding to (16.23), (16.24) reads as:

L
de1
dt

= − E2κ1

Cv∗
cψ1(v∗

c , i∗
l )

e1 − E

ψ1(v∗
c , i∗

l )

(
κ2 − 2κ1

RC

)
e2

C
de2
dt

= E2κ3

Lv∗
cψ1(v∗

c , i∗
l )

e1 + 1

Rψ1(v∗
c , i∗

l )

(
v∗

cκ2 − 2Eκ3

L

)
e2, (16.25)

where it follows from (16.21) that

ψ1(v
∗
c , i∗

l ) = Eκ3

L
− κ1v∗

c

RC
.

The characteristic polynomial of (16.25) is given by:

P(λ) = λ2 + 1

ψ1(v∗
c , i∗

l )

(
E2κ1

LCv∗
c

− κ2v∗
c

RC
+ 2Eκ3

RLC

)
λ + E2κ2

LCv∗
cψ1(v∗

c , i∗
l )

.

Hence, under the current hypotheses (κ1, κ2, κ3 > 0), the origin of (16.25) will be
locally asymptotically if and only if

Ev∗
cκ3

L
− κ1v∗

c
2

RC
> 0, and

E2κ1

L
− κ2v∗

c
2

R
+ 2Ev∗

cκ3

RL
> 0.

In this simulation case, the chosen values are: κ1 = 0.8, κ2 = 4500, κ3 = 0.6, which
deliver a good transient response for the output voltage. Finally, using (16.20), the
hysteretic control law that confines the switching function within the space region
|σ(vc, il)| < Δk is:

u =
{
0 if σ · sign (ψ2) < −Δk or (|σ | < Δk & σ̇ > 0)
1 if σ · sign (ψ2) > Δk or (|σ | < Δk & σ̇ < 0) .

16.3.2.2 Switching Frequency Regulation

In order to select γ for the SFC, ρ+
k and ρ−

k have to be evaluated. This requires
(16.22) to be particularized for the steady state sliding mode, i.e. assuming vc = v∗

c

and il = v∗
c
2

R E ,
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σ̇ (v∗
c , i∗

l ) = ψ2(v
∗
c , i∗

l )

(
1 − E

v∗
c

− u

)

where

ψ2(v
∗
c , i∗

l ) = κ3v∗
c

L
− κ1v∗2

c

ERC
.

Using the data given in Table16.2,ψ2(v∗
c , i∗

l ) results positive; therefore, the expected
switching function slopes become:

ρ+
∗k = [

σ̇ (v∗
c , i∗

l )u=0
]−1 = ψ2(v

∗
c , i∗

l )−1

(
1 − E

v∗
c

)−1

ρ−
∗k = [

σ̇ (v∗
c , i∗

l )u=1
]−1 = −ψ2(v

∗
c , i∗

l )−1 v∗
c

E
.

Replacing the values of the parameter shown in the Table16.2 one gets:

v∗
c = 36V → ρ+

∗k = 1.67 · 10−5; ρ−
∗k = −3.35 · 10−5;

v∗
c = 48V → ρ+

∗k = 1.15 · 10−5; ρ−
∗k = −3.46 · 10−5;

According to Theorem 16.1, the closed-loop system is stable for γ ∈ (0, 2.89 ·
105). Hence, we choose γ = 2 · 104.

16.3.2.3 Simulation Results

The simulations are performed using Matlab Simulink with the data shown in
Table16.2 and the control parameters κ1 =0.8, κ2 = 4500, κ3 = 0.6, and γ = 2 · 104.

Figure16.10 shows the response of the system with different initial conditions,
Δini , for the hysteresis valueΔ. Both voltage and frequency regulation are confirmed
from the results.

The simulation shown in Fig. 16.11 plots the system response when the voltage
reference is step changed between 48 and 36 V (see the top plots). Once the sliding
motion is recovered, the switching period reaches the desired value in around 500µs.
Notice from the mid plots of the figure how the SFC adjusts the hysteresis value in
order to keep the switching period at the desired value.

The results presented in Fig. 16.12 show the switching period response when
γ = 2.75 · 105, which is close to the maximum value that guarantees stability, i.e.
γ = 2.88 · 105. The underdamped response illustrates the validity of the stability
range.
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Fig. 16.10 Boost Converter: start-up with different initial values for Δ. From top to bottom.
1- Output voltage, vc, and reference voltage, v∗

c . 2- Switching function σ . 3- Desired and real
switching period (T ∗, T )

16.3.3 Output Tracking: The Voltage Source Inverter

The voltage source inverter (VSI) circuit scheme is depicted in Fig. 16.13. This circuit
is commonly employed to generate a sinusoidal signal at its output and is classified
as DC/AC converter.

The VSI dynamics are governed by:

C
dvc

dt
= −vc

R
+ iL , (16.26)

L
diL

dt
= −vc + E u, (16.27)

where iL is the inductor current, vc is the output voltage, R is the resistive load, L
is the inductance, C is the capacitor and E is the input voltage. The control action u
takes values in {−1, 1}. The power switches are represented by M1, M2, M3, and M4.
As it is shown in Fig. 16.13, M1 and M4 are short circuited when u = 1, and remain
open when u = −1, whereas M2 and M3 work in a complementary way. Table16.3
presents the specific values of the converter parameters used in the simulation.
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Fig. 16.11 Boost Converter: step-changing output voltage reference. From top to bottom. 1- Output
voltage, vc, and reference voltage, v∗

c . 2- Switching function σ . 3- Desired and real switching period
(T ∗, T )

16.3.3.1 Sliding Mode Control

In this case, the control objective is to track a time-varying reference at the output.
The signal to be tracked is defined as:

v∗
c (t) = A sinωt.

Since the relative degree of the output voltage with respect to the control is two, the
following first order linear switching surface is used [4]:

σ (vc, v̇c) = φ1ev + φ2Cėv = 0, φ1,2 > 0, (16.28)

where ev = v∗
c − vc.

The switching function derivative becomes:

σ̇ (vc, v̇c) = fvsi − φ2 E

L
u (16.29)
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Fig. 16.12 Boost Converter: switching period regulation with γ = 275000. From top to bottom.
1- Output voltage, vc, and reference voltage, v∗

c . 2- Switching function σ . 3- Desired and real
switching period T ∗, T

Fig. 16.13 Voltage source
inverter structure

where

fvsi = φ1v̇∗
c + φ2Cv̈∗

c + vc

(
φ1

RC
− φ2

R2 C
+ φ2

L

)
+ il

(
φ2

RC
− φ1

C

)
.

It is clear that sliding motion exists if φ2 E
L > | fvsi |. The equivalent control

results in:

ueq = L

φ2 E
fvsi .
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Table 16.3 Voltage Source Inverter parameters

Parameter Symbol Value

Input voltage E 400V

Desired output voltage amplitude A 230
√
2V

Output voltage frequency range f 50−200Hz

Inductor L 450µH

Output capacitor C 100µF

Load range R 1k�–10�

Switching period reference T ∗ 50µs

According to the definition of the equivalent control, the expression (16.29) can be
redefined as:

σ̇ (vc, v̇c) = φ2 E

L
(ueq − u) (16.30)

The corresponding ideal sliding behavior is given by the linear time-varying sys-
tem:

C
dvC

dt
= −φ1

φ2
vC + φ1

φ2
v∗

C + Cv̇∗
C ,

L
diL

dt
= αφ1

Rφ2
vC − αφ1

φ2
iL + Lh(t),

where

α := L

C

(
1 − φ2

Rφ1

)
and h(t) := φ1

φ2
v̇∗

C + Cv̈∗
C .

It is then immediate that the system is asymptotically stable if R > φ2φ
−1
1 > 0.

According to the VSI parameters values defined in Table16.3, the sliding coefficients
are selected as: φ1 = 0.1, and φ2 = C .

Finally, the hysteretic control law that confines σ within a boundary layer of width
2Δk , is:

u =
{−1 if σ < −Δk or (|σ | < Δk & σ̇ > 0)

1 if σ > Δk or (|σ | < Δk & σ̇ < 0) .

16.3.3.2 Switching Frequency Regulation

In order to select γ for the SFC, the values of ρ+
∗k and ρ−

∗k have to be evaluated. The
switching function slopes can be obtained from (16.30). The equivalent control in the
steady sliding motion can be derived from (16.26), (16.27) imposing that vc = v∗

c .



16 Sliding Mode Control of Power Converters with Switching … 405

Therefore, (16.30) becomes:

σ̇
(
v∗

c , v̇∗
c

) = φ2

[
v∗

c − Eu

L
+ v̇∗

c

R
+ Cv̈∗

c

]
,

and ρ+
∗k and ρ−

∗k are finally given by:

ρ+
∗k =

[
σ̇

(
v∗

c , v̇∗
c

)
u=−1

]−1 = φ−1
2

[
v∗

c + E

L
+ v̇∗

c

R
+ Cv̈∗

c

]−1

ρ−
∗k = [

σ̇
(
v∗

c , v̇∗
c

)
u=1

]−1 = φ−1
2

[
v∗

c − E

L
+ v̇∗

c

R
+ Cv̈∗

c

]−1

.

According to Theorem 16.2, the previous expressions allow to select the value
of γ which ensures stability. In the top plot, Fig. 16.14 shows the desired output
voltage, v∗

c , and the dynamic evolution of ρ+
∗k, ρ−

∗k in the mid plot. Finally, the set of

Fig. 16.14 VSI Converter. From top to bottom. 1- Desired output voltage, v∗
c . 2- Dynamic evolution

of ρ+
∗k and ρ−

∗k . 3- Groups of roots produced by the conditions given in Theorem 16.2



406 V. Repecho et al.

Fig. 16.15 VSI Converter. From top to bottom. 1- Desired and real output voltage (v∗
c , vc).

2- Inductor current, il . 3- Switching surface, σ . 4- Desired and real switching period of the control
action (T ∗, T )

solutions of the condition stated at Theorem 16.2 for the resulting values of ρ+
∗k, ρ−

∗k
are presented in the bottom plot. With such signals, it is straightforward to find the
maximumandminimumvalueswhich guarantee stability of theSFC.Specifically, the
exact values that define the stability margin are γM = 1.14 · 105 and γm = 9.3 · 104,
i.e. 9.3 · 104 < γ < 1.14 · 105. The chosen value for the simulations is γ = 1 · 105.

16.3.3.3 Simulation Results

The simulations are performed with Matlab-Simulink. Figure16.15 shows the
response of the system under slidingmotionwhen some variations are introduced. On
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the one hand, at the beginning of the simulations a fixed value for the hysteresis band
is used, which leads to an expected time-varying switching period. At time instant
t = 0.02 s the proposed SFC structure is enabled. In the bottom plot in Fig. 16.15 one
can observe how the switching period converges to the desired value, confirming a
proper performance of the SFC. Additionally, a load transient is introduced at time
t = 0.05s, from R = 1 k� to R = 10�. Notice how the output voltage vc tracks
perfectly the desired voltage v∗

c during the entire test. The use of the feedforward
signal Ω (see (16.13)) implies knowledge of ρ±

k , but when the SFC is implemented
the information to calculate Δk is related to the last interval measured k − 1, since
ρ±

k is not available until the kth interval ends. Specifically, ρ±
k are approximated by

the immediately preceding values:

ρ+
k−1 = T +

k−1

Δk−1 + Δk−2
, ρ−

k−1 = T −
k−1

2Δk−1
.

The last test, shown in Fig. 16.16, presents the switching period response when
some parameters are varied, as the amplitude and frequency of the time-varying
reference signal, and the desired switching frequency. An overall good performance
of the system is confirmed. However, it is worthwhile commenting on the switching
period oscillation that appears when the desired frequency, ω, of the tracking signal
is set to 200Hz (see second plot in Fig. 16.16 at t = 0.07s). When the frequency
signal increases, the values of ρ±

k have a higher time variation, and the assumption

Fig. 16.16 VSI Converter. From top to bottom. 1- Desired and real output voltage (v∗
c , vc).

2- Desired and real switching period of the control action (T ∗, T )
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of constant slopes during the switching interval is not completely fulfilled. As a
consequence, the variable hysteresis band provided by the SFC does not perfectly
reject the period oscillations. In the same way, notice that when the desired switching
frequency is increased (t = 0.09s), the assumption is newly met, and the switching
period recovers the desired fixed value.

16.4 Conclusions

Fixing the switching frequency is a key issue in sliding mode control implemen-
tations when it is applied in inherently switched systems. This chapter presented
a hysteresis band controller capable of setting a constant value for the steady-state
switching frequency of a sliding mode controller in regulation and tracking tasks.
Problem statement, practical assumptions, stability proofs and control parameters
design criteria were also provided. The proposal was numerically validated through
a set of simulations in power converters such as a Buck converter, a Boost converter,
and a voltage source inverter.
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