
Chapter 10
Proposed Metaheuristics for Solving
Problem ΘZ (DCSPwCRD)

10.1 IBEA—Island-Based Evolutionary Algorithm

An island-based evolution algorithm (IBEA) belongs to the class of distributed
algorithms. To improve efficiency of genetic algorithms (GA) several distributed
GA’s were proposed in [1–3]. The proposed algorithms used an island-based
approach where a set of independent populations of individuals evolves on “is-
lands” cooperating with each other. The island-based approach brings two benefits:
a model that maps easily onto the parallel hardware and extended search area (due
to multiplicity of islands) preventing from sticking in local optima. Promising
results of the island-based approach achieved in [4, 5] motivated the author to
design the IBEA for discrete-continuous scheduling.

An island-based evolutionary algorithm (IBEA), proposed originally in [6],
operates on two levels: on the island level and population level. To evolve indi-
viduals of the population level a population-based evolutionary algorithm (PBEA)
is proposed. On the island level the following assumptions are made:

• all islands are located on a directed ring,
• an island is represented by a population of individuals,
• the populations of individuals evolve on each island independently,
• each island Ik regularly sends its best solution to the successor I(k mod K) + 1 in the

ring, where k = 1, 2, …, K, and K is the number of islands,

On the population level the following assumptions are made:

• an individual (a solution) is represented by an n-element vector
S = [ci| 1 ≤ i ≤ n],

© Springer International Publishing AG 2018
E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,
Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_10

161



• all processing modes of all tasks are numbered consecutively. Thus, processing
mode lb of task Jb has the number cb = ∑b− 1

i=1 Wi + lb,
• all S representing feasible solutions are potential individuals,
• an initial population P0 is composed from the potential individuals for whom

task modes and tasks order on the list are random,
• each individual can be transformed into a schedule by applying LSG, which is a

specially designed list-scheduling algorithm for discrete-continuous scheduling,
• each schedule produced by the LSG can be directly evaluated in terms of its

fitness,
• new population is formed by applying several evolution operators: selection and

transfer of some more “fit” individuals, random generation of individuals,
crossover, and mutation,

• the algorithm stops when an optimality criterion is satisfied or the preset number
of generations on each island have been generated,

• when IBEA stops, the best overall solution is the final one.

The following pseudo-code shows main stages of the IBEA algorithm:

162 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



The PBEA algorithm is shown in the following pseudo-code:

The LSG algorithm used to transform S into a schedule is carried out as follows:

10.1 IBEA—Island-Based Evolutionary Algorithm 163



10.1.1 Computational Experiment

The proposed island-based evolution algorithm for solving discrete-continuous
scheduling problems with continuous resource discretisation was implemented and
tested. Results were compared to the best known obtained by a genetic GAVR-
dyskr, tabu search, and simulated annealing algorithms [7] (GAVRdyskr, denoted
as Gdskr, was used for results comparison as the one of the same nature).

Three combinations of n × m were considered (n—the number of tasks and
m—the number of machines): 10 × 2, 10 × 3, and 20 × 2. For each
n × m combination three discretisation levels were considered: 10, 20, and 50. For
each discretisation level 100 instances of a problem ΘZ were generated, which
makes 900 instances of the problem. Each instance was tested 20 times. Relative
error (RE) of the solutions found by the IBEA compared to best-known solutions
was used to evaluate the quality of IBEA. RE calculated as
RE = (QIBEA − Qbest-known)/Qbest-known for each instance was used to find average
(REavg) and maximum (REmax) relative errors. REavg and REmax of the solutions
found by the IBEA and Gdskr are presented in Table 10.1.

As it can be seen in Table 10.1 the quality of the solutions found by the IBEA is,
on average, competitive with the quality of the solutions found by Gdskr. For
example, for case 10 × 2, W = 10 REavg = – 3,09%, which means that the
schedule length of all schedules yielded by IBEA was 3,09% shorter on average
than the best-known. For the same case, REmax = 50,02% means that the longest
schedule among all schedules yielded by IBEA was 50,02% longer than the
best-known. Such large REmax points to the necessity of better tunning of the IBEA.
As it can be also seen from Table 10.1, REs of the solutions do not always decrease
as continuous resource discretisation level increases. Thus the level of continuous
resource discretisation for which REs of the solutions are smallest should be
determined empirically.

Table 10.1 The comparison of the results obtained by the IBEA and Gdskr for problem ΘZ

Problem size
n × m × W

Relative
error (RE)

Discretisation level
W = 10 W = 20 W = 50
IBEA
(%)

Gdskr
(%)

IBEA
(%)

Gdskr

(%)
IBEA
(%)

Gdskr
(%)

10 × 2 × W REavg −3,09 7,59 −2,77 9,18 −2,86 10,41
REmax 50,02 15,34 49,09 15,84 52,22 17,54

10 × 3 × W REavg −0,45 14,58 −0,98 15,79 −0,14 17,11
REmax 73,33 25,18 69,65 23,15 71,91 27,52

20 × 2 × W REavg 4,08 13,25 4,74 15,42 4,91 17,65
REmax 41,09 19,40 43,44 24,02 43,28 26,87

164 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



Mean time required by the IBEA to find a solution for 10 × 2 on CPU with
Pentium III 733 MHz was 60 s. Mean time required by Gdskr to find a solution for
10 × 2 on supercomputer Silicon Graphics Power Challenge XL with twelve
RISC MIPS R8000 processors was 33 s.

Such results make IBEA quite effective algorithm for solving
discrete-continuous scheduling problems with continuous resource discretisation.

10.2 PLA—Population Learning Algorithm

Population learning algorithm (PLA) first introduced in [8] takes advantage of basic
ideas, principals and assumptions introduced in a Social Learning Algorithm
(SLA) originally proposed in [9]. Both SLA and PLA are based on an analogy to a
social phenomenon rather than to evolutionary processes. Whereas evolutionary
algorithms emulate basic features of natural evolution including natural selection,
hereditary variations, the survival of the fittest and production of far more offspring
than are necessary to replace current generation, the population learning algorithms
take advantage of features that are common to social education systems:

• a generation of individuals enters the system,
• individuals learn through organized tuition, interaction, self-study and

self-improvement,
• learning process is inherently parallel with different schools, curricula, teachers,

etc.,
• learning process is divided into stages,
• more advanced and more demanding stages are entered by a diminishing

number of individuals from the initial population (generation),
• at higher stages more advanced education techniques are used,
• the final stage can be reached by only a fraction of the initial population.

In the PLA, the assumptions made for the individuals are the same as the
assumptions made for the individuals of the IBEA on the population level, see
Sect. 10.1.

Initially, a number of individuals, known as the initial population, is randomly
generated. Once the initial population has been generated, individuals enter the first
learning stage. It involves applying some, possibly basic and elementary,
improvement schemes. These can be based, for example, on some simple local
search procedures. The improved individuals are then evaluated and better ones
pass to the subsequent stage. A strategy of selecting better or more promising
individuals must be defined and duly applied. In the following stages the whole

10.1 IBEA—Island-Based Evolutionary Algorithm 165



cycle is repeated. Individuals are subject to improvement and learning, either
individually or through information exchange, and the selected ones are again
promoted to the higher stage with the remaining ones dropped-out from the process.
At the final stage the remaining individuals are reviewed and the best represents a
solution to the problem at hand.

The PLA is seen here as a general framework for constructing hybrid solutions
to difficult computational problems. Strength of the PLA stems from integrating in
an “intelligent” manner the power of population-based algorithms using some
random mechanism for diversity assurance, with efficiency of various local search
algorithms. The later may include, for example, reactive search, tabu search, sim-
ulated annealing as well as the described earlier population based approaches.

General idea of the present implementation of the PLA proposed in [8] is shown
in the following pseudo code:

In the presented pseudo code, procedure IBEA stands for the Island-Based
Evolution Algorithm described in Sect. 10.1, and TS—for Tabu Search, which is to
be presented in the subsequent section.

166 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



10.2.1 Tabu Search

Tabu search is another metaheuristic used in the considered PLA (see [10]). In order
to present the general idea of present implementation of the tabu search procedure,
we introduce the neighborhoods Nt and Nmd of a solution S. Nt is a set of solutions
generated from S by moving task Ji ∈ S from place i to the rest n − 1 places. Thus,
we yield |Nt| = n ⋅ (n − 1) neighbors. Nmd is a set of solutions generated from S by
assigning to task Ji ∈ S one by one in a row all of its W modes, assuming that all
tasks can be executed in W modes. Thus we yield another |Nmd| = n ⋅ (W − 1)
neighbors. The considered Tabu Search procedure is shown in the following pseudo
code:

The size of the Tabu List (TL) was determined empirically and set to 500
solutions.

10.2 PLA—Population Learning Algorithm 167



10.2.2 Computational Experiment

The proposed population learning algorithm for solving discrete-continuous
scheduling problems with continuous resource discretisation was implemented
and tested. Results were compared to the best known obtained by a genetic
GAVRdyskr, tabu search, simulated annealing algorithms [7], and the IBEA
described in [4] (GAVRdyskr, denoted in the rest of the text as Gdskr, and the IBEA
were used for results comparison in as the ones of the same nature). For testing
purposes three combinations of n × m were considered (n—the number of tasks
and m—the number of machines): 10 × 2, 10 × 3, and 20 × 2. For each
n × m combination three discretisation levels were considered: 10, 20, and 50. For
each discretisation level 100 instances of a problem ΘZ were generated, which
makes 900 instances of the problem. The instances of the problem were generated
with aid of a procedure received from the author of [7]. Each instance was tested 26
times. Relative error (RE) of the solutions found by the PLA compared to
best-known solutions was used to evaluate the quality of the PLA.

The value of the RE calculated for each instance according to the formulae
RE = (QPLA − Qbest-known)/Qbest-known was used to find average (REavg) and max-
imum (REmax) relative errors. REavg and REmax of the solutions found by the PLA,
IBEA, and Gdskr are presented in Table 10.2. As it can be seen in Table 10.2, the
quality of the solutions found by the PLA has been, on average, better than the
quality of the solutions found by the IBEA and Gdskr. For example, for case
10 × 2, W = 10, REavg = −2,12%, which means that the schedule length of all
schedules yielded by the PLA was 2,12% on average shorter than the best-known.
For the same case, REmax = 56,34% means that the longest schedule among all
schedules yielded by PLA was 56,34% longer than the best-known. Such large
REmax points to the necessity of better tuning of the PLA. Despite large REmax, the
PLA improved 55% of 300 the best known solutions for sizes 10 × 2, 10 × 3 and
20 × 2, and reduced average values of REavg compared to the IBEA and Gdskr.
Table 10.3 shows the average of the PLA’s REavg reduction percentage in com-
parison to average REavg of the IBEA and Gdskr. In other words, Table 10.3 shows
how many percent on average the solutions found by the PLA were better than the
solutions found by the IBEA and Gdskr. As it can be also seen from Table 10.2, REs
of the solutions do not always decrease as continuous resource discretisation level
increases. Thus, the level of continuous resource discretisation for which REs of the
solutions are smallest should be determined empirically.

168 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



T
ab

le
10

.2
T
he

co
m
pa
ri
so
n
of

R
E
s
ob

ta
in
ed

by
th
e
PL

A
,I
B
E
A

an
d
G
ds
kr
fo
r
pr
ob

le
m

Θ
Z

Pr
ob

le
m

si
ze

n
×

m
×

W
R
el
at
iv
e
er
ro
r

(R
E
)

D
is
cr
et
is
at
io
n
le
ve
l

W
=

10
W

=
20

W
=

50
PL

A
(%

)
IB
E
A

(%
)

G
ds
kr

(%
)

PL
A

(%
)

IB
E
A

(%
)

G
ds
kr

(%
)

PL
A

(%
)

IB
E
A

(%
)

G
ds
kr

(%
)

10
×

2
×

W
R
E
av
g

−
2,
12

−
0,
61

7,
59

−
1,
44

0,
19

9,
18

−
1,
07

0,
36

10
,4
1

R
E
m
ax

56
,3
4

62
,3
5

15
,3
4

56
,6
9

62
,4
2

15
,8
4

61
,5
5

62
,8
8

17
,5
4

10
×

3
×

W
R
E
av
g

1,
46

2,
89

14
,5
8

1,
03

3,
49

15
,7
9

1,
66

5,
22

17
,1
1

R
E
m
ax

77
,5
1

83
,1
1

25
,1
8

76
,1
7

84
,9
1

23
,1
5

78
,8
0

82
,4
0

27
,5
2

20
×

2
×

W
R
E
av
g

5,
62

6,
62

13
,2
5

6,
27

6,
96

15
,4
2

6,
59

7,
13

17
,6
5

R
E
m
ax

46
,5
0

47
,8
4

19
,4
0

47
,6
0

47
,8

24
,0
2

47
,8
3

47
,8
6

26
,8
7

10.2 PLA—Population Learning Algorithm 169



Mean time required by the PLA to find a solution for 10 × 2 on Pentium (R) 4
CPU 3.00 GHz compiled with aid of Borland Delphi Personal v.7.0 was 5 s, by
IBEA compiled in Borland Pascal v.7.0—48 s. Mean time required by Gdskr to find
a solution for 10 × 2 on supercomputer Silicon Graphics Power Challenge XL
with twelve RISC MIPS R8000 processors was 33 s. Such results make PLA quite
effective algorithm for solving discrete-continuous scheduling problems with con-
tinuous resource discretisation.

10.3 PLA2—Cross-Entropy-Based Population Learning
Algorithm

A cross-entropy-based population learning algorithm (PLA2) proposed in [11] is
another attempt to make use of the idea of social learning framework already
presented in Sect. 10.2. Different to the PLA structure, more advanced procedure
for the initial population creation and different setting for the TS procedure con-
tributed to higher efficiency of the PLA2.

In the PLA2, the assumptions made for the individuals are the same as the
assumptions made for the individuals of the IBEA on the population level, see
Sect. 10.1. The general idea of the implementation of the PLA2 is shown in the
following pseudo code:

Table 10.3 The average of the PLA’s REavg reduction percentage in comparison to average
REavg of the IBEA and Gdskr

Problem size n × m × W IBEA (%) Gdskr (%)

10 × 2 × W 1,52 10,60
10 × 3 × W 2,48 14,44
20 × 2 × W 0,74 9,28

170 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



In the description of the procedure PLA2 above, x0 = K ⋅PS, where K—the
number of islands and PS—the population size on an island defined in procedure
IBEA. As it follows from the description of the PLA2, population P1 comprises the
initial population for the IBEA, therefore the step for generating the initial popu-
lation for the IBEA, as it is given in the description of the IBEA in Sect. 10.1,
should be omitted. The description of TS procedure can be found in Sect. 10.2.1.

10.3.1 Cross-Entropy Algorithm

A cross-entropy (CE) procedure, proposed in the PLA2, is perceived as the proce-
dure for preparing some solution basis for further improvement by procedure IBEA.
In CE procedure a cross-entropy method first proposed in [12] is used since it was
effective in solving various difficult combinatorial optimization problems [13].
Because in CE procedure a solution is viewed as a vector of n tasks, we would like to
know the probability of locating task Ji on a particular place j in the vector. For this
reason we introduce two success probability vectors p ̂j and p ̂′ji related to each task Ji
and its place j in solution S. Vector pĵ = fpji 1≤ i≤ nj g, 1 ≤ j ≤ n contains pji
values, which is the probability that on place j there will be located task i. Vector
p ̂′ji = fpjil 1≤ l≤Wij g, 1 ≤ j ≤ n, 1 ≤ i ≤ n contains pjil values, which is the
probability that on place j task i will be executed in mode l. A procedure CE using
cross-entropy method for combinatorial optimization described in [13] and modified
for solving problem ΘZ is shown in the following pseudo code:

10.3 PLA2—Cross-Entropy-Based Population Learning Algorithm 171



172 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



In the presented pseudo code, a parameter N is the number of solutions in a
sample generated in each iteration. A parameter ρ determines the percentage of the
best solutions in the current sample that are used to calculate new values for vectors
p ̂j and p ̂′ji. Both parameters were determined empirically and set N = 1000 and
ρ = 0,2. Parameters K—the number of islands and PS—the population size are
defined in procedure IBEA and PBEA respectively.

10.3.2 Computational Experiment

The considered cross-entropy-based population learning algorithm for solving
discrete-continuous scheduling problems with continuous resource discretisation
(PLA2), was implemented and tested. Results were compared to the best known
obtained by a genetic GAVRdyskr, tabu search, simulated annealing algorithms [7],
IBEA [4], and PLA [8] (GAVRdyskr is denoted in the rest of the text as Gdskr).

10.3.2.1 Assumptions of the Experiment

For the testing purposes, the following set of assumptions has been formulated and
implemented:

• all tasks Ji can be processed in W modes, i.e. Wi = W, i = 1, 2, …, n, where
W ∈ {10, 20, 50}.

• continuous resource is discretised uniformly and the amount of the continuous
resource assigned to task Ji in mode li can be calculated as:

ulii =
li
Wi

, li =1, 2, . . . ,Wi, i=1, 2, . . . , n ð10:6Þ

• task processing rate function fi is concave and its value can be calculated as:

fi = uli1 ̸αi
i , αi ∈ f1, 2g, i=1, 2, . . . , n ð10:7Þ

• the processing time of task Ji in mode li = 1, 2, …, Wi can be calculated as:

τlii =
xĩ
fi
, i=1, 2, . . . , n ð10:8Þ

10.3 PLA2—Cross-Entropy-Based Population Learning Algorithm 173



• task sizes x ̃i, i=1, 2, . . . , n were generated from interval [1, 1000] with uni-
form probability distribution,

• the number of tasks n ∈ {10, 20} and the number of machines m ∈ {2, 3}.

For the testing purposes three combinations of n × m were considered—
10 × 2, 10 × 3, and 20 × 2. For each considered combination of n × m, 100
instances of problem ΘZ, have been generated, which together with three dis-
cretisation levels (10, 20, 50) makes available 900 instances of the problem. Each
instance was tested 24 times. A relative error (RE) of the solutions found by PLA2
with respect to best-known solutions was used to evaluate the quality of PLA2. The
value of RE calculated using equation RE = (QPLA2 − Qbest-known)/Qbest-known for
each instance was used to find average and maximum relative errors.

10.3.2.2 Fine Tuning of PLA2

All three procedures used in the PLA2 have a stochastic nature. The lack of
mathematically proved rules makes it difficult to deduce values of the parameters
used by the respective procedures. Instead, these values have to be set experi-
mentally. An extensive computational experiment covered all three procedures. In
each case we have been looking for the most efficient settings, that is such settings
that have been yielding highest quality solutions within some pre-set number of the
fitness function evaluations. We tried not only to choose the most proper parameters
of the algorithm, but also to find the sequence of the learning stages such that
quality of the found solutions was highest possible. Because PLA2 is one more
attempt to use an evolutionary approach for coping with the discrete-continuous
scheduling problem our goal was to achieve better results for the same number of
the fitness function evaluations equal 720000 which was used in the previous trials.
While determining the most proper sequence of the learning stages we considered
two test versions of PLA2. In these two test versions, the primary solutions were
generated according to the rule: random task order in a solution and random task
processing mode. In the first test version, primary solutions were improved on the
second stage by the IBEA, then on the third stage the best found by the IBEA
solution was improved by procedure TS. However, we implemented in PLA2 more
efficient second version, in which on the second stage, there was generated only one
solution by procedure TS and next added to the set of the primary solutions found
on the first stage. This way obtained set of solutions was improved on the third
stage by the IBEA. The second version improved 64,67% of 300 best known
solutions, while the first—57%, and the average of REavg was respectively 2,85%
and 3,04%. In the final version of the PLA2 we replaced simple first stage proce-
dure, which was used in the PLA for generating the set of the primary solutions, by
procedure CE. The percent distribution of the whole number of fitness function
evaluations among particular learning procedures is as follows: CE—7%, TS—
30%, IBEA—63%. The further tuning concerned the particular procedures engaged
in the PLA2.

174 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



Procedure CE used to yield the set of primary solutions instead of their random
generating increased the percentage of the improved best known solutions from
64,67 to 80,33%, and decreased average of REavg from 2,85 to 2,09%. For test
purposes we designed two versions of procedure CE—with accumulation of the
values of success probability vectors pĵ and p ̂′ji in each iteration, and without
accumulation. In version with accumulation we calculated the values of vectors p ̂j
and p ̂′ji in iteration ic + 1 using equation:

p ̂jðic+1Þ= pĵðic− 1Þ+ pĵðicÞ ð10:9Þ

p ̂′jiðic+1Þ= p ̂′jiðic− 1Þ+ p ̂′jiðicÞ ð10:10Þ

and in the version without accumulation as:

p ̂jðic+1Þ= pĵðicÞ ð10:11Þ

p ̂′jiðic+1Þ= p ̂′jiðicÞ ð10:12Þ

where values of p ̂jðicÞ and p ̂′jiðicÞ vectors were calculated on the basis of the best γ
solutions generated in iteration ic. The main disadvantage of the version with
accumulation was sticking in local optima, which explains including the version
without accumulation into the final version of the PLA2. In the final implementa-
tion of CE procedure we set sample size N = 1000 and ρ = 0,2.

While tuning TS procedure we also considered two versions of it. In both
versions of the procedure we generated “a task neighbourhood” set of solutions of a
solution S by moving a task Ji ∈ S from place i to the rest n − 1 places in S. In the
first version of TS procedure we generated an additional “mode neighbourhood” set
of S by assigning to each task Ji ∈ S one by one in a row the rest all of its W − 1
modes, assuming that all tasks can be executed inW modes. The best solution of the
iteration was determined as the best across both sets. In the second version of TS
procedure, while generating “task neighbourhood” set after each move, we “tuned”
the mode only of a single just moved task by assigning to it one by one in a row its
remaining W − 1 modes. The best solution of the iteration was determined as the
best among all solutions generated in such manner. In the final version of the PLA2
we implemented the first TS procedure version as more efficient.

Fine tuning of the IBEA procedure focused on finding the most effective
combination of the parameter values. It is known from the literature, that parameters
which have a direct impact on the efficiency of the island model are: the number of
islands, the size of population on an island [14, 15], migration size [16, 17],
migration interval [17, 18], migration policy [16], migration topology [19], and the
heterogeneity of the island model [20]. We restricted ourselves to determining on
the way of experiment the number of islands K, the best solutions frequency
exchange between islands xfq, stop criterion icstop, and population size on an island
PS. The considered parameters were set respectively: K = 15, xfq = 3, i.e. islands
exchanged their best solutions after three populations of individuals were generated

10.3 PLA2—Cross-Entropy-Based Population Learning Algorithm 175



on each island, icstop = 2000, i.e. IBEA stopped after 2000 populations had been
generated on each island, PS = 24 individuals in a population. While tuning IBEA
we also considered selection of individuals from the previous population and
generating “wild” individuals to the next population. The probability of selection of
individuals from previous to the next population depended on the value of the
fitness function. In the present PLA2 implementation, tasks’ places and tasks’
processing modes in a solution vector were determined according to the uniform
distribution. Crossover and mutation operators were applied to individuals selected
from the previous population. Two individuals took part in each crossover with
number of “genes” that were exchanged between parents chosen at random.
Mutation of the selected individuals was performed in three ways with probability
0,25, 0,5 and 0,25 respectively. In the first type of mutation we changed at random
task processing mode of a chosen at random task. In the second type—chosen at
random task Ji was swapped with task Ji+1. In the third type of mutation two chosen
at random tasks were swapped. All auxiliary random values used in the crossover
and mutation operators were acquired according to the uniform probability
distribution.

10.3.2.3 Results of the Experiment

REavg and REmax of the solutions found by the PLA2, PLA, and Gdskr are presented
in Table 10.4.

The quality of the solutions found by the PLA2 is, on average, better than the
quality of the solutions found by the PLA and Gdskr. For example, for case 20 × 2,
W = 20 REavg = −0,23%, which means that the schedule length of all schedules
yielded by the PLA2 was, on average, 0,23% shorter than the best-known. For the
same case, REmax = 7,23% means that the longest schedule among all schedules
yielded by the PLA2 was 7,23% longer than the best-known. In our tests the PLA2
improved 80,33% of 300 the best known solutions for combinations 10 × 2,
10 × 3, and 20 × 2, and reduced average of REavg compared to the PLA and
Gdskr. Table 10.5 shows how many percent on average the solutions found by the
PLA2 were better than the solutions found by the PLA and Gdskr.

Mean time required by the PLA2 and the PLA to find a solution for 10 × 2 on
Pentium (R) 4 CPU 3,00 GHz compiled with aid of Borland Delphi Personal v.7.0
was 5 s. The mean time required by Gdskr, which was implemented in C++, to find
a solution for 10 × 2 on supercomputer Silicon Graphics Power Challenge XL
designed in 64-bit SMP (Symmetrical Multi Processing) architecture on 12
RISC MIPS R8000 processors using 1 GB RAM and 20 GB disc memory was
33 s. Such results make the PLA2 quite effective algorithm for solving problem ΘZ.

176 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



T
ab

le
10

.4
C
om

pa
ri
so
n
of

R
E
s
ob

ta
in
ed

by
th
e
PL

A
2,

PL
A

an
d
G
ds
kr
fo
r
pr
ob

le
m

Θ
Z

Pr
ob

le
m

si
ze

n
×

m
×

W
R
el
at
iv
e
er
ro
r

(R
E
)

D
is
cr
et
is
at
io
n
le
ve
l

W
=

10
W

=
20

W
=

50
PL

A
2

(%
)

PL
A

(%
)

G
ds
kr

(%
)

PL
A
2

(%
)

PL
A

(%
)

G
ds
kr

(%
)

PL
A
2

(%
)

PL
A

(%
)

G
ds
kr

(%
)

10
×

2
×

W
R
E
av
g

2,
75

1,
82

7,
59

1,
53

2,
52

9,
18

2,
25

2,
93

10
,4
1

R
E
m
ax

9,
29

9,
39

15
,3
4

5,
94

9,
00

15
,8
4

8,
32

12
,2
1

17
,5
4

10
×

3
×

W
R
E
av
g

2,
99

3,
76

14
,5
8

2,
20

3,
32

15
,7
9

2,
19

3,
96

17
,1
1

R
E
m
ax

10
,6
6

11
,5
8

25
,1
8

8,
70

12
,4
0

23
,1
5

33
,5
4

14
,3
1

27
,5
2

20
×

2
×

W
R
E
av
g

2,
70

2,
49

13
,2
5

−
0,
23

3,
11

15
,4
2

2,
44

3,
42

17
,6
5

R
E
m
ax

9,
21

9,
48

19
,4
0

7,
23

9,
65

24
,0
2

9,
03

9,
65

26
,8
7

10.3 PLA2—Cross-Entropy-Based Population Learning Algorithm 177



10.4 PLA3—Population Learning with Differential
Evolution Algorithm

The PLA model can be also viewed as an island model, were islands are connected
to each other according to some topology and exchange individuals in order to
collectively find best possible solution to the problem. We used four learning
procedures to design the PLA3: Cross-Entropy (CE), Differential Evolution (DE),
Tabu Search (TS), and a Population-Based Evolutionary Algorithm (PBEA) [21].
The PLA3 extends the earlier designed PLA2 [11] with help of the Differential
Evolution (DE) method, first proposed in [22]. The PLA3 inherits from the most
efficient version of PLA2 (denoted as AX-m in [23]) heterogeneity of the islands,
on which diverse learning procedures are realized, random interconnection struc-
ture, and solution exchange adjusted to the specificness of the heterogeneous
islands. We will use the terms learning procedure and an island interchangeably in
the rest of the text.

We distinguish two categories of island groups—heterogeneous and homoge-
neous, dependently on the type of the learning procedures carried out on the islands.
We refer to the group of islands as heterogeneous, if the learning procedure carried
out on at least one island is different from the learning procedures carried out on the
rest of the islands in the group. We refer to the group of islands as homogeneous, if
the same learning procedure is carried out on each island in the group. In our work,
we will refer to a particular island as heterogeneous (Ht), if TS or CE or DE
procedure is carried out on it, and we will refer to an island as a homogeneous
(Hm), if the PBEA is carried out on it. Because the PLA3 is the extension of its
predecessor PLA2, it inherits among others the solution exchange policy. The
solution exchange in the PLA3 is carried out among randomly chosen islands and is
inherited from AX-m, which, according to [22], is the most efficient version of
PLA2. In the PLA3, the assumptions made for the individuals are the same as the
assumptions made for the individuals of the IBEA on the population level, see
Sect. 10.1. The pseudo code of the proposed PLA3 is given below.

Table 10.5 The average of the PLA2’s REavg reduction compared to average REavg of the PLA
and Gdskr given in percent

Problem size n × m × W PLA (%) Gdskr (%)

10 × 2 × W 0,25 6,89
10 × 3 × W 1,22 13,36
20 × 2 × W 1,37 13,80

178 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



The solution exchange among the islands occurs after all islands have carried out
the preset number of solution evaluations. Generally, the solution exchange is
carried out between a pair of islands chosen at random from all available islands.
However, there are some exceptions from that rule. In the PLA3 procedure, we
distinguish several cases of the solution exchange which are described as follows.

In the case when the solution exchange is carried out between two randomly
chosen homogeneous islands Hmr1 (PBEA procedure) and Hmr2 (PBEA proce-
dure), each island in pair sends to the other one its best current solution.

10.4 PLA3—Population Learning with Differential Evolution Algorithm 179



When the exchange is carried out between Ht1 island (TS procedure) and Hmr

island, as well as between Ht1 island and Ht3 island (DE procedure), each island in
pair sends to the other one its best current solution. The exchange procedure
between Ht1 island and Ht2 island (CE procedure) is described in the next
paragraph.

When Ht2 island (CE procedure) participates in the exchange, the transfer of the
solutions is asymmetric. From all available islands Ht2 receives γCE = ρCE ⋅N
solutions in total, where N is the population size on the Ht2 island, and ρCE = 0,2.
In this case of exchange, Ht2 receives K the best current solutions from all Hm
islands, ten copies of the best current solution from Ht1 island, and
min(γCE − K − 10, xDE) best current solutions from Ht3 island (DE procedure). If
xDE < γCE − K − 10, then Ht2 additionally receives γCE − K − 10 − xDE solu-
tions from a randomly chosen island Hmr and next to it consecutive islands Hmr+1,
Hmr+2, …, and Hmr+q until the total number of the solutions received by Ht2 is
equal to γCE. When r + q > K, the numbering of the following consecutive
Hm-islands starts with the island number 1. On the other hand, the transfer of the
solutions from Ht2 to the rest of the islands is carried out as follows. When the
randomly chosen island in pair is Hmr, Ht2 sends its best PS current solutions to it,
where PS is the population size on every Hm-island, defined in PBEA procedure.
When the other island in pair is Ht1, Ht2 sends its best current solution to it. When
the other island in pair is Ht3, Ht2 sends its best min(γCE, γDE−CE) current solutions
to Ht3 island, where the value of γDE−CE = ρDE−CE ⋅ xDE, and ρDE−CE = 0,333.
These solutions substitute the worst solutions on Ht3 island.

When the exchange is carried out between Ht3 island (DE procedure) and Hmr

island, they exchange their min(PS, γDE–Hm) best current solutions, where PS is the
population size on every Hm-island and γDE–Hm = ρDE–Hm ⋅ xDE, ρDE–Hm = 0,333.
The solution exchange between Ht3 and Ht1, and Ht3 and Ht2 islands is described in
two previous paragraphs.

10.4.1 Computational Experiment

The proposed population learning algorithm PLA3 for solving discrete-continuous
scheduling problems with continuous resource discretisation was implemented and
tested. There were 12 islands used in the PLA3 altogether, namely, the number of
homogeneous islands was set to K = 9 with the PBEA procedure assigned to them
and 3 heterogeneous islands. TS procedure was carried out on Ht1, CE procedure on
Ht2, and DE procedure on Ht3 island. The size of the population on every
Hm-island was set to PS = 24. In the TS procedure, the size of the Tabu List
(TL) was set to 500 solutions. In the CE procedure, parameters N and ρCE were set
N = 1000 and ρ = 0,2 respectively. The size of the population on Ht3 island was

180 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



set xDE = 2000, which is different from the sizes considered in [24], where xDE
{20, 40, 80, 60, 100}. The rest of the parameters necessary to carry out the
differential evolution algorithm were set to the same values as in [24], namely the
scale factor A which controls the evolution rate of the population was set A = 1, 5
and the values of the variable rand ∈ [0, 1]. The crossover constants Crp and Crm
which control the probability that the trial individual will receive the actual indi-
vidual’s genes were set Crp = 0,2 and Crm = 0,1, where p and m in the notations
Crp and Crm stand for tasks’ positions and modes. For testing purposes three
combinations of n × m were considered (n—the number of tasks and m—the
number of machines): 10 × 2, 10 × 3, and 20 × 2. For each combination
n × m, 100 instances of a problem ΘZ were generated and three discretisation
levels W were considered: 10, 20, and 50. This way we considered nine sizes of the
problem: 10 × 2 × 10, 10 × 2 × 20, 10 × 2 × 50, 10 × 3 × 10, …,
20 × 2 × 50, which makes 900 instances of the problem in total. Each instance
was tested 43 times. Mean time required by the PLA3 to find a solution for the
problem sizes 10 × 2 and 10 × 3 for all discretisation levels on a PC under 64-bit
operating system Windows 7 Enterprise with Intel(R) Core(TM) i5-2300 CPU @
2,80 GHz 3,00 GHz, RAM 4 GB compiled with aid of Borland Turbo Delphi for
Win32 was approximately 2–3 s, and for the problem size 20 × 2 for all dis-
cretisation levels approximately 4–6 s.

In order to evaluate the efficiency of the PLA3, we have used three types of relative
errors: minimum, average, and maximum relative error of the solutions yielded by the
algorithm. Relative errors (REs) of the solutions compared to the best-known solutions
were calculated according to the formulae RE = (Qalgm − Qbest-known)/Qbest-known,
where Qalgm, Qbest-known—the schedule length of a solution found by the considered
algorithm and the best-known solution respectively. The set of the best-known
solutions was determined by the authors while using all designed by them algo-
rithms and procedures for solving problem ΘZ. We have determined REmax for
every size of the considered problem as a maximum RE across 4300 REs calculated
while solving 100 instances, run 43 times each. We have also determined REavg as a
mean value of 4300 REs obtained within 43 runs of 100 instances of the considered
problem. We have compared the REs of the solutions found by the PLA3 to the REs
of the solutions found by AX-m—the most efficient version of the PLA2 described
in [23]. The values of REavg and REmax for the PLA3 and AX-m (PLA2) for all
problem sizes are presented in Table 10.6.

The values of REs in Table 10.6 show how much schedules yielded by the
PLA3 were longer than the best known schedule for the same case. For example,
for the case 10 × 2 × 10 REavg = 2,70% means that the schedule length of all
schedules yielded by the PLA3 was on average 2,70% longer than the best-known.
For the same case, REmax = 10,14% means that the longest schedule among all
schedules yielded by the PLA3 was 10,14% longer than the best-known.

10.4 PLA3—Population Learning with Differential Evolution Algorithm 181



As it could be seen in Table 10.6, the values of the considered types of the REs
of the solutions found by the PLA3 for the considered problem sizes n × m and the
discretisation levels W, in 23 out of 27 cases were lower than the values of the REs
of the solutions found by AX-m version of the PLA2. The value of the RE that is
lower than the RE of another considered algorithm is given in bold font. As it could
be seen in Table 10.6, it’s impossible to determine unequivocally the discretisation
level W for which the values of the REs of the found solutions are always the
lowest. However, REs yielded by both algorithms for W = 20 in a predominant
number of cases are the lowest, thus the following relations between the REs can be
formulated: REs(W = 20) < REs(W = 50) < REs(W = 10). This might impose
the conclusion, that the high discretisation level does not necessarily ensure the
lowest values of the REs and the additional research is needed to identify the most
appropriate discretisation of the continuous resource.

In addition, we give in Table 10.7 the percentage of the problem instances for
which best solutions found by the PLA3 within 43 runs were better (3rd column) or
not worse (4th column) than the best-known ones, specified for all of the considered
discretisation levels. As a matter of fact, the third column shows the percentage of
the problem instances for which the best-known solutions were improved by the
PLA3 within 43 runs.

Finally, it should be mentioned, that within 43 runs, for combination 10 × 2,
i.e. 10 tasks scheduled on 2 machines, the PLA3 was able to improve 33 out of 100
best known solutions, for combination 10 × 3 – 60 best known solutions, and for
combination 20 × 2, the PLA3 improved 30 best known solutions. Altogether,

Table 10.6 The comparison of the relative errors of solutions found by the PLA3 and AX-m (the
most efficient version of the PLA2) for the problem Θz

Problem size
n × m × W

Relative
error
(RE)

Discretisation level
W = 10 W = 20 W = 50
PLA3
(%)

AX-m
(%)

PLA3
(%)

AX-m
(%)

PLA3
(%)

AX-m
(%)

10 × 2 × W REmin 0,01 0,01 −0,42 0,00 −0,49 0,00
REavg 2,70 3,54 1,53 2,27 1,81 2,47
REmax 10,14 12,33 5,74 9,14 9,02 11,02

10 × 3 × W REmin −0,30 0,00 −1,05 0,00 −1,63 0,00
REavg 3,15 4,68 1,81 3,61 1,66 3,31
REmax 11,76 16,07 11,25 14,71 12,21 14,66

20 × 2 × W REmin −0,19 0,00 −1,03 0,00 −0,14 0,00
REavg 4,38 4,76 1,71 2,05 4,10 3,84
REmax 11,77 11,81 9,22 9,08 11,25 12,44

182 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



within 43 runs, the PLA3 improved 123 best known solutions, i.e. 41% of 300
instances of the considered problem. It should be also mentioned, that all the
conclusions are valid for the particular implementation of the procedures used in the
experiments. The values of some parameters of the learning procedures were
determined during their tuning and should be verified on the way of exhaustive
experiment.

10.5 IBDEA—Island-Based Differential Evolution
Algorithm

In an island-based differential evolution algorithm (IBDEA), proposed in [25], two
ideas were exploited, namely, the Differential Evolution method, first proposed in
[22], and an island model, adopted for evolutionary computation, e.g. [1, 2, 21]. In
the IBDEA, the evolutionary process is performed on an archipelago which consists
of cooperating with each other autonomous islands. The population on an island
consists of two halves of size xDE each. The individuals in the first half—target
vectors, are transformed, with help of mutation and crossover operators, into trial
vectors which are placed in the second half of the population. The idea of keeping
the offspring in the current population was borrowed from [26]. The whole evo-
lutionary process is carried out using differential evolution algorithm (DEA), pro-
posed in [24], which was adapted by the authors for solving DCSPwCRD. In the
IBDEA, the islands cooperate with each other, cyclically sending their best solution

Table 10.7 The percentage of the problem instances for which best solutions found by the PLA3
within 43 runs were better (3rd column) or not worse (4th column) than the best-known ones
specified for all of the considered discretisation levels

Problem size
n × m × W

Discretisation
level W

% of the improved the
best-known solutions

% of not worse than the
best-known solutions

10 × 2 × W 10 0 0
20 9 22
50 26 34

10 × 3 × W 10 1 2
20 21 28
50 48 54

20 × 2 × W 10 1 1
20 28 30
50 2 2

10.4 PLA3—Population Learning with Differential Evolution Algorithm 183



to one randomly chosen island. The process of evolution stops, when the predefined
number of fitness function evaluations is carried out on the archipelago. The best
across all islands individual is the final solution, found by the IBDEA to the
considered problem. In the rest of the paper, we will use notions “an individual”
and “a solution” interchangeably.

In the IBDEA, the assumptions made for the individuals are the same as the
assumptions made for the individuals of the IBEA on the population level, see
Sect. 10.1. The general description of the proposed IBDEA is given below.

The individuals in the initial population are generated in such a way, that the
position of a task in vector S, as well as the task’s processing mode is chosen at
random with the uniform distribution.

The solution exchange among the islands occurs cyclically, after nex ≪ nev
number of the fitness function evaluations which have been carried out on every
island. The pairs of islands, chosen at random from all the islands, exchange
between themselves their best solutions. The random interconnection topology
among islands was chosen as the most efficient according to [23].

The DEA procedure used in the IBDEA is described by the following pseudo
code.

184 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



10.5 IBDEA—Island-Based Differential Evolution Algorithm 185



A scale factor A, used in DEA procedure, controls the evolution rate of the
population. The values of the variable rand ∈ [0, 1]. The crossover constants Crp
and Crl control the probability, that the trial individual will receive the target
individual’s tasks positions or modes, where p and l in the notations Crp and Crl
stand for tasks positions and modes respectively.

186 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



10.5.1 Computational Experiment

Proposed island-based differential evolution algorithm (IBDEA) for solving
discrete-continuous scheduling problem with continuous resource discretisation ΘZ

was implemented and tested. There were 19 islands used to realize the IBDEA. The
differential evolution algorithm (DEA), described in [24], has been adapted for
solving considered ΘZ and assigned to every island in the IBDEA. After prelimi-
nary tuning, the size of the population on every IBDEA island was set xDE = 200,
which is different from the sizes considered in [24], where xDE ∈ {20, 40, 80,
60, 100}. The rest of the parameters necessary to carry out the differential evo-
lution algorithm were set to the same values as in [24], namely the scale factor A,
which controls the evolution rate of the population, was set A = 1,5 and the values
of the variable rand ∈ [0, 1]. The crossover constants Crp and Crl which control
the probability that trial individual will receive actual individual’s tasks or modes
were set Crp = 0,2 and Crl = 0,1, where p and l in the notations Crp and Crl stand
for tasks positions and modes respectively. On every IBDEA island, an initial
population of feasible individuals was generated using the uniform distribution
equal 1/n for the tasks, and 1/W for the task’s modes. For testing purposes three
combinations of n × m were considered (n—the number of tasks and m—the
number of machines): 10 × 2, 10 × 3, and 20 × 2. For each combination
n × m 100 instances of a problem ΘZ were generated and three discretisation
levels W were considered: 10, 20, and 50. This way we considered nine sizes of the
problem: 10 × 2 × 10, 10 × 2 × 20, 10 × 2 × 50, 10 × 3 × 10, …,
20 × 2 × 50, which makes 900 instances of the problem in total. Each instance
was tested 43 times. Mean time required by the IBDEA to find a solution for the
problem sizes 10 × 2 and 10 × 3 for all discretisation levels on a PC under 64-bit
operating system Windows 7 Enterprise with Intel(R) Core(TM) i5-2300 CPU @
2.80 GHz 3.00 GHz, RAM 4 GB compiled with aid of Borland Turbo Delphi for
Win32 was approximately 2−3 s, and for the problem size 20 × 2 for all dis-
cretisation levels approximately 5−6 s.

In order to evaluate the efficiency of the IBDEA, we have used three types of
relative errors: minimum, average, and maximum relative error of the solutions
yielded by the algorithm. Relative errors (REs) of the solutions compared to the
best-known solutions were calculated according to the formulae:
RE = (Qalgm − Qbest-known)/Qbest-known, where Qalgm, Qbest-known—the schedule
length of a solution found by the considered algorithm and the best-known solution
respectively. The set of the best-known solutions was determined by the authors
while using all designed by them algorithms and procedures for solving problem
ΘZ. We have determined REmin, REavg, and REmax for every size of the considered
problem as a minimum, average, and maximum RE, respectively, across 4300 REs
calculated, while solving each of the 100 instances 43 times. We have compared the
REs of the solutions found by the IBDEA built on 19 islands to the REs of the
solutions found by the IBDEA built on a single island, in other words the DEA
itself. The values of such parameters as A, the variable rand, Crp and Crl were set to

10.5 IBDEA—Island-Based Differential Evolution Algorithm 187



the same values as in the IBDEA. We have also compared the REs of the solutions
found by the IBDEA and the DEA to the REs of the solutions found by the PLA3
described in [21]. The values of REmin, REavg and REmax for the IBDEA, the DEA
and the PLA3 for all problem sizes and considered discretisation levels are pre-
sented in Table 10.8. The smallest values of the respective REs for particular cases
are given in bold font.

The values of REs in Table 10.8 show how much schedules yielded by the
IBDEA were longer than the best known schedule for the same case. For example,
for the case 10 × 2 × 10 REavg = 2,31% means that the schedule length of all
schedules yielded by the IBDEA was on average 2,31% longer than the
best-known. For the same case, REmax = 7,90% means that the longest schedule
among all schedules yielded by the IBDEA was 7,90% longer than the best-known.
For the case 10 × 3 × 10 for the IBDEA and the PLA3, REmin = −0,3% is
negative, which means that the schedules found by the algorithms were shorter than
the best-known for 0,3%. The algorithm whose REs values are the smallest is
considered to be more efficient than the others. In Table 10.8, each of three con-
sidered algorithms is characterised by nine values of each type of REs for each
considered problem size n × m × W. In 9 out of 9 cases, REsmax of the solutions,
found by the IBDEA, were smaller than the REsmax of the DEA and the PLA3. The
remaining REsavg and REsmin of the IBDEA were the smallest in 6 and in 2 cases
respectively. However, REsavg and REsmin of the PLA3, in 3 and in 4 cases out of 9
were the smallest. In all cases, all types of the DEA’s REs were the largest. As a
general conclusion, we point out that in 17 cases out of 27, the IBDEA shows the
smallest REs, and no other algorithm shows the same or better results. The PLA3
was the best in 8 cases out of 27, and the DEA only once achieved the same result
as the IBDEA and the PLA3 (REmin for the problem size 10 × 2 × 10).

As it could be seen in Table 10.8, it’s impossible to determine unequivocally the
discretisation level W for which the values of the REs of the found solutions are
always the smallest. However, REs yielded by all considered algorithms for W = 20
in a majority of cases were the smallest, thus the following relations between the REs
can be formulated: REs(W = 20) < REs(W = 50) < REs(W = 10). This might
impose the conclusion, that high discretisation level does not necessarily ensure the
smallest values of the REs and the additional research is needed to identify the most
appropriate discretisation of the continuous resource.

The computational experiment shows, that the island model exploiting DE finds
solutions whose relative errors (REs) are smaller than the REs of the solutions
found by the DEA alone, see Table 10.8. The above statement is true under
assumption, that on every island of the IBDEA operates the DEA, and that the size
of the population on every island is the same as the size of the population in the
DEA. In major number of cases, REmin and REavg of the solutions found by the
IBDEA were smaller than the REmin and REavg of solutions found by the DEA and
the PLA3, which also exploits the island model. The direct benefit of the proposed
algorithm is its ability to find high quality solutions with a smaller dispersion of
RE’s values. In our experiment, in all cases, REmax of the solutions found by the
IBDEA were the smallest. The promising results achieved by the IBDEA might

188 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



T
ab

le
10

.8
T
he

co
m
pa
ri
so
n
of

th
e
re
la
tiv

e
er
ro
rs

R
E
of

so
lu
tio

ns
fo
un

d
by

th
e
IB
D
E
A
,
th
e
D
E
A
,
an
d
th
e
PL

A
3
fo
r
pr
ob

le
m

Θ
z

Pr
ob

le
m

si
ze

n
×

m
×

W
R
el
at
iv
e
er
ro
r

(R
E
)

D
is
cr
et
is
at
io
n
L
ev
el

W
=

10
W

=
20

W
=

50
IB
D
E
A

(%
)

D
E
A

(%
)

PL
A
3

(%
)

IB
D
E
A

(%
)

D
E
A

(%
)

PL
A
3

(%
)

IB
D
E
A

(%
)

D
E
A

(%
)

PL
A
3

(%
)

10
×

2
×

W
R
E
m
in

0,
01

0,
01

0,
01

−
0,
33

0,
00

−
0,
42

−
0,
65

−
0,
53

−
0,
49

R
E
av
g

2,
31

3,
86

2,
70

0,
93

2,
86

1,
53

0,
83

3,
22

1,
81

R
E
m
ax

7,
90

11
,5
2

10
,1
4

4,
57

10
,7
2

5,
74

4,
91

11
,8
6

9,
02

10
×

3
×

W
R
E
m
in

−
0,
30

−
0,
10

−
0,
30

−
0,
75

−
0,
04

−
1,
05

−
1,
71

−
1,
12

−
1,
63

R
E
av
g

2,
60

4,
29

3,
15

0,
96

3,
18

1,
81

0,
46

3,
02

1,
66

R
E
m
ax

10
,0
4

13
,3
1

11
,7
6

8,
60

17
,1
6

11
,2
5

7,
63

16
,8
0

12
,2
1

20
×

2
×

W
R
E
m
in

0,
78

0,
33

−
0,
19

−
0,
78

−
0,
20

−
1,
03

1,
29

−
0,
03

−
0,
14

R
E
av
g

5,
03

4,
93

4,
38

5,
22

4,
18

1,
71

6,
94

5,
24

4,
10

R
E
m
ax

10
,1
1

11
,9
1

11
,7
7

9,
20

11
,3
7

9,
22

10
,5
3

13
,2
2

11
,2
5

10.5 IBDEA—Island-Based Differential Evolution Algorithm 189



suggest its superiority over the DEA, however in order to make the final conclusion
more extensive research is needed.

Finally, it should be also mentioned, that all the conclusions are valid for the
particular implementation of the procedures used in the experiments. The values of
some parameters of the learning procedures were determined during their prelim-
inary tuning and should be verified on the way of the exhaustive experiment.

References

1. Alba, E., Troya, J.: Analysis of synchronous and asynchronous parallel distributed genetic
algorithms with structured and panmictic islands. In: Rolim, J. et al., (eds.) Proceedings of the
10th Symposium on Parallel and Distributed Processing, pp. 248–256. San Juan, Puerto Rico,
USA, 12–16 April (1999)

2. Belding, T.C.: The distributed genetic algorithm revisited. In: Eshelman, L.J. (ed.)
Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 114–121.
Morgan Kaufmann, San Francisco CA (1995)

3. Gordon, V.S., Whitley, D.: Serial and parallel genetic algorithms as function optimizers. In:
Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms,
pp. 177–183. Morgan Kaufmann, San Mateo, CA (1993)

4. Czarnowski, I., Gutjahr, W.J., Jędrzejowicz, P., Ratajczak, E., Skakowski, A., Wierzbowska,
I.: Scheduling multiprocessor tasks in presence of correlated failures. In: Luptaćik, M.,
Wildburger, U.L. (eds.) Central European Journal of Operations Research, vol. 11, iss. 2,
pp. 163–182. Physika-Verlag, Springer, Heidelberg (2003)

5. Jędrzejowicz, P., Skakovski, A., Czarnowski, I., Szreder, H.: Evolution-based scheduling of
multiple variant and multiple processor programs. In: Hertzberger, L.O., Sloot P.M.A. (eds.)
Future Generation Computer Systems, vol. 17, pp. 405–414. Elsevier, The Netherlands
(2001)

6. Jędrzejowicz, P., Skakovski, A.: An island-based evolution algorithm for discrete-continuous
scheduling with continuous resource discretisation. In: Proceedings of the 2nd IEEE
International Conference on Computational Cybernetics ICCC 2004, 30 Aug–1 Sep 2004.
Vienna University of Technology, Austria (2004)

7. Różycki, R.: Zastosowanie algorytmu genetycznego do rozwiązywania dyskretno-ciągłych
problemów szeregowania. PhD Dissertation, Poznań University of Technology, Poland
(2000)

8. Jędrzejowicz, P., Skakovski, A.: A population learning algorithm for discrete-continuous
scheduling with continuous resource discretisation. In: Chen, Y., Abraham, A. (eds.)
Proceedings of 6th International Conference on Intelligent Systems Design and Applications
(ISDA 2006), vol. 2, spec. sess.: Nature Imitation Methods Theory and practice (NIM’ 06),
pp. 1153–1158. Jinan, Peoples R. of China (2006)

9. Jędrzejowicz, P.: Social learning algorithm as a tool for solving some difficult scheduling
problems. Found. Comput. Decis. Sci. 24, 51–66 (1999)

10. Glover, F.: Tabu search: a tutorial. Interfaces 20, 74–94 (1990)
11. Jędrzejowicz, P., Skakovski, A.: A cross-entropy based population learning algorithm for

discrete-continuous scheduling with continuous resource discretisation. Neurocomputing 73
(4–6), Special Issue: SI:655–660 (2010)

12. Rubinstein, R.Y.: Optimization of computer simulation models with rare events. Eur.
J. Op. Res. 99, 89–112 (1997)

13. De Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy
method. Ann. Op. Res. 134(1), 19–67 (2005)

190 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)



14. Cantu-Paz, E., Goldberg, D.E.: Are multiple runs of genetic algorithms better than one?. In:
Proceedings of the Genetic and Evolutionary Computation Conference (2003)

15. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: on separability,
population size and convergence. J. Comput. Inf. Technol. 7(1), 33–47 (1999)

16. Cantu-Paz, E.: Migration policies, selection pressure, and parallel evolutionary algorithms.
J. Heuristics 7(4), 31–334 (2001)

17. Skolicki, Z., Kenneth, D.J.: The influence of migration sizes and intervals on island models.
In: Proceedings of GECCO’ 05, pp. 1295–1302. Washington, DC, USA, 25–29 June (2005)

18. Krink, T., Mayoh, B.H., Michalewicz, Z.: A PACHWORK model for evolutionary algorithms
with structured and variable size populations. In: Morgan, K., Banzhaf, W., Daida, J., Eiben,
A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic
and Evolutionary Computation Conference, vol. 2, pp. 1321–1328. Orlando, Florida, USA
(1999)

19. Sekaj, I.: Robust parallel genetic algorithms with re-initialisation. In: Proceedings of Parallel
Problem Solving from Nature—PPSN VIII, 8th International Conference, vol. 3242, pp. 411–
419. LNCS, Springer, Birmingham, UK, 18–22 Sep (2004)

20. Skolicki, Z.: An analysis of island models in evolutionary computation. In: Proceedings of
GECCO’ 05, pp. 386–389. Washington, DC, USA, 25–29 June (2005)

21. Jędrzejowicz, P., Skakovski, A.: Population learning with differential evolution for the
discrete-continuous scheduling with continuous resource discretisation. In: IEEE International
Conference on Cybernetics (CYBCONF) pp. 92–97. Lausanne, Switzerland, 13–15 June
(2013)

22. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Opt. 11, 341–359 (1997)

23. Jędrzejowicz, P., Skakovski, A.: Structure vs. efficiency of the cross-entropy based population
learning algorithm for discrete-continuous scheduling with continuous resource discretisation.
In: Czarnowski, I., Jędrzejowicz, P., Kacprzyk, J. (eds.) Studies in Computational
Intelligence. Agent-Based Optimization, vol. 456, pp. 77–102 (2013)

24. Damak, N., Jarboui, B., Siarry, P., Loukil, T.: Differential evolution for solving multi-mode
resource-constrained project scheduling problems. Comput. Op. Res. 36(9), 2653–2659
(2009)

25. Jędrzejowicz, P., Skakovski, A.: Island-based differential evolution algorithm for the
discrete-continuous scheduling with continuous resource discretisation. Procedia Comput.
Sci. 35, 111–117 (2014)

26. Kazemipoor, H., Tavakkoli-Moghaddam, R., Shahnazari-Shahrezaei, P.: Differential evolu-
tion and simulated annealing algorithms for a multi-skilled project scheduling problem. Am.
J. Sci. Res. 33, 136–146 (2011)

References 191


	10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)
	10.1 IBEA—Island-Based Evolutionary Algorithm
	10.1.1 Computational Experiment

	10.2 PLA—Population Learning Algorithm
	10.2.1 Tabu Search
	10.2.2 Computational Experiment

	10.3 PLA2—Cross-Entropy-Based Population Learning Algorithm
	10.3.1 Cross-Entropy Algorithm
	10.3.2 Computational Experiment
	10.3.2.1 Assumptions of the Experiment
	10.3.2.2 Fine Tuning of PLA2
	10.3.2.3 Results of the Experiment


	10.4 PLA3—Population Learning with Differential Evolution Algorithm
	10.4.1 Computational Experiment

	10.5 IBDEA—Island-Based Differential Evolution Algorithm
	10.5.1 Computational Experiment

	References


