
Studies in Systems, Decision and Control 108

Ewa Ratajczak-Ropel
Aleksander Skakovski

Population-Based
Approaches to the
Resource-Constrained
and Discrete-
Continuous Scheduling

Studies in Systems, Decision and Control

Volume 108

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Systems, Decision and Control” (SSDC) covers both new
developments and advances, as well as the state of the art, in the various areas of
broadly perceived systems, decision making and control- quickly, up to date and
with a high quality. The intent is to cover the theory, applications, and perspectives
on the state of the art and future developments relevant to systems, decision
making, control, complex processes and related areas, as embedded in the fields of
engineering, computer science, physics, economics, social and life sciences, as well
as the paradigms and methodologies behind them. The series contains monographs,
textbooks, lecture notes and edited volumes in systems, decision making and
control spanning the areas of Cyber-Physical Systems, Autonomous Systems,
Sensor Networks, Control Systems, Energy Systems, Automotive Systems,
Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace
Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power
Systems, Robotics, Social Systems, Economic Systems and other. Of particular
value to both the contributors and the readership are the short publication timeframe
and the world-wide distribution and exposure which enable both a wide and rapid
dissemination of research output.

More information about this series at http://www.springer.com/series/13304

Ewa Ratajczak-Ropel ⋅ Aleksander Skakovski

Population-Based
Approaches
to the Resource-Constrained
and Discrete-Continuous
Scheduling

123

Ewa Ratajczak-Ropel
Department of Information Systems
Gdynia Maritime University
Gdynia
Poland

Aleksander Skakovski
Department of Navigation
Gdynia Maritime University
Gdynia
Poland

ISSN 2198-4182 ISSN 2198-4190 (electronic)
Studies in Systems, Decision and Control
ISBN 978-3-319-62892-9 ISBN 978-3-319-62893-6 (eBook)
DOI 10.1007/978-3-319-62893-6

Library of Congress Control Number: 2017947031

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

Population-based approaches have proven to be an effective and practical tool for
solving wide variety of the difficult optimization problems. This is particularly true
with respect to combinatorial optimization where analytical methods have only
limited application possibilities. The presented book tackles two of the most dif-
ficult and computationally intractable classes of problems. The first is the discrete
resource-constrained scheduling, and the second, the discrete-continuous schedul-
ing. Problems belonging to the first class are investigated in the first part of the book
by Dr. Ewa Ratajczak-Ropel. Problems belonging to the second of the above
classes are dealt with by Dr. Aleksander Skakovski. Both authors have been
working on the respective problems during the last decade gaining scientific
recognition through publications and active participation in the international sci-
entific conferences. Both authors base their results on applying population-based
methods. Dr. E. Ratajczak-Ropel explores multiple-agent and A-Team concepts,
while Dr. A. Skakovski focuses on evolutionary algorithms with particular attention
to population learning paradigm.

Dr. Ewa Ratajczak-Ropel, in her part of the book, discusses techniques for
agent-based optimization, presents the resource-constrained project scheduling
models, and briefly reviews various algorithms and approaches proposed for
solving them. The core part of her results includes designing and validating several
multi-agent systems under the team of agents (A-Team) umbrella. The proposed
A-Teams have proven to be an effective tool for solving the resource-constrained
project scheduling problems.

Dr. Aleksander Skakovski, in his part of the book, defines the discrete-continuous
scheduling problem and discusses its properties. In an extensive state-of-the-art
review, several approaches to solving instances of the problem at hand proposed so
far in the literature are presented including the heuristic and metaheuristic algo-
rithms. Main results of the author include the proposed island-based evolutionary
algorithm, population learning algorithm, cross-entropy-based population learning
algorithm, population learning with differential evolution, and island-based differ-
ential evolution algorithm. The performance of the proposed algorithms is evaluated
experimentally.

v

Both parts of the book together offer a valuable insight into the possibility of
implementing modern techniques and tools with a view to obtain good quality
solutions to practical and, at the same time, computationally difficult problems. The
book is, in my opinion, an important source of knowledge to practitioners dealing
with the real-life scheduling problems in industry, management, and administration.

February 2017 Prof. Dr. Piotr Jędrzejowicz
Gdynia Maritime University

Gdynia, Poland

vi Foreword

The original version of the book was revised:
For detailed information please see Erratum.
The erratum to the book is available at
10.1007/978-3-319-62893-6_13

vii

Acknowledgements

We would like to gratefully and sincerely thank our mentor and advisor
Prof. Dr. Piotr Jędrzejowicz, Head of the Department of Information Systems at
Gdynia Maritime University, for the idea of this book, motivation, continuous
support, immense knowledge, patience, and time offered to us. We also thank him
for the foreword to this book.

Our sincere thanks to our colleagues from the Department of Information
Systems and Department of Navigation for their mental and technical support.

We would like to give our special thanks to our families for their love, help,
spiritual support, and understanding.

February 2017 Ewa Ratajczak-Ropel and Aleksander Skakovski
Gdynia Maritime University

Gdynia, Poland

ix

Contents

Part I Agent-Based Approach to the Single and Multi-mode
Resource-Constrained Project Scheduling

1 Introduction . 3
References. 5

2 Agent-Based Optimization . 7
2.1 Basics of the Agent-Based Approaches 7
2.2 Agents-Based Approaches to Optimization 10

2.2.1 A-Team Concept . 12
2.2.2 A-Team Implementation - JABAT. 14

2.3 Agents-Based Approaches to Project Scheduling 19
References. 19

3 Project Scheduling Models . 25
3.1 Historical Review . 25
3.2 Basic Models and Classifications Review 26
3.3 Generalizations and Special Cases of the RCPSP 29
3.4 Objective Functions . 30
References. 30

4 Resource-Constrained Project Scheduling . 33
4.1 Problem Formulation . 33
4.2 State of the Art Review . 35
4.3 Agent-Based Approaches to Solving RCPSP 37
4.4 A-Teams Solving the RCPSP . 39

4.4.1 Single A-Teams with the Static Cooperation
Strategies . 40

4.4.2 Algorithms Used in the Further A-Team
Approaches . 44

4.4.3 Randomized Team of A-Teams with Static
Cooperation Strategy . 49

xi

4.4.4 A-Team with the Dynamic Cooperation Strategy
with Reinforcement Learning . 50

4.4.5 A-Team with the Dynamic Strategy Based on
Population Learning . 54

4.4.6 A-Team with Dynamic Cooperation Strategy
Based on Integration . 56

4.4.7 Concluding Remarks . 59
References. 62

5 Multi-mode Resource-Constrained Project Scheduling 69
5.1 Problem Formulation . 69
5.2 State of the Art Review . 71
5.3 Agent-Based Approaches to MRCPSP . 73
5.4 A-Teams Solving the MRCPSP . 76

5.4.1 Single A-Teams with the Static Cooperation
Strategies . 76

5.4.2 Algorithms Used in the Further A-Team
Approaches . 79

5.4.3 A-Team with Dynamic Cooperation Strategy
with Reinforcement Learning . 85

5.4.4 A-Team with Dynamic Cooperation Strategy
Based on Population Learning. 87

5.4.5 A-Team with Dynamic Cooperation Strategy
Based on Integration . 88

5.4.6 Concluding Remarks . 89
References. 94

6 Conclusions . 99

Part II Population-Based Approaches to the Discrete-Continuous
Scheduling

7 Introduction . 103

8 Discrete-Continuous Scheduling Problem . 107
8.1 General Resource-Constrained Scheduling Problem 107
8.2 Practical Applications of the DCSP . 108
8.3 Notation . 108
8.4 Task Models . 110

8.4.1 Processing Time Versus Resource-Amount Model 110
8.4.2 Processing Rate Versus Resource-Amount Model 110

8.5 Problem Formulation . 111
8.6 Variants of the DCSP . 112
8.7 General Approach to Solving the DCSP. 113

xii Contents

8.8 Main Properties of Optimal Schedules . 114
8.8.1 Convex Functions fi ≤ ci ⋅ ui, ci = fi(1) 114
8.8.2 Concave Functions fi and n ≤ m 115
8.8.3 Concave Functions fi and n > m 115

8.9 Minimization of the Maximum Lateness Lmax 121
8.10 Minimization of Mean Flow Time F . 121
References. 123

9 State-of-the-Art Review . 125
9.1 Theoretical Research on the DCSP . 125

9.1.1 Another Formulation of the DCSP 125
9.1.2 The New Approach to Optimal Resource

Allocation . 126
9.1.3 New Properties of the Discrete Part

of the DCSP . 128
9.2 Discretisation of the DCSP . 129

9.2.1 Discretisation of the Continuous Resource 130
9.2.2 Formulation of Discrete-Continuous Scheduling

Problem with Continuous Resource Discretisation
(DCSPwCRD) . 131

9.3 Heuristic Algorithms for Solving the DCSP 132
9.4 Metaheuristics for Solving the DCSP . 135

9.4.1 TS, SA, and GA as Local Search Metaheuristics
for Discrete-Continuous Scheduling Problems 135

9.5 Minimization of the Resource Usage in the DCSP 140
9.6 The Special Case of the DCSP . 145
9.7 Research on the Island Model of Computing 146
9.8 Research on Preventing Premature Convergence in

Evolutionary and Genetic Algorithms . 154
References. 156

10 Proposed Metaheuristics for Solving Problem
ΘZ (DCSPwCRD) . 161
10.1 IBEA—Island-Based Evolutionary Algorithm. 161

10.1.1 Computational Experiment . 164
10.2 PLA—Population Learning Algorithm . 165

10.2.1 Tabu Search . 167
10.2.2 Computational Experiment . 168

10.3 PLA2—Cross-Entropy-Based Population Learning
Algorithm . 170
10.3.1 Cross-Entropy Algorithm. 171
10.3.2 Computational Experiment . 173

Contents xiii

10.4 PLA3—Population Learning with Differential Evolution
Algorithm . 178
10.4.1 Computational Experiment . 180

10.5 IBDEA—Island-Based Differential Evolution Algorithm 183
10.5.1 Computational Experiment . 187

References. 190

11 Performance Evaluation of the Proposed Algorithms 193
11.1 Friedman Test. 194
11.2 Structure Versus Efficiency of the Cross-Entropy-Based

Population Learning Algorithm (PLA2) 195
11.2.1 Computational Experiment . 200
11.2.2 Conclusions from the Experiment 214

11.3 Properties of the Island-Based and Single Population
Differential Evolution Algorithms . 215
11.3.1 Computational Experiment . 215
11.3.2 Conclusions from the Experiment 219

11.4 Improving Performance of the Differential Evolution
Algorithm Using Cyclic Decloning and Changeable
Population Size. 220
11.4.1 Computational Experiment . 221
11.4.2 Decloning Procedure . 222
11.4.3 Performance Evaluation Measure. 223
11.4.4 Experiments on Decloning. 223
11.4.5 Experiments on Population Size 229
11.4.6 Experiments on the Number of Fitness Function

Evaluations . 229
11.4.7 Performance Improvement Policy 231
11.4.8 Conclusions from the Experiment 232

References. 233

12 Conclusions . 235

Erratum to: Population-Based Approaches to the Resource-
Constrained and Discrete-Continuous Scheduling E1

Ewa Ratajczak-Ropel and Aleksander Skakovski

xiv Contents

Acronyms

ABC Artificial Bee Colony
ABM Agent-Based Model(s)
ACO Ant Colony Optimization
AI Artificial Intelligence
AL Activity List
AON Activity On Node
A-Team Asynchronous Team of Agents
CA Crossover Algorithm
CAT Collaborative Agent Team
CE Cross-entropy algorithm
CFSQP Specialized solver (A C Code for Solving (Large Scale)

Constrained Nonlinear (Minimax) Optimization Problems, Gen-
erating Iterates Satisfying All Inequality Constraints)

CGA Canonical genetic algorithm
CP Clustering Problem
CPM Critical Path Method
CPLB Critical Path Lower Bound
CRSharing Continuous Resource Sharing Problem
CSM Cancellation Sequence Method
CT Computation Time
DAI Distributed Artificial Intelligence
DCRCPSP Discrete-Continuous Resource-Constrained Project Scheduling

Problem
DCSP Discrete-Continuous Scheduling Problem
DCSPwCRD Discrete-Continuous Scheduling Problem with Continuous

Resource Discretization
DE Differential Evolution
DEA Differential Evolution Algorithm for Solving DCSP
DES Discrete Event Simulation
DGA Distributed Genetic Algorithm

xv

DP Decloning Procedure
DVS Dynamic Voltage Scaling Scheduling
EA Evolutionary Algorithm
EDD Earlier Due Dates
EFT Earliest Finish Time
EPTSP Euclidean Planar Traveling Salesman Problem
EST Earliest Start Time
GA Genetic Algorithm
GAVRdyskr GA for Solving DCSPwCRD
HUDD Heuristic for continuous resource allocation, based on a uniform

distribution of the processing demand of tasks
HUDD-PS HUDD designed for solving DCRCPSP
IBDEA Island-Based Differential Evolution Algorithm
IBEA Island-Based Evolutionary Algorithm
JABAT JADE based A-Team environment
JADE Java Agent DEvelopement framework
LFT Latest Finish Time
LLS Local Left Shift
LPT Longest Processing Time
LS Local Search
LSA Local Search Algorithm
LSG List-Scheduling Algorithm for Discrete-Continuous Scheduling
LST Latest Start Time
MCS Minimal Critical Set(s)
MAS Multi-Agent System(s)
Max RE Maximal Relative Error
Mean CT Mean Computation Time
Mean RE Mean Relative Error
Mean TCT Mean Total Computation Time
MPP Massively Parallel Processor Systems
MRCPSP Multi-mode Resource-Constrained Project Scheduling Problem
MRCPSP/max MRCPSP with minimal and maximal time lags
MSIIA Multi-Start Iterative Improvement Algorithm
NN Neural-Network
OPL Optimization Programming Language
opt/bk optimal or best known (solution)
PBEA Population-Based Evolutionary Algorithm
PBFS Percentage of the Best Found Solutions
PERT Project Evaluation and Review Technique
PGA Parallel Genetic Algorithm
PLA Population Learning Algorithm
PLA2 Cross-Entropy-Based Population Learning Algorithm
PLA3 Population Learning with Differential Evolution Algorithm
POS Potentially Optimal Set
PR Path-Relinking

xvi Acronyms

PRA Path-Relinking Algorithm
PS Population Size
PSO Particle Swarm Optimization
PSP Project Scheduling Problem
PSPLIB Project Scheduling Problems Library
PTA Precedence Tree Algorithm
RACP Resource Availability Cost Problem
RCPSP Resource-Constrained Project Scheduling Problem
RCPSP/max RCPSP with minimal and maximal time lags
RE Relative Error
REM Reverse Elimination Method
RL Reinforcement Learning
ROG Random Offspring Generation
RST Random Sampling Technique
SA Simulated Annealing
SAA Version of SA with Optimal Allocation of the Continuous

Resource
SAM+ Version of SA for Solving DCSPwCRD
SDT Social Disasters Technique
SFLA Shuffled Frog-Leaping Algorithm
SFT Solution Feasibility Test
SGS Schedule Generation Scheme
SH Simple Heuristic
SLA Social Learning Algorithm
SPP Scalable Parallel Processor Systems
SPT Shortest Processing Time
SQP Sequential Quadratic Programming Method
SS Scatter Search
TCTO Time/Cost Trade Off
TCT Total Computation Time
TL Tabu List
TNM Tabu Navigation Method
TS Tabu Search
TSA Tabu Search Algorithm
TS-HUDD HUDD Combined with TS
TS-OPT TS with Optimal allocation of the continuous resource
VRP Vehicle Routing Problem
VLSI Very-Large-Scale Integration

Acronyms xvii

List of Figures

Fig. 2.1 General structure of JABAT . 17
Fig. 2.2 Use Case Diagram for JABAT . 18
Fig. 4.1 General structure of JABAT solving the RCPSP using SC2

Strategy . 42
Fig. 4.2 Pseudocode of the minCT function . 44
Fig. 4.3 Pseudocode of the smMakeMove function 45
Fig. 4.4 Pseudocode of the smReverseMove function 45
Fig. 4.5 Pseudocode of the smMakeExchange function 45
Fig. 4.6 Pseudocode of the smReverseExchange function 45
Fig. 4.7 Pseudocode of the smLSAm algorithm 46
Fig. 4.8 Pseudocode of the smTSAe algorithm. 47
Fig. 4.9 Pseudocode of the smCA algorithm . 47
Fig. 4.10 Pseudocode of the smPRA algorithm 48
Fig. 4.11 General schema of the DCPL Strategy 54
Fig. 4.12 General schema of the DCI Strategy . 58
Fig. 4.13 Graphical representation of the results from Table 4.9 59
Fig. 4.14 The mean values of Friedman test ranks for the RCPSP 60
Fig. 5.1 Pseudocode of the mmMakeMove function. 80
Fig. 5.2 Pseudocode of the mmReverseMove function 80
Fig. 5.3 Pseudocode of the mmMakeExchange function 80
Fig. 5.4 Pseudocode of the mmReverseExchange function 80
Fig. 5.5 Pseudocode of the mmLSAm algorithm. 81
Fig. 5.6 Pseudocode of the mmTSAe algorithm 82
Fig. 5.7 Pseudocode of the mmCA algorithm . 83
Fig. 5.8 Pseudo-codes of the mmPRA algorithm. 83
Fig. 5.9 Graphical representation of the results from Table 5.9 90
Fig. 5.10 The mean values of Friedman test ranks for the MRCPSP 92
Fig. 8.1 The division of a feasible schedule into intervals Mk defined

by the completion times of consecutive tasks 116
Fig. 8.2 The division of processing demands of tasks xĩ into parts xĩk,

corresponding to time intervals Mk . 116

xix

Fig. 9.1 The 6 migration topologies considered in [62] 150
Fig. 11.1 The means of ranks obtained for the metaheuristics under

the test . 195
Fig. 11.2 A simplified scheme of SO algorithm based on ring

topology . 199
Fig. 11.3 A simplified scheme of SX algorithm based on random

topology . 199
Fig. 11.4 A simplified scheme of AO algorithm based on ring

topology . 200
Fig. 11.5 A simplified scheme of AX algorithm based on random

topology . 200
Fig. 11.6 The results obtained for the test sets 1–137 217
Fig. 11.7 The results obtained for the test sets 92–137 218
Fig. 11.8 The effect of decloning on sumCmax, xP = 20, #ev = 37800,

Td ∈ [20, 37800] . 218
Fig. 11.9 sumCmax yielded by the DEA without and with decloning,

xP = 20, #ev = 37800, Td = 20 . 224
Fig. 11.10 The effect of decloning on sumCmax, xP = 20, #ev = 720000,

Td∈ [20, 238200] . 225
Fig. 11.11 The effect of decloning on sumCmax, xP = 50, #ev = 720000,

Td ∈ [50, 249200] . 225
Fig. 11.12 The effect of decloning on sumCmax, xP = 100,

#ev = 720000, Td ∈ [100, 249200] . 226
Fig. 11.13 The effect of decloning on sumCmax, xP = 200,

#ev = 720000, Td ∈ [200, 364200] . 226
Fig. 11.14 The effect of decloning on sumCmax, xP = 1000,

#ev = 720000, Td ∈ [1000, 250000] . 227
Fig. 11.15 The improvement of the results due to decloning for different

population sizes xP compared to the case without decloning,
given in percent . 227

Fig. 11.16 The difference between AVG sumCmax values obtained by
the DEA with and without decloning for population sizes
xP = 20, xP = 50, xP = 1000 . 228

Fig. 11.17 The difference between AVG sumCmax values obtained by
the DEA with and without decloning for population sizes
xP = 100, xP = 200 . 229

Fig. 11.18 AVG sumCmax of the DEA without decloning, considered for
different xP and #ev . 230

Fig. 11.19 The effect of decloning on AVG sumCmax, considered for
different xP and #ev . 231

xx List of Figures

Part I
Agent-Based Approach to the Single

and Multi-mode Resource-Constrained
Project Scheduling

Ewa Ratajczak-Ropel

Chapter 1
Introduction

The Resource-Constrained Project Scheduling Problem (RCPSP), as well as its

numerous extensions and special cases, have attracted a lot of attention and many

exact, heuristic and metaheuristic solution methods have been proposed in the liter-

ature in recent years [1–4]. Due to the problem complexity the current approaches

to solving instances of the discussed class produce either approximate solutions or

can be applied to solving instances of only limited size. Hence, searching for more

effective algorithms and solutions to the problem is still a lively field of research.

One of the promising directions of such research is to take advantage of the paral-

lel and distributed computations, which are common features of the contemporary

multiagent systems [5].

Agent-based approaches or agent-based computing are most frequently referred

to as Multi-Agent Systems (MAS) or Agent-Based Models (ABM) [6], which are a

subfield of the Distributed Artificial Intelligence (DAI). DAI is, in turn, a subfield

of the Artificial Intelligence (AI). MAS have been studied as an autonomous field

of research since about 1980s and gained widespread recognition in the mid 1990s.

Since then, agent-based approaches are established as an important and intensively

expanding area of research and development. The state of the art review related to

the agent approaches can be found, for example in [5–13]. In the literature differ-

ent aspects of agent-based approaches are widely considered, for example: machine

learning [14], cooperative multi-agent learning [15], agents communities [16], pri-

vacy [17], and agent platforms [18].

Multi-agent systems [5] deal with the behavior of the computing entities available

to solve together a given problem. In MAS each computing entity is referred to as

an agent. Multi-agent system can be defined as a network of individual agents which

have at least two important capabilities. They are capable of acting autonomously

and can interact with each other in order to solve a problem.

© Springer International Publishing AG 2018

E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,

Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_1

3

4 1 Introduction

Multi-agent systems can be used to solve problems that are too difficult or

impossible to deal with by an individual agent or a monolithic system. They may

include some functional or procedural approaches, algorithmic search or reinforce-

ment learning algorithms. Multi-agent systems are widely used to solve different

optimization problems, including project scheduling. The survey of the agent-based

approaches to optimization can be found, for example, in [12, 19, 20]. Examples

of using MAS for solving optimization problems include: scheduling problems [21,

22], vehicle routing problems [23, 24], supply chain management [25], traffic man-

agement [26, 27] and many others.

Modern Multi-Agent System architectures are an important and intensively

expanding area of research and development. There exists a number of multiple-

agent approaches proposed to solve different types of optimization problems. One

of them is the concept of the A-Team, originally introduced in [28]. The idea of the

A-Team was used to develop a software environment for solving a variety of compu-

tationally hard optimization problems called JADE based A-Team (JABAT) [29, 30].

JABAT system supports construction of the dedicated A-Team architectures. Agents

used in JABAT assure decentralization of computations across multiple hardware

platforms. Parallel processing results in more effective use of the available resources

and ultimately, in reduction of the computation time.

In this part of the book the classical Resource-Constrained Project Scheduling

Problem (RCPSP) and its generalization Multi-mode Resource-Constrained Project

Scheduling Problem (MRCPSP) are considered. The state-of-the-art review of the

agent-based solution approaches to these problems is presented, including author’s

results. Agent-based algorithms for solving the above mentioned problems are

described and experimentally validated using problem instances from PSPLIB

library [31]. Solutions are compared with these known from the literature.

The first part of the book is constructed as follows. Chapter 2 contains some gen-

eral ideas and the literature review of agent-based optimization. Chapter 3 reviews

the project scheduling models. Chapter 4 focuses on the resource-constrained project

scheduling, including state-of-the-art review and the proposed approaches to solv-

ing the RCPSP. In Chap. 5 the multi-mode resource-constrained project scheduling is

shortly reviewed and several approaches to solving it using the agent-based paradigm

are proposed and evaluated experimentally. Finally, Chap. 6 contains conclusions

and short discussion of open problems. Research results obtained by the author with

co-authors and published in a number of papers concerning the A-Team approaches

to solving the family of the resource-constrained project scheduling problems, in

particular RCPSP and MRCPSP are presented in Sects. 4.4 and 5.4.

http://dx.doi.org/10.1007/978-3-319-62893-6_2
http://dx.doi.org/10.1007/978-3-319-62893-6_3
http://dx.doi.org/10.1007/978-3-319-62893-6_4
http://dx.doi.org/10.1007/978-3-319-62893-6_5
http://dx.doi.org/10.1007/978-3-319-62893-6_6
http://dx.doi.org/10.1007/978-3-319-62893-6_4
http://dx.doi.org/10.1007/978-3-319-62893-6_5

References 5

References

1. Kölisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained

project scheduling: an update. Eur. J. Oper. Res. 174(1), 23–37 (2006)

2. Agarwal, A., Colak, S., Erenguc, S.: A neurogenetic approach for the resource-constrained

project scheduling problem. Comput. Oper. Res. 38, 44–50 (2011)

3. Paraskevopoulos, D.C., Tarantilis, C.D., Ioannou, G.: Solving project scheduling problems

with resource constraints via an event list-based evolutionary algorithm. Expert Syst. Appl.

39, 3983–3994 (2012)

4. Fang, C., Wang, L.: An effective shuffled frog-leaping algorithm for resource-constrained

project scheduling problem. Comput. Oper. Res. 39(5), 890–901 (2012)

5. Wooldridge, M.: An Introduction to Multiagent Systems, 2nd edn. Wiley (2009)

6. Niazi, M., Hussain, A.: Agent-based computing from multi-agent systems to agent-based mod-

els: a visual survey. Scientometrics 89(2), 479–499 (2011)

7. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev.

10(2), 115–152 (1995)

8. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, New York (2002)

9. Jennings, N.R., Wooldridge, M.: Applying agent technology. Appl. Artif. Intell. 9, 357–369

(1995)

10. Moulin, B., Chaib-Draa, B.: An overview of distributed artificial intelligence. In: O’Hare,

G.M.P., Jennings, N.R. (eds.) Foundations of distributed artificial intelligence, pp. 3–55. Wiley,

New York (1996)

11. Balaji, P.G., Srinivasan, D.: An introduction to multi-agent systems. In: Innovations in Multi-

agent Systems and Applications—1, Studies in Computational Intelligence, vol. 310, pp. 1–27.

(2010)

12. Barbati, M., Bruno, G., Genovese, A.: Applications of agent-based models for optimization

problems: a literature review. Expert Syst. Appl. 39, 6020–6028 (2012)

13. Naciri, N., Tkiouat, M.: Multi-agent systems: theory and applications survey. Int. J. Intell. Syst.

Technol. Appl. 14(2), 145–167 (2015)

14. Stone, P., Veloso, M.: Multi-agent systems: a survey from a machine learning perspective.

Auton. Robot. 8(3), 345–383 (2000)

15. Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton. Agent. Multi-

Agent Syst. 11(3), 387–434 (2005)

16. Michel, F., Ferber, J., Drogoul, A.: Multi-agent systems and simulation: a survey from the

agent community’s perspective. In: Multi-Agent Systems: Simulation and Applications, pp.

3–52. CRC Press, Boca Raton, FL (2009)

17. Such, J.M., Espinosa, A., García-Fornes, A.: A survey of privacy in multi-agent systems.

Knowl. Eng. Rev. 29(03), 314–344 (2014)

18. Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul. 18(1), 11

(2015)

19. Persson, J.A., Davidsson, P., Johansson, S.J., Wernstedt, F.: Combining agent-based

approaches and classical optimization techniques. In: Proceedings of the Third European Work-

shop on Multi-Agent Systems (EUMAS 2005), pp. 260–269 (2005)

20. Ren, H., Wang, Y.: A survey of multi-agent methods for solving resource constrained project

scheduling problems. In: Proceedings of International Conference on Management and Service

Science 2011, pp. 1–4 (2011)

21. Knotts, G., Dror, M.: Agent-based project scheduling: computational study of large problems.

IIE Trans. 35, 143–159 (2003)

22. Aydin, M.: Metaheuristic agent teams for job shop scheduling problems. In: Holonic and Multi-

Agent Systems for Manufacturing. Lecture Notes in Computer Science, vol. 4659, pp. 185–194.

(2007)

23. Barbucha, D., Jędrzejowicz, P.: An agent-based approach to vehicle routing problem. Int. J.

Appl. Math. Comput. Sci. 4(2), 538–543 (2007)

6 1 Introduction

24. Xie, X.F., Liu, J.: Multiagent optimization system for solving the traveling salesman problem

(TSP). IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(2), 489–502 (2009)

25. Liang, W.Y., Huang, C.C.: Agent-based demand forecast in multi-echelon supply chain. Decis.

Support Syst. 42(1), 390–407 (2006)

26. Blum, J., Eskandarian, A.: Enhancing intelligent agent collaboration for flow optimization of

railroad traffic. Transp. Res. 36(10), 919–930 (2002)

27. Chen, B., Cheng, H.H., Palen, J.: Integrating mobile agent technology with multi-agent systems

for distributed traffic detection and management systems. Trans. Res. Part C Emerg. Technol.

17(1), 1 (2009)

28. Talukdar, S., Baerentzen, L., Gove, A., De Souza, P.: Asynchronous teams: co-operation

schemes for autonomous, computer-based agents. Technical Report EDRC 18-59-96, Carnegie

Mellon University, Pittsburgh (1996)

29. Jędrzejowicz, P., Wierzbowska, I.: JADE-Based A-Team environment. In: Computational

Science—ICCS. Lecture Notes in Computer Science, vol. 3993, pp. 719–726 (2006)

30. Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: e-

JABAT—an implementation of the web-based A-Team. In: Nguyen, N.T., Jain, L.C. (eds.)

Intelligence Agents in the Evolution of Web and Applications. Studies in Computational Intel-

ligence, vol. 167, pp. 57–86. (2009)

31. PSPLIB - Project Scheduling Problem LIBrary. http://www.om-db.wi.tum.de/psplib

http://www.om-db.wi.tum.de/psplib

Chapter 2
Agent-Based Optimization

Agents and agent-based approaches are an active research topics in artificial intel-

ligence and expert systems. Due to their properties, they are recently being used as

a promising tool for solving problems whose domains are distributed, complex and

hetergenous.

In this chapter the short overview of the agent-based applications for solving opti-

mization problems is presented. In Sect. 2.1 basics of the agent-based approaches

are introduced. Agent-based approaches to optimisation are described in Sect. 2.2.

In Sect. 2.3 agent-based approaches to project scheduling, including the A-Team par-

adigm are presented.

2.1 Basics of the Agent-Based Approaches

The term “agent”, or software agent, has found its way into a number of technologies

and has been widely used, for example, in artificial intelligence, databases, operating

systems and computer networks literature. Although there is no single definition of

an agent in the literature [1–3], all definitions agree that an agent is essentially a spe-

cial software component that has autonomy, that provides an interoperable interface

to an arbitrary system and/or behaves like a human agent, working for some clients

in pursuit of its own agenda [4].

Agent-based approaches form a large and widely spread research domain rang-

ing from the computer science techniques for constructing and implementing agent-

based systems on one side, to modeling concepts taking their roots in social and nat-

ural sciences, on the other. In the literature diverse concepts and terms are considered

such as agent-based computing, agent-based modeling and simulation, agent-based

software engineering or multi-agent systems [5, 6]. Term “agent” may cover a range

of entities from a rather simple software agents or services/deamons, which might

© Springer International Publishing AG 2018

E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,

Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_2

7

8 2 Agent-Based Optimization

not behave very intelligently to intelligent agents. The latter use artificial intelligence

concepts and methods to control their behavior [7, 8]. An agent could be also an

interacting social component of a large system used to explore new global behavior

in a simulation experiments [6].

In the most general way in which the term “agent” is used, it is understood as

computational system. According to the definition of Wooldridge and Jennings [2] an

agent is a computational system interacting with an environment that can be endowed

with the following features:

∙ autonomy - each agent acts without the direct control of human beings or other

devices;

∙ social ability - interactions occur among entities through a communication lan-

guage in order to satisfy the objectives;

∙ reactivity - agents answer in a precise way to signals coming from the environment;

∙ pro-activeness - agents do not simply act in response to their environment, they

take the initiative in order to satisfy their goal.

Agent-Based Models (ABM) and Multi-Agent Systems (MAS) consist of a set of

elements (agents) characterized by some attributes, which interact with each other

through the definition of appropriate rules in a given environment. A slight difference

between ABM and MAS is frequently indicated.

A Multi-Agent System (MAS) is a computerized system composed of multiple

intelligent agents interacting within an environment, while an Agent-Based Model

(ABM) is one of the class of computational models. ABMs are used for simulating

actions and interactions of autonomous agents (both individual or collective entities

such as organizations or groups) with a view to assessing their effects on the system

as a whole. ABM combines elements of game theory, complex systems, emergence,

computational sociology, multi-agent systems, and evolutionary programming. The

goal of an ABM is to search for explanatory insight into the collective behavior of

agents obeying simple rules, typically in natural systems, rather than solving specific

practical or engineering problems. The terminology of the ABM tends to be used

more often in the sciences, and MAS in engineering and technology.

In [9] Madejski indicates that there are two different approaches to agent design:

the physical decomposition approach and the functional decomposition one. In the

first case, agents represent physical entities, like workers, machines, tools, fixtures,

or products, etc. On the other hand, in the functional decomposition approach, there

is no relationship between agents and physical entities, but agents are assigned to

some functions like product distribution, transport management, order acquisition,

scheduling, material handling, etc.

Multi-agent systems may be described and classified based on several different

attributes, such as: architecture, learning and decision making abilities, communica-

tion, coordination etc. Recent review of this topic can be found in [10], in which the

following features are considered:

2.1 Basics of the Agent-Based Approaches 9

∙ Internal architecture

– Homogeneous structure

– Heterogeneous structure

∙ Overall Agent Organization

– Hierarchical Organization

– Holonic Agent Organization

– Coalitions

– Teams

∙ Communication

– Local Communication

– Blackboards

– Agent Communication Language

∙ Decision making

– Nash equilibrium

– Iterated elimination method

∙ Coordination

– Coordination through protocol

– Coordination via graphs

– Coordination through belief models

∙ Learning

– Active Learning

– Reactive Learning

– Learning based on consequences

Multi-agent systems are widely applied in many domains because of the beneficial

advantages offered. Some of the benefits of using MAS technology in large systems

are indicated in [10, 11]:

∙ speedup and efficiency - due to the asynchronous and parallel computations;

∙ robustness and reliability - the whole system can undergo a ‘graceful degradation’

when one or more agents fail;

∙ scalability and flexibility - it is easy to add new agents to the system;

∙ cost - an agent is a low-cost unit compared to the whole system;

∙ development and reusability - it is easier to develop and maintain a modular system

than a monolithic one.

Agent approaches are applied to solve different optimization problems. Descrip-

tion of the most recent trends in the field of agent-based optimization and decision

support techniques can be found in [12]. Therefore, multi-agent systems are used

in a variety of applications, ranging from comparatively small systems for personal

assistance to open, complex, mission critical systems for industrial applications [13].

10 2 Agent-Based Optimization

The first MAS techniques were developed alongside with industrial applications,

e.g. process control [14], manufacturing, system diagnostics [15], transportation

logistics [16], or network management [17]. Other application fields of multi-agent

systems include: information management, traffic and transportation, telecommuni-

cation systems, computer games, graphics and health care.

2.2 Agents-Based Approaches to Optimization

In recent years numerous papers proposing ABM or ABM-based approaches to opti-

mization have been published. Usually, such approaches combine agent-based para-

digms with other optimization techniques, distributed or complex systems, heuristic

methods, management sciences etc. Johnson et al. [18] distinguish three most com-

mon forms of integration of the optimization and agent-based models:

∙ optimization used as a calibration and validation tool for ABM,

∙ ABM used to solve optimization problems,

∙ optimization used in economic ABM to represent constrained maximisation.

In this chapter the second form is considered where ABM is used as a method,

technique or framework for solving optimization problems. There is a number of

multiple-agent approaches proposed in the literature to solve different types of opti-

mization problems. However, only a few papers present surveys extended literature

reviews, or comparisons of these methods.

In the field of intelligent manufacturing the idea of two different categories of

agents with different roles with regard to optimization, emerged in [9]. Agents of the

first category represent or directly supply the required resources within optimization

effort. Agents of the second category perform certain functions. The first category

includes physical agents, representing physical entities such as workers, vehicles,

products, machines, resources or users. Examples include [19–22]. The second cate-

gory, functional agents, represent pieces of software used to carry out subtasks such

as search or working strategies, local optimization or project management. Examples

include solutions presented in [23–26] as well as Sects. 4.4 and 5.4.

Barbati et al. [27] review several approaches to using agents for solving optimiza-

tion problems. They also identify two agent-based architectures often used to solve

scheduling optimization problems: autonomous and mediator. In the autonomous

architecture many agents self-organize themselves to solve a problem based on nego-

tiation protocols. MAS is composed of autonomous cooperating local agents that are

capable of negotiating with each other in order to achieve their aims (see for exam-

ple [19, 22, 26, 28–30]). In the mediator architecture based on cooperative interac-

tion protocols, a mediator is responsible for the coordination of agents objectives, in

such a way that the quality of the global solution is continuously improved. Media-

tor agents coordinate the behavior of the local agents to perform global optimization.

Examples can be found in [23, 25, 31–33]. Classification of architectures proposed

http://dx.doi.org/10.1007/978-3-319-62893-6_4
http://dx.doi.org/10.1007/978-3-319-62893-6_5

2.2 Agents-Based Approaches to Optimization 11

in [27] is general and covers majority of approaches to solving optimization prob-

lems through employing various types of agents.

Persson et al. [34] and Davidsson et al. [32] compare strengths and weaknesses

of agent-based approaches versus classical optimization techniques. They focus on

evaluating how well both approaches are able to handle some important properties

of the problem domain. Authors propose a set of properties enabling comparison of

agent-based approaches and classical optimization techniques, including:

∙ size (number of resources to be allocated),

∙ cost of communication,

∙ communication and computational stability,

∙ modularity,

∙ time scale (time between re-allocation of resources),

∙ changeability (how often the structure of the domain changes),

∙ quality of solution (how important it is to find a good allocation),

∙ quality assurance,

∙ integrity (importance of not distributing sensitive information).

Based on this analysis it is indicated that the properties of the agent-based approaches

and optimization techniques complement each other and there exists a number of

ways for combining them. They indicate and describe two such approaches:

∙ Assisting agents with a plan obtained through using optimization techniques. The

approach can be understood as using some optimization technique for coarse plan-

ning and agents for operational replanning, i.e., for performing local adjustments

of the initial plan in real-time to handle the actual conditions when the plan is

executed.

∙ Embedding optimization capabilities within agents. In the deployed distributed

systems this requires the use of wrapper technology, or a similar solutions, in order

to make an agent a fully integrated first-class citizen of the multi-agent system.

The above briefly reviewed papers illustrate current state of the art related to the

use and to the application of agent-based models as optimization tools. One of such

tools is the concept of an A-Team, originally introduced by Talukdar et al. [35, 36].

The idea of the A-Team has been used to develop the software environment for

solving a variety of computationally hard optimization problems called JABAT [37,

38]. JADE based A-Team (JABAT) system supports the construction of the dedicated

A-Team architectures. Agents used in JABAT assure decentralization of computation

across multiple hardware platforms. Parallel processing results in more effective use

of the available resources and ultimately, a reduction of the computation time. In

the following section the concept of the A-Team and JABAT are introduced. Sev-

eral applications of this system to implement A-Teams solving variety of scheduling

problems are described in Sects. 4.4 and 5.4.

http://dx.doi.org/10.1007/978-3-319-62893-6_4
http://dx.doi.org/10.1007/978-3-319-62893-6_5

12 2 Agent-Based Optimization

2.2.1 A-Team Concept

The idea of asynchronous agents working as a team in order to solve optimization

problem has been proposed and developed by Talukdar et al. in [35, 36, 39, 40], and

then developed and used by another authors, for example in [38, 41–44].

According to [39] an asynchronous team is a collection of software agents that

cooperate to solve a problem by dynamically evolving a population of solutions. For-

mal definition of the A-Team has been proposed in [35, 36]: an A-Team is seen as a

set of autonomous agents and a set of memories, interconnected to form a strongly

cyclic computational network, that is, a network in which every agent is in the closed

loop. An A-Team can be visualized as a directed hypergraph, e.g. a data flow where

each node represents a complex of overlapping memories, and each arc represents

an autonomous agent. The results or trial-solutions are stored in the memories, sim-

ilarly to blackboard systems, and form the population of solutions. The role of such

populations is similar to the populations in genetic algorithms: new individuals are

continually added by the construction agents, while other are being erased by the

destruction agents.

In the later papers of Talukdar et al. [40] A-Team is described as a multi-

population, multi-agent system for solving optimization problems. In the A-Team,

search of solution skills are packaged as agents. During the computation process

problem is decomposed into sub-problems and a population of solutions is main-

tained for each sub-problem. These populations are iteratively evolved by a set of

agents. Additionally, solutions are circulating among populations. Some solutions

in each population will eventually improve. The computation process is terminated

when further iterations do not bring any improvement to the so far obtained best

solution.

The function of the A-Team is to combine operators or algorithms, so together

they can tackle bigger and more difficult problems than they could if working alone

[35]. Hence, the collaboration between agents are particularly important. In [45]

Talukdar has proposed a grammar for constructing asynchronous teams that might be

useful in solving an instance of the off-line problems. In another words, the grammar

constructively defines the space that must be searched if an asynchronous team that

is good at solving the given problem-instance is to be found. The most important part

of this grammar includes principles and rules for designing problem-solving organi-

zations in which collaboration among such agents is automatic and scale-effective.

The primitives of the grammar are:

∙ sharable memories, each dedicated to a member of the family-of-problems, and

designed to contain a population of trial-solutions to its problem;

∙ operators for modifying trial-solutions;

∙ selectors for picking trial-solutions;

∙ schedulers for determining when selectors and operators are to work.

2.2 Agents-Based Approaches to Optimization 13

The rules of the grammar are:

∙ Form autonomous agents by packaging an operator with a selector and a scheduler.

∙ Use quality-based-selection and completely parallel execution (all the agents run-

ning all the time, or as close to all the time, as the available computer resources

will allow) as the default selection and scheduling strategies.

∙ Connect the agents and memories to form a strongly cyclic data flow.

∙ Compensate for construction deficiencies with skilled destruction.

∙ Mix agents as needed without regard to their complexity or phylla, that is big

and small software agents may be combined with humans, provided only that the

humans subscribe to the communication and selection conditions prescribed for

the software agents.

According to Correa et al. [41] the execution of the A-Team can be described by

the set of events. Each event is composed from the following elements: the time at

which the event occurs; the input data, if any; the state of the shared memory prior to

the occurrence of the event; the state of the shared memory after the occurrence of

the event; and the output data, if any. There is a restricted number of types of events

occurring during the A-Team execution:

∙ initialization of the global variables and the shared memory,

∙ reading operation,

∙ execution of the heuristic/search,

∙ writing operation.

Implementations and applications of the A-Team for solving optimization prob-

lems are described and reviewed in several papers. A-Team based architectures, sys-

tems, environments, frameworks and metaheuristics are developed for a wide variety

of optimization problems. The reviews of these approaches can be found in [43, 44,

46].

Rachlin et al. in [46] propose and use A-Team architecture to develop real-world

optimization and decision support applications. The proposed implementation pro-

vides the basic components needed to create A-Teams, the configuration language

for assembling and customizing components and the user interface for interfacing

with the resulting A-Team. In the same paper authors present the A-Team overview

and indicate some important features of such architectures. They also outline key

advantages of the approach: modularity, suitability for distributed environments and

robustness.

Jędrzejowicz in [43] divides the A-Team implementations into first and next gen-

eration. The major differences can be found with respect to accessibility, scalability

and portability. In the same paper two major classes of the A-Team implementations

are defined. The first includes specialized A-Teams designed to solve instances of

particular problems. Their architecture is problem-specific and not flexible. The sec-

ond class covers middleware platforms allowing for an easy implementation of the

A-Teams ready to solve instances of the arbitrary problems.

Carle et al. in [44] propose the metaheuristic based on the A-Team paradigm

designed to tackle complex multi-dimensional optimization problems called

14 2 Agent-Based Optimization

Collaborative Agent Team (CAT). In the paper a discussion about designing three

components of CAT for a particular optimization problem can be found: the prob-

lem representation along different dimensional views, the design of the agents and

the information sharing between them.

In [27, 38, 47] the A-Team based environment for solving different optimization

problems called JADE-based A-Team (JABAT) has been proposed and experimen-

tally validated. Because JABAT has been used to implement approaches proposed

in this book, it is described separately in the following subsection.

A-Team based approaches for solving optimization problems include: traveling

salesman problems [39], control of electric networks [48, 49], collision avoidance

in robotics [50], planning and scheduling in manufacturing [51], flow optimization

of railroad traffic [52], job-shop scheduling [53–55], steel and paper mill schedul-

ing [56, 57], train scheduling [58], automatic insertion of electronic components

[59], non-fixed point-to-point connection problem [41], clustering problem [60],

euclidean planar traveling salesman problem [61], multi-period supply chain net-

work design problem [62], vehicle routing problem [63], and vehicle routing prob-

lem with time windows [64, 65].

2.2.2 A-Team Implementation - JABAT

One of implementations of the A-Team concept is JADE-based A-Team Environment

called JABAT. It has been implemented and developed by the team of researchers

from Department of Information Systems in Gdynia Maritime University with the

participation of the author [38, 47, 66]. The platform offers a generic A-Team archi-

tecture allowing users to execute different population-based methods with some

default and/or user-defined optimization procedures implemented as agents within

the asynchronous team of agents.

JABAT is a middleware supporting the construction of the dedicated A-Team

architectures used for solving different computationally hard optimization problems.

JABAT engine is JADE, which is based on Java technologies. To construct JABAT

also Java technologies have been used, including Java 2 Platform Standard Edition

(J2SE) with Java Runtime Environment (JRE).

JADE (Java Agent DEvelopement framework) [67, 68] is an enabling technology

for the development and run-time execution of peer-to-peer applications which are

based on the agents paradigm and which can seamlessly work and interoperate both

in wired and wireless environment. JADE is best described as the distributed mid-

dleware system, multi-agent system, software framework or FIPA-compliant agent

platform. It facilitates the development of agent-based applications through the run-

time environment, the core logic of agents, and a graphical tools. It has a flexi-

ble infrastructure allowing easy extension with add-on modules. As it is written in

Java, it benefits from a huge set of Java language features and third-party libraries

[4]. From the functional point of view, JADE provides the basic services neces-

sary to construct the distributed peer-to-peer applications in the fixed and mobile

2.2 Agents-Based Approaches to Optimization 15

environment. JADE allows each agent to dynamically discover other agents and to

communicate within the team according to the peer-to-peer paradigm.

The problem-solving engine on which JABAT is based can be best defined as

the population based approach. The environment is expected to be able to produce

solutions to difficult optimization problems through applying the following general

rules [38]:

∙ To solve difficult optimization problems use a set of agents, each representing an

improvement algorithm.

∙ To escape getting trapped into a local optimum generate or construct the initial

population of solutions called individuals, which, during computations will be

improved by agents, thus increasing chances for reaching the global optimum.

Agent-based architecture of JABAT allows implementation of the following fea-

tures [38, 69]:

∙ The system can in parallel solve instances of several different optimization prob-

lems.

∙ A user, having a list of all algorithms implemented for the given problem, may

choose how many and which of them should be used.

∙ The optimization processes can be performed on many computers. The user can

easily add or delete a computer from the system. In both cases JABAT will adapt

to the changes, commanding the agents working within the system to migrate.

∙ The system is fed in the batch mode - consecutive problems may be stored and

solved later, when the system or user assesses that there is enough resources to

undertake a new search.

JABAT produces solutions to combinatorial optimization problems using a set

of optimization agents. Each agent represents an improvement algorithm. An initial

population of solutions (individuals) is generated or constructed using, for exam-

ple, some heuristics. Individuals from the population are, at the following computa-

tion stages, improved by independently acting agents. Main functionality of JABAT

includes organizing and conducting the process of search. It involves a sequence of

the following steps [47]:

∙ Generating an initial population of solutions.

∙ Applying solution improvement algorithms which draw individuals from the com-

mon memory and store them back after attempted improvement, using some user

defined replacement strategy.

∙ Continuing reading-improving-replacing cycle until a stopping criterion is met.

The JABAT environment is based on two main agents types and three types of

special agents. All agents are implemented as Java classes. The main agents are

TaskManager and PlatformManger which manage all other agents and hardware

platforms. Both main agents are running continuously on the main platform placed

on a server. The special agent types are SolutionManager, SolutionMonitor and

OptiAgent. The OptiAgent represents the optimization algorithm which is used to

16 2 Agent-Based Optimization

solve some particular optimization problem. The OptiAgent class must be overwrit-

ten by the code specifically designed for solving a particular problem type. The

SolutionManager manages the population of solutions. Its class may be overwrit-

ten to implement a specific user designed cooperation strategy with respect to han-

dling the population of solutions. Such a strategy defines which solutions and when

are deleted from the common memory, how they are replaced and how and when

new individuals are generated and incorporated into the common memory. The

SolutionMonitor is responsible for registering solutions obtained by OptiAgents.
The class may be overwritten to make possible recording partial results of computa-

tions. One SolutionManager, one SolutionMonitor and a number, fixed or variable,

of OptiAgents are run for each problem instance. The general structure of JABAT

is shown in Fig. 2.1. The Use Case Diagram for JABAT is shown in Fig. 2.2. The

detailed description of the JABAT environment may be found in [38].

Apart from the above described JABAT-specific classes several general classes

describing a particular optimization problem need to be defined. They include:

∙ Data - representing problem data and using a set of text files describing instances

of the considered problem,

∙ Task - representing an instance of the problem saved in Java structures,

∙ Solution - representing a solution of the problem.

For each of the mentioned classes respective ontology class has been implemented.

They include: DataOntology, TaskOntology and SolutionOntology. Implementing

the JABAT code specific for the considered problem requires overwriting all of these

classes.

JABAT has two extensions:

∙ e-JABAT - implementation of Web-based A-Team which are fully Internet acces-

sible, portable, scalable and in conformity with the FIPA standards proposed in

[37].

∙ TA-Teams JABAT - implementation of Team of A-Teams in which several

A-Teams work in parallel and cooperate to solve optimization problems [70].

JABAT, as well as its extensions has been successfully used for implementing

dedicated A-Team architectures solving different NP-hard optimization problems.

These problems include: Euclidean Planar Traveling Salesman Problem (EPTSP)

[61], Vehicle Routing Problem (VRP) [63], Clustering Problem (CP) [60], Resource

Availability Cost Problem (RACP) [71], as well as the single and multi-mode

resource-constrained project scheduling problems described in this book: RCPSP

and MRCPSP.

To implement dedicated A-Team architecture in the JABAT environment it is nec-

essary to construct three sets of classes/agents:

∙ base classes - representing instance data, solution and the respective ontologies;

∙ optimization agents - classes representing optimization algorithms, each algorithm

is build in one agent class;

∙ strategies - classes describing strategies used to manage the process of problem

solving.

2.2 Agents-Based Approaches to Optimization 17

Fi
g.
2.1

G
e
n
e
ra

l
s
tr

u
c
tu

re
o
f

J
A

B
A

T

18 2 Agent-Based Optimization

Fig. 2.2 Use Case Diagram for JABAT

The first set (base classes) includes classes describing the problem. They are

responsible for reading and preprocessing of the data and generating random

instances of the problem. The set includes classes inheriting from Data, Task, Solu-
tion as well as their respective ontology classes and classes representing the objects

specific for considered problem, for example activity in Project Scheduling Problems

(PSP) or vehicle in Vehicle Routing Problems (VRP).

The second set (optimization agents) includes classes describing the optimiza-

tion agents. Each of them includes the implementation of the optimization algo-

rithm used to solve the considered optimization problem. All of them are inheriting

from the OptiAgent class. Optimization agents are, in fact, implementations of the

search algorithms or metaheuristics like, for example: tabu search algorithm, simu-

lated annealing algorithm, genetic or evolutionary algorithm etc.

The third set (strategies) includes at least one kind of strategies involved in man-

aging the process of problem solving. Such working or cooperation strategy can be

on the whole or partly based on the optimization algorithm, for example population

learning algorithm or machine learning like, for instance, reinforcement learning.

One dedicated JABAT implementation may use one or more cooperation strategies.

These strategies may be changed during computation in sequence or using other

arrangement. For example in the JABAT extension called TA-Teams the second kind

of strategy is used. It manages the cooperation/interactions between A-Teams. It is

called interaction strategy [61, 72, 73].

2.3 Agents-Based Approaches to Project Scheduling 19

2.3 Agents-Based Approaches to Project Scheduling

Majority of approaches proposed for optimization, has been successfully adopted to

scheduling and project scheduling. Project scheduling can be classified according to

the number of projects as single-project scheduling or multi-project scheduling. Oth-

erwise, in regard to the methods of management the static and dynamic scheduling

as well as centralized and distributed scheduling can be considered.

Contemporary agent approaches can be classified taking into consideration the

agents role in the system. Most frequently, the agents representing the problem fea-

tures are used, so the following categories are considered:

∙ Activity as agent approach - each activity of the project is represented as simple

agent.

∙ Resource as agent approach - each resource of the project is represented as a single

agent.

∙ Project as agent approach - each agent represents the project as a whole, or part of

the project.

∙ Process as agent approach - each agent represents a process carried-out within the

system. For example an agent may represent the resource allocation process.

The above listed categories do not exclude each other. For example in the systems

where activity as agent approach is used activity as resource approach can be used

simultaneously. Contemporary MAS used in project scheduling belong usually to

activity and resource as agents categories or project as agent category. Additionally,

other components of the system can be represented by agents, for example memory,

optimization or learning algorithms, etc.

The short survey of some agent-based scheduling approaches can be found in

[74], including dynamic, distributed, multi-mode and multi-project problems.

Different multi-agent-based optimization models, systems and frameworks have

been proposed for project management problems in the literature. The reviews of

such approaches can be found in [28, 74].

Jędrzejowicz and Ratajczak-Ropel in [75–82] have proposed several models based

on the asynchronous team of agents (A-Team) solving some project scheduling prob-

lems using JABAT environment described in Sect. 2.2. Details of some of these

approaches are given in Chaps. 4 and 5.

References

1. Genesereth, M.R., Ketchpel, S.P.: Software agents. Commun. ACM 37(7), 48–53 (1994)

2. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev.

10(2), 115–152 (1995)

3. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pearson Educa-

tion Inc., Prentice Hall (2010)

4. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-agent Systems with JADE. Wiley,

Chichester (2007)

http://dx.doi.org/10.1007/978-3-319-62893-6_4
http://dx.doi.org/10.1007/978-3-319-62893-6_5

20 2 Agent-Based Optimization

5. Wooldridge, M.: Agent-based computing. Interoper. Commun. Netw. 1, 71–98 (1998)

6. Niazi, M., Hussain, A.: Agent-based computing from multi-agent systems to agent-based mod-

els: a visual survey. Scientometrics 89(2), 479–499 (2011)

7. Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.

The MIT Press, Cambridge, MA (1999)

8. Wooldridge, M.: An Introduction to Multiagent Systems, 2nd edn. Wiley (2009)

9. Madejski, J.: Survey of the agent-based approach to intelligent manufacturing. J. Achiev. Mater.

Manuf. Eng. 21(1), 67–70 (2007)

10. Balaji, P.G., Srinivasan, D.: An introduction to multi-agent systems. In: Innovations in Multi-

agent Systems and Applications — 1, Studies in Computational Intelligence, vol. 310, pp. 1–27

(2010)

11. Vlassis N.: A concise introduction to multiagent systems and distributed artificial intelligence.

In: Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool

(2007)

12. Burke, E.K., Graham Kendall, G.: Search Methodologies: Introductory Tutorials in Optimiza-

tion and Decision Support Techniques. Springer, US (2014)

13. Jennings, N.R., Wooldridge, M.: Applications of intelligent agents. In: Jennings, N.R.,

Wooldridge, M.J. (eds.) Agent Technology: Foundations, Applications, and Markets, pp. 3–

28. Springer, Berlin (1998)

14. Jennings, N.: The archon system and its applications. In: Proceedings of the 2nd International

Working Conference on Cooperating Knowledge Based Systems (CKBS-94), pp. 13–29. Dake

Centre, University of Keele, UK (1994)

15. Albert, M., Laengle, T., Woern, H., Capobianco, M., Brighenti, A.: Multi-agent systems for

industrial diagnostics. In: Proceedings of 5th IFAC Symposium on Fault Detection, Supervi-

sion and Safety of Technical Processes, pp. 483–488, Washington, DC (2003)

16. Neagu, N., Dorer, K., Greenwood, D., Calisti, M.: LS/ATN: reporting on a successful agent-

based solution for transport logistics optimization. In: Proceedings of the IEEE 2006 Workshop

on Distributed Intelligent Systems (WDIS06), Prague (2006)

17. Greenwood, D., Vitaglione, G., Keller, L., Calisti, M.: Service level agreement management

with adaptive coordination. In: Proceedings of the International Conference on Networking

and Services (ICNS06), Silicon Valley, USA (2006)

18. Johnson, P.G., Balke, T., Kotthoff, L.: Integrating optimisation and agent-based modelling. In:

ECMS — Proceedings 28th European Conference on Modelling and Simulation, pp. 775–781.

Digitaldruck Pirrot GmbH, Germany (2014)

19. Parunak, H.V.D., Kindrick, J., Irish, B.W.: A conservative domain for neural connectivity and

propagation. In: Proceedings of Proceedings of the 6th National Conference on Artificial Intel-

ligence (AAAI’87). Distributed artificial intelligence, pp. 307–311. Pitman, London (1987)

20. Sirikijpanichkul, A., van Dam, K.H., Ferreira, L., Lukszo, Z.: Optimizing the location of inter-

modal freight hubs: an overview of agent based modelling approach. J. Transp. Syst. Eng. Inf.

Technol. 7(4), 71–81 (2007)

21. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing systems. J. Sched.

12(4), 417–431 (2008)

22. Böcker, J., Lind, J., Zirkler, B.: Using a multi-agent approach to optimise the train coupling

and sharing system. Eur. J. Oper. Res. 131(2), 242–252 (2010)

23. Liang, W.Y., Huang, C.C.: Agent-based demand forecast in multi-echelon supply chain. Decis.

Support Syst. 42(1), 390–407 (2006)

24. Barbucha, D., Jędrzejowicz, P.: An agent-based approach to vehicle routing problem. In. J.

Appl. Math. Comput. Sci. 4(2), 538–543 (2007)

25. Polyakovsky, S., M’Hallah, R.: An agent-based approach to the two dimensional guillotine bin

packing problem. Eur. J. Oper. Res. 192(31), 767–781 (2009)

26. Xie, X.F., Liu, J.: Multiagent optimization system for solving the traveling salesman problem

(TSP). IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(2), 489–502 (2009)

27. Barbati, M., Bruno, G., Genovese, A.: Applications of agent-based models for optimization

problems: a literature review. Expert Syst. Appl. 39, 6020–6028 (2012)

References 21

28. Knotts, G., Dror, M., Hartman, B.C.: Agent-based project scheduling. IIE Trans. 32(5), 387–

401 (2000)

29. Chen, Y.M., Wang, S.C.: Framework of agent-based intelligence system with two stage

decision-making process for distributed dynamic scheduling. Appl. Soft Comput. 7(1), 229–

245 (2007)

30. Xiang, W., Lee, H.P.: Ant colony intelligence in multi-agent dynamic manufacturing schedul-

ing. Eng. Appl. Artif. Intell. 21(1), 73–85 (2008)

31. Ramos, C.: An architecture and a negotiation protocol for the dynamic scheduling of manufac-

turing systems. In: Proceedings of IEEE International Conference on Robotics and Automation,

pp. 8–13 (1994)

32. Davidsson, P., Holmgren, J., Persson, J.A.: On the integration of agent-based and mathematical

optimization techniques. Lect. Notes Artif. Intell. 4496, 1–10 (2007)

33. Chen, R.S., Tu, M.A.: Development of an agent-based system for manufacturing control and

coordination with ontology and RFID technology. Expert Syst. Appl. 36(4), 7581–7593 (2009)

34. Persson, J.A., Davidsson, P., Johansson, S.J., Wernstedt, F.: Combining agent-based

approaches and classical optimization techniques. In: Proceedings of the Third European Work-

shop on Multi-Agent Systems (EUMAS 2005), pp. 260–269 (2005)

35. Talukdar, S., Baerentzen, L., Gove, A., De Souza, P.: Asynchronous Teams: Co-operation

Schemes for Autonomous, Computer-Based Agents. Technical Report EDRC 18-59-96,

Carnegie Mellon University, Pittsburgh (1996)

36. Talukdar, S., Baerentzen, L., Gove, A., de Souza, P.: Asynchronous teams: cooperation

schemes for autonomous agents. J. Heuristics 4(4), 295–332 (1998)

37. Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: e-

JABAT — An implementation of the web-based A-Team. In: Nguyen, N.T., Jain, L.C. (eds.)

Intelligence Agents in the Evolution of Web and Applications. Studies in Computational Intel-

ligence 167, 57–86 (2009)

38. Jędrzejowicz, P., Wierzbowska, I.: JADE-based A-Team environment. In: Computational Sci-

ence — ICCS. Lecture Notes in Computer Science, vol. 3993, pp. 719–726 (2006)

39. Talukdar, S.N., de Souza, P.: Scale efficient organizations. In: IEEE International Conference

on Systems, Man, and Cybernetics, Chicago, pp. 1458–1463 (1992)

40. Talukdar, S., Murthy, S., Akkiraju, R.: Asynchronous teams. In: Handbook of Metaheuristics.

International Series in Operations Research & Management Science, vol. 57, pp. 537–556

(2003)

41. Correa, R., Gomes, F.C., Oliveira, C., Pardalos, P.M.: A parallel implementation of an asyn-

chronous team to the point-to-point connection problem. Parallel Comput. 29, 447–466 (2003)

42. Zhu, Q.: Topologies of agents interactions in knowledge intensive multi-agent systems for net-

worked information services. Adv. Eng. Inform. 20, 31–45 (2006)

43. Jędrzejowicz, P.: A-Teams and their applications. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-

M. (eds.) ICCCI 2009. Lecture Notes in Computer Science(LNAI), vol. 5796, pp. 36–50 (2009)

44. Carle, M.A., Martel, A., Zufferey, N.: Collaborative Agent Teams (CAT) for Distributed Multi-

Dimensional Optimization. CIRRELT, CIRRELT-2012-43, (2012)

45. Talukdar, S.N.: Collaboration rules for autonomous software agents. Decis. Support Syst. 24,

269–278 (1999)

46. Rachlin, J., Goodwin, R., Murthy, S., Akkiraju, R., Wu, F., Kumaran, S., Das, R.: A-Teams: an

agent architecture for optimization and decision-support. In: Papadimitriou, C., Singh, M.P.,

Müller, J.P. (eds.) ATAL 1998. Lecture Notes in Artificial Intelligence, vol. 1555, pp. 261–276

(1999)

47. Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak, E., Wierzbowska, I.: JADE-Based

A-Team as a tool for implementing population-based algorithms. In: Chen, Y., Abraham, A.

(eds.) Intelligent Systems Design and Applications, Jinan Shandong, China, pp. 144–149.

IEEE, Los Alamitos (2006)

48. Talukdar, S.N., Ramesh, V.C.: A multi-agent technique for contingency constrained optimal

power flows. IEEE Trans. Power Syst. 9(2), 855–861 (1994)

22 2 Agent-Based Optimization

49. Avila-Abascal, P., Talukdar, S.N.: Cooperative algorithms and abductive causal networks

for the automatic generation of intelligent substation alarm processors. In: Proceedings of

ISCAS’96 (1996)

50. Kao, J.H., Hemmerle, J.S., Prinz, F.B.: Collision avoidance using asynchronous teams. In: 1996

IEEE International Conference on Robotics and Automation, vol. 2, pp. 1093–1100. OMNI

Press, USA (1996)

51. Murthy, S., Rachlin, J., Akkiraju, R., Wu, F.: Agent-based cooperative scheduling. In: Char-

niak, E.C. (ed.) Constraints and Agents, AAAI Technical Report WS-97-05, pp. 112–117

(1997)

52. Blum, J., Eskandarian, A.: Enhancing intelligent agent collaboration for flow optimization of

railroad traffic. Transp. Res. 36(10), 919–930 (2002)

53. Chen, S.Y., Talukdar, S. N., Sadeh N. M.: Job-Shop-Scheduling by a team of asynchronous

agents. In: IJCAI-93 Workshop on Knowledge-Based Production, Scheduling and Control,

Chambery, France (1993)

54. Aydin, M.E., Fogarty, T.C.: Teams of autonomous agents for job-shop scheduling problems:

an experimental study. J. Intell. Manuf. 15, 455–462 (2004)

55. Aydin, M.: Metaheuristic agent teams for job shop scheduling problems. In: Holonic and Multi-

Agent Systems for Manufacturing. Lecture Notes in Computer Science, vol. 4659, pp. 185–194

(2007)

56. Rachlin, J., Wu, F., Murthy, S., Talukdar, S., Sturzenbecker, M., Akkiraju, R., Fuhrer, R.,

Aggarwal, A., Yeh, J., Henry, R., Jayaraman, R.: ForestView: a system for integrated schedul-

ing in complex manufacturing domains. IBM Report (1996)

57. Lee, H., Murthy, S., Haider, W., Morse, D.: Primary production scheduling at steel making

industries, IBM Report (1995)

58. Tsen, C.K.: Solving train scheduling problems using A-Teams. Ph.D. dissertation, Electrical

and Computer Engineering Department, CMU, Pittsburgh, PA (1995)

59. Rabak, C.S., Sichman, J.S.: Using A-Teams to optimize automatic insertion of electronic com-

ponents. Adv. Eng. Inform. 17, 95–106 (2003)

60. Czarnowski, I., Jędrzejowicz, P.: Agent-based NON-distributed and distributed clustering. In:

Perner, P. (ed.) Machine Learning and Dara Mining in Pattern Recognition. Lecture Notes in

Artificial Intelligence, vol. 5632, pp. 347–360. Springer, Berlin, Heidelberg (2009)

61. Jędrzejowicz, P., Wierzbowska, I. Parallel cooperating A-Teams solving instances of the euclid-

ean planar traveling salesman problem. In: J. O’Shea et al. (eds.) Agent and Multi Agent Sys-

tems: Technologies and Applications. Lecture Notes in Artificial Intelligence, vol. 6682, pp.

456–465 (2011)

62. Carle, M.A., Martel, A., Zufferey, N.: The CAT metaheuristic for the solution of multi-period

activity-based supply chain network design problems. Int. J. Prod. Econ. 139(2), 664–677

(2012)

63. Barbucha, D.: Experimental Study of the Population Parameters Settings in Cooperative Multi-

agent System Solving Instances of the VRP. In: Transactions on Computational Collective

Intelligence IX. Lecture Notes in Computer Science, vol. 7770, pp. 1–28 (2013)

64. Barbucha, D.: A cooperative population learning algorithm for vehicle routing problem with

time windows. Neurocomputing 146, 210–229 (2014)

65. Barbucha, D.: Team of A-Teams approach for vehicle routing problem with time windows.

In: Terrazas, G., Otero, F., Masegosa, A. (eds.) Nature Inspired Cooperative Strategies for

Optimization (NICSO 2013), vol. 512, pp. 273–286. Springer International Publishing (2014)

66. Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: Influ-

ence of the working strategy on A-Team performance. In: Szczerbicki, E., Nguyen, N.T. (eds.)

Smart Information and Knowledge Management. Studies in Computational Intelligence, vol.

260, pp. 83–102. Springer, Heidelberg (2010)

67. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE. A White Paper, Exp. 3(3), 6–20

(2003)

68. JADE (Java Agent DEvelopment framework). http://jade.tilab.com/

http://jade.tilab.com/

References 23

69. Barbucha, D., I. Czarnowski, P. Jędrzejowicz, E. Ratajczak-Ropel, I. Wierzbowska: JABAT

— an implementation of the A-Team concept. In: Proceedings of the International Multi-

conference on Computer Science and Information Technology, vol. 1, pp. 235–241. Polskie

Towarzystwo Informatyczne, Wisła (2006)

70. Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: Parallel

cooperating A-Teams, In: P.Jędrzejowicz et al. (eds.) Computational Collective Intelligence.

Technologies and Applications. Lecture Notes in Artificial Intelligence, vol. 6923, pp. 322–

331. Springer, Heidelberg (2011)

71. Jędrzejowicz, P., Ratajczak-Ropel, E.: A-Team for solving the resource availability cost prob-

lem. In: Nguyen, N.T., Hoang, K., Jędrzejowicz, P. (eds.) Computational Collective Intelli-

gence Technologies and Applications. Lecture Notes in Artificial Intelligence, vol. 7654, pp.

443–452 (2012)

72. Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: Team of

A-Teams — A study of the cooperation between program agents solving difficult optimization

problems, Agent-Based Optimization. In: Czarnowski, I., Jędrzejowicz, P., Kacprzyk, J. (eds)

Studies in Computational Intelligence, vol. 456, pp. 123–142. Springer, Heidelberg (2013)

73. Jędrzejowicz, P., Ratajczak-Ropel, E.: Reinforcement learning strategy for solving the

resource-constrained project scheduling problem by a team of A-Teams. In: Nguyen, N.T.,

Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) Intelligent Information and Database

Systems. Lecture Notes in Artificial Intelligence, vol. 8398, pp. 197–206 (2014)

74. Ren, H., Wang, Y.: A survey of multi-agent methods for solving resource constrained project

scheduling problems. In: Proceedings of International Conference on Management and Service

Science, vol. 2011, pp. 1–4 (2011)

75. Jędrzejowicz, P., Ratajczak-Ropel, E.: Agent-Based Approach to Solving the Resource Con-

strained Project Scheduling Problem. Lecture Notes in Computer Science, vol. 4431, pp. 480–

487 (2007)

76. Jędrzejowicz, P., Ratajczak-Ropel, E.: New generation A-Team for solving the resource con-

strained project scheduling. In: Proceedings of the Eleventh International Workshop on Project

Management and Scheduling, pp. 156–159. Istanbul (2008)

77. Jędrzejowicz, P., Ratajczak-Ropel, E.: Solving the RCPSP/max problem by the team of agents.

In: Hakansson, A., et al. (eds.) Agent and Multi-Agent Systems: Technologies an Applications.

Lecture Notes in Artificial Intelligence, vol. 5559, pp. 734–743 (2009)

78. Jędrzejowicz, P., Ratajczak-Ropel, E.: Team of A-Teams for solving the resource-constrained

project scheduling problem. In: Grana, M., Toro, C., Posada, J., Howlett, R., Lakhmi, C.J.

(eds.) Advances in Knowledge Based and Intelligent Information and Engineering Systems.

Frontiers in Artificial Intelligence and Applications, vol. 243, pp. 1201–1210, (2012)

79. Jędrzejowicz, P., Ratajczak-Ropel, E.: Reinforcement learning strategies for A-Team solving

the resource-constrained project scheduling problem. Neurocomputing 146, 301–307 (2014)

80. Jędrzejowicz, P., Ratajczak-Ropel, E.: Reinforcement Learning Strategy for Solving the

MRCPSP by a Team of Agents. In: Neves-Silva, R., Jain, L.C., Howlett, R.J. (eds.) Intelli-

gent Decision Technologies, Proceedings of the 7th KES International Conference on Intelli-

gent Decision Technologies (KES-IDT 2015), pp. 537–548. Springer International Publishing,

Switzerland (2015)

81. Jędrzejowicz, P., Ratajczak-Ropel, E.: PLA Based Strategy for Solving RCPSP by a Team of

Agents. J. Univ. Comput. Sci. 22(6), 856–873 (2016)

82. Jędrzejowicz P., Ratajczak-Ropel E.: Dynamic cooperative interaction strategy for solving

RCPSP by a team of agents. In: Nguyen N.T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.)

Computational Collective Intelligence. Lecture Notes in Artificial Intelligence, vol. 9875, pp.

454–463 (2016)

Chapter 3
Project Scheduling Models

Project scheduling problems (PSP) could be defined as allocating scarce resources

over time to perform a given set of activities. The resources are arbitrary although

constituting a necessary means which activities compete for. Notion of the activ-

ity can have a variety of interpretations. Thus defined project scheduling problems

appear in a large spectrum of real-world situations, and, in consequence, have been

intensively studied by specialists in management science, operations research and

computer science.

In this chapter the brief history of the deterministic project scheduling mod-

els (formulations) is presented in Sect. 3.1. Section 3.2 review basic models for the

Resource-Constrained Project Scheduling Problem (RCPSP) as well as their classi-

fication. Finally, in Sect. 3.3 some special cases of the RCPSP are mentioned as a

short review of its big family. Examples of most commonly used objective functions

are presented in Sect. 3.4.

3.1 Historical Review
The first models and methods for deterministic project scheduling date back to the

1950s when the well known network-based models like critical path method or

project evaluation and review technique were formulated and developed.

Critical Path Method (CPM) [1, 2] is based on mathematical model which deter-

mines the sequence of project activities for projects with ordinary precedence con-

straints. In Metra Potential Method (MPM) [3] generalized precedence constraints

are considered. Project Evaluation and Review Technique (PERT) [4] focuses on

creating and controlling project schedules in stochastic environments using deter-

ministic or probabilistic activity processing times. Although the network-based mod-

els have proved useful in handling scheduling for various projects, they simplified

the problems by assuming that the availability of resources is not limited, which is

© Springer International Publishing AG 2018

E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,

Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_3

25

26 3 Project Scheduling Models

unrealistic in majority of practical situations. Beginning in the late 1960s, the mod-

els were extended by additionally considering scarcity of resources, see for exam-

ple [5, 6]. The impact of limited resources on project characteristics started to be

taken into account in such models as CPM/MCX (Minimum Cost eXpediting) or

CPM/resources. Graphical Evaluation and Review Technique (GERT) [7], in turn,

allows loops between activities and additionally takes probabilistic precedence rela-

tions into account. These problems and models are usually referred to as the resource-

constrained.

Since then, interest and research efforts in the field of resource-constrained project

scheduling have increased, and many new models and methods have been developed.

Overviews of the advances in models and solution methods are given in the survey

papers of Icmeli et al. [8], Elmaghraby [9], Özdamar and Ulusoy [10], Herroelen et

al. [11], Brucker et al. [12], Kölisch and Padman [13], Dorndorf [14], Artigues et al.

[15] or Węglarz et al. [16].

3.2 Basic Models and Classifications Review

Most of the early studies on RCPSP relate to mathematical programming formulation

and its relaxation used in B&B (branch-and-bound) approaches [17, 18]. However,

solving the linear programming relaxation of any model of the RCPSP is too time

consuming, or just impossible, in practical applications [15]. The RCPSP can be

formulated as a mathematical programming model in several ways, depending on

the definition of the decision variables and constraints construction.

The main mathematical programming formulations and their relaxations pro-

posed for the classical RCPSP can be divided into two main classes [15]:

∙ sequence/order-based models,

∙ time-indexed/discrete-time integer linear programming models.

The first class concentrates on ordering, the sequence activities are processed one

after another. The second class concentrates on assigning resources to activities at

each point of time.

In the sequence based mathematical programming models scheduling can be

viewed as determining a sequence of activities satisfying the precedence constraints,

and then fixing the processing times of activities following such sequence and

respecting other possible constraints. In the time-indexed models problem formu-

lations are based on time discretization which naturally describe the usage of the

resources and the processing of the activities over time. In these models the fixed

planning horizon, denoted by H, is required. It means that all activities have to be

completed by time H.

In recent years different classifications for the RCPSP have been proposed and

used, and new models have appeared. Reviews and propositions of the new models

can be found for example in the papers of Koné et al. [19, 20], Artigues [21], and

Kopanos et al. [22].

3.2 Basic Models and Classifications Review 27

The RCPSP models are formulated as:

∙ Binary Integer Programming (BIP),

∙ Mixed Integer Programming (MIP),

∙ Mixed Integer Linear Programming (MILP).

In binary formulation, each variable can only take on the value of 0 or 1. In

the RCPSP binary variables are usually used to indicate whether one activity is

processed before the other or whether an activity finishes (or starts) at fixed time

point or not. In the MIP formulation some of the variables are real-valued and some

of the variables are integer-valued. When the objective function and constraints are

all linear, it is called MILP.

RCPSP models could be also classified as:

∙ Discrete-Time (DT),

∙ Continuous-Time (CT).

In DT models time-indexed binary decision variables are used. Hence, schedule

events can only take place at a certain predefined time points. In such models the

time horizon is divided in uniform time intervals. In CT models for the RCPSP,

binary variables indicate the processing sequence between pairs of activities, hence

rely on precedence-based decision variables. In such models schedule events can

occur at any time in the time horizon of interest. Time-indexed CT models can be

derived, if a variable time grid is used.

Several time-indexed DT BIP models were proposed for the RCPSP. One of the

first such model, where one linear constraint for each time period is formulated to

avoid resource conflicts, was proposed by Pritsker et al. [17] (see Sect. 4.1). It is

called basic discrete-time (DT) model. Very similar formulation, called disaggre-

gated discrete-time (DDT) formulation was proposed by Christofides et al. [23]. The

mainly difference is in the precedence constraints formulation.

Similar model, based on the notion of the feasible set of activities, was proposed

by Mingozzi et al. [24]. Additionally, they derived lower bounds from this formula-

tion by relaxing the non-preemption and the precedence constraints to disjunctions

and time-windows. The relaxation is applied to calculating lower bounds for different

scheduling problems.

Klein [25] adopted to the classical RCPSP a DT BIP formulation proposed for

preemptive version of the RCPSP by Kaplan [26], where a single type of binary

variables that specifies whether activity is active over time period or not was intro-

duced, as well as a simpler definition of the resource-constraints. Klein [25] proposed

two additional models for the RCPSP. The first is based on the definition of binary

variables which specify if an activity starts at the beginning of fixed time period or

earlier. In the second model a different range for the above mentioned binary vari-

ables and a new binary variables, that denote whether an activity is completed at the

end of fixed time period or earlier, were introduced.

Artigues et al. [27] proposed a formulation called Flow-based Continuous-Time

(FCT) model. It is based on the notation of resource flow, where three types of vari-

ables are used: starting time variables for each activity, sequential binary variables

http://dx.doi.org/10.1007/978-3-319-62893-6_4

28 3 Project Scheduling Models

indicating whether one activity is processed before the other, and flow variables

denoting the quantity of resource that is transferred between activities.

The hybrid between a sequence-based model and Mingozzi’s relaxation mathe-

matical programming model was proposed by Carlier and Néron [28, 29].

Several CT MIP models were proposed for the RCPSP. One of the first, based

on minimal forbidden (resource incompatible) sets and sequence of activities, was

proposed by Alvarez-Valdez and Tamarit [30]. These sets contain activities that have

no precedence relations between them and cannot be executed simultaneously due

to resource availability. It is a natural extension of the linear ordering approach for

disjunctive scheduling. In this model binary variables define the sequencing of activ-

ities, and integer variables represent the starting time of each activity.

Koné et al. in [19] proposed two event-based CT MIP models based on the con-

cept of event: the Start/End and On/Off formulation. In these models the decision

variables are indexed using event points (instead of time points) that correspond to

the start or end times of activities. The scheduling horizon is subdivided into inter-

vals of variable length. An event means the beginning of the interval when the activ-

ity starts. Each activity starts at a unique event and the starting time of the activity

equals the starting time of the assigned event. In the Start/End Event-based Model

(SEE) two sets of binary variables and two types of the continuous variables are used.

Binary variables describe the activity starts and ends at any event point. Continuous

variables represent the date of event and the quantity of resources required imme-

diately after the event. In the On/Off Event-based Model (OOE) only one type of

binary variable per event, and one type of continuous variable are used. The binary

variable denotes whether the activity starts processing at the event point or it is still

being processed immediately after this event. The continuous variable represents, as

in SEE, the date of event. In this model, the number of events is exactly equal to the

number of activities.

Bianco and Caramia [31] proposed a DT MIP formulation based on the definition

of one type of the continuous variable that represents the percentage of the activity

that is executed at each time interval. Two types of binary variables represent whether

the activity starts and ends at the time interval.

Recently, Kyriakidis et al. [32] proposed a time-indexed CT MIP formulation for

single- and multi-mode RCPSP. It is based on the Resource-Task Network (RTN)

representation. RTN is a network representation technique, used in process schedul-

ing problems, based on the continuous time models.

Moreover, Kopanos et al. [22] proposed two DT MILP models and two CT MILP

models. The DT models are based on the definition of binary variables that describe

the processing state of every activity between two consecutive time points, The

continuous-time models are based on the concept of overlapping of activities, and

the definition of a number of newly introduced sets.

The other classical representation, as well as method of solving the RCPSP is

based on the constraint programming. The classical RCPSP was formulated as a

constraint-based scheduling approach, using the Optimization Programming Lan-

guage (OPL), by Van Hentenryck [33].

3.3 Generalizations and Special Cases of the RCPSP 29

3.3 Generalizations and Special Cases of the RCPSP

While the RCPSP is already a powerful model, it does not cover all situations that

occur in practice. On the other hand, RCPSP model is commonly used in a variety

of engineering fields. Hence, many scheduling problems can be formulated as the

special case of the RCPSP, such as job-shop scheduling, flow-shop scheduling, open-

shop scheduling and project scheduling [34]. Therefore, many more general project

scheduling models have been developed together with extensions and variants of

the RCPSP such as well known MRCPSP, MSPSP, RCPSP/max, MRCPSP/max, or

MRCMPSP.

The MRCPSP (Multi-mode Resource-Constrained Project Scheduling Problem)

is a generalization of the RCPSP where several modes of execution may exist for any

activity of the project. The problem is considered in Sect. 5. In this model also the

renewable and non-renewable resources are considered.

An example of special case of the MRCPSP is the Discrete Time/Resource Trade-

off Problem (DTRTP) where only one single renewable resource with fixed capacity

is given (e.g., modeling available staff).

The MSPSP (Multi-Skill Project Scheduling Problem) was proposed by Néron

and Baptista [35] to model project scheduling problems in IT companies. In this

extension, resources correspond to persons that master a subset of skills required by

the different activities of the project.

The RCPSP/max (RCPSP with minimum and maximum time lags), known also

in the literature as the RCPSP with time windows or RCPSP with Generalized Prece-

dence Relations (RCPSP-GPR), involves generalized precedence relations (tempo-

ral constraints) of the start-to-start type where the minimum and maximum time

lags between activities are considered. The MRCPSP/max is generalization of the

RCPSP/max, MRCPSP and RCPSP.

The MRCMPSP (Multi-mode Resource-Constrained Multi-Project Scheduling

Problem) is a generalization of RCPSP and MRCPSP where additionally multi-

ple projects are considered [36]. The MRCMPSP consists of a number of projects,

defined as collections of activities performed in one of several ways under given

precedence relationships and limited amounts of various types of resources.

In the RCPSPVRL (Resource-Constrained Project Scheduling Problem with

Varying Resource Levels) resources of limited availability but varying predeter-

mined levels are used. In this problem project activities are not assumed to have

constant resources throughout the entire project duration. In RCPSPVRL, resources

are not constant throughout the entire project duration. The total project duration

is divided into different time periods. Within a particular time period quantity of

resources can vary in various time periods.

http://dx.doi.org/10.1007/978-3-319-62893-6_5

30 3 Project Scheduling Models

3.4 Objective Functions

The objective of the basic PSP model is time minimization, however the resource,

cost or quality related objectives are also commonly used, especially in practical

applications. For example: the resource-based objective functions are considered in

the area of resource investment problems (RIP), resource leveling problems (RLP)

and time/resource trade-off problem (TRTP); the cost-based objective functions in

the area of time/cost trade-off problems (TCTP) and payment scheduling problems

(PSP).

In this part of the book the total length of the schedule minimization is considered,

which is the most commonly used objective function in the project scheduling. The

total length of the schedule is also called project duration, project complexion time,

or makespan.

The other commonly used objective functions include, for example:

∙ total flow time,

∙ weighted (total) flow time,

∙ maximum lateness,

∙ total tardiness,

∙ total weighted tardiness,

∙ number of late activities,

∙ weighted number of late activities,

∙ net present value (NPV).

In case of optimizing one criterion only the single objective optimization prob-

lems are considered. If there are more than one criterion which must be treated simul-

taneously, the multiple objective optimization problems must be taken into account.

The models for multiple objective project scheduling were considered, among oth-

ers, by Davis [37] and Ishii [38].

References

1. Kelley, J.E., Jr., Walker, M.R.: Critical path planning and scheduling. In: Proceedings of the

Eastern Joint Computer Conference, pp. 160–173, Boston, MA (1959)

2. Kelly, J.: Critical path planning and scheduling: mathematical basis. Oper. Res. 9, 296–320

(1961)

3. Roy, B.: Graphes et Ordonnancement. Revue Française de Recherche Opérationelle, pp. 323–

333 (1962)

4. Malcolm, D., Roseboom, J., Clark, C., Fazar, W.: Applications of a technique for research and

development program evaluation. Oper. Res. 7, 646–669 (1959)

5. Wiest, J.D.: Some properties of schedules for large projects with limited resources. Oper. Res.

12, 395–418 (1964)

6. Davis, E.W.: Resource allocation in project network models — a survey. J. Ind. Eng. 17(4),

177–188 (1966)

7. Pritsker, A., Happ, W.W.: GERT: Graphical evaluation and review technique — Part I: Funda-

mentals. J. Ind. Eng. 17, 267–274 (1966)

References 31

8. Icmeli, O., Erenguc, S.S., Zappe, C.J.: Project scheduling problems: a survey. Int. J. Oper. Prod.

Manag. 13(11), 80–91 (1993)

9. Elmaghraby, S.E.: Activity nets: a guided tour through some recent developments. Eur. J. Oper.

Res. 82(3), 383–408 (1995)

10. Özdamar, L., Ulusoy, G.: A survey on the resource-constrained project scheduling problem.

IIE Trans. 27(5), 574–586 (1995)

11. Herroelen, W.S., De Reyck, B., Demeulemeester, E.L.: Resource-constrained project schedul-

ing: a survey of recent developments. Comput. Oper. Res. 25(4), 279–302 (1998)

12. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project

scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112, 3–41 (1999)

13. Kölisch, R., Padman, R.: An integrated survey of deterministic project scheduling. OMEGA

Int. J. Manag. Sci. 29(3), 249–272 (2001)

14. Dorndorf., U.: Project Scheduling with Time Windows: From Theory to Applications. Physica-

Verlag (2002)

15. Artigues, C., Demassey, S., Neron, E.: Resource-Constrained Project Scheduling: Models,

Algorithms, Extensions and Applications. In: Control Systems, Robotics and Manufacturing

Series. ISTE/Wiley, (2008)

16. Węglarz, J., Józefowska, J., Mika, M., Waligóra, G.: Project scheduling with finite or infinite

number of activity processing modes — a survey. Eur. J. Oper. Res. 208, 177–205 (2011)

17. Pritsker, A.A.B., Watters, L.J., Wolfe, P.M.: Multi-project scheduling with limited resources:

a zero-one programming approach. Manag. Sci. 16(1), 93–108 (1969)

18. Balas, E.: Project scheduling with resource constraints. In: Beale, E.M.L. (ed.) Applications of

Mathematical Programming Techniques, pp. 187–200. American Elsevier, New York (1970)

19. Koné, O., Artigues, C., Lopez, P., Mongeau, M.: Event-based MILP models for resource-

constrained project scheduling problems. Comput. Oper. Res. 38(1), 3–13 (2011)

20. Koné, O., Artigues, C., Lopez, P., Mongeau, M.: Comparison of mixed integer linear program-

ming models for the resource-constrained project scheduling problem with consumption and

production of resources. Flex. Serv. Manuf. J. 25(1–2), 24–47 (2013)

21. Artigues, C.: A note on time-indexed formulations for the resource-constrained project

scheduling problem. Rapport LAAS n 13206 (2013)

22. Kopanos, G.M., Kyriakidis, T.S., Georgiadis, M.C.: New continuous-time and discrete-time

mathematical formulations for resource-constrained project scheduling problems. Comput.

Chem. Eng. 68, 96–106 (2014)

23. Christofides, N., Alvarez-Valdes, R., Tamarit, J.M.: Project scheduling with resource con-

straints: a branch and bound approach. Eur. J. Oper. Res. 29, 262–273 (1987)

24. Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L.: An exact algorithm for project

scheduling with resource constraints based on a new mathematical formulation. Manag. Sci.

44(5), 714–729 (1998)

25. Klein, R.: Scheduling of Resource-Constrained Projects. Kluwer Academic Publishers, Boston

(2000)

26. Kaplan, L.A.: Resource-constrained project scheduling with preemption of jobs. Ph.D. thesis,

University of Michigan (1988)

27. Artigues, C., Michelon, P., Reusser, S.: Insertion techniques for static and dynamic resource-

constrained project scheduling. Eur. J. Oper. Res. 149, 249–267 (2003)

28. Carlier, J., Néron, E.: On linear lower bounds for the resource constrained project scheduling

problem. Eur. J. Oper. Res. 149, 314–324 (2003)

29. Carlier, J., Néron, E.: Computing redundant resources for the resource constrained project

scheduling problem. Eur. J. Oper. Res. 176, 1452–1463 (2007)

30. Alvarez-Valdés, R., Tamarit, J.M.: The project scheduling polyhedron: dimension, facets and

lifting theorems. Eur. J. Oper. Res. 67(2), 204–220 (1993)

31. Bianco, L., Caramia, M.: A new formulation for the project scheduling problem under limited

resources. Flex. Serv. Manuf. J. 25(1–2), 6–24 (2013)

32. Kyriakidis, T.S., Kopanos, G.M., Georgiadis, M.C.: MILP formulations for single- and multi-

mode resource-constrained project scheduling problems. Comput. Chem. Eng. 36, 369–385

(2012)

32 3 Project Scheduling Models

33. Hentenryck Van, P.: The OPL Optimization Programming Language. MIT Press (1999)

34. Leung, J.Y.: Handbook of Scheduling: Algorithms, Models, and Performance Analysis. In:

Computer and Information Science Series. A CRC Press Company, Chapman & Hall/CRC

(2004)

35. Néron, E., Baptista, D.: Heuristics for the multi-skill project scheduling problem. In: Interna-

tional Symposium on Combinatorial Optimization (CO’2002). France, Paris (2002)

36. Tseng, C.-C.: Two heuristic algorithms for a multi-mode resource-constrained multi-project

scheduling problem. J. Sci. Eng. Technol. 4(2), 63–74 (2008)

37. Davis, K.R.: Resource constrained project scheduling with multiple objectives: a decision sup-

port approach. Comput. Oper. Res. 19(7), 657–669 (1992)

38. Ishii, H.: Multiobjective Scheduling Problems. Lect. Notes Econ. Math. Syst. 405, 386–391

(1994)

Chapter 4
Resource-Constrained Project Scheduling

The first part of this chapter presents Resource-Constrained Project Scheduling Prob-

lem (RCPSP) formulations and notations (Sect. 4.1). It also provides an overview of

the best methods proposed so far for solving this problem, including a set of relevant

bibliographic references in Sect. 4.2.

The second part of this chapter in Sects. 4.3 and 4.4 provides an overview of agent-

based approaches suggested for solving RCPSP. This part includes methods, based

on the A-Team approach, proposed by the author. Finally, in Sect. 4.4.7 comparison

of results is presented and some concluding remarks are formulated.

4.1 Problem Formulation

The Resource-Constrained Project Scheduling Problem (RCPSP) is a classical dis-

crete problem, i.e. the planning horizon is divided into a discrete number of time

periods with the discrete activity durations and resource units.

In the RCPSP formulation an abstract project is considered. It consists of the

set of n activities, where each activity has to be processed without interruption to

complete the project. The additional dummy activities 0 and n + 1 represent the

beginning and the end of the project. The duration of an activity j, j = 0,… , n + 1 is

denoted by dj where d0 = dn+1 = 0. There is the set R of r renewable resource types.

The availability of each resource type k in each time period is rk units, k = 1,… , r.
Each activity j requires rjk units of resource k during each period of its duration,

where r0k = rn+1k = 0, k = 1,… , r. All parameters are non-negative integers. There

are precedence relations of the finish-start type with a zero parameter value (i.e.

FS = 0) defined between the activities. In other words activity i precedes activity j
if j cannot start until i has been completed.

The structure of a project can be represented by the Activity On Node (AON) net-

work G = (V ,E), where V denotes the set of activities and E is the set of precedence

relationships between these activities. Sj (Pj) is the set of successors (predecessors)

© Springer International Publishing AG 2018

E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,

Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_4

33

34 4 Resource-Constrained Project Scheduling

of activity j, j = 0,… , n + 1. It is further assumed that 0 ∈ Pj, j = 1,… , n + 1, and

n + 1 ∈ Sj , j = 0,… , n.

The objective is to find a schedule S of activities starting times [s0,… , sn+1],

where s0 = 0 and the precedence and resource-constraints are satisfied, such that the

project complexion time (schedule duration, makespan) CT(S) = sn+1 is minimized.

The RCPSP may be formulated as the mathematical, or more precisely the integer

programming problem. The formulation was introduced by Pritsker et al. in [1]. The

0 − 1 decision variable xjt = 1 if activity j is assigned a completion time at the end

of period t, otherwise, xjt = 0. With each activity j its earliest and latest finish time

is associated, respectively EFj and LFj, calculated as by Kelley and Walker in [2].

The value of LFn+1 is set equal to the scheduling horizon H. The horizon H never

exceeds the sum of all activity durations.

The following formulas (4.1)–(4.5) define the problem:

min

LFn+1∑

t=EFn+1

txn+1,t (4.1)

LFj∑

t=EFj

xjt = 1, for j = 0,… , n + 1 (4.2)

LFi∑

t=EFi

txit ≤
LFj∑

t=EFj

txjt − dj, for all (i, j) ∈ P (4.3)

n∑

j=1

min{t+dj−1,LFj}∑

q=max{t,EFj}
rjkxjq ≤ Rk, for k = 1,…R, t = 1,…H (4.4)

xjt ∈ {0, 1}, for i = 0,… , n + 1, t = EFj,… ,LFi (4.5)

Constraints (4.2) ensure that each activity is completed exactly once. Precedence

constraints are represented by inequalities (4.3).P denotes the set of all pairs of activ-

ities (i, j) such that i directly precedes j. Constraints (4.4) guarantee that no more than

the available number of units of each resource is required in any time period. Con-

straints (4.5) means that we consider binary decision variables. The solution of the

problem (4.1)–(4.5) is an optimal schedule represent by a list of activity completion

times.

The RCPSP, as a generalization of the classical job shop scheduling problem,

belongs to the class of strongly NP-hard optimization problems (see Błażewicz et

al. [3]). The considered problem class is denoted as PS|prec|Cmax according to the

classification of Brucker et al. [4] or it is denoted as m, 1|cpm|Cmax according to the

classification scheme of Demeulemeester and Herroelen [5].

4.1 Problem Formulation 35

The project instance of RCPSP is usually represented by an Activity On Node

(AON) network. A schedule is defined by the sequence of activity start (completion)

times. Sequences of activities are build using different priority rules, e.g.:

∙ shortest duration first/Shortest Processing Time first (SPT),

∙ longest duration first/Longest Processing Time first (LPT),

∙ Earliest Start Time first (EST),

∙ Earliest Finish Time first (EFT),

∙ Latest Start Time last (LST),

∙ Latest Finish Time last (LFT),

∙ Earlier Due Dates (EDD).

To generate a schedule from the sequence, the so-called Schedule Generation

Scheme (SGS) is used. There are three well known SGS: serial, parallel and com-

bined. There are three methods of placing activities in the schedule: forward, back-

ward and from both directions called forward-backward. To improve a solution after

applying the backward scheduling, Local Left Shift (LLS) procedure is usually used.

4.2 State of the Art Review

The RCPSP has been analyzed from over 40 years and attracted a lot of attention due

to its practical applications. The RCPSP models form actually a big family, most of

which belong to the NP-hard class of combinatorial optimization problems.

In this section a short review of the state of the art with respect to the classical

RCPSP formulated in Sect. 4.1 is presented. Methods for solving RCPSP are usually

divided into three groups: exact, heuristic and metaheuristics.

Surveys of different approaches, computational results obtained by the best meth-

ods and their comparisons may be found in several papers. Icmeli et al. in [6] present

a survey of project scheduling problems since 1973. It includes the work done on

RCPSP, Time/Cost Trade Off (TCTO) problem and Payment Scheduling Problem

as well as their combinations. Elmaghraby in [7] reviews the subject of project rep-

resentation as activity networks. Özdamar et al. in [8] present the research on the

RCPSP classified according to the specified objectives and constraints. A compre-

hensive survey of the RCPSP and its extensions using branch-and-bound procedures

is presented by Herroelen et al. in [9]. Brucker et al. in [4] provide a classification

scheme, propose a unifying notation and the review of exact and heuristic algorithms

for RCPSP, MRCPSP, TCTO, and RCPSP/max problems with other objectives than

makespan minimization and, for problems with stochastic activity durations. One of

the most interesting reviews was offered by Hartmann and Kölisch in [10] and later

updated in [11]. Authors consider heuristic algorithms for the RCPSP, summarize

the basic components of heuristic approaches and discuss features of good heuris-

tics based on the computational experiment results. They analyze the behavior of the

heuristics with respect to their components such as priority rules and metaheuristic

strategy and examine the impact of problem characteristics such as project size and

36 4 Resource-Constrained Project Scheduling

resource scarceness on the performance. In [12] Kölisch and Padman reviewed a vast

literature in all areas of project scheduling and management with a perspective that

integrates models, data, and optimal and heuristic algorithms for the major classes

of project scheduling problems. The state of the art reviews with respect to solving

numerous project scheduling problems and the following classification scheme was

proposed by Demeulemeester and Herroelen in [5]. A recent literature review on

project scheduling problems and variants was provided by Hartmann and Briskorn

[13]. Agarwal et al. [14] reviewed various metaheuristic approaches to the RCPSP.

Reviews of the RCPSP and its extensions, as well as solution methods, can be also

found in [14–19].

Exact methods applied to the RCPSP can be classified into mathematical pro-

gramming i.e. zero-one programming and implicit enumeration including dynamic

programming and branch-and-bound (B&B). Examples of research involving the use

of mathematical programming can be found in the papers of Bowman [20], Brand et

al. [21], Pritsker et al. [1], Patterson and Roth [22], Decro et al. [23], and Icmeli and

Rom [24]. Solutions based on dynamic programming were proposed, for example

by Carruthers and Battersby [25] and Petroviç [26]. Branch-and-bound algorithms

for the RCPSP were developed, among others, by: Johnson [27], Schrage [28], Balas

[29], Davis and Heidorn [30], Stinson et al. [31], Talbot and Patterson [32], Raderma-

cher [33], Christofides et al. [34], Bartusch et al. [35], Bell and Park [36], Demeule-

meester and Herroelen [37, 38], Carlier and Néron [39], Brucker et al. [40], Mingozzi

et al. [41], or Dorndorf et al. [42].

Larger size and more complex cases of the RCPSP which, in fact, are encountered

in the real life, can not, as a rule, be solved in a reasonable time using exact meth-

ods since the RCPSP is NP-hard [3, 13]. Practical solutions for such cases require

specialized heuristics or metaheuristics.

Studies on heuristics for solving the RCPSP date back to 1963 when Kelley [43]

introduced a Schedule Generation Schema (SGS). Schedule generation schemes (ser-

ial, parallel or combined) together with priority rules are the core of most heuristic

solution procedures for the RCPSP. Priority rules themselves are used in order to

select an activity from the activity set. Priority-rule based heuristics combine one or

more priority rules and SGS in order to construct one or more schedules [10]. If only

one schedule is generated, the approach is called a single pass method, and if more

then one schedule is generated, it is called a multi-pass or X-pass method [10]. There

are a lot of research on priority single-pass methods for the RCPSP, for example:

Davis and Patterson [44], Cooper [45, 46], Alvarez-Valdes and Tamarit [15], Boctor

[47], and Özdamar and Ulusoy [8, 48]. Multi-pass methods include multi-priority

rule methods and sampling methods. Multi-priority rule methods combine the SGS

with a different priority rule at each iteration [47, 49, 50]. Sampling methods use

one SGS and one priority rule to obtain the first schedule. Different schedules are

obtained from randomized activity selection [15, 16, 45].

Many metaheuristic methods have been applied to solve the RCPSP. The most

commonly used are: genetic algorithms (GA), simulated annealing (SA), tabu search

(TS), particle swarm optimization (PSO) and ant colony optimization (ACO), as

well as non-standard methods combining different approaches. Several efficient

4.2 State of the Art Review 37

approaches are based on using genetic algorithms, as for example: Leon and Ram-

mamoorthy [51], Alcaraz et al. [52, 53], Hartmann [54, 55], Coelho and Tavares [56]

or Debels and Vanhoucke [57]. Hybrid GA and other population-based approaches

were proposed by Valls et al. in [58, 59]. Agarwal et al. [14, 60] proposed hybrid

of genetic algorithm (GA) and neural-network (NN) algorithm as NeuroGentic

approach. TS algorithms developed, among others, Thomas and Salhi [50], Nonobe

and Ibaraki [61] and Artigues et al. [62]. Simulated annealing (SA) based approaches

were proposed by Boctor [63], Cho and Kim [64], Bouleimen and Lecocq [65] or

Valls et al. [66]. Approaches based on particle swarm optimization (PSO) were devel-

oped by Zhang et al. [67] or Chen et al. [68]. The first applications of ACO to the

RCPSP is credited to Merkle et al. [69] and Herbots et al. [70]. Hybrid metaheuristic

that combines ACO, GA and local search strategy was proposed by Tseng and Chen

[71]. Artificial bee colony (ABC) based approaches were suggested by Akbari et al.

[72], Ziaratia et al. [73] or Jia and Seo [74]. Evolutionary algorithm which combines

GA, path relinking (PR) and TS was due to Kochetov and Stolyar [75]. Debels et al.

[76] combined elements from scatter search (SS), a population-based evolutionary

search method and electromagnetism metaheuristic.

Due to the fact that the RCPSP is one of the most intractable and widely researched

problem among classic operations research problems, it has always attracted new

algorithms and innovative techniques. Among them, during recent years, notable

successes can be attributed to swarm optimization, population based and hybrid

methods, as well as agent based approaches. Paraskevopoulos et al. in [77] pro-

posed an event list-based evolutionary algorithm. Wang and Fang [78] proposed

hybrid estimation of distribution algorithm for the RCPSP. In [79] the same authors

described heuristic based on Shuffled Frog-Leaping Algorithm (SFLA) and they pre-

sented a speedup method for evaluating new solutions based on some theoretical

analysis. Yannibelli and Amandi in [80] proposed a hybrid method by integrating the

SA into EA. Evolutionary programming based approaches were proposed by Sebt et

al. [81]. Zamani in [82] proposed a competitive GA with a magnet-based crossover

operator. Fahmy et al. in [83] proposed PSO with stacking justification for solving

the RCPSP.

In the above discussed approaches eventual progress in the use of optimal, heuris-

tic and meta-heuristic methods for the RCPSP has been validated in most cases using

two standard problem sets: the Patterson [84] data set and the data set generated

by Kölisch et al. [85]. Both benchmark data sets are available in PSPLIB. On the

other hand many methods are tested on different benchmark datasets using different

stopping criteria. Hence, a comparison between these procedures is, in many cases,

difficult.

4.3 Agent-Based Approaches to Solving RCPSP

A few MAS implementations have been proposed for the single-mode Resource-

Constrained Project Scheduling Problem (RCPSP). The short survey of some

approaches can be found in [86] including methods for solving the classical RCPSP,

38 4 Resource-Constrained Project Scheduling

dynamic, distributed, multi-mode and multi-project problems. Additionally, the

approaches for the MRCPSP, described in Sect. 5.3, may be used for the RCPSP

as well.

Agent-based approaches to the classical RCPSP are described in the following

part of this section.

Shu-Guang et al. [87] proposed the multiple-agent system based on general equi-

librium market mechanism to solve the RCPSP and verified it experimentally. In

their approach the MAS is combined with distributed decision making method to

handle the distributed and dynamic nature of the project scheduling problems. It is

supposed to achieve market equilibrium and resource allocation via bidding between

activity agents and resource agents.

Wauters et al. [88, 89] proposed a network of distributed reinforcement learning

agents for the MRCPSP and tested it for the RCPSP using test set j120 from PSPLIB

[90, 91] (see Sect. 4.4.1), containing 480 instances of 120 activities. The approach is

described in Sect. 5.3. The computational experiments show that the results are com-

parable with the best results known from the literature and the approach proposed

for the MRCPSP is also a useful tool for solving instances of the RCPSP.

Horenburg et al. [92] presented the MAS for the classical RCPSP with agents

for each resource and process. It is an enhancement of the Knotts et al. [17] agent-

based scheduling method for the MRCPSP described in Sect. 5.3. In the approach

both process agents and resource agents are autonomous and participate in the deci-

sion making. Each process agent represents an activity and uses information about

the activity and information from the system to manipulate its state. Five stages for

the process agents are considered: blocked, admitted, accepted, active, and complete.

Resource agents are able to measure their qualification for solving the corresponding

task by estimating values of the utility functions and variables. Three stages for solv-

ing them are considered: free, active and reserved. Agents which satisfy the specific

requirements can negotiate using the central blackboard. Process agents request pro-

posals on the blackboard and resource agents offer their renewable or non-renewable

resources. Specific communication protocols have been implemented in all agents as

well as in the blackboard. Additionally, to improve the quality of computed results

the capital of individual process agent is calculated. This capital decides on the pri-

oritization during bidding procedures.

The multi-agent system proposed by Horenburg et al. [92] was modeled in

discrete-event-simulation (DES) and evaluated experimentally using the RCPSP

instances from PSPLIB including projects with 30 and 120 activities (j30 and j120).

The results are compared with the constrained-based method using Monte-Carlo-

simulation (MCS). The agent-based approach has proven to be the better one.

Zheng and Wang in [93] proposed the Multi-Agent Optimization Algorithm

(MAOA) for solving the RCPSP. The proposed algorithm uses multiple agents work-

ing in a grouped organization environment. Each agent represents a feasible solution.

Each group consists of the same number of agents. The best agent in the group is

elected as the leader. To share information between groups the second best agent in

each group (active agent) is exchanged with the worst agent in the group with the

best leader (elite group).

http://dx.doi.org/10.1007/978-3-319-62893-6_5
http://dx.doi.org/10.1007/978-3-319-62893-6_5
http://dx.doi.org/10.1007/978-3-319-62893-6_5

4.3 Agent-Based Approaches to Solving RCPSP 39

The evolution of agents in MAOA is achieved by using four main elements: social

behavior (global and local), autonomous behavior, self-learning, and environment

adjustment (migration among groups). Agents are initialized using the regret-based

biased random sample method with the LFT priority rule [54] and serial SGS. After

initialization they are divided into fixed number of groups. Social behavior i.e. coor-

dination and cooperation between agents include global social behavior where the

leader of the elite group cooperates with all the leaders in other groups, and local

social behavior where the leader of each group interacts with other agents in the

same group. As a social global behavior the magnet-based crossover (MBCO) [82]

was used. As local social behavior the Resource-Based Crossover (RBCO) proposed

by Fang and Wang [79] was adopted. To realize the autonomous behavior each agent

exploits its neighborhood using permutation based swap (PBS) as a local search, and

then accepts the new neighbor with a better quality. Agents can be also improved by

learning from the acquired knowledge (self-learning). In MAOA for the best leader

the SGS forward-backward improvement was used. To share the information among

agents the environment is adjusted every 10 generations.

Authors investigated the key parameters of MAOA and performed computational

experiment using PSPLIB test sets of j30, j60 and j120. Comparisons of the results

with the 14 existing algorithms demonstrates the effectiveness of MAOA in solving

the RCPSP.

4.4 A-Teams Solving the RCPSP

In this section six variants of A-Teams implemented for solving the RCPSP are pre-

sented. All A-Teams have been constructed using JABAT environment. For each A-

Team variant the computational experiment has been carried out and its results have

been presented. In Sect. 4.4.1 the first two approaches with a single A-Teams using

the static cooperation strategy have been described. Details of the computational

experiments also described in this section are identical in all the discussed cases.

In Sect. 4.4.2 the essential modifications of the first approaches are indicated and

the algorithms used in the further A-Teams implementations are presented. Team

of A-Teams based approach where multiple A-Teams were used is presented in

Sect. 4.4.3. The next three subsections include descriptions of single A-Teams with

dynamic cooperation strategies based on: reinforcement learning (RL) in Sect. 4.4.4,

Population Learning in Sect. 4.4.5, and integration of the best rules from previous

approaches in Sect. 4.4.6. In each case the computational experiments results fol-

low. Finally, in Sect. 4.4.7 the summary of the proposed approaches are presented

including comparison of results with the best one known from the literature.

40 4 Resource-Constrained Project Scheduling

4.4.1 Single A-Teams with the Static Cooperation Strategies

The first attempt of using A-Team concept for solving the RCPSP dates back to

2007. The approach proposed in [94] includes implementation of classes represent-

ing the single mode RCPSP instances: smData and smTask, smSolution, smActiv-
ity, and smResource. The classes smData, smTask and smSolution are inherited

from the general classes available in JABAT Data, Task, and Solution, respectively.

The smData class identifies one test set from PSPLIB storing the text and val-

ues. In this class text processing functions are implemented that generate JABAT

data structures. The smTask identifies an instance, which attributes include a list of

activities [0,… , n + 1], and a list of available renewable resources. The smSolution
class describes a solution and includes the ordered list of activities (AL) and start-

ing times of the activities obtained from SGS, as well as processing functions, for

example moving activities, generating SGS or allocating resources. The remaining

classes represent the problem structures. The smResource class identifies renew-

able resources, storing the value representing a number of the resource units. The

smActivity identifies activity, which attributes include the activity number, a list of

available renewable resources required by the activity, and a list of predecessors and

successors.

Five optimization algorithms solving single mode RCPSP were implemented and

used as optimization agents. There are as follows:

∙ Local Search Algorithm (smLSA),

∙ Tabu Search Algorithm (smTSA),

∙ Crossover Algorithm (smCA),

∙ Minimal Critical Sets based Algorithm (smMCSA),

∙ Precedence Tree Algorithm (smPTA).

smLSA is a simple local search algorithm which finds the local optimum by mov-

ing each activity to all possible places in the solution. Only feasible solutions are

acceptable. The best solution found is remembered.

smTSA is a tabu search algorithm where the neighborhood of the initial solution

is searched by performing moves that are not tabu. In considered TSA the move rely

on two activities exchange. The selected moves are remembered on tabu list. The

best solution found is remembered.

smCA is based on the one-point crossover operator. The crossover operation is

applied on each pair of solutions from the population until the better solution will be

found or all crossing points will be tried unsuccessfully.

smMCSA is based on the approach proposed in [95]. The possible constraints are

detected based on Minimal Critical Sets (MCS) and adapting shaving method. Next,

the solution respecting constraints is created. The procedure is repeated for the fixed

number of iterations.

smPTA is based on the precedence tree approach proposed in [96]. It finds an

optimum solution by enumeration for a partition of the schedule consisting of some

activities. Next, it finds the solutions of the successive partitions shifted for a fixed

step. The best solution found is remembered.

4.4 A-Teams Solving the RCPSP 41

The optimization algorithms described above are used in the proposed A-Team

implementation. The following optimization agents derived from OptiAgent class

are used:

∙ OAsmLSA - implementing the Local Search Algorithm with simple shifting move

smLSA,

∙ OAsmTSA - implementing the Tabu Search Algorithm with exchange move

smTSA,

∙ OAsmCA - implementing the Crossover Algorithm smCA,

∙ OAsmMCSA - implementing the Minimal Critical Sets Algorithm smMCSA,

∙ OAsmPTA - implementing the Precedence Tree Algorithm smPTA.

All optimization agents (OptiAgents) work in parallel improving solutions from

their A-Team common memory managed by the SolutionManager. An individual

is represented as a schedule of activities S. The final solution is obtained from the

schedule by forward Schedule Generation Scheme (SGS) procedure (see Sect. 4.1).

In the above implementation the basic cooperation strategy for the RCPSP was

implemented and used according to the following rules:

∙ The initial population is generated randomly.

∙ The individuals from the population are chosen randomly and immediately send

to optimization agents,

∙ An improved solution replaces the worst one from the population,

∙ The computation for one problem instance in this approach is interrupted after

5 mins.

Another approach based on a similar basic cooperation strategy proposed in [97]

slightly differs with respect to membership in the set of optimization agents and

cooperation strategy elements. In the set of optimization agents instead of the least

effective OAsmMCSA the OAsmPRA is used.

smPRA is a path-relinking algorithm (PRA). For a pair of solutions from the

population a path between them is constructed. Next, the best of the feasible solutions

from the path is selected. To construct the path of solutions the activities are moved

to other possible places in the schedule, as in the case of smLSA. The path-relinking

algorithm smPRA is implemented in the optimization agent OAsmPRA.

Because the discussed algorithms have been undergoing several changes over var-

ious stages of development, final detailed versions used in the following computa-

tional experiment are described further on in Sect. 4.4.2.

A change in the cooperation strategy is that an improved solution replaces the

original one, instead of the worse one, from the population (common memory). In the

computational experiments presented in [97] the computation for a single problem

instance was interrupted after 50 solutions which have proven to be not better then

the best one stored in the common memory.

The first experiments have been performed for single A-Team with the static coop-

eration strategy (SC Strategy) described above. In the following part of this work

the SC Strategy using smLSA, smCA, smPTA, smTSA and smMCSA is called SC1

42 4 Resource-Constrained Project Scheduling

Fi
g.
4.
1

G
e
n
e
r
a
l

s
tr

u
c
tu

r
e

o
f

J
A

B
A

T
s
o
lv

in
g

th
e

R
C

P
S

P
u
s
in

g
SC

2
St
ra
te
gy

4.4 A-Teams Solving the RCPSP 43

Strategy and the SC Strategy using smLSA, smCA, smPTA, smTSA and smPRA
is called SC2 Strategy. The general structure of JABAT solving the RCPSP using

SC2 Strategy is shown in Fig. 4.1.

To evaluate the effectiveness of the above described A-Teams in solving the

RCPSP instances the computational experiments have been carried out. To assure

comparability of A-Teams performance all approaches to solving the RCPSP pre-

sented in Sect. 4.4 have been validated experimentally using benchmark instances

test sets of the RCPSP from PSPLIB. The following sm (single mode) test sets are

used: j30 (30 activities), j60, j90, and j120. Each of the first three sets includes 480

problem instances, while set j120 includes 600. The experiments involved compu-

tation with a fixed number of optimization agents, fixed population sizes, and fixed

stopping criteria.

During all experiments the following characteristics of the computational results

have been calculated and recorded: Mean Relative Error (Mean RE) and Maximal

Relative Error (Max RE) calculated as the deviation from the optimal (opt) solution

for j30 test set or from the best known (bk) solution for j60, j90, and j120 sets and

the Critical Path Lower Bound (CPLB), Mean Computation Time (Mean CT) which

has been needed to find the best solution and Mean Total Computation Time (Mean

TCT) which has been needed to stop all optimization agents and the whole system.

Minimal relative error has been found to be 0 in all cases. Each instance has been

solved five times and the results have been averaged over these solutions.

All experiments have been carried out using nodes of the cluster Holk of the

Tricity Academic Computer Network built of 256 Intel Itanium 2 Dual Core 1.4 GHz

with 12 MB L3 cache processors and with Mellanox InfiniBand interconnections

with 10 Gb/s bandwidth.

The results presented in this book are recalculated in respect of the number of

generated schedules (SGS procedure calls, see Sect. 4.1), which have been limited

to 5000. Some of the algorithms implementations have been modified and improved

in respect of the language structures.

The results obtained for the two first approaches to solve the RCPSP by the A-

Team implemented in JABAT are summarized in Tables 4.1 and 4.2. It can be seen

that the first approach is most effective for larger problems with 90 and 120 activities

but in the second one the computational time has been reduced significantly.

Table 4.1 Experiment results for the A-Team with SC1 Strategy solving the RCPSP

Number of

activities

Mean RE from

opt*/bk

solution [%]

Max RE from

opt*/bk

solution [%]

Mean RE

from

CPLB [%]

Max RE from

CPLB [%]

Mean

CT [s]

Mean

TCT [s]

30 0.46
∗

9.09
∗

13.99 120.83 88 127

60 0.76 8.86 11.54 112.99 98 142

90 1.58 16.85 11.25 98.31 88 119

120 2.89 28.09 33.21 201.01 105 150

44 4 Resource-Constrained Project Scheduling

Table 4.2 Experiment results for the A-Team with SC2 Strategy solving the RCPSP

Number of

activities

Mean RE from

opt*/bk

solution [%]

Max RE from

opt*/bk

solution [%]

Mean RE

from

CPLB [%]

Max RE from

CPLB [%]

Mean

CT [s]

Mean

TCT [s]

30 0.44
∗

22.22
∗

13.89 127.08 11 34

60 0.70 20.37 11.28 106.49 24 62

90 1.94 10.34 12.03 111.86 40 64

120 3.11 12.5 34.10 207.07 91 122

4.4.2 Algorithms Used in the Further A-Team Approaches

During the first experiments some problems and disadvantages of the environment,

strategies and optimization agents have been observed which results in a few modifi-

cations. In this section the algorithms used in all subsequent JABAT based A-Team

approaches are presented.

Observing the performance of the A-Team with SC Strategy it was easy to note

that optimization agents used occurred quite a burdening for the computation. Both,

the complexity of algorithms which results in the extended computation time and

the number of messages exchanged between agents and common memory signifi-

cantly influenced the obtained results. Thus, the number of agents as well as their

algorithms were modified.

The modified implementations of algorithms for the RCPSP arose from the

A-Team approaches proposed for the RCPSP/max developed from 2008 to 2011.

These algorithms are described in [98] for the RCPSP/max and in [99–101] for the

RCPSP.

To describe the algorithms and present their current versions in pseudocodes the

following auxiliary functions are used:

∙ minCT - requires two schedules (individuals) as arguments and returns the better

one with respect to the project complexion time (makespan) (Fig. 4.2);

∙ smMakeMove - moves the activity form one position in the schedule (activity list)

to the another position and returns the modified schedule as a result (Fig. 4.3);

∙ smReverseMove - reverses the move of the activity form one position to another

in the schedule and returns the previous schedule as a result (Fig. 4.4);

Fig. 4.2 Pseudocode of the minCT function

4.4 A-Teams Solving the RCPSP 45

Fig. 4.3 Pseudocode of the smMakeMove function

Fig. 4.4 Pseudocode of the smReverseMove function

Fig. 4.5 Pseudocode of the smMakeExchange function

Fig. 4.6 Pseudocode of the smReverseExchange function

∙ smMakeExchange - exchanges the activities form two given positions in the sched-

ule and returns the modified schedule as a result (Fig. 4.5);

∙ smReverseExchange - reverses the exchange of two activities from given positions

in the schedule and returns the previous schedule as a result (Fig. 4.6).

The pseudocodes of the optimization algorithms are presented in Figs. 4.7, 4.8,

4.9 and 4.10.

The smLSA is a local search algorithm which finds local optimum by moving

each activity to all possible places in the schedule (in smLSAm) or by exchanging

pairs of activities (in smLSAe). For each combination of activities the value of pos-

sible solution is calculated. The best schedule is remembered and finally returned.

The pseudocode of the smLSAm is shown in Fig. 4.7. The smLSAm algorithm has

46 4 Resource-Constrained Project Scheduling

Fig. 4.7 Pseudocode of the smLSAm algorithm

four parameters. The first, S denotes an initial schedule (individual). The second,

itNumber is the number of iterations for the algorithm. The last two, iStep and fStep
indicate the initial and final distance between activities under moving or exchange.

The pseudocode of the smLSAe algorithm differs mainly in using the smMakeEx-
change instead of smMakeMove and the smReverseExchange instead of smReverse-
Move function, hence it is not presented separately.

The smTSAe algorithm is an implementation of tabu search metaheuristic

[102–104]. It finds local optimum by exchanging each two activities in the schedule,

for which such exchange is possible. The best exchange move from the neighbor-

hood of the solution, which is not tabu, is chosen and performed. The pseudocode of

the smTSAe is shown in the Fig. 4.8. The algorithm smTSAe requires four parame-

ters. The first, S denotes an initial schedule (individual). The second, pi indicates the

activity position from which the exchange starts. The parameter maxItNWI denotes

a maximum number of iterations in which no improvement is found. The last, step
denotes the distance between activities under exchange. To exchange activities the

smMakeExchange and smReverseExchange functions are used in the smTSAe. In

smTSAm the simple shifting move, instead of exchange move, for the neighborhood

searching is used. Hence, the smMakeMove and smReverseMove function are used,

respectively.

The tabu list TabuList has been implemented to store the information of recent

moves which should not be repeated by a fixed number of iterations. For example:

∙ Setting the exchange move (pi, pj, n) as the tabu one prevents from repeating the

same exchange by n iterations. It blocks all moves that exchange activity from

position pi with activity from position pj for n iterations.

4.4 A-Teams Solving the RCPSP 47

Fig. 4.8 Pseudocode of the smTSAe algorithm

∙ Setting the exchange move (pi, null, ⌊n∕4⌋) as the tabu one blocks exchanges of

activity from position pi with any other activity for ⌊n∕4⌋ iterations.

The best schedule is remembered and finally returned.

The smCA is an algorithm based on the idea of the one point crossover operator.

For a pair of solutions S1 and S2 one point crossover is applied. The parameter step
determines the frequency the operation is performed. The best schedule is remem-

bered and finally returned. The pseudocode of the smCA is shown in Fig. 4.9.

The smPRA is an implementation of the path-relinking algorithm [105, 106].

For a pair of solutions a path between them is constructed. The solutions S1 and S2

48 4 Resource-Constrained Project Scheduling

Fig. 4.9 Pseudocode of the smCA algorithm

are required as the algorithm parameters. The path consists of schedules obtained

by carrying out a single shifting move from the preceding schedule. The move is

performed by smMakeMove function (see Fig. 4.3). For each schedule in the path

the value of the respective solution is checked. The best schedule is remembered and

finally returned. The pseudocode of the smPRA is shown in Fig. 4.10.

Four optimization algorithms originally proposed in [101] are used in all sub-

sequent A-Teams implementations described in this section. There are: smLSAm,

smTSAe, smCA, and smPRA (see Figs. 4.7, 4.8, 4.9 and 4.10). The following opti-

mization agents derived from OptiAgent class are used:

∙ OAsmLSAm - implementing the Local Search Algorithm with simple shifting

move smLSAm,

∙ OAsmTSAe - implementing the Tabu Search Algorithm with exchange move

smTSAe,

∙ OAsmCA - implementing the Crossover Algorithm smCA,

∙ OAsmPRA - implementing the Path Relinking Algorithm smPRA.

Similarly to the optimization algorithms and optimization agents the cooperation

strategy has been evolving during the research development. The modified cooper-

Fig. 4.10 Pseudocode of the smPRA algorithm

4.4 A-Teams Solving the RCPSP 49

ation strategy foundations arose from the A-Team approaches proposed for RCPSP

and RCPSP/max developed from 2007 to 2011. The details of the basic static coop-

eration strategy with blocking can be found in Sect. 4.4.4 and [101].

4.4.3 Randomized Team of A-Teams with Static
Cooperation Strategy

The idea of multiple A-Teams approach originated in [99]. In that paper the JABAT

Team of A-Teams (TA-Teams) approach for solving the RCPSP was proposed and

experimentally evaluated. Several modifications and improvements with respect to

optimization agents and strategies have been implemented within a dedicated TA-

Teams architecture and used to solve instances of the RCPSP problem. In the dis-

cussed approach more then one A-Team was employed resulting in several Solution-
Managers and several populations acting in parallel. Hence, computations involve a

number of optimization agents. As it was mention before increased number of solu-

tions and optimization agents increases the number of messages exchanged between

agents and common memory. In the agent-based environments the significant part of

computation time is used for agent communication which has an influence on both -

overall computation time and quality of the results.

The optimization/improvement algorithms are described in the previous section

and used to solve the RCPSP instances by Team of A-Teams. In this section the

implementation with eight A-Teams and randomized interaction strategy

is described.

The cooperation strategy within one A-Team managed by one SolutionManager
is based on the following rules:

∙ All individuals in the initial population of solutions are generated randomly and

stored in the common memory.

∙ Individuals which are to be improved are selected from the common memory ran-

domly and blocked, which means that once selected individual (or individuals)

cannot be selected again until all other individuals have been tried.

∙ Returning individual replaces the blocked one or the worse from the blocked ones.

If the returning individual is not better than the best one from the population by a

fixed number of iterations (iteration is understood as receiving improved individ-

ual from optimization agent) then the worst individual in the common memory is

replaced by a randomly generated one, representing a feasible solution.

∙ The computation time of a single A-Team is controlled by the no improvement

time gap set by the user. If in such time gap no improvement of the current best

solution has been achieved, the A-Team stops computations.

In case of the TA-Teams approach the interaction strategy describing interactions

between A-Teams is defined additionally. Interaction strategy controls the migration

of solutions between A-Teams. In this approach it is based on the so called ran-

domized strategy. Each SolutionManager may ask for a new solution and randomly

50 4 Resource-Constrained Project Scheduling

Table 4.3 Experiment results for team of A-Teams with RMSC Strategy solving the RCPSP

Number of

activities

Mean RE from

opt*/bk

solution [%]

Max RE from

opt*/bk

solution [%]

Mean

RE from

CPLB [%]

Max RE from

CPLB [%]

Mean

CT [s]

Mean

TCT [s]

30 0.02
∗

1.75
∗

13.40 120.83 14 67

60 0.54 8.45 11.12 103.90 32 70

90 0.95 9.68 10.81 110.17 38 66

120 2.57 20.00 33.18 204.04 73 128

selected other SolutionManager sends it to the first one. The SolutionManager asks

for a new solution when the current best solution in its population (common memory)

has not been changed for a fixed part of no improvement time gap. Further details of

the Team of A-Teams approach can be found in [99].

In Table 4.3 the results for the Team of eight A-Teams, with static cooperation

strategy and randomized interaction strategy, working in parallel are presented. It can

be noted that the Team of A-Teams approach produces significantly better results in

term of mean relative errors than approaches based on a single A-Team. The maximal

relative errors are significantly lower for the test sets j30 and j60, but higher for the

test set j120. The computation times are slightly worse. Moreover, development,

implementation and testing of such a system is much more complicated and time

consuming as well.

4.4.4 A-Team with the Dynamic Cooperation Strategy
with Reinforcement Learning

Further improvements of the A-Team performance with respect to solving the RCPSP

can be achieved through modification and improvements of the cooperation strategy.

In [101, 107, 108] studies aiming at finding more effective strategies for A-Team

have been undertaken. It appears that a significant performance improvement is pos-

sible with introduction of the dynamic strategy approach. Strategies described in

Sects. 4.4.1 and 4.4.3 are static, that is constant within a single computation cycle. In

this subsection a dynamic interaction strategy is discussed. Together with replacing

cooperation strategy some further modification of optimisation/improvement algo-

rithms in case of the smLSA and smTSA may improve A-Team performance.

All further discussed strategies use concept of blocking. The basic static blocking

cooperation strategy respects the following rules:

∙ All individuals in the initial population of solutions are generated randomly and

stored in the common memory.

∙ Individuals for improvement are selected from the common memory randomly

and blocked which means that once selected individual (or individuals) cannot

be selected again until the OptiAgent to which they have been sent returns the

solution.

4.4 A-Teams Solving the RCPSP 51

∙ The returning individual, which represent a feasible solution, replaces its original

version before the attempted improvement. It means that the solutions are blocked

for the particular OptiAgent and the returning solution replaces the blocked one

or the worst from the blocked once. If none of the solutions is worse, the random

one is replaced. All solutions blocked for the considered OptiAgent are released

and returned to the common memory.

∙ A new feasible solution is generated with fixed probability and replaces the ran-

dom worse one from the population.

∙ The environment state is calculated and remembered. This state includes the best

individual and the population average diversity. The state is calculated every fixed

number of iterations. To reduce the computation time, average diversity of the pop-

ulation is calculated by comparison with the best solution only. Diversity of two

solutions for the RCPSP problem is calculated as the sum of differences between

activities starting times in the projects.

∙ The A-Team stops computations where the average diversity in the population is

less then fixed threshold (e.g. 0.01%).

The idea of using Reinforcement Learning (RL) to make cooperation strategy for

the A-Team solving instances of the RCPSP more flexible was first proposed in [101].

RL [109–111] belongs to the category of unsupervised machine learning algorithms.

It is described as learning which action to take in a given situation (state) to achieve

one or more goal(s).

Reinforcement learning is usually used in solving combinatorial optimization

problems at three levels: direct, metaheuristic or hyperheuristic. RL is also used in

Multi-Agent Reinforcement Learning (MARL) where multiple reinforcement learn-

ing agents act together in the common environment [112, 113]. In [101] RL was

used to control the cooperation strategy parameters in the A-Team. In the proposed

approach reinforcement learning based on utility values, proposed in [114, 115], is

used.

Three learning rules (RL rules) are formulated and integrated with the blocking

cooperation strategy. The rules result in updating probability values for various oper-

ations performed within an A-Team. As a result, the reinforcement learning is used

to control the following elements of the cooperation strategy:

RL1 controls the replacement of one individual from the population by other ran-

domly generated one.

RL2 controls the method of choosing the individual for replacement.

RL3 individuals in the population are grouped according to certain features, and

next the procedure of choosing individuals to be forwarded to optimization agents

from respective groups is controlled by RL.

Furthermore, the following combinations of the control elements are considered:

RL12 RL1 and RL2,

RL13 RL1 and RL3,

RL23 RL2 and RL3,

RL123 RL1 and RL2 and RL3.

52 4 Resource-Constrained Project Scheduling

Each single rule, as well as, each of their combinations may be used in a separate

dynamic cooperation strategy.

In the RL1 the probability of randomly generating a new solution Prg is calculated

directly. The probability is increased in two cases: where the average diversification

in population decreases and where it decreases deeply. The Prg is decreased in three

environment states: where average diversity in the population increases, where the

best solution is found and where the new solution is randomly generated.

In the RL2 different methods of replacing an individual in the population by the

new randomly generated individual have probabilities calculated by RL algorithm

Pmr. The spectrum of considered methods includes the following three:

∙ new solution replaces the random one in the population,

∙ new solution replaces the random worse one in the population,

∙ new solution replaces the worst solution in the population.

The weight wm for each of the replacement methods is calculated, where m ∈ MR,

MR = {random,worse,worst}. The wrandom is increased where the population aver-

age diversity decreases and it is decreased in the opposite case. The wworse and wworst
is decreased where the population average diversity decreases and they are increased

in the opposite case. The probability of selection the method m is calculated as

Pmr =
wm∑
i∈MR wi

.

In the RL3 the similar RL utility values are introduced for the groups of solutions

and different kinds of algorithms. The RL is used during solving one instance of the

problem. In this case the additional parameters of environment state are remembered

as features of each individual (solution) in the population. These are the average

number of unused resources in each period of time fURP and average lateness of

activities fLA. These two features allow to group solutions from the population and

allocate the optimization algorithms to such solutions, for which they are expected to

achieve the best results. For each algorithm the matrix of weights allocated to each

solution feature is remembered

WAlg
fURP,fLA

=
[
wAlg
i,j

]
,

where i ∈ FURP and j ∈ FLA. FURP and FLA denote sets of average unused resources

in each period of time and average activity lateness, respectively.

The weight is increased where the optimization agent implementing given kind of

algorithm returns better or the best solution (positive reinforcement). The weight is

decreased where the optimization agent returns not better or worse solution (negative

reinforcement). The probability of choosing the optimisation agent is calculated as

PAlg
fURP,fLA

=
wAlg
fURP,fLA

∑
i∈FURP,j∈FLA

wAlg
ij

.

4.4 A-Teams Solving the RCPSP 53

The RL12, RL13, RL23 and RL123 rules are combinations of the RL1, RL2 and

RL3 where more then one rule is used. The rules RL1 and RL2 are used consecu-

tively just before adding the new solution to the population after receiving it by the

SolutionManager from the OptiAgent. The RL3 rule is used just before reading the

solution from the population. The RL3 rule act asynchronously to the RL1 and RL2.

All proposed RL rules as well as their combinations are used to update the proba-

bility values for its operations in seven dynamic blocking cooperation strategy imple-

mentations. Their performance has been tested experimentally. The results show that

the probability values influence the whole strategy performance e.g. population man-

aging and communication with the OptiAgents. In these implementations the effec-

tiveness of changes is checked every fixed number of iteration itNS by calculating the

environment state. The reward/punishment signal is calculated based on the environ-

ment state parameters and used to reward or punish the weights in accordance with

the respective learning rule. The details of this approach can be found in [101].

The experiments show that the proposed approaches are effective and promising.

The best one is the strategy based on the rule RL123, where all elements are con-

trolled. In this book the strategy is called DCRL Startegy. The results obtained by

DCRL Strategy are presented in Table 4.4.

The results obtained for the A-Team with dynamic cooperation strategy based

on reinforcement learning DCRL Strategy are comparable with the results obtained

for the approach where Team of A-Teams (RMSC Strategy) has been used. The

mean relative errors are worse by an average of 0.12%, and more precisely they are

equal for the test set j30, and higher by 0.01%, 0.11%, and 0.37% for j60, j90, and

j120, respectively. Simultaneously the results are significantly better from the results

obtained by the best so far A-Team with SC2 Strategy (Sect. 4.4.1) by an average

of 0.41%, in detail by 0.42%, 0.15%, 0.88% and 0.17% for j30, j60, j90 and j120,

respectively.

Table 4.4 Experiment results for the A-Team with DCRL Strategy solving the RCPSP

Number of

activities

Mean RE from

opt*/bk

solution [%]

Max RE from

opt*/bk

solution [%]

Mean

RE from

CPLB [%]

Max RE from

CPLB [%]

Mean

CT [s]

Mean

TCT [s]

30 0.02 2.06 13.41 122.92 2 25

60 0.55 5.79 11.21 109.09 9 51

90 1.06 7.44 11.01 110.17 21 68

120 2.94 8.97 34.04 207.07 72 185

54 4 Resource-Constrained Project Scheduling

4.4.5 A-Team with the Dynamic Strategy Based
on Population Learning

Population learning algorithm has inspired yet another approach to designing the

dynamic cooperation strategy for the A-Team solving instances of the RCPSP.

Population Learning Algorithm (PLA) introduced by Jędrzejowicz in [116] is a

population-based metaheuristic inspired by the social education systems in which

the process of solving a problem is divided into stages, and a diminishing number of

individuals enter more and more advanced learning stages. Hence, at higher stages

more advanced and complex learning techniques are used. In each stage the consid-

ered optimization problem is solved using a mix of the independent learning proce-

dures. Value of the objective function is directly used as a measure of the quality of

individuals and, hence as a selection criterion. After each learning stage the average

value of objective function is used to select the individuals.

The idea of using PLA to design dynamic cooperation strategy for A-Team solv-

ing the RCPSP was proposed in [107]. It rely on using different optimization agents

in different learning stages. The objective function (complexion time) is used to

measure the quality of individuals. As the selection criterion an average value of

complexion time (makespan) in the population is used avgCT(P). As the stopping

criterion the average diversity in the population avgDiv(P) and the number of SGS
procedure calls (nSGS) are calculated. The general schema of the dynamic cooper-

ation strategy based on the PL paradigm (DCPL Strategy) is shown in Fig. 4.11.

The coefficient 𝛼 ∈ [0, 1] is used to determine the number of individuals for the next

stage.

Fig. 4.11 General schema of the DCPL Strategy

4.4 A-Teams Solving the RCPSP 55

The proposed DCPL Strategy is used to control parameters and to manage the

process of searching for solutions of the RCPSP instances by a team of agents. In

this approach parameter values depend on the current state of the environment and

the current stage of learning. Both undergo dynamic changes during the computa-

tion. The basic features of the DCPL Strategy remain similar to the DCRL Strategy
described earlier.

To validate the approach three PLA based strategies have been implemented and

tested, including 1, 2, or 3 learning stages. In each stage different parameters and

optimization agents are used. The main parameters include two probabilities Pmg
and Pmr.

Pmg denotes probability of using one of the four available methods for generating

a new individual in the population:

mgr randomly;

mgrc applying one point crossover operator for two randomly selected individuals

in the population;

mgb randomly changing features of the best individual in the population;

mgbc applying one point crossover operator for two randomly selected individuals

from the five best individuals in the population.

The weight wmg for each method of generating is calculated, where mg ∈ MG,

MG = {mgr,mgrc,mgb,mgbc}. The wmgr and wmgrc are increased where the popu-

lation average diversity decreases and they are decreased in the opposite case. The

wmgb and wmgbc are decreased where the population average diversity increases and

they are increased in the opposite case. The probability of selecting the method mg
is calculated as

Pmg =
wmg∑

mg∈Mg wmg
.

In case of replacing an individual in the population the same methods as forDCRL
Strategy have been used. Thus, the probability Pmr and the weights are calculated in

the same way (see Sect. 4.4.4).

The sets of settings for PLA based strategy with three learning stages are shown

in the Table 4.5. The values in brackets for optimization agents denote the numbers

of iterations of the respective optimization algorithms according to their descriptions

in Sect. 4.4.2. For the LSA it is the total number of iterations, and for the TSA the

maximum number of iterations in which no improvement is found.

The set of optimization algorithms used in this and in the following approach

described in this book, includes six optimisation agents: OAsmCA, OAsmPRA,

OAsmLSAm, OAsmLSAe, OAsmTSAm and OAsmTSAe.

Computational experiment results for the A-Team with DCPL Strategy and six

optimization agents are shown in Table 4.6. The experiment shows that the results

are comparable with the results obtained by the A-Team with DCRL Strategy or

even outperform them. On average, results are better than the results obtained by

DCRL Strategy by 0.23%. More precisely it is equal for instances from the test set

j30, better by 0.08% for instances from the test set j60 with 60 activities, 0.17% for

56 4 Resource-Constrained Project Scheduling

Table 4.5 Parameter values for three learning stages used in DCPL Strategy

Stage 1

Initial weights wmgr = 50, wmgrc = 50, wmgb = 0, wmgbc = 0
wmrr = 100, wmrw = 0, wmrt = 0

Optimization agents OAsmCA, OAsmPRA

Selection criteria 𝛼 = 0.5
Stopping criteria avgDiv(P)< 0.1 or nSGS> 2000

Stage 2

Initial weights wmgr = 25, wmgrc = 25, wmgb = 25, wmgbc = 25
wmrr = 34, wmrw = 33, wmrt = 33

Optimization agents OAsmLSAm(5n), OAsmLSAe(5n)

Selection criteria 𝛼 = 0.5
Stopping criteria avgDiv(P)< 0.5 or nSGS> 1500

Stage 3

Initial weights wmgr = 0, wmgrc = 0, wmgb = 50, wmgbc = 50
wmrr = 0, wmrw = 20, wmrt = 80

Optimization agents OAsmTSAm(2n), OAsmTSAe(2n)

Selection criteria 𝛼 = 0.8
Stopping criteria avgDiv(P)< 0.05 or nSGS> 1500

Table 4.6 Experiment results for the A-Team with DCPL Strategy for solving RCPSP

Number of

activities

Mean RE from

opt*/bk

solution [%]

Max RE from

opt*/bk

solution [%]

Mean

RE from

CPLB [%]

Max RE from

CPLB [%]

Mean

CT [s]

Mean

TCT [s]

30 0.02
∗

1.47
∗

13.40 122.92 2 30

60 0.47 5.79 11.08 109.09 13 59

90 0.89 8.06 10.76 110.17 22 68

120 2.27 10.66 32.84 198.59 78 178

instances from the test set j90 with 90 activities and 0.67% for instances from the

test set j120 with 120 activities.

4.4.6 A-Team with Dynamic Cooperation Strategy
Based on Integration

Good performance of both so far discussed dynamic cooperation strategies: DCRL
Strategy and DCPL Strategy, stood behind an attempt to integrate them expect-

ing a synergetic effect. The idea has been proposed in [108] where the Dynamic

Cooperative Interaction Strategy (DCI Strategy) has been described. To standardize

4.4 A-Teams Solving the RCPSP 57

terminology the strategy is called the Dynamic Cooperation Strategy based on the

Integration of the best rules from previous approaches, notation remains the same -

DCI Strategy.

In this approach the method of generating new individuals is changed. To generate

a new individual, also in the initial population, randomly chosen priority rule and

serial forward SGS are used. As compared with the earliest discussed approaches

the following main changes in the strategy are made:

∙ To generate new individuals in the initial population, randomly chosen priority

rule and serial forward SGS are used.

∙ The third probability measure Pma is added. It means probability of selecting the

OptiAgent used to improve an individual in the population.

Similarly to the DCPL Strategy, there are Pmg and Pmr with the same methods.

There are four possible methods of generating a new individual in the current popu-

lation: mgr, mgrc, mgb, mgbc (see Sect. 4.4.5).

There are three methods of replacing an individual from the population by a new

one considered:

mrr new solution replaces the random one in the population;

mrw new solution replaces the random worse one in the population;

mrt new solution replaces the worst solution in the population.

There are six optimization agents, representing six optimization algorithms, used,

as in the previous case: smCA, smPRA, smLSAm, smLSAe, smTSAm
and smTSAe. For each of them the weight wma is calculated, where ma ∈ MA,

MA = {mac,map,malm,male,matm,mate}. The wma is increased if the optimiza-

tion agent received the improved solution and is decreased in the other case. Addi-

tionally, the weights for mac and map are increased where the average diversity of

the population decreases and they are decreased in the opposite case. The weights for

malm, male, matm, mate are increased where the average diversity of the population

increases and they are decreased in the opposite case.

Probabilities of selecting the respective method are calculated as follows:

Pmg =
wmg∑

mg∈M wmg
, Pmr =

wmr∑
mr∈M wmr

, Pma =
wma∑

ma∈M wma
.

The current environment state parameters are updated every fixed number of iter-

ations, denoted as nITns. Such update includes:

∙ updating anew wmgr, wmgrc, wmgb, wmgbc;

∙ updating anew wmrr, wmrw, wmrt;

∙ updating anew wmac, wmap, wmalm, wmale, wmatm, wmate;

∙ updating the best current solution;

∙ calculating nSGS;

∙ calculating avgCT(P);

∙ calculating avgDiv(P).

58 4 Resource-Constrained Project Scheduling

Table 4.7 Parameter values used in DCI Strategy

Initial weights wmgr = 25, wmgrc = 25, wmgb = 25, wmgbc = 25,

wmrr = 34, wmrw = 33, wmrt = 33,

wmaCA = 30, wmaPRA = 30,

wmaLSAm=10, wmaLSAe=10, wmaTSAm=10, wmaTSAe=10

Optimization agents OAsmCA, OAsmPRA, OAsmLSAm(5n), OAsmSAe(5n),
OAsmTSAm(2n), OAsmTSAe(2n)

Table 4.8 Experiment results for the A-Team with DCI Strategy solving the RCPSP

Number of

activities

Mean RE from

opt*/bk

solution [%]

Max RE from

opt*/bk

solution [%]

Mean

RE from

CPLB [%]

Max RE from

CPLB [%]

Mean

CT [s]

Mean

TCT [s]

30 0.02
∗

1.62 13.41 120.83 2 39

60 0.32 6.61 10.86 109.00 15 57

90 0.62 7.14 10.37 103.39 20 59

120 1.89 20.00 32.12 239.60 78 176

The general schema of the proposed DCI Strategy is shown in Fig. 4.12. The

nSGS denotes the number of SGS procedure calls performed by the algorithm. Fur-

ther details of the approach can be found in [108].

The effectiveness of the approach has been validated experimentally, and the

results are shown in Table 4.8. The DCI Strategy initial settings have been set as

follow:

Fig. 4.12 General schema of the DCI Strategy

4.4 A-Teams Solving the RCPSP 59

The results show that the A-Team with DCI Strategy proves effective in solving

instances of the RCPSP. Integration of the elements from previous approaches results

in the best strategy for the RCPSP proposed in this book. The results are in average

by 0.18% better than the results for A-Team withDCPL Strategy, and more precisely

they are equal for the test set j30 and better by 0.14%, 0.25%, and 0.33% for the test

sets j60, j90, and j120, respectively. The reason is that using the most sophisticated

algorithms seems beneficial to intensify of exploitation.

4.4.7 Concluding Remarks

Computational experiments results show that proposed A-Team architectures are

effective for solving the RCPSP. The Mean Relative Errors (Mean RE) from opti-

mal or best known solutions presented in this section are summarized in Table 4.9.

The graphical representation of these results are shown in Fig. 4.13. The most effec-

tive approaches are A-Teams with DCPL Strategy and DCI Strategy. In both these

approaches six optimization algorithms and six optimization agents representing

these algorithms have been used: OAsmCA, OAsmPRA, OAsmLSAm, OAsmLSAe,

OAsmTSAm and OAsmTSAe.

To check whether there is a significant difference between the considered

A-Teams (i.e. cooperation strategies) the non-parametric Friedman test has been

used. It makes possible to answer the question weather particular working strate-

gies are equally effective independently of the kind of problem being solved. Addi-

tionally, the mean ranks calculated for each A-Team have been inspected to roughly

evaluate their effectiveness.

The test is based on ranks assigned to each A-Team participating in the exper-

iment, i.e. A-Team with SC1, SC2, RMSC, DCRL, DCPL, and DCI Strategy. To

assign ranks, the 6 point scale was used, with 6 points for the best and 1 point for

the worst result found by the A-Team for a particular problem instance. When the

results are identical, the same amount of points equal the mean of consecutive ranks

is assigned to each such result (i.e. there are ties among ranks).

The test aimed at deciding among the following hypotheses:

Table 4.9 Mean RE from the optimal (*) or best known solution for JABAT-based A-Team

approaches to solve RCPSP discussed in this section

Number of

activities

SC1

Strategy [%]

SC2

Strategy [%]

RMSC

Strategy [%]

DCRL

Strategy [%]

DCPL

Strategy [%]

DCI

Strategy [%]

30 0.46
∗

0.44
∗

0.02
∗

0.02
∗

0.02
∗

0.02
∗

60 0.76 0.70 0.54 0.55 0.47 0.32

90 1.58 1.94 0.95 1.06 0.89 0.62

120 2.89 3.11 2.57 2.94 2.27 1.89

60 4 Resource-Constrained Project Scheduling

H0 zero hypothesis: A-Teams (cooperation strategies) are statistically equally effec-

tive i.e. obtain similar results with nonsignificant differences,

H1 alternative hypothesis: not all A-Teams (cooperation strategies) are equally

effective.

The test has been performed on 6 cooperation strategies and 4 data sets of the

considered single mode RCPSP from PSPLIB [91]: j30, j60, j90, each including 480

instances, and j120 including 600 instances. The analysis has been carried out at the

significance level of 0.05 and 5 degrees of freedom. The respective values of the 𝜒
2

statistics are shown in Table 4.10.

The critical value of 𝜒
2

distribution for the assumed values equals 11.07. Since

the obtained values of the statistics 𝜒

2
, in all cases, are greater than the critical

one, hypothesis H0 is rejected. Thus, the obtained result proves hypothesis H1 which

claims that not all A-Teams are equally effective in solving the RCPSP instances.

The mean values of ranks, calculated for the considered A-Team, might suggest

some ranking with respect to their efficiency. These values are shown in Fig. 4.14.

As it could be seen in Fig. 4.14, four A-Teams have similar ranks and can be

considered as superior in case of the instances including 30 and 90 activities. These

are three A-Teams with dynamic cooperation strategies (DCRL, DCPL and DCI)
and the Randomized Multiple A-Team with Static Cooperation Strategy. In case of

Fig. 4.13 Graphical representation of the results from Table 4.9

Table 4.10 Values of the 𝜒2
statistics for the RCPSP

Number of activities 𝜒

2

30 326.25

60 76.64

90 274.49

120 225.83

4.4 A-Teams Solving the RCPSP 61

Fig. 4.14 The mean values of Friedman test ranks for the RCPSP

the instances including 60 and 120 activities the A-Team with DCI Strategy can be

considered as the superior one.

Results obtained by the proposed A-Teams have been compared with the best

results known from the literature. Such comparison, presented in Table 4.11 shows

that the proposed approach is effective in solving RCPSP and comparable with the

best currently known algorithms. In the presented comparison the other Multi-Agent

System MAOA, proposed recently in [93] and described in Sect. 4.3, gives a very

similar results and uses some similar assumptions and methods. Agents in MAOA

represent feasible solutions and work in organization environment, they also use such

methods like crossover and local search. Differences are in grouped organization and

strategy in which agents communicate between themselves instead of the common

memory.

Others approaches from the literature include: evolutionary algorithms, genetic

algorithms and other population-based approaches as well as decomposition, vari-

able neighborhood search and local search. All of presented results use the same

test sets from PSPLIB and all of them produce quite similar results. The differences

between the Mean RE from optimal results for test set j30 and from CPLB for test

sets j60, j90 and j120, reported in the literature and presented in this part of the

book are very small: 0.02% for the test set j30, 0.35% for j60 and j90, and 1.86% for

j120. However, the detailed and honest comparison is difficult because of the dif-

ferent systems, platforms and machines (processors) used. In respect to the practical

applications the differences for the larger projects are more significant, so the pro-

posed approaches for projects with higher number of activities should be tested and

compared.

62 4 Resource-Constrained Project Scheduling

Table 4.11 Comparison with the best literature reported results [11, 60]. Mean RE from optimal

solution (*) or from CPLB

Method Authors Mean RE

[%]

Mean CT [s] CPU

30 activities

Decompos. & local opt Palpant et al. [117] 0.00* 10.26 2.3 GHz

Filter and fan Ranjbar [118] 0.00* – –

Event list-based EA Paraskevopoulos et al. [77] 0.00* 0.19 1.33 GHz

VNS-activity list Fleszar & Hindi [119] 0.01* 5.9 1.0 GHz

A-Team with DCI Strategy 0.02* 2.43 1.4 GHz
60 activities

Event list-based EA Paraskevopoulos et al. [77] 10.54 16.31 1.33 GHz

Filter and fan Ranjbar [118] 10.56 5 –

Decompos. & local opt Palpant et al. [117] 10.81 38.78 2.3 GHz

MAOA Zheng & Wang [93] 10.84 – –

A-Team with DCI Strategy 10.86 15 1.4 GHz
Population–based Valls et al. [59] 10.89 3.65 400 MHz

90 activities

Filter and fan Ranjbar [118] 10.11 5 –

Population-based Valls et al. [59] 10.19 9.49 400 MHz

Decompos. & local opt. Palpant et al. [117] 10.29 61.25 2.3 GHz

Decomposition based GA Debels & Vanhoucke [60] 10.35 – –

A-Team with DCI Strategy 10.37 25 1.4 GHz
GA–hybrid, FBI Valls et al. [120] 10.46 0.61 400 MHz

120 activities

Event list-based EA Paraskevopoulos et al. [77] 30.78 123.45 1.33 GHz

Filter and fan Ranjbar [118] 31.42 5 –

Population-based Valls et al. [59] 31.58 59.43 400 MHz

A-Team with DCI Strategy 32.12 86 1.4 GHz
Decompos. & local opt. Palpant et al. [117] 32.41 207.93 2.3 GHz

MAOA Zheng & Wang [93] 32.64 – –

References

1. Pritsker, A.A.B., Watters, L.J., Wolfe, P.M.: Multi-project scheduling with limited resources:

a zero-one programming approach. Manag. Sci. 16(1), 93–108 (1969)

2. Kelley, J.E. Jr., Walker, M.R.: Critical path planning and scheduling. In: Proceedings of the

Eastern Joint Computer Conference, pp. 160–173. Boston, MA (1959)

3. Błażewicz, J., Lenstra, J., Rinnooy, A.: Scheduling subject to resource constraints: classifica-

tion and complexity. Discret. Appl. Math. 5, 11–24 (1983)

4. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project

scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112, 3–41 (1999)

References 63

5. Demeulemeester E., Herroelen W.: Project scheduling: a research handbook. Kluwer Acad-

emic Publishers (2002)

6. Icmeli, O., Erenguc, S.S., Zappe, C.J.: Project scheduling problems: a survey. Int. J. Oper.

Prod. Manag. 13(11), 80–91 (1993)

7. Elmaghraby, S.E.: Activity nets: a guided tour through some recent developments. Eur. J.

Oper. Res. 82(3), 383–408 (1995)

8. Özdamar, L., Ulusoy, G.: A survey on the resource-constrained project scheduling problem.

IIE Trans. 27(5), 574–586 (1995)

9. Herroelen, W.S., De Reyck, B., Demeulemeester, E.L.: Resource-constrained project schedul-

ing: a survey of recent developments. Comput. Oper. Res. 25(4), 279–302 (1998)

10. Hartmann, S., Kölisch, R.: Experimental evaluation of state-of-the-art heuristics for the

resource-constrained project scheduling problem. Eur. J. Oper. Res. 127(2), 394–407 (2000)

11. Kölisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained

project scheduling: an update. Eur. J. Oper. Res. 174(1), 23–37 (2006)

12. Kölisch, R., Padman, R.: An integrated survey of deterministic project scheduling. OMEGA

Int. J. Manag. Sci. 29(3), 249–272 (2001)

13. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained

project scheduling problem. Eur. J. Oper. Res.207, 1–14 (2010)

14. Agarwal, A., Colak, S., Erenguc, S.: Metaheuristic methods. In: International Handbooks on

Information Systems. Handbook on Project Management and Scheduling, vol. 1, pp. 57–74.

(2015)

15. Alvarez-Valdés, R., Tamarit, J.M.: Heuristic algorithms for resource-constrained project

scheduling: a review and empirical analysis. In: Słowiński, R., Węglarz, J. (eds.) Advances

in Project Scheduling, Elsevier, Amsterdam, pp. 113–134 (1989)

16. Hartmann, S.: Project Scheduling under Limited Resources: Models, Methods, and Applica-

tions. Springer, Berlin Heidelberg (1999)

17. Knotts, G., Dror, M., Hartman, B.C.: Agent-based project scheduling. IIE Trans. 32(5), 387–

401 (2000)

18. Artigues, C., Demassey, S., Neron, E.: Resource-Constrained Project Scheduling: Models,

Algorithms. Extensions and Applications. Robotics and Manufacturing Series. ISTE/Wiley,

Control Systems (2008)

19. Brucker, P., Knust, S.: Complex Scheduling, 2nd edn. (2012)

20. Bowman, E.H.: The schedule-sequencing problem. Oper. Res. 7, 621–624 (1959)

21. Brand, J.D., Meyer, W.L., Shaffer, L.R.: The Resource Scheduling Problem in Construction,

Civil Engineering Studies, Report No 5. University of Illinois, Urbana, Department of Civil

Engineering (1964)

22. Patterson, J.H., Roth, G.W.: Scheduling a project under multiple resource constraints: a zero-

one programming approach. AIIE Trans. 8, 449–455 (1976)

23. Deckro, R.F., Winkofsky, E.P., Hebert, J.E., Gagnon, R.: A decomposition approach to multi-

project scheduling. Eur. J. Oper. Res. 51, 110–118 (1991)

24. Icmeli, O., Rom: W.O.: Solving the resource-constrained project scheduling problem with

optimization subroutine library. Comput. Oper. Res. 23, 801–817 (1996)

25. Carruthers, J.A., Battersby, A.: Advances in critical path methods. Oper. Res. Q. 17, 359–380

(1966)

26. Petroviç, R.: Optimisation of resource allocation in project planning. Oper. Res. 16, 559–586

(1968)

27. Johnson, T.J.R.: An algorithm for the resource constrained project scheduling problem. PhD

Dissertation, MIT (1967)

28. Schrage, L.: Solving resource-constrained network problems by implicit enumeration non-

preemptive case. Oper. Res. 10, 263–278 (1970)

29. Balas, E.: Project scheduling with resource constraints. In: Beale, E.M.L. (ed.) Applications of

Mathematical Programming Techniques, pp. 187–200. American Elsevier, New York (1970)

30. Davis, E.W., Heidorn, G.E.: An algorithm for optimal project scheduling under multiple

resource constraints. Manag. Sci. 27, B803–B816 (1971)

64 4 Resource-Constrained Project Scheduling

31. Stinson, J.P., Davis, E.W., Khumawala, B.M.: Multiple resource-constrained scheduling using

branch-and-bound. AIIE Trans. 10(3), 252–259 (1978)

32. Talbot, B., Patterson, J.R.: An efficient integer programming algorithm with network cuts for

solving resource-constrained scheduling problems. Manag. Sci. 24, 1163–1174 (1978)

33. Radermacher, F.J.: Scheduling of project networks. Ann. Oper. Res. 4, 227–252 (1985)

34. Christofides, N., Alvarez-Valdes, R., Tamarit, J.M.: Project scheduling with resource con-

straints: a branch and bound approach. Eur. J. Oper. Res. 29, 262–273 (1987)

35. Bartusch, M., Mohring, R.H., Radermacher, F.J.: Scheduling project networks with resource

constraints and time windows. Ann. Oper. Res. 16, 201–240 (1988)

36. Bell, C.A., Park, K.: Solving resource-constrained project scheduling problems by A* search.

Naval Res. Logist. 37, 61–84 (1990)

37. Demeulemeester, E., Herroelen, W.: A branch-and-bound procedure for the multiple resource-

constrained project scheduling problem. Manag. Sci. 38, 1803–1818 (1992)

38. Demeulemeester, E.L., Herroelen, W.S.: New benchmark results for the resource constrained

project scheduling problem. Manag. Sci. 43(11), 1485–1492 (1997)

39. Carlier, J., Néron, E.: A new branch and bound method for solving the resource constrained

project scheduling problem, PMS’96. In: The Fifth International Workshop on Project Man-

agement and Scheduling, pp. 61–65. Poznan, 11–13 April (1996)

40. Brucker, P., Knust, S., Schoo, A., Thiele, O.: A branch and bound algorithm for the resource-

constrained project scheduling problem. Eur. J. Oper. Res. 107(2), 272–288 (1998)

41. Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L.: An exact algorithm for project

scheduling with resource constraints based on a new mathematical formulation. Manag. Sci.

44(5), 714–729 (1998)

42. Dorndorf, U., Pesch, E., Phan-Huy, T.: A branch-and-bound algorithm for the resource-

constrained project scheduling problem. Math. Method Oper. Res. 52, 413–439 (2000)

43. Kelley, J.: The critical-path method: resources planning and scheduling. In: Muth, J., Thomp-

son, G. (eds.) Industrial scheduling, pp. 347–365. Prentice-Hall, New Jersey (1963)

44. Davis, E., Patterson, J.: A comparison of heuristic and optimum solutions in resource-

constrained project scheduling. Manag. Sci. 21, 944–955 (1975)

45. Cooper, D.F.: Heuristics for scheduling resource-constrained projects: an experimental inves-

tigation. Manag. Sci. 22, 1186–1194 (1976)

46. Cooper, D.F.: A note on serial and parallel heuristics for resource-constrained project schedul-

ing. Found. Control Eng. 2, 131–133 (1977)

47. Boctor, F.F.: Some efficient multi-heuristic procedures for resource constrained project

scheduling. Eur. J. Oper. Res. 49, 3–13 (1990)

48. Özdamar, L., Ulusoy, G.: A local constraint based analysis approach to project scheduling

under general resource constraints. Eur. J. Oper. Res. 79, 287–298 (1994)

49. Ulusoy, G., Özdamar, L.: Heuristic performance and network/resource characteristics in

resource-constrained project scheduling. J. Oper. Res. Soc. 40, 1145–1152 (1989)

50. Thomas, P.R., Salhi, S.: A tabu search approach for the resource constrained project schedul-

ing problem. J. Heuristics 4, 123–139 (1998)

51. Leon, V.J., Ramamoorthy, B.: Strength and adaptability of problem-space based neighbor-

hoods for resource-constrained scheduling. OR Spektrum 17, 173–182 (1995)

52. Alcaraz, J., Maroto, C.: A robust genetic algorithm for resource allocation in project schedul-

ing. Ann. Oper. Res. 102, 83–109 (2001)

53. Alcaraz, J., Maroto, C., Ruiz, R.: Improving the performance of genetic algorithms for the

RCPS problem. In: Proceedings of the Ninth International Workshop on Project Management

and Scheduling, Nancy, pp. 40–43 (2004)

54. Hartmann, S.: A competitive genetic algorithm for resource-constrained project scheduling.

Naval Res. Logist. 45, 733–750 (1998)

55. Hartmann, S.: A self-adapting genetic algorithm for project scheduling under resource con-

straints. Naval Res. Logist. 49, 433–448 (2002)

56. Coelho, J., Tavares, L.: Comparative analysis of metaheuricstics for the resource constrained

project scheduling problem. Technical report, Department of Civil Engineering, Instituto

Superior Tecnico, Portugal (2003)

References 65

57. Debels, D., Vanhoucke, M.: A decomposition-based genetic algorithm for the resource-

constrained project scheduling problem. Oper. Res. 55, 457–469 (2007)

58. Valls, V., Ballestín, F., Quintanilla, M.S.: A hybrid genetic algorithm for the RCPSP. Techni-

cal report, Department of Statistics and Operations Research, University of Valencia, (2003)

59. Valls, V., Ballestín, F.: A population-based approach to the resource-constrained project

scheduling problem. Ann. Oper. Res. 131, 305–324 (2004)

60. Agarwal, A., Colak, S., Erenguc, S.: A neurogenetic approach for the resource-constrained

project scheduling problem. Comput. Oper. Res. 38, 44–50 (2011)

61. Nonobe, K., Ibaraki, T.: Formulation and tabu search algorithm for the resource constrained

project scheduling problem. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Meta-

heuristics, pp. 557–588. Kluwer Academic Publishers, Springer Science+Business Media,

New York (2002)

62. Artigues, C., Michelon, P., Reusser, S.: Insertion techniques for static and dynamic resource-

constrained project scheduling. Eur. J.Oper. Res. 149, 249–267 (2003)

63. Boctor, F.F.: An adaptation of the simulated annealing algorithm for solving resource-

constrained project scheduling problems. Int. J. Prod. Res. 34, 2335–2351 (1996)

64. Cho, J.H., Kim, Y.D.: A simulated annealing algorithm for resource-constrained project

scheduling problems. J. Oper. Res. Soc. 48, 736–744 (1997)

65. Bouleimen, K., Lecocq, H.: A new efficient simulated annealing algorithm for the resource-

constrained project scheduling problem and its multiple modes version. Eur. J. Oper. Res.

149, 268–281 (2003)

66. Valls, V., Ballestin, F., Quintanilla, M.S.: Justification and RCPSP: a technique that pays. Eur.

J. Oper. Res. 165, 375–386 (2005)

67. Zhang, H., Li, X.D., Li, H., Huang, F.L.: Particle swarm optimization-based schemes for

resource-constrained project scheduling. Autom. Constr. 14(3), 393–404 (2005)

68. Chen, R.M., Wu, C.L., Wang, C.M., Lo, S.T.: Using novel particle swarm optimization

scheme to solve resource-constrained scheduling problem in PSPLIB. Expert Syst. Appl.

37(3), 1899–1910 (2010)

69. Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-constrained

project scheduling. IEEE Trans. Evolut. Comput. 6, 333–346 (2002)

70. Herbots, J., Herroelen, W., Leus, R.: Experimental investigation of the applicability of ant

colony optimization algorithms for project scheduling. Research Report, KU, Leuven (2004)

71. Tseng, L.-Y., Chen, S.-C.: A hybrid metaheuristic for the resource-constrained project

scheduling problem. Eur. J. Oper. Res. 175, 707–721 (2006)

72. Akbari, R., Zeighami, V., Ziarati, K.: Artificial bee colony for resource constrained project

scheduling problem. Int. J. Ind. Eng. Comput. 2, 45–60 (2011)

73. Ziaratia, K., Akbaria, R., Zeighami, V.: On the performance of bee algorithms for resource-

constrained project scheduling problem. Appl. Soft Comput. 11(4), 3720–3733 (2011)

74. Jia, Q., Seao, Y.: Solving resource-constrained project scheduling problems: conceptual vali-

dation of FLP formulation and efficient permutation-based ABC computation. Comput. Oper.

Res. 40(8), 2037–2050 (2013)

75. Kochetov, Y., Stolyar, A.: Evolutionary local search with variable neighborhood for the

resource constrained project scheduling problem. In: Proceedings of the 3rd International

Workshop of Computer Science and Information Technologies, Russia (2003)

76. Debels, D., De Reyck, B., Leus, R., Vanhoucke, M.: A hybrid scatter search/electromagnetism

meta-heuristic for project scheduling. Eur. J. Oper. Res. 169(2), 638–653 (2006)

77. Paraskevopoulos, D.C., Tarantilis, C.D., Ioannou, G.: Solving project scheduling problems

with resource constraints via an event list-based evolutionary algorithm. Expert Syst. Appl.

39, 3983–3994 (2012)

78. Wang, L., Fang, C.: A hybrid estimation of distribution algorithm for solving the resource-

constrained project scheduling problem. Expert Syst. Appl. 39(3), 2451–2460 (2012)

79. Fang, C., Wang, L.: An effective shuffled frog-leaping algorithm for resource-constrained

project scheduling problem. Comput. Oper. Res. 39(5), 890–901 (2012)

66 4 Resource-Constrained Project Scheduling

80. Yannibelli, V., Amandi, A.: Hybridizing a multi-objective simulated annealing algorithm with

a multi-objective evolutionary algorithm to solve a multi-objective project scheduling prob-

lem. Expert Syst. Appl. 40(7), 2421–2434 (2013)

81. Sebt, M., Alipouri, Y.: Solving resource-constrained project scheduling problem with evolu-

tionary programming. J. Oper. Res. Soc. 64, 1327–1335 (2013)

82. Zamani, R.: A competitive magnet-based genetic algorithm for solving the resource-

constrained project scheduling problem. Expert Syst. Appl. 229(2), 552–559 (2013)

83. Fahmy, A., Hassan, T.M., Bassioni, H.: Improving RCPSP solutions quality with stacking

justification-application with particle swarm optimization. Expert Syst. Appl. 41(13), 5870–

5881 (2014)

84. Patterson, J.H.: A comparison of exact approaches for solving the multiple constrained

resource. Project scheduling problem. Manag. Sci. 30(7), 854–867 (1984)

85. Kölisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general class of

resource-constrained project scheduling problems. Manag. Sci. 41, 1693–1703 (1995)

86. Ren, H., Wang, Y.: A survey of multi-agent methods for solving resource constrained project

scheduling problems. In: Proceedings of International Conference on Management and Ser-

vice Science, vol. 2011, pp. 1–4. (2011)

87. Shu-Guang, H., Er-Shi, Q., Gang, L.: A study on the project scheduling based on multi-agent

systems. Math. Pract. Theory 1, 43–47 (2005)

88. Wauters, T., Verbeeck, K., Berghe, G.V., De Causmaecker, P.: A multi-agent learning

approach for the multi-mode resource-constrained project scheduling problem. In: Decker,

S., Sierra, C. (eds.) Proceedings of 8th International Conference on Autonomous Agents

and Multiagent Systems (AAMAS 2009), pp. 1–8. International Foundation for Autonomous

Agents and Multiagent Systems. http://www.ifaamas.org

89. Wauters, T., Verbeeck, K., Berghe, G.V., De Causmaecker, P.: Learning agents for the multi-

mode project scheduling problem. J. Oper. Res. Soc. 62, 281–290 (2011)

90. Kölisch, R., Sprecher, A.: PSPLIB - A project scheduling problem library. Eur. J. Oper. Res.

96, 205–216 (1996)

91. PSPLIB - Project Scheduling Problem LIBrary. http://www.om-db.wi.tum.de/psplib

92. Horenburg, T., Wimmer, J., Günthner, W.A.: Resource allocation in construction scheduling

based on multi-agent negotiation. In: Proceedings of the 14th International Conference on

Computing in Civil and Building Engineering (2012)

93. Zheng, X.-L., Wang, L.: A multi-agent optimization algorithm for resource constrained

project scheduling problem. Expert Syst. Appl. 42, 6039–6049 (2015)

94. Jędrzejowicz, P., Ratajczak-Ropel, E.: Agent-based approach to solving the resource con-

strained project scheduling problem. Lect. Notes Comput. Sci. 4431, 480–487 (2007)

95. Laborie, P.: Complete MCS-based search: application to resource constrained project schedul-

ing. In: Proceedings IJCAI-05, pp. 181–186. Edinburg, Scotland (2005)

96. Sprecher, A., Drexl, A.: Solving multi-mode resource-constrained project scheduling prob-

lems by a simple, general and powerful sequencing algorithm. Eur. J. Oper. Res. 107, 431–450

(1998)

97. Jędrzejowicz, P., Ratajczak-Ropel, E.: New generation A-Team for solving the resource

constrained project scheduling. In: Proceedings of the Eleventh International Workshop on

Project Management and Scheduling, pp. 156–159. Istanbul (2008)

98. Jędrzejowicz, P., Ratajczak-Ropel, E.: Double-action agents solving the MRCPSP/Max prob-

lem. In: P. Jędrzejowicz et al. (eds.) Computational Collective Intelligence. Technologies and

Applications. Lecture Notes in Artificial Intelligence, vol. 6923, pp. 311-321. (2011)

99. Jędrzejowicz, P., Ratajczak-Ropel, E.: Team of A-Teams for solving the resource-constrained

project scheduling problem. In: Grana, M., Toro, C., Posada, J., Howlett, R., Lakhmi, C.J.

(eds.) Advances in Knowledge Based and Intelligent Information and Engineering Systems.

Frontiers in Artificial Intelligence and Applications, vol. 243, pp. 1201–1210. (2012)

100. Jędrzejowicz, P., Ratajczak-Ropel, E.: Reinforcement Learning Strategy for Solving the

Resource-Constrained Project Scheduling Problem by a Team of A-Teams. In: Nguyen, N.T.,

Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) Intelligent Information and Database

Systems. Lecture Notes in Artificial Intelligence, 8398, 197–206. (2014)

http://www.ifaamas.org
http://www.om-db.wi.tum.de/psplib

References 67

101. Jędrzejowicz, P., Ratajczak-Ropel, E.: Reinforcement learning strategies for A-Team solving

the resource-constrained project scheduling problem. Neurocomputing 146, 301–307 (2014)

102. Glover F., Laguna M.: Tabu Search. Kluwer Academic Publishers (1997)

103. Glover, F.: Tabu search - Part I. ORSA J. Comput. 1, 190–206 (1989)

104. Glover, F.: Tabu search - Part II. ORSA J. Comput. 2, 4–32 (1989)

105. Glover, F.. Tabu search and adaptive memory programing: advances, applications and chal-

lenges. In: Barr, R.S., Helgason, R.V., Kennington, J.L. (eds.) Interfaces in Computer Science

and Operations Research, pp. 1–75. Kluwer (1996)

106. Glover, F., Laguna, M., Marti, R.: Fundamentals of scatter search and path relinking. Control

Cybern. 39, 653–684 (2000)

107. Jędrzejowicz, P., Ratajczak-Ropel, E.: PLA based strategy for solving RCPSP by a team of

agents. J. Univers. Comput. Sci. 22(6), 856–873 (2016)

108. Jędrzejowicz, P., Ratajczak-Ropel, E.: Dynamic cooperative interaction strategy for solving

RCPSP by a team of agents. In: Nguyen, N.T., Manolopoulos, Y., Iliadis, L., Trawiński, B.

(eds.) Computational Collective Intelligence. Lecture Notes in Artificial Intelligence, vol.

9875, pp. 454–463. (2016)

109. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can solve dif-

ficult learning control problems. IEEE Trans. Syst. Man Cybern. SMC-13, 835–846 (1983)

110. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge,

MA (1998)

111. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intel.

Res. 4, 237–285 (1996)

112. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforce-

ment learning. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(2), 156–172 (2008)

113. Tuyls, K., Weiss, G.: Multiagent learning: basics, challenges, prospects. AI Magazine 33(3),

41–53 (2012)

114. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In: Meta-

heuristics: Computer Decision-Making, pp. 523–544. Kluwer Academic Publishers (2001)

115. Barbati, M., Bruno, G., Genovese, A.: Applications of agent-based models for optimization

problems: a literature review. Expert Syst. Appl. 39, 6020–6028 (2012)

116. Jędrzejowicz, P.: Social learning algorithm as a tool for solving some difficult scheduling

problems. Found. Comput. Decis. Sci. 24(2), 51–66 (1999)

117. Palpant, M., Artigues, C., Michelon, P.: LSSPER: solving the resource-constrained project

scheduling problem with large neighbourhood search. Ann. Oper. Res. 131, 237–257 (2004)

118. Ranjbar, M.: Solving the resource-constrained project scheduling problem using filter-and-

fun approach. Appl. Math. Comput. 201, 313–318 (2008)

119. Fleszar, K., Hindi, K.: Solving the resource-constrained project scheduling problem by a vari-

able neighbourhood search. Eur. J. Oper. Res. 155, 402–413 (2004)

120. Valls, V., Ballestín, F., Quintanilla, S.: A hybrid genetic algorithm for the resource-

constrained project scheduling problem. Eur. J. Oper. Res. 185, 495–508 (2008)

Chapter 5
Multi-mode Resource-Constrained Project
Scheduling

The first part of this chapter presents Multi-mode Resource-Constrained Project

Scheduling Problem (MRCPSP) formulations and notations (Sect. 5.1). It also pro-

vides an overview of the best methods proposed so far for solving this problem,

including a set of relevant bibliographic references in Sect. 5.2.

The second part of this chapter provides, in Sects. 5.3 and 5.4, an overview of

agent-based approaches proposed for solving MRCPSP. This part includes methods,

based on the A-Team approach, proposed by the author. Finally, in Sect. 5.4.6 the

comparison of results is presented and some concluding remarks are drawn.

5.1 Problem Formulation

The Multi-mode Resource-Constrained Project Scheduling Problem (MRCPSP),

introduced by Talbot in [1], is a generalization of the single-mode

Resource-Constrained Project Scheduling Problem (RCPSP) described and formu-

lated in Chap. 4. In case of the MRCPSP each activity j, j = 0,… , n + 1 may be

executed in one out of Mj modes. The activities may not be preempted and a mode

once selected may not change, i.e., a job j once started in mode m has to be com-

pleted in mode m without interruption. Performing job j in mode m takes djm periods

and is supported by a set RR
of renewable and a set RN

of non-renewable resources.

Hence, there are the set RR
of rR renewable resource types and the set RN

of rN non-

renewable resource types considered. The availability of each renewable resource

type k ∈ RR
in each time period is rRk units, k = 1,… , rR. Each mode m of activ-

ity j requires rRjmk units of renewable resource k during each period of its dura-

tion, where rR01k = rRn+11k = 0, k = 1,… , rR. The availability of each non-renewable

© Springer International Publishing AG 2018

E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,

Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_5

69

http://dx.doi.org/10.1007/978-3-319-62893-6_4

70 5 Multi-mode Resource-Constrained Project Scheduling

resource type l is rNl units in total, l = 1,… , rN . Each mode m of activity j requires

rNjml units of resource l during its duration, where rN01l = rNn+11l = 0, l = 1,… , rN .

The structure of a project, as in the RCPSP, can be represented by an Activity

On Node (AON) network G = (V ,E), where V denotes the set of activities and E
is the set of precedence relationships between these activities. Sj (Pj) is the set of

successors (predecessors) of activity j, j = 0,… , n + 1. It is further assumed that

0 ∈ Pj, j = 1,… , n + 1, and n + 1 ∈ Sj, j = 0,… , n.

The objective, as in the RCPSP case, is to find the schedule S of activities

starting times [s1,… , sn], where s1 = 0, the precedence and resource-constraints

are satisfied, such that the project complexion time (schedule duration, makespan)

CT(S) = sn+1 is minimized.

The mathematical model of the MRCPSP was introduced by Talbot [1]. Is was

based on the Pritsker’s RCPSP model presented in Sect. 4.1. Binary variable xjmt = 1
if activity j executed in mode m is completed at the end of time period t, otherwise,

xjmt = 0. With each activity j its earliest and latest finish time is associated, denoted

respectively EFj and LFj. Both are calculated assuming that the shortest duration

mode is assigned to each activity. The planning horizon H is calculated for the modes

with the longest durations, it never exceeds the sum of all activity durations.

The following formulas (5.1)–(5.6) define the problem:

min

LFn+1∑

t=EFn+1

txn+1,m,t (5.1)

|Mj|∑

m=1

LFj∑

t=EFj

xjmt = 1, for j = 0,… , n + 1 (5.2)

|Mj|∑

m=1

LFi∑

t=EFi

tximt ≤
|Mj|∑

m=1

LFj∑

t=EFj

txjmt − djm, for all (i, j) ∈ P (5.3)

n∑

j=1

|Mj|∑

m=1

min{t+djm−1,LFj}∑

q=max{t,EFj}
rRjmkxjmq ≤ rRk , for k = 1,… rR, t = 1,…H (5.4)

n∑

j=1

|Mj|∑

m=1

LFj∑

t=EFj

rNjmlxjmt ≤ rNl , for l = 1,… rN (5.5)

xjmt ∈ {0, 1}, for i = 0,… , n + 1, m ∈ Mj, t = EFj,… ,LFj (5.6)

http://dx.doi.org/10.1007/978-3-319-62893-6_4

5.1 Problem Formulation 71

Constraint (5.2) ensure that each activity is performed exactly once in exactly one

mode. Precedence constraints are guaranteed by (5.3). Constraints (5.4) and (5.5)

guarantee that the renewable and non-renewable resource limits are not exceeded,

respectively. Constraints (5.6) assures that binary decision variables are considered.

The MRCPSP is NP-hard in the strong sense as a generalization of the RCPSP (see

Błażewicz et al. [2]). Moreover, if there is more than one nonrenewable resource, the

problem of finding a feasible solution for the MRCPSP is NP-complete [3]. The con-

sidered problem class is denoted as MPS|prec|Cmax according to the classification

scheme of Brucker et al. [4] or it is denoted as m, 1T|cpm, disk,mu|Cmax according

to the classification scheme of Demeulemeester and Herroelen [5].

The project instance of MRCPSP, as in the RCPSP, is usually represented by an

Activity On Node (AON) network. Sequences of activities are build using the prior-

ity rules defined for the RCPSP. To generate a schedule from the sequence, the serial,

parallel or combined SGS is used, and for determining the duration and the resource

requirements of the activities a mode priority/selection rule is necessary. The differ-

ent mode selection rules were proposed, among others, in [6, 7]. The examples of

mode selection rules are as follow:

∙ Shortest Feasible Mode (SFM),

∙ Least Product Sum of Resource and Duration (LPSRD),

∙ Least Total Resource Usage (LTRU),

∙ Least Critical Resource Usage (LCRU),

∙ Least Resource Proportion (LRP),

∙ Least Sum of non-renewable Resource (LRS).

Three methods of placing activity modes in the schedule, as in the RCPSP, are

used: forward, backward and forward-backward. To improve a solution after apply-

ing the backward scheduling, Local Left Shift procedure (LLS) is usually used.

5.2 State of the Art Review

In this section state of the art for the MRCPSP formulated in Sect. 5.1 is reviewed.

The methods for solving MRCPSP are, as in case of the RCPSP, divided into three

groups: exact, heuristic and metaheuristic ones. The MRCPSP is a generalization of

RCPSP, hence in many papers both problems are considered together.

An overview of the exact methods for the MRCPSP was given by Sprecher in

[8]. Exact methods based on branch-and-bound algorithms were investigated by

Hartmann and Drexl [9]. A comprehensive survey of the RCPSP and MRCPSP is

presented by Herroelen et al. [10], Brucker et al. [4], Kölisch and Padman [11] and

Demeulemeester and Herroelen [5]. A recent literature review on project schedul-

ing problem variants is provided by Hartamnn and Briskorn [12]. Other group of

papers deal with the MRCPSP only. A recent survey of project scheduling with finite

or infinite number of activity processing modes is provided by Węglarz et al. [13].

An overview and experimental investigation of the existing metaheuristic solution

72 5 Multi-mode Resource-Constrained Project Scheduling

procedures to solve the MRCPSP can be found in Peteghem and Vanhoucke [14].

Authors compared over 20 existing approaches. A recent overview and state of the

art of the MRCPSP with different objectives can be found in the paper of Mika et al.

[15].

The exact methods applied to the MRCPSP, similarly as for the RCPSP, can be

classified into mathematical programming i.e. zero-one programming and implicit

enumeration including dynamic programming and branch-and-bound (B&B). The

first solution method for the MRCPSP was linear programming approach proposed

by Słowiński [16]. Other examples of research involving the use of mathematical

programming can be found in the papers of Talbot [1] and Patterson et al. [17]. In

these papers the enumeration scheme-based algorithm for the MRCPSP was pro-

posed. Many authors considered brunch-and-bound based approaches, for example:

Speranza and Vercellis [18], Hartmann and Sprecher [19], Sprecher et al. [8, 20],

Hartmann and Drexl [9], and Sprecher and Drexl [21]. Branch-and-cut algorithm

was developed by Zhu et al. [22].

Considering the MRCPSP computational complexity, the problem, like in case of

the RCPSP, can be solved by exact methods only for a small size problem instances.

For more complex problem sets, which are common in practice, solution techniques

have to be focused on heuristic and metaheuristic methods, if a solution is required

to be computed in a reasonable time.

Heuristic solution procedures for the MRCPSP are generally based on the pri-

ority rules. Talbot [1] proposed the set of priority rules and used them in his

B&B algorithm. The other set of priority rules was proposed by Boctor [6]. Drexl

and Grünewald [23] proposed the stochastic scheduling method named STOCOM.

Heuristic approach called local constraint based analysis (LCBA) was proposed by

Özdamar and Ulusoy [24]. In [25] Özdamar proposed several priority rules and used

them in genetic algorithm. Kölisch and Drexl [26] proposed a local search based

method and compared the results with two other heuristics.

Many metaheuristic methods have been applied to solve the MRCPSP. The most

common used are: genetic algorithms (GA), scatter search (SS), simulated anneal-

ing (SA), particle swarm optimization (PSO), ant colony optimization (ACO), dif-

ferential evolution algorithm (DEA), estimation of distribution algorithms (EOD),

multi-agent learning algorithms (MALA) described in Sect. 5.3, and non-standard

methods combining different approaches.

Many authors proposed the efficient approaches based on the genetic algorithms

(GA). Example papers include: Mori and Tseng [27], Özdamar [28], Hartmann [29],

Alcaraz et al. [30], Tseng and Chen [31], Peteghem and Vanhoucke [32], and Coelho

and Vanhoucke [33]. Hybrid genetic algorithm that uses a local search method to

improve solutions generated by the GA was proposed by Lova et al. [34]. Elloumi

and Fortemps developed hybrid rank-based EA for the MRCPSP. Scatter search

(SS) based approaches to the MRCPSP described Ranjbar et al. [35] and Peteghem

and Vanhoucke [36]. Simulated annealing (SA) based approaches were proposed by

Słowiński et al. [37], Boctor [7], Józefowska et al. [38] or Bouleimen and Lecocq

[39]. Approaches based on PSO were developed by Zhang et al. [40] and Jarboui et

al. [41]. Ant colony optimization (ACO) based approaches proposed Chiang et al.

5.2 State of the Art Review 73

[42]. Differential evolution algorithm (DEA) developed Damak et al. [43]. Tchao and

Martins [44] described some hybrid heuristics based on TS and PR. Wang and Fang

[45] proposed shuffled frog-leaping algorithm (SFLA) for solving the MRCPSP.

Recent works on the MRCPSP includes exact approaches as well as metaheuris-

tics. Due to the fact that the MRCPSP is one of the most intractable and challenging

problems in the Operational Research, newly proposed optimization techniques are

usually adapted to solve it. They include swarm optimization, population based and

hybrid methods as well as agent based approaches.

Kyriakidis et al. [46] proposed mixed-integer linear programming (MILP) for-

mulations for the RCPSP and MRCPSP based on the resource-task network (RTN)

representation and solved them using the proposed formulations. Wang and Fang

in [47] proposed estimation of distribution algorithms (EOD). Li and Zhang [48]

proposed ant ACO based methodology for solving the MRCPSP and compared it

with existing metaheuristics. Genetic algorithm based on random key and related

mode assignment representation scheme was proposed by Sebt et al. [49]. The above

authors also compared the results with earlier algorithms. Geiger [50] developed

a multi-threaded local search algorithm for the Multi-mode Resource-Constrained

Multi-Project Scheduling Problem (MRCMPSP) based on the concepts of vari-

able neighborhood search (VNS), together with iterated local search (ILS) and pro-

posed the parallel (multi-core) implementation for it. Author tested the algorithm on

MRCPSP using MMLIB [51] benchmark data sets and compared the results with

others reported in the literature.

Most of the optimal, heuristic and metaheuristic methods for the MRCPSP were

tested on two well-known benchmark data sets, the PSPLIB dataset [52, 53] and the

Boctor dataset [6]. Recently Peteghem and Vanhoucke in [14] have proposed new

benchmark data sets MMLIB [51]. In the paper authors indicates some shortcom-

ings of the PSPLIB data sets which could lead to biased results. Geiger [54] has

proposed a checker software for the MRCPSP solution files. The program supports,

in particular, the problem instances from MMLIB.

A large number of project data for integrated project management and control,

including artificial and real data sets, can be found on the web page of Operations

Research and Scheduling research group [55]. There are also two network genera-

tors to construct project networks under a controlled design accessible to download,

based on the principles proposed by Demeulemeester et al. [56].

5.3 Agent-Based Approaches to MRCPSP

A few MAS implementations exist for the Multi-mode Resource-Constrained Project

Scheduling Problem (MRCPSP). All except one were validated experimentally using

the data sets from PSPLIB.

Knotts et al. in [57, 58] proposed MAS model based on standard electronic com-

ponents used in a simple digital circuits. An agent’s precedence and resource con-

straints are represented as a combination of AND, OR, NAND, NOR and XOR gates.

74 5 Multi-mode Resource-Constrained Project Scheduling

For each activity of the project one agent is created which is responsible for acquir-

ing the resources required by this activity. Two types of agents, differing in their

behavior, are considered: basic and enhanced. The basic agent is purely reactive, it

becomes active in the first feasible execution mode that it finds. The enhanced agent

is capable of deliberative behavior, it deliberates in regard to mode selection accord-

ing to several rules. The system consists of the set of agents, blackboard and three

modules: problem generator module, simulation manager module and activity dura-

tion realizer module. The globally accessible blackboard stores all information about

the current state of the system including the precedence and resource requirements of

activities. Agents scan the blackboard to determine whether or not their precedence

and resource requirements can be satisfied, remove the resources required during

their duration and return renewable resources when their duration passed.

For the algorithms proposed by Knotts et al. [57, 58] the stochastic simulation

experiment was carried out using 500 problem instances generated from the project

network including 51 activities, originally proposed by Maroto and Tormos [59].

In the experiment two types of agents, as well as, eight different priority rules: SPT,

LPT, FIS, MIS, SRR, GRR, EST and EDD, used to control agent access to resources,

have been tested. Simulation showed that the results obtained by the approach are

comparable with the results known from the literature and commercial systems. The

proposed algorithms could solve large-scale MRCPSP instances. In the above men-

tioned papers one can find also performance comparison and analysis of multi-agent

systems with two types of agents and different priority rules. Using enhanced agents

gives better results than using basic agents. The SPT happened to be the best priority

rule when applied by the basic agents. The EDD occurred the best priority rule when

applied by the enhanced agents.

Wauters et al. [60, 61] implemented and used a network of distributed reinforce-

ment learning agents that cooperate to jointly learn a well-performing constructive

heuristic. The approach is based on an Activity On Node (AON) network, which is

usually used to represent precedence relation between the activities in RCPSP and

MRCPSP. An agent is placed in each activity node and one extra dispatching agent

(dispatcher) is added. The main idea of the algorithm is to enable each agent to learn

in which order to visit its successors, and in which mode the activity needs to be per-

formed. In each step of the algorithm one of agents has a control and makes decision.

This agent chooses an order to visit its successors and a mode and passes the control

to the first agent from this order. This process is continued until the agent in the last

dummy node gives back the control. Then, it forwards the control to the dispatcher,

which chooses a random eligible agent from the list of already visited ones or a ran-

dom eligible unvisited agent. These procedure is repeated until all agents have been

visited at least once. Moreover, at any time agent can give the control, with a small

probability, to the dispatcher. As a result the activity list (AL) is obtained. To con-

struct the schedule from the AL the serial SGS is used. For learning the activity order

and the best modes, reinforcement learning is used as learning automata with linear

reward-inaction algorithm.

5.3 Agent-Based Approaches to MRCPSP 75

The system of Wauters et al. [61] was implemented in Java and validated experi-

mentally. To validate the approach the datasets from PSPLIB have been used, for the

MRCPSP instances from j10, j12, j14, j16, j18, j20 and j30 data sets. The approach

was additionally tested for the single-mode RCPSP dataset j120 including instances

with 120 activities. In both cases the experiments show that the obtained results are

comparable with the others results known from the literature and can be useful for

solving the considered problems instances.

Mirzaei and Akbarzadeh in [62] proposed Multi-Agent Learning Algorithm

(MALA) for solving the MRCPSP. The approach is based on the AON network

where activities on the project are considered as agents. For each agent two devices

for making its decisions were implemented: learning atomaton and heuristic-based

stochastic local dispatcher. The approach is similar to the described above Wauters

et al. [61] approach called in this paper MARLA. The global dispatcher was used

in exactly the same way. Each agent uses two learning automata to choose its own

execution mode and also the order of visiting its successor activities. In comparison

with MARLA [61] authors indicate two main differences. Firstly, the schedules are

constructed locally. Secondly, local heuristic-based stochastic dispatcher have been

added to each agent as its second tool for making decisions. As a result the activity

list (AL) is obtained. To construct the schedule from the AL the serial SGS is used.

The algorithm of Mirzaei and Akbarzadeh [62] was implemented in MATLAB

and validated experimentally using the MRCPSP instances from PSPLIB. In the

first experiment the average computation times of two agent systems MALA and

MARLA and two metaheuristic algorithms from the literature (PSO and GA) have

been compared using nine instances from different PSPLIB datasets. In the sec-

ond experiment the performance of the same algorithms has been compared for

three PSPLIB data sets: j10, j16 and j20. The experiments show the effectiveness

of MALA but the differences in performance are very small. It is worth noticing that

both described agent based approaches MALA and MARLA requires less computa-

tional time than the other two heuristic methods.

Wenzler and Günthner [63] proposed the MAS for solving the MRCPSP similar

to Wauters et al. [61] approach. Different types of agents represent activities (process

agents), renewable and nonrenewable resources. The central blackboard is used to

negotiate the resource allocation to current activities. All available resources are reg-

istered on the blackboard. All activity modes register themselves on the blackboard

with resource requests and calculated priority value as soon as their predecessors

finish. Agent which activity finishes informs all the former’s successors about the

completion. Additionally, the learning agent is used to analyze the previous planning

actions, influence the process agents’ mode choices, restarts the planning procedure

and compares the result with the previous solution. The learning agent’s behavior

is controlled by heuristic. Its two main tasks are creating a feasible solution and

improving the feasible solution as far as possible.

The MAS proposed by Wenzler and Günthner was implemented as a discrete

event simulation (DES) system. The preliminary computational experiment has

been carried out using datasets from PSPLIB. Firstly, the effectiveness of the pro-

posed MAS in comparison with the same MAS without learning agent was shown.

76 5 Multi-mode Resource-Constrained Project Scheduling

Secondly, the results obtained for datasets j10, j12, j14, j16, j18, j20 and j30 were

compared with the best alternative methods known from the literature. The prelimi-

nary results are worse but some modifications are proposed.

5.4 A-Teams Solving the MRCPSP

In this section five variants of A-Teams implemented for solving the MRCPSP are

presented. All A-Teams have been constructed using JABAT environment. For each

A-Team variant a computational experiment has been carried out and results have

been discussed. In Sect. 5.4.1 the two first approaches with the single A-Teams using

the static cooperation strategy have been described, as well as the details of the com-

putational experiments which are the same for all of them. In Sect. 5.4.2 the essen-

tial modifications of the first approaches are indicated and the implementations of

algorithms used in the next A-Teams are presented. The next three sections include

descriptions of the single A-Teams with dynamic cooperation strategies based on:

reinforcement learning (RL) in Sect. 5.4.3, Population Learning in Sect. 5.4.4, and

integration of the best rules from previous approaches in Sect. 5.4.5. In each case the

computational experiments results follow. Finally in Sect. 5.4.6 the summary of the

proposed approaches are presented including comparison of the results with the best

results known from the literature.

5.4.1 Single A-Teams with the Static Cooperation Strategies

First A-Team based approaches to the RCPSP and MRCPSP were proposed in

[64, 65]. Base classes representing the RCPSP and MRCPSP instances were imple-

mented using JABAT middleware. The RCPSP variants are introduced in Sect. 4.4.

In order to solve the MRCPSP instances, classes representing activity and resource

have been adopted to store additional data and a new class mmMode is implemented

identifying the activity mode. Therefore, the proposed approach includes imple-

mentations of the following classes representing the MRCPSP: mmData, mmTask,

mmSolution, mmActivity, mmResource, and mmMode. The mmResource class

identifies both - renewable and non-renewable resource, storing the value represent-

ing the number of the resource units. The mmMode class identifies activity mode,

which attributes include the mode number, duration and two lists of the required

resources of both types. The mmActivity class, instead of activity duration and list

of resources, stores a list of modes representing by the mmMode class.

Six optimization algorithms are implemented and used as optimization agents.

These are as follows:

∙ Local Search Algorithm (mmLSA),

∙ Tabu Search Algorithm (mmTSA),

http://dx.doi.org/10.1007/978-3-319-62893-6_4

5.4 A-Teams Solving the MRCPSP 77

∙ Crossover Algorithm (mmCA),

∙ Minimal Critical Sets based Algorithm (mmMCSA),

∙ Precedence Tree Algorithm (mmPTA),

∙ Path Relinking Algorithm (mmPRA).

Each of them is adopted for the MRCPSP to work with the set of new classes.

Additionally, multiple modes of each activity and two types of resources are con-

sidered. For example, mmCA additionally check all possible modes of each activity,

and in mmLSA and mmTSA the move is adopted to represent also mode exchange.

Because the discussed algorithms have been undergoing several changes over var-

ious stages of development, final detailed versions used in the following computa-

tional experiment are described further on in Sect. 5.4.2.

All optimization agents work together and interact with the common memory

according to the basic interaction strategy, the same as in case of the RCPSP:

∙ The initial population is generated randomly,

∙ The individuals from the population are chosen randomly and immediately send

to optimization agents,

∙ An improved solution replaces the worst one from the population,

∙ The computation for one problem instance in this approach is interrupted after

5 min.

The approach proposed for the MRCPSP differs in the set of optimization agents

used. In these approaches the following optimization algorithms are implemented

and used as optimization agents:

∙ OAmmTSAe - implementing the Tabu Search Algorithm mmTSA,

∙ OAmmCA - implementing the Crossover Algorithm mmCA,

∙ OAmmMCSA - implementing the Minimal Critical Sets based Algorithm

mmMCSA
∙ OAmmPTA - implementing the Precedence Tree Algorithm mmPTA,

∙ OAmmPRA - implementing the Path Relinking Algorithm mmPRA.

The first experiments have been performed for the single A-Team with the basic

static cooperation strategy (SC Strategy) described above using OAmmLSA,

OAmmTSA, OAmmCA, OAmmMCSA and OAmmPTA. In the following part of

this work the approach is called SC1 Strategy.

The second series of experiments differs in the set of optimization agents and

cooperation strategy elements. In the set of optimization agents instead of the least

effective OAmmMCSA the OAmmPRA was used. In the cooperation strategy an

improved solution replaces the original one instead of the worse one from the pop-

ulation (common memory).

78 5 Multi-mode Resource-Constrained Project Scheduling

Table 5.1 PSPLIB test sets of the MRCPSP

Number of activities 10 12 14 16 18 20

Number of instances 536 547 551 550 552 554

The second set of experiments performed for the single A-Team with the sta-

tic cooperation strategy (SC Strategy) using OAmmLSA, OAmmTSA, OAmmCA,

OAmmPTA and OAmmPRA is called SC2 Strategy.

The proposed approaches have been validated experimentally using benchmark

instances test sets of the MRCPSP from PSPLIB. The following mm (multi mode)

test sets are used: j10 (multi-mode, 10 activities), j12, j14, j16, j18, and j20. For

each set 640 problem instances was generated, however the infeasible ones were

removed [53, 66]. Hence, the instances for which at least one feasible solution has

been found are used. The actual numbers of MRCPSP instances in considered data

sets are shown in Table 5.1.

The experiment involved computation with a fixed number of optimization agents,

fixed population sizes, and fixed stopping criteria.

During all experiments the following characteristics of the computational results

have been calculated and recorded: Mean Relative Error (Mean RE) and Maximal

Relative Error (Max RE) calculated as the deviation from the optimal solution and

the Critical Path Lower Bound (CPLB), Mean Computation Time (Mean CT) which

has been needed to find the best solution and Mean Total Computation Time (Mean

TCT) which has been needed to stop all optimization agents and the whole system.

Each instance has been solved five times and the results have been averaged over

these solutions.

All experiments have been carried out using nodes of the cluster Holk of the

Tricity Academic Computer Network built of 256 Intel Itanium 2 Dual Core 1.4 GHz

with 12 MB L3 cache processors and with Mellanox InfiniBand interconnections

with 10 Gb/s bandwidth.

The results presented in this book are recalculated in respect of the number of

generated schedules (SGS procedure calls, see Sect. 5.1), which has been limited to

5000. Some of the algorithms implementations have been modified and improved in

respect of the Java language structures.

The results obtained for the two first approaches to solve the MRCPSP by the A-

Team implemented in JABAT are summarized in Tables 5.2 and 5.3. It can be seen

that the second approach is most effective with respect to the Mean RE and Mean

CT. The best improvement was obtained for the set j18 including instances with 18

activities.

5.4 A-Teams Solving the MRCPSP 79

Table 5.2 Experiment results for the A-Team with SC1 Strategy solving the MRCPSP

Number of

activities

Mean RE

from opt*/bk

solution [%]

Max RE

from opt*/bk

solution [%]

Mean RE from

CPLB [%]

Max RE from

CPLB [%]

Mean

CT [s]

Mean

TCT [s]

10 0.75 10.53 30.77 314.29 43 76

12 0.76 12.5 25.42 166.67 51 88

14 0.80 25.0 22.57 193.33 51 97

16 0.83 11.11 19.00 164.29 50 91

18 0.98 18.00 18.68 153.33 40 76

20 1.85 22.58 18.60 161.54 59 115

Table 5.3 Experiment results for the A-Team with SC2 Strategy solving the MRCPSP

Number of

activities

Mean RE

from opt*/bk

solution [%]

Max RE

from opt*/bk

solution [%]

Mean RE from

CPLB [%]

Max RE from

CPLB [%]

Mean

CT [s]

Mean

TCT [s]

10 0.69 18.75 30.66 314.29 22 46

12 0.70 23.53 25.72 207.14 29 59

14 0.76 18.75 22.62 193.33 30 63

16 0.79 10.79 19.09 164.29 25 47

18 0.91 18.75 18.65 153.33 23 40

20 1.81 21.54 18.50 156.16 29 64

5.4.2 Algorithms Used in the Further A-Team Approaches

During the first experiments some problems and disadvantages of the environment,

strategies and optimization agents were occurred which resulted in several modifi-

cations. In this section the algorithms used in all subsequent JABAT based A-Team

approaches are presented.

To describe the above algorithms and present their pseudocodes the following

auxiliary functions are used:

∙ minCT - requires two schedules (individuals) as arguments and returns the better

one with respect to the project duration (see Fig. 4.2 in Sect. 4.4.1).

∙ mmMakeMove - moves the activity form one position in the schedule (activity list)

to the another position and simultaneously changes its active mode, the modified

schedule is returned as the result (Fig. 5.1).

∙ mmReverseMove - cancels the move in the schedule and returns the previous

schedule as the result (Fig. 5.2)

∙ mmMakeExchange - exchanges the activities at the two given positions in the

schedule and simultaneously changes its active mode, as the result returns the

modified schedule (Fig. 5.3).

http://dx.doi.org/10.1007/978-3-319-62893-6_4

80 5 Multi-mode Resource-Constrained Project Scheduling

mmMakeMove(S, pi,mpi,mnew
pi , pj)

{
S0= S
Change active mode of activity from position pi from mpi to mnew

pi
Move activity from position pi to position pj in S
if(precedence and resource constraints in S are satisfied)

return S
else return S0

}

Fig. 5.1 Pseudocode of the mmMakeMove function

mmReverseMove(S, pi,mpi,mnew
pi , pj)

{
Move activity from position pj to position pi in S
Change active mode of activity from position pi from mnew

pi to mpi

return S
}

Fig. 5.2 Pseudocode of the mmReverseMove function

mmMakeExchange(S, pi,mpi,mnew
pi , pj,mpj,mnew

pj)
{

S0= S
Change active mode of activity from position pi from mpi to mnew

pi
Change active mode of activity from position pj from mpj to mnew

pj
Exchange activities from positions pi and pj
if(precedence and resource constraints in S are satisfied)

return S
else return S0

}

Fig. 5.3 Pseudocode of the mmMakeExchange function

∙ mmReverseExchange - reverses the exchange move in the schedule and returns

the previous schedule as the result (Fig. 5.4).

Active mode is understood as the current mode used to construct the schedule.

The pseudocodes of the optimization algorithms are presented in Figs. 5.5, 5.6,

5.7 and 5.8.

The mmLSA is a local search algorithm which finds local optimum by moving

each activity to all possible places in the schedule (in mmLSAm) or by exchang-

ing pairs of activities (in mmLSAe), simultaneously changing the active modes of

these activities. After such defined moves of the local search the emerging solution

(i.e. schedule) is generated through applying SGS. For each combination of activities

and modes the value of possible solution is calculated. The best schedule is remem-

5.4 A-Teams Solving the MRCPSP 81

mmReverseExchange(S, pi,mpi,mnew
pi , p j,mpj,mnew

pj)
{

Exchange activities from positions pi and pj in S
Change active mode of activity from position pi from mnew

pi to mpi

Change active mode of activity from position p j from mnew
pj to mpj

return S
}

Fig. 5.4 Pseudocode of the mmReverseExchange function

mmLSAm(S,itNumber,iStep, f Step)
{

bestS= S
it = 0
while(it < itNumber)
{

for(step= iStep; step< f Step; step= step+1)
{

pi= ++pi% (n− step)+1
for(pj = pi; p j < n− step; pj = pj+ step)
{

mpi = active mode of activity from position pi
for(each mode mnew

pi of activity from position pi except mpi)
{

mmMakeMove(S, pi,mpi,mnew
pi , pj)

SGS(S)
if(CT (S)<CT (bestS)) bestS= S
mmReverseMove(S, pi,mpi,mnew

pi , pj)
}

}
}
it++

}
return bestS

}

Fig. 5.5 Pseudocode of the mmLSAm algorithm

bered and finally returned. The pseudocode of the mmLSAm is shown in the Fig. 5.5.

The mmLSAm procedure requires four variables, just like the smLSAm. The first, S
denotes an initial schedule (individual). The second, itNumber is the number of iter-

ation for the algorithm. The last two, iStep and fStep indicate the initial and final dis-

tance between activities under moving or exchange. The pseudocode of the mmLSAe
algorithm differs mainly in using the mmMakeExchange instead of mmMakeMove
function and mmReverseExchange instead of mmReverseMove function, hence it is

not presented separately.

82 5 Multi-mode Resource-Constrained Project Scheduling

mmTSAe(S,pi,maxItNWI,step)
{

TabuList =
it = 0
bestS= S
while(it < maxItNWI)
{

bestSit =null
for(p j = pi+1; p j < n−1; p j = p j+ step)
{

mpi = active mode of activity from position pi
mpj = active mode of activity from position pj
for(each mode mnew

pi of activity from position pi)
for(each mode mnew

p j of activity from position pj)
if(mnew

pi != mpi || mpj != mnew
pj)

{
move= (S, pi,mpi,mnew

pi , pj,mpj,mnew
pj)

if(move is not in TabuList)
{

mmMakeExchange(move)
SGS(S)
if(CT (S)<CT (bestSit)) bestSit = S
mmReverseExchange(move)

}
}

}
Update TabuList
if(bestSit is not null)
{

if(T (bestSit)< T (bestS))
{

bestS= bestSit
it = 0

}
add moves to TabuList:

(pi,mpi,mi, pj,mpj,mj,maxItNWI)
(null,null,null, pi,mpi,null,�n/4�)
(null,null,null, pi,mi,null,�n/4�)
(pi,mpi,null,null,null,null,�n/2�)
(pi,mi,null,null,null,null,�n/2�)
(p j,null,null, pi,null,null,�maxItNWI/2�)

}
else it++
pi= pi% (n−2)+1

}
return bestS

}

Fig. 5.6 Pseudocode of the mmTSAe algorithm

5.4 A-Teams Solving the MRCPSP 83

mmCA(S1,S2,step)
{

bestS=minCT(S1,S2);
for(pi= 1; pi ≤ n; pi= pi+ step)
{

Do simple (one point) crossover on S1 and S2 in point pi
mpi = active mode of activity from position pi
for(each mode mpi of activity from position pi)
{

Change active mode mpi of activity from position pi to mnew
pi in S1

SGS(S1)
Change active mode mpi of activity from position pi to mnew

pi in S2
SGS(S2)
bestS=minCT(bestS,minCT(S1,S2));

}
}
return bestS;

}

Fig. 5.7 Pseudocode of the mmCA algorithm

mmPRA(S1,S2)
{

bestS=minCT(S1,S2);
S= S1
for(pi= 1; pi ≤ n; pi++)
{

mpi = active mode of activity from position pi
for(each mode mnew

pi of activity from position pi except mpi)
{

p j = position in S of activity from position pi in S2
mmMakeMove(S, pi,mpi,mnew

pi , p j)
if(CT (S)<CT (bestS)) bestS= S

}
}
return bestS

}

Fig. 5.8 Pseudo-codes of the mmPRA algorithm

The mmTSAe algorithm is an implementation of tabu search metaheuristic [67–

69]. It finds local optimum by exchanging each two activities in the schedule, for

which such exchange is possible. The best exchange move from the neighborhood of

the solution, which is not tabu, is chosen and performed. The pseudocode of the pro-

posed mmTSAe is shown in Fig. 5.6. The algorithm smTSAe was adjusted to solv-

ing the MRCPSP. The main differences are using the modes and checking different

84 5 Multi-mode Resource-Constrained Project Scheduling

modes of exchanged activities. For this reason the new exchange move was defined

including the active (current) modes and new modes of both exchanged activities.

The tabu list TabuList has been implemented to store the information of recent

moves which should not be repeated by a fixed number of iterations. For example:

∙ Setting the exchange move (pi,mpi,mi, pj,mpj,mj,maxItNWI) as the tabu one pre-

vents from repeating the same exchange by maxItNWI iterations. It blocks for

maxItNWI iterations all moves that exchange activity from position pi with activ-

ity from position pj and simultaneously change the active mode of activity from

position pi from mpi to mi, and active mode of activity from position pj from mpj
to mj.

∙ Setting the exchange move (null, null, null, pi,mpi, null, ⌊n∕4⌋) as the tabu one

blocks exchanges of any activity with activity from position pi with active mode

mpi for ⌊n∕4⌋ iterations.

The best schedule is remembered and finally returned.

The pseudocode of the mmTSAm differs mainly in using the mmMakeMove
instead of mmMakeExchange function and the mmReverseMove instead of mmRe-
verseExchange function, so it is not presented separately.

The mmCA is an algorithm based on the idea of the one point crossover operator.

For a pair of solutions S1, S2 one point crossover is applied. The parameter step
determines frequency this operation is performed. Next, for the crossover offspring

at point pi both solutions are evaluated for different new modes. The best schedule

is remembered and finally returned. The pseudocode of the mmCA is shown in the

Fig. 5.7.

ThemmPRA, as in case of the RCPSP, is the implementation of the path-relinking

algorithm [70, 71]. For a pair of solutions a path between them is constructed. The

path consists of schedules obtained by carrying out a single move from the preceding

schedule. Such move is performed by the mmMakeMove function (see Fig. 5.1). For

each schedule in the path the value of the respective solution is checked. The best

schedule is remembered and finally returned. The pseudocode of the mmPRA is

shown in the Fig. 5.8.

Four optimization algorithms originally proposed in [72] are used in all subse-

quent A-Teams implementations described in this section. There are: mmLSAm,

mmTSAe, mmCA, and mmPRA (see Figs. 5.5, 5.6, 5.7 and 5.8). The following opti-

mization agents derived from OptiAgent class are used:

∙ OAmmLSAm - implementing the Local Search Algorithm with simple shifting

move mmLSAm,

∙ OAmmTSAe - implementing the Tabu Search Algorithm with exchange move

mmTSA,

∙ OAmmCA - implementing the Crossover Algorithm mmCA,

∙ OAmmPRA - implementing the Path Relinking Algorithm mmPRA.

Similarly to the optimization algorithms and optimization agents the cooperation

strategy has been evolving during the research development. The modified imple-

mentations of algorithms for the MRCPSP arose from the A-Team approaches pro-

5.4 A-Teams Solving the MRCPSP 85

posed for the RCPSP/max and MRCPSP/max developed from 2008 to 2011. These

algorithms are described in [73] for the RCPSP/max and MRCPSP/max and in [72,

74–76] for the RCPSP and MRCPSP. The details of the basic static cooperation strat-

egy with blocking can be found in Sect. 5.4.3 and [72].

5.4.3 A-Team with Dynamic Cooperation Strategy
with Reinforcement Learning

Both the above described variants of A-Team solving instances of the MRCPSP use

the static cooperation strategies. As in case of the RCPSP, there is a space for the

performance improvements through using the dynamic strategies. Idea of applying

the dynamic strategy with reinforcement learning to the MRCPSP originates from

[72] where DCRL Strategy was proposed and experimentally validated. The DCRL
Strategy approach has been described in Sect. 4.4.4 for the RCPSP. In case of the

MRCPSP the strategy has been extended with the fourth rule. Hence, the following

rules are considered:

∙ RL1 - controls replacement of one individual from the population by another, ran-

domly generated one.

∙ RL2 - controls the method of selecting an individual for replacement.

∙ RL3 - controls the process of clustering individuals in the population according to

certain features, and next selecting a cluster.

∙ RL4 - controls the procedure of selecting individuals to be forwarded to optimiza-

tion agents from the cluster chosen by RL3.

The first three rules, as well as probabilities and weights used, are described in

Sect. 4.4.4. The RL4 rule is complementary to the RL3. For each individual from the

population the matrix of weights is remembered. It reflects results of the subsequent

improvement attempts. In the considered case the matrix of four weights is used, one

for each OptiAgent. The initial weights are identical. After receiving an “improved”

individual from the OptiAgent the respective weight is decreased when the value of

solution is worse and increased when this value is better or equal to the one before

the attempted improvement took place. The probability of selecting an individual for

improvement is calculated as

PAlg
S =

wAlg
S

∑
i∈GRL3

wAlg
i

,

where GRL3 is the group of individuals indicated by RL3.

The rules RL1 and RL2 are used consecutively just before adding the new solution

to the population after receiving it by the SolutionManager from the OptiAgent. The

RL3 and RL4 rules are used just before reading the solution from the population. The

RL3 and RL4 act asynchronously to the RL1 and RL2.

http://dx.doi.org/10.1007/978-3-319-62893-6_4
http://dx.doi.org/10.1007/978-3-319-62893-6_4

86 5 Multi-mode Resource-Constrained Project Scheduling

The proposed four rules are integrated with the static blocking strategy extending

it to the dynamic one (see Sect. 4.4.4). Furthermore, the following combinations of

the control elements are considered:

∙ RL34 - RL3 and RL4.

∙ RL123 - RL1 and RL2 and RL3.

∙ RL1234 - RL1 and RL2 and RL3 and RL4.

Each single rule as well as each of their combinations may be used in a separate

dynamic cooperation strategy. The details of this approach can be found in [72].

In this book theRL123 andRL1234 strategy variants are considered, calledDCRL
Strategy and DCRL4 Strategy, respectively.

Computational experiments show that the proposed approaches are effective in

solving instances of the MRCPSP. The best dynamic strategy with reinforcement

learning uses all four rules (DCRL4 Strategy), but the differences as compared with

other strategies are not significant. In comparison with DCRL Strategy the Mean RE

and Max RE are slightly lower or equal in case of the data sets j16 and j20. However,

for the DCRL4 Strategy approach the computational times are shorter. The results

obtained by using these strategies are presented in Tables 5.4 and 5.5.

Table 5.4 Experiment results for the A-Team with DCRL Strategy solving the MRCPSP

Number of

activities

Mean RE

from opt*/bk

solution [%]

Max RE

from opt*/bk

solution [%]

Mean RE from

CPLB [%]

Max RE from

CPLB [%]

Mean

CT [s]

Mean

TCT [s]

10 0.34 8.71 30.17 314.29 1.21 11.53

12 0.46 23.53 25.28 206.25 1.23 18.55

14 0.58 18.75 22.41 193.33 3.17 22.42

16 0.76 11.11 19.05 164.29 3.38 23.67

18 0.95 18.21 18.69 153.33 3.87 26.78

20 1.58 20.59 18.11 161.54 4.11 30.32

Table 5.5 Experiment results for the A-Team with DCRL4 Strategy solving the MRCPSP

Number of

activities

Mean RE

from opt*/bk

solution [%]

Max RE

from opt*/bk

solution [%]

Mean RE from

CPLB [%]

Max RE from

CPLB [%]

Mean

CT [s]

Mean

TCT [s]

10 0.31 8.63 30.14 312.45 1.71 13.75

12 0.43 19.47 25.25 202.98 1.42 18.56

14 0.54 17.99 22.37 192.13 3.19 22.42

16 0.76 10.53 19.05 158.97 3.39 22.27

18 0.94 18.03 18.68 150.02 3.85 26.04

20 1.58 19.80 18.11 154.73 4.17 30.32

http://dx.doi.org/10.1007/978-3-319-62893-6_4

5.4 A-Teams Solving the MRCPSP 87

5.4.4 A-Team with Dynamic Cooperation Strategy Based
on Population Learning

Further studies of the JABAT based A-Team implementations for solving the

MRCPSP instances have involved cooperation strategies mainly. In this section the

approach based on the population learning algorithm (PLA) is described. The DCPL
Strategy proposed for RCPSP in Sect. 4.4.5 can be adopted to the multiple mode

case. The differences are in using the JABAT classes and in the optimization algo-

rithms implementation. Moreover, two modified versions of mmLSA and mmTSA
algorithms are used: mmLSAe where the exchange move is used, and mmTSAm
where the simple shifting move is used, similarly as in case of the RCPSP. The

algorithms are implemented as optimization agents and additional OAmmLSAe and

OAmmTSAe agents are added. Under the above described assumptions the follow-

ing optimization agents are used:

∙ OAmmLSAm - implementing the Local Search Algorithm mmLSAm,

∙ OAmmLSAe - implementing the Local Search Algorithm mmLSAe,

∙ OAmmTSAm - implementing the Tabu Search Algorithm mmTSAm,

∙ OAmmTSAe - implementing the Tabu Search Algorithm mmTSAe,

∙ OAmmCA - implementing the Crossover Algorithm mmCA,

∙ OAmmPRA - implementing the Path Relinking Algorithm mmPRA.

To validate the approach three PLA based strategies have been implemented and

tested, including 1, 2 or 3 learning stages. In each stage a different set of parameters

and optimisation agents is used. In the PLA more advanced stages are entered by

a diminishing number of individuals from the initial population. The best one, as

in case of the RCPSP, occurs strategy using all three learning stages called DCPL
Strategy. The sets of settings for this strategy, the same as in case of the RCPSP,

are presented in Table 5.7. The values in brackets for optimization agents denote

numbers of iterations of the respective optimization algorithms according to their

descriptions in Sect. 5.4.2. For the LSA it is the total number of iterations, and for

the TSA the maximum number of iterations in which no improvement is found. The

nSGS denotes the number of SGS procedure calls performed by the algorithm. The

avgDiv(P) denotes average diversity in the population.

Computational experiment shows that the proposed DCPL Strategy approach is

efficient. The results are presented in Table 5.6. With respect to the mean relative

error they are better than the results obtained by DCRL4 Strategy by an average of

23.41%, and DCRL Strategy by an average of 26.64%. The best improvement has

been obtained for instances from j16 (44.7%) and j12 (32.6%) data sets. The least for

instances from j14 (8.6%) data set.

http://dx.doi.org/10.1007/978-3-319-62893-6_4

88 5 Multi-mode Resource-Constrained Project Scheduling

Table 5.6 Parameter values for three learning stages used in DCPL Strategy

Stage 1

Initial weights wmgr = 50, wmgrc = 50, wmgb = 0, wmgbc = 0
wmrr = 100, wmrw = 0, wmrt = 0

Optimization agents OAmmCA, OAmmPRA

Selection criteria 𝛼 = 0.5
Stopping criteria avgDiv(P)< 0.1 and nSGS> 2000

Stage 2

Initial weights wmgr = 25, wmgrc = 25, wmgb = 25, wmgbc = 25
wmrr = 34, wmrw = 33, wmrt = 33

Optimization agents OAmmLSAm(5n), OAmmLSAe(5n)

Selection criteria 𝛼 = 0.5
Stopping criteria avgDiv(P)< 0.5 and nSGS> 1500

Stage 3

Initial weights wmgr = 0, wmgrc = 0, wmgb = 50, wmgbc = 50
wmrr = 0, wmrw = 20, wmrt = 80

Optimization agents OAmmTSAm(2n), OAmmTSAe(2n)

Selection criteria 𝛼 = 0.8
Stopping criteria avgDiv(P)< 0.05 and nSGS> 1500

Table 5.7 Experiment results for the A-Team with DCPL Strategy solving the MRCPSP

Number of

activities

Mean RE

from opt*/bk

solution [%]

Max RE

from opt*/bk

solution [%]

Mean RE from

CPLB [%]

Max RE from

CPLB [%]

Mean

CT [s]

Mean

TCT [s]

10 0.25 8.7 30.05 314.29 1.28 13.05

12 0.31 23.53 25.12 206.25 1.29 20.32

14 0.53 18.75 22.36 193.33 3.31 22.69

16 0.42 10.00 18.63 164.29 3.53 24.64

18 0.71 12.90 18.35 153.33 4.28 26.15

20 1.23 11.02 17.62 161.54 4.46 31.47

5.4.5 A-Team with Dynamic Cooperation Strategy Based on
Integration

Good performance of both so far discussed dynamic cooperation strategies: DCRL
Strategy and DCPL Strategy, stood behind an attempt to integrate them expecting

a synergetic effect. The idea was proposed in [77] where the Dynamic Cooperative

Interaction Strategy (DCI Strategy) for the RCPSP was described. To standardize

terminology the strategy is called the Dynamic Cooperation Strategy based on the

5.4 A-Teams Solving the MRCPSP 89

Table 5.8 Experiment results for the A-Team with DCI Strategy solving the MRCPSP

Number of

activities

Mean RE

from opt*/bk

solution [%]

Max RE

from opt*/bk

solution [%]

Mean RE from

CPLB [%]

Max RE from

CPLB [%]

Mean

CT [s]

Mean

TCT [s]

10 0.23 8.01 30.00 300.43 1.29 12.96

12 0.29 23.53 25.09 206.25 1.33 21.08

14 0.48 12.50 22.31 193.33 3.25 21.73

16 0.37 7.59 18.56 164.29 3.47 21.20

18 0.67 12.91 18.30 153.33 4.10 25.37

20 1.12 9.96 17.47 161.54 4.39 31.27

Integration of the best rules from previous approaches, notation remains the same -

DCI Strategy.

In Sect. 4.4.6 the DCI Strategy for solving RCPSP has been described where

the best ideas from RL and PL based strategies are combined together. A similar

approach with the JABAT structure implementation for the multi-mode RCPSP can

be used to solve the MRCPSP instances.

Like in the population learning based strategy six optimization agents, repre-

senting six optimization algorithms are used: mmLSAm, mmLSAe, mmTSAm and

mmTSAe, mmCA, mmPRA.

The general schema of the DCI Strategy, as well as methods of generating a new

individual and methods of replacing an individual from the population by a new

one are described in Sect. 4.6.6 and [77]. They remain the same for the single and

multi-mode problem.

The proposed approach has been validated experimentally, and the results are

shown in Table 5.8. It can be observed that the A-Team using DCI Strategy approach

is effective in solving MRCPSP. It also appears that the DCI Strategy approach is

more efficient than the DCRL, DCRL4 and DCPL Strategy approaches. The results

for DCI Strategy are improved by an average of 8.4% in comparison with DCPL
Strategy and of 29.8% in comparison with DCRL4 Strategy. The best improvement

has been obtained for instances from the test set j16 (11.9, 51.3%) with 16 activities.

5.4.6 Concluding Remarks

Computational experiments results show that proposed A-Team architectures are

effective for solving the MRCPSP. The Mean Relative Errors (Mean RE) from opti-

mal results presented in this section are summarized in Table 5.9. The graphical rep-

resentation of these results are shown in Fig. 5.9. The most effective approaches are

A-Teams with PLA-Strategy and DCI Strategy. In both these approaches six opti-

http://dx.doi.org/10.1007/978-3-319-62893-6_4
http://dx.doi.org/10.1007/978-3-319-62893-6_4

90 5 Multi-mode Resource-Constrained Project Scheduling

mization algorithms and six optimization agents representing these algorithms have

been used: mmCA, mmPRA, mmLSAm, mmLSAe, mmTSAm and mmTSAe.

To check whether there is a significant difference between the considered

A-Teams (i.e. cooperation strategies) the non-parametric Friedman test has been

used. It makes possible to answer the question weather particular working strategies

are equally effective independently of the kind of problem being solved.

Additionally, the mean ranks calculated for each A-Team have been inspected to

roughly evaluate the effectiveness of the A-Teams.

The test is based on ranks assigned to each A-Team participating in the exper-

iment, i.e. A-Team with SC1, SC2, DCRL, DCRL4, DCPL, and DCI Strategy. To

assign ranks, the 6 point scale was used, with 6 points for the best and 1 point for the

worst result found by the A-Team for a particular problem instance. When the results

are identical, the same amount of points equaled the mean of consecutive ranks is

assigned to each such result (i.e. there are ties among ranks).

The test aimed at deciding among the following hypotheses:

Table 5.9 Mean RE from the optimal solution for JABAT-based A-Team approaches to solve

MRCPSP discussed in this section

Number of

activities

SC1
Strategy
[%]

SC2
Strategy
[%]

DCRL
Strategy
[%]

DCRL4
Strategy
[%]

DCPL
Strategy
[%]

DCI
Strategy
[%]

10 0.75 0.69 0.34 0.31 0.25 0.23

12 0.76 0.70 0.46 0.43 0.31 0.29

14 0.80 0.76 0.58 0.54 0.53 0.48

16 0.83 0.79 0.76 0.76 0.42 0.37

18 0.98 0.91 0.95 0.94 0.71 0.67

20 1.85 1.81 1.58 1.58 1.23 1.12

Fig. 5.9 Graphical representation of the results from Table 5.9

5.4 A-Teams Solving the MRCPSP 91

Table 5.10 Values of the 𝜒

2

statistics for the MRCPSP
Number of activities 𝜒

2

10 115.13

12 98.33

14 81.27

16 1746.80

18 47.67

20 1158.42

H0 zero hypothesis: A-Teams (cooperation strategies) are statistically equally effec-

tive i.e. obtain similar results with nonsignificant differences,

H1 alternative hypothesis: not all A-Teams (cooperation strategies) are equally effec-

tive.

The test has been performed on 6 cooperation strategies and 6 data sets of the con-

sidered multi-mode RCPSP from PSPLIB: j10, j12, j14, j16, j18, and j20, including

536, 547, 551, 550, 552, and 554 instances, respectively. The analysis has been car-

ried out at the significance level of 0.05 and 5 degrees of freedom. The respective

values of the 𝜒

2
statistics are shown in Table 5.10.

The critical value of 𝜒
2

distribution for the assumed values equals 11.07. Since

the obtained values of the statistics 𝜒

2
, in all cases, are greater than the critical

one, hypothesis H0 is rejected. Thus, the obtained result proves hypothesis H1 which

claims that not all A-Teams are equally effective in solving the MRCPSP instances.

The mean values of ranks, calculated for the considered A-Team, might suggest

some ranking with respect to their efficiency. These are shown in the Fig. 5.10.

As it could be seen from the Fig. 5.10, in all cases two A-Teams can be considered

as slightly superior. They have similar mean ranks, although the A-Team with DCI
Strategy is always the better one. Additionally, in case of the instances including

10, 12, and 14 activities four A-Teams with dynamic cooperation strategies (DCRL,

DCPL DCRL4 and DCI) are clearly visible as superior to the A-Teams with static

strategies. In case of the data set including instances with 16 activities the mean

ranks for the A-Teams with DCPL Strategy and DCI Strategy are noticeably higher.

Computational experiments allow to state that the proposed approaches to solving

MRCPSP using A-Team implementation can be considered as useful and competitive

tools for solving instances of the MRCPSP. The obtained results are comparable

with the best results known from the literature. Such comparison is presented in

Table 5.11. The presented comparison includes results from the other multi-agent

system using reinforcement learning, denoted as MAS with RL, which has been

proposed recently by Wauters et al. [61] (see Sect. 5.3). It gives slightly better results.

In MAS with RL approach the similar methods based on reinforcement learning

have been used, but the structure of the system is different. Each agent represents an

activity and uses learning automata.

Other approaches from the literature includes: distribution algorithm, genetic

algorithm, scatter search and hybrid methods. All of them uses the same test sets

92 5 Multi-mode Resource-Constrained Project Scheduling

Fig. 5.10 The mean values of Friedman test ranks for the MRCPSP

from PSPLIB and all of them produce quite similar results. The differences between

the Mean RE reported in the literature for the presented algorithms are small: from

0.22% for the test set j10 to 1.32% for the test set j20. The detailed and honest compar-

ison is difficult because of the different systems, platforms and machines (processors)

used. In respect to the practical applications the differences for the larger projects

are more significant, so the proposed approaches for projects with higher number of

activities should be tested and compared. It is worth mentioning that in agent based

approaches computations are performed by many processors (nodes) working in par-

allel. Additionally, computation times include times used by agents to prepare, send

and receive messages.

5.4 A-Teams Solving the MRCPSP 93

Table 5.11 Literature reported results [32, 34, 35, 61]

Set Algorithm Authors Mean RE

[%]

Mean CT

[s]

CPU

mm10 Distribution algorithm Wang and Fang 0.01 1 2.2 GHz

Genetic algorithm Van Peteghem

and Vanhoucke

0.01 0.12 2.8 GHz

Hybrid genetic algorithm Lova et al. 0.04 0.1 3 GHz

MAS with RL Wauters et al. 0.05 0.8 2.8 GHz

A-Team with DCI Strategy 0.23 1.29 1.4GHz

mm12 Distribution algorithm Wang and Fang 0.02 1.8 2.2 GHz

Genetic algorithm Van Peteghem

and Vanhoucke

0.09 – –

MAS with RL Wauters et al. 0.08 1.0 2.8 GHz

Hybrid genetic algorithm Lova et al. 0.17 – –

A-Team with DCI Strategy 0.29GHz 1.33 1.4
Hybrid scatter search Ranjbar et al. 0.65 10 3 GHz

mm14 Distribution algorithm Wang and Fang 0.03 1 2.2 GHz

Genetic algorithm Van Peteghem

and Vanhoucke

0.22 0.14 2.8 GHz

MAS with RL Wauters et al. 0.23 1.4 2.8 GHz

Hybrid genetic algorithm Lova et al. 0.32 0.11 3 GHz

A-Team with DCI Strategy 0.48 3.25 1.4GHz

Hybrid scatter search Ranjbar et al. 0.89 10 3 GHz

mm16 Distribution algorithm Wang and Fang 0.17 1 2.2 GHz

Genetic algorithm Van Peteghem

and Vanhoucke

0.32 0.15 2.8 GHz

MAS with RL Wauters et al. 0.30 1.7 2.8 GHz

A-Team with DCI Strategy 0.37 3.47 1.4GHz

Hybrid genetic algorithm Lova et al. 0.44 0.12 3 GHz

Hybrid scatter search Ranjbar et al. 0.95 10 3 GHz

mm18 Distribution algorithm Wang and Fang 0.19 1 2.2 GHz

Genetic algorithm Van Peteghem

and Vanhoucke

0.42 0.16 2.8 GHz

MAS with RL Wauters et al. 0.53 1.9 2.8 GHz

Hybrid genetic algorithm Lova et al. 0.63 0.13 3 GHz

A-Team with DCI Strategy 0.67 4.10 1.4GHz

Hybrid scatter search Ranjbar et al. 1.21 10 3 GHz

mm20 Distribution algorithm Wang and Fang 0.32 1 2.2 GHz

Genetic algorithm Van Peteghem

and Vanhoucke

0.57 0.17 2.8 GHz

MAS with RL Wauters et al. 0.70 2.1 2.8 GHz

Hybrid genetic algorithm Lova et al. 0.87 0.15 3 GHz

A-Team with DCI Strategy 1.12 4.39 1.4GHz

Hybrid scatter search Ranjbar et al. 1.64 10 3 GHz

94 5 Multi-mode Resource-Constrained Project Scheduling

References

1. Talbot, F.B.: Resource-constrained project scheduling with time-resource trade-offs: the non

preemptive case. Manag. Sci. 28(10), 1197–1210 (1982)

2. Błażewicz, J., Lenstra, J., Rinnooy, A.: Scheduling subject to resource constraints: classifica-

tion and complexity. Discret. Appl. Math. 5, 11–24 (1983)

3. Kölisch, R.: Project scheduling under resource constraints — efficient heuristics for several

problem classes. Ph.D. thesis, Physica, Heidelberg (1995)

4. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project

scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112, 3–41 (1999)

5. Demeulemeester E., Herroelen W.: Project Scheduling: A Research Handbook. Kluwer Acad-

emic Publishers (2002)

6. Boctor, F.: Heuristics for scheduling projects with resource restrictions and several resource-

duration modes. Int. J. Prod. Res. 31, 2547–2558 (1993)

7. Boctor, F.: A new and efficient heuristic for scheduling projects with resource restrictions and

multiple execution modes. Eur. J. Oper. Res. 90, 349–361 (1996)

8. Sprecher, A.: Resource-Constrained Project Scheduling: Exact Methods for the Multi-Mode

Case. Springer (1994)

9. Hartmann, S., Drexl, A.: Project scheduling with multiple modes: a comparison of exact algo-

rithms. Networks 32, 283–297 (1998)

10. Herroelen, W.S., De Reyck, B., Demeulemeester, E.L.: Resource-constrained project schedul-

ing: a survey of recent developments. Comput. Oper. Res. 25(4), 279–302 (1998)

11. Kölisch, R., Padman, R.: An integrated survey of deterministic project scheduling. OMEGA

Int. J. Manag. Sci. 29(3), 249–272 (2001)

12. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained

project scheduling problem. Eur. J. Oper. Res. 207, 1–14 (2010)

13. Węglarz, J., Józefowska, J., Mika, M., Waligóra, G.: Project scheduling with finite or infinite

number of activity processing modes – a survey. Eur. J. Oper. Res. 208, 177–205 (2011)

14. Peteghem, V.V., Vanhoucke, M.: An experimental investigation of metaheuristics for the multi-

mode resource-constrained project scheduling problem on new dataset instances. Eur. J. Oper.

Res. 235(1), 62–72 (2014)

15. Mika, M., Waligóra, G., Węglarz, J.: Overview and state of the art. In: Handbook on Project

Management and Scheduling, vol. 1, pp. 445–490. Springer International Publishing (2015)

16. Słowiński, R.: Two approaches to problems of resource allocation among project activities – a

comparative study. J. Oper. Res. Soc. 8, 711–723 (1980)

17. Patterson, J., Słowiński, R., Talbot, F., Węglarz, J.: An algorithm for a general class of prece-

dence and resource constrained scheduling problem. In: Advances in Project Scheduling, pp.

3–28. Elsevier, Amsterdam (1989)

18. Speranza, M., Vercellis, C.: Hierarchical models for multi-project planning and scheduling.

Eur. J. Oper. Res. 64, 312–325 (1993)

19. Hartmann, S., Sprecher, A.: A note on hierarchical models for multi-project planning and

scheduling. Eur. J. Oper. Res. 94, 377–383 (1996)

20. Sprecher, A., Hartmann, S., Drexl, A.: An exact algorithm for the project scheduling with

multiple modes. OR Spectr. 19, 195–203 (1997)

21. Sprecher, A., Drexl, A.: Solving multi-mode resource-constrained project scheduling prob-

lems by a simple, general and powerful sequencing algorithm. Eur. J. Oper. Res. 107, 431–450

(1998)

22. Zhu, G., Bard, J., Tu, G.: A branch-and-cut procedure for the multimode resource-constrained

project-scheduling problem. J. Comput. 18(3), 377–390 (2006)

23. Drexl, A., Grünewald, J.: Nonpreemptive multi-mode resource-constrained project scheduling.

IIE Trans. 25, 74–81 (1993)

24. Özdamar, L., Ulusoy, G.: A local constraint based analysis approach to project scheduling

under general resource constraints. Eur. J. Oper. Res. 79, 287–298 (1994)

References 95

25. Özdamar, L., Ulusoy, G.: A survey on the resource-constrained project scheduling problem.

IIE Trans. 27(5), 574–586 (1995)

26. Kölisch, R., Drexl, A.: Local search for nonpreemptive multi-mode resource-constrained

project scheduling. IIE Trans. 29, 987–999 (1997)

27. Mori, M., Tseng, C.: A genetic algorithm for the multi-mode resource constrained project

scheduling problem. Eur. J. Oper. Res. 100, 134–141 (1997)

28. Özdamar, L.: A genetic algorithm approach to a general category project scheduling problem.

IEEE Trans. Syst. Man Cybern. 29(1), 44–59 (1999)

29. Hartmann, S.: Project scheduling with multiple modes: a genetic algorithm. Ann. Oper. Res.

102, 111–135 (2001)

30. Alcaraz, J., Maroto, C., Ruiz, R.: Solving the multi-mode resource-constrained project schedul-

ing problem with genetic algorithms. J. Oper. Res. Soc. 54(6), 614–626 (2003)

31. Tseng, L.-Y., Chen, S.-C.: Two-phase genetic local search algorithm for the multimode

resource-constrained project scheduling problem. IEEE Trans. Evol. Comput. 13, 848–857

(2009)

32. Peteghem, V.V., Vanhoucke, M.: A genetic algorithm for the preemptive and non-preemptive

multi-mode resource-constrained project scheduling problem. Eur. J. Oper. Res. 201, 409–418

(2010)

33. Coelho, J., Vanhoucke, M.: Multi-mode resource-constrained project scheduling using RCPSP

and SAT solvers. Eur. J. Oper. Res. 213, 73–82 (2011)

34. Lova, A., Tormos, P., Cervantes, M., Barber, F.: An efficient hybrid genetic algorithm for

scheduling projects with resource constraints and multiple execution modes. Int. J. Prod. Econ.

117, 302–316 (2009)

35. Ranjbar, M., De Reyck, B., Kianfar, F.: A hybrid scatter-search for the discrete time/resource

trade-off problem in project scheduling. Eur. J. Oper. Res. 193, 35–48 (2009)

36. Peteghem, V.V., Vanhoucke, M.: Using resource scarceness characteristics to solve the multi-

mode resource-constrained project scheduling problem. J. Heuristics 17(6), 705–728 (2011)

37. Słowiński, R., Soniewicki, B., Węglarz, J.: DSS for multiobjective project scheduling. Eur. J.

Oper. Res. 79, 220–229 (1994)

38. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: Simulated annealing for

multi-mode resource-constrained project scheduling. Ann. Oper. Res. 102, 137–155 (2001)

39. Bouleimen, K., Lecocq, H.: A new efficient simulated annealing algorithm for the resource-

constrained project scheduling problem and its multiple modes version. Eur. J. Oper. Res. 149,

268–281 (2003)

40. Zhang, H., Tam, C.M., Li, H.: Multi-mode project scheduling based on particle swarm opti-

mization. Comput. Aided Civ. Infrastruct. Eng. 21, 93–103 (2006)

41. Jarboui, B., Damak, N., Siarry, P., Rebai, A.: A combinatorial particle swarm optimization for

solving multi-mode resource-constrained project scheduling problems. Appl. Math. Comput.

195, 299–308 (2008)

42. Chiang, C., Huang, Y., Wang, W.: Ant colony optimization with parameter adaptation for multi-

mode resource-constrained project scheduling. J. Intell. Fuzzy Syst. 29, 345–358 (2008)

43. Damak, N., Jarboui, B., Siarry, P., Loukil, T.: Differential evolution for solving multi-mode

resource-constrained project scheduling problems. Comput. Oper. Res. 36, 2653–2659 (2009)

44. Tchao, C., Martins, S.L.: Hybrid heuristics for multi-mode resource-constrained project

scheduling. In: Maniezzo, V., Battiti, R., Watson, J.P. (eds.) Learning and Intelligent Opti-

mization (LION 2007). Lecture Notes in Computer Science, vol. 5313, pp. 234–242 (2008)

45. Wang, L., Fang, C.: An effective shuffled frog-leaping algorithm for multi-mode resource-

constrained project scheduling problem. Special Issue on Interpretable Fuzzy Systems. Inf.

Sci. 181(20), 4804–4822 (2011)

46. Kyriakidis, T.S., Kopanos, G.M., Georgiadis, M.C.: MILP formulations for single- and multi-

mode resource-constrained project scheduling problems. Comput. Chem. Eng. 36, 369–385

(2012)

47. Wang, L., Fang, C.: An effective estimation of distribution algorithm for the multi-mode

resource-constrained project scheduling problem. Comput. Oper. Res. 39, 449–460 (2012)

96 5 Multi-mode Resource-Constrained Project Scheduling

48. Li, H., Zhang, H.: Ant colony optimization-based multi-mode scheduling under renewable and

nonrenewable resource constraints. Autom. Constr. 35, 431–438 (2013)

49. Sebt, M.H., Afshar, M.R., Alipouri, Y.: An efficient genetic algorithm for solving the multi-

mode resource-constrained project scheduling problem based on random key representation.

Int. J. Supply Oper. Manag. 2(3), 905–924 (2015)

50. Geiger, M.J.: A multi-threaded local search algorithm and computer implementation for the

multi-mode, resource-constrained multi-project scheduling problem. Eur. J. Oper. Res. 256(3),

729–741 (2017)

51. MMLIB - Multi-Mode project scheduling problem LIBrary. http://www.projectmanagement.

ugent.be/research/data/RanGen

52. PSPLIB - Project Scheduling Problem LIBrary. http://www.om-db.wi.tum.de/psplib

53. Kölisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general class of

resource-constrained project scheduling problems. Manag. Sci. 41, 1693–1703 (1995)

54. Geiger, M.J.: MMLIB checker — a checker software for multi-mode resource-constrained

project scheduling problem (MRCPSP) solution files. Research Report RR-15-03-01. Helmut-

Schmidt-University/University of the Federal Armed Forces Hamburg, Logistics Management

Department, Hamburg, Germany (2015)

55. Project data for integrated project management and control. http://www.projectmanagement.

ugent.be/?q=research/data

56. Demeulemeester, E., Vanhoucke, M., Herroelen, W.: RanGen: a random network generator for

activity-on-the-node networks. J. Sched. 6(1), 17–38 (2003)

57. Knotts, G., Dror, M., Hartman, B.C.: Agent-based project scheduling. IIE Trans. 32(5), 387–

401 (2000)

58. Knotts, G., Dror, M.: Agent-based project scheduling: computational study of large problems.

IIE Trans. 35, 143–159 (2003)

59. Maroto, C., Tormos, P.: Project management: an evaluation of software quality. Int. Trans.

Oper. Res. 1, 209–221 (1994)

60. Wauters, T., Verbeeck, K., Berghe, G.V., De Causmaecker, P.: A multi-agent learning approach

for the multi-mode resource-constrained project scheduling problem. In: Decker, S., Sierra,

C. (eds.) Proceedings of 8th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2009), pp. 1–8. International Foundation for Autonomous Agents and Mul-

tiagent Systems. www.ifaamas.org

61. Wauters, T., Verbeeck, K., Berghe, G.V., De Causmaecker, P.: Learning agents for the multi-

mode project scheduling problem. J. Oper. Res. Soc. 62, 281–290 (2011)

62. Mirzaei, O., Akbarzadeh, T.R.M.: A novel learning algorithm based on a multi-agent structure

for solving multi-mode resource-constrained project scheduling problem. J. Convergence 4(1),

47–52 (2013)

63. Wenzler, F., Günthner, W.A.: A learning agent for a multi-agent system for project scheduling

in construction. In: Claus, T., Herrmann, F., Manitz, M., Rose, O. (eds.) Proceedings of the

30th Conference on Modelling and Simulation, pp. 11–17 (2016)

64. Jędrzejowicz, P., Ratajczak-Ropel, E.: Agent-based approach to solving the resource con-

strained project scheduling problem. Lect. Notes Comput. Sci. 4431, 480–487 (2007)

65. Jędrzejowicz, P., Ratajczak-Ropel, E.: New generation A-Team for solving the resource con-

strained project scheduling. In: Proceedings of the Eleventh International Workshop on Project

Management and Scheduling, pp. 156–159. Istanbul (2008)

66. Kölisch, R., Sprecher, A.: PSPLIB–A project scheduling problem library. Eur. J. Oper. Res.

96, 205–216 (1996)

67. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (1997)

68. Glover, F.: Tabu search - Part I. ORSA J. Comput. 1, 190–206 (1989)

69. Glover, F.: Tabu search - Part II. ORSA J. Comput. 2, 4–32 (1989)

70. Glover, F.: Tabu search and adaptive memory programing: advances, applications and chal-

lenges. In: Barr, R.S., Helgason, R.V., Kennington, J.L. (eds.) Interfaces in Computer Scinece

and Operations Research, pp. 1–75. Kluwer (1996)

http://www.projectmanagement.ugent.be/research/data/RanGen
http://www.projectmanagement.ugent.be/research/data/RanGen
http://www.om-db.wi.tum.de/psplib
http://www.projectmanagement.ugent.be/?q=research/data
http://www.projectmanagement.ugent.be/?q=research/data
www.ifaamas.org

References 97

71. Glover, F., Laguna, M., Marti, R.: Fundamentals of scatter search and path relinking. Control

Cybern. 39, 653–684 (2000)

72. Jędrzejowicz, P., Ratajczak-Ropel, E.: Reinforcement learning strategy for solving the

MRCPSP by a team of agents. In: Neves-Silva, R., Jain, L.C., Howlett, R.J. (eds.) Intelli-

gent Decision Technologies, Proceedings of the 7th KES International Conference on Intelli-

gent Decision Technologies (KES-IDT 2015), pp. 537–548. Springer International Publishing,

Switzerland (2015)

73. Jędrzejowicz, P., Ratajczak-Ropel, E.: Double-action agents solving the MRCPSP/Max prob-

lem. In: Jędrzejowicz, P., et al. (eds.) Computational Collective Intelligence. Technologies and

Applications. Lecture Notes in Artificial Intelligence, vol. 6923, pp. 311–321 (2011)

74. Jędrzejowicz, P., Ratajczak-Ropel, E.: Team of A-Teams for solving the resource-constrained

project scheduling problem. In: Grana, M., Toro, C., Posada, J., Howlett, R., Lakhmi, C.J.

(eds.) Advances in Knowledge Based and Intelligent Information and Engineering Systems.

Frontiers in Artificial Intelligence and Applications, vol. 243, pp. 1201–1210 (2012)

75. Jędrzejowicz, P., Ratajczak-Ropel, E.: Reinforcement learning strategy for solving the

resource-constrained project scheduling problem by a team of A-Teams. In: Nguyen, N.T.,

Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) Intelligent Information and Database

Systems. Lecture Notes in Artificial Intelligence, vol. 8398, pp. 197–206 (2014)

76. Jędrzejowicz, P., Ratajczak-Ropel, E.: Reinforcement learning strategies for A-Team solving

the resource-constrained project scheduling problem. Neurocomputing 146, 301–307 (2014)

77. Jędrzejowicz, P., Ratajczak-Ropel, E.: Dynamic cooperative interaction strategy for solving

RCPSP by a team of agents. In: Nguyen, N.T., Manolopoulos, Y., Iliadis, L., Trawiński,

B. (eds.) Computational Collective Intelligence. Lecture Notes in Artificial Intelligence, vol.

9875, pp. 454–463 (2016)

Chapter 6
Conclusions

In this part of the book the agent based approaches to single-mode and multi-mode

resource-constrained project scheduling problem have been considered. A few such

approaches i.e. Multi-Agent Systems for the RCPSP or MRCPSP have been proposed

in the literature. There are based on different agent based architectures and assump-

tions about agents’ roles in the system. All of them are promising and are able to

generate good results, but implementation and configuration such systems requires

a lot of effort. This conclusion also applies to the A-Team based multi-agent sys-

tems which have been mainly considered in the described research. In contrast to

the others, in the A-Team based MAS agents represent the system entities like: opti-

misation algorithms, populations, managers controlling the process of solving, error

monitoring, etc. A problem instance is solving as a whole by optimization agents

representing optimization algorithms.

The research presented in this part of the book and in particular computational

experiments carried-out to validate the proposed A-Team based approach allow

for some general observations and conclusions. First of all, it should be noted

that the proposed MAS based on the A-Team paradigm should be considered as

a powerful tool for solving the single-mode and multi-mode resource-constrained

project scheduling problems. Unfortunately, this tool is also difficult to configure

and testing because of its complexity. Selection of optimization algorithms used,

design of optimization agents, as well as selection and settings of the coopera-

tion strategies influence, to a substantial extend, quality of the system performance.

Selecting optimization agents requires maintaining reasonable balance between com-

putation times required by the different optimization procedure. If computation times

required by optimization agents to perform their tasks differ too much, the system is

prone to problems with respect to coordination and communication. An agent gen-

erating solutions with a substantial speed while others are engaged in search for

an improved solutions can cause unexpected disturbance. Similarly, an agent work-

ing too slowly can cause delays and weaker overall performance through reducing

© Springer International Publishing AG 2018

E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,

Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_6

99

100 6 Conclusion

population diversity. It has been also observed that the expected synergetic effect

while combining more effective and complex algorithms with simpler ones does

not, usually, meet expectations. Reasonable solution is to select optimization proce-

dures and to design optimization agents in such a way that their computation time

performance is similar.

It seems also wise to consider blocking weak individuals more often or to a grater

extend than better ones. A repeated attempt to improve such weak individuals may

prevent improving the better ones. Future research could lead to solutions with dif-

ferent blocking strategies applied to different individuals.

Development of agent technologies could make the idea of using the A-Team par-

adigm to solving computationally hard combinatorial optimization problems even

more attractive. It has been demonstrated that combining efforts of different agents

using different procedures and being controlled by sophisticated strategies based on

some machine learning tool can bring about synergetic effect boosting performance

of the whole system. It is also worth considering to take advantage of cloud comput-

ing and further parallelization to assure easy and flexible access to A-Team services.

Part II
Population-Based Approaches

to the Discrete-Continuous Scheduling

Aleksander Skakovski

Chapter 7
Introduction

The discrete-continuous scheduling problem (DCSP), discussed in the following
part of this book, is a particular case of the resource-constrained project scheduling
problem (RCPSP). For this reason we begin with a brief description of the RCPSP
at the beginning of Chap. 8 and continue with a thorough discussion on the DCSP
in the remainder. We proceed with a short review of practical applications of the
DCSP in Sect. 8.2, followed by the notation and the task models description in
Sects. 8.3 and 8.4 respectively. After that, we give formulation of the DCSP in
Sect. 8.5, consider its variants in Sect. 8.6 and the general approach to solving the
problem in Sect. 8.7. Further on, we continue with the main properties of optimal
schedules in Sect. 8.8, which are very useful in the construction and analysis of
scheduling algorithms, and can even lead to analytical results. In the DCSP, sim-
ilarly to the more general RCPSP, each task requires certain amount of a single
renewable resource to be performed. This resource is continuous, i.e. divisible
continuously. The time and rate of processing the task depend on the unknown in
advance amount of the continuous resource to be allocated to the task. Therefore, in
order to solve the DCSP it is required to determine the sequence of tasks on the
machines and the allocation of the continuous resource to the tasks such, that
optimize given criterion. Because the amount of the continuous resource is not
known in advance, the allocation of the continuous resource can be treated as a
separate subproblem. In the DCSP, the processing rate of a task is a function of the
amount of the continuous resource allocated to the task. Although, we consider the
properties of both convex and concave processing rate functions in Sects. 8.8.1 and
8.8.2, however special attention is paid to the concave power processing rate
functions in Sect. 8.8.3, which are most important from the practical point of view.
In the study, we mainly discuss about solving the DCSP for the case of the
makespan (the schedule length) Cmax minimization, however, the cases of the
DCSP for the maximum lateness Lmax and the mean flow time F ̄ are considered as
well in Sects. 8.9 and 8.10 respectively.

© Springer International Publishing AG 2018
E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,
Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_7

103

Although it is possible to solve some cases of the continuous resource allocation
problem analytically, the DCSP itself is NP-hard in the general case. For this
reason, a variety of approaches were developed to cope with the problem. In the
state-of-the-art review provided in Chap. 9, one can find another formulation of the
DCSP given in Sect. 9.1.1, the new approach to optimal continuous resource
allocation in Sect. 9.1.2, the new properties of the discrete part of the DCSP in
Sect. 9.1.3, and the description of the discretisation of the DCSP in Sect. 9.2. Since,
the DCSP is computationally intractable in the general case, the optimal approach
for solving the problem is computationally ineffective or even impossible in
practice. Instead, heuristic and metaheuristic approaches are used to manage both
sequencing the tasks on the machines and allocation of the continuous resource.
A review of existing heuristic and metaheuristic algorithms developed for solving
the DCSP is provided in Sects. 9.3 and 9.4. In addition, there is also a review of the
research on the minimization of the continuous resource usage in Sect. 9.5, in
particular, the attention was paid to the energy consumption minimization. In
Sect. 9.6, we also consider a continuous resource sharing (CRSharing) problem,
which is a special case of the DCSP dealing with the continuous resource assign-
ment to a given sequence of tasks on machines. At the end of the state-of-the-art
review, we provide in Sect. 9.7 a survey of the research on the island model, often
exploited in evolutionary computation, and the research on preventing premature
convergence in evolutionary and genetic algorithms in Sect. 9.8.

The culminations of the study are Chaps. 10 and 11. In Chap. 10, we present
proposed earlier metaheuristic evolutionary algorithms for solving the DCSP with
continuous resource discretisation. In Sect. 10.1, we presented the island-based
evolutionary algorithm with homogeneous islands (IBEA), in Sect. 10.2—the
population learning algorithm (PLA), which implements the analogy to a social
learning and introduces heterogeneity into the island model. The idea of social
learning framework combined with the heterogeneity of the island model was further
developed in the cross-entropy-based PLA2, presented in Sect. 10.3, and the PLA3
enhanced by Differential Evolution and presented in Sect. 10.4. The idea of the
Differential Evolution based on a homogeneous island model was implemented in
the island-based differential evolution algorithm (IBDEA) presented in Sect. 10.5.

In Chap. 11, the efficiency and properties of the algorithms presented in
Chap. 10 were investigated. In Sect. 11.1, the performance of these algorithms was
compared using the Friedman test. In Sect. 11.2, we studied the relations between
the structure of the PLA2 and its efficiency. In Sect. 11.3, we examined the
properties and the performance of the DE search based on a single population and
the DE search based on the island model. We investigated how the effectiveness of
the models depends on such parameters as the size of a single population, and in the
case of the island model, also the number of islands and the migration rate. In
Sect. 11.4, we also investigated the extent to which the performance of a considered
differential evolution algorithm (DEA) depends on such parameters as the popu-
lation diversification rate, the size of the population, and the number of fitness
function evaluations. In Sect. 11.4.2, we described a decloning procedure, which

104 7 Introduction

was used for cyclic diversification of the population, and in Sect. 11.4.7—a per-
formance improvement policy, based on the experimentally determined properties
of the DEA. In Chap. 12, we finalize our study with conclusions.

7 Introduction 105

Chapter 8
Discrete-Continuous Scheduling Problem

8.1 General Resource-Constrained Scheduling Problem

The discrete-continuous scheduling problem (DCSP) is a particular case of the more
general resource-constrained project scheduling problem (RCPSP). The detailed
description, as well as a survey of variants and extensions of the RCPSP, the reader
might find in [1].

The RCPSP deals with a project consisting of activities J = {J1, J2, …, Jn}.
Once started, activity may not be interrupted, i.e., activities are nonpreemtable. Due
to technological requirements, there might be precedence relations among the
activities. These relations are determined by sets of immediate predecessors of the
activities Predi indicating that an activity Ji may not be started before all of its
predecessors are completed. The precedence relations can be represented by an
activity-on-node network which is assumed to be acyclic. Each activity requires
certain amounts of scarce resources to be performed. The resources are called
renewable because their full capacity is available in every period. There are K re-
newable resources labeled k = 1, …, K. It is assumed that the availability Rk of
each resource k is constant for each period over time. Activity Ji requires rik units of
resource k in each period of its processing. Thus, each activity of the project is
characterized by its duration, resource requests, and precedence relations among the
activities. Usually, two additional “dummy” activities J0 and Jn+1 are added in order
to represent the start and the completion points of the project respectively. The
duration of J0 and Jn+1 equals 0 and they do not require any resource. All infor-
mation is assumed to be deterministic and known in advance. The parameters are
assumed to be nonnegative and integer valued. A schedule is an assignment of start
times Si to the activities Ji, i = 0, 1, …, n + 1. The objective is to find a schedule
which leads to the earliest possible end of the project, i.e. the minimal makespan,
and satisfies all precedence and resource constraints. It has been proven in [2] that
the RCPSP belongs to the class of the strongly NP-hard problems.

© Springer International Publishing AG 2018
E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,
Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_8

107

In the RCPSP, described above, the considered resources were available in
discrete quantities only. Węglarz et al. in [3] generalized the concept of renewable
resources by allowing continuously divisible resources. A methodology for
discrete-continuous scheduling was proposed in [4]. Before we formulate and
discuss the DCSP in more details, we will give some examples of practical situa-
tions where the DCSP arises.

8.2 Practical Applications of the DCSP

There are practical situations in which additional resources can be allocated to tasks
in certain amounts (unknown in advance) within given intervals. Such resources
may be called continuously divisible or simply continuous. These may be, among
others, the situations when tasks are assigned to parallel processors driven by a
common (electric, hydraulic, pneumatic) power source, e.g. commonly supplied
grinding or mixing machines, electrolytic tanks or refueling terminals. As another
example, one can consider the forging process in steel plants [5]. Forgings are
preheated by gas up to an appropriate temperature in forge furnaces. Gas flow
intensity, limited for the whole battery of forge furnaces, is a continuous resource.
As another example one can consider manpower or money being a continuous
resource. Also, in computer systems, multiple processors may share a common
primary memory. If it is a paged virtual memory system and the number of pages
goes into hundreds, primary memory can be treated as a continuous resource, see
[6]. On the other hand, in scalable (SPP) and massively parallel (MPP) systems with
hundreds or even thousands of processors, processors themselves can be considered
as the continuous resource and the role of the machines can be played e.g. by disk
drives.

In the following subsection we introduce the notions and task models, which will
be used for the description of the DCSP.

8.3 Notation

Below, the notation used for the description of the DCSP is given in as follows:

Ci the completion time of task Ji (unknown in
advance), i = 1, 2, …, n,

di the due date of task Ji, i = 1, 2, …, n,
fi(∙) continuous non-decreasing function, fi(0) = 0,

i = 1, 2, …, n,
gi (∙) continuous, non-negative, non-increasing function,

gi(0) = ∞, i = 1, 2, …, n,

108 8 Discrete-Continuous Scheduling Problem

J = {J1, J2, …, Jn} a set of n independent, nonpreemptable tasks,
li processing mode l of task Ji, li = 1, 2, …, Wi,
Mk time intervals, defined by the completion times of

consecutive tasks, k = 1, 2, …, p, p ≤ n,
P = {P1, P2, …, Pm} a set of m parallel and identical machines (the

discrete resource),
ri the release date of task Ji, i = 1, 2, …, n,
Sz a feasible sequence of combinations Zk associated

with each feasible schedule, k = 1, 2, …, p,
τi the processing time of task Ji, i = 1, 2, …, n,
τlii processing time of task Ji in mode li = 1, 2, …, Wi,

τi = τ1i , τ
2
i , . . . , τ

Wi
i

� �
a vector of processing times of task Ji in modes
li = 1, 2, …, Wi,

U the total amount of a continuous resource available
for all tasks Ji at time t, i = 1, 2, …, n,

ui, ui given lower and upper bound for the amount of the
continuous resource available for task Ji,
i = 1, 2, …, n,

ui the constant amount (unknown in advance) of a
continuous renewable resource assigned to task Ji,
i = 1, 2, …, n,

ui(t) the amount (unknown in advance) of a continuous
renewable resource assigned to task Ji at time t,
ui(t) ∈ [0, 1], i = 1, 2, …, n,

u(t) = [u1(t), u2(t), …, un(t)] a piecewise continuous (i.e. continuous in a final
number of intervals), nonnegative vector function
determining the allocation of a continuous resource
to the tasks from J at time t,

ui = u1i , u
2
i , . . . , u

Wi
i

� �
a vector of additional resource quantities allocated
in each processing mode li = 1, 2, …, Wi,

Wi number of available modes of task Ji,
xĩ the processing demand (final state) of task Ji,

i = 1, 2, …, n,
xi(t) the state of task Ji at time t, xi(0) = 0, xi(Ci) = x ̃i,

i = 1, 2, …, n,
xĩk a part of processing demand xĩ of task Ji corre-

sponding to time interval Mk (combination Zk),
xĩk ≥ 0,

Zk the combination of tasks processed in parallel in
interval Mk.

8.3 Notation 109

8.4 Task Models

8.4.1 Processing Time Versus Resource-Amount Model

Two activity processing models appear in the literature [7]. When continuous
resources are taken into account, the processing time versus resource-amount model
defines the activity duration as a function of the amount of a continuous resource
allocated to this activity. For the case of a single continuous resource this relation
can be described as follows:

τi = gi uið Þ, ð8:1Þ

where ui ∈ ui, ui½ �, and gi(ui) = ∞ for ui ∉ ui, ui½ �, 0 < ui ≤ ui.
It is assumed that the resource-amount assigned to Ji does not change during its

execution. Within this approach, the existence of some polynomially solvable cases
of machine scheduling problems for linear functions is proved in [8].

8.4.2 Processing Rate Versus Resource-Amount Model

In the processing rate versus resource-amount model, the amount of the continuous
resource assigned to an activity may change during its processing. The processing
rate of an activity is a function of the amount of a continuous resource assigned to
this activity at a time. A fundamental result for this model and a renewable resource
can be found in [9], whereas for a doubly constrained resource in [10].

As the example of the discussed model, consider the case with a single con-
tinuous resource available for all activities at time t in amount U. Activity Ji
requires for its processing at time t an amount of a continuous resource available
from an interval ui, uī½ �, where ui ≤U, i = 1, 2, …, n. The model can be described
by an equation:

xi̇ðtÞ= dxiðtÞ
dt

= fi½uiðtÞ�, xið0Þ=0, xiðCiÞ= xĩ ð8:2Þ

where fi[ui(t)] = ∞ for uiðtÞ∉ ui, ui½ �, ui ≤ uiðtÞ ≤ ui, 0≤ ui ≤ ui, and equation
∑n

i=1 uiðtÞ=U must be true at time t. The completion of task Ji requires that:

xiðCiÞ=
Z Ci

0
fi½uiðtÞ�dt= xĩ. ð8:3Þ

Here, state xi(t) is an objective measure of work related to the processing of task
Ji up to time t. It may denote, for example, the number of man-hours already spent

110 8 Discrete-Continuous Scheduling Problem

on processing of task Ji, the number of standard instructions in processing of
computer program Ji and so on.

At the end of the discussion on activity models, it should be pointed out that the
processing rate versus resource-amount model is more natural in the majority of
practical situations, since it reflects directly the temporary nature of renewable
resources. Moreover, the processing rate versus resource-amount model enables to
perform a deeper analysis of the properties of optimal schedules, and can even lead
to analytical results in some cases. Because of that, it is sometimes reasonable to
treat a discrete resource as a continuous one in order to use this model. Such an
approach may be applied when there are sufficiently many allocations of the dis-
crete resource for processing an activity, e.g. in SPP or MPP systems [7].

8.5 Problem Formulation

Discrete-continuous project scheduling problems essentially concerns the allocation
of discrete and continuous resources to the activities that are required for their
execution. We will consider the DCSP with a single discrete resource, represented
by a set of machines, and a single continuous renewable resource. Such problem
appears in many practical situations and allows to show the general methodology
for discrete-continuous scheduling. The considered problem was studied in [11] for
preemptable activities, and in [4] for nonpreemptable, independent activities. The
processing rate versus resource-amount model will be used for the task description.
The considered DCSP is defined as follows:

Problem P
Let J = {J1, J2, …, Jn} be a set of independent nonpreemtable tasks, with release
dates ri = 0, i = 1, 2, …, n, and P = {P1, P2, …, Pm} be a set of parallel and
identical machines, and there is one additional renewable discrete resource. Each
task Ji, requires for its processing at time t a machine from P and an amount
(unknown in advance) of a continuous renewable resource ui(t) ∈ [0, 1],
i = 1, 2, …, n. Each task from J is described by the processing rate versus
resource-amount model. The continuous resource allocation is defined by a
piecewise continuous, nonnegative vector function u(t) = [u1(t), u2(t), …, un(t)],
whose values u = [u1, u2, …, un] are (continuous) resource allocations to the tasks
from J. It is assumed that the lower—ui and the upper—ui bounds on the amount of
the continuous resource ui(t) to be assigned to Ji at time t for all tasks are the same,
i.e. ui = 0, ui =1, i = 1, 2, …, n. It is also assumed, without loss of generality, that
∑n

i=1 uiðtÞ=1 for every t.
The problem is to find a sequence of tasks on machines, and, simultaneously, a

continuous resource allocation, which minimize given criterion of scheduling Q.
The minimization criteria, among others, might be:

• Cmax—the makespan (the schedule length), Cmax = max{Ci},

8.4 Task Models 111

• F—the mean flow time F = 1
n∑

n
i=1 Fi, where Fi = Ci − ri,

• Lmax—the maximum lateness, Lmax = max{Li}, Li = Ci − di.

An instance I of problem P is obtained by specifying the values of all its
parameters: n, m, di, fi, x ̃i for i = 1, 2, …, n, and the criterion of optimality Q.

According to the definition of the problem it is allowed to allocate ui(t) = 0 to
task Ji. Although, this causes the suspension of the task processing, since fi(0) = 0,
nevertheless, task Ji still complies with nonpreemtability property. In such a situ-
ation, task Ji does not release the machine for other tasks, as it would happen if task
was preemtable, and continues processing after some nonzero amount of the con-
tinuous resource has been allocated to it.

The defined problem is NP-hard since scheduling nonpreemptable tasks on
parallel machines to minimize the schedule length is NP-hard even without any
additional resource [12].

8.6 Variants of the DCSP

Now we consider some variants of the discrete-continuous problem P. It follows
from the definition of P that there are no any restrictions on how the continuous
resource is allocated to task Ji in the processing rate versus resource-amount model.
This way, it is implicitly assumed that the amount of the continuous resource may
change during the processing of task Ji. However, there are some practical situa-
tions where this assumption is not true [13]. Thus, it would be reasonable to define
the class of problems where the amount of the continuous resource is constant
during the processing of task Ji. For this reason, two variants (PJ and PM) of P are
defined. In the first variant, it is considered a situation when a constant amount of
the continuous resource is allocated to task Ji.

Let PJ be a discrete-continuous problem P where it is additionally assumed that
the amount of continuous resource ui allocated to task Ji is constant during its
processing, and ui > 0, for i = 1, 2, …, n.

In the next variant, it is considered a situation when a constant amount of the
continuous resource is “allocated to machine Pj”.

Let PM be a discrete-continuous problem PJ where it is additionally assumed
that the amount of continuous resource ui allocated to tasks Ji assigned to the same
machine Pj is the same during their processing.

Because each successive variant of problem P arises due to constraints applied
to more general preceding problem, among these problems the following depen-
dencies are observed.

Let I, IJ, IM be the instances of P, PJ and PM respectively, and the values of
parameters n, m, di, fi, xĩ for i = 1, 2, …, n as well as the criterion of optimality
Q for all considered instances are the same, then the following two dependences are
true [13]:

112 8 Discrete-Continuous Scheduling Problem

SIM ⊆ SIJ ⊆ SI, ð8:4Þ

where SI, SIJ , and SIM are the sets of feasible solutions to the respective DCSP.
If the criterion of optimality Q is minimized, then

Q*ðIÞ≤Q*ðIJÞ≤Q*ðIMÞ, ð8:5Þ

where Q*(I) is the optimal value of Q for problem instance of the respective DCSP.

8.7 General Approach to Solving the DCSP

The general approach to solving any DCSP assumes decomposition of the problem
under consideration into two interrelated sub-problems as follows: (i) construct a
feasible sequence of tasks on machines and (ii) allocate the continuous resource
among tasks already sequenced [4]. Below we give definitions related to the
abovementioned sub-problems.

A feasible schedule for an instance I of a DCSP is a pair (SI, DI), SI ∈ SI
F,

DI ∈ DI
F, where SI

F is the set of all feasible sequences of tasks on machines for I,
and DI

F is the set of all feasible continuous resource allocations for established SI.
And Q(SI, DI) will denote the value of scheduling criterion Q for schedule (SI, DI).

A semi-optimal schedule for an instance I of a DCSP is an optimal schedule for
given SI ∈ SI

F, i.e. a schedule (SI, DI
*) for which Q(SI, DI) reaches its minimum:

Q* = min
DI ∈DF

I

fQðSI, DIÞg ð8:6Þ

In general, a semi-optimal schedule is obtained by solving the appropriately
formulated mathematical programming problem.

An optimal schedule for an instance I of a DCSP is a semi-optimal schedule
(SI

*, DI
) for which Q reaches its minimum:

Q** = min
SI ∈ SFI

fQ*g ð8:7Þ

It follows from the above definitions, that the determining of optimal schedule
should be carried out in three steps: firstly, generate a set SF of all feasible
sequences S of tasks on machines, secondly, determine a semi-optimal schedule
(S, DS

) for each sequence S ∈ SF, third, find an optimal schedule (S, DS
*) among

all semi-optimal schedules (S, DS
*).

While the second stage, as it was mentioned above, consists in solving the
appropriate mathematical programming problem, the first one, in general, consists
in generating all feasible sequences of tasks on machines. Unfortunately, in the
general case, the number of feasible sequences S ∈ SF grows exponentially with

8.6 Variants of the DCSP 113

the number of tasks. Therefore, it would be reasonable to restrict the search space to
the smallest subset of SF such that would contain at least one sequence corre-
sponding to an optimal schedule. We will refer to such set as a Potentially Optimal
Set (POS). It has been proved in [4], that for concave functions fi, i = 1, 2, …, n,
the POS can be reduced to such schedules in which m tasks are executed at every
time moment within a schedule. It was also related in [13], that the POS for problem
PM is formed from such schedules, in which the number of machines not used by
the tasks is at most max{m − n, 0}.

In the following subsections we will discuss the properties of optimal schedules.
Knowledge of these properties is very useful in the construction and analysis of
scheduling algorithms, and can even lead to analytical results. We will also consider
some particular cases, in which it is possible to reduce the problem of finding
optimal schedules for arbitrary concave task models to the solution of some convex
programming problems [4].

8.8 Main Properties of Optimal Schedules

In this subsection, we mention only the main properties of optimal schedules that
are thoroughly discussed in [4]. Knowledge of these properties is very useful in the
construction and analysis of scheduling algorithms, and can even lead to analytical
results.

8.8.1 Convex Functions fi ≤ ci ⋅ui, ci = fi(1)

For the n task and m machine DCSP with uniform machines and fi ≤ ci ⋅ ui,
ci = fi(1), i = 1, 2, …, n the makespan Cmax and the total flow time F are mini-
mized by scheduling all the tasks on the fastest machine (reminder: uniform
machines differ by their processing rate, however the rate does not depend on the
task carried out). Such schedule implies that the total amount of continuous
resource is allocated to a single task at a time, so no other task can be processed in
parallel. Thus in this case, in the optimal schedule, tasks are processed sequentially
on a single machine [4]. In the optimal schedule that minimizes Cmax criterion, the
order of independent tasks is arbitrary. When the schedule minimizes the total flow
time F, the tasks should be ordered according to nondecreasing xĩ/ci values, and for
Lmax criterion, according to the nondecreasing due dates of tasks. The schedules
constructed in this way are also optimal for problems PJ and PM. Although, optimal
schedules of independent tasks with convex processing rates are easy to construct
(O(nlogn) [13]), this case has no practical importance, since convex functions fi do
not appear in practice.

114 8 Discrete-Continuous Scheduling Problem

8.8.2 Concave Functions fi and n ≤ m

In this particular case, the task sequencing problem does not arise at all, and it is
justified to consider the case n = m, since all n tasks can be assigned to any of
m identical machines, and m − n machines will remain idle. Thus, the only prob-
lem, that has to be solved, is the allocation of continuous resource to tasks with
concave processing rate functions. In such case, according to [4], the makespan is
minimized by fully parallel processing of all tasks using the following
resource-amounts:

u*i = f − 1
i ðxĩ ̸M*Þ, i=1, 2, . . . , n, ð8:8Þ

where M * is the (unique) positive root of the equation:

∑
n

i=1
f − 1
i ðxĩ ̸M*Þ=1. ð8:9Þ

As it can be seen, the amount of continuous resource allocated to the tasks is
constant, which makes the obtained schedule optimal also for PJ and PM with
minimization criteria Cmax and F [13].

The considered case is important from the practical point of view, because in
some particular cases it is possible to find an optimal solution analytically. This case
is also of fundamental importance for the general methodology for solving any
DCSP with n > m, including the ones with precedence constraints among tasks.

8.8.3 Concave Functions fi and n > m

The methodology for dealing with this case of the DCSP is based on the findings
for the case n ≤ m. First of all, the notion of feasible sequence of tasks Sz is
introduced. Each feasible schedule (i.e. a feasible solution of a discrete-continuous
problem) can be divided into p ≤ n intervals of length Mk, k = 1, 2, …, p, defined
by the completion times of consecutive tasks. Let Zk denote the combination of
tasks processed in parallel in the interval Mk. Thus, in general, a feasible sequence
Sz of combinations Zk, k = 1, 2, …, p can be associated with each feasible
schedule. Feasibility of such sequence requires, in addition to the number of ele-
ments in each combination restricted by m, that each task appears in at least one
combination, and that nonpreemptability of each task is guaranteed. The last con-
dition means, that each task appears exactly in one or in consecutive combinations
in Sz. The presented idea is illustrated by an example in Fig. 8.1.

In this example, a feasible schedule of seven tasks on three machines is con-
sidered. It is assumed for simplicity, that the same amount of continuous resource is
allocated to each task, i.e. ui(t) = 1/3 for every t. The feasible sequence Sz of

8.8 Main Properties of Optimal Schedules 115

combinations Zk, corresponding to the considered schedule is: Sz = {1, 2, 3},
{1, 4, 3}, {1, 4, 5}, {6, 4, 5}, {6, 7, 5}. Further, the processing demand of each
task can be divided into parts xĩk ≥ 0 corresponding to particular time intervals Mk

(combinations Zk), see Fig. 8.2.
For a given feasible sequence of tasks on machines one can find an optimal

division of processing demands of tasks xĩ, i = 1, 2, …, n, among combinations
Zk ∈ Sz, i.e. a division which leads to a minimum length schedule from among all
feasible schedules generated by Sz. Once the division is known, the optimal con-
tinuous resource allocation to the task parts xĩk within a particular combination Zk
can be determined in the same way as in the case n = m. Also, on the basis of the
results for the case n = m, the length of interval Mk can be calculated as the unique
positive root of equation:

∑
i ∈ Zk

f − 1
i ðxĩk ̸M*

k Þ=1. ð8:10Þ

Fig. 8.1 The division of a feasible schedule into intervals Mk defined by the completion times of
consecutive tasks

Fig. 8.2 The division of processing demands of tasks x̃i into parts x̃ik , corresponding to time
intervals Mk

116 8 Discrete-Continuous Scheduling Problem

Having calculated M*
k , the amount of continuous resource allocated to task Ji

within k-th interval is calculated as:

u*ik = f − 1
i ðxĩk ̸M*

k Þ, i∈Zk. ð8:11Þ

It should be mentioned that the obtained amount of continuous resource u*ik
allocated to xĩk remains constant within interval k, k = 1, 2, …, p [4]. Function
u(t) = [u1(t), u2(t), …, un(t)], t ∈ [0, Cmax] takes at most p different values,
dependent on the division of the processing demands xĩ among combinations Zk.
These values can change only at the time moments defined by the completion times
of the consecutive tasks. It has been shown in [14] that the value of each considered
criteria, Cmax, Lmax, and F depends on the length of intervals Mk, k = 1, 2, …, p.

The above described approach for solving the continuous resource allocation
problem through the division of processing demands of tasks can be used for
finding a semi-optimal schedule ðSz,D*

Sz
for the considered case of concave func-

tions fi and n > m. For this purpose a convex mathematical programming problem
Ω(Cmax) dealing with optimal division of the processing demands x ̃i among com-
binations Zk’s has to be solved [4]:

Problem Ω Cmaxð Þ

min Cmax = ∑
p

k=1
M*

k ðfxĩkgi ∈ Zk Þ, ð8:12Þ

s.t. ∑
k ∈ Ki

xĩk = xĩ, i=1, 2, . . . , n, ð8:13Þ

xĩk ≥ 0, i=1, 2, . . . , n, k∈Ki, ð8:14Þ

where Ki - the set of all indices of Zk’s such that task Ji ∈ Zk, andM*
k xĩkf gi ∈ Zk

� �
is

calculated from Eq. (8.10) for k = 1, 2, …, p.
The mathematical programming problem obtained is always a convex one,

because a sum of convex functions is also convex. In this optimization problem, the
sum of the minimum-length intervals (i.e. parts of a feasible schedule) generated by
consecutive combinations in Sz, as functions of the xĩk’s, is minimized subject to the
constraints that each task has to be completed. In consequence, an optimal schedule
can be found by solving the continuous resource allocation problem optimally for
all feasible sequences Sz from the POS. It has been proved in [4], that for concave
functions fi, i = 1, 2, …, n, a set containing all feasible sequences composed of
p = n − m + 1 m-element combinations of tasks Zk, k = 1, 2, …, p, comprises the
POS.

8.8 Main Properties of Optimal Schedules 117

8.8.3.1 Identical Concave Functions

It was proved in [14] that for the case with identical concave functions fi = f(ui), the
problem of determining a semi-optimal schedule can be simplified to solving a
single nonlinear equation. Namely, for a given feasible sequence Sz such that
Zkj j=m for each k = 1, 2, …, n − m + 1 an optimal continuous resource alloca-
tion can be determined by solving the equation:

∑
m

j = 1
f − 1
i ðxj̃ ̸C*

maxÞ=1, ð8:15Þ

where

xj̃ = ∑
i ∈ Jj

xĩ, ð8:16Þ

and Jj is the set of indices of tasks assigned to machine Pj, j = 1, 2, …, m as
determined by feasible sequence Sz.

In the considered case, all tasks carried out on the same machine use the same
constant amount of continuous resource which, in general, is different across the
machines. Moreover, this case meets the assumptions of problem PM, whose
POS(Cmax) is significantly smaller than the POS of problem P. This would justify
solving problem PM instead of P in this case [13].

Note the special case, when scheduling of tasks is performed only on two
machines. When the task processing rate functions are strictly concave, then
problem P can be solved in pseudo-polynomial time [13]. In this case, minimization
of makespan M is equivalent to minimization of a function Cmax =max x ̃1, x ̃2f g,
where x1̃ and x2̃ are the total processing demands of tasks assigned to the respective
machines. This case can be solved optimally in pseudo-polynomial time using
dynamic programming [15].

8.8.3.2 Concave Power Functions

Power task processing rate functions is a special class of the DCSP that covers a
wide range of practical applications. Before we move on to the particular cases of
concave power functions, two general for this class of functions properties are
recalled.

The first property (p-1) claims, that the DCSP with task processing demands
x1̃, …, x ̃n and processing rates fi = ciu

1 ̸αi
i , αi ≥ 1, ci > 1, i = 1, 2, …, n is

equivalent to the DCSP with task processing demands y ̃1, …, y ̃n and processing
rates fi = u1 ̸αi

i , αi ≥ 1, i = 1, 2, …, n, where y ̃i = xĩ ̸ci (proved in [16] for the
makespan and in [17] for the mean flow time as the optimality criteria).

118 8 Discrete-Continuous Scheduling Problem

The second property (p-2) claims, that for the DCSP with task processing rates
fi = u1 ̸αi

i , αi ≥ 1, i = 1, 2, …, n there exists an optimal schedule in which at most
one task with αi = 1 occurs in each combination Zk of the corresponding feasible
sequence Sz. Moreover, if the number of tasks with αi ≥ 2 is not less than m, then in
any optimal schedule each combination Zk of the corresponding feasible sequence S

z

contains at most one task with αi = 1 [16]. This property allows to reduce the POS
only to those sequences Sz which comply with it and shorten the process of obtaining
the optimal schedule, since there is no need to calculate optimal allocations of
continuous resource to the sequences which do not comply with the property.

Below, the most important from the practical point of view cases of the power
functions are recalled from [16].

i. Concave Power Functions fi = u1 ̸αi
i , αi ∈ {1, 2, 3, 4}, i = 1, 2, …, n

In this case, Eq. (8.10) is reduced to its algebraic form of the power ≤ 4 and
thereby can be solved analytically. This property significantly facilitates the
determination of the optimal assignment of continuous resource to the tasks from
feasible sequence Sz, i.e. the resolution of problem Ω(Cmax). These functions are
especially important, because allow to model task processing rates in various
practical problems [4].

ii. Concave Identical Power Functions fi = ui
1/α, α > 1, i = 1, 2, …, n

Since the power functions are identical, the general property for the case of identical
concave functions defined in Sect. 8.8.3.1 can be applied to the considered special
case. This property simplifies the problem Ω(Cmax) of determining a semi-optimal
schedule ðSz,D*

SZ for given Sz to solving only one nonlinear equation given below:

C*
max = ∑

m

j = 1
∑

i ∈ Jj
xĩ

 !α !1 ̸α

, ð8:17Þ

where Jj is the set of indices of tasks assigned to machine Pj, j = 1, 2, …, m as
determined by feasible sequence Sz and α > 1.

iii. Concave Power Functions fi = u1 ̸αi
i , αi ∈ {1, 2}, i = 1, 2, …, n

For this case of power functions, two subsets of tasks are distinguished:

• A1 — the subset of n1 tasks with power functions fi = ui, i.e. αi = 1, and

• A2 — the subset of n2 tasks with power functions fi = ui
1/2, i.e. αi = 2, and

n1 + n2 = n.

8.8 Main Properties of Optimal Schedules 119

Using the above division of tasks, four special sub-cases are identified:

n1 =n,n2 = 0
In this sub-case all tasks have the same processing rates fi = ui whose values
linearly depend on the amount of continuous resource allocated to particular tasks.
It follows from Eq. (8.17) that for such processing rates any assignment of tasks to
identical machines results in the same value of the makespan, recall also the
property from Sect. 8.8.1.

n1 = 0, n2 =n
Since there are only tasks with processing rates fi = ui

1/2 and no tasks with fi = ui,
the considered case complies to subcase (ii). Therefore, the length of semi-optimal
schedule can be determined using Eq. (8.17).

n1 > 0, n2 <m
When the number of tasks n2 with processing rate functions fi = ui

1/2 is less than the
number of machines m, an optimal schedule can be obtained using property p-2. All
tasks from set A2 are to be scheduled on different machines and all tasks from set Al

are to be scheduled on the same still unused machine. Notice that in this case
m − n2 − 1 machines remain idle.

n1 > 0, n2 ≥m
This sub-case with task processing rates fi = u1 ̸αi

i , αi ∈ {1, 2}, i = 1, 2, …, n is
completely consistent with property p-2 where the same processing rates are con-
sidered and αi ≥ 1. Therefore, if feasible sequence Sz insures that at most one task
with αi = 1 is processed at any time moment within the schedule, then the problem
Ω(Cmax) of determining a semi-optimal schedule ðSz,D*

SZ for given S
z can be solved

analytically using the equation below:

C*
max =

1
2

∑
Ji ∈ A1

x ̃
0
i +

ffi
∑
m

j = 1
∑

i ∈ Jj
x ̃0i

 !2
vuut

0
B@

1
CA, ð8:18Þ

where Jj is the set of indices of tasks assigned to machine Pj, j = 1, 2, …, m as
determined by feasible sequence Sz and

x ̃
0
i =

xĩ if αi =1,
2xĩ if αi =2.

�
ð8:19Þ

120 8 Discrete-Continuous Scheduling Problem

8.9 Minimization of the Maximum Lateness Lmax

The problem of minimization of the maximum lateness Ω(Lmax) defined in [18] is
recalled in this section. For the purpose of definition it was assumed, that the index
of a task corresponds to the number of the last combination Zk ∈ Sz in which this
task appears.

Problem Ω(Lmax)

min Lmax =max Lif g, Li =Ci − di, ð8:20Þ

s.t. ∑
k ∈ Ki

xĩk = xĩ, i=1, 2, . . . , n, ð8:21Þ

∑
j≤ k

M*
j ðfx ̃ijgi ∈ ZjÞ− dk ≤ Lmax, k=1, 2, . . . , n, ð8:22Þ

xĩk ≥ 0, i=1, 2, . . . , n, k∈Ki, ð8:23Þ

where Ki - the set of all indices of Zk’s such that task i ∈ Zk, and M*
j xĩj
� 	

i∈ Zj

� �
is

calculated from Eq. (8.10).
Constraints 8.21 ensure the execution of all tasks, and constraints 8.22 arise

during the transformation of minimax object function into a linear one.
In the general case, for problem P with independent tasks and concave pro-

cessing rate functions fi, i = 1, 2, …, n, POS(Lmax) contains feasible sequences Sz

consisting of n combinations Zk. The first p = n − m + 1 combinations Zk contain
m tasks, and combinations n − m + 2, …, n − 1, n contain m − 1, …, 2, 1 tasks
respectively.

When there are precedence constraints among the tasks, POS(Lmax) also contains
feasible sequences Sz consisting of n combinations Zk. However in this case, such
sequences Sz are allowed for which the number of tasks in combinations Zk is not
less than 1 and is greater than the number of tasks in this combination for the case
of independent tasks. For this reason, the cardinality of POS(Lmax) in such case is
much greater than in case with independent tasks.

Unfortunately, in both considered cases independently on the existence of
precedence constraints among the tasks the cardinality of POS(Lmax) grows expo-
nentially with the number of tasks n.

8.10 Minimization of Mean Flow Time F

The problem of minimization of mean flow time Ω F

 �

defined in [17] and later
developed in [14] and [19] is recalled in this section.

8.9 Minimization of the Maximum Lateness Lmax 121

According to the formulation of problem P, the release dates of tasks ri = 0,
i = 1, 2, …, n, and the respective objective function for the considered optimiza-
tion criterion is described by equation F = 1

n∑
n
i=1 Fi, where Fi = Ci − ri. An

optimal allocation of the continuous resource to given feasible sequence Sz can be
determined by solving the respective convex mathematical programming problem:

Problem Ω F

 �

min F =
1
n
∑
p

k =1
ðn− k+1ÞM*

k ðfx ̃ikgi∈ Zk Þ, ð8:24Þ

s.t. ∑
k∈Ki

xĩk = xĩ, i=1, 2, . . . , n, ð8:25Þ

xĩk ≥ 0, i=1, 2, . . . , n, k∈Ki, ð8:26Þ

where Ki - the set of all indices of Zk’s such that task i ∈ Zk, and M*
k xĩkf gi∈Zk

� �
is

calculated from Eq. (8.10). In the formulation of the problem, Eq. (8.24) is the
weighted sum of minimal lengths intervals M*

k corresponding to subsequent com-
binations Zk in Sz, which is a convex function. And constraints (8.25) ensure the
execution of all tasks. For this problem, a feasible solution can be represented by a
feasible sequence of n combinations of tasks, such that first n − m + 1 combina-
tions contained exactly m elements and the consecutive combinations n − m + 2,
n − m + 3, …, n − 1, n contained m − 1, m − 2, …, 1 element, respectively.

Unfortunately, in the general case, for problem P with and without precedence
constraints among the tasks and concave processing rate functions fi,
i = 1, 2, …, n, POS(F) is constructed similarly as POS(Lmax). Hence, the cardi-
nality of POS(F) also grows exponentially with the number of tasks n.

In [19], a problem of the total completion time minimization was considered and
some new properties of optimal schedules were presented. There were proposed
two theorems which allow to determine the continuous resource allocation ana-
lytically. These findings can also be applied to solve the continuous part of the
mean flow minimization problem, since both problems are equivalent.

The first theorem states, that for a discrete-continuous scheduling problem with
processing rates of tasks fi uið Þ= ciu

1 ̸αi
i , αi ≥ 1, i = 1, 2, …, n, an optimal

resource allocation (for a given feasible sequence) with respect to the mean flow
time requires finding roots of a polynomial of order at most max{αi}. Thus, for
αi ∈ {1, 2, 3, 4} the optimal resource allocation can be found analytically in
polynomial time.

The second theorem states, that for a discrete-continuous scheduling problem
with processing rates of tasks fi uið Þ= ciu

1 ̸αi
i , αi ≥ 1, i = 1, 2, …, n, there exists a

mean flow time optimal schedule such that at most one task with αi = 1 is
scheduled in each interval [Ci−1, Ci], i = 1, 2, …, n, C0 = 0. Moreover, if αi = αj,
and xĩ ≤ xj̃ then Ci ≤ Cj.

122 8 Discrete-Continuous Scheduling Problem

The two cited above theorems can be used to improve the efficiency of the local
search algorithms, which can be developed for the considered problem, either by
substituting the time-consuming step of solving the mathematical programming
problem for the continuous resource allocation, or by reducing the search space.

References

1. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained
project scheduling problem. Eur. J. Oper. Res. 207(1), 1–14 (2010)

2. Błazewicz, J., Lenstra, K., Rinnooy Kan, A.H.G.: Scheduling subject to resource constraints:
classification and complexity. Discret. Appl. Math. 5(1), 11–24 (1983)

3. Węglarz, J., Blazewicz, J., Cellary, W., Słowiński, R.: Algorithm 520: an automatic revised
simplex method for constrained resource network scheduling. ACM Trans. Math. Softw. 3,
295–300 (1977)

4. Józefowska, J., Węglarz, J.: On a methodology for discrete-continuous scheduling. Eur.
J. Oper. Res. 107(2), 338–353 (1998)

5. Janiak, A.: Minimization of the blooming mill standstills—mathematical model. Suboptimal
algorithms. Zesz. Nauk. AGH, s. Mechanika 8(2), 37–49 (1989)

6. Węglarz, J.: Multiprocessor scheduling with memory allocation—a deterministic approach.
IEEE Trans. Comput. C29(8), 703–709 (1980)

7. Węglarz, J., Józefowska, J., Mika, M., Waligóra, G.: Project scheduling with finite or infinite
number of activity processing modes—a survey. Eur. J. Oper. Res. 208, 177–205 (2011)

8. Janiak, A.: Single machine scheduling problem with a common deadline and resource
dependent release dates. Eur. J. Oper. Res. 53(3), 317–325 (1991)

9. Węglarz, J.: Time-optimal control of resource allocation in a complex of operations
framework. IEEE Trans. Syst. Man Cybern. 6(11), 783–788 (1976)

10. Węglarz, J.: Project scheduling with continuously-divisible, doubly constrained resources.
Manage. Sci. 27(9), 1040–1052 (1981)

11. Węglarz, J.: Project scheduling with discrete and continuous resources. IEEE Trans. Syst.
Man Cybern. 9(10), 644–650 (1979)

12. Józefowska, J., Różycki, R., Waligóra, G., Węglarz, J.: Local search metaheuristics for
discrete-continuous scheduling problems. Eur. J. Oper. Res. 107(2), 354–370 (1998)

13. Różycki, R.: Zastosowanie algorytmu genetycznego do rozwiązywania dyskretno-ciągłych
problemów szeregowania. Ph.D. Dissertation, Poznań University of Technology, Poland
(2000)

14. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: Discrete-continuous
scheduling to minimize the mean flow time—computational experiments. Comput. Methods
Sci. Technol. 3(1), 25–37 (1997)

15. Blazewicz, J., Kubiak, W., Szwarcfiter, J.: Scheduling independent fixed-type tasks. In:
Słowiński, R., Węglarz, J. (eds.) Advances in Project Scheduling. Elsevier, Amsterdam
(1989)

16. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: Discrete-continuous
scheduling to minimize the makespan for power processing rates of jobs. Discret. Appl. Math.
94, 263–285 (1999)

17. Józefowska, J., Węglarz, J.: Discrete-continuous scheduling problems—mean completion
time results. J. Oper. Res. 94, 302–309 (1996)

8.10 Minimization of Mean Flow Time F 123

18. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: Minimalizacja maksymal-
nego opóźnienia w dyskretno-ciągłych problemach szeregowania—algorytmy heurystyczne.
Zeszyty Naukowe Politechniki Śląskiej, Seria: Automatyka z. 123, 221–231 (1998)

19. Józefowska, J., Węglarz, J.: New results for discrete-continuous mean flow time scheduling
problems. In: Eight International Workshop on Project Management and Scheduling,
Valencia, Spain, pp. 217–220 (2002)

124 8 Discrete-Continuous Scheduling Problem

Chapter 9
State-of-the-Art Review

9.1 Theoretical Research on the DCSP

As it is known from Sect. 8.7, the general methodology for solving any DCSP
assumes firstly, determining feasible sequences of tasks on machines, and secondly,
determining optimal allocation of continuous resource to these sequences. The
second stage of solving the DCSP is formulated as a convex mathematical pro-
gramming problem with linear constraints which can be solved using the appro-
priate solver. Thus, to put it more precisely, solving any DCSP assumes
decomposition of the DCSP into two interrelated sub-problems: (i) construct a
feasible sequence of tasks on machines and (ii) allocate the continuous resource
among tasks already sequenced [1]. In order to determine the optimal allocation of
continuous resource to a given sequence of tasks on machines, a convex mathe-
matical programming problem has to be formulated and solved. This problem can
be solved either analytically, or by approximation of the function value. Unfortu-
nately, the problem is not always easy to solve analytically even for simple cases,
and there are cases for which there is no analytical solution [2], and the approxi-
mation of the function value using specialized solvers can be very time-consuming.
The difficulty of the problem motivated theoretical research on finding the ways to
simplify the solution of the problem.

9.1.1 Another Formulation of the DCSP

In [2], another formulation of the problem was proposed, where time Mk (the time
of processing the k-th subset of tasks parts) was given explicitly as optimized
variable tk. In order to achieve this, the penalty function idea was used to construct a
convex objective function for the k-th subset of tasks parts, which reaches its unique
minimum at point Tk. Thus, the objective function is given as follows:

© Springer International Publishing AG 2018
E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,
Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_9

125

g tk , xk̃ð Þ≜ tk +ϕ tk, xk̃ð Þ, ð9:1Þ

where vector xk̃ ≜ xĩk: i∈ Zkf gð Þ. The expanded definition of the function is given in
[2] or [3]. Having the above function for each subset Zk, the authors formulated an
optimization problem ΩA(Cmax) equivalent to problem Ω(Cmax) (see Eqs. (8.12)–
(8.14) in Sect. 8.8.3), in which the values xk̃ , k=1, 2, . . . , p, of each solution are
equal to the solution of problem Ω(Cmax). Thus, optimization problem ΩA(Cmax) is
defined as follows:

min Cmax = ∑
p

k=1
gðtk , x ̃kÞ, ð9:2Þ

s.t. ∑
k∈Ki

xĩk = xĩ, i=1, 2, . . . , n, ð9:3Þ

xik ≥ 0, k=1, 2, . . . , p, i∈Zk ð9:4Þ

tk ≥ 0, k=1, 2, . . . , p, ð9:5Þ

where Ki - the set of all indices of Zk’s such that task i ∈ Zk. The authors point out
two important benefits of such formulation. First, there is no need to solve Eq. (8.10
) to construct objective function in order to solve the optimization problem. Second,
such objective function is convex as the sum of convex functions g tk, xk̃ð Þ.
Unfortunately, there are also disadvantages, most important of which is that the
objective function does not have continuous derivative and this makes it inefficient
for methods based upon functions with continuous derivatives. Thus, additional
computation is needed to smooth the function and this makes the whole procedure
slow. Another disadvantage is that the number of optimization variables increases
by p, from p ⋅ (m + 1). To overcome these disadvantages, a new approach was
proposed in [3], where the number of optimization variables remains p ⋅ (m + 1),
but the objective function is linear and problem can be solved efficiently. The
discussion on the proposed new approach and a comparative experiment involving
Ω(Cmax) and ΩA(Cmax) is provided in the next Section.

9.1.2 The New Approach to Optimal Resource Allocation

In [3], based on their theoretical findings discussed in [4, 5], the authors proposed
the new approach to optimal continuous resource allocation. This new approach is
based on the findings on the problem inverse to the considered one, i.e. the problem
to minimize the use of the continuous resource required to carry out the tasks within
a given upper bound on makespan bC, (this problem will be referred to as Ω(Umax) in
the rest of the discussion). So, it is proposed by the authors to solve problem

126 9 State-of-the-Art Review

Ω(Cmax) by solving Ω(Umax) for the upper bound on the schedule length equal to
optimal schedule length. Thereby, the original optimization problem Ω(Cmax) can
be formulate as problem ΩN(Cmax) as follows:

min Cmax = ∑
p

k=1
tk, ð9:6Þ

s.t. ∑
i∈ Zk

f − 1
i

xĩk
tk

� �
= bU, k=1, 2, . . . , p, ð9:7Þ

∑
k∈Ki

xĩk = xĩ, i=1, 2, . . . , n, ð9:8Þ

xik ≥ 0, k=1, 2, . . . , p, i∈ Zk ð9:9Þ

tk ≥ 0, k=1, 2, . . . , p, ð9:10Þ

According to this formulation, the value of Mk for given task parts x ̃ik can be
obtained by explicitly optimizing variable tk which corresponds to the time of
processing parts x ̃ik of tasks from subset Zk, subject to the constraint on resource
level Eq. (9.7). The solution to the considered problem is the optimal resource
allocation for a given feasible sequence Sz. Moreover, now the objective function is
the linear one.

An experiment was carried out to compare the performance of Sequential
Quadratic Programming (SQP) method, provided by MATLAB Optimization
Toolbox as fmincon procedure, applied for solving problems Ω(Cmax), ΩA(Cmax),
and ΩN(Cmax). MATLAB’s fmincon procedure is reported to be one of the best in
constrained nonlinear programming [6]. In order to obtain objective function of
problem Ω(Cmax), both, symbolic solution (to solve Eq. (8.10) and construct the
objective function before optimization starts), as well as approximation method,
performed each time when SQP procedure had to calculate the value of the
objective function, were used. In the experiment, the concave processing rate
functions of the form fi uið Þ= ci ⋅ u1 ̸αi

i were used. For this functions with αi
{1, 2, 3, 4} Eq. (8.10) can be solved analytically. The number of machines
m = 2, 3, 4, 5, 6 and the number of tasks for the sets αi ∈ {1, 2} and αi ∈ {1, 2,
3} was equal 20. Because both symbolic and optimizing calculation was very time
consuming for problem Ω(Cmax), the number of tasks for αi ∈ {1, 2, 3, 4} was
reduced to 10 (for m = 6 the size of the file with the objective function had a few
megabytes). The SQP procedure was used with the default settings and in most
cases stopped after performing the default number of iterations equal 100× number
of variables, before reaching the default precision. The performance of the SQP
procedure applied for solving Ω(Cmax), ΩA(Cmax), and ΩN(Cmax) was compared
using mean relative error δ, calculated as:

9.1 Theoretical Research on the DCSP 127

δ=
M′ −M*

M′
⋅ 100%, ð9:11Þ

where M′ is the solution to problem Ω(Cmax) obtained using symbolically generated
objective function, and M* is the solution obtained for Ω(Cmax) using approxima-
tion instead, or the solution to ΩA(Cmax) or ΩN(Cmax). The mean relative errors of
the solutions found by the SQP procedure for each set of 20 instances was similar,
and did not exceed 3%. Oppositely, the difference in time, required to yield a
solution was significant and to great extent depended on the problem and its size. In
case of Ω(Cmax) and αi ∈ {1, 2, 3, 4} solved symbolically, the time to solve the
problem increased rapidly with the growth of the number of machines from 0,4 s to
193,8 s. Similarly, when Ω(Cmax) was solved by the approximation of objective
function, the time required to yield a solution was several orders of magnitude
greater than for any other optimization problem under the test. It took from 127,4 s
to 4455,4 s to find a solution in this case. On the contrary, the time required to yield
a solution for ΩA(Cmax) and ΩN(Cmax) was respectively 3,8 s–92,5 s and 1,1 s–
16,1 s. All experiments were carried out on PC computer with Intel Xeon X3220 2,
4 GHz processor and 4 GB RAM memory in MATLAB environment. The main
observations of the experiment are such that in the case of simple instances, the time
required for the SQP to solve ΩN(Cmax) was greater than the time required to solve
Ω(Cmax) with the symbolic objective function. In the case of instances of medium
difficulty, it was similar to the time required to solve Ω(Cmax) symbolically and
significantly better in the case of difficult instances (Ω(Cmax): 0,8 s–193,8 s,
ΩN(Cmax): 1,1 s–1,6 s).

9.1.3 New Properties of the Discrete Part of the DCSP

In [7, 8], a theoretical research on the discrete part of the DCSP was conducted. In
[7], the authors introduced properties which enabled the reduction of the solution
space of the discrete part of the DCSP with concave processing rate functions.
A special subset T1 of tasks J, containing all tasks which appear only in one
combination Zk ∈ Sz, was used to distinguish all such combinations Zk ∈ Sz

which contain a task from T1, and, thereby, such combinations Zk which do not
contain a task from T1. This distinction gave a possibility to identify subsequences
Sk,l ∈ Sz of consecutively numbered combinations Zk which contain a task from T1.
Based on these assumptions, it was proved in [7] that a subset bS of the set of all
feasible sequences Sz contains an optimal solution to the considered problem
provided that the numbers of tasks from T1 appear in each Sk,l ∈ Sz, Sz∈ Sz in an
increasing order. Next, subset bS is partitioned into two subsets: bS0, consisting of
such feasible sequences Sz in which each Zk contains a task from T1, and bS1,
composed of feasible sequences Sz in which at least one combination Zk does not
contain a task from T1. This way distinguished subsets of bS, helped to prove several

128 9 State-of-the-Art Review

properties [7] which made it possible to reduce the solution space and evaluate its
cardinality. The reduction of the solution space determined by bS was obtained by
the removal of the equivalent, in terms of objective function value, sequences frombS. This way, subset bS was reduced to subset bS* which was proved [8] to be the
largest subset of bS which does not contain equivalent sequences and contain an
optimal sequence Sz. It was also proved in [8], that the cardinality of subset bS* can
be evaluated with regard to the number of tasks n and machines m by the following
equation:

n

n−m+1

� �
+

1
2
⋅ ∑
n−m− 1

r=1

n

m− 1+ r

� �
⋅

m− 1+ r

m− 1

� �
⋅ r! ⋅ ðm− 1Þr ⋅

∑
n−m− r

i=1

n−m+1− r

i

� �
+ ∑

n−m− 1

r=2

n

m− 1+ r

� �
⋅

m− 1+ r

m− 1

� �
⋅ r! ⋅ ðm− 1Þr ⋅

∑
n−m− 1− r

i=1

n−m+1− r

i

� �
⋅ ∑
n−m− r− i

j=1

n−m+1− r− i

j

� �
⋅ ðr− 1Þn−m+1− r− i− j.

ð9:12Þ

9.2 Discretisation of the DCSP

According to the general approach introduced in Sect. 8.7, solving any DCSP
assumes decomposition of the DCSP into two interrelated sub-problems: (i) con-
struct a feasible sequence of tasks on machines and (ii) allocate the continuous
resource among tasks already sequenced [1]. In order to determine the optimal
allocation of continuous resource to a given sequence of tasks on machines, and
therefore a semi-optimal schedule (S, DS

*), a convex mathematical programming
problem has to be formulated and solved. Solution of this problem gives the
schedule of the minimal length among the infinite number of schedules generated
by given sequence of tasks on machines S. Unfortunately, finding the optimal
solution is hardly suitable for the practice, because mathematical programming
problems are, in general, computationally intractable [9–11]. In order to cope with
the intractability of the problem, two main approaches were developed. First
approach tries to solve the problem by developing different techniques for heuristic
allocation of the continuous resource to feasible sequence of tasks [11–14]. Another
one, takes advantage of the discretisation of continuous resource proposed in [9,
14]. The last approach was successfully used in [10, 15–22] for solving the DCSP
and also within a simulated annealing algorithm for solving the discrete-continuous
resource-constrained project scheduling problem in [9]. In the following subsection
the discretisation of the continuous resource is discussed.

9.1 Theoretical Research on the DCSP 129

9.2.1 Discretisation of the Continuous Resource

As it follows from the definition of the DCSP, tasks require two types of renewable
resources for their processing - discrete ones and an additional continuous resource.
The assumption of continuity of the additional resource is fundamental for the
DCSP. The continuous resource can be allocated to a task at time t in any amount
from given interval. The number of such allocations for any DCSP is infinite. The
idea of continuous resource discretisation is based on an assumption that the
number of available allocations of the continuous resource to task Ji is finite and
equals Wi. Such assumption results in the discretisation of the continuous resource
and allows to treat it as an additional discrete resource. Let us denote the discretized
allocation of continuous resource to task Ji at time t by

uliðtÞi ∈ ð0, 1�, liðtÞ=0, 1, 2, . . . ,Wi. With the disposal of this allocation of the
continuous resource task Ji will be processed with rate which can be calculated
from equation:

xi̇ðtÞ= fi uliðtÞi

� �
ð9:13Þ

It is assumed that if li(t) = 0, then zero amount of the continuous resource is
allocated to task Ji, and therefore, task Ji is not processed. The completion of task Ji
requires that xi Cið Þ= x ̃. It is also assumed, without loss of generality, that

∑n
i=1 u

liðtÞ
i ðtÞ≤ 1 for every t > 0. Although, it is allowed in general to change the

allocation of continuous resource during the processing of task, however in prac-
tice, it is often assumed for simplicity that the allocation of additional resource
remains constant during the whole processing of task. Such assumption is equiv-

alent to the same assumption in PJ. Assuming uliðtÞi = ulii (where t is any time
moment during the processing of Ji), the time required to process task Ji using ulii
units of the additional resource is given by equation:

τlii =
xĩ

fiðulii Þ
ð9:14Þ

In such case, it can be assumed that each task is carried out in processing mode li
which specifies the amount of the additional resource ulii , which will be allocated to
the task, and therefore, the time in which the task will be processed. The amount ulii
can be defined in different ways, e.g. the simplest way would be to assume that:

ulii = li ̸Wi. ð9:15Þ

It is easy to see, that high discretisation level, i.e. larger values of Wi, would
result in a greater similarity to the continuous resource. However, the large number
of task processing modes would make the problem harder to deal with. Therefore, a

130 9 State-of-the-Art Review

discretisation level which would ensure the highest performance and accuracy of
the algorithm using the discretised resource should be established.

As the result of the continuous resource discretisation, a special case of the
Multi-Mode Resource-Constrained Project Scheduling Problem (MRCPSP) is
obtained. The problem was investigated in numerous papers, e.g. [23–25] (for the
survey see [26]), and proved to be NP-hard in [27].

Although the discretisation of continuous resource eliminates the need to solve
the nonlinear programming problem, however, it does not lead to the problem
which is equivalent to any of the considered DCSPs. It is obvious that the optimal
allocation DS

* determined for the optimal schedule (S*, DS
*) may not belong to the

finite set of available allocations obtained after the discretisation of continuous
resource. Also, the discretisation does not reduce the computational complexity of
the primary DCSP, since, in general, scheduling independent tasks with fixed
processing times on two identical parallel machines is NP-hard [10].

In the next subsection, the formulation of the DCSP with Continuous Resource
Discretisation (DCSPwCRD) is given.

9.2.2 Formulation of Discrete Continuous Scheduling
Problem with Continuous Resource Discretisation
(DCSPwCRD)

The DCSPwCRD, denoted as ΘZ for the purpose of further discussion, is formu-
lated in the same way as in [10]. Namely, let J = {J1, J2, …, Jn} be a set of
nonpreemptable tasks, with no precedence relations and release dates ri = 0,
i = 1, 2, …, n, and P = {P1, P2, …, Pm} be a set of parallel and identical
machines, and there is one additional renewable discrete resource in amount U = 1
available. A task Ji can be processed in one of the modes li = 1, 2, …, Wi (Wi – the
number of processing modes of task Ji), for which Ji requires a machine from P and
amount of the additional resource known in advance. The processing mode of Ji
cannot change during the processing. For each task two vectors are defined: a
processing times vector τi = ½τ1i , τ2i , . . . , τWi

i �, where τlii is the processing time of task
Ji in mode li = 1, 2, …, Wi and a vector of additional resource quantities allocated
in each processing mode ui = ½u1i , u2i , . . . , uWi

i �. The total amount of the continuous
resource used by tasks Ji at any time t within a schedule cannot exceed U.

The problem is to find the sequence of tasks from J on machines from P and task
processing modes such that minimize given criterion of scheduling Q.

As it was mentioned in the previous subsection, the formulated problem is a
special case of the more general MRCPSP, which is known to be NP-hard [27].

An instance 𝖨ΘZ
of problem ΘZ is obtained by specifying the values of all its

parameters: n, m,Wi, vectors ui and τi, i = 1, 2, …, n, and criterion of optimality Q.

9.2 Discretisation of the DCSP 131

9.3 Heuristic Algorithms for Solving the DCSP

In [28], two heuristics: a Multi-Start Iterative Improvement Algorithm (MSIIA) and
a Random Sampling Technique (RST) were proposed to solve the DCSP. A special
case of the DCSP with concave processing rate functions fi = ci∙ui

1/α, α > 1,
i = 1, 2, …, n and an objective to minimize the makespan was considered. The
results of computational experiment were compared with the results obtained by a
Simulated Annealing algorithm (SA). In the experiments, m ∈ {2, 3, 10},
n ∈ {10, 20, 50, 100} when α = 2, and m ∈ {2, 3}, n ∈ {10, 20, 50} when
α = 3. A brief description of the MSIIA and RST is given below.

In the MSIIA, a current solution Sa is replaced by the first solution Sb that
improves Sa. If there is not such solution in the neighbourhood N(Sa), i.e., if Sa is a
local optimum, the MSIIA restarts at another initial solution. This procedure is
repeated until the stopping condition (available computing time) is satisfied. The
neighborhood generation mechanism and stop criterion are the same as in the SA.

In the RST, the next solution is randomly generated from the current one in order
to find a solution with the smallest value of the cost function. The neighborhood
generation mechanism and stop criterion are the same as in the SA.

As it was mentioned above both heuristics borrow neighborhood generation
mechanism from the SA. This allows for easy comparison of their performance.
Unfortunately, in almost all cases the SA performed better than the MSIIA and the
RST. For smaller numbers of machines the RST gave better solutions than the
MSIIA, however, for larger values of m it performed the worst.

In [1] two heuristics H1(h) and H2(A) for solving any DCSP with an objective to
minimize the makespan were proposed. The description of the heuristics is given
below.

In Algorithm H1(h), a preliminary allocation of continuous resource to the tasks
is defined according to a chosen heuristic function h. Having the preliminary
continuous resource allocation, the processing times of tasks are calculated, and a
schedule of n nonpreemptable tasks on m parallel machines to minimize the
makespan is determined. Since in general, the problem of scheduling n tasks on
m parallel machines is NP-hard, the schedule can be found using either an optimal
pseudo-polynomial dynamic programming algorithm proposed in [29], or one of
the available heuristics. After the preliminary schedule has been obtained, an
attempt to improve it is made by allocating the same amount of continuous resource
uj to all tasks, assigned to machine j, i.e. it is assumed that ui = uj for i ∈ Jj, where
Jj is the set of tasks assigned to machine j, j = 1, 2, …, m. Additionally, it is
assumed, that all machines finish at the same time. In order to determine a new
schedule, new values of the continuous resource ui to be allocated to the tasks
should be calculated by solving the following system of equations:

∑
i∈ Jj

xĩ
fiðujÞ=M, j=1, 2, . . . , m, ð9:16Þ

132 9 State-of-the-Art Review

∑
m

j=1
uj =1, ð9:17Þ

uj ≥ 0, j=1, 2, . . . , m, ð9:18Þ

Having calculated new values for ui and task processing times, new schedule is
determined using equation:

τi =
xĩ

fiðuiÞ ð9:19Þ

Because the same amount of continuous resource has been allocated to all tasks
assigned to the same machine, the order of tasks on the machines in new schedule
can be arbitrary.

Another heuristic proposed in [1] is denoted as H2(A). It uses the concept of
feasible sequences and defines a very general approach towards discrete-continuous
scheduling problems. Its effectiveness depends strongly on the quality of algorithm
A which is designated to generate a set of feasible sequences SF for a given problem
instance I. As an example algorithm, which can be used for this purpose, Algorithm
A1 is proposed. The general idea of Algorithm A1 is to create a set of feasible
sequences SF, using the property that the number of Zk’s, in which a task appears,
grows with the processing demand of that task. After set SF has been created,
Algorithm H2(A) requires to find a semi-optimal schedule for each feasible
sequence S ∈ SF by solving problem P A semi-optimal schedule of the minimum
length is chosen as the solution to the problem.

Both described algorithms can find optimal schedules for some classes of
problems. The first approach is less time consuming and explicitly uses results from
the classical scheduling theory. The second one defines a general method for
finding solutions to discrete-continuous scheduling problems.

In [30], a Simple Heuristic (SH) to solve a special case of the
discrete-continuous scheduling problem with processing rate functions
fi = u1 ̸αi

i , αi ∈ 1, 2f g, i=1, 2, . . . , n is introduced. SH exploits property p-2 given
in Sect. 8.8.3.2 while assigning tasks to machines. Recall, that property p-2 states
that in an optimal schedule at most one task from set Al (αi = 1) is processed at a
time. The easiest way to fulfill this requirement is to assign all the tasks Ji ∈ A1 to
a single machine. On the other hand, the problem with αi ∈ {1, 2} can be reduced
to the problem with identical values of α′i =2 by calculating the values of pro-
cessing demands of tasks using Eq. (8.19). When the identical values of α′i are
obtained, it is sufficient to allocate identical amounts of the continuous resource to
each machine in order to obtain a semi-optimal schedule. Thus, in the first step of
SH, the modified processing demands x ̃′i of tasks Ji ∈ A2 (αi = 2) are calculated
using Eq. (8.19) and demand xñ2 + 1 = ∑ i∈A1xĩ (it is assumed that there is a task
Jn2 + 1, with processing demand x ̃n2 + 1 equal the sum of processing demands of all
tasks Ji ∈ A1 with αi = 1). In the second step, the tasks are assigned to the

9.3 Heuristic Algorithms for Solving the DCSP 133

machines according to non-increasing values of x ̃′i. In the third step, the value of
makespan is calculated using Eq. (8.18). SH yields slightly worse results than SA
(Simulated Annealing), TS (Tabu Search), and GA (Genetic Algorithm) designed
for solving the same problem. The description of mentioned metaheuristics can be
found in Sect. 9.4. Because the complexity of SH is O(nlogn), its computational
effort is at least 2 × 103 times smaller than for any of mentioned metaheuristics.
This makes SH a reasonable alternative for the metaheuristics in situations, when a
suboptimal solution is required in a relatively short time.

In [13], a heuristic procedure HUDD was used in the TS for continuous resource
allocation. The idea of the HUDD heuristic is based on a uniform distribution of the
processing demand of each task respectively to the number of combinations Zk in
which this task occurs. For this purpose, the number qi of all combinations Zk
containing task Ji is counted, and the processing demand x ̃i of Ji is divided by qi
(i.e. xĩk = xĩ ̸qi) in order to distribute it uniformly over all those parts of the task.
Having obtained the parts of the processing demands of the tasks x ̃ik in each
combination Zk, k = 1, 2, …, n – m + 1, the length Mk of the k-th interval is then
calculated as the unique positive root of equation:

∑
i∈ Zk

f − 1
i ðxĩk ̸MkÞ=1 ð9:20Þ

where xĩk is the part of the processing demand of task Ji, i = 1, 2, …, n, executed in
the considered interval k. Finally, the makespan M of a schedule is calculated from
equation:

M = ∑
n−m+1

k=1
Mk. ð9:21Þ

It should be mentioned, that each function fi must be a bijection in order to
compute the reverse function. Moreover, even then, solving Eq. (9.20) may not be
quite simple, however in many cases it can be solved analytically. In [12], four
heuristics were compared on a basis of an extensive computational experiment, and
the HUDD turned out to be the most efficient for the considered problem.
The HUDD was used in the TS as the procedure for the continuous resource
allocation and discussed in [13]. Although, the combined heuristic denoted as
TS-HUDD was unable to find the optimal makespan, however the average relative
deviation from optimal solution was about 1%–1,5% and the maximal one—about
4%–4,5%. The computational time needed for TS-HUDD to yield a solution was
tens of thousands of times smaller than the time needed for TS-OPT which used a
specialized solver CFSQP 2.3 [31] for finding the optimal allocation of the con-
tinuous resource. Moreover, the computational time ratio between the two algo-
rithms grew with the problem size, which can be counted among the advantages of
the HUDD.

134 9 State-of-the-Art Review

In [14], the HUDD, denoted as HUDD-PS, was used for solving the general case
of the discrete-continuous resource-constrained project scheduling problem
(DCRCPSP). In this work, the quality of the solutions found by HUDD-PS was
compared to the optimal solutions determined by improved version of a solver
CFSQP 2.5 [32]. The results show that the proposed HUDD-PS heuristic can be
considered as quite effective for the analyzed problem. The average relative devi-
ation from optimum did not exceed 6%, whereas the maximal relative deviation
oscillates around 12%. Moreover, these values did not increase with the growth of
the problem size, which might suggest that the heuristic was independent of the
number of activities, at least for the problem sizes considered. Thus, taking into
account the acceptable quality of the solutions found and significantly smaller
computing time (from about 1000 times for 10 activities up to about 10000 times
for 20 activities), the HUDD may be successfully used for solving the continuous
part of the problem.

9.4 Metaheuristics for Solving the DCSP

9.4.1 TS, SA, and GA as Local Search Metaheuristics
for Discrete-Continuous Scheduling Problems

As it is known from Sect. 8.7, the general methodology for solving any DCSP
assumes firstly, determining feasible sequences of tasks on machines, and secondly,
determining optimal allocation of continuous resource to these sequences. The
second stage of solving the DCSP is formulated as a convex mathematical pro-
gramming problem with linear constraints which can be solved using the appro-
priate solver. Because, in general, the cardinality of the POS grows exponentially
with the number of tasks (see the definition of POS in Sect. 8.7), three meta-
heuristics (SA—simulated annealing, TS—tabu search, and GA—genetic algo-
rithm) described in [30, 33] were proposed to solve the problem with an objective
of the makespan minimization. In [33], the problem of continuous resource allo-
cation was solved using specially adopted solver, whereas in [30]—analytically,
using proved in this paper properties of optimal schedules. In both papers, concave
processing rate functions were considered, and the search space of all meta-
heuristics was limited to POS. It has been proved in [1], that for concave functions
fi, i = 1, 2, …, n, a set containing all feasible sequences composed of p = n –

m + 1 m-element combinations of tasks comprises the POS.
In the experimental part of both works, a special case of the discrete-continuous

scheduling problem with processing rates functions of the form
fi = u1 ̸αi

i , αi ∈ 1, 2f g, i=1, 2, . . . , n and an objective to minimize the makespan
was solved. Only the case of n1 > 0 and n2 ≥ m was considered (out of four
possible cases discussed in Sect. 8.8.3.2), where m is the number of machines, and
n1 and n2 are the numbers of tasks with processing rate functions fi = ui, i.e. αi = 1,

9.3 Heuristic Algorithms for Solving the DCSP 135

and fi = ui
1/2, i.e. with αi = 2 respectively. Processing demands of the tasks have

been generated from the interval [1, 100] with a uniform distribution. Values of αi
from the set {1, 2} were generated randomly with equal probability. In order to
ensure similar computational effort performed by each heuristic, the stop criterion
was defined as the number of solutions visited and set for 2000.

In [33], the results of numerous computational experiments, performed to
examine the application of TS, SA and GA to the general discrete-continuous
scheduling problem are presented. The aim of the experiments was to analyze the
convergence and to set the parameters of the metaheuristics. Conclusions concerning
the best neighbourhood generation mechanism in SA, tabu list management in TS,
recombination operators in GA and parameter settings for all algorithms as well as
their convergence behavior were provided. The results of the experiments showed
that TS was more efficient than SA and GA. TS found the largest number of optimal
solutions and showed smallest deviation from optimum for all sizes of the problem.
As it was mentioned above, the allocation of continuous resource to each solution
visited in the solution space was determined by solving a convex mathematical
programming problem. For this purpose, a specially adopted solver CFSQP 2.3
(A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimiza-
tion Problems, Generating Iterates Satisfying All Inequality Constraints) [31] was
applied. The solver stopped when the absolute difference in consecutive values of the
objective function was less than or equal to 10–5. The average time of processing a
single instance of the size n = 15, m = 2 was approximately 5000 s. The main
reason for such large processing time needed to yield a solution was the computa-
tional effort required by the solver to find a solution to the convex mathematical
programming problem.

In [30], all considered metaheuristics used the specific properties of optimal
schedules for the considered problem, proved in the discussed paper and recalled in
this work in Sect. 8.8.3.2. Based on property p-2 (see Sect. 8.8.3.2), the search
space of the metaheuristics was limited only to feasible solutions in which at most
one task with αi = 1 is scheduled at a time. A specially designed Solution Feasi-
bility Test (SFT), based on property p-2, was incorporated into each metaheuristic
in order to reduce the search space by rejecting solutions which did not comply with
it. The optimal allocation of continuous resource to the tasks in a given feasible
sequence was determined analytically using Eq. (8.18). The efficiency of heuristics
under consideration was compared using a relative deviation of a solution found by
metaheuristic from an optimal solution which was determined as follows. Firstly, all
possible assignments of tasks to machines were generated. Next, for a given
assignment, permutations of tasks on each machine were obtained. A permutation
(solution) which passed the SFT was identified as an optimal schedule for this
assignment. The best among all solutions which passed the SFT was considered to
be the optimal solution. The computational experiments showed that owing to the
reduction of the search space due to the SFT and possibility of solving the con-
tinuous resource allocation analytically all metaheuristics performed much more
efficiently compared to the case described in [33], where the specialized solver was
used to determine the continuous resource allocation. The average time of

136 9 State-of-the-Art Review

processing a single instance of the size n = 15, m = 2 was reduced from 5000 s, as
it was when the solver was used, to about 1,58 s. It took on average 0,95 s, 0,75 s,
and 3,04 s for SA, TS, and GA respectively to find a solution. In the experiments,
the best results were obtained by GA, however, both average and maximum relative
deviations from optimum were small for SA and TS as well. The results show that
all metaheuristics under consideration performed better than the Multi-Start Itera-
tive Improvement Algorithm (MSIIA) and Random Sampling Technique
(RST) proposed in [28], as well as the Simple Heuristic (SH) proposed in [30],
which are briefly described in Sect. 9.1.

In [34], the same three metaheuristics were used to solve the same special case of
the DCSP, i.e. the case with task processing rates of the form
fi = u1 ̸αi

i , αi ∈ 1, 2f g, i=1, 2, . . . , n, however, with an objective to minimize the
mean flow time (the respective problem is discussed in Sect. 8.10). For this
problem, a feasible solution was represented by a feasible sequence of n combina-
tions of tasks, such that first n – m + 1 combinations contained exactly m elements
and the consecutive combinations n − m + 2, n − m + 3, …, n − 1, n contained
m − 1, m − 2, …, 1 element respectively. The same specialized solver CFSQP 2.3
was used to find the continuous resource allocation for each solution visited in the
solution space. The results of computational experiments showed, that TS per-
formed best, finding the largest number of best solutions and showing smallest
deviation from optimum for all the problem sizes. The advantage of the tabu search
algorithm increases with the growth of the number of tasks, and reaches 100% for
20 tasks (i.e. for each instance of the problem, tabu search finds the best solution).
However, the average and maximum relative deviation of the solutions found by
GA from the best solution were the smallest.

In [35], the same three metaheuristics under consideration were also used to
solve the maximum lateness minimization problem. For this problem, as well as for
the mean flow time minimization problem, a feasible solution was represented by a
feasible sequence of n combinations of tasks, such that first n − m + 1 combina-
tions contained exactly m elements and the consecutive combinations n − m + 2,
n − m + 3, …, n − 1, n contained m − 1, m − 2, …, 1 element respectively.
Only limited experiments were carried out because of the time consuming con-
tinuous part of the problem. The solution of the convex mathematical programming
problem needed for finding an optimal continuous resource allocation was too
time-consuming in this case. It took the TS about 24 h to solve one instance of the
problem with n = 10 tasks, when the number of solutions visited was limited to
1000. For this reason, the experiment was carried out only for n = 10 tasks
scheduled on m ∈ {2, 3, 4} machines, whilst the number of generated instances
for each combination n×m was 21, 14, and 7, respectively. The results showed,
that tabu search found solutions with the best maximum lateness most often.
However, for 2 and 3 machines, the GA achieved better maximal deviation.

In [9], an original heuristic approach to the problem of the continuous resource
allocation was proposed. The approach exploits the idea of discretisation of the
continuous resource described in Sect. 9.2.1. Now, the discrete resource is allocated

9.4 Metaheuristics for Solving the DCSP 137

in amounts known in advance, i.e. a task is performed in some mode, characterized
by the amount of the resource and task processing time which correspond to the
chosen mode. The amounts of the resource should be pre-calculated using some
method for the discretisation, e.g. using Eq. (9.15), which was also used in the
discussed research. Recall from Sect. 9.2.1, that as the result of the continuous
resource discretisation, a special case of the Multi-Mode Resource-Constrained
Project Scheduling Problem (MRCPSP) is obtained. Thus, having the continuous
resource discretised, the problem is to find the sequence of tasks on machines and
task processing modes such that minimize given criterion of scheduling. The pro-
posed approach was used in the SA for solving the continuous resource allocation
problem. Although, the SA was used to solve the discrete-continuous
resource-constrained project scheduling problem (DCRCPSP) to minimize the
makespan, nevertheless, we will recall the results of application of the discretisation
of the continuous resource, since this approach can also be applied to the DCSP. In
the experiment, a special case of the DCRCPSP was considered, where only one
discrete resource R1 was given. The resource requests of all activities were identical
and equal 1, and there were no precedence constraints imposed. In fact, this special
case reduces to a discrete-continuous machine scheduling problem, where the
discrete resource is a set of parallel identical machines, with the number of
machines equal to the number of available units of single discrete resource R1.
A version of the SA (SAM+), where the idea of the continuous resource discreti-
sation was implemented, was compared with the version of SA (SAA) in which the
continuous resource was allocated optimally with aid of the CFSQP 2.3 solver. In
SAM+, a preliminary schedule, obtained for MRCPSP, was then improved by
constructing a feasible sequence Sz and solving problem Ω(Cmax) (see Sect. 8.8.3)
for this sequence. The obtained schedule was the solution to the corresponding
DCRCPSP. The experiment was performed for n = 10 activities, and one discrete
resource available in various numbers of units R1 ∈ {2, 5, 10, 15}. Processing
rate functions of activities were also of the form fi = u1 ̸αi

i , αi ∈ 1, 2f g,
i=1, 2, . . . , n. For simplicity, the same number of modes following from the
continuous resource discretisation was assumed for each activity of the project, i.e.
Wi = W, i = 1, 2, …, n. Different values of parameter W were examined, from
W = 2 up to W = 100. For each combination of parameters R1 and W, 30 instances
were randomly generated. The number of visited solutions, defining the stop cri-
terion for both the algorithms, was set at 1000. The experiment showed that the
distance of the results produced by SAM+ from the ones obtained by SAA was
4,2% on average, and did not exceed 5,5% for all problem sizes. For a few instances
the SAM+ procedure was also able to find solutions of the same quality as SAA
(up to 5 out of 30). However, the average computational time for one instance was
about 190 s for SAM+, whereas for SAA it was about 13000 s on average. Thus,
the main result of using the continuous resource discretisation approach is that it
allows to reduce the computational time (up to 70 times compared to SAA) while
losing not more than 5,6% on the quality of solutions. Moreover, it was made an
observation that, the quality of results yielded by the SAM+ results was not

138 9 State-of-the-Art Review

influenced neither by the number of available units of the discrete resource R1, or
the discretisation level W. An increase of the number of modes W not always
improved the quality of solutions, despite the fact that the allocations of the dis-
cretised resource approached in accuracy to the allocations of the continuous
resource. It was established, that quite good results were obtained for W = 5 for all
data sets considered in the experiment. The main conclusion was that the obtained
results justified the use of the discussed discretisation approach for coping with the
continuous part of the DCSP.

The successful application of the TS for solving the DCSP motivated researchers
for its further development. In [36, 37], the TS was used for solving the DCSP with
the makespan, the mean flow time, and the maximum lateness as the scheduling
criteria. Three tabu list management methods: the Tabu Navigation Method
(TNM) [38], the Cancellation Sequence Method (CSM) [39], and the Reverse
Elimination Methods (REM) [39] were implemented and compared (a review of
basic concepts and developments of TS one might find in [40]). In the tests, the TS
again outperformed the SA and the GA. For the makespan minimization problem
the results yielded by the TS were very close to optimum. In the experiments on
tabu list management methods, TNM performed slightly better, than two other
methods, which makes the TS very effective, regardless of the list management
method applied.

In [41], further research was carried out to examine the performance of the
TNM, CSM, and REM for the case of the makespan, mean flow time, and maxi-
mum lateness minimization. The performance of the TS combined with three
beforementioned tabu list management methods was again compared to the per-
formance of the SA and the GA. The experiment was carried out for task processing
rate functions of the form fi = u1 ̸αi

i , αi ∈ 1, 2f g, i=1, 2, . . . , n, where the values of
αi were generated randomly with equal probabilities. The allocation of the con-
tinuous resource to the sequence of tasks was determined using the specialize solver
CFSQP 2.3, which stopped when the absolute difference in consecutive values of
the objective function was less than or equal to 10−3. The stop criterion for the TS
was defined as the number of solutions visited and set for 1000. In the case of the
makespan, the results were compared to optimal solutions (found by the full enu-
meration procedure), in the cases of the mean flow time and the maximum lateness,
the results were compared to the best solutions found by the metaheuristics tested.
Because of the hardness of the problem, it took about 0,6 s for the solver to find a
continuous resource allocation to 10 tasks and about 8 s to 20 tasks sequenced on 2
machines. This also results in almost identical computational times required by all
metaheuristics tested since the majority of their computational effort is devoted to
the calculation of the objective function. For each problem size tested, TS found an
optimal solution in about 50% of instances, The average relative deviation from
optimum did not exceed 0,1% in any case, and the maximum relative deviation
oscillates around 1%. The results obtained by TS were significantly better than the
ones obtained by the two other metaheuristics, both in terms of the number of
optimal solutions found, and in terms of the average relative deviation. It was

9.4 Metaheuristics for Solving the DCSP 139

observed in the experiment, that the growth of the number of tasks did not result in
a significant deterioration in the average relative deviation, which was not the case
for maximal relative deviation. On the other hand, the growth of the number of
machines, under a fixed number of tasks, had greater influence on the results. The
results of the experiments show that the tabu navigation method performed best for
the considered problem. The number of optimal solutions found by this method was
the greatest for each problem size, whereas the average relative deviation from
optimum was the smallest. The maximum relative deviation from optimum for the
TNM was smaller or at most equal to the deviations obtained for the two other
methods. Generally, the results obtained by all the three methods were of high
quality. Using all three tabu list management methods, the TS was able to find 50–
70 out of 100 optimal solutions for each problem size, and the average relative
deviation of the solutions found was below 0.1%. Such results prove that TS is very
effective for the considered class of problems. Finally, although the TNM performs
best for the considered problem, the results obtained for all the three methods are, in
general, of a similar quality. Thus based on their observations, the authors conclude,
that other aspects of the tabu search strategy (the solution representation, the
neighborhood generation mechanism, and the starting solution) may have even
stronger impact on the effectiveness of this metaheuristic than the tabu list man-
agement method itself.

In [13], a heuristic procedure—HUDD was used by the TS for the continuous
resource allocation (the description of the HUDD procedure is given in Sect. 9.1).
Although, the combined heuristic denoted as TS-HUDD was unable to find the
optimal makespan, however the average relative deviation from optimal solution
was about 1%–1,5% and the maximal one—about 4%–4,5%. The computational
time needed for TS-HUDD to yield a solution was tens of thousands of times
smaller than the time needed for TS-OPT which used a specialized solver
CFSQP 2.3 [31] for finding an optimal allocation of the continuous resource.
Moreover, the computational time ratio between the TS-HUDD and TS-OPT grew
with the problem size. Such independence of the performance of TS-HUDD from
the size of the problem can be considered as the advantages of the proposed
heuristic approach.

9.5 Minimization of the Resource Usage in the DCSP

Originally, the main goal of the discrete-continuous scheduling was the mini-
mization of criteria related to the time necessary to carry out a set of tasks. These
criteria were: the makespan, the mean flow time, and the maximum lateness, which
have been already discussed in Sects. 8.8–8.10. It turned out, that the methodology
developed for the DCSP can be successfully applied to solve problems with other
criteria. Recently, the results of the research on the minimization of the use of the
continuous resource were published. It was pointed out in [5] that reducing the
usage of the additional resource could contribute to the minimization of the costs

140 9 State-of-the-Art Review

arising from the use of this resource. An example of the resource minimization
could be reducing all kinds of power required to drive the machines, also the
amount of gas used in steel mills to heat the metal, the amount of common memory
used in multiprocessor computer systems [1, 42], or the amount of energy for
variable voltage processors used in portable electronic devices [45].

In [5], a research on the continuous resource level minimization in the discrete–
continuous scheduling was made. Problem Ω(Umax), which minimizes the usage of
the continuous resource required to process the tasks within a given upper bound on
makespan bC, was formulated. Based on Riemann’s integration theory [43], a the-
orem stating that in an optimal solution the total amount of the continuous resource
in use in any moment of time t is constant within a schedule. There was also proved
another theorem on the relation between Ω(Umax) and Ω(Cmax), stating that if in a
solution the upper bound on makespan bC and optimal makespan C*

max are equal in
value, then the upper bound on the use of the continuous resource bU is optimal, i.e.
if bC=C*

max, then bU =U*
max and vice versa. These theorems helped to prove some

other properties of problem Ω(Umax) and design an approximation algorithm which
yields a solution with any desired precision. There were also proved properties
which specify how to process the tasks on the machines depending on the tasks’
processing rate. Namely, for the case of convex processing rate functions, the usage
of the continuous resource is minimized when all tasks are processed on the same
machine in an arbitrary order (identical property concerns the minimization of
makespan Cmax and the total flow time F, see Sect. 8.8.1). In this case, the optimal
amount of the continuous resource U*

max required to process all tasks within given
upper bound on schedule bC can be determined according to the equations below:

f − 1
i

xĩ
τi

� �
= f − 1

i+1
xĩ+1

τi+1

� �
, i=1, 2, . . . , n− 1, ð9:22Þ

∑
n

i=1
τi = bC, ð9:23Þ

U*
max = f − 1

i
xĩ
τ*i

� �
, i=1, 2, . . . , n, ð9:24Þ

where τ*i is the processing time of task Ji in the optimal schedule. In the case of
concave functions and n ≤ m, the usage of the continuous resource is minimized
by processing each task on another machine (identical property concerns the
minimization of makespan Cmax, see Sect. 8.8.2), and allocating the continuous
resource in amounts given by the following equations:

u*i = f − 1
i

xĩbC
� �

, i=1, 2, . . . , n, ð9:25Þ

9.5 Minimization of the Resource Usage in the DCSP 141

U*
max = ∑

n

i=1
u*i . ð9:26Þ

Based on the proved properties of problem Ω(Umax), for the case n ≥ m the set
of all feasible sequences Sz comprised by all sequences containing p ≤ n – m + 1
combinations Zk was reduced to the set of all feasible sequences Sz which contains
p = n – m + 1 combinations Zk. Such property of Sz complies with the definition
of the POS of Ω(Cmax) given in Sect. 8.8.3. It was also proved that the cardinality
of Sz for the case n ≥ m can be determined using the equation below:

SZ
�� ��= n! ⋅ mn−m

m!
. ð9:27Þ

In the paper, there were given two additional formulations of problem Ω(Umax),
denoted as Ω′(Umax) and Ω′′(Umax), which are more suitable for handling by the
Sequential Quadratic Programming (SQP) method [6] provided by MATLAB
Optimization Toolbox. The formulation of problem Ω′(Umax) was obtained through
standard transformation of Ω(Umax) into a problem with the simpler to optimize
linear objective function. Problem Ω′′(Umax) was formulated in order to facilitate
processing of some input data. It was obtained from Ω(Umax) by adding a constraint
which explicitly imposes constant level of the continuous resource used within a
schedule (the property of optimal schedule) and replacing the equation for the pri-
mary objective function by the equation for the total amount of the continuous
resource assigned to any, e.g. first, interval of the schedule. In the paper, there was
proposed an algorithm which finds an optimal resource allocation for given sequence
Sz on the way of solving one of problems Ω(Umax), Ω′(Umax) or Ω′′(Umax). In
practice, standard optimization procedures are often used for solving nonlinear
problems of mathematical programming. Such standard optimization procedures had
been used in an approximation algorithm, additionally proposed in the paper, which
solves problem Ω(Umax) with an arbitrarily small error
ε Mminð Þ, i.e. Umax −U*

max < ε Mminð Þ, where Mmin is a minimal length interval equal
to the smallest number which can be handled by a computer at hand. The proposed
approximation algorithm generates all feasible sequences from Sz and for each
sequence determines the allocation of the continuous resource with an absolute
approximation error ε(Mmin). Because, the cardinality of set Sz grows exponentially
with the size of the problem, a fast heuristic algorithm AS(π1, π2) for solving
Ω(Umax) was proposed. In the heuristic, the procedure for generating all sequences
Sz∈ Sz was replaced by a simpler one which composes sequence Sz∈ Sz using two
sequences of tasks π1 and π2 in which tasks from J are placed in an arbitrary order.
Sequence π1 determines the order in which tasks start their processing in a schedule,
and π2 determines the order in which they finish their processing. For the sequences
Sz∈ Sz obtained in this way, problem Ω(Umax) is solved. The performance of the
proposed methods and algorithms was examined in the experiment, where problems
Ω(Umax), Ω′(Umax) and Ω′′(Umax) with convex and concave processing rate

142 9 State-of-the-Art Review

functions were solved. In the case of concave functions, the SQP method was used
for solving Ω(Umax), Ω′(Umax) and Ω′′(Umax) problems in order to determine which
formulation of the problem results in better performance. As an input data, concave
functions of the form fi uið Þ= ci ⋅ u1 ̸αi

i , where ci > 0 is a positive real number, three
sets of αi: αi ∈ {1, 2}, αi ∈ {1, 2, 3}, αi ∈ {1, 2, 3, 4}, the number of machines
m ∈ {2, 3, 4}, and the number of tasks n ∈ {10, 15, 20} were used to generate
1800 instances of the problem. The values of processing demands of tasks x ̃i and
coefficients ci, i = 1, 2, …, n were generated at random with a uniform distribution
from an interval between 0 and 1. The upper bound on the schedule length bC was set
at 10. The value of minimal length interval Mmin was set at 10−6, which ensured
relative approximation error of the solutions not greater than 10−6 %. All the
experiments were performed on a PC computer with AMD Athlon 2000+ processor
and 1 GB RAM memory in the MATLAB R14 environment. The quality of solu-
tions found by the tested algorithms was evaluated using relative error, calculated as
ððUmax −U′

maxÞ ̸U′

maxÞ ⋅ 100%, whereUmax is the resource-amount determined by the
SQP method for a given instance, and U′

max is the best among all values of Umax

obtained for the same instance. The mean relative errors of solutions found for
problem formulationsΩ(Umax),Ω′(Umax) andΩ′′(Umax) were similar and were in the
range between 0,01% and 0,88% (when αi ∈ {1, 2} and αi ∈ {1, 2, 3}), and
between 0,01% and 2,89% (when αi ∈ {1, 2, 3, 4}). However, the time required to
yield a solution in case of Ω(Umax) (5 s–41,3 s) was 3–4 times greater than in the
case of Ω′(Umax) and Ω′′(Umax) (1,5 s–12,9 s). In the case of heuristic AS(π1, π2),
the mean relative errors were in the range between 28% and 57,7%. And the relative
error was calculated as ððUmax −U′

maxÞ ̸U′

maxÞ ⋅ 100%, where Umax is the
resource-amount determined by AS(π1, π2) for a given pair (π1, π2), and U′

max is the
best among values of Umax obtained for all pairs (π1, π2). Unfortunately, the per-
formance time of AS(π1, π2) has not been provided in the paper. There were also
conducted experiments for convex processing rate functions, although these func-
tions have only limited theoretical value. In the case of convex functions, there does
not exist the problem of sequencing the tasks on machines, since an optimal schedule
is obtained when all tasks are processed on the same machine in an arbitrary order,
and the amounts of the continuous resource to be allocated to the tasks can be
determined by solving Eqs. (9.22)–(9.24). Three methods for solving the problem of
continuous resource allocation were compared: an original approximation method
proposed by the authors, a MATLAB approximation method, and a MATLAB
symbolic method. As an input data, convex functions of the form fi uið Þ= ci ⋅ u1 ̸αi

i ,
where ci > 0 is a positive real number, three sets of αi: αi ∈ {1, 2}, αi ∈ {1, 2, 3},
αi ∈ {1, 2, 3, 4}, the number of machines m ∈ {2, 3, 4}, and the number of tasks
n ∈ {5, 10, 20, 30, 100, 105} were used to generate 1800 instances of the prob-
lem. The mean time required to solve Eqs. (9.22)–(9.24) for most of the problem
sizes by the proposed approximation method was less than 0,1 s. The mean time
required by MATLAB approximation methods in most cases was close to 0,1 s.
Unfortunately, the MATLAB symbolic method was useless in the cases with αi > 2
and the number of tasks n > 5, because of the excessive computational time.

9.5 Minimization of the Resource Usage in the DCSP 143

In [44], the authors show how the methodology developed for the
discrete-continuous scheduling can be applied to manage power consumption in
computer systems. The power consumption issue is an important performance
factor in all kinds of battery-powered multiprocessor devices where multiple
independent tasks are being simultaneously carried out. The efficient use of energy
can not only extend the operating time of such devices, but also prevent them from
overheating. In the paper, a commonly used task processing model, describing the
relation between the speed of processing a task and the power consumed during this
processing, is generalized to the model where the rate of processing may change in
time and depends on the temporal power allocation. One of the advantages of the
proposed model is the possibility of describing much broader class of power usage
functions, whereas in commonly used model, convex functions of power α > 1 are
mainly assumed (for CMOS technology α = 3). Another advantage is the possi-
bility to describe tasks with various power usage functions, which is useful when
the power consumption depends on the type of microprocessor instruction being
executed. On the contrary, in the previous model it was assumed the same power
usage functions for all tasks. The proposed model of task processing was used to
formulate a problem corresponding to practical situations where power consump-
tion minimization is in focus. There were also discussed some theoretical results for
the case with a single constraint on the energy consumption at every time moment t,
i.e. the constraint on power consumption, and the case with doubly constrained
energy consumption, where instantaneous and the total power consumption were
constrained. Perceiving the energy as scarce doubly constrained resource is very
important in power management, because it allows for better modelling of the real
practical situations. The paper discusses some properties of time-optimal schedules
and suggests the ways of obtaining optimal or suboptimal solutions to power
management problem.

In [45], a problem of scheduling a set of preemptable tasks on a single variable
voltage processor to minimize overall energy consumption was considered. This
problem arises in autonomous devices driven by an independent energy source, e.g.
portable electronic devices. When the capacity of the energy source is limited, it is
crucial to carry out scheduled tasks in an expected time while consuming as little
energy as possible. This type of problem is known in the literature as min-energy
dynamic voltage scaling scheduling, or simply min-energy DVS scheduling [46–
48]. In the problem, each task is characterized by its ready time, deadline, and the
number of CPU cycles required to perform a task. A feasible schedule defines a task
and its processing rate at time t within the schedule. The energy required to execute
the task is assumed to be a convex function of the processing rate (at least of the
second power). Two variants of the problem were considered: continuous and
discrete. In the continuous variant, it assumed that the processing rate function is
piecewise continuous with finitely many discontinuities and takes real values,
whereas in the discrete one, it takes values from the set of the finite number of
predefined processing rates. Therefore, the goal in the discrete variant is to deter-
mine a min-energy schedule using only these predefined rates. The contribution of

144 9 State-of-the-Art Review

the research is an optimal algorithm which had improved over the best previous one
of time complexity O(n3) to O(n2log n). The algorithm constructs the optimal
continuous schedule by successive approximation, based on an efficient partitioning
of the set of tasks into subsets of high and low processing rates tasks with respect to
some processing rate threshold, without computing the exact processing rate.

9.6 The Special Case of the DCSP

In [49], a continuous resource sharing (CRSHARING) problem was introduced. In
practice, an example of continuous resource can be a limited computer memory or
system’s bandwidth which limits the distribution of data, necessary for carrying out
computations, among processors. The problem concerns the allocation of contin-
uous resource to m identical constant speed processors which have to process
n tasks. The assignment of tasks to processors and the order, in which the tasks have
to be processed, are given in advance. A task is processed in one or a few discrete
time steps. During any time step, only one task can be processed by a processor.
A task is processed at full speed, if it receives an appropriate amount of the
continuous resource, called resource requirement uîðtÞ. Resource requirement uîðtÞ
determines the amount of the resource required to process one unit of the task’s
processing demand in one time step. The processing rate of a task depends linearly
on the amount of the continuous resource it has been allocated in a time step, i.e. if
a task receives an x-th fraction of whole amount of its resource requirement, where
x ∈ [0, 1], then it can be processed at the x-th fraction of full speed in that
step. The total amount of the continuous resource allocated to processors at any
time step t is limited and cannot exceed a given value, i.e.

∑
m

j=1
ujðtÞ≤ 1 ð9:28Þ

where uj(t) ∈ [0, 1] is the amount of the continuous resource allocated to processor
Pj at time step t. The problem is to determine the allocation of the resource to the
processors in every time step which minimizes the makespan of the schedule
subject to constraints on the resource (9.28). The considered problem is similar to
the DCSP, because task processing rate can be described by a concave (linear)
function fi of the form:

fiðtÞ=min
ujðtÞ
uîðtÞ , 1

� �
, ð9:29Þ

where uîðtÞ∈ ½0, 1� is the resource requirement of task Ji. However, the considered
problem is different from the DCSP, because the assignment of tasks to processors

9.5 Minimization of the Resource Usage in the DCSP 145

and the order in which the tasks are to be processed are imposed in advance.
Although, it was assumed in the research, that tasks were of a unit size, however it
was proved that the problem is NP-hard in the number of processors. Nevertheless,
an optimal algorithm for solving the problem in O(n2) time for the case with m = 2
and assuming unit size tasks was proposed. For the case with the number of
processors m ≥ 3 and unit size tasks, an approximation algorithm with a
worst-case approximation ratio of 2 − 1/m was also proposed.

9.7 Research on the Island Model of Computing

The performance of evolutionary algorithm (EA) to a great extent depends on its
ability to cope with the obstacles that prevent or hinder the progress of the search.
One of these obstacles is premature convergence, which results in getting stuck in a
local optimum. Another one—too large search area, which is a natural obstacle on
the way to global optimum. One of the ways to cope with these difficulties is to
provide the appropriate level of population diversity. In the literature, we find a
variety of approaches and techniques to maintain an appropriate level of the pop-
ulation diversification. For a comparative review of approaches to prevent prema-
ture convergence in GAs see [50]. One of the simplest ways to diversify the
population, is to determine such size of the evolving population that ensures the
highest efficiency of EA. Alternatively, one can initiate and perform search in
various distant and separated from each other regions of the search area. In such
case, the algorithm operates on multiple and independent to a certain degree sub-
populations, which provide desirable diversity, and, in consequence, may contribute
to faster convergence towards the global optimum. Such method of performing the
search was the subject of interest of many researchers, e.g. [18–20, 51–54]. It is also
known in the literature as an island model and is often reported as more effective,
than a search performed on a single population, e.g. [55, 56]. The idea of increasing
the population diversity by structuring it as autonomous and interacting with each
other sub-populations was borrowed from the mathematical theory of population
genetics, where an isolation by distance theory, pioneered in [57, 58], gave rise to
different models of population structure. In an island model, proposed in [57], the
whole population is divided into separated subpopulations (islands). All subpopu-
lations are panmictic (i.e. all individuals are potential partners), and random
migration of individuals among subpopulations is assumed. In evolutionary com-
putation, the island model is viewed as a set of homogeneous or heterogeneous
algorithms which autonomously evolve assigned to them subpopulations. Such
islands are interconnected with each other according to some topological scheme (a
ring, a torus, a hypercube etc.) which determines the migration of individuals
among them. The migration among the islands is performed by some chosen mi-
gration policy which determines migration interval (the number of generations or
fitness function evaluations after which the migration is carried out) and migration
size (the number of individuals which is to be sent between sender and receiver

146 9 State-of-the-Art Review

islands). The described island model is well suited for processing in parallel, dis-
tributed, and agent systems which may provide greater effectiveness of search and
reduction of the response time. The remainder of this chapter provides an overview
of some studies on the effectiveness of evolutionary and genetic algorithms which
exploit the generally understood island model, i.e. the model in which separated and
interacting with each other subpopulations perform an evolutionary search.

In [52], the performance of distributed (DGA) and canonical (CGA) GAs was
tested on the Royal Road functions (R1-4). In the DGA, originally proposed in [59],
the subpopulations regularly exchange some of their solutions in regular intervals.
In [59], two parameters of such migration of solutions were introduced: migration
interval (i)—the number of generations between each migration, and migration rate
(r)—the percentage of individuals selected for migration. In the experiments con-
ducted in [52], the total size of population was set at 480, the number of sub-
populations—at 24, and the size of each subpopulation—at 20. During each run of
the DGA, 500 generations were evolved, which corresponds to 240480 of the
fitness function evaluations (including the initial generation 0). Migration interval
i ∈ {5, 10, 20, 50, 100, 500}, and migration rate r ∈ {0,1, 0,2, 0,5}, i.e. the
subpopulations exchanged among themselves 10%, 20%, and 50% of their indi-
viduals during the migration phase. The case with i = 500 corresponded to the
DGA without migration. In [52], the migration in the DGA was carried out between
randomly chosen pairs of subpopulations, which was different to the hypercube
topology, originally implemented in [59]. During the migration a fixed number
nmig = r ⋅ n (where n is the size of the subpopulation) of individuals was exchanged
between the subpopulations, whereas in [59] this number depended on the sub-
population’s average fitness and the individuals were selected at random. The DGA,
when run on a 2-ring, 64-processor KSR1 parallel computer, showed superlinear
speedup, and it took from about 4 s (32 processors) to over 100 s (1 processor) to
find a solution. Unfortunately, the DGA performed differently for different
parameters, and the results of the tests did not allow for unequivocal conclusions
about the superiority of the DGA’s over the CGA’s performance. The DGA
excelled the CGA on the functions R3 and R4, when migration interval i = 50 and
migration rate r = 0,5, whereas it only achieved comparable to the CGA results on
the functions R1 and R2 with i = 5 and 10. In the additional tests, the random
migration topology implemented in the DGA did not show any superiority over
hypercube or stepping stone topology, since the latter two models become equiv-
alent to a random, island migration topology as the number of their dimensions
increases. Finally, the experiments showed some inconsistence with Wright’s
shifting balance theory, where in contrast to the theory, the building blocks
delivered by the migrants were often less fit, than those obtained as the result of the
crossbreeding with the local individuals.

In [60], the potential advantage and suitability of the island model genetic
algorithm in solving linearly separable (fully deceptive, Rastrigin’s) and nonsepa-
rable (Powell’s Singular, Rana’s) parameter optimization functions were examined.
There was also studied capability of the island model to maintain the diversity of
the total population by using the infinite population models of simple genetic

9.7 Research on the Island Model of Computing 147

algorithms. The experiments were carried out on large (5000 individuals), and
small (500 individuals) populations. The purpose of experiments carried out on the
large population was to estimate the convergence behavior of a genetic algorithm
using an infinite population with and without migration. The sizes of subpopula-
tions comprising islands were set at 50, 100, 500, 1000, 5000 and the number of
islands at 100, 50, 10, 5, 1 respectively. The islands were located on a
counter-clockwise directed ring and the migration of individuals was performed
after each 5 generations had been created on each island or after 250, 500, 2500,
5000 of fitness function evaluations per island respectively. On the first migration, a
predetermined number of best individuals were copied and sent from island k to
island k – 1, on the second migration, from k to k – 2 and so on, until each island
had sent one set of individuals to every other island, then the process was repeated.
The individuals received from other island took place of the equal number of the
worst ones. In the experiments the numbers of emigrants were set at 2, 2, 5, 5
respectively. When the sizes of the total population and subpopulation were equal,
the migration was not performed. The genetic algorithms were run for a maximum
of 200000 evaluations on the separable functions and 400000 evaluations on the
nonseparable functions. The experiments performed on large population of 5000
individuals showed that the use of migration definitely improved the performance
of the Island Model genetic algorithms. In some cases, the convergence behavior of
the Island Model genetic algorithms was approaching or exceeding that of a single
population. In the experiments with a smaller total population size of 500 indi-
viduals, the size of population on each island was set at 50, 100, 500, the number of
islands at 10, 5, 1, the migration interval at 250, 500 evaluations, and the number of
emigrants 2 and 2 respectively. When the sizes of the total population and sub-
population were equal, the migration was not performed. The maximum number of
fitness function evaluations carried out by the algorithms was set to 200000 eval-
uations or 400 generations for the separable problems and 400000 or 800 gener-
ations for the nonseparable problems. Based on the results of their experiment, the
authors conclude that when migration is introduced, the performance of all Island
Model genetic algorithms improved so that they performed as well or better than the
single population. However, the results also suggested that Island Model genetic
algorithms could still exhibit very complex and unexpected behavior, and that
authors’ expectations of improved performance for the Island Model on linearly
separable problems was only partly correct. They also suggest that Island Model
genetic algorithms consisting of 10 subpopulations of size 500 would be a rea-
sonable design.

In [51], parallel genetic algorithm were tested on separable, non-separable,
multimodal, deceptive, and epistatic problems functions to examine the influence of
synchronism in the migration phase on the algorithm’s performance as well as the
migration frequency, search time and the speedup. The experiments were carried
out on MIMD parallel computer, where identical steady-state or cellular GAs were
run on 1–8 identical processors. The migration of individuals was organized on a
unidirectional ring and was carried out synchronously or asynchronously. Syn-
chronous islands waited for every incoming individual, which inevitably prolonged

148 9 State-of-the-Art Review

the PGAs’ response time, while asynchronous ones did not. The migration intervals
were counted in multiples of the global population size: 0μ, 1μ, 2μ, 4μ, 8μ, 16μ,
32μ, and 128μ. The migrants were chosen on the islands at random, however they
were allowed to replace the worst individuals on recipient islands only if they were
better than the latter ones. There was no limit imposed on the maximum number of
fitness function evaluations, so, depending on the problem being solved, it took
from about 50000 to 12000000 evaluations and about 3 s–850 s for PGAs to yield a
solution. The results of the experiments showed that PGAs in most cases excelled
the sequential GAs. In all the experiments asynchronous PGAs outperformed their
synchronous equivalents in time. This is consistent with the results obtained for
other PGAs and problems, and confirms the advantage of the asynchronous over
synchronous interaction [61]. The tested PGAs performed with linear and some-
times with super-linear speedup when run on a cluster of workstations.

In [53], it was made a research on the effects of migration policy, which
determines the way the migrants are selected and replaced, on the selection pressure
and the speed of convergence in parallel multi-population evolutionary algorithms.
There were considered four possible variants of selection and replacement of
migrants, which were composed of random selection, selection of the best, random
replacement, and replacement of the worst. It was assumed that the migrants were
copied and the migration was performed after each generation, since if performed
less frequently, it would have less significant effect on the convergence of the
algorithm. The selection pressure was examined by determining the takeover time
(which indicates how quickly a good solution, once found, occupies the entire
population) and then calculating the increase in the selection intensity. The selec-
tion intensity allows for quite precise forecasting of convergence time and can be
calculated analytically from the equation:

st = I ⋅ σt, ð9:30Þ

where I – is the selection intensity, and σt – is the standard deviation of the
population at time t, and st – is the selection differential, which is defined by the
following equation:

st = f
t
s − f

t
, ð9:31Þ

which is the difference between the mean fitness of the selected individuals s and
the mean fitness of the population. The obtained experimental results show that the
selection policy for choosing migrants for copying or replacement according to
their fitness increases the selection pressure and can contribute to significantly faster
convergence of the algorithm. It was also established that the selection pressure
increases monotonically with higher migration rate, where the migration rate is
assumed to be the number of individuals selected for the migration. The faster
convergence can accelerate the computations and may explain some cases of
superlinear speedup in parallel EAs.

9.7 Research on the Island Model of Computing 149

In [54], an attempt was made to answer the question whether multiple inde-
pendent runs of genetic algorithms (GAs) with small populations are superior to a
single run with a large population, with the view of the quality of solution and the
time needed to find it. The question was examined analytically under and without
constraint on the number of fitness function evaluations for cases of
additively-separable functions of varying difficulty. The obtained analytical and
experimental results determined the situations in which the considered approaches
performed best. It was established that for the functions considered, multiple runs
are preferable only in conditions of limited practical value (short problems with
low-order building blocks (BBs)). On the contrary, a single run with the largest
population possible performs better when difficult problems (long problems with
high-order BBs) were tested. Finally, the authors suggested that under the fixed cost
constraint the GAs, in most cases, were able to find better solutions and in shorter
time, when they were run on the largest possible population only once.

In [62], the influence of migration topology on the convergence of PGAs was
investigated. Six topologies, shown in Fig. 9.1, of different interconnection den-
sities were considered.

All graphs representing the topologies were built on 9 nodes and the migration
was bidirectional in topologies A and B, and unidirectional in C–F. Topologies A
and B were grids with different number of links between adjacent nodes, topologies
C, E, and F were 2 (C) and 3-level hierarchical graphs converging to a single first
level node with different interconnection linkage between lower levels nodes.
Topology D represented a unidirectional ring. The islands in the presented
topologies were either homogeneous, i.e. implementing identical GAs, or

Fig. 9.1 The 6 migration topologies considered in [62]

150 9 State-of-the-Art Review

heterogeneous, when different GAs were implemented. The migration policy
assumed that a single copy of the best local individual was periodically sent from
each island to the recipient island according to the chosen migration topology. The
size of the population on each island was set at 20 individuals. Unfortunately, the
experiment revealed that neither topology performed equally while solving
the considered test problems. The topologies with dense linkage and/or frequent
migration were more fit for optimization of smooth functions. In contrast, the
topologies with scarce unidirectional links and rare migration were better in
optimizing non-smooth (deceptive) functions. In this case, the higher degree of
the diversity among the subpopulations was preserved. However, the author
distinguished the hierarchical (two and three-level) topologies C, E and F as the best
ones.

In [63], in contrast to spatially separated islands, an island model with islands
separated in time was proposed. The basic idea underlying this concept is the
reintroduction of genetic information from antecedent generations into the new one.
The developed gene reuse scheme allowed to control the genetic diversity of the
population with a positive effect on the convergence and performance of the
algorithm. The proposed EA was composed of two island subpopulations. The first
island contained the current population evolved by the EA and the second one
served as a gene memory for storing the gene values (not entire chromosomes) from
the antecedent populations. The gene values from the memory did not interbreed
and only took part in the evolutionary process when the premature convergence had
been detected. Such reintroduction of the gene values of the ancestors into the new
generation backtracked and redirected the search into the new area, which allowed
to maintain the diversity and the convergence on the appropriate level and, in
consequence, to improve the performance of the EA. The experiments performed
on two different problems, known to be prone to premature convergence, showed a
significant improvement of the performance of the EA composed of islands sepa-
rated in time over the basic EA.

In [64], an experimental study of the influence of migration size and migration
interval on the performance and genetic diversity of the island-based EA was
carried out. In the experiments, island models were composed of 2 and 5 identical
islands. A standard generational EA (non-overlapping) with the exception of the
best individual carried over (elitism) was assigned to each island. The total number
of individuals on the archipelago was set to 100, which corresponded to the sub-
populations of 50 and 20 individuals on each island respectively. The maximum
number of generations allowed to be created on each island was set to 500 which
corresponded to 25000 and 10000 of fitness function evaluations on each island
respectively. A random-random migration policy was used, according to which
migrants, selected at random from the source population, replaced randomly chosen
individuals in the target population. The migration was carried out synchronously
in accordance with the migration interval. In the experiments, the values of the
migration interval were set to 1, 2, 3, 4, 5, 10, 15, 20, 25, 30. The migration size was
varied using the values of 1, 2, 4, 6, 8, 10, 12 14, 16, 18, 19, 20. A random (dynamic)
topology was used in order to provide equal relations between the islands [65].

9.7 Research on the Island Model of Computing 151

The migration of individuals was carried out between the pairs of islands chosen at
random. The performance of the island-based EA was measured with the best-so-far
value from all islands. The tests were carried out using 8 functions, where four of
them were specially designed to study properties of island models, and the other
four were standard multimodal functions of Rosenbrock, Schwefel, Rastrigin and
Griewangk. The results of the experiments revealed that the migration interval was
playing much bigger role than the migration size. When the migration interval was
short, the performance of the island EA had dropped noticeably. The size of
migration didn’t influence the behavior as much, with the exception for the sizes
equal to the size of subpopulations, i.e. in the case when the migrants completely
replaced the target subpopulations. For different setups the convergence took dif-
ferent time and in particular it took longer for rare migrations. However, in the case
of rare migrations the algorithm usually converged faster with medium migration
sizes, than with large or small ones. In addition, the island model very often
achieved better results than the panmictic model (a single large population) and the
separated islands case in which no migration was performed. There were also
conducted additional experiments on the convergence of the island-based EA. The
diversity was computed as standard deviation on genomes [66]. In the first
experiment with fixed migration size set to 10 and variable migration interval it was
observed that frequent migrations resulted in a rapid decrease of diversity. Such
behavior was explained by the domination of individuals from one island over
individuals from another island. When the migrations were rare, the global diversity
remained high, despite the low local diversity on the individual islands. This means
that different islands converged to different optima. Exchange of individuals
between the islands resulted in better average fitness. In the next experiment, the
convergence of the algorithm was tested for fixed migration interval set to 20 and
variable migration size. It was observed that a migration of even a single individual
often quickly affected the whole target population, which resulted in a diversity
drop and fitness increase comparable to the case in which a large number of
individuals migrate. Moreover, for small migration sizes, it was sometimes
observed an increase in diversity on islands right after the migration. This suggests
that a single individual was able to initiate changes in a stagnated population. The
migrations of large sizes tended to have an immediate effect on the diversity on the
island simply because of replacing a larger number of individuals. However, the
diversity of such populations didn’t change much in the following generations. In
further experiments, the convergence of the algorithm with different migration
intervals and sizes for the same total number of migrants was compared. For
purposes of the experiment, it was assumed that migration interval was equal to
migration size. When the values of these two parameters were set to 1, 2, 4, 10, 15,
the algorithm converged to relatively similar fitness and showed similar diversity of
population. Only, when the migration interval and the size were set to 20, the fitness
and diversity were noticeably worse, compared to those obtained for previous
setups. The authors finalize their discussion on the results with conclusion that the
performance of the island model did not depend on a single particular parameter,
but depended on the combination of them. When the combinations were

152 9 State-of-the-Art Review

appropriate, the island model outperformed both panmictic and separate setup. The
best performance was obtained with moderate migration intervals and small
migration sizes. Therefore, the island model algorithm would perform best with the
migration interval of about 5–10 generations and the migration size less than 10%
of the population. Such setup confirms earlier results reported in [67].

In [68], the discussion on the performance of the island model was continued. The
dependence of performance of the island model on the amount of cooperation
between the islands, the level of heterogeneity and the difficulty of the problems
being solved was investigated. In the island model, composed of identical (homo-
geneous) islands, the spatial separation of the islands creates natural borders for the
exchange of genetic information in the global population, which skillfully used may
contribute to the improvement of the algorithm’s performance. The diversification of
the islands, i.e. making them heterogeneous, may further increase the differences
between the islands and this way further enhance the desired properties of the model.
Thus, it was made an attempt to find out how the heterogeneity of the islands is
related to other parameters of the island model, and in which situations the
heterogeneous islands are advantageous. The islands can be diversified by differ-
entiating: EAs assigned to the islands, solution representations, fitness functions,
standard parameters of EAs, or by varying the selection pressure. The introducing of
heterogeneity into the island model may result in changes of certain properties of the
model, e.g. may increase the maximal allowed and the minimal required level of
cooperation. Thus, it was important to find out how cooperation level, the hetero-
geneity level and the problem difficulty influence the performance of the island
model and how to choose the first two, given a specific problem to solve. A special
function was designed for studying the heterogeneous island models. The function
was difficult for only binary or Gray encodings, but was much easier when switching
between representations was allowed [69]. For the purpose of the experiment, an
island model composed of two islands was designed. One island used a standard
binary encoding while the other one used a standard reflective Gray code. The model
transformed individuals from one representation to another during migrations.
A local optimum in one representation need not be a local optimum in the other
representation. Therefore, by switching representations it was possible, in some
cases, to “escape” from suboptimal solutions and to solve problems that were dif-
ficult for single representation EAs. In the experiment, the migration interval was set
to 50 generations, which does not seem to confirm the supposition of the possible
increase of cooperation in the heterogeneous island model. Finally, additional
experiments on the robustness of the model were conducted. The island model was
tested for different levels of migration using the Rosenbrock, Schwefel, Rastrigin
and Griewangk functions. On the tested problems, the robustness of the
island-model was comparable or better than that of the panmictic EA.

In [70], a population adapter which implements an adaptive method for deter-
mining good combinations of island population sizes and the number of islands was
proposed. The adapter automatically searches for good settings of island population
sizes and the number of islands according to observed performance during the run
of the GA. The basic idea behind the adapter is to run three distributed GAs: DGA0,

9.7 Research on the Island Model of Computing 153

DGA1, DGA2 with the set of parameters {K, x}, { K, x ⋅ 2}, {K ⋅ 2, x} respectively,
where K is the number of islands, and x is the size of the population on an island.
The DGAs are allowed to run until one of the DGAs overtakes its competitors, or
no further improvements are found. The overtaking is detected by comparing
average fitness of DGA0 with that of DGAs with larger total population sizes. When
DGA1 or DGA2 overtakes DGA0, the values of parameters K and x of DGA0 are
changed to that of the winner, and the DGA1 or DGA2 are restarted. A collaborative
restart with seeding, which improves the efficiency of the population adapter, is
implemented. In the restart with seeding, each island in the DGAs incorporates the
best individuals from the other DGAs, this way setting the search towards
promising regions of the search area. The population adapter was tested on the
Holland’s Royal Road problem and a hard real-world VLSI floor-planning problem
for the cases when the restart was carried out with and without seeding. The
reference value for the comparison of the test results was obtained in the experi-
ments with manual parameter settings. The experiments with the manual settings
suggested that a total population size of 2560 provides good performance of the
DGA. The population adapter with restart with seeding found better parameter sets
using fewer number of evaluations and with a significantly lower standard deviation
than the case without seeding, which suggests that seeding leads to more reliable
results. Although, the population adapter requires about three times the effort
needed to solve the problem when the optimal population sizing is known
beforehand, it eliminates the process of manual tuning of the considered parameters
of the DGAs.

As it could be seen from the above brief review, the studying of the island model
properties is the object of interest of many researches and still remains an open
issue. In Chap. 11, we offer further research on the properties of the island model
and propose new ideas which may contribute to its effective use.

9.8 Research on Preventing Premature Convergence
in Evolutionary and Genetic Algorithms

Numerous approaches, methods, techniques and mechanisms proposed to cope with
the issue of premature convergence in evolutionary and genetic algorithms can be
found in the literature. A comparative review of approaches to prevent premature
convergence in GA is given in [50] and an overview of methods maintaining
diversity in genetic algorithms in [71]. In addition to the empirical work, there has
also been conducted theoretical research on population diversification.

In [72], the global exploration capabilities of mutation-based algorithms for
sub-linear population sizes were investigated theoretically and empirically. Using a
simple bimodal test function and rigorous runtime analyses, the authors compared
well-known genotype and fitness diversity preserving mechanisms, deterministic
crowding and fitness sharing with a plain (μ + 1) EA without diversification. It was

154 9 State-of-the-Art Review

shown that diversification is necessary for global exploration, but not all mecha-
nisms succeed to the same extent. According to the authors, population is nearly
useless for the algorithms with genotype and fitness diversity, as it was experienced
the same performance as for simple hill climbers like local search or the
(1 + 1) EA. On the other hand, algorithms with fitness sharing and deterministic
crowding performed better than with genotype and fitness diversity due to their
higher success probabilities. Their experimental results indicate a similar behavior
of the diversity preserving mechanisms also for larger populations.

In [73], theoretical analysis and empirical study on the (μ + 1) EA operating on
the Balance Function was conducted. It follows from the experiments that linear
population sizes are sufficient to make both the (μ + 1) EA without diversity and
equipped with genotype diversity efficient for Balance function. Also there
appeared to be a sharp threshold at population size cn for some c > 0 at which the
expected performance of these two algorithms turns from exponential to polyno-
mial. On the other hand, the (μ + 1) EA with fitness diversity appears to be
effective for population sizes considerably smaller than the sublinear ones required
for their proof to work. The authors stated also, that for larger population sizes the
crowding mechanism becomes detrimental.

It follows from the last two cited works that the effectiveness of EA, depends not
only on the diversification mechanisms used, but also on the size of the population
evolved. It seems that the authors of these two works differently conclude on the
effectiveness of genotype, fitness, and deterministic crowding mechanisms. For
example, according to [72] the algorithms without diversity or with genotype or
fitness diversity preserving mechanisms were considered as weak and performed
worse than with deterministic crowding, which is not entirely consistent with the
results obtained in [73]. Such inconsistency testifies to the fact that the efficiency of
diversification mechanisms still remains an open issue and requires further theo-
retical and empirical research.

In [74], a Social Disasters Technique (SDT) was proposed, where packing
catastrophic operator was used for fitness diversity preserving by replacing indi-
viduals of the same fitness, except for one, with random individuals in the situations
when the level of population diversity dropped to some preset limit.

In [75] it was proposed a Random Offspring Generation (ROG) technique, aimed
at genotype diversity preserving, by which the crossover is carried out only on
parents with different genotypes, otherwise one or two offspring were generated at
random. Although this technique prevents the formation of clone-offspring from
clones-parents, it does not prevent the transition of clones from generation to
generation, since each individual with an old population has the right to go to the
next one with probability proportional to its quality.

In [72] it was proposed (μ + 1) EA with genotype diversity, which was based on
(2 + 1) GA, described in [76]. This algorithm does not allow an offspring to enter
the population, if there already exists its genetic duplicate.

9.8 Research on Preventing Premature Convergence … 155

References

1. Józefowska, J., Węglarz, J.: On a methodology for discrete-continuous scheduling. Eur.
J. Oper. Res. 107(2), 338–353 (1998)

2. Gorczyca, M., Janiak, A.: New approach to resource allocation in the problems of scheduling
of tasks described with concave dynamic models. In: Kaszyński, R. (ed.) Proceedings of the
13-th IEEE/IFAC International Conference on Methods and Models in Automation and
Robotics, Szczecin, pp. 1189–1192 (2007)

3. Gorczyca, M., Janiak, A.: Methods for the optimal resource allocation in the problems of
scheduling of tasks described with concave dynamic model. In: 14th IFAC Conference on
Methods and Models in Automation and Robotics, IFAC Proceedings, vol. 42(13), pp. 250–
255 (2009)

4. Gorczyca, M.: Resource allocation and task scheduling algorithms for the selected problems
with dynamic task models and parallel processors. Ph.D. thesis (in Polish), Wrocław
University of Technology (2008)

5. Gorczyca, M., Janiak, A.: Resource level minimization in the discrete–continuous scheduling.
Eur. J. Oper. Res. 203, 32–41 (2010)

6. Schittowski, K.: NLQPL: a FORTRAN-subroutine solving constrained nonlinear program-
ming problems. Ann. Oper. Res. 5, 485–500 (1985)

7. Gorczyca, M., Janiak, A.: Dominance properties in the discrete-continuous scheduling
problems, International Conference on System Science, Wrocław, pp. 96–106 (2007)

8. Gorczyca, M., Janiak, A., Janiak, W.: The discrete part of the discrete-continuous scheduling
problems—new properties. In: 14th IFAC Conference on Methods and Models in Automation
and Robotics, IFAC Proceedigns, vol. 42(13), pp 244–249 (2009)

9. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: Solving the
discrete-continuous project scheduling problem via its discretization. Math. Methods Oper.
Res. 52(3), 489–499 (2000)

10. Różycki, R.: Zastosowanie algorytmu genetycznego do rozwiązywania dyskretno-ciągłych
problemów szeregowania. Ph.D. dissertation, Poznań University of Technology, Poland
(2000)

11. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: A heuristic approach to
allocating the continuous resource in discrete–continuous scheduling problems to minimize
the makespan. J. Sched. 5(6), 487–499 (2002)

12. Józefowska, J., Waligóra, G.: Heuristic procedures for allocating the continuous resource in
discrete-continuous scheduling problems. Found. Comput. Decis. Sci. 29(4), 315–328 (2004)

13. Waligóra, G.: Tabu search for discrete-continuous scheduling problems with heuristic
continuous resource allocation. Eur. J. Oper. Res. 193(3), 849–856 (2009)

14. Waligóra, G.: Heuristic approaches to discrete-continuous project scheduling problems to
minimize the makespan. Comput. Optim. Appl. 48(2), 399–421 (2011)

15. Jędrzejowicz, P., Skakovski, A.: An Island-Based Evolution Algorithm for
Discrete-Continuous Scheduling with Continuous Resource Discretisation, Proceedings of
the 2nd IEEE International Conference on Computational Cybernetics ICCC 2004, Aug 30–
Sept 1, 2004, Vienna University of Technology, Austria (2004)

16. Jędrzejowicz, P., Skakovski, A.: A population learning algorithm for discrete-continuous
scheduling with continuous resource discretisation. In: Chen, Y., Abraham, A., Jinan, B.
(eds.) Proceedings of 6th International Conference on Intelligent Systems Design and
Applications (ISDA 2006), vol. 2, spec. sess.: Nature Imitation Methods Theory and practice
(NIM’06), Peoples Republic of China, pp. 1153–1158 (2006)

17. Jędrzejowicz, P., Skakovski, A.: A cross-entropy based population learning algorithm for
discrete-continuous scheduling with continuous resource discretisation. Neurocomputing 73
(4–6), Special Issue: SI, 655–660 (2010)

156 9 State-of-the-Art Review

18. Jędrzejowicz, P., Skakovski, A.: Structure versus efficiency of the cross-entropy based
population learning algorithm for discrete-continuous scheduling with continuous resource
discretisation. In: Czarnowski, I., Jędrzejowicz, P., Kacprzyk, J. (eds.) Studies in Compu-
tational Intelligence. Agent-Based Optimization, vol. 456, pp. 77–102 (2013)

19. Jędrzejowicz, P., Skakovski, A.: Population learning with differential evolution for the
discrete-continuous scheduling with continuous resource discretisation. In: IEEE International
Conference on Cybernetics (CYBCONF) Lausanne, Switzerland, 13–15 June, pp. 92–97
(2013)

20. Jędrzejowicz, P., Skakovski, A.: Island-based differential evolution algorithm for the
discrete-continuous scheduling with continuous resource discretisation. Procedia Comput.
Sci. 35, 111–117 (2014)

21. Jędrzejowicz, P., Skakovski, A.: Improving performance of the differential evolution
algorithm using cyclic decloning and changeable population size. In: Nguyen, N.T.,
Czarnowski, I., Hwang, D. (eds.), Journal of Universal Computer Science (J.UCS), Special
Issue—Computational Intelligence Tools for Processing Collective Data (CITPCD 15), vol.
22 (6), pp. 874–893 (2016)

22. Jędrzejowicz, P., Skakovski, A.: Properties of the Island-Based and single population
differential evolution algorithms applied to discrete-continuous scheduling. In: Czarnowski, I.
et al. (eds.) Intelligent Decision Technologies 2016, Proceedings of the 8th KES International
Conference on Intelligent Decision Technologies (KES-IDT 2016)—Part I, Smart Innovation,
Systems and Technologies, vol. 56, pp. 349–359 (2016)

23. Słowiński, R.: Algorytmy sterowania rozdziałem zasobów różnych kategorii w kompleksie
operacji. Wydawnictwo Politechniki Poznańskiej, seria Rozprawy Nr 114, Poznań (1980)

24. Drexl, A., Gruenewald, J.: Nonpreemptive multi-mode resource-constrained project schedul-
ing. IIE Trans. 25(5), 74–81 (1993)

25. Hartmann, S.: Project scheduling with multiple modes: a genetic algorithm (in English).
Manuskripte aus den Instituten für Betriebswirtschaftslehre Nr. 435, the University of Kiel,
Germany (1997)

26. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained
project scheduling problem. Eur. J. Oper. Res. 207(1), 1–14 (2010)

27. Bartusch, M., Rolf, H.M., Radermacher, F.J.: Scheduling project networks with resource
constraints and time windows. Ann. Oper. Res. 16, 201–240 (1988)

28. Józefowska, J., Mika, M., Węglarz, J.: A simulated annealing algorithm for some class of
discrete-continuous scheduling problems. Computational Methods in Science and Technol-
ogy, vol. 2(1), pp. 73–85. Scientific Publishers OWN, Poznan (1996)

29. Blazewicz, J., Kubiak, W., Szwarcfiter, J.: Scheduling independent fixed-type tasks. In:
Słowiński, R., Węglarz, J. (eds.) Advances in Project Scheduling. Elsevier, Amsterdam
(1989)

30. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: Discrete-continuous
scheduling to minimize the makespan for power processing rates of jobs. Discret. Appl. Math.
94, 263–285 (1999)

31. Lawrence, C., Zhou, J.L., Tits, A.L.: Users guide for CFSQP Version 2.3. Available by
e-mail: andre@ eng.umd.edu (1995)

32. Lawrence, C., Zhou, J.L., Tits, A.L.: Users guide for CFSQP Version 2.5. Available by email:
andre@eng.umd.edu (1997)

33. Józefowska, J., Różycki, R., Waligóra, G., Węglarz, J.: Local search metaheuristics for
discrete-continuous scheduling problems. Eur. J Oper. Res. 107(2), 354–370 (1998)

34. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: Discrete-Continuous
scheduling to minimize the mean flow time—computational experiments. Comput. Methods
Sci Technol. 3(1), 25–37 (1997)

35. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: Discrete-continuous
scheduling to minimize maximum lateness. In: Proceedings of the Fourth International
Symposium on Methods and Models in Automation and Robotics MMAR’97, Międzyzdroje
26–29 Aug 1997, pp. 947–952 (1997)

References 157

36. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: Solving discrete-continuous
scheduling problems by Tabu Search. In: 4th Metaheuristics International Conference
MIC’2001, Porto, Portugal, 16–20 July 2001, pp. 667–671 (2001)

37. Józefowska, J., Waligóra, G., Węglarz, J.: Tabu list management methods for a discrete–
continuous scheduling problem. Eur. J. Oper. Res. 137, 288–302 (2002)

38. Skorin-Kapov, J.: Tabu search applied to the quadratic assignment problem. ORSA J. Comput.
2, 33–45 (1990)

39. Glover, F.: Tabu search- Part 1. ORSA J. Comput. 1, 190–206 (1989)
40. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)
41. Józefowska, J., Waligóra, G., Węglarz, J.: A Performance Analysis of Tabu Search for

Discrete-Continuous Scheduling Problems. Metaheuristics: Computer Decision-Making,
pp. 385–404. Kluwer Academic Publishers B. V. (2003)

42. Janiak, A.: Minimization of the blooming mill standstills—mathematical model. Suboptimal
algorithms. Zesz. Nauk. AGH, s. Mechanika 8(2), 37–49 (1989)

43. Kurts, D.S., Swartz, C.W.: Theories of Integration. World Scientific (2004)
44. Różycki, R., Węglarz, J.: On job models in power management problems. Bull. Pol. Acad.

Sci. Tech. Sci. 57(2), 147–151 (2009)
45. Li, M., Yao, A.C., Yao, F.F.: Discrete and continuous min-energy schedules for variable

voltage processors. In: Proceedings of the National Academy of Sciences of the USA, vol.
103 (11), pp. 3983–3987 (2006)

46. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Proceedings of the 36th IEEE Conference on the Foundations of Computer Science (FOCS)
(IEEE, New York), pp. 374–382 (1995)

47. Kwon, W., Kim, T.: Optimal voltage allocation techniques for dynamically variable voltage
processors. ACM Trans. Embed. Comput. Syst. 4(1), 211–230 (2005)

48. Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage schedules.
SIAM J. Comput. 35(3), 658–671 (2006)

49. Brinkmann, A., Kling, P., Meyer auf der Heide, F., Nagel, L., Riechers, S., Süß, T.:
Scheduling shared continuous resources on many-cores. In: Proceedings of the 26th ACM
Symposium on Parallelism in Algorithms and Architectures SPAA ‘14, Prague, Czech
Republic, June 23–25, pp. 128–137 (2014)

50. Pandey, H.M., Chaudharyb, A., Mehrotra, D.: A comparative review of approaches to prevent
premature convergence in GA. Appl. Soft Comput. 24, 1047–1077 (2014)

51. Alba, E., Troya, J.: Analysis of synchronous and asynchronous parallel distributed genetic
algorithms with structured and panmictic Islands. In: Rolim, J., et al. (eds.) Proceedings of the
10th Symposium on Parallel and Distributed Processing. San Juan, Puerto Rico, USA, 12–16
Aprl, pp. 248–256 (1999)

52. Belding, T.C.: The distributed genetic algorithm revisited. In: Eshelman, L.J. (ed.)
Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 114–121.
Morgan Kaufmann, San Francisco CA (1995)

53. Cantu-Paz, E.: Migration policies, selection pressure, and parallel evolutionary algorithms.
J. Heuristics 7(4), 31–334 (2001)

54. Cantu-Paz, E., Goldberg, D.E.: Are multiple runs of genetic algorithms better than one? In:
Proceedings of the Genetic and Evolutionary Computation Conference (2003)

55. Muhlenbein, H.: Evolution in time and space: the parallel genetic algorithm. In: Rawlins, G.
(ed.) FOGA-1,. pp. 316–337. Morgan Kaufman (1991)

56. Whitley, D., Starkweather, T.: GENITOR II: a distributed genetic algorithm. J. Exp. Theor.
Artif. Intell. 2(3), 33–47 (1990)

57. Wright, S.: Evolution in mendelian populations. Genetics 16, 97–159 (1931)
58. Wright, S.: Isolation by distance. Genetics 28, 114–138 (1943)
59. Tanese, R.: Parallel genetic algorithms for a hypercube. In: Grefenstette, J.J. (ed.) Hillsdale,

pp. 177–183. Lawrence Erlbaum, NJ (1987)
60. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: on separability,

population size and convergence. J. Comput. Inf. Technol. 7(1), 33–47 (1999)

158 9 State-of-the-Art Review

61. Hart, W.E., Baden, S., Belew, R.K., Kohn, S.: Analysis of the numerical effects of parallelism
on a parallel genetic algorithm. In: IEEE (ed.): CD-ROM IPPS97 (1997)

62. Sekaj, I.: Robust parallel genetic algorithms with re-initialisation. In: Proceedings of Parallel
Problem Solving from Nature—PPSN VIII, 8th International Conference, Birmingham, UK,
Sept 18–22, LNCS, vol. 3242, pp. 411–419. Springer (2004)

63. Prime, B., Hendtlass, T.: Evolutionary Computation Using Island Populations in Time.
Innovations in Applied Artificial Intelligence, LNCS 3029, pp. 573–582 (2004)

64. Skolicki, Z., Kenneth, D.J.: The influence of migration sizes and intervals on island models.
In: Proceedings of GECCO’05, June 25–29, Washington, DC, USA, pp. 1295–1302 (2005)

65. de Vega, F.F., Tomassini, M., Punch III, W.F., Sanchez-Prez, J.M.: Experimental study of
multipopulation parallel genetic programming. In: Proceedings of the European Conference
on Genetic Programming, Lecture Notes in Computer Science, vol. 1802, pp. 283–293.
Springer (2000)

66. Morrison, R. W.: Designing evolutionary algorithms for dynamic environments. Natural
Computing Series. Springer (2004)

67. Tomassini, M.: Spatially structured EAs. In: GECCO’04 Tutorials, June 2004
68. Skolicki, Z.: An analysis of Island models in evolutionary computation. In: Proceedings of

GECCO’05, June 25–29, Washington, DC, USA, pp. 386–389 (2005)
69. Skolicki, Z., Kenneth, D.J.: Improving evolutionary algorithms with multi-representation

island models. In: Parallel Problem Solving from Nature—PPSN VIII, LNCS 3242, pp. 420–
429 (2004)

70. Berntsson, J., Tang, M.: Adaptive sizing of populations and number of Islands in distributed
genetic algorithms. In: Proceedings of 2005 Genetic and Evolutionary Computation
Conference GECCO’05, ACM, pp. 1575–1576 (2005)

71. Gupta, D., Ghafir, S.: An overview of methods maintaining diversity in genetic algorithms.
Int. J. Emer. Technol. Adv. Eng. 2, 5 (2012). https://www.ijetae.com

72. Friedrich, T., Oliveto, P.S., Sudholt, D., Witt, C.: Analysis of diversity-preserving
mechanisms for global exploration. Evol. Comput. 17(4), 455–476 (2009)

73. Oliveto, P.S., Zarges, C.: Analysis of diversity mechanisms for optimisation in dynamic
environments with low frequencies of change. Theor. Comput. Sci. 561(A), pp. 37–56 (2015)

74. Kureichick, V.M., Melikhov, A.N., Miaghick, V.V., Savelev, O.V., Topchy, A.P.: Some new
features in the genetic solution of the traveling salesman problem. In: Proceedings of
ACEDC’96, Plymouth (1996)

75. Rocha, M., Neves, J.: Preventing Premature Convergence to Local Optima in Genetic
Algorithms via Random Offspring Generation; LNAI (Lecture Notes in Artificial Intelli-
gence), vol. 1611, pp. 127–136 (1999)

76. Storch, T., Wegener, I.: Real royal road functions for constant population size. Theoret.
Comput. Sci. 320(1), 123–134 (2004)

References 159

https://www.ijetae.com

Chapter 10
Proposed Metaheuristics for Solving
Problem ΘZ (DCSPwCRD)

10.1 IBEA—Island-Based Evolutionary Algorithm

An island-based evolution algorithm (IBEA) belongs to the class of distributed
algorithms. To improve efficiency of genetic algorithms (GA) several distributed
GA’s were proposed in [1–3]. The proposed algorithms used an island-based
approach where a set of independent populations of individuals evolves on “is-
lands” cooperating with each other. The island-based approach brings two benefits:
a model that maps easily onto the parallel hardware and extended search area (due
to multiplicity of islands) preventing from sticking in local optima. Promising
results of the island-based approach achieved in [4, 5] motivated the author to
design the IBEA for discrete-continuous scheduling.

An island-based evolutionary algorithm (IBEA), proposed originally in [6],
operates on two levels: on the island level and population level. To evolve indi-
viduals of the population level a population-based evolutionary algorithm (PBEA)
is proposed. On the island level the following assumptions are made:

• all islands are located on a directed ring,
• an island is represented by a population of individuals,
• the populations of individuals evolve on each island independently,
• each island Ik regularly sends its best solution to the successor I(k mod K) + 1 in the

ring, where k = 1, 2, …, K, and K is the number of islands,

On the population level the following assumptions are made:

• an individual (a solution) is represented by an n-element vector
S = [ci| 1 ≤ i ≤ n],

© Springer International Publishing AG 2018
E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,
Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_10

161

• all processing modes of all tasks are numbered consecutively. Thus, processing
mode lb of task Jb has the number cb = ∑b− 1

i=1 Wi + lb,
• all S representing feasible solutions are potential individuals,
• an initial population P0 is composed from the potential individuals for whom

task modes and tasks order on the list are random,
• each individual can be transformed into a schedule by applying LSG, which is a

specially designed list-scheduling algorithm for discrete-continuous scheduling,
• each schedule produced by the LSG can be directly evaluated in terms of its

fitness,
• new population is formed by applying several evolution operators: selection and

transfer of some more “fit” individuals, random generation of individuals,
crossover, and mutation,

• the algorithm stops when an optimality criterion is satisfied or the preset number
of generations on each island have been generated,

• when IBEA stops, the best overall solution is the final one.

The following pseudo-code shows main stages of the IBEA algorithm:

162 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

The PBEA algorithm is shown in the following pseudo-code:

The LSG algorithm used to transform S into a schedule is carried out as follows:

10.1 IBEA—Island-Based Evolutionary Algorithm 163

10.1.1 Computational Experiment

The proposed island-based evolution algorithm for solving discrete-continuous
scheduling problems with continuous resource discretisation was implemented and
tested. Results were compared to the best known obtained by a genetic GAVR-
dyskr, tabu search, and simulated annealing algorithms [7] (GAVRdyskr, denoted
as Gdskr, was used for results comparison as the one of the same nature).

Three combinations of n × m were considered (n—the number of tasks and
m—the number of machines): 10 × 2, 10 × 3, and 20 × 2. For each
n × m combination three discretisation levels were considered: 10, 20, and 50. For
each discretisation level 100 instances of a problem ΘZ were generated, which
makes 900 instances of the problem. Each instance was tested 20 times. Relative
error (RE) of the solutions found by the IBEA compared to best-known solutions
was used to evaluate the quality of IBEA. RE calculated as
RE = (QIBEA − Qbest-known)/Qbest-known for each instance was used to find average
(REavg) and maximum (REmax) relative errors. REavg and REmax of the solutions
found by the IBEA and Gdskr are presented in Table 10.1.

As it can be seen in Table 10.1 the quality of the solutions found by the IBEA is,
on average, competitive with the quality of the solutions found by Gdskr. For
example, for case 10 × 2, W = 10 REavg = – 3,09%, which means that the
schedule length of all schedules yielded by IBEA was 3,09% shorter on average
than the best-known. For the same case, REmax = 50,02% means that the longest
schedule among all schedules yielded by IBEA was 50,02% longer than the
best-known. Such large REmax points to the necessity of better tunning of the IBEA.
As it can be also seen from Table 10.1, REs of the solutions do not always decrease
as continuous resource discretisation level increases. Thus the level of continuous
resource discretisation for which REs of the solutions are smallest should be
determined empirically.

Table 10.1 The comparison of the results obtained by the IBEA and Gdskr for problem ΘZ

Problem size
n × m × W

Relative
error (RE)

Discretisation level
W = 10 W = 20 W = 50
IBEA
(%)

Gdskr
(%)

IBEA
(%)

Gdskr

(%)
IBEA
(%)

Gdskr
(%)

10 × 2 × W REavg −3,09 7,59 −2,77 9,18 −2,86 10,41
REmax 50,02 15,34 49,09 15,84 52,22 17,54

10 × 3 × W REavg −0,45 14,58 −0,98 15,79 −0,14 17,11
REmax 73,33 25,18 69,65 23,15 71,91 27,52

20 × 2 × W REavg 4,08 13,25 4,74 15,42 4,91 17,65
REmax 41,09 19,40 43,44 24,02 43,28 26,87

164 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

Mean time required by the IBEA to find a solution for 10 × 2 on CPU with
Pentium III 733 MHz was 60 s. Mean time required by Gdskr to find a solution for
10 × 2 on supercomputer Silicon Graphics Power Challenge XL with twelve
RISC MIPS R8000 processors was 33 s.

Such results make IBEA quite effective algorithm for solving
discrete-continuous scheduling problems with continuous resource discretisation.

10.2 PLA—Population Learning Algorithm

Population learning algorithm (PLA) first introduced in [8] takes advantage of basic
ideas, principals and assumptions introduced in a Social Learning Algorithm
(SLA) originally proposed in [9]. Both SLA and PLA are based on an analogy to a
social phenomenon rather than to evolutionary processes. Whereas evolutionary
algorithms emulate basic features of natural evolution including natural selection,
hereditary variations, the survival of the fittest and production of far more offspring
than are necessary to replace current generation, the population learning algorithms
take advantage of features that are common to social education systems:

• a generation of individuals enters the system,
• individuals learn through organized tuition, interaction, self-study and

self-improvement,
• learning process is inherently parallel with different schools, curricula, teachers,

etc.,
• learning process is divided into stages,
• more advanced and more demanding stages are entered by a diminishing

number of individuals from the initial population (generation),
• at higher stages more advanced education techniques are used,
• the final stage can be reached by only a fraction of the initial population.

In the PLA, the assumptions made for the individuals are the same as the
assumptions made for the individuals of the IBEA on the population level, see
Sect. 10.1.

Initially, a number of individuals, known as the initial population, is randomly
generated. Once the initial population has been generated, individuals enter the first
learning stage. It involves applying some, possibly basic and elementary,
improvement schemes. These can be based, for example, on some simple local
search procedures. The improved individuals are then evaluated and better ones
pass to the subsequent stage. A strategy of selecting better or more promising
individuals must be defined and duly applied. In the following stages the whole

10.1 IBEA—Island-Based Evolutionary Algorithm 165

cycle is repeated. Individuals are subject to improvement and learning, either
individually or through information exchange, and the selected ones are again
promoted to the higher stage with the remaining ones dropped-out from the process.
At the final stage the remaining individuals are reviewed and the best represents a
solution to the problem at hand.

The PLA is seen here as a general framework for constructing hybrid solutions
to difficult computational problems. Strength of the PLA stems from integrating in
an “intelligent” manner the power of population-based algorithms using some
random mechanism for diversity assurance, with efficiency of various local search
algorithms. The later may include, for example, reactive search, tabu search, sim-
ulated annealing as well as the described earlier population based approaches.

General idea of the present implementation of the PLA proposed in [8] is shown
in the following pseudo code:

In the presented pseudo code, procedure IBEA stands for the Island-Based
Evolution Algorithm described in Sect. 10.1, and TS—for Tabu Search, which is to
be presented in the subsequent section.

166 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

10.2.1 Tabu Search

Tabu search is another metaheuristic used in the considered PLA (see [10]). In order
to present the general idea of present implementation of the tabu search procedure,
we introduce the neighborhoods Nt and Nmd of a solution S. Nt is a set of solutions
generated from S by moving task Ji ∈ S from place i to the rest n − 1 places. Thus,
we yield |Nt| = n ⋅ (n − 1) neighbors. Nmd is a set of solutions generated from S by
assigning to task Ji ∈ S one by one in a row all of its W modes, assuming that all
tasks can be executed in W modes. Thus we yield another |Nmd| = n ⋅ (W − 1)
neighbors. The considered Tabu Search procedure is shown in the following pseudo
code:

The size of the Tabu List (TL) was determined empirically and set to 500
solutions.

10.2 PLA—Population Learning Algorithm 167

10.2.2 Computational Experiment

The proposed population learning algorithm for solving discrete-continuous
scheduling problems with continuous resource discretisation was implemented
and tested. Results were compared to the best known obtained by a genetic
GAVRdyskr, tabu search, simulated annealing algorithms [7], and the IBEA
described in [4] (GAVRdyskr, denoted in the rest of the text as Gdskr, and the IBEA
were used for results comparison in as the ones of the same nature). For testing
purposes three combinations of n × m were considered (n—the number of tasks
and m—the number of machines): 10 × 2, 10 × 3, and 20 × 2. For each
n × m combination three discretisation levels were considered: 10, 20, and 50. For
each discretisation level 100 instances of a problem ΘZ were generated, which
makes 900 instances of the problem. The instances of the problem were generated
with aid of a procedure received from the author of [7]. Each instance was tested 26
times. Relative error (RE) of the solutions found by the PLA compared to
best-known solutions was used to evaluate the quality of the PLA.

The value of the RE calculated for each instance according to the formulae
RE = (QPLA − Qbest-known)/Qbest-known was used to find average (REavg) and max-
imum (REmax) relative errors. REavg and REmax of the solutions found by the PLA,
IBEA, and Gdskr are presented in Table 10.2. As it can be seen in Table 10.2, the
quality of the solutions found by the PLA has been, on average, better than the
quality of the solutions found by the IBEA and Gdskr. For example, for case
10 × 2, W = 10, REavg = −2,12%, which means that the schedule length of all
schedules yielded by the PLA was 2,12% on average shorter than the best-known.
For the same case, REmax = 56,34% means that the longest schedule among all
schedules yielded by PLA was 56,34% longer than the best-known. Such large
REmax points to the necessity of better tuning of the PLA. Despite large REmax, the
PLA improved 55% of 300 the best known solutions for sizes 10 × 2, 10 × 3 and
20 × 2, and reduced average values of REavg compared to the IBEA and Gdskr.
Table 10.3 shows the average of the PLA’s REavg reduction percentage in com-
parison to average REavg of the IBEA and Gdskr. In other words, Table 10.3 shows
how many percent on average the solutions found by the PLA were better than the
solutions found by the IBEA and Gdskr. As it can be also seen from Table 10.2, REs
of the solutions do not always decrease as continuous resource discretisation level
increases. Thus, the level of continuous resource discretisation for which REs of the
solutions are smallest should be determined empirically.

168 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

T
ab

le
10

.2
T
he

co
m
pa
ri
so
n
of

R
E
s
ob

ta
in
ed

by
th
e
PL

A
,I
B
E
A

an
d
G
ds
kr
fo
r
pr
ob

le
m

Θ
Z

Pr
ob

le
m

si
ze

n
×

m
×

W
R
el
at
iv
e
er
ro
r

(R
E
)

D
is
cr
et
is
at
io
n
le
ve
l

W
=

10
W

=
20

W
=

50
PL

A
(%

)
IB
E
A

(%
)

G
ds
kr

(%
)

PL
A

(%
)

IB
E
A

(%
)

G
ds
kr

(%
)

PL
A

(%
)

IB
E
A

(%
)

G
ds
kr

(%
)

10
×

2
×

W
R
E
av
g

−
2,
12

−
0,
61

7,
59

−
1,
44

0,
19

9,
18

−
1,
07

0,
36

10
,4
1

R
E
m
ax

56
,3
4

62
,3
5

15
,3
4

56
,6
9

62
,4
2

15
,8
4

61
,5
5

62
,8
8

17
,5
4

10
×

3
×

W
R
E
av
g

1,
46

2,
89

14
,5
8

1,
03

3,
49

15
,7
9

1,
66

5,
22

17
,1
1

R
E
m
ax

77
,5
1

83
,1
1

25
,1
8

76
,1
7

84
,9
1

23
,1
5

78
,8
0

82
,4
0

27
,5
2

20
×

2
×

W
R
E
av
g

5,
62

6,
62

13
,2
5

6,
27

6,
96

15
,4
2

6,
59

7,
13

17
,6
5

R
E
m
ax

46
,5
0

47
,8
4

19
,4
0

47
,6
0

47
,8

24
,0
2

47
,8
3

47
,8
6

26
,8
7

10.2 PLA—Population Learning Algorithm 169

Mean time required by the PLA to find a solution for 10 × 2 on Pentium (R) 4
CPU 3.00 GHz compiled with aid of Borland Delphi Personal v.7.0 was 5 s, by
IBEA compiled in Borland Pascal v.7.0—48 s. Mean time required by Gdskr to find
a solution for 10 × 2 on supercomputer Silicon Graphics Power Challenge XL
with twelve RISC MIPS R8000 processors was 33 s. Such results make PLA quite
effective algorithm for solving discrete-continuous scheduling problems with con-
tinuous resource discretisation.

10.3 PLA2—Cross-Entropy-Based Population Learning
Algorithm

A cross-entropy-based population learning algorithm (PLA2) proposed in [11] is
another attempt to make use of the idea of social learning framework already
presented in Sect. 10.2. Different to the PLA structure, more advanced procedure
for the initial population creation and different setting for the TS procedure con-
tributed to higher efficiency of the PLA2.

In the PLA2, the assumptions made for the individuals are the same as the
assumptions made for the individuals of the IBEA on the population level, see
Sect. 10.1. The general idea of the implementation of the PLA2 is shown in the
following pseudo code:

Table 10.3 The average of the PLA’s REavg reduction percentage in comparison to average
REavg of the IBEA and Gdskr

Problem size n × m × W IBEA (%) Gdskr (%)

10 × 2 × W 1,52 10,60
10 × 3 × W 2,48 14,44
20 × 2 × W 0,74 9,28

170 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

In the description of the procedure PLA2 above, x0 = K ⋅PS, where K—the
number of islands and PS—the population size on an island defined in procedure
IBEA. As it follows from the description of the PLA2, population P1 comprises the
initial population for the IBEA, therefore the step for generating the initial popu-
lation for the IBEA, as it is given in the description of the IBEA in Sect. 10.1,
should be omitted. The description of TS procedure can be found in Sect. 10.2.1.

10.3.1 Cross-Entropy Algorithm

A cross-entropy (CE) procedure, proposed in the PLA2, is perceived as the proce-
dure for preparing some solution basis for further improvement by procedure IBEA.
In CE procedure a cross-entropy method first proposed in [12] is used since it was
effective in solving various difficult combinatorial optimization problems [13].
Because in CE procedure a solution is viewed as a vector of n tasks, we would like to
know the probability of locating task Ji on a particular place j in the vector. For this
reason we introduce two success probability vectors p ̂j and p ̂′ji related to each task Ji
and its place j in solution S. Vector pĵ = fpji 1≤ i≤ nj g, 1 ≤ j ≤ n contains pji
values, which is the probability that on place j there will be located task i. Vector
p ̂′ji = fpjil 1≤ l≤Wij g, 1 ≤ j ≤ n, 1 ≤ i ≤ n contains pjil values, which is the
probability that on place j task i will be executed in mode l. A procedure CE using
cross-entropy method for combinatorial optimization described in [13] and modified
for solving problem ΘZ is shown in the following pseudo code:

10.3 PLA2—Cross-Entropy-Based Population Learning Algorithm 171

172 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

In the presented pseudo code, a parameter N is the number of solutions in a
sample generated in each iteration. A parameter ρ determines the percentage of the
best solutions in the current sample that are used to calculate new values for vectors
p ̂j and p ̂′ji. Both parameters were determined empirically and set N = 1000 and
ρ = 0,2. Parameters K—the number of islands and PS—the population size are
defined in procedure IBEA and PBEA respectively.

10.3.2 Computational Experiment

The considered cross-entropy-based population learning algorithm for solving
discrete-continuous scheduling problems with continuous resource discretisation
(PLA2), was implemented and tested. Results were compared to the best known
obtained by a genetic GAVRdyskr, tabu search, simulated annealing algorithms [7],
IBEA [4], and PLA [8] (GAVRdyskr is denoted in the rest of the text as Gdskr).

10.3.2.1 Assumptions of the Experiment

For the testing purposes, the following set of assumptions has been formulated and
implemented:

• all tasks Ji can be processed in W modes, i.e. Wi = W, i = 1, 2, …, n, where
W ∈ {10, 20, 50}.

• continuous resource is discretised uniformly and the amount of the continuous
resource assigned to task Ji in mode li can be calculated as:

ulii =
li
Wi

, li =1, 2, . . . ,Wi, i=1, 2, . . . , n ð10:6Þ

• task processing rate function fi is concave and its value can be calculated as:

fi = uli1 ̸αi
i , αi ∈ f1, 2g, i=1, 2, . . . , n ð10:7Þ

• the processing time of task Ji in mode li = 1, 2, …, Wi can be calculated as:

τlii =
xĩ
fi
, i=1, 2, . . . , n ð10:8Þ

10.3 PLA2—Cross-Entropy-Based Population Learning Algorithm 173

• task sizes x ̃i, i=1, 2, . . . , n were generated from interval [1, 1000] with uni-
form probability distribution,

• the number of tasks n ∈ {10, 20} and the number of machines m ∈ {2, 3}.

For the testing purposes three combinations of n × m were considered—
10 × 2, 10 × 3, and 20 × 2. For each considered combination of n × m, 100
instances of problem ΘZ, have been generated, which together with three dis-
cretisation levels (10, 20, 50) makes available 900 instances of the problem. Each
instance was tested 24 times. A relative error (RE) of the solutions found by PLA2
with respect to best-known solutions was used to evaluate the quality of PLA2. The
value of RE calculated using equation RE = (QPLA2 − Qbest-known)/Qbest-known for
each instance was used to find average and maximum relative errors.

10.3.2.2 Fine Tuning of PLA2

All three procedures used in the PLA2 have a stochastic nature. The lack of
mathematically proved rules makes it difficult to deduce values of the parameters
used by the respective procedures. Instead, these values have to be set experi-
mentally. An extensive computational experiment covered all three procedures. In
each case we have been looking for the most efficient settings, that is such settings
that have been yielding highest quality solutions within some pre-set number of the
fitness function evaluations. We tried not only to choose the most proper parameters
of the algorithm, but also to find the sequence of the learning stages such that
quality of the found solutions was highest possible. Because PLA2 is one more
attempt to use an evolutionary approach for coping with the discrete-continuous
scheduling problem our goal was to achieve better results for the same number of
the fitness function evaluations equal 720000 which was used in the previous trials.
While determining the most proper sequence of the learning stages we considered
two test versions of PLA2. In these two test versions, the primary solutions were
generated according to the rule: random task order in a solution and random task
processing mode. In the first test version, primary solutions were improved on the
second stage by the IBEA, then on the third stage the best found by the IBEA
solution was improved by procedure TS. However, we implemented in PLA2 more
efficient second version, in which on the second stage, there was generated only one
solution by procedure TS and next added to the set of the primary solutions found
on the first stage. This way obtained set of solutions was improved on the third
stage by the IBEA. The second version improved 64,67% of 300 best known
solutions, while the first—57%, and the average of REavg was respectively 2,85%
and 3,04%. In the final version of the PLA2 we replaced simple first stage proce-
dure, which was used in the PLA for generating the set of the primary solutions, by
procedure CE. The percent distribution of the whole number of fitness function
evaluations among particular learning procedures is as follows: CE—7%, TS—
30%, IBEA—63%. The further tuning concerned the particular procedures engaged
in the PLA2.

174 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

Procedure CE used to yield the set of primary solutions instead of their random
generating increased the percentage of the improved best known solutions from
64,67 to 80,33%, and decreased average of REavg from 2,85 to 2,09%. For test
purposes we designed two versions of procedure CE—with accumulation of the
values of success probability vectors pĵ and p ̂′ji in each iteration, and without
accumulation. In version with accumulation we calculated the values of vectors p ̂j
and p ̂′ji in iteration ic + 1 using equation:

p ̂jðic+1Þ= pĵðic− 1Þ+ pĵðicÞ ð10:9Þ

p ̂′jiðic+1Þ= p ̂′jiðic− 1Þ+ p ̂′jiðicÞ ð10:10Þ

and in the version without accumulation as:

p ̂jðic+1Þ= pĵðicÞ ð10:11Þ

p ̂′jiðic+1Þ= p ̂′jiðicÞ ð10:12Þ

where values of p ̂jðicÞ and p ̂′jiðicÞ vectors were calculated on the basis of the best γ
solutions generated in iteration ic. The main disadvantage of the version with
accumulation was sticking in local optima, which explains including the version
without accumulation into the final version of the PLA2. In the final implementa-
tion of CE procedure we set sample size N = 1000 and ρ = 0,2.

While tuning TS procedure we also considered two versions of it. In both
versions of the procedure we generated “a task neighbourhood” set of solutions of a
solution S by moving a task Ji ∈ S from place i to the rest n − 1 places in S. In the
first version of TS procedure we generated an additional “mode neighbourhood” set
of S by assigning to each task Ji ∈ S one by one in a row the rest all of its W − 1
modes, assuming that all tasks can be executed inW modes. The best solution of the
iteration was determined as the best across both sets. In the second version of TS
procedure, while generating “task neighbourhood” set after each move, we “tuned”
the mode only of a single just moved task by assigning to it one by one in a row its
remaining W − 1 modes. The best solution of the iteration was determined as the
best among all solutions generated in such manner. In the final version of the PLA2
we implemented the first TS procedure version as more efficient.

Fine tuning of the IBEA procedure focused on finding the most effective
combination of the parameter values. It is known from the literature, that parameters
which have a direct impact on the efficiency of the island model are: the number of
islands, the size of population on an island [14, 15], migration size [16, 17],
migration interval [17, 18], migration policy [16], migration topology [19], and the
heterogeneity of the island model [20]. We restricted ourselves to determining on
the way of experiment the number of islands K, the best solutions frequency
exchange between islands xfq, stop criterion icstop, and population size on an island
PS. The considered parameters were set respectively: K = 15, xfq = 3, i.e. islands
exchanged their best solutions after three populations of individuals were generated

10.3 PLA2—Cross-Entropy-Based Population Learning Algorithm 175

on each island, icstop = 2000, i.e. IBEA stopped after 2000 populations had been
generated on each island, PS = 24 individuals in a population. While tuning IBEA
we also considered selection of individuals from the previous population and
generating “wild” individuals to the next population. The probability of selection of
individuals from previous to the next population depended on the value of the
fitness function. In the present PLA2 implementation, tasks’ places and tasks’
processing modes in a solution vector were determined according to the uniform
distribution. Crossover and mutation operators were applied to individuals selected
from the previous population. Two individuals took part in each crossover with
number of “genes” that were exchanged between parents chosen at random.
Mutation of the selected individuals was performed in three ways with probability
0,25, 0,5 and 0,25 respectively. In the first type of mutation we changed at random
task processing mode of a chosen at random task. In the second type—chosen at
random task Ji was swapped with task Ji+1. In the third type of mutation two chosen
at random tasks were swapped. All auxiliary random values used in the crossover
and mutation operators were acquired according to the uniform probability
distribution.

10.3.2.3 Results of the Experiment

REavg and REmax of the solutions found by the PLA2, PLA, and Gdskr are presented
in Table 10.4.

The quality of the solutions found by the PLA2 is, on average, better than the
quality of the solutions found by the PLA and Gdskr. For example, for case 20 × 2,
W = 20 REavg = −0,23%, which means that the schedule length of all schedules
yielded by the PLA2 was, on average, 0,23% shorter than the best-known. For the
same case, REmax = 7,23% means that the longest schedule among all schedules
yielded by the PLA2 was 7,23% longer than the best-known. In our tests the PLA2
improved 80,33% of 300 the best known solutions for combinations 10 × 2,
10 × 3, and 20 × 2, and reduced average of REavg compared to the PLA and
Gdskr. Table 10.5 shows how many percent on average the solutions found by the
PLA2 were better than the solutions found by the PLA and Gdskr.

Mean time required by the PLA2 and the PLA to find a solution for 10 × 2 on
Pentium (R) 4 CPU 3,00 GHz compiled with aid of Borland Delphi Personal v.7.0
was 5 s. The mean time required by Gdskr, which was implemented in C++, to find
a solution for 10 × 2 on supercomputer Silicon Graphics Power Challenge XL
designed in 64-bit SMP (Symmetrical Multi Processing) architecture on 12
RISC MIPS R8000 processors using 1 GB RAM and 20 GB disc memory was
33 s. Such results make the PLA2 quite effective algorithm for solving problem ΘZ.

176 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

T
ab

le
10

.4
C
om

pa
ri
so
n
of

R
E
s
ob

ta
in
ed

by
th
e
PL

A
2,

PL
A

an
d
G
ds
kr
fo
r
pr
ob

le
m

Θ
Z

Pr
ob

le
m

si
ze

n
×

m
×

W
R
el
at
iv
e
er
ro
r

(R
E
)

D
is
cr
et
is
at
io
n
le
ve
l

W
=

10
W

=
20

W
=

50
PL

A
2

(%
)

PL
A

(%
)

G
ds
kr

(%
)

PL
A
2

(%
)

PL
A

(%
)

G
ds
kr

(%
)

PL
A
2

(%
)

PL
A

(%
)

G
ds
kr

(%
)

10
×

2
×

W
R
E
av
g

2,
75

1,
82

7,
59

1,
53

2,
52

9,
18

2,
25

2,
93

10
,4
1

R
E
m
ax

9,
29

9,
39

15
,3
4

5,
94

9,
00

15
,8
4

8,
32

12
,2
1

17
,5
4

10
×

3
×

W
R
E
av
g

2,
99

3,
76

14
,5
8

2,
20

3,
32

15
,7
9

2,
19

3,
96

17
,1
1

R
E
m
ax

10
,6
6

11
,5
8

25
,1
8

8,
70

12
,4
0

23
,1
5

33
,5
4

14
,3
1

27
,5
2

20
×

2
×

W
R
E
av
g

2,
70

2,
49

13
,2
5

−
0,
23

3,
11

15
,4
2

2,
44

3,
42

17
,6
5

R
E
m
ax

9,
21

9,
48

19
,4
0

7,
23

9,
65

24
,0
2

9,
03

9,
65

26
,8
7

10.3 PLA2—Cross-Entropy-Based Population Learning Algorithm 177

10.4 PLA3—Population Learning with Differential
Evolution Algorithm

The PLA model can be also viewed as an island model, were islands are connected
to each other according to some topology and exchange individuals in order to
collectively find best possible solution to the problem. We used four learning
procedures to design the PLA3: Cross-Entropy (CE), Differential Evolution (DE),
Tabu Search (TS), and a Population-Based Evolutionary Algorithm (PBEA) [21].
The PLA3 extends the earlier designed PLA2 [11] with help of the Differential
Evolution (DE) method, first proposed in [22]. The PLA3 inherits from the most
efficient version of PLA2 (denoted as AX-m in [23]) heterogeneity of the islands,
on which diverse learning procedures are realized, random interconnection struc-
ture, and solution exchange adjusted to the specificness of the heterogeneous
islands. We will use the terms learning procedure and an island interchangeably in
the rest of the text.

We distinguish two categories of island groups—heterogeneous and homoge-
neous, dependently on the type of the learning procedures carried out on the islands.
We refer to the group of islands as heterogeneous, if the learning procedure carried
out on at least one island is different from the learning procedures carried out on the
rest of the islands in the group. We refer to the group of islands as homogeneous, if
the same learning procedure is carried out on each island in the group. In our work,
we will refer to a particular island as heterogeneous (Ht), if TS or CE or DE
procedure is carried out on it, and we will refer to an island as a homogeneous
(Hm), if the PBEA is carried out on it. Because the PLA3 is the extension of its
predecessor PLA2, it inherits among others the solution exchange policy. The
solution exchange in the PLA3 is carried out among randomly chosen islands and is
inherited from AX-m, which, according to [22], is the most efficient version of
PLA2. In the PLA3, the assumptions made for the individuals are the same as the
assumptions made for the individuals of the IBEA on the population level, see
Sect. 10.1. The pseudo code of the proposed PLA3 is given below.

Table 10.5 The average of the PLA2’s REavg reduction compared to average REavg of the PLA
and Gdskr given in percent

Problem size n × m × W PLA (%) Gdskr (%)

10 × 2 × W 0,25 6,89
10 × 3 × W 1,22 13,36
20 × 2 × W 1,37 13,80

178 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

The solution exchange among the islands occurs after all islands have carried out
the preset number of solution evaluations. Generally, the solution exchange is
carried out between a pair of islands chosen at random from all available islands.
However, there are some exceptions from that rule. In the PLA3 procedure, we
distinguish several cases of the solution exchange which are described as follows.

In the case when the solution exchange is carried out between two randomly
chosen homogeneous islands Hmr1 (PBEA procedure) and Hmr2 (PBEA proce-
dure), each island in pair sends to the other one its best current solution.

10.4 PLA3—Population Learning with Differential Evolution Algorithm 179

When the exchange is carried out between Ht1 island (TS procedure) and Hmr

island, as well as between Ht1 island and Ht3 island (DE procedure), each island in
pair sends to the other one its best current solution. The exchange procedure
between Ht1 island and Ht2 island (CE procedure) is described in the next
paragraph.

When Ht2 island (CE procedure) participates in the exchange, the transfer of the
solutions is asymmetric. From all available islands Ht2 receives γCE = ρCE ⋅N
solutions in total, where N is the population size on the Ht2 island, and ρCE = 0,2.
In this case of exchange, Ht2 receives K the best current solutions from all Hm
islands, ten copies of the best current solution from Ht1 island, and
min(γCE − K − 10, xDE) best current solutions from Ht3 island (DE procedure). If
xDE < γCE − K − 10, then Ht2 additionally receives γCE − K − 10 − xDE solu-
tions from a randomly chosen island Hmr and next to it consecutive islands Hmr+1,
Hmr+2, …, and Hmr+q until the total number of the solutions received by Ht2 is
equal to γCE. When r + q > K, the numbering of the following consecutive
Hm-islands starts with the island number 1. On the other hand, the transfer of the
solutions from Ht2 to the rest of the islands is carried out as follows. When the
randomly chosen island in pair is Hmr, Ht2 sends its best PS current solutions to it,
where PS is the population size on every Hm-island, defined in PBEA procedure.
When the other island in pair is Ht1, Ht2 sends its best current solution to it. When
the other island in pair is Ht3, Ht2 sends its best min(γCE, γDE−CE) current solutions
to Ht3 island, where the value of γDE−CE = ρDE−CE ⋅ xDE, and ρDE−CE = 0,333.
These solutions substitute the worst solutions on Ht3 island.

When the exchange is carried out between Ht3 island (DE procedure) and Hmr

island, they exchange their min(PS, γDE–Hm) best current solutions, where PS is the
population size on every Hm-island and γDE–Hm = ρDE–Hm ⋅ xDE, ρDE–Hm = 0,333.
The solution exchange between Ht3 and Ht1, and Ht3 and Ht2 islands is described in
two previous paragraphs.

10.4.1 Computational Experiment

The proposed population learning algorithm PLA3 for solving discrete-continuous
scheduling problems with continuous resource discretisation was implemented and
tested. There were 12 islands used in the PLA3 altogether, namely, the number of
homogeneous islands was set to K = 9 with the PBEA procedure assigned to them
and 3 heterogeneous islands. TS procedure was carried out on Ht1, CE procedure on
Ht2, and DE procedure on Ht3 island. The size of the population on every
Hm-island was set to PS = 24. In the TS procedure, the size of the Tabu List
(TL) was set to 500 solutions. In the CE procedure, parameters N and ρCE were set
N = 1000 and ρ = 0,2 respectively. The size of the population on Ht3 island was

180 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

set xDE = 2000, which is different from the sizes considered in [24], where xDE
{20, 40, 80, 60, 100}. The rest of the parameters necessary to carry out the
differential evolution algorithm were set to the same values as in [24], namely the
scale factor A which controls the evolution rate of the population was set A = 1, 5
and the values of the variable rand ∈ [0, 1]. The crossover constants Crp and Crm
which control the probability that the trial individual will receive the actual indi-
vidual’s genes were set Crp = 0,2 and Crm = 0,1, where p and m in the notations
Crp and Crm stand for tasks’ positions and modes. For testing purposes three
combinations of n × m were considered (n—the number of tasks and m—the
number of machines): 10 × 2, 10 × 3, and 20 × 2. For each combination
n × m, 100 instances of a problem ΘZ were generated and three discretisation
levels W were considered: 10, 20, and 50. This way we considered nine sizes of the
problem: 10 × 2 × 10, 10 × 2 × 20, 10 × 2 × 50, 10 × 3 × 10, …,
20 × 2 × 50, which makes 900 instances of the problem in total. Each instance
was tested 43 times. Mean time required by the PLA3 to find a solution for the
problem sizes 10 × 2 and 10 × 3 for all discretisation levels on a PC under 64-bit
operating system Windows 7 Enterprise with Intel(R) Core(TM) i5-2300 CPU @
2,80 GHz 3,00 GHz, RAM 4 GB compiled with aid of Borland Turbo Delphi for
Win32 was approximately 2–3 s, and for the problem size 20 × 2 for all dis-
cretisation levels approximately 4–6 s.

In order to evaluate the efficiency of the PLA3, we have used three types of relative
errors: minimum, average, and maximum relative error of the solutions yielded by the
algorithm. Relative errors (REs) of the solutions compared to the best-known solutions
were calculated according to the formulae RE = (Qalgm − Qbest-known)/Qbest-known,
where Qalgm, Qbest-known—the schedule length of a solution found by the considered
algorithm and the best-known solution respectively. The set of the best-known
solutions was determined by the authors while using all designed by them algo-
rithms and procedures for solving problem ΘZ. We have determined REmax for
every size of the considered problem as a maximum RE across 4300 REs calculated
while solving 100 instances, run 43 times each. We have also determined REavg as a
mean value of 4300 REs obtained within 43 runs of 100 instances of the considered
problem. We have compared the REs of the solutions found by the PLA3 to the REs
of the solutions found by AX-m—the most efficient version of the PLA2 described
in [23]. The values of REavg and REmax for the PLA3 and AX-m (PLA2) for all
problem sizes are presented in Table 10.6.

The values of REs in Table 10.6 show how much schedules yielded by the
PLA3 were longer than the best known schedule for the same case. For example,
for the case 10 × 2 × 10 REavg = 2,70% means that the schedule length of all
schedules yielded by the PLA3 was on average 2,70% longer than the best-known.
For the same case, REmax = 10,14% means that the longest schedule among all
schedules yielded by the PLA3 was 10,14% longer than the best-known.

10.4 PLA3—Population Learning with Differential Evolution Algorithm 181

As it could be seen in Table 10.6, the values of the considered types of the REs
of the solutions found by the PLA3 for the considered problem sizes n × m and the
discretisation levels W, in 23 out of 27 cases were lower than the values of the REs
of the solutions found by AX-m version of the PLA2. The value of the RE that is
lower than the RE of another considered algorithm is given in bold font. As it could
be seen in Table 10.6, it’s impossible to determine unequivocally the discretisation
level W for which the values of the REs of the found solutions are always the
lowest. However, REs yielded by both algorithms for W = 20 in a predominant
number of cases are the lowest, thus the following relations between the REs can be
formulated: REs(W = 20) < REs(W = 50) < REs(W = 10). This might impose
the conclusion, that the high discretisation level does not necessarily ensure the
lowest values of the REs and the additional research is needed to identify the most
appropriate discretisation of the continuous resource.

In addition, we give in Table 10.7 the percentage of the problem instances for
which best solutions found by the PLA3 within 43 runs were better (3rd column) or
not worse (4th column) than the best-known ones, specified for all of the considered
discretisation levels. As a matter of fact, the third column shows the percentage of
the problem instances for which the best-known solutions were improved by the
PLA3 within 43 runs.

Finally, it should be mentioned, that within 43 runs, for combination 10 × 2,
i.e. 10 tasks scheduled on 2 machines, the PLA3 was able to improve 33 out of 100
best known solutions, for combination 10 × 3 – 60 best known solutions, and for
combination 20 × 2, the PLA3 improved 30 best known solutions. Altogether,

Table 10.6 The comparison of the relative errors of solutions found by the PLA3 and AX-m (the
most efficient version of the PLA2) for the problem Θz

Problem size
n × m × W

Relative
error
(RE)

Discretisation level
W = 10 W = 20 W = 50
PLA3
(%)

AX-m
(%)

PLA3
(%)

AX-m
(%)

PLA3
(%)

AX-m
(%)

10 × 2 × W REmin 0,01 0,01 −0,42 0,00 −0,49 0,00
REavg 2,70 3,54 1,53 2,27 1,81 2,47
REmax 10,14 12,33 5,74 9,14 9,02 11,02

10 × 3 × W REmin −0,30 0,00 −1,05 0,00 −1,63 0,00
REavg 3,15 4,68 1,81 3,61 1,66 3,31
REmax 11,76 16,07 11,25 14,71 12,21 14,66

20 × 2 × W REmin −0,19 0,00 −1,03 0,00 −0,14 0,00
REavg 4,38 4,76 1,71 2,05 4,10 3,84
REmax 11,77 11,81 9,22 9,08 11,25 12,44

182 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

within 43 runs, the PLA3 improved 123 best known solutions, i.e. 41% of 300
instances of the considered problem. It should be also mentioned, that all the
conclusions are valid for the particular implementation of the procedures used in the
experiments. The values of some parameters of the learning procedures were
determined during their tuning and should be verified on the way of exhaustive
experiment.

10.5 IBDEA—Island-Based Differential Evolution
Algorithm

In an island-based differential evolution algorithm (IBDEA), proposed in [25], two
ideas were exploited, namely, the Differential Evolution method, first proposed in
[22], and an island model, adopted for evolutionary computation, e.g. [1, 2, 21]. In
the IBDEA, the evolutionary process is performed on an archipelago which consists
of cooperating with each other autonomous islands. The population on an island
consists of two halves of size xDE each. The individuals in the first half—target
vectors, are transformed, with help of mutation and crossover operators, into trial
vectors which are placed in the second half of the population. The idea of keeping
the offspring in the current population was borrowed from [26]. The whole evo-
lutionary process is carried out using differential evolution algorithm (DEA), pro-
posed in [24], which was adapted by the authors for solving DCSPwCRD. In the
IBDEA, the islands cooperate with each other, cyclically sending their best solution

Table 10.7 The percentage of the problem instances for which best solutions found by the PLA3
within 43 runs were better (3rd column) or not worse (4th column) than the best-known ones
specified for all of the considered discretisation levels

Problem size
n × m × W

Discretisation
level W

% of the improved the
best-known solutions

% of not worse than the
best-known solutions

10 × 2 × W 10 0 0
20 9 22
50 26 34

10 × 3 × W 10 1 2
20 21 28
50 48 54

20 × 2 × W 10 1 1
20 28 30
50 2 2

10.4 PLA3—Population Learning with Differential Evolution Algorithm 183

to one randomly chosen island. The process of evolution stops, when the predefined
number of fitness function evaluations is carried out on the archipelago. The best
across all islands individual is the final solution, found by the IBDEA to the
considered problem. In the rest of the paper, we will use notions “an individual”
and “a solution” interchangeably.

In the IBDEA, the assumptions made for the individuals are the same as the
assumptions made for the individuals of the IBEA on the population level, see
Sect. 10.1. The general description of the proposed IBDEA is given below.

The individuals in the initial population are generated in such a way, that the
position of a task in vector S, as well as the task’s processing mode is chosen at
random with the uniform distribution.

The solution exchange among the islands occurs cyclically, after nex ≪ nev
number of the fitness function evaluations which have been carried out on every
island. The pairs of islands, chosen at random from all the islands, exchange
between themselves their best solutions. The random interconnection topology
among islands was chosen as the most efficient according to [23].

The DEA procedure used in the IBDEA is described by the following pseudo
code.

184 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

10.5 IBDEA—Island-Based Differential Evolution Algorithm 185

A scale factor A, used in DEA procedure, controls the evolution rate of the
population. The values of the variable rand ∈ [0, 1]. The crossover constants Crp
and Crl control the probability, that the trial individual will receive the target
individual’s tasks positions or modes, where p and l in the notations Crp and Crl
stand for tasks positions and modes respectively.

186 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

10.5.1 Computational Experiment

Proposed island-based differential evolution algorithm (IBDEA) for solving
discrete-continuous scheduling problem with continuous resource discretisation ΘZ

was implemented and tested. There were 19 islands used to realize the IBDEA. The
differential evolution algorithm (DEA), described in [24], has been adapted for
solving considered ΘZ and assigned to every island in the IBDEA. After prelimi-
nary tuning, the size of the population on every IBDEA island was set xDE = 200,
which is different from the sizes considered in [24], where xDE ∈ {20, 40, 80,
60, 100}. The rest of the parameters necessary to carry out the differential evo-
lution algorithm were set to the same values as in [24], namely the scale factor A,
which controls the evolution rate of the population, was set A = 1,5 and the values
of the variable rand ∈ [0, 1]. The crossover constants Crp and Crl which control
the probability that trial individual will receive actual individual’s tasks or modes
were set Crp = 0,2 and Crl = 0,1, where p and l in the notations Crp and Crl stand
for tasks positions and modes respectively. On every IBDEA island, an initial
population of feasible individuals was generated using the uniform distribution
equal 1/n for the tasks, and 1/W for the task’s modes. For testing purposes three
combinations of n × m were considered (n—the number of tasks and m—the
number of machines): 10 × 2, 10 × 3, and 20 × 2. For each combination
n × m 100 instances of a problem ΘZ were generated and three discretisation
levels W were considered: 10, 20, and 50. This way we considered nine sizes of the
problem: 10 × 2 × 10, 10 × 2 × 20, 10 × 2 × 50, 10 × 3 × 10, …,
20 × 2 × 50, which makes 900 instances of the problem in total. Each instance
was tested 43 times. Mean time required by the IBDEA to find a solution for the
problem sizes 10 × 2 and 10 × 3 for all discretisation levels on a PC under 64-bit
operating system Windows 7 Enterprise with Intel(R) Core(TM) i5-2300 CPU @
2.80 GHz 3.00 GHz, RAM 4 GB compiled with aid of Borland Turbo Delphi for
Win32 was approximately 2−3 s, and for the problem size 20 × 2 for all dis-
cretisation levels approximately 5−6 s.

In order to evaluate the efficiency of the IBDEA, we have used three types of
relative errors: minimum, average, and maximum relative error of the solutions
yielded by the algorithm. Relative errors (REs) of the solutions compared to the
best-known solutions were calculated according to the formulae:
RE = (Qalgm − Qbest-known)/Qbest-known, where Qalgm, Qbest-known—the schedule
length of a solution found by the considered algorithm and the best-known solution
respectively. The set of the best-known solutions was determined by the authors
while using all designed by them algorithms and procedures for solving problem
ΘZ. We have determined REmin, REavg, and REmax for every size of the considered
problem as a minimum, average, and maximum RE, respectively, across 4300 REs
calculated, while solving each of the 100 instances 43 times. We have compared the
REs of the solutions found by the IBDEA built on 19 islands to the REs of the
solutions found by the IBDEA built on a single island, in other words the DEA
itself. The values of such parameters as A, the variable rand, Crp and Crl were set to

10.5 IBDEA—Island-Based Differential Evolution Algorithm 187

the same values as in the IBDEA. We have also compared the REs of the solutions
found by the IBDEA and the DEA to the REs of the solutions found by the PLA3
described in [21]. The values of REmin, REavg and REmax for the IBDEA, the DEA
and the PLA3 for all problem sizes and considered discretisation levels are pre-
sented in Table 10.8. The smallest values of the respective REs for particular cases
are given in bold font.

The values of REs in Table 10.8 show how much schedules yielded by the
IBDEA were longer than the best known schedule for the same case. For example,
for the case 10 × 2 × 10 REavg = 2,31% means that the schedule length of all
schedules yielded by the IBDEA was on average 2,31% longer than the
best-known. For the same case, REmax = 7,90% means that the longest schedule
among all schedules yielded by the IBDEA was 7,90% longer than the best-known.
For the case 10 × 3 × 10 for the IBDEA and the PLA3, REmin = −0,3% is
negative, which means that the schedules found by the algorithms were shorter than
the best-known for 0,3%. The algorithm whose REs values are the smallest is
considered to be more efficient than the others. In Table 10.8, each of three con-
sidered algorithms is characterised by nine values of each type of REs for each
considered problem size n × m × W. In 9 out of 9 cases, REsmax of the solutions,
found by the IBDEA, were smaller than the REsmax of the DEA and the PLA3. The
remaining REsavg and REsmin of the IBDEA were the smallest in 6 and in 2 cases
respectively. However, REsavg and REsmin of the PLA3, in 3 and in 4 cases out of 9
were the smallest. In all cases, all types of the DEA’s REs were the largest. As a
general conclusion, we point out that in 17 cases out of 27, the IBDEA shows the
smallest REs, and no other algorithm shows the same or better results. The PLA3
was the best in 8 cases out of 27, and the DEA only once achieved the same result
as the IBDEA and the PLA3 (REmin for the problem size 10 × 2 × 10).

As it could be seen in Table 10.8, it’s impossible to determine unequivocally the
discretisation level W for which the values of the REs of the found solutions are
always the smallest. However, REs yielded by all considered algorithms for W = 20
in a majority of cases were the smallest, thus the following relations between the REs
can be formulated: REs(W = 20) < REs(W = 50) < REs(W = 10). This might
impose the conclusion, that high discretisation level does not necessarily ensure the
smallest values of the REs and the additional research is needed to identify the most
appropriate discretisation of the continuous resource.

The computational experiment shows, that the island model exploiting DE finds
solutions whose relative errors (REs) are smaller than the REs of the solutions
found by the DEA alone, see Table 10.8. The above statement is true under
assumption, that on every island of the IBDEA operates the DEA, and that the size
of the population on every island is the same as the size of the population in the
DEA. In major number of cases, REmin and REavg of the solutions found by the
IBDEA were smaller than the REmin and REavg of solutions found by the DEA and
the PLA3, which also exploits the island model. The direct benefit of the proposed
algorithm is its ability to find high quality solutions with a smaller dispersion of
RE’s values. In our experiment, in all cases, REmax of the solutions found by the
IBDEA were the smallest. The promising results achieved by the IBDEA might

188 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

T
ab

le
10

.8
T
he

co
m
pa
ri
so
n
of

th
e
re
la
tiv

e
er
ro
rs

R
E
of

so
lu
tio

ns
fo
un

d
by

th
e
IB
D
E
A
,
th
e
D
E
A
,
an
d
th
e
PL

A
3
fo
r
pr
ob

le
m

Θ
z

Pr
ob

le
m

si
ze

n
×

m
×

W
R
el
at
iv
e
er
ro
r

(R
E
)

D
is
cr
et
is
at
io
n
L
ev
el

W
=

10
W

=
20

W
=

50
IB
D
E
A

(%
)

D
E
A

(%
)

PL
A
3

(%
)

IB
D
E
A

(%
)

D
E
A

(%
)

PL
A
3

(%
)

IB
D
E
A

(%
)

D
E
A

(%
)

PL
A
3

(%
)

10
×

2
×

W
R
E
m
in

0,
01

0,
01

0,
01

−
0,
33

0,
00

−
0,
42

−
0,
65

−
0,
53

−
0,
49

R
E
av
g

2,
31

3,
86

2,
70

0,
93

2,
86

1,
53

0,
83

3,
22

1,
81

R
E
m
ax

7,
90

11
,5
2

10
,1
4

4,
57

10
,7
2

5,
74

4,
91

11
,8
6

9,
02

10
×

3
×

W
R
E
m
in

−
0,
30

−
0,
10

−
0,
30

−
0,
75

−
0,
04

−
1,
05

−
1,
71

−
1,
12

−
1,
63

R
E
av
g

2,
60

4,
29

3,
15

0,
96

3,
18

1,
81

0,
46

3,
02

1,
66

R
E
m
ax

10
,0
4

13
,3
1

11
,7
6

8,
60

17
,1
6

11
,2
5

7,
63

16
,8
0

12
,2
1

20
×

2
×

W
R
E
m
in

0,
78

0,
33

−
0,
19

−
0,
78

−
0,
20

−
1,
03

1,
29

−
0,
03

−
0,
14

R
E
av
g

5,
03

4,
93

4,
38

5,
22

4,
18

1,
71

6,
94

5,
24

4,
10

R
E
m
ax

10
,1
1

11
,9
1

11
,7
7

9,
20

11
,3
7

9,
22

10
,5
3

13
,2
2

11
,2
5

10.5 IBDEA—Island-Based Differential Evolution Algorithm 189

suggest its superiority over the DEA, however in order to make the final conclusion
more extensive research is needed.

Finally, it should be also mentioned, that all the conclusions are valid for the
particular implementation of the procedures used in the experiments. The values of
some parameters of the learning procedures were determined during their prelim-
inary tuning and should be verified on the way of the exhaustive experiment.

References

1. Alba, E., Troya, J.: Analysis of synchronous and asynchronous parallel distributed genetic
algorithms with structured and panmictic islands. In: Rolim, J. et al., (eds.) Proceedings of the
10th Symposium on Parallel and Distributed Processing, pp. 248–256. San Juan, Puerto Rico,
USA, 12–16 April (1999)

2. Belding, T.C.: The distributed genetic algorithm revisited. In: Eshelman, L.J. (ed.)
Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 114–121.
Morgan Kaufmann, San Francisco CA (1995)

3. Gordon, V.S., Whitley, D.: Serial and parallel genetic algorithms as function optimizers. In:
Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms,
pp. 177–183. Morgan Kaufmann, San Mateo, CA (1993)

4. Czarnowski, I., Gutjahr, W.J., Jędrzejowicz, P., Ratajczak, E., Skakowski, A., Wierzbowska,
I.: Scheduling multiprocessor tasks in presence of correlated failures. In: Luptaćik, M.,
Wildburger, U.L. (eds.) Central European Journal of Operations Research, vol. 11, iss. 2,
pp. 163–182. Physika-Verlag, Springer, Heidelberg (2003)

5. Jędrzejowicz, P., Skakovski, A., Czarnowski, I., Szreder, H.: Evolution-based scheduling of
multiple variant and multiple processor programs. In: Hertzberger, L.O., Sloot P.M.A. (eds.)
Future Generation Computer Systems, vol. 17, pp. 405–414. Elsevier, The Netherlands
(2001)

6. Jędrzejowicz, P., Skakovski, A.: An island-based evolution algorithm for discrete-continuous
scheduling with continuous resource discretisation. In: Proceedings of the 2nd IEEE
International Conference on Computational Cybernetics ICCC 2004, 30 Aug–1 Sep 2004.
Vienna University of Technology, Austria (2004)

7. Różycki, R.: Zastosowanie algorytmu genetycznego do rozwiązywania dyskretno-ciągłych
problemów szeregowania. PhD Dissertation, Poznań University of Technology, Poland
(2000)

8. Jędrzejowicz, P., Skakovski, A.: A population learning algorithm for discrete-continuous
scheduling with continuous resource discretisation. In: Chen, Y., Abraham, A. (eds.)
Proceedings of 6th International Conference on Intelligent Systems Design and Applications
(ISDA 2006), vol. 2, spec. sess.: Nature Imitation Methods Theory and practice (NIM’ 06),
pp. 1153–1158. Jinan, Peoples R. of China (2006)

9. Jędrzejowicz, P.: Social learning algorithm as a tool for solving some difficult scheduling
problems. Found. Comput. Decis. Sci. 24, 51–66 (1999)

10. Glover, F.: Tabu search: a tutorial. Interfaces 20, 74–94 (1990)
11. Jędrzejowicz, P., Skakovski, A.: A cross-entropy based population learning algorithm for

discrete-continuous scheduling with continuous resource discretisation. Neurocomputing 73
(4–6), Special Issue: SI:655–660 (2010)

12. Rubinstein, R.Y.: Optimization of computer simulation models with rare events. Eur.
J. Op. Res. 99, 89–112 (1997)

13. De Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy
method. Ann. Op. Res. 134(1), 19–67 (2005)

190 10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)

14. Cantu-Paz, E., Goldberg, D.E.: Are multiple runs of genetic algorithms better than one?. In:
Proceedings of the Genetic and Evolutionary Computation Conference (2003)

15. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: on separability,
population size and convergence. J. Comput. Inf. Technol. 7(1), 33–47 (1999)

16. Cantu-Paz, E.: Migration policies, selection pressure, and parallel evolutionary algorithms.
J. Heuristics 7(4), 31–334 (2001)

17. Skolicki, Z., Kenneth, D.J.: The influence of migration sizes and intervals on island models.
In: Proceedings of GECCO’ 05, pp. 1295–1302. Washington, DC, USA, 25–29 June (2005)

18. Krink, T., Mayoh, B.H., Michalewicz, Z.: A PACHWORK model for evolutionary algorithms
with structured and variable size populations. In: Morgan, K., Banzhaf, W., Daida, J., Eiben,
A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic
and Evolutionary Computation Conference, vol. 2, pp. 1321–1328. Orlando, Florida, USA
(1999)

19. Sekaj, I.: Robust parallel genetic algorithms with re-initialisation. In: Proceedings of Parallel
Problem Solving from Nature—PPSN VIII, 8th International Conference, vol. 3242, pp. 411–
419. LNCS, Springer, Birmingham, UK, 18–22 Sep (2004)

20. Skolicki, Z.: An analysis of island models in evolutionary computation. In: Proceedings of
GECCO’ 05, pp. 386–389. Washington, DC, USA, 25–29 June (2005)

21. Jędrzejowicz, P., Skakovski, A.: Population learning with differential evolution for the
discrete-continuous scheduling with continuous resource discretisation. In: IEEE International
Conference on Cybernetics (CYBCONF) pp. 92–97. Lausanne, Switzerland, 13–15 June
(2013)

22. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Opt. 11, 341–359 (1997)

23. Jędrzejowicz, P., Skakovski, A.: Structure vs. efficiency of the cross-entropy based population
learning algorithm for discrete-continuous scheduling with continuous resource discretisation.
In: Czarnowski, I., Jędrzejowicz, P., Kacprzyk, J. (eds.) Studies in Computational
Intelligence. Agent-Based Optimization, vol. 456, pp. 77–102 (2013)

24. Damak, N., Jarboui, B., Siarry, P., Loukil, T.: Differential evolution for solving multi-mode
resource-constrained project scheduling problems. Comput. Op. Res. 36(9), 2653–2659
(2009)

25. Jędrzejowicz, P., Skakovski, A.: Island-based differential evolution algorithm for the
discrete-continuous scheduling with continuous resource discretisation. Procedia Comput.
Sci. 35, 111–117 (2014)

26. Kazemipoor, H., Tavakkoli-Moghaddam, R., Shahnazari-Shahrezaei, P.: Differential evolu-
tion and simulated annealing algorithms for a multi-skilled project scheduling problem. Am.
J. Sci. Res. 33, 136–146 (2011)

References 191

Chapter 11
Performance Evaluation of the Proposed
Algorithms

In this section, a research on the performance evaluation and ways of the perfor-
mance improvement for some of the proposed algorithms are discussed. Some
useful properties of the DEA, used in the PLA3 and the IBDEA, and a policy for its
performance improvement are also presented.

In Sect. 11.1, the Friedman test carried out to evaluate the performance of 6
metaheuristics: the IBEA, the PLA, the PLA2, the PLA3, the IBDEA, and the DEA,
discussed in the previous section, with the view of determining the most efficient of
the algorithms is described.

In Sect. 11.2, the influence of the structure of PLA2 on its efficiency was
studied. The main goal of the research was to find out to what extent such factors as
the interconnection topology of learning procedures (islands) and the way the
islands interact with each other and exchange solutions determine the efficiency of
the algorithm. For this reason several versions of the PLA2 differing from each
other by their structure and migration scheme, were proposed. The research orig-
inates from [1].

In Sect. 11.3, we examine the properties of two models of the DE search: a
model based on a single population (the implementation of which is denoted as
DEA), and a model based on multiple populations, known as the island model. We
investigated how the effectiveness of the models under consideration depends on
such parameters as the size of a single population xP, and in the case of the island
model, also the number of islands K and the migration rate ex. The research
originates from [2].

In Sect. 11.4, we conduct a research on preserving the diversity of a population
evolved by a differential evolution algorithm. We designed a decloning procedure
which cyclically replaces genetically identical individuals (clones) with randomly
generated ones, the detailed description of the decloning procedure is given in
Sect. 11.4.2. The goal of our research was to investigate the extent to which per-
formance of the considered differential evolution algorithm depends on such
parameters as the population diversification rate, the size of the population, and the

© Springer International Publishing AG 2018
E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,
Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_11

193

number of fitness function evaluations carried out by the algorithm to yield a
solution to the problem. The research originates from [3].

In all experiments, the discrete-continuous scheduling problem with continuous
resource discretisation (DCSPwCRD) described in Sect. 9.2.2 was used as a test
problem.

11.1 Friedman Test

In this section we describe the non-parametric statistical Friedman test which was
carried out to evaluate the performance of 6 metaheuristics: the IBEA, the PLA, the
PLA2, the PLA3, the IBDEA, and the DEA, described in the previous chapter, with
the view of determining the most efficient of the algorithms. The evaluation is based
on ranks assigned to each metaheuristic participating in the experiment. To assign
the ranks, a 6 point scale was used, with 6 points for the best and 1 point for the
worst result found by the metaheuristics for a particular problem instance. When the
results were identical (i.e. there were ties among ranks), the same amount of points
equaled the mean of consecutive ranks was assigned to each such result. The
metaheuristics were tested on 300 instances of the discretised discrete-continuous
scheduling problem ΘZ generated for three sizes m × n (n—the number of tasks
and m—the number of machines): 10 × 2, 10 × 3, and 20 × 2. The level of the
continuous resource discretisation was set at 20, which was assumed as the most
beneficial according to the results given in Table 11.20 in Sect. 11.2.1. All con-
sidered algorithms carried out 720,000 fitness function evaluations to find a solution
with the parameter settings described in the respective sections of Chap. 10. The
population size of the DEA was set at 2000. The test aimed at deciding among the
following hypotheses:

• H0—a zero hypothesis: the metaheuristics are statistically equally effective,
regardless of the problem instance being solved.

• H1—an alternative hypothesis: not all metaheuristics are equally effective.

The analysis has been carried out for the significance level α = 0,05 and 5
degrees of freedom (df = k − 1 = 6 − 1 = 5). The respective value of χ2 statistics
calculated for the considered case of 6 metaheuristics and 300 problem instances
equals 690,75. The critical value of χ2 distribution for the assumed values of
significance level α and degrees of freedom df equals 11,07. Since the obtained
value of the Friedman statistics χ2 is greater than the critical one, hypothesis H0 is
rejected. Thus, the obtained result proves hypothesis H1 which claims that not all
metaheuristics are equally effective, regardless of problem instances being solved.
The means of ranks, obtained for the metaheuristics under the test, are shown in
Fig. 11.1.

Additionally, the Kendall’s coefficient of concordance (Kendall’s W) was cal-
culated. The Kendall’s W was used for evaluating the degree of agreement among
the obtained assessments. Kendall’s W ranges from 0 (no agreement) to 1 (complete

194 11 Performance Evaluation of the Proposed Algorithms

agreement). The intermediate values of W indicate a greater or lesser degree of
unanimity among the various assessments. The value of W = 0,4605, calculated for
the results obtained in our Friedman test, indicates a nearly medial degree of
unanimity among the assessments. Although, this value of Kendall’s W does not
allow a reliable conclusion about the superiority of some over others metaheuristics,
however the mean values of ranks, calculated for the algorithms, might suggest
some ranking with respect to their efficiency. Thus, according to the means of ranks
obtained in our test and given in parenthesis, one could rank the metaheuristics
from the most to the least efficient as follows: the PLA3 (4,65), the IBDEA (4,45),
the DEA (4,4), the PLA2 (3,58), the PLA (2,28), the IBEA (1,64), see also
Fig. 11.1. As it could be seen from the ranking proposed and Fig. 11.1, three
metaheuristics the PLA3, the IBDEA, and the DEA with similar rank means (4,65,
4,45, 4,40) can be considered as superior to the PLA2, the PLA, and the IBEA with
smaller rank means 3,58, 2,28, and 1,64 respectively.

11.2 Structure Versus Efficiency of the Cross-Entropy-
Based Population Learning Algorithm (PLA2)

Because most of the algorithms proposed in this work are based on the island
model, it was of crucial importance to establish the extent to which the structure and
migration scheme of the algorithms determine their performance. These factors
were investigated in [1] using the PLA2 as a test algorithm, since it exploits the
island model.

The PLA2 model introduced in [4] and described in Sect. 10.3 is viewed in the
research as an island model, were islands are connected to each other according to
some topology and exchange individuals in order to collectively find best possible
solution to the problem. In the PLA2, two categories of island groups are distin-
guished—heterogeneous and homogeneous, dependently on the type of the learning
procedures that are carried out on the islands. We refer to the group of islands as
heterogeneous, if the learning procedure carried out on at least one island is

4.65 4.45 4.40

3.58

2.28

1.64

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

PLA3 IBDEA DEA PLA2 PLA IBEA

Fig. 11.1 The means of
ranks obtained for the
metaheuristics under the test

11.1 Friedman Test 195

different from the learning procedures carried out on the rest of the islands in the
group. We refer to the group of islands as homogeneous, if the same learning
procedure is carried out on each island in the group. We will refer to a particular
island as heterogeneous (Ht), if CE or TS procedure is carried out on it, and
homogeneous (Hm), if the PBEA is carried out on it. The description of mentioned
procedures can be found as given: for CE procedure see Sect. 10.3.1, for TS
procedure see Sect. 10.2.1, and for the IBEA and the PBEA see Sect. 10.1. In
further discussion, the terms a learning procedure and an island are used
interchangeably.

The main goal of our research was to find out whether a topology of learning
stages (or islands), might have some effect on the algorithm’s efficiency. For this
reason we proposed several versions of the PLA2 that differ from each other by
their structure and migration scheme. We will refer to these versions of the PLA2 as
algorithms, and some letter code will be assigned to each of them. In order to
distinguish the algorithms, we considered two their basic types, each of them
having two topology schemes. In the first basic type, all islands participate in the
solution evolution and migration at least once. However, some selected islands
additionally take part in the cyclic solution migration among islands (the letter code
for this version will contain letter “S”). In the second basic type—all islands take
part in the cyclic solution migration among the islands (the letter code for this
version will contain letter “A”). As it was mentioned above, each basic type appears
in two topology schemes. In the first topology scheme, islands are located on a
directed ring and the individuals migrate among the islands along the ring (the letter
code for this scheme will contain letter “O” and we will refer in the rest of the text
to this topology as a ring topology). In the second topology scheme—individuals
migrate between randomly chosen pairs of islands (the letter code for this scheme
will contain letter “X” and we will refer to this topology as a random topology).
Moreover, the letter code for the algorithms in which CE procedure sends multiple
solutions to the island-in-pair during the migration phase will contain letter “m”.
For the version where CE procedure sends a single solution to the island-in-pair
during the migration phase the letter code will contain letter “s”. Therefore, the
letter code “AO-m” stands for the algorithm in which all islands comprise a directed
ring of heterogeneous islands and procedure CE sends multiple solutions to the
island-in-pair during the migration phase. In this research, six versions of the PLA2
were considered, namely: SO (S-only selected islands take part in the cyclic
migration, O—ring topology), SX (S—only selected islands take part in the cyclic
migration, X—random topology), AO-m (A—all islands take part in the cyclic
migration, O—ring topology, the CE sends multiple solutions), AO-s (A—all
islands take part in the cyclic migration, O-ring topology, the CE sends a single
solution), AX-m (A—all islands take part in the cyclic migration, X—random
topology, CE sends multiple solutions), and AX-s (A—all islands take part in the
cyclic migration, X—random topology, the CE sends a single solution). Because all
proposed algorithms are versions of the PLA2, they have common bases, which are
shown as generalized S-type and A-type algorithms. The pseudo codes, as well as
figures illustrating all proposed algorithms are given below.

196 11 Performance Evaluation of the Proposed Algorithms

S-algorithm

Begin

Create an initial population P0 of the size x0-1 using
procedure cross-entropy (CE).

Create an individual TSI in which all tasks Ji are to
be executed in mode li = 1 (a mode characterized by

minimal quantity of additional resource 1
iu and maxi-

mal task processing time 1
iτ , 1 ≤ i ≤ n).

Improve the individual TSI with the tabu search (TS)
procedure.

Create population P1 = P0 + TSI.

Distribute equally individuals from P1 among all
Hm-islands.

Carry out the appropriate Learning stage SO or SX de-
signed for SO and SX algorithms respectively.

Output the best solution to the problem.

End_S-algorithm.

Learning stage SO

Begin

Improve individuals on Hm-islands with procedure
IBEA.

End_stage_SO.

Learning stage SX

Begin

Improve individuals on each Hm-island with procedure
PBEA, cyclically exchanging best solutions between
randomly chosen pairs of Hm-islands.

End_stage_SX.

11.2 Structure Versus Efficiency … 197

A-algorithm

Begin

Create an initial population P0 of the size x0 using
cross-entropy procedure (CE).

Distribute equally individuals from P0 among all
Hm-islands.

Create an individual TSI in which all tasks Ji are to
be executed in mode li = 1 (a mode characterized by

minimal quantity of additional resource 1
iu and maxi-

mal task processing time 1
iτ , 1 ≤ i ≤ n).

Send TSI to the Tabu Search (TS) procedure.

Carry out the appropriate Learning stage AO or AX de-
signed for AO and AX algorithms respectively.

Output the best solution to the problem.

End_A-algorithm.

Learning stage AO

Begin

Create a directed ring of all available islands as
follows: Hm1, Ht1(TS), Hm2, Hm3, Ht2(CE), … , HmK, where
K ≥ 3.

Improve individuals on the islands with the assigned
to them procedures cyclically sending best solution
from each island along the ring.

End_stage_AO.

Learning stage AX

Begin
Improve individuals on all available islands with the
assigned to the islands procedures cyclically ex-
changing best solution between randomly chosen pairs
of islands.

End_stage_AX.

198 11 Performance Evaluation of the Proposed Algorithms

In all proposed algorithms, x0 = K ⋅PS, where K—the number of homogeneous
islands and PS is the population size on an island defined in procedure IBEA.

In a simplified graphic illustration of the algorithms in Figs. 11.2, 11.3, 11.4 and
11.5, solid lines show islands participating in the cyclic solution migration and
dash-dot lines show islands where learning procedures are carried out only once. In
all figures, an abbreviation PB denotes the PBEA procedure.

In AO algorithm, CE procedure receives multiple solutions from the homoge-
neous islands Hm1, Hm2 and Hm3, and sends a single solution to Hm4 (or Hm1,
when K = 3) in its AO-s version, or multiple solutions in its AO-m version. In AX
algorithm CE procedure also receives multiple solutions from Hm1, Hm2 and Hm3,
and sends to the randomly chosen island a single solution in AX-s algorithm,

Fig. 11.2 A simplified scheme of SO algorithm based on ring topology

Fig. 11.3 A simplified scheme of SX algorithm based on random topology

11.2 Structure Versus Efficiency … 199

or multiple solutions in AX-m algorithm. On all homogeneous islands Hmi,
i = 1, 2, …, K we used the PBEA procedure.

11.2.1 Computational Experiment

All six proposed versions of the cross-entropy based population learning algorithm
for solving discrete-continuous scheduling problems with continuous resource
discretisation were implemented and tested. The efficiency of all six algorithms was

Fig. 11.4 A simplified
scheme of AO algorithm
based on ring topology

Fig. 11.5 A simplified
scheme of AX algorithm
based on random topology

200 11 Performance Evaluation of the Proposed Algorithms

compared to each other, as well as to the tabu search (TS) procedure, used within
each of the algorithms which was run in addition as an independent algorithm. In
the procedure CE, as it was mentioned earlier, parameters ρ and N were determined
empirically and set N = 1000 and ρ = 0,2. The size of the Tabu List (TL) was
determined empirically as well, and set to 500 solutions. For testing purposes three
combinations of n × m were considered (n—the number of tasks and m—the
number of machines): 10 × 2, 10 × 3, and 20 × 2. For each combination
n × m 100 instances of problem ΘZ were generated and three discretisation levels
W were considered: 10, 20, and 50. This way we considered nine sizes of the
problem: 10 × 2 × 10, 10 × 2 × 20, 10 × 2 × 50, 10 × 3 × 10, … ,
20 × 2 × 50, which makes 900 instances of the problem in total. In all problem
instances, we have used the same as in [5] task processing rate functions already
described in Sect. 10.3.2.1.

Each of the considered algorithms carried out about 720000 fitness function
evaluations to yield one solution for the instance of the problem. Each instance was
tested 43 times by all the proposed algorithms. Mean time required by the con-
sidered algorithms to find a solution for the problem sizes 10 × 2 and 10 × 3 for
all discretisation levels on Pentium (R) 4 CPU 3.00 GHz compiled with aid of
Borland Delphi Personal v.7.0 was approximately 4–7 s, and for the problem size
20 × 2 for all discretisation levels approximately 8–13 s.

In order to evaluate the efficiency of the proposed algorithms we used such
parameters as relative errors (minimum, average, maximum) of the solutions yiel-
ded by the algorithms, as well as percentage of solutions of the same quality as the
best-known solutions. Relative errors (RE) of the solutions compared to the
best-known solutions were calculated according to the formulae
RE = (QPLA2 – Qbest-known)/Qbest-known, where Q—the quality of a considered
solution. The set of the best-known solutions was determined by the authors while
using all designed by them procedures and algorithms, namely the PBEA, the
IBEA, TS, the PLA, the PLA2, AX-m, AX-s, SX, SO, AO-m, and AO-s for solving
problem ΘZ. We have determined REmin and REmax for every size of the considered
problem as a minimum or respectively maximum RE across 4300 REs calculated
while solving each of the 100 instances 43 times. We have also determined REavg as
a mean value of 4300 REs obtained within 43 runs of 100 instances of the con-
sidered problem. The values of REmin, REavg and REmax of the solutions found by
all proposed algorithms for all problem sizes are presented in Tables 11.1, 11.2,
11.3, 11.4, 11.5, 11.6, 11.7, 11.8, and 11.9. The values of REs in Tables 11.1, 11.2,
11.3, 11.4, 11.5, 11.6, 11.7, 11.8, and 11.9 show how much schedules yielded by
the proposed algorithms were longer than the best known schedule for the same
case. For example, in Table 11.1 for the case 10 × 2 × 10 for SO algorithm,
REavg = 3.28% means that the schedule length of all schedules yielded by SO
algorithm was on average 3.28% longer than the best-known. For the same case,
REmax = 9,76% means that the longest schedule among all schedules yielded by
SO algorithm was 9,76% longer than the best-known. To make it easier to evaluate
their efficiency, in Tables 11.1,11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, and 11.9
below, we have ordered the algorithms according to their REs non-decreasingly.

11.2 Structure Versus Efficiency … 201

For the problem size 10 × 2 × 10, according to the values of the REmin in
Table 11.1, SO algorithm has the largest REmin, however quite close to the REs of
the other algorithms. On the other hand, considering REavg, SO algorithm has the
lowest REavg, and this way, is the leader in a group of the algorithms: SO, SX, TS,
AX-m, AX-s, with similar REavg values.

Algorithms AO-m, AO-s make another group of the same REavg values, where
REavg is about twice higher than in the first group. Considering REmax, it is also
possible to classify the algorithms into two groups: with low REmax: SO, TS, SX,
and with high REmax: AX-s, AX-m, AO-m, AO-s. In the first group the algorithms

Table 11.1 The algorithms ordered non-decreasingly according to their REmin, REavg and REmax

for the size 10 × 2 × 10 of the problem Θz

Nr Alg-m REmin (%) Alg-m REavg (%) Alg-m REmax (%)

1 SX 0,01 SO 3,28 SO 9,76
2 AO-m 0,01 SX 3,31 TS 9,91
3 AO-s 0,01 TS 3,49 SX 10,00
4 AX-m 0,01 AX-m 3,54 AX-s 11,39
5 AX-s 0,01 AX-s 3,58 AX-m 12,33
6 TS 0,01 AO-m 6,30 AO-m 14,68
7 SO 0,19 AO-s 6,30 AO-s 16,53

Table 11.2 The algorithms ordered non-decreasingly according to their REmin, REavg and REmax

for the size 10 × 3 × 10 of the problem Θz

Nr Alg-m REmin (%) Alg-m REavg (%) Alg-m REmax (%)

1 AX-s 0,00 SO 4,67 SO 15,92
2 SO 0,00 AX-m 4,68 AX-m 16,07
3 AX-m 0,00 SX 4,69 TS 17,72
4 SX 0,01 AX-s 4,74 SX 18,39
5 TS 0,07 TS 5,36 AX-s 19,33
6 AO-m 0,10 AO-m 8,66 AO-s 25,67
7 AO-s 0,28 AO-s 8,71 AO-m 26,06

Table 11.3 The algorithms ordered non-decreasingly according to their REmin, REavg and REmax

for the size 20 × 2 × 10 of the problem Θz

Nr Alg-m REmin (%) Alg-m REavg (%) Alg-m REmax (%)

1 AX-m 0,00 AX-m 4,76 SO 11,47
2 AX-s 0,26 AX-s 4,86 SX 11,74
3 SX 0,40 SO 5,46 AX-m 11,81
4 SO 0,51 SX 5,56 TS 12,09
5 TS 0,68 TS 6,26 AX-s 12,54
6 AO-m 1,12 AO-s 9,19 AO-m 16,71
7 AO-s 1,16 AO-m 9,31 AO-s 18,19

202 11 Performance Evaluation of the Proposed Algorithms

differ from 9,76% to 10,00%, while in the second—from 11,39% to 16,53%. For the
problem size 10 × 2 × 10, REmin ∈ [0,01%, 0,19%], REavg ∈ [3,28%, 6,30%],
REmax ∈ [9,76%, 16,53%]. Generally, according to Table 11.1, the algorithms
exploiting the directed ring migration scheme (the ring topology) or random
migration scheme (the random topology), built exclusively on homogeneous
islands, as well as scheme built on all islands with the random topology perform
better, than the algorithms exploiting the ring topology built on all islands—both
homogeneous and heterogeneous. This way, for the size 10 × 2 × 10—SO, SX
and AX-s perform better than the rest of the algorithms.

Table 11.4 The algorithms ordered non-decreasingly according to their REmin, REavg and REmax

for the size 10 × 2 × 20 of the problem Θz

Nr Alg-m REmin (%) Alg-m REavg (%) Alg-m REmax (%)

1 SX 0,00 SO 2,05 SO 6,67
2 AO-m 0,00 SX 2,07 SX 7,04
3 AO-s 0,00 AX-m 2,27 TS 7,66
4 AX-m 0,00 AX-s 2,33 AX-m 9,14
5 AX-s 0,00 TS 2,36 AX-s 12,40
6 TS 0,00 AO-m 4,99 AO-m 17,18
7 SO 0,00 AO-s 5,01 AO-s 17,60

Table 11.5 The algorithms ordered non-decreasingly according to their REmin, REavg and REmax

for the size 10 × 3 × 20 of the problem Θz

Nr Alg-m REmin (%) Alg-m REavg (%) Alg-m REmax (%)

1 AX-m 0,00 AX-m 3,61 AX-m 14,71
2 SX 0,00 AX-s 3,73 SO 15,18
3 AX-s 0,00 SO 3,87 AX-s 15,89
4 TS 0,00 SX 4,06 SX 16,66
5 SO 0,00 TS 4,95 TS 18,28
6 AO-m 0,00 AO-s 8,13 AO-m 24,24
7 AO-s 0,08 AO-m 8,13 AO-s 26,03

Table 11.6 The algorithms ordered non-decreasingly according to their REmin, REavg and REmax

for the size 20 × 2 × 20 of the problem Θz

Nr Alg-m REmin (%) Alg-m REavg (%) Alg-m REmax (%)

1 SX 0,00 AX-m 2,05 AX-m 9,08
2 AX-m 0,00 SO 2,43 SO 9,76
3 AX-s 0,00 AX-s 2,53 AX-s 9,90
4 SO 0,00 AO-m 2,60 TS 10,81
5 AO-m 0,00 AO-s 2,72 SX 11,00
6 AO-s 0,00 SX 2,84 AO-m 15,19
7 TS 0,53 TS 5,09 AO-s 15,61

11.2 Structure Versus Efficiency … 203

For the problem size 10 × 3 × 10, according to the values of the REmin in
Table 11.2, algorithms AX-s, SO, AX-m were able to find the best-known solu-
tions, and algorithms: SX, TS, AO-m, AO-s could not. However, REmin values of
the latter group do not differ significantly from the best-known solutions, namely,
from 0,01% to 0,28%. Considering REavg, SO algorithm has the lowest REavg, and
this way, is the leader in a group of algorithms: SO, AX-m, SX, AX-s with REavg

values differing from 4,67% to 4,74%. TS algorithm is in-between the first group
and the third, made of AO-m and AO-s algorithms, whose REavg values are con-
siderably higher than in the first group, i.e. 8,66% and 8,71% respectively. Speaking

Table 11.7 The algorithms ordered non-decreasingly according to their REmin, REavg and REmax

for the size 10 × 2 × 50 of the problem Θz

Nr Alg-m REmin (%) Alg-m REavg (%) Alg-m REmax (%)

1 TS 0,00 AX-m 2,47 SO 8,69
2 SX 0,00 AX-s 2,53 TS 8,79
3 AX-m 0,00 SO 2,77 SX 9,23
4 AX-s 0,00 SX 2,79 AX-m 11,02
5 SO 0,00 TS 3,09 AX-s 11,19
6 AO-m 0,00 AO-m 5,77 AO-s 15,41
7 AO-s 0,03 AO-s 5,78 AO-m 16,61

Table 11.8 The algorithms ordered non-decreasingly according to their REmin, REavg and REmax

for the size 10 × 3 × 50 of the problem Θz

Nr Alg-m REmin (%) Alg-m REavg (%) Alg-m REmax (%)

1 AX-s 0,00 AX-m 3,31 AX-m 14,66
2 SX 0,00 AX-s 3,46 AX-s 16,59
3 AO-s 0,00 SO 3,86 SX 17,34
4 AX-m 0,00 SX 4,18 TS 18,16
5 SO 0,00 TS 5,72 AO-s 25,24
6 AO-m 0,00 AO-s 5,86 AO-m 27,02
7 TS 0,06 AO-m 5,91 SO 36,35

Table 11.9 The algorithms ordered non-decreasingly according to their REmin, REavg and REmax

for the size 20 × 2 × 50 of the problem Θz

Nr Alg-m REmin (%) Alg-m REavg (%) Alg-m REmax (%)

1 SO 0,00 AX-m 3,84 SX 11,31
2 SX 0,00 AX-s 3,95 SO 11,77
3 AX-m 0,00 SO 5,18 AX-m 12,44
4 AX-s 0,00 SX 5,33 AX-s 12,49
5 AO-m 0,87 TS 6,19 TS 12,65
6 AO-s 0,96 AO-s 7,73 AO-s 17,45
7 TS 1,05 AO-mm 7,80 AO-m 18,76

204 11 Performance Evaluation of the Proposed Algorithms

about REmax, it is also possible to classify the algorithms into two groups of similar
values of REmax: SO, AX-m, TS, SX, from 15,92% to 18,39%, and a group of high
REmax: AX-s, AO-s, AO-m, from 19,33% to 26,06%. For the problem size
10 × 3 × 10, we also give the intervals to which belong the values of the con-
sidered parameters, i.e. REmin ∈ [0,00%, 0,28%], REavg ∈ [4,67%, 8,71%], and
finally, REmax ∈ [15,92%, 26,06%].

As it could be seen, the REavg and REmax of all algorithms have increased while
scheduling 10 tasks on 3 machines compared to scheduling 10 tasks on 2 machines.
In this case again, homogeneous ring topology, as well as random topology for both
homogeneous and heterogeneous structures performed better than other algorithms.
In addition, it can be noticed, that the algorithms where CE procedure sends
multiple solutions during the migration phase perform better, than when it sends a
single solution. To finalize, for the size 10 × 3 × 10—SO, AX-m and SX per-
form better, than the other algorithms.

For the problem size 20 × 2 × 10, according to the values of the REmin in
Table 11.3, only algorithm AX-m was able to find the best-known solutions, and
the rest of the algorithms—could not. According to REmin, the algorithms: AX-s,
SX, SO, TS make a middle group with the values from 0,26% to 0,68%. The
algorithms AO-m and AO-s make the third group with REmin values from 1,12% to
1,16%, which are nearly twice as high as in the middle group.

Considering REavg, AX-m algorithm has the lowest REavg, and is the leader in a
group of the algorithms: AX-m, AX-s, SO, SX, TS with REavg values differing from
4,76% to 6,26%. The algorithms AO-s, AO-m make the third group of the similar
REavg values, where REavg is from 9,19% to 9,31% which are considerably higher
than in the middle group. Considering REmax, it is also possible to classify the
algorithms into two groups: with low REmax: SO, SX, AX-m, TS, AX-s, with
the values from 11,47% to 12,54%, and another group: AO-m, AO-s, with high
REmax values from 16,71% to 18,19%. For the problem size 20 × 2 × 10, the
intervals of the REs are as follow: REmin ∈ [0,00%, 1,16%], REavg ∈ [4,76%,
9,31%], and finally REmax ∈ [11,47%, 18,19%]. For this problem size, our
observations on the topology point at the random topology of both heterogeneous
and homogeneous structures, as well as homogeneous ring topology as most effi-
cient ones. Here, CE procedure sending multiple solutions during the migration
phase, performs better, than when it sends only a single solution. For the size
20 × 2 × 10, AX-m, SO and AX-s are the most efficient algorithms.

For the problem size 10 × 2 × 20, according to the values of the REmin in
Table 11.4, all algorithms were able to find the best-known solutions. Here,
REmin = 0,00%, REavg ∈ [2,05%, 5,01%], REmax ∈ [6,67%, 17,60%]. The algo-
rithms implementing ring or random topologies realized on homogeneous islands,
as well as random topology realized on all islands have considerably lower REavg

and REmax in comparison with the algorithms exploiting the ring topology built on
all islands. Thus, SO, SX and AX-m algorithms outperform the other algorithms
while solving the problem of the size 10 × 2 × 20.

For the problem size 10 × 3 × 20, according to the values of the REmin in
Table 11.5, all algorithms, except for AO-s, were able to find the best-known

11.2 Structure Versus Efficiency … 205

solutions. Here, the values of REmin ∈ [0,00%, 0,08%], REavg ∈ [3,61%, 8,13%],
and REmax ∈ [14,71%, 26,03%]. The overall results for the size 10 × 3 × 20 are
nearly the same as for 10 × 2 × 20, i.e. the algorithms implementing random or
ring topologies realized on homogeneous islands, as well as random topology
realized on all islands have considerably lower REavg and REmax in comparison
with the algorithms exploiting the ring topology built on all islands. However, for
this size of the problem AX-m algorithm has lower REavg and REmax than SO.
Thus, AX-m, SO and AX-s algorithms outperform the other algorithms while
solving the problem of the size 10 × 3 × 20.

For the problem size 20 × 2 × 20, according to the values of the REmin

in Table 11.6, all island-based algorithms were able to find the best-known
solutions. Here, REmin ∈ [0,00%, 0,53%], REavg ∈ [2,05%, 5,09%], and finally
REmax ∈ [9,08%, 15,61%]. The overall results for the size 20 × 2 × 20 are much
alike as for 10 × 2 × 20, i.e. the algorithms implementing random or ring
topologies realized on homogeneous islands, as well as random topology realized
on all islands have considerably lower REavg and REmax in comparison with the
algorithms exploiting the ring topology built on all islands. Again, AX-m algorithm
has lower REavg and REmax than SO for this size of the problem. Thus, AX-m, SO
and AX-s algorithms outperform the other algorithms while solving the problem of
the size 20 × 2 × 20.

For the problem size 10 × 2 × 50, according to the values of the REmin in
Table 11.7, all island-based algorithms, except for AO-s, were able to find the
best-known solutions. Here, REmin ∈ [0,00%, 0,03%], REavg ∈ [2,47%, 5,78%],
and finally REmax ∈ [8,69%, 16,61%]. The overall results for the size
10 × 2 × 50 show that the algorithms implementing random or ring topologies
realized on homogeneous islands, as well as random topology realized on all islands
have considerably lower REavg and REmax in comparison with the algorithms
exploiting the ring topology built on all islands. For the size 10 × 2 × 50, the
results do not allow to unequivocally determine the most efficient algorithm, thus
we distinguish AX-m, SO, SX and AX-s algorithms as more efficient than AO-m
and AO-s algorithms.

For the problem size 10 × 3 × 50, according to the values of the REmin in
Table 11.8, all algorithms were able to find the best-known solutions. Here,
REmin ∈ [0,00%, 0,06%], REavg ∈ [3,31%, 5,91%], REmax ∈ [14,66%, 36,35%].
The overall results for the size 10 × 3 × 50 show that the algorithms imple-
menting random or ring topologies realized on homogeneous islands, as well as
random topology realized on all islands have considerably lower REavg and REmax

in comparison with the algorithms exploiting the ring topology built on all islands.
For this size of the problem, AX-m, AX-s and SX algorithms outperform the other
algorithms while solving the problem.

For the problem size 20 × 2 × 50, according to the values of the REmin in
Table 11.9, all algorithms, except for AO-m and AO-s, were able to find
the best-known solutions. Here, we give the intervals of the REs’ values:
REmin ∈ [0,00%, 0,96%], REavg ∈ [3,84%, 7,80%], REmax ∈ [11,31%, 18,76%].
The overall results for the size 20 × 2 × 50 show that the algorithms

206 11 Performance Evaluation of the Proposed Algorithms

implementing random or ring topologies realized on homogeneous islands, as well
as random topology realized on all islands have considerably lower REavg and
REmax in comparison with the algorithms exploiting the ring topology built on all
islands. For the size 20 × 2 × 50, the results do not allow to unequivocally
determine the most efficient algorithm, thus we distinguish AX-m, SO, SX and
AX-s algorithms as more efficient than AO-m and AO-s algorithms.

In order to determine the percentages of the best found solutions for a particular
problem size that are of the same quality as the best-known solutions, we had
determined the best solutions found within 43 runs of the algorithm for each of 100
problem instances. Next, we counted how many solutions out of obtained 100 had
the same quality as the best known for the same problem size and gave this number
in percent. The percentages of the best solutions (PBFS) found by the proposed
algorithms, which were of the same quality as the best-known solutions, are given
in Tables 11.10, 11.11, and 11.12. The results in Tables 11.10, 11.11, and 11.12
confirm unequivocally the previous conclusion, that the algorithms implementing
random or ring topologies realized on homogeneous islands, as well as random
topology realized on all islands are more efficient that the algorithms exploiting the
ring topology built on all islands. Similarly as for REs, AX-m, AX-s and SX prevail
other algorithms with clear dominance of AX-m and AX-s, i.e. the algorithms that
implement the random topology realized on all islands.

Table 11.10 The percentage of the best solutions (PBFS) found by the proposed algorithms
which have the same quality as the best-known solutions for the discretisation level W = 10,
ordered non-increasingly

10 × 2 × 10 PBFS (%) 10 × 3 × 10 PBFS (%) 20 × 2 ×10 PBFS (%)

SO 69 AX-m 52 SX 47
SX 68 AX-s 49 SO 28
AX-m 66 SO 46 AX-m 11
AX-s 50 SX 33 AX-s 10
AO-m 44 TS 22 TS 2
AO-s 16 AO-s 8 AO-s 2
TS 8 AO-m 3 AO-m 0

Table 11.11 The percentage of the best solutions (PBFS) found by the proposed algorithms that
have the same quality as the best-known solutions for the discretisation level W = 20, ordered
non-increasingly

10 × 2 × 20 PBFS (%) 10 × 3 × 20 PBFS (%) 20 × 2 × 20 PBFS (%)

AX-m 36 AX-m 53 SX 32
AX-s 36 AX-s 37 AX-m 32
SX 35 SX 27 AX-s 25
SO 31 SO 17 SO 12
TS 16 AO-m 9 AO-m 4
AO-m 10 AO-s 9 AO-s 2
AO-s 8 TS 6 TS 0

11.2 Structure Versus Efficiency … 207

Although, it was possible to determine several most efficient algorithms for each
conducted test, we still can’t distinguish the most efficient one. In order to do so, we
need some universal measure which could be applied for evaluation of the proposed
algorithms. For this reason, we need to transform, or more precisely—normalize
REmin, REavg, REmax and PBFS in a such way, that it would be possible to obtain
some estimates that could be aggregated into one estimate, this way enabling the
choice of the most efficient algorithm. Because RE and PBFS have opposite
evaluation meaning, i.e. the lower RE - the better performance of the algorithm, the
lower PBFS - the worse performance of the algorithm, we introduce a new
parameter NB = 1 – PBFS instead of PBFS.

Thus, let (11.1) be the formula which we apply to REmin, REavg, REmax and NB
within a particular problem size in order to obtain a normalized estimate ne.

nep =
x− xmin

xmax
ð11:1Þ

In Eq. (11.1), p—one of the considered parameters, i.e. REmin, REavg, REmax or
NB, x—the value of the considered parameter of the particular algorithm, xmin,
xmax—the minimum or respectively maximum value of the considered parameter
within the same problem size among all considered algorithms.

After calculating ne values for all parameters of all algorithms for all problem
sizes, the values obtained for each algorithm were summed into an aggregated
estimate. The values of the aggregated estimates were used to make a ranking of the
considered algorithms, which is shown in Table 11.13. As it could be seen in
Table 11.13, the ranking implies the superiority of the algorithms implementing
random topology realized on both heterogeneous and homogeneous islands over the
algorithms implementing the ring topology. Thus, according to the ranking AX-m
algorithm is the most efficient among all considered algorithms.

As it could be seen from the experimental results described above, it is possible
to reduce the REs of the solutions found by the considered algorithms just by
changing the interconnection topology of the constituent islands. Tables 11.14 and
11.15 show that by changing the interconnection topology REavg can be reduced by
2,59–4,64% and REmax by 6,53–21,69% dependently on the problem size. The

Table 11.12 The percentage of the best solutions (PBFS) found by the proposed algorithms that
have the same quality as the best-known solutions for the discretisation level W = 50, ordered
non-increasingly

10 × 2 × 50 PBFS (%) 10 × 3 × 50 PBFS (%) 20 × 2 × 50 PBFS (%)

AX-m 42 AX-m 37 AX-m 47
AX-s 30 AX-s 27 AX-s 40
SO 18 SX 17 SX 9
SX 18 AO-s 12 SO 3
TS 4 SO 10 TS 1
AO-m 3 AO-m 6 AO-m 0
AO-s 1 TS 0 AO-s 0

208 11 Performance Evaluation of the Proposed Algorithms

REavg and REmax ranges were taken from Tables 11.1, 11.2, 11.3, 11.4, 11.5, 11.6,
11.7, 11.8, and 11.9. Similarly, Table 11.16 shows that the percentage of the best
found solutions that have the same quality as the best-known solutions can be
increased by 28–61% dependently on the problem size. The PBFS ranges were
taken from Tables 11.10, 11.11, and 11.12.

Finally, in Tables 11.17 and 11.18, we observe the influence of the level of the
continuous resource discretisation W on the REs of the found solutions. In
Table 11.17, for the problem size 10 × 2 × W, W ∈ {10, 20, 50}, for almost all
algorithms except for AO-s, both REmin and REavg have the lowest values when
W = 20. Thus, the influence of W on the REs for the considered problem size could
be generalized by the following relations:

Table 11.13 A ranking of
the considered algorithms
according to the aggregated
estimate values

Algorithm Aggregated estimate Ranking

AX-m 0,83 1
AX-s 2,05 2
SX 3,06 3
SO 4,94 4
TS 9,61 5
AO-m 13,68 6
AO-s 16,50 7

Table 11.14 The ranges and
deltas of REavg values for the
considered problem sizes
ordered by ΔREavg

non-decreasingly

Problem size REavg range (%) ΔREavg (%)

20 × 2 × 20 2,05–5,09 2,59
10 × 3 × 50 3,31–5,91 2,60
10 × 2 × 20 2,05–5,01 2,96
10 × 2 × 10 3,28–6,30 3,02
10 × 2 × 50 2,47–5,78 3,31
20 × 2 × 50 3,84–7,80 3,96
10 × 3 × 10 4,67–8,71 4,04
10 × 3 × 20 3,61–8,13 4,52
20 × 2 × 10 4,76–9,31 4,64

Table 11.15 The ranges and
deltas of REmax values for the
considered problem sizes
ordered by ΔREmax

non-decreasingly

Problem size REmax range (%) ΔREmax (%)

20 × 2 × 20 9,08–15,61 6,53
20 × 2 × 10 11,47–18,19 6,72
10 × 2 × 10 9,76–16,53 6,77
20 × 2 × 50 11,31–18,76 7,45
10 × 2 × 50 8,69–16,61 7,92
10 × 3 × 10 15,92–26,06 10,14
10 × 2 × 20 6,67–17,60 10,93
10 × 3 × 20 14,71–26,03 11,32
10 × 3 × 50 14,66–36,35 21,69

11.2 Structure Versus Efficiency … 209

REmin ̸avg W =20ð Þ<REmin ̸avg W =50ð Þ<REmin ̸avg W =10ð Þ ð11:2Þ

For the REmax, the results are mixed and it’s impossible to derive one clear rule
for all algorithms. The influence of the discretisation level W on the REs of the
solutions found by the considered algorithms for the problem size 10 × 3 × W,
W ∈ {10, 20, 50}, according to Table 11.18 could be generalized by the follow-
ing relations:

REmin W =20ð Þ≤REmin W =50ð Þ<REmin W =10ð Þ, except for AO-s ð11:3Þ

and

REavg W =50ð Þ<REavg W =20ð Þ<REavg W =10ð Þ, except for SX and TS

ð11:4Þ

For REmax, the results are mixed and it’s impossible to derive one clear rule for
all algorithms.

The influence of the discretisation level W on the REs of the solutions found by
the considered algorithms for the problem size 20 × 2 × W, W ∈ {10, 20, 50},
according to Table 11.19 could be generalized by the following relations:

REmin W =20ð Þ≤REmin W =50ð Þ<REmin W =10ð Þ except for TS ð11:5Þ

and

REavg W =20ð Þ<REavg W =50ð Þ<REavg W =10ð Þ ð11:6Þ

For REmax, the results are mixed and it’s impossible to derive one clear rule for
all algorithms. Below we tabularize the obtained relations together in Table 11.20.

As it could be seen in Table 11.20, it’s impossible to determine unequivocally
the discretisation level on which REs of the found solutions are the lowest.
However, it follows from the obtained results, that the relation REs (W = 20) <
REs (W = 50) < REs (W = 10) is the most frequent one. This might impose the

Table 11.16 The range and
delta of PBFS values for the
considered problem sizes
ordered by ΔPBFS
non-decreasingly

Problem size PBFS range (%) ΔPBFS (%)

10 × 2 × 20 8–36 28
20 × 2 × 20 2–32 30
10 × 3 × 50 6–37 31
10 × 2 × 50 1–42 41
10 × 3 × 20 9–53 44
20 × 2 × 10 0–47 47
20 × 2 × 50 0–47 47
10 × 3 × 10 3–52 49
10 × 2 × 10 8–69 61

210 11 Performance Evaluation of the Proposed Algorithms

T
ab

le
11

.1
7

T
he

in
flu

en
ce

of
th
e
le
ve
l
of

th
e
co
nt
in
uo

us
re
so
ur
ce

di
sc
re
tis
at
io
n
W

on
th
e
R
E
s
of

th
e
so
lu
tio

ns
fo
r
th
e
pr
ob

le
m

si
ze

10
×

2
×

W
,

W
∈

{1
0,

20
,
50

}

A
lg
-m

R
E
m
in

R
E
av
g

R
E
m
ax

W
=

10
(%

)
W

=
20

(%
)

W
=

50
(%

)
W

=
10

(%
)

W
=

20
(%

)
W

=
50

(%
)

W
=

10
(%

)
W

=
20

(%
)

W
=

50
(%

)

A
O
-m

0,
01

0,
00

0,
00

6,
30

4,
99

5,
77

14
,6
8

17
,1
8

16
,6
1

A
O
-s

0,
01

0,
00

0,
03

6,
30

5,
01

5,
78

16
,5
3

17
,6
0

15
,4
1

A
X
-m

0,
01

0,
00

0,
00

3,
54

2,
27

2,
47

12
,3
3

9,
14

11
,0
2

A
X
-s

0,
01

0,
00

0,
00

3,
58

2,
33

2,
53

11
,3
9

12
,4
0

11
,1
9

SO
0,
19

0,
00

0,
00

3,
28

2,
05

2,
77

9,
76

6,
67

8,
69

SX
0,
01

0,
00

0,
00

3,
31

2,
07

2,
79

10
,0
0

7,
04

9,
23

T
S

0,
01

0,
00

0,
00

3,
49

2,
36

3,
09

9,
91

7,
66

8,
79

11.2 Structure Versus Efficiency … 211

T
ab

le
11

.1
8

T
he

in
flu

en
ce

of
th
e
le
ve
l
of

th
e
co
nt
in
uo

us
re
so
ur
ce

di
sc
re
tis
at
io
n
W

on
th
e
R
E
s
of

th
e
fo
un

d
so
lu
tio

ns
fo
r
th
e
pr
ob

le
m

si
ze

10
×

3
×

W
,

W
∈

{1
0,

20
,
50

}

A
lg
-m

R
E
m
in

R
E
av
g

R
E
m
ax

W
=

10
(%

)
W

=
20

(%
)

W
=

50
(%

)
W

=
10

(%
)

W
=

20
(%

)
W

=
50

(%
)

W
=

10
(%

)
W

=
20

(%
)

W
=

50
(%

)

A
O
-m

0,
10

0,
00

0,
00

8,
66

8,
13

5,
91

26
,0
6

24
,2
4

27
,0
2

A
O
-s

0,
28

0,
08

0,
00

8,
71

8,
13

5,
86

25
,6
7

26
,0
3

25
,2
4

A
X
-m

0,
00

0,
00

0,
00

4,
68

3,
61

3,
31

16
,0
7

14
,7
1

14
,6
6

A
X
-s

0,
00

0,
00

0,
00

4,
74

3,
73

3,
46

19
,3
3

15
,8
9

16
,5
9

SO
0,
00

0,
00

0,
00

4,
67

3,
87

3,
86

15
,9
2

15
,1
8

36
,3
5

SX
0,
01

0,
00

0,
00

4,
69

4,
06

4,
18

18
,3
9

16
,6
6

17
,3
4

T
S

0,
07

0,
00

0,
06

5,
36

4,
95

5,
72

17
,7
2

18
,2
8

18
,1
6

212 11 Performance Evaluation of the Proposed Algorithms

T
ab

le
11

.1
9

T
he

in
flu

en
ce

of
th
e
le
ve
l
of

th
e
co
nt
in
uo

us
re
so
ur
ce

di
sc
re
tis
at
io
n
W

on
th
e
R
E
s
of

th
e
fo
un

d
so
lu
tio

ns
fo
r
th
e
pr
ob

le
m

si
ze

20
×

2
×

W
,

W
∈

{1
0,

20
,
50

}

A
lg
-m

R
E
m
in

R
E
av
g

R
E
m
ax

W
=

10
(%

)
W

=
20

(%
)

W
=

50
(%

)
W

=
10

(%
)

W
=

20
(%

)
W

=
50

(%
)

W
=

10
(%

)
W

=
20

(%
)

W
=

50
(%

)

A
O
-m

1,
12

0,
00

0,
87

9,
31

2,
60

7,
80

16
,7
1

15
,1
9

18
,7
6

A
O
-s

1,
16

0,
00

0,
96

9,
19

2,
72

7,
73

18
,1
9

15
,6
1

17
,4
5

A
X
-m

0,
00

0,
00

0,
00

4,
76

2,
05

3,
84

11
,8
1

9,
08

12
,4
4

A
X
-s

0,
26

0,
00

0,
00

4,
86

2,
53

3,
95

12
,5
4

9,
90

12
,4
9

SO
0,
51

0,
00

0,
00

5,
46

2,
43

5,
18

11
,4
7

9,
76

11
,7
7

SX
0,
40

0,
00

0,
00

5,
56

2,
84

5,
33

11
,7
4

11
,0
0

11
,3
1

T
S

0,
68

0,
53

1,
05

6,
26

5,
09

6,
19

12
,0
9

10
,8
1

12
,6
5

11.2 Structure Versus Efficiency … 213

conclusion, that high discretisation level does not ensure the lowest values of the
REs and the additional research is needed to identify the most appropriate dis-
cretisation of the continuous resource.

11.2.2 Conclusions from the Experiment

The main goal of our research was to find out whether the topology of learning
stages (or islands), might have some effect on the algorithm’s efficiency. For this
reason we proposed six versions of the PLA2 that differ from each other by their
structure and migration scheme. The most important conclusion that can be drawn
from the experimental results is that the interconnection topology of the constituent
islands might have a noticeable impact on the quality of the solutions yielded by the
PLA2. It is possible to reduce the relative errors of the solutions found by the
PLA2: REavg by 2,59–4,64% and REmax by 6,53–21,69% dependently on the
problem size. Similarly, the percentage of the best found solutions that have the
same quality as the best-known solutions can be increased dependently on the
problem size by 28–61%. The ranking of the considered algorithms, which was
designed to reveal the most efficient interconnection topology, implies the superi-
ority of the algorithms implementing random topology realized on all available
islands, i.e. heterogeneous and homogeneous, or exclusively on homogeneous
islands, over the algorithms implementing the ring topology. However, the algo-
rithm implementing the directed ring topology realized exclusively on homoge-
neous islands for some problem sizes yielded solutions that had the lowest REavg

and REmax values. It should be mentioned here, that all the conclusions are valid for
particular implementations of the algorithms used in the experiments. The values of
some parameters of the algorithms were determined during their tuning and should
be determined on the way of an exhaustive experiment.

Table 11.20 The relations among the REs of different discretisation levels W, W ∈ {10, 20, 50},
for the considered problem sizes

Problem size Relations among the REs of different discretisation levels W,
W ∈ {10, 20, 50}

10 × 2 × W REmin(W = 20) < REmin(W = 50) < REmin(W = 10)
REavg(W = 20) < REavg(W = 50) < REavg(W = 10)
REmax – mixed

10 × 3 × W REmin(W = 20) ≤ REmin(W = 50) < REmin(W = 10), except for AO-s
REavg(W = 50) < REavg(W = 20) < REavg(W = 10), except for SX and TS
REmax – mixed

20 × 2 × W REmin(W = 20) ≤ REmin(W = 50) < REmin(W = 10) except for TS
REavg(W = 20) < REavg(W = 50) < REavg(W = 10)
REmax – mixed

214 11 Performance Evaluation of the Proposed Algorithms

11.3 Properties of the Island-Based and Single Population
Differential Evolution Algorithms

The properties of the island-based and single population differential evolution
algorithms that may have a significant influence on their performance were
investigated in [2] and are discussed in this section.

In this section we study a special method of the evolutionary search, namely,
differential evolution method. Differential evolution is a stochastic direct search and
global optimization method proposed in [6].

We examine the properties of two models of the DE search: the model based on
a single population (the implementation of which we denote as DEA), and the
model based on multiple populations, known as the island model. We considered
two versions of the island model: with migration of individuals between islands
(IBDEAm) and without migration (IBDEA−m). In the IBDEAm, the islands peri-
odically exchange among themselves their best solutions with a migration rate ex.
We investigated how the effectiveness of the models under consideration depends
on such parameters as the size of a single population xP, and in the case of the island
model, also the number of islands K and the migration rate ex.

The main goal of the research was to determine the setting of the parameters
which would provide the highest effectiveness of the considered models. The
secondary objective was to contribute to the knowledge on the behavior of a single
and multiple population algorithms with respect to the parameters under concern.

As a test problem, we used the discrete-continuous scheduling problem with
continuous resource discretisation (DCSPwCRD), described in Sect. 9.2.2. In order
to conduct our tests, we used the differential evolution algorithm (DEA) and the
island-based differential evolution algorithm (IBDEA) for solving the DCSPwCRD
described in Sect. 10.5.

11.3.1 Computational Experiment

11.3.1.1 Parameter Set Up

In our experiments the values of the parameters of the DEA were assumed to be the
same as in [7], namely the scale factor A which controls the evolution rate of the
population was set to A = 1,5 and values of the variable rand ∈ [0, 1]. The
crossover constants Crp and Crl which control the probability that the trial indi-
vidual will receive the actual individual’s tasks or modes were set Crp = 0,2 and
Crl = 0,1, where p and l in the notations Crp and Crl stand for tasks positions and
modes respectively. An initial population of feasible individuals in the DEA was
generated using the uniform distribution equal 1/n for the tasks, and 1/W for the
task’s modes. Our assumptions concerning the test problem are as follows. We
considered three combinations of n × m: 10 × 2, 10 × 3, and 20 × 2, where

11.3 Properties of the Island-Based … 215

n is the number of tasks and m is the number of machines, and three levels of the
continuous resource discretisation W: 10, 20, 50. This way we considered nine sizes
n × m × W of the problem ΘZ: 10 × 2 × 10, 10 × 2 × 20, 10 × 2 × 50,
10 × 3 × 10, … , 20 × 2 × 50. For each of the sizes, we considered 6 instances
of the problem ΘZ, which makes 54 instances of the problem in total. These 54
instances were used for testing one value of the parameter under consideration,
where the considered parameters were: xP—the size of population on an island, K—
the number of islands, and ex—the migration rate. The schedule lengths determined
by the algorithm for these 54 instances were summed up and the obtained result was
used for evaluation and comparison purposes. To make the tests credible, the tested
algorithm was always run with the same seed of the random number generator.
Thus, the only factor that could cause change in the results was the value of the
parameter that was tested.

In the experiment, the numbers of the fitness function evaluations #ev necessary
for the DEA and the IBDEA to yield one solution was set to #ev = 106.

In our tests, we considered different sizes of population xP on an island and
numbers of islands K. The values of xP, the ranges of K, and max xA (where
xA = K ⋅ xP is the size of archipelago), used in the tests are given in Table 11.21.

All tests were carried out on a PC under 64-bit operating system Windows 7
Enterprise with Intel(R) Core(TM) i5-2300 CPU @ 2.80 GHz 3.00 GHz, RAM
4 GB compiled with aid of Borland Turbo Delphi for Win32. When the number of
fitness function evaluations was set to 720000, mean time required by the DEA to
find a solution for the problem sizes 10 × 2 and 10 × 3 for all discretisation levels

Table 11.21 The values of
xP and the ranges of K and xA
used in the tests

xP min K max K min xA max xA
5 2 2150 10 10750
10 2 1062 20 10620
17 2 565 34 9605
27 2 237 54 6399
44 2 237 88 10428
71 2 126 142 8946
115 2 92 230 10580
186 2 49 372 9114
301 2 36 602 10836
487 2 19 974 9253
788 2 14 1576 11032
1275 2 10 2550 12750

2063 2 5 4126 10315
3338 2 5 6676 16690
5401 2 3 10802 16203
8739 2 3 17478 26217
14140 2 2 28280 28280

216 11 Performance Evaluation of the Proposed Algorithms

was approximately 2–3 s and for the problem size 20 × 2 for all discretisation
levels approximately 5–6 s. The total time taken by the DEA to process all 54
instances was approximately 206 s.

11.3.1.2 Test Results

The aim of the experiment was to compare the effectiveness of two models of DE
search. We compared DE based on a single population, implemented as a differ-
ential evolution algorithm (DEA) and DE based on multiple populations, imple-
mented as an island-based differential evolution algorithm (IBDEA). The island
model was implemented in two versions: with and without solution migration
among the islands, denoted in the paper as IBDEAm and IBDEA−m respectively. In
the IBDEAm, the islands exchanged their best solutions with different rates. In our
tests, the exchange of best solutions was carried out after 1, 2, 3, 4, 5, 7, 9, 11, 13,
15, 17 populations had been generated on each island. We will be using the notation
ex## for denoting the migration rate, where ## denotes the number of populations
after which the migration had been carried out.

Figures 11.6 and 11.7 present the results of our tests. Figure 11.7 illustrates in
more detail the results obtained for test sets 92–137 shown in Fig. 11.6. Our
observations on the results of the tests are as follows.

xP=5

xP=10

xP=17

xP=27

xP=44

xP=71

xP=115

xP=186

xP=301

xP=487

xP=788

27800

28800

29800

30800

31800

32800

33800

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136

sumC max

Test set

ex00 ex01
ex02 ex03
ex04 ex05
ex07 ex09
ex11 ex13
ex15 ex17
minDEA min_IBDEA
DEA

Fig. 11.6 The results obtained for the test sets 1–137

11.3 Properties of the Island-Based … 217

DEA versus IBDEA.
Both IBDEAs perform much better than the DEA when populations are small,
namely, xP ∈ [5, 71] (test sets 1-91), see Fig. 11.6.

The value of sumCmax yielded by the DEA for xP = 5 is greater than the min-
imum value of sumCmax obtained by the IBDEA−m by about 8,8% (test set 20,
K = 2150, xA = 10750) and about 20% greater than the minimum value of
sumCmax obtained by the IBDEAm (test sets 13, 14, 15, where K = 237, 325, 445,
and xA = 1185, 1625, 2225 respectively). However, these differences decrease with
increase of xP. When xP increases up to 788 and 1275, the DEA performs practically
the same as both IBDEAs, see the minimum values of sumCmax for test sets 122 and
126 in Fig. 11.7. In these two test sets xA = 1576 and 2250 respectively.

Migration.
The introduction of migration into the IBDEA results in a significant improvement
in performance, compared to the case without migration. The IBDEAm works
noticeably better than the IBDEA−m when the size of the population xP is small.
The maximal difference between min(sumCmax) of ex00 and min(sumCmax) of
ex01-17 reaches 13,81% when xP = 5, K = 126, xA = 630 (test set 11), see
Fig. 11.6. However, the results of the IBDEA−m improve significantly with
increase of xP. When xP ≥ 115 (test sets 92–137), migration becomes useless. The

xP=115 xP=186 xP=301 xP=487 xP=788
xP=1275

xP=2063

xP=3338

27800

28800

29800

30800

31800

32800

33800

92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136

sumCmax

Test set

ex00 ex01
ex02 ex03
ex04 ex05
ex07 ex09
ex11 ex13
ex15 ex17
minDEA min_IBDEA
DEA

Fig. 11.7 The results obtained for the test sets 92–137

218 11 Performance Evaluation of the Proposed Algorithms

results yielded by the IBDEA−m are practically the same as the results yielded by
the IBDEAm, see Fig. 11.7.

In the IBDEAm, the rate of migration has no significant influence on the quality
of the results. The curves representing sumCmax obtained by the IBDEAm with ex01
−ex17 differ from each other in the area of the minima at most 0,23%, see Fig. 11.6.

Population Size and Number of Islands.
In the case of the IBDEAm, the values of minima of sumCmax for all xP < 2500 are
almost the same, they differ at most about 0,6%, see Figs. 11.6 and 11.7. These
minima are not dependent on any particular number of islands K, but the number of
individuals throughout the archipelago xA, which can be defined approximately as
an interval [1200, 2500]. Hence, in order to ensure maximal performance of the
IBDEAm, the values of xP and K should be selected such, that xA would take values
from this range.

For the IBDEA−m, the number of individuals in the population xP determines the
trend and has a major influence on the quality of the results which are improved
together with the increase of the population size. The increase of xP from 5 to 487
resulted in improvement of the best value of sumCmax by 10,83%. The results can
also be improved by increasing K, e.g. for xP = 5 up to 6,89%. However, this
possibility of improvement decreases along with the increase of xP. The increase of
K from 2 to 10 islands for xP = 301 resulted in improvement of the value of
sumCmax only by 0,5%, see test sets 110–112 in Fig. 11.7.

In the case of the DEA, the quality of the results is also improved along with the
increase of xP. The DEA yields the best results when xP ≈ [800, 2000], see test sets
122–130 in Fig. 11.7. The minimum value of the sumCmax yielded by the DEA in
this range of xP differs from the minimum sumCmax yielded by both IBDEAs only
by 0,69%, see Fig. 11.7.

Finally, it must be said that the exaggerated increase of xP orK causes deterioration
of the quality of results. The increase of xP over 2500 worsens the results yielded by
the DEA and both IBDEAs, see test sets 131−137 in Fig. 11.7. The increase of K,
leading to the increase of xA over 2500, also worsens the quality of results yielded by
the IBDEAm for all xP. However, it is only partially true in the case of the IBDEA

−m.
The increase of K even to its maximum value when xP ∈ [5, 71] improves the
quality of results. In these cases xA might take values up to about 10000. When
xP > 71, the IBDEA−m starts to behave in the same way as the IBDEAm.

11.3.2 Conclusions from the Experiment

In the preceding section, we examined properties of the two models of evolutionary
search: the model based on a single population (DEA) and the model based on
multiple populations, known as the island model. Two versions of the island model
have been considered: with migration of individuals between islands (IBDEAm) and
without migration (IBDEA−m). In the IBDEAm, the islands periodically exchanged

11.3 Properties of the Island-Based … 219

among themselves their best solutions. We investigated how the effectiveness of the
models under consideration depends on such parameters as the size of a single
population xP, and in the case of the island model, also the number of islands K and
migration rate ex. The main goal of this work was to determine the setting of
parameters which would provide the highest efficacy of the considered models.
Conclusions of our research are as follows.

The general conclusion is that bothmodels can be equally effectivewhen usedwith
proper parameter settings. Therefore none of them is better than the other. However, it
follows from the experiment, that when the population size is small the quality of the
results yielded by the IBDEAm and IBDEA−m might be better than the quality of the
results yielded by the DEA up to 20% and 8,8% respectively. Such advantage of the
island model is caused by a possibility to increase the total number of individuals on
the archipelago xA by increasing the number of the islands K and additionally by the
migration of individuals among the islands as it is in the IBDEAm. This advantage
deteriorates along with the increase of xP. It should also be mentioned, that the
IBDEAm showed practically the same efficacy for all considered migration rates, so it
is hard to choose any of them as the most preferable. The approximate values of the
parameters for which the algorithms show their best efficacy are as follows. The DEA
is most efficacious when xP ≈ [800, 2000], the IBDEAm and the IBDEA−m

—when
xA ≈ [1200, 2500], however in the case of the IBDEA−m, it is true when xP > 100. It
should be added, that there is no reason of using solution migration mechanism in the
island model for the indicated values of xA. Thus, it would be more practical to use the
DEA with xP ≈ [800, 2000], as the simpler implementation of DE.

Finally, we are obliged to emphasize, that the results and conclusions following
from them, are true for the number of fitness function evaluations #ev, which in our
experiments has been set to #ev = 106. Properties of the algorithms may differ from
those observed in our experiment, when the search process will be limited by
smaller values of #ev.

11.4 Improving Performance of the Differential Evolution
Algorithm Using Cyclic Decloning and Changeable
Population Size

The research on performance improvement of the differential evolution algorithm
using cyclic decloning and changeable population size has been done in [3] and is
discussed in this section.

During search, performed by the evolutionary algorithm (EA), it often comes to
the point when individuals in the population reach a configuration such that evo-
lutionary operators no longer produce offspring that can outperform their parents
[8]. This phenomenon is known as convergence of EAs. The natural consequence
of convergence is that in the population grows the number of similar or identical
individuals. An important concern and shortcoming of EAs is premature

220 11 Performance Evaluation of the Proposed Algorithms

convergence, i.e. convergence to local optima. EA operating on the population with
low diversity sticks in local optima, which impedes searching for global ones. Thus,
ensuring high diversity of the population is viewed by researchers as one of the
essential factors that affect EAs performance. To prevent getting trapped in local
optimum, several approaches have been proposed in the literature. Short review of
these approaches can be found in Sect. 9.8.

In this paper we study a special case of the evolutionary algorithm, which is
differential evolution algorithm. Differential evolution is a stochastic direct search
and global optimization algorithm proposed in [6].

For our experimental research on preserving population diversity, we designed a
decloning procedure which is supposed to cyclically replace genetically identical
individuals (clones) with randomly generated ones, the detailed description of the
decloning procedure is given in Sect. 11.4.2.

The goal of our research was to investigate the extent to which performance of
the considered differential evolution algorithm depends on such parameters as the
population diversification rate, the size of the population, and the number of fitness
function evaluations carried out by the algorithm to yield a solution to the problem.

The goal of the experiments was to determine the most advantageous, in terms of
the algorithm’s performance, values of mentioned parameters. The results obtained
through our experiments allow us to state, that the main contribution of the dis-
cussed work is the increase of the range of tools and methods for preserving
diversity of the population undergoing DE, as well as proposing the performance
improvement policy which takes advantage of experimentally determined rela-
tionships between the performance of DE and considered parameters. We also
propose a decloning procedure which was used in the experiments for cyclic
population diversification. The procedure extends packing technique proposed in
[9], ROG technique proposed in [10], and (μ + 1) EA with genotype diversity
proposed in [11]. In the notation (μ + λ), μ stands for the size of the population and
λ—for the number of offspring generated at a time from parents.

11.4.1 Computational Experiment

In our experiments on efficiency improvement, values of the parameters of the DEA
were assumed to be the same as in [7], namely the scale factor A which controls the
evolution rate of the population was set to A = 1,5 and values of the variable
rand ∈ [0, 1]. The crossover constants Crp and Crl which control the probability
that the trial individual will receive the actual individual’s tasks or modes were set
Crp = 0,2 and Crl = 0,1, where p and l in the notations Crp and Crl stand for tasks
positions and modes respectively. In our experiments, we considered the following
population sizes: 20, 50, 100, 200, 1000, and the numbers of the fitness function
evaluations necessary for the DEA to yield one solution: 37800, 450000, and
720000. An initial population of feasible individuals in the DEA was generated
using the uniform distribution equal 1/n for the tasks, and 1/W for the task’s modes.

11.4 Improving Performance of the Differential Evolution Algorithm … 221

Our assumptions concerning the test problem are as follows. We considered three
combinations of n × m: 10 × 2, 10 × 3, and 20 × 2, where n is the number of
tasks and m is the number of machines, and three levels of continuous resource
discretisation W: 10, 20, 50. This way we considered nine sizes n × m × W of the
problem ΘZ: 10 × 2 × 10, 10 × 2 × 20, 10 × 2 × 50, 10 × 3 × 10, … ,
20 × 2 × 50. For each of the sizes, we considered 6 instances of the problem ΘZ,
which makes a test set of 54 instances of the problem in total. This test set of 54
instances was used for testing each parameter configuration under investigation, and
the considered parameters were: the decloning period Td, population size xP, and the
number of fitness function evaluations carried out by the algorithm to yield a
solution to the problem #ev.

All tests were carried out on a PC under 64-bit operating system Windows 7
Enterprise with Intel(R) Core(TM) i5-2300 CPU @ 2.80 GHz 3.00 GHz, RAM
4 GB compiled with aid of Borland Turbo Delphi for Win32. When #ev was set to
720000, mean time required by the DEA to find a solution for the problem sizes
10 × 2 and 10 × 3 for all discretisation levels was approximately 2–3 s and for
the problem size 20 × 2 for all discretisation levels approximately 5–6 s. The total
time taken by the DEA to process all 54 instances was approximately 206 s.

11.4.2 Decloning Procedure

Our experiments on population diversification we conducted using the decloning
procedure (DP) that was invoked in regular cycles with the duration of the period
determined as the number of fitness function evaluations. The number of calls of the
DP depended on the duration of the decloning period and #ev that were allowed for
the DEA. We assumed, that the DP would remove 100% of identified clones, and
replace them by randomly generated individuals (solutions). In these new solutions,
the order of the tasks and task’s execution modes were determined at random.

The thorough identification of clones in the population might be time consuming
and therefore extend the time needed to execute the algorithm. In order to avoid
that, we designed a simpler and quicker decloning procedure that identifies clones
in an approximate way. We assumed, that a solution is a clone of another solution,
if the following conditions hold:

• the fitness function value of both solutions is the same,
• there exists the same task in both solutions, that is executed in the same mode

and that is placed at the same position, chosen at random from the second half of
the solution’s task list,

• the finish time of the task from the second condition in both solutions is the
same.

If at least one of the conditions is not met, then both solutions are different.
While the establishment of the first condition is obvious, the establishment of the

222 11 Performance Evaluation of the Proposed Algorithms

second and third conditions can be justified by the need to increase the probability
of clones identification. Considering tasks only from the second half of the solution
in the second condition, on the one hand, simplifies the identification process, on
the other hand, used together with the third condition, increases the probability that
the solutions under consideration are clones. It is obvious, that such method does
not ensure identification of all clones present in the population. In our experiments,
the amounts of clones identified in the same population by the Decloning procedure
run multiple times varied within 13% range.

11.4.3 Performance Evaluation Measure

For the purpose of evaluating the effect of the considered parameters on the DEA’s
performance the parameter sumCmax was introduced, which is the total of Cmax

values obtained for the test set of 54 instances of the problem. Thus, in order to
carry out a single test for a particular parameter configuration and, therefore, to
obtain a single value of sumCmax, the DEA was run 54 times, each time processing
one of 54 test instances. The total value of the obtained 54 schedule lengths created
a single value of sumCmax. To ensure the credibility of results, the tests were always
carried out by the DEA with the same seed of the random number generator.
Therefore, the only factor that could cause a change in the results was the value of
the parameter that was tested. In cases, when the DEA had to be run with the
randomized seed of random number generator for evaluation and comparison
purposes we used average of the sumCmax values (AVG sumCmax) obtained in
multiple tests. The need of such aggregated parameter is justified by the stochastic
nature of the DEA, which causes yielding different results for the same input data
when the algorithm is run repeatedly. The use of AVG sumCmax as a reference
value will make our observations and further conclusions more credible and allow
for a reliable comparison of the algorithm’s performance when run with different
parameter settings. An example of such comparison is given in Fig. 11.9, where the
values of AVG sumCmax are shown for the cases when the algorithm was run with
and without decloning with the randomized seed of random number generator. In
this example, AVG sumCmax values in both cases were calculated as the average of
200 sumCmax values obtained in 200 tests. We will discuss the results of our tests
using figures illustrating the influence of decloning and population size on the
DEA’s performance. In our experiment, results generated by the DEA are con-
sidered to be better, the smaller are the corresponding values of sumCmax.

11.4.4 Experiments on Decloning

In order to reveal the influence of decloning on the results obtained by the DEA, we
run the algorithm multiple times, each time processing the test set of 54 instances of

11.4 Improving Performance of the Differential Evolution Algorithm … 223

the problem with different rate of decloning. The period of decloning Td was
defined as the number of fitness function evaluations which were carried out
between the successive calls of the Decloning procedure. The largest improvement
effect of decloning on the results is observed when it is performed frequently, i.e.
when decloning period Td takes small values, see Figs. 11.8, 11.9, 11.10, 11.11,

28000

28500

29000

29500

30000

30500

31000

31500

0 20 40 60 80 100 120 140 160 180 200

sumCmax

The number of the test

DEA with decloning

DEA without decloning

AVG sumCmax for DEA without decloning

AVG sumCmax for DEA with decloning

Fig. 11.9 sumCmax yielded by the DEA without and with decloning, xP = 20, #ev = 37800,
Td = 20

63

51

32

18

7
5 4 3 2 1

28000

28500

29000

29500

30000

30500

31000

31500

0 5000 10000 15000 20000 25000 30000 35000

sumCmax

The period of decloning Td as the number of the fitness function evaluations

DEA with decloning

DEA without decloning

AVG sumCmax for DEA without decloning

the number of declonings carried out

Fig. 11.8 The effect of decloning on sumCmax, xP = 20, #ev = 37800, Td ∈ [20, 37800]

224 11 Performance Evaluation of the Proposed Algorithms

11.12, and 11.13. The curves corresponding to the DEA with decloning, were built
on the points, each of which is a value of sumCmax obtained for different decloning
periods. In order to validate the effect of decloning we used AVG sumCmax as the
reference value, that was determined for presumably the best decloning period, e.g.
see Fig. 11.9, in which the lines for the DEA with decloning were obtained for
Td = 20. The improvement effect of decloning on the results yielded by the DEA

28000

28500

29000

29500

30000

30500

31000

31500

0 50000 100000 150000 200000

sumCmax

The period of decloning Tdgiven as the number of the fitness function
evaluations

DEA with decloning

DEA without decloning

AVG of DEA without decloning

Fig. 11.10 The effect of decloning on sumCmax, xP = 20, #ev = 720000, Td ∈ [20, 238200]

28000

28500

29000

29500

30000

30500

31000

31500

0 50000 100000 150000 200000 250000

sumCmax

The period of decloning Tdas the number of the fitness function evaluations

DEA with decloning

DEA without decloning

AVG of DEA without decloning

Fig. 11.11 The effect of decloning on sumCmax, xP = 50, #ev = 720000, Td ∈ [50, 249200]

11.4 Improving Performance of the Differential Evolution Algorithm … 225

given in percent is shown in Fig. 11.15. In Fig. 11.15, we compare values of
AVG sumCmax determined for all considered population sizes, when the DEA had
at its disposal #ev = 37800, #ev = 450000, and #ev = 720000. It follows from
Fig. 11.15, that the most significant improvement effect of decloning on the results
is observed when the DEA operates on small populations. For example, the curve

28000

28500

29000

29500

30000

30500

31000

31500

0 50000 100000 150000 200000 250000

sumCmax

The period of decloning Tdas the number of the fitness function evaluations

DEA with decloning

DEA without decloning

AVG of DEA without decloning

Fig. 11.12 The effect of decloning on sumCmax, xP = 100, #ev = 720000, Td ∈ [100, 249200]

28000

28500

29000

29500

30000

30500

31000

31500

0 50000 100000 150000 200000 250000 300000 350000

sumCmax

The period of decloning Tdas the number of the fitness function evaluations

DEA with decloning

DEA without decloning

AVG for DEA without decloning

Fig. 11.13 The effect of decloning on sumCmax, xP = 200, #ev = 720000, Td ∈ [200, 364200]

226 11 Performance Evaluation of the Proposed Algorithms

labeled “20d”, which stands for the population size xP = 20 in the DEA with
decloning, shows the greatest improvement effect of decloning among all considered
population sizes. The results yielded by the DEA with decloning and xP = 20 were on
average 5,79% (#ev = 37800), 7,01% (#ev = 450000), and 7,29% (#ev = 720000)
better, than the results yielded without decloning.

28000

28500

29000

29500

30000

30500

31000

31500

0 50000 100000 150000 200000 250000

sumCmax

The period of decloning Td as the number of the fitness function evaluations

sumCmax of DEA with dclng

DEA with no decloning

AVG for DEA with no decloning

Fig. 11.14 The effect of decloning on sumCmax, xP = 1000, #ev = 720000, Td ∈ [1000, 250000]

20d

50d

100d

200d

1000d

-0,5%
0,0%
0,5%
1,0%
1,5%
2,0%
2,5%
3,0%
3,5%
4,0%
4,5%
5,0%
5,5%
6,0%
6,5%
7,0%
7,5%
8,0%

0 100000 200000 300000 400000 500000 600000 700000 800000

Improvement

The number of fitness function evaluations #ev carried out

Fig. 11.15 The improvement of the results due to decloning for different population sizes xP
compared to the case without decloning, given in percent

11.4 Improving Performance of the Differential Evolution Algorithm … 227

The improvement effect of decloning gradually decreases with the increase of
population size resulting in no improvement at all when the DEA operates on large
population. The above observation can be drawn from comparing curves in
Fig. 11.15 labeled “50d”, “100d”, “200d”, and “1000d”, where the labels denote the
population sizes in the DEA with decloning. Figures 11.16 and 11.17 show the

20nd

50nd

1000nd

20d

50d

1000d

28000

28500

29000

29500

30000

30500

31000

31500

0 100000 200000 300000 400000 500000 600000 700000 800000

AVG sumCmax

The number of fitness func on evalua ons #ev carried out

Fig. 11.16 The difference between AVG sumCmax values obtained by the DEA with and without
decloning for population sizes xP = 20, xP = 50, xP = 1000

100nd

200nd

100d

200d

28000

28500

29000

29500

30000

30500

31000

31500

0 100000 200000 300000 400000 500000 600000 700000 800000

AVG sumCmax

The number of fitness func on evalua ons #ev carried out

Fig. 11.17 The difference between AVG sumCmax values obtained by the DEA with and without
decloning for population sizes xP = 100, xP = 200

228 11 Performance Evaluation of the Proposed Algorithms

improvement effect of decloning on AVG sumCmax, where values AVG sumCmax

of the DEA with decloning are compared to the values of AVG sumCmax yielded by
the DEA without decloning (letters “nd” in the upper index of the label denote the
cases without decloning). It should be also added, that in all considered cases,
except for one, the DEA with decloning performed better than without decloning.
The exception is xP = 200 (#ev = 37800), where AVG sumCmax of the DEA
without decloning were better by 0,02%.

The decloning periods Td, presumably most advantageous for the DEA’s per-
formance, determined in our experiments are given in Table 11.22.

11.4.5 Experiments on Population Size

As it has been already observed, increasing the population size weakens the
improvement effect of the decloning. Nonetheless, population size is the second
important factor contributing to the results improvement. The general observation is
that with the growth of population size, the DEA’s results become better. When the
population size was large, e.g. xP = 1000, see Fig. 11.14, the results obtained were
better in comparison to the cases with the smaller population sizes, see Figs. 11.10,
11.11, 11.12, and 11.13. It might seem at this point, that the population size is a
principal factor affecting the results improvement, and that there is no need of
decloning at all, since it is enough to increase population size to achieve better
results. However, this is not always true. It turns out, that there are circumstances in
which decloning ensures better results than increasing population size. In order to
determine the most beneficial strategy for the results improvement, the third factor,
namely #ev should be taken into consideration.

11.4.6 Experiments on the Number of Fitness Function
Evaluations

Our experiments show, that #ev might also contribute to the algorithm’s perfor-
mance improvement. When the DEA without decloning operated on a large pop-
ulation, e.g. xP = 1000nd, the results were improved over 8% merely by the increase

Table 11.22 Decloning periods Td, most advantageous for the DEA’s performance, given as the
number of fitness function evaluations #ev and the number of generations in parentheses
respectively

#ev 20d 50d 100d 200d 1000d

37800 20 (1) 50 (1) 100 (1) 17400 (87) 19000 (19)
450000 420 (21) 50 (1) 100 (1) 200 (1) 21000 (21)
720000 440 (22) 3200 (64) 1000 (10) 2400 (12) 51000 (51)

11.4 Improving Performance of the Differential Evolution Algorithm … 229

of #ev from 37800 to 720000, see Fig. 11.18. The same figure shows the
improvement of about 1,3% for xP = 200nd and no improvement at all for the
population sizes xP ∈ {20nd, 50nd, 100nd}. When the DEA operated with
decloning, the improving effect, caused by the increase of #ev, was observed for all
population sizes, see Fig. 11.19. Although, the greatest improvement effect is
observed again for xP = 1000d, we must remind, that for this population size

20nd

50nd

100nd

200nd

1000nd

28000

28500

29000

29500

30000

30500

31000

31500

0 100000 200000 300000 400000 500000 600000 700000 800000

AVG sumCmax

The number of fitness function evaluations #ev carried out

Fig. 11.18 AVG sumCmax of the DEA without decloning, considered for different xP and #ev

20d

50d

100d
200d

1000d

28000

28500

29000

29500

30000

30500

31000

31500

0 100000 200000 300000 400000 500000 600000 700000 800000

AVG sumCmax

The number of fitness function evaluations #ev carried out

Fig. 11.19 The effect of decloning on AVG sumCmax, considered for different xP and #ev

230 11 Performance Evaluation of the Proposed Algorithms

decloning does not contribute to the results improvement, as the curves xP =
1000nd and xP = 1000d in Fig. 11.16 are identical.

11.4.7 Performance Improvement Policy

The main goal of our experiments was to find out how to improve the ability of the
DEA to yield better solutions. We tried to achieve this goal by making use of
decloning and determining most advantageous Td, xP, and #ev. As it follows from
the experiment, all three factors, might improve the results, provided that they have
been assigned the most advantageous values. Table 11.23 below shows in percent
relative difference between the actual AVG sumCmax, for particular #ev and xP, and
the best among all values of AVG sumCmax (obtained for #ev = 720000 and
xP = 1000), provided, that in each considered case, the decloning period Td was
assigned the values from Table 11.22.

Thus, the relative difference between AVG sumCmax for the case #ev = 37800,
xP = 20 and the best AVG sumCmax is 3,77%. The smallest relative differences for
particular #ev are given in Table 11.23 in bold font, with the purpose to indicate
values of xP that are most preferable in terms of increasing the performance of the
DEA. Therefore, in order to achieve better results, xP should be determined
according to the #ev used. It follows from Table 11.23, that if #ev increases, then
most advantageous values of xP increase as well.

Based on the above observations, we propose a policy for improving the DEA’s
performance in terms of the quality of results and, when possible, in terms of
response time. In our view the DEA’s performance can be improved by adjusting xP
to the available #ev, such that will ensure the best results, e.g. if #ev is limited to
37800, then xP = 100, if #ev = 450000, then xP = 200, and if #ev = 720000, then
xP = 1000, see Table 11.23.

The response time of the DEA can be improved as follows. Suppose, the DEA is
searching for a solution having at its disposal #ev = 720000, which, according to
Table 11.23, assumes xP = 1000 for the maximal DEA’s performance.

Although, xP = 1000 ensures the best results at the end of the computing,
however, setting xP = 100 instead of 1000 ensures better AVG sumCmax value
within #ev = 37800 (compare 1,91% versus 8,98% in Table 11.23 and lines 100d

and 1000d in Fig. 11.19 respectively). The DEA with xP = 1000 yields the same

Table 11.23 The relative difference between AVG sumCmax obtained for particular values of #ev
and xP, and the best AVG sumCmax obtained for #ev = 720000 and xP = 1000

#ev 20d (%) 50d(%) 100d (%) 200d (%) 1000d (%)

37800 3,77 2,62 1,91 2,83 8,98
450000 2,39 1,69 1,02 0,48 0,50
720000 2,12 1,91 1,32 0,83 0,00

11.4 Improving Performance of the Differential Evolution Algorithm … 231

AVG sumCmax value only after #ev ≈ 200000 (observe two auxiliary perpendicular
grey dashed lines in Fig. 11.19). Therefore, setting xP = 100 instead of 1000 for the
first #ev = 37800 is an opportunity for shortening the response time of the DEA.
Thus, after carrying out #ev = 37800, xP = 100 should be changed into xP = 1000,
and the rest of the computing would take #ev = 720000 – 200000 ≈ 520000.
Now, the same AVG sumCmax as for #ev = 720000 would be yielded by the DEA
carrying out only #ev ≈ 37800 + 520000 = 557800, i.e. 720000/557800 ≈ 1,29
times faster.

If the DEA had at its disposal only #ev = 450000, the speed-up would be
≈ 450000/287800 = 1,56. At this point, we wish to draw attention to the fact that
the difference in the quality of the results obtained after ev = 720000 and ev =
450000 is only 0,48%, see Table 11.23.
This fact can be seen as an opportunity to shorten the response time of the

algorithm. If a loss of 0,48% on the quality of the results can be tolerated, then
carrying out only ev = 450000 instead of ev = 720000, could shorten the response
time of the algorithm 720000/450000 = 1,6 times.

If we additionally apply the proposed policy to the case ev = 450000, this would
shorten the response time even 720000/287800 ≈ 2,5 times. However, applying the
policy to the case with #ev = 720000 as well, would reduce the speed-up to
557800 / 287800 ≈ 1,9 times. It follows from the above discussion, that the final
choice of the values of #ev and, therefore, xP should allow to meet someone’s
expectations as to the quality of results and the response time of algorithm.

Thus, to summarize the above discussion, the performance improvement policy
would consist of determining the intervals of #ev and corresponding to them most
advantageous xP such, that the desired quality of the results and response time of the
algorithm is assured. The approximate intervals of #ev and xP can be determined
using the approach described earlier and the results in Table 11.23 and Fig. 11.19.
At this stage of research, validity of the proposed policy should be proved exper-
imentally in each case.

11.4.8 Conclusions from the Experiment

In our research, we investigated the extent to which performance of the considered
differential evolution algorithm—the DEA depends on such parameters as the
population diversification rate, the size of the population, and the number of fitness
function evaluations to yield a solution. In the experiments, the most advantageous
values of these parameters, in terms of the algorithm’s performance, have been
determined, and the improvement policy was proposed. Population diversification
was carried out cyclically using the proposed decloning procedure. As the test
problem, the discrete-continuous scheduling problem with continuous resource
discretisation was used.

The obtained results allowed us to propose a performance improvement policy
that might noteworthy improve both the efficacy and response time of the DEA. The

232 11 Performance Evaluation of the Proposed Algorithms

idea is to choose the diversification rate, the population size and the number of
fitness function evaluations to yield a solution using Tables 11.22 and 11.23, given
in Sects. 11.4.4 and 11.4.7 respectively. This might ensure the expected quality of
the results and the response time of the algorithm.

The results of our experiments show that the diversification of the population can
be preserved in an intensive manner, i.e. using dedicated diversifying mechanisms
and procedures, e.g. decloning, or extensive one, by increasing the size of the
population. The choice of how to preserve the diversification may depend on the
restrictions imposed on the population size, response time, and quality of solutions
which should be met by a specific algorithm implementation.

Our population diversification technique differs from the one proposed in [9]
ince it uses packing catastrophic operator for replacing genetic, not fitness dupli-
cates. Also, unlike ROG technique proposed in [10], it prevents transition of clones
to the next generation due to their fitness, which is allowed in ROG, and unlike in
(μ + 1) EA with genotype diversity proposed in [11], a new random individual is
introduced every time when a clone is identified, which is not carried out in
(μ + 1) EA. Finally, decloning, i.e. population diversification, can be carried out
less frequently than every generation, which is the case in ROG and (μ + 1) EA.

Our experiments also show that if a compromise between the quality of the
results and the response time of the algorithm can be allowed, then it is possible to
significantly reduce the response time using the proposed performance improve-
ment policy while only slightly losing on the quality of the results.

For instance, if one can accept a deterioration in the quality of results by 0,48%,
then the response time of the algorithm might be reduced, depending on the
assumptions made, from 1,29 to 2,5 times, see Sect. 11.4.7.

The main conclusion which results from our research is that the performance of
algorithm does not depend on any single factor considered in the paper, but from all
of them, combined together, i.e. is a function of several arguments rather than one.
Only the selection of appropriate values of these arguments could meet the
expectations as to the effectiveness and the response time of the algorithm. An
attempt to mathematically describe how the performance depends on the factors
examined in the paper might lay foundations for future work.

References

1. Jędrzejowicz, P., Skakovski, A.: Structure versus efficiency of the cross-entropy based
population learning algorithm for discrete-continuous scheduling with continuous resource
discretisation. In: Czarnowski, I., Jędrzejowicz, P., Kacprzyk, J. (eds.) Studies in Compu-
tational Intelligence. Agent-Based Optimization, vol. 456, pp. 77–102 (2013)

2. Jędrzejowicz, P., Skakovski, A.: Properties of the Island-Based and single population
differential evolution algorithms applied to discrete-continuous scheduling. In: Czarnowski, I.
et al. (eds.) Intelligent Decision Technologies 2016, Proceedings of the 8th KES International
Conference on Intelligent Decision Technologies (KES-IDT 2016)—Part I, Smart Innovation,
Systems and Technologies, vol. 56, pp. 349–359 (2016)

11.4 Improving Performance of the Differential Evolution Algorithm … 233

3. Jędrzejowicz, P., Skakovski, A.: Improving Performance of the Differential Evolution
Algorithm Using Cyclic Decloning and Changeable Population Size. In: Nguyen, N.T.,
Czarnowski, I., Hwang, D. (eds.), Journal of Universal Computer Science (J.UCS), Special
Issue—Computational Intelligence Tools for Processing Collective Data (CITPCD 15), vol.
22(6), pp. 874–893 (2016)

4. Jędrzejowicz, P., Skakovski, A.: A cross-entropy based population learning algorithm for
discrete-continuous scheduling with continuous resource discretisation. Neurocomputing 73
(4–6), Special Issue: SI, 655–660 (2010)

5. Różycki, R.: Zastosowanie algorytmu genetycznego do rozwiązywania dyskretno-ciągłych
problemów szeregowania. Ph.D. diss., Poznań University of Technology, Poland (2000)

6. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Opt. 11, 341–359 (1997)

7. Damak, N., Jarboui, B., Siarry, P., Loukil, T.: Differential evolution for solving multi-mode
resource-constrained project scheduling problems. Comput. Oper. Res. 36(9), 2653–2659
(2009)

8. Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Trans. Neural
Netw. 5(1), 3–14 (1994)

9. Kureichick, V.M., Melikhov, A.N., Miaghick, V.V., Savelev, O.V., Topchy, A.P.: Some new
features in the genetic solution of the traveling salesman problem. Proceedings of the
ACEDC’96. Plymouth (1996)

10. Rocha, M., Neves, J.: Preventing premature convergence to local optima in genetic algorithms
via random offspring generation. LNAI (Lecture Notes in Artificial Intelligence) 1611,
127–136 (1999)

11. Friedrich, T., Oliveto, P.S., Sudholt, D., Witt, C.: Analysis of diversity-preserving
mechanisms for global exploration. Evol. Comput. 17(4), 455–476 (2009)

234 11 Performance Evaluation of the Proposed Algorithms

Chapter 12
Conclusions

In the presented study, we have considered the discrete-continuous scheduling
problem (DCSP) and approaches for solving it. The discrete-continuous scheduling
is scheduling of nonpreemptable tasks on identical machines under constraint of a
single renewable continuous resource required for processing the task. The time and
the rate of processing the task is a function of the amount of the continuous resource
allocated to the task. The amount of the continuous resource is not known in
advance and may change during the processing of the task. Thus, the task behavior
is determined by the processing rate versus resource amount model which ade-
quately describes the temporary nature of the renewable resource and is more
natural in the majority of practical situations. The allocation of the continuous
resource to the tasks is, in general, computationally intractable and is obtained by
solving the appropriately formulated mathematical programming problem. How-
ever, in some special cases with concave power processing rate functions, the
optimal resource allocation can be found analytically in polynomial time. These
functions are also crucially important from the practical point of view.

Our study is a compilation of theoretical and practical knowledge on the DCSP
as well as approaches, methods, and tools used to solve it. The problem is discussed
from the point of view of the existing knowledge on the problem, which includes
the general approach to solving the DCSP, the properties of the optimal solutions
and special classes of the task processing rate functions. Since the DCSP is
NP-hard, a variety of heuristic and metaheuristic approaches were developed to
solve the problem. We provide the state-of-the-art review on the recent theoretical
research on the DCSP as well as existing heuristic and metaheuristic approaches to
solve the problem. We also provide a survey of the research on the island model
and the convergence in evolutionary algorithms which are important factors in the
design of metaheuristics.

The most significant parts of the study are metaheuristics, proposed for solving
the DCSP, and the research on their properties and efficiency. Since all proposed
metaheuristics implement the island model of computation, we have investigated
homogeneous and heterogeneous variants of the model as well as the influence of

© Springer International Publishing AG 2018
E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,
Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_12

235

the topology of the model on the efficiency of evolutionary search. We have also
presented the research on the properties and compared the performance of the DE
based on the island model and on a single population. We investigated how the
effectiveness of these models depends on such parameters as the size of a single
population, and in the case of the island model, also the number of the islands and
the migration rate. We have also investigated the extent to which the performance
of a single population differential evolution algorithm, proposed for solving the
DCSP, depends on such parameters as the population diversification rate and the
number of fitness function evaluations. The experimentally determined relationships
between the performance of DE and considered parameters allowed us to propose
the performance improvement policy, based on using changeable population size
and decloning procedure, designed for cyclic diversification of the population. The
proposed performance improvement policy has a potential to significantly improve
the efficiency of the DE algorithm for solving the DCSP.

It is our hope, that this study will contribute to a better insight into the
discrete-continuous scheduling and will increase the range of tools for coping with
it. We also hope, that our experimental findings on the metaheuristics’ efficiency
improvement are not limited to our case, but have more universal meaning and will
be still valid for other evolutionary algorithms designed for solving other difficult
problems. As it could be seen from the study, both, discrete-continuous scheduling
and effective evolutionary algorithm design, are still an open issue. Thus, our future
work might involve dealing with various practical situations where findings for the
DCSP may be applied to resolve them. Another important direction for future work
is to develop methods and explore properties which may contribute to EAs’ effi-
ciency improvement.

236 12 Conclusions

Erratum to: Population-Based Approaches
to the Resource-Constrained
and Discrete-Continuous Scheduling

Ewa Ratajczak-Ropel and Aleksander Skakovski

Erratum to:
E. Ratajczak-Ropel and A. Skakovski, Population-Based
Approaches to the Resource-Constrained
and Discrete-Continuous Scheduling, Studies in Systems,
Decision and Control 108, DOI 10.1007/978-3-319-62893-6

In the original version of the book, the following corrections have to be
incorporated:
In Cover page, book title “Population-Based Approaches to the Resource
Constrained and Discrete Continuous Scheduling” has to be changed to read as
“Population-Based Approaches to the Resource-Constrained and Discrete-
Continuous Scheduling”.
In Table of Contents, author names for Part I (Chapters 1–6) and Part II (Chapters
7–12) have to be corrected as “Ewa Ratajczak-Ropel” and “Aleksander Skakovski”,
respectively.
The erratum book has been updated with the changes.

The updated original online version for this book can be found at
DOI 10.1007/978-3-319-62893-6

© Springer International Publishing AG 2018
E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches
to the Resource-Constrained and Discrete-Continuous Scheduling,
Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6_13

E1

http://dx.doi.org/10.1007/978-3-319-62893-6
http://dx.doi.org/10.1007/978-3-319-62893-6

	Foreword
	Acknowledgements
	Contents
	Acronyms
	List of Figures
	Part I Agent-Based Approach to the Single and Multi-mode Resource-Constrained Project Scheduling
	1 Introduction
	References

	2 Agent-Based Optimization
	2.1 Basics of the Agent-Based Approaches
	2.2 Agents-Based Approaches to Optimization
	2.2.1 A-Team Concept
	2.2.2 A-Team Implementation - JABAT

	2.3 Agents-Based Approaches to Project Scheduling
	References

	3 Project Scheduling Models
	3.1 Historical Review
	3.2 Basic Models and Classifications Review
	3.3 Generalizations and Special Cases of the RCPSP
	3.4 Objective Functions
	References

	4 Resource-Constrained Project Scheduling
	4.1 Problem Formulation
	4.2 State of the Art Review
	4.3 Agent-Based Approaches to Solving RCPSP
	4.4 A-Teams Solving the RCPSP
	4.4.1 Single A-Teams with the Static Cooperation Strategies
	4.4.2 Algorithms Used in the Further A-Team Approaches
	4.4.3 Randomized Team of A-Teams with Static Cooperation Strategy
	4.4.4 A-Team with the Dynamic Cooperation Strategy with Reinforcement Learning
	4.4.5 A-Team with the Dynamic Strategy Based on Population Learning
	4.4.6 A-Team with Dynamic Cooperation Strategy Based on Integration
	4.4.7 Concluding Remarks

	References

	5 Multi-mode Resource-Constrained Project Scheduling
	5.1 Problem Formulation
	5.2 State of the Art Review
	5.3 Agent-Based Approaches to MRCPSP
	5.4 A-Teams Solving the MRCPSP
	5.4.1 Single A-Teams with the Static Cooperation Strategies
	5.4.2 Algorithms Used in the Further A-Team Approaches
	5.4.3 A-Team with Dynamic Cooperation Strategy with Reinforcement Learning
	5.4.4 A-Team with Dynamic Cooperation Strategy Based on Population Learning
	5.4.5 A-Team with Dynamic Cooperation Strategy Based on Integration
	5.4.6 Concluding Remarks

	References

	6 Conclusions
	Part II Population-Based Approaches to the Discrete-Continuous Scheduling
	7 Introduction
	8 Discrete-Continuous Scheduling Problem
	8.1 General Resource-Constrained Scheduling Problem
	8.2 Practical Applications of the DCSP
	8.3 Notation
	8.4 Task Models
	8.4.1 Processing Time Versus Resource-Amount Model
	8.4.2 Processing Rate Versus Resource-Amount Model

	8.5 Problem Formulation
	8.6 Variants of the DCSP
	8.7 General Approach to Solving the DCSP
	8.8 Main Properties of Optimal Schedules
	8.8.1 Convex Functions fi ≤ ci·ui, ci = fi(1)
	8.8.2 Concave Functions fi and n ≤ m
	8.8.3 Concave Functions fi and n greaterthan m
	8.8.3.1 Identical Concave Functions
	8.8.3.2 Concave Power Functions

	8.9 Minimization of the Maximum Lateness Lmax
	8.10 Minimization of Mean Flow Time \overline{F}
	References

	9 State-of-the-Art Review
	9.1 Theoretical Research on the DCSP
	9.1.1 Another Formulation of the DCSP
	9.1.2 The New Approach to Optimal Resource Allocation
	9.1.3 New Properties of the Discrete Part of the DCSP

	9.2 Discretisation of the DCSP
	9.2.1 Discretisation of the Continuous Resource
	9.2.2 Formulation of Discrete Continuous Scheduling Problem with Continuous Resource Discretisation (DCSPwCRD)

	9.3 Heuristic Algorithms for Solving the DCSP
	9.4 Metaheuristics for Solving the DCSP
	9.4.1 TS, SA, and GA as Local Search Metaheuristics for Discrete-Continuous Scheduling Problems

	9.5 Minimization of the Resource Usage in the DCSP
	9.6 The Special Case of the DCSP
	9.7 Research on the Island Model of Computing
	9.8 Research on Preventing Premature Convergence in Evolutionary and Genetic Algorithms
	References

	10 Proposed Metaheuristics for Solving Problem ΘZ (DCSPwCRD)
	10.1 IBEA—Island-Based Evolutionary Algorithm
	10.1.1 Computational Experiment

	10.2 PLA—Population Learning Algorithm
	10.2.1 Tabu Search
	10.2.2 Computational Experiment

	10.3 PLA2—Cross-Entropy-Based Population Learning Algorithm
	10.3.1 Cross-Entropy Algorithm
	10.3.2 Computational Experiment
	10.3.2.1 Assumptions of the Experiment
	10.3.2.2 Fine Tuning of PLA2
	10.3.2.3 Results of the Experiment

	10.4 PLA3—Population Learning with Differential Evolution Algorithm
	10.4.1 Computational Experiment

	10.5 IBDEA—Island-Based Differential Evolution Algorithm
	10.5.1 Computational Experiment

	References

	11 Performance Evaluation of the Proposed Algorithms
	11.1 Friedman Test
	11.2 Structure Versus Efficiency of the Cross-Entropy-Based Population Learning Algorithm (PLA2)
	11.2.1 Computational Experiment
	11.2.2 Conclusions from the Experiment

	11.3 Properties of the Island-Based and Single Population Differential Evolution Algorithms
	11.3.1 Computational Experiment
	11.3.1.1 Parameter Set Up
	11.3.1.2 Test Results

	11.3.2 Conclusions from the Experiment

	11.4 Improving Performance of the Differential Evolution Algorithm Using Cyclic Decloning and Changeable Population Size
	11.4.1 Computational Experiment
	11.4.2 Decloning Procedure
	11.4.3 Performance Evaluation Measure
	11.4.4 Experiments on Decloning
	11.4.5 Experiments on Population Size
	11.4.6 Experiments on the Number of Fitness Function Evaluations
	11.4.7 Performance Improvement Policy
	11.4.8 Conclusions from the Experiment

	References

	12 Conclusions
	13 Erratum to: Population-Based Approaches to the Resource-Constrained and Discrete-Continuous Scheduling
	Erratum to:E. Ratajczak-Ropel and A. Skakovski, Population-Based Approaches to the Resource-Constrained and Discrete-Continuous Scheduling, Studies in Systems, Decision and Control 108, DOI 10.1007/978-3-319-62893-6

