
The Robobo Project: Bringing Educational
Robotics Closer to Real-World Applications

Francisco Bellas1(&), Martin Naya1, Gervasio Varela2, Luis Llamas2,
Abraham Prieto1, Juan Carlos Becerra3, Moises Bautista1,

Andres Faiña4, and Richard Duro1

1 Integrated Group for Engineering Research,
Universidade da Coruña, A Coruña, Spain

{francisco.bellas,martin.naya,abprieto,

m.bautista,richard}@udc.es
2 Mytech, A Coruña, Spain

{gervasio.varela,luis.llamas}@mytechia.com
3 MINT, A Coruña, Spain

juancarlos@mintforpeople.com
4 IT University of Copenhagen, Copenhagen, Denmark

anfv@itu.dk

Abstract. The Robobo Project is a STEM-based project that aims to bring
educational robotics, in primary and high school, closer to real-world applica-
tions. It is based on the use of a smartphone-based robotic platform called
Robobo, a very flexible programming environment, and a set of lessons to
integrate them. The smartphone provides high-level hardware capabilities in
terms of sensors, communications and processing capabilities that allow to
create more practical and realistic lessons that exploit human-robot interaction,
with a small investment. In this paper, we present the main elements of The
Robobo Project in terms of hardware and software, and two illustrative edu-
cational projects that can be developed within it.

Keywords: Interactive education � Smartphones � Computer vision � Speech
recognition � Real-World robotics

1 Introduction

Robotics is a key subject in STEM education [1, 2], mainly due to its multi-
disciplinarity and practical perspective. Thus, robotic projects involve mechanical
design, electronics and programming skills which, in turn, require a background in
mathematics, physics and other technological sciences. In addition, all of these topics
promote the students being involved in projects with a practical objective as robots are
made to solve problems in the real world. As a consequence, knowledge acquisition is
much more effective due to the attention it captures [3].

Table 1 shows the main specifications of a representative set of robotic platforms
used in STEM education. As it can be observed, most of them have simple sensors
(ultrasonic or infrared), basic communications capabilities (Bluetooth mostly) and low
computing power. The main reason behind this is economical, as introducing a set of

© Springer International Publishing AG 2018
W. Lepuschitz et al. (eds.), Robotics in Education, Advances in Intelligent Systems
and Computing 630, DOI 10.1007/978-3-319-62875-2_20

robots in a classroom is expensive. But there are other reasons like the possibility of
having configurable mechanical kits, made up of simple elements, so the students can
change the robot configuration. This feature in a robotic system implies that the
hardware elements must also be simple, because they can be easily damaged and
repairing them should not be complex.

With such basic hardware, the projects that students can carry out are limited to a
narrow range of possible applications. This was not a problem a few years ago, but
nowadays and in the near future, as students acquire technological skills earlier, these
simple robotic platforms will be a valid STEM tool only for primary level courses.
Moreover, due to the limitations imposed by the hardware capabilities, most of the
robotic lessons in elementary and high schools have traditionally been quite far from
reality, that is, from being implemented in a real robot to solve a practical task [4]. For
instance, a typical lesson in basic robotic courses implies developing a line-follower [5].
This is a very interesting lesson to learn basic programming skills and classical control,
but students perceive robots around them every day without requiring artificial modi-
fications of the environment to operate [6, 7], so this kind of lessons seem artificial to
them. And, finally, simple robotic platforms are far from being up-to-date with regards
to current hardware advances, so when students are using them, they perceive that the
real technology is clearly way ahead. Consequently, educational centers must invest
periodically to renew their robotic platforms, defeating the purpose of low cost systems.

In this sense, a few years ago we started the development of an educational robotics
project called “The Robobo Project” [8], which aims to bring robotics closer to
practical implementations for elementary and high schools. The Robobo Project is
based on a hardware platform called Robobo, displayed in Fig. 1, and a set of STEM
lessons supported on this platform, which are realized through a programming envi-
ronment. The Robobo hardware is made up of a wheeled base that transports a
smartphone, which provides Robobo with high level sensing, communications and
processing capabilities, and that controls the base actuators. The smartphone allows the
development of lessons using more complex sensing modalities, like computer vision
or speech recognition, together with high processing capabilities to execute them
on-board. This permits proposing projects closer to the real applications that robotics
demands nowadays, with a high degree of human-robot interaction (HRI) and using
more realistic sensors, so students start to deal with them early on. On the other hand,

Table 1. Basic specs of representative robots used in educational robotics

NAO LEGO EV3 DASH & DOT MBOT RANGER THYMIO II

CPU Atom Z530 1.6 Ghz
Cpu

Arm926ej-S
Core@300 MHz

Arm Cortex-M0 Arduino Mega
2560

PIC24 32 MHz

Distance sensor Sonar Sonar/IR IR Sonar IR

Sound Speaker/Microphone Speaker Speaker/Microphone Buzzer/Microphone Speaker/Microphone

Camera 1280 � 960 No No No No

Speech
recognition

Yes No No No No

Communications WIFI/USB Bluetooth/USB Bluetooth Bluetooth/USB WIFI/USB

Average Prize 7.000 € 350 € 230 € 170 € 130 €

The Robobo Project: Bringing Educational Robotics Closer 227

the cost of Robobo is reduced, as compared to robots with similar hardware capabil-
ities, as it can be observed in Table 1, where the only platform that supports computer
vision or speech recognition is the most expensive one. In this sense, two more con-
siderations must be taken into account. First, Robobo is a high-value product with a
low-cost for the educational centers, because the main cost is in the smartphone, which
can be provided by the student. Second, the lifespan is much longer than typical robotic
platforms because it can be updated just by replacing the smartphone with a better one,
and, as the phone in use is the student’s, there is no cost for the school. Finally, as the
student is using her own phone, she can work on the projects any time. As it is
well-known, the smartphone market is highly competitive, so the new models are
continuously updating sensors and features and they are always at the edge of tech-
nology. This implies that, when new sensing modalities appear, the Robobo will be
able to handle immediately.

In this paper, we present The Robobo Project’s main features, that is, a description
of the wheeled platform in Sect. 2, the programming environment in Sect. 3 and two
illustrative educational projects supported by them in Sect. 4. Finally, Sect. 5 is
devoted to some general remarks and conclusions.

2 Robobo Hardware

The Robobo robot is made up of two main parts: a mobile platform, called the ROB,
that includes a series of low level sensors, the mechanical and electronic components
for all the actuators, and a communications channel to connect to a smartphone, and the
smartphone itself, the OBO.

Mechanically, the ROB part is divided into two elements that can be observed in
Fig. 2: the main platform and the pan-tilt unit that supports the smartphone. The main
platform contains the circuit boards, infrared sensors, batteries, docks for add-ons and

Fig. 1. Robobo hardware (left) and its use in a class (right)

228 F. Bellas et al.

the pan-tilt unit. The platform is driven by two wheels which are powered by two geared
CC motors that allow the Robobo to achieve a velocity of 1 m/s with 40Ncm of torque.
This is quite enough for snappy performance and climbing small ramps. The two wheels
can move independently either backwards or forward, allowing the robot to turn.

There is a pan-tilt unit to hold the smartphone. This is a key feature in its HRI
capabilities, as it allows the smartphone to perform actions such as nodding or shaking
its “head”. When the pan-tilt motions are combined with images displayed on the
smartphone screen, the sounds it produces, the displacement of the main platform and
the different colored LEDs, the robot can express and transmit emotions, feelings, etc.
in a way that is very natural and understandable for humans. Thus, it provides a
mechanism for the robot to actively interact with children, influencing their mood,
predisposition to learn, or even making them more sociable. Obviously, in addition to
the interaction possibilities, the pant-tilt support allows for almost omnidirectional
semi-spherical vision all around the robot from the smartphone cameras, providing a lot
of information about the environment in which the robot operates.

The ROB platform electronics are structured around a PIC32 microcontroller for
real time operation and responsiveness. It is in charge of controlling the ROB’s sensors,
actuators and routine programs as well as the communications with the OBO. 9 RGB
LEDs, with a color resolution of 12 bits per LED, for a total of 212 = 4096 different
colors on each RGB LED, are arranged around the ROB platform (see Fig. 2). These
LEDs can be used to provide any type of information to the user. For instance, by
default they are associated to each one of the infrared sensors, allowing the user to
assert what the sensor is sensing in a very simple and intuitive manner. They are in
charge of obstacle detection and fall avoidance as well as ambient light sensing.
Regarding obstacle detection, 7 of the 9 infrared sensors are placed around the ROB to
sense the distance to the different objects, providing obstacle range detection up to

Fig. 2. The Robobo platform and its main sensors and actuators

The Robobo Project: Bringing Educational Robotics Closer 229

10-15 cm depending on the color of the obstacle, and thus, Robobo is able to carry out
collision avoidance tasks when required.

Two frontal sensors are dedicated exclusively to the detection of “holes” (in the
sense of lack of floor). These sensors are tilted towards the ground at a 70° angle to
optimize hole detection and its range, so that the robot has time to stop before falling.
Two of the obstacle detection sensors in the back of the robot share the fall avoidance
functionality. It is important to note that, even though the sensors are configured to
work as infrared sensors, they can be reconfigured as ambient light sensors if the user
so desires. In this configuration, the sensor returns the light intensity value.

The ROB platform communicates to the OBO part of the system by means of a
Bluetooth module together with a series of firmware programs whose function is to
abstract the low-level control into an API that the OBO can use. That is, the software
developed on the smartphone just sees this abstraction of the ROBs functions. The
choice of a wireless communications protocol over a wired one, such as USB, had to do
with increasing the versatility and reducing the complexity of the platform due to the
diversity of connectors and connector positions in different smartphones. Thus, the
ROB platform can be used with any smartphone just as long as it has Bluetooth
connectivity. As a summary, Table 2 shows the sensors, actuators and communication
capabilities of the Robobo robot, both those provided by the ROB and those of the
OBO. It must be pointed out that, although the processor of the ROB has low com-
puting capabilities, the one in the smartphone is, in general, much more powerful than
any other robot in educational robotics if a mid-range smartphone is considered.

Table 2. Robobo main sensing, communication and actuation capabilities organized consider-
ing those provided by platform and smartphone separately

Platform Smartphone

Sensors U 9 IR sensors (front, back
and floor)
U 4 Odometric sensors (motor
encoders)

U Vision: front and back
high-resolution cameras
U Ambient: proximity, light,
temperature
U IMU: gyroscopes, accelerometers,
U magnetometers
U GPS
U Sound
U Touch on screen

Communications U Bluetooth U 3G-4G
U WI-FI
U USB

Actuation U Two motors on the wheels
U One motor for PAN
U One motor for TILT
U 9 LED lights

U High-resolution LCD Screen
U Speaker

230 F. Bellas et al.

3 Robobo Software

One of the main goals of the Robobo robot is to serve as an educational and enter-
tainment tool for teaching programming, robotics, and STEM disciplines across a wide
range of ages. This goal has been the main idea driving the design of the software
architecture of the robot, and the result is a completely modular architecture that:

• On the one hand, allows the easy extension of the robot with new features;
• And, on the other hand, allows users to program the robot using very different

approaches that suit a variety of educational levels, like block programming, Java
language or the Robot Operating System (ROS) [9].

In this section, we provide a detailed description of the Robobo software archi-
tecture and the different programming paradigms supported by it.

3.1 Software Architecture

As previously introduced, the main requirement of the Robobo software architecture
was to support the programming of the robot using very different programming
paradigms. The goal was to be able to use the robot for teaching STEM and robotics in
very different levels of education, from primary schools to universities, through sec-
ondary schools or even for research purposes. With this idea in mind, we have designed
the completely modular software architecture shown in Fig. 3. It is based around the
concept of Robobo module and a very lightweight library, called the Robobo Frame-
work, which provides the essential mechanisms to manage and run those modules on
an Android smartphone (iOS version support is under development). On top of this
library, two different kinds of modules can be loaded:

• Functionality modules (the orange ones in Fig. 3): implemented in Java using the
Android standard API, they provide different functionalities to the robot like speech
recognition, face detection, environment sensing or physical movement. Further-
more, these modules complement the native API of the robot, which can be directly
used for programming it using Java for Android, and thus creating Robobo Apps
that can be run in any Android smartphone.

• A series of proxy modules (ros-proxy and remote-proxy modules in Fig. 3), also
implemented in Java, which provide particular interfaces to other programming
environments, like ROS, Scratch or the native Robobo Educational IDE using
Blockly. These interfaces provide a translation between an external API or protocol,
and the native Robobo API in Java.

Robobo comes by default with a particular set of these modules but, as they are
completely decoupled between them and the framework, advanced users can customize
the set of modules, and even implement new modules to support new robot func-
tionalities, or even new programming paradigms through proxy modules.

Finally, it is important to note that there exists a module for connecting the Robobo
framework and its modules to the Robobo robotic base (ROB). The rob-interface
module, shown in pink in Fig. 3, implements the Bluetooth communications protocol
of the ROB and provides a control API for other modules to use. This module is not

The Robobo Project: Bringing Educational Robotics Closer 231

special at all, it is implemented and loaded as any other module of the framework, but
we have decided to present it in a different color because it is an essential module to
control the physical part of the robot, the ROB platform.

3.2 Robot Programming

As briefly introduced in the previous subsection, the robot can be programmed using
many different programming languages or paradigms and, thanks to the modular design
of our solution, it can even be expanded to support new paradigms. Currently, Robobo
supports four different programming languages or paradigms:

• Java programming for creating Android Apps.
• Scratch programming with ScratchX [10].
• Block programming using our own IDE based on Blockly [11].
• ROS programming for universities and scientific usages.

Java programming is directly supported by the native API provided by the different
modules. Using the Robobo framework users can create custom Android Apps that
control the behavior of the robot. These apps use the programming interfaces of the
Robobo modules to access the different functionalities of the robot and build new robot
behaviors or solve new tasks.

For block programming, we currently support two different approaches. Scratch,
and our own block-based IDE that uses Blockly. As can be seen in Fig. 3, both
approaches are connected to the framework using the same proxy, the Robobo Remote
Access Protocol (RRAP). This is a simple JSON based protocol that allows remote
access to the Robobo modules’ APIs.

Fig. 3. Block diagram showing the Robobo software architecture and the different programming
paradigms supported by it

232 F. Bellas et al.

Scratch is supported by a Scratch extension, implemented in Javascript, that
translates between Scratch blocks and operations of the Robobo modules exported
through the RRAP. Our Blockly IDE follows a similar approach, where blocks are
directly translated to Javascript code that uses the RRAP to control the robot remotely
from the user’s browser.

Finally, Robobo can also be programmed using the Robot Operating System
(ROS), commonly used by the scientific community and for teaching robotics at many
universities. ROS is supported by a ros-proxy module than translates between the
native APIs of the modules and ROS messages and topics.

4 Robobo Interactive Lessons

To illustrate the type of interactive lessons that can be developed within The Robobo
Project and the potentiality of using more advanced hardware in educational robotics,
in this section we are going to present some examples of learning projects that have
been designed, and that use the Robobo hardware and software commented in the
previous two sections. These lessons are adequate for high-school students that have
some basic notions of block-based programming, and they can be implemented with
the ScratchX blocks already implemented in the Robobo software.

All the classical robotic lessons that can be developed using the typical sensors
present in many other robotic platforms like infrared, IMU, simple sounds, ambient
light or ground color, are directly applicable to Robobo. Consequently, we are going to
focus our attention in the sensorial modalities that are rarely used in STEM robotics:
computer vision, advanced sound processing, speech recognition and touch interaction.

All of these lessons start from the following didactical premises:

1. The students use their own smartphone in classes: this is a motivational aspect
because they exploit a familiar element that, in addition, can also be used at home.

2. The Robobo can be programmed using a tablet or a PC: depending on their
programming skills, preferences or educational center policy

3. The Robobo software simply requires that the Robobo and the smartphone are on
the same WI-FI network (a dedicated one can be created in the classroom)

4. All the Robobo lessons can be applied in the real world

4.1 Simon Says Musical

In this first example, the project that students must solve is creating an interactive game
consisting on a musical version of the classical Simon Says game using ScratchX
blocks. Two elements are required in this case, a Robobo and a piano (see Fig. 4a for
an example of configuration). They must be close and in a low noise environment.
Specifically, the students must develop a game with the following steps:

1. The robot operation starts with a clap that “wakes up” Robobo, which says “Ready”
2. With a second clap the game starts, and the robot tries to challenge the user saying

something like “follow me if you can”
3. The robot produces a single musical note

The Robobo Project: Bringing Educational Robotics Closer 233

4. The facial expression in the LCD screen changes to one that seems to pay attention
to the user (Fig. 4b shows a possible expression) and the Robobo starts recording
the musical notes the user creates

5. The original note produced by Robobo must be compared with the one sensed by it:
5:1. If they are the same, the robot changes its expression to a happy one (Fig. 4c

shows an example), the pan-tilt unit moves up and down (like saying YES with
the head) and it emits a congratulating sound. The program returns to step 3 but
now playing one more note.

5:2. If they are different, the expression changes to a sad one (Fig. 4d), the pan-tilt
unit moves from side to side (like saying NO with the head) and a failure sound
is emitted. The program returns to step 1.

To solve the lesson, students must apply the following ScratchX blocks:
clapDetector, speechProducer, noteProducer, noteDetector, soundProducer, emo-
tionProducer and motorCommand, as well as other ScratchX native blocks to create the
algorithm. The configuration of the blocks to achieve a fluid and reliable interactive
game is part of the students work because, as highlighted in the introduction, the goal is
to solve problems that can be used in the real-world.

As it can be observed, this lesson does not require any movement of the robotic
platform, so one could think that a robot is not necessary in this case. But the approach
behind The Robobo Project is that the human-robot interaction is more than just
movement, and developing this type of static interaction is also very important.
Moreover, the pan-tilt unit must be moved in this lesson so, from a didactical point of
view, the students must use the Robobo motor commands.

4.2 Robobo Pet

The second example project is focused on programming the Robobo to act as a pet.
That is, the robot will ask the user for food, attention and “affection”. The modules
required to solve this project use all the interactive modalities of Robobo, that is,
computer vision, speech recognition, sound production and touch. In this case, the
specifications provided to the students start with the premise that only a Robobo and a
user are required in a controlled environment, in terms of other elements that can

Fig. 4. (a) The Robobo and the piano (b) Waiting for the user notes (c) User success (d) User
failure

234 F. Bellas et al.

interfere between them. Moreover, the program that controls the robot does not follow
a sequential scheme in this case, but an event-based execution that is fired by the user
with its interaction. The pet behavior must work as follows:

• Basic instincts: Robobo must store two variables that represent thirst and hunger
levels. They start at a predefined value and they decrease proportionally to the robot
activity (basically, motor movements). If these levels are lower than a predefined
threshold, the robot must say “I am hungry” or “I am thirsty” until they are refilled
as explained below.

• Movement: Robobo must move in order to capture user attention if no event has
been executed for a predefined time-lapse. For instance, it can spin or emit a sound.

• Touch: two different behaviors must be implemented depending on the type of
screen touch modality:
• Tap: if the user touches the screen with a single tap, Robobo must react dif-

ferently depending on the part of the “face” that is touched. If it is in the “eye” or
in the “mouth”, it will move the tilt motor backwards and show an angry
expression (see Fig. 5a and b for examples). If it is in any other point, it will
show a laughing face and emit a sound saying “tickles” (see Fig. 5c and d for
examples)

• Flip: if the user slides a finger over the screen, the pan-tilt unit moves accord-
ingly. The possible sllide directions must be discretized into four pan-tilt
movements: tilt backwards or forwards and tilt rightwards or leftwards.

• Voice: Robobo must react to the following predefined phrases:
• Here comes the food: the robot prepares to receive food
• Here comes the drink: the robot prepares to receive drink
• Hello: the robot answers by saying “Hello”
• How are you?: the robot will respond by saying its thirst and hunger levels

• Vision:
• Color: Robobo must detect 2 different colors, green for food and blue for drink,

but only after the corresponding voice command has been detected. In both
cases, it must say whether the color is correct or not. For instance, if the user
says Here comes the drink, the robot must look for a blue color area of a
predefined size in its field of view (the left image of Fig. 6 shows example), and
after a time-lapse, it must say “Thank you for the drink” or “I don’t see the
drink”.

• Face: Robobo must detect the user face. If it is below a threshold, the robot will
move backwards (Fig. 6 right)

To solve this second project, students must apply, and configure, the following
ScratchX blocks: speechProducer, speechRecognition, faceRecognition, colorDetection,
touchDetection, emotionProducer and motorCommand, as well as other ScratchX native
blocks to create the algorithm. The main feature of this project is that it can become as
complex as the student wants, because achieving a fluid response of the pet is not simple.
Furthermore, its upgrading possibilities are huge, and this is very important to promote
student creativity. Thus, the teacher could propose several improvements. For instance,
the robot could dance following the rhythm of a musical piece, it could follow the user
voice or face while he/she is moving, or it could serve as a movable alarm clock.

The Robobo Project: Bringing Educational Robotics Closer 235

5 Conclusions

The Robobo Project aims to be a starting point in a new didactical methodology for
educational robotics, which is based on more realistic projects to be solved by students.
It is supported by a smartphone-based robotic platform, which exploits the high-end
technology that is included in current mobile phones without implying a large
investment for the educational centers. Moreover, it uses a very flexible programming
environment that allows students to program in different languages depending on their
skills, so the Robobo lifespan is large. In addition to presenting the main features of
hardware and software architectures, two illustrative lessons that can be developed with
Robobo have been described. As it can be observed in both examples, a more natural
and realistic interaction can be obtained with the high-level sensing capabilities

(a) (b) (c) (d)

Fig. 5. Possible expressions in the touching behavior

Fig. 6. The user showing a green ball that represents “food” (left) and his face, which makes
Robobo move backwards (right)

236 F. Bellas et al.

provided by the robot, allowing for more realistic applications to be developed by
students. Currently, Robobo is under testing in selected high schools in Spain, with the
objective of being introduced to general public education from September 2017. As a
consequence, some improvements, mainly in software and lessons, are under devel-
opment right now.

Acknowledgements. This work has been partially funded by the EU’s H2020 research and
innovation programme under grant agreement No 640891 (DREAM project) and by the Xunta de
Galicia and redTEIC network (ED341D R2016/012).

References

1. Alimisis, D., Moro, M.: Special issue on educational robotics. Robot. Auton. Syst. 77, 74–75
(2016)

2. Barker, B.S., Nugent, G., Grandgenett, N., Adamchuk, V.I.: Robots in K-12 Education: A
New Technology for Learning, pp. 1–402. IGI Global (2012)

3. Kandlhofer, M., Steinbauer, G.: Evaluating the impact of educational robotics on pupils’
technical-and social-skills and science related attitudes. Robot. Auton. Syst. 75(Part B), 679–
685 (2016)

4. Danahy, E., Wang, E., Brockman, J., Carberry, A., Shapiro, B., Rogers, C.B.: Lego-based
robotics in higher education: 15 years of student creativity. Int. J. Adv. Rob. Syst. 11(2), 27
(2014)

5. Khalid, A., Zahir, E.: Optimizing the turning velocity in a line follower robot. Int. J. Comput.
Appl. 117(3) (2015)

6. Jones, J.L.: Robots at the tipping point: the road to iRobot Roomba. IEEE Robot. Autom.
Mag. 13(1), 76–78 (2006)

7. Pepper Robot web page. Aldebaran Robotics: https://www.ald.softbankrobotics.com/en/
cool-robots/pepper

8. The Robobo Project web page: http://theroboboproject.com
9. ROS web page: http://www.ros.org
10. ScratchX web page: http://scratchx.org
11. Blocky web page: https://developers.google.com/blockly/

The Robobo Project: Bringing Educational Robotics Closer 237

https://www.ald.softbankrobotics.com/en/cool-robots/pepper
https://www.ald.softbankrobotics.com/en/cool-robots/pepper
http://theroboboproject.com
http://www.ros.org
http://scratchx.org
https://developers.google.com/blockly/

	The Robobo Project: Bringing Educational Robotics Closer to Real-World Applications
	Abstract
	1 Introduction
	2 Robobo Hardware
	3 Robobo Software
	3.1 Software Architecture
	3.2 Robot Programming

	4 Robobo Interactive Lessons
	4.1 Simon Says Musical
	4.2 Robobo Pet

	5 Conclusions
	Acknowledgements
	References

