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Abstract. This work is about studying reasons for (un)decidability
of variants of Monadic Second-order (mso) logic over infinite struc-
tures. Thus, it focuses on connecting the fact that a given theory is
(un)decidable with certain measures of complexity of that theory.

The first of the measures is the topological complexity. In that case,
it turns out that there are strong connections between high topological
complexity of languages available in a given logic, and its undecidabil-
ity. One of the milestone results in this context is the Shelah’s proof of
undecidability of mso over reals.

The second complexity measure focuses on the axiomatic strength
needed to actually prove decidability of the given theory. The idea is
to apply techniques of reverse mathematics to the classical decidability
results from automata theory. Recently, both crucial theorems of the
area (the results of Büchi and Rabin) have been characterised in these
terms. In both cases the proof gives strong relations between decidability
of the mso theory with concepts of classical mathematics: determinacy,
Ramsey theorems, weak Konig’s lemma, etc.
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1 Introduction

Monadic Second-order (mso) logic is one of the fundamental logics used in the
areas of verification and model checking. It is a very expressive formalism, com-
prising most of the other logics used for specifications, like ltl, ctl*, modal
μ-calculus, etc. Thus, the decision methods for mso over infinite words [9];
trees [24]; and certain linear orders [26] are commonly used to easily derive
more decidability results. Because of its strength, it seems that mso lies at the
borderline of decidability, a prominent example is the theorem of Shelah [26]
stating that the mso theory of reals is undecidable. Similar undecidability results
hold in the case of infinite words, when adding new monadic predicates [25]; or
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infinite trees when adding a well-order on the nodes [10]. A separate branch of
studies asks which asymptotic extensions of mso are decidable [1,4,7].

Since variants of mso seem to occur on both sides of the decidability
borderline, one can ask the following question: what makes a given theory
(un)decidable? The aim of this work is to survey results answering the above
question using two notions of complexity of the theory.

2 Descriptive Set Theory

The first notion of complexity that we discuss is the topological complexity of
sets available in the given logic. To measure this complexity, one uses Borel and
Projective Hierarchies, see [18]. From this perspective, mso theory of infinite
words is very simple, as all the languages definable there are Boolean combina-
tions of Π0

2-sets [28]. Similarly, the topological complexity of mso over infinite
trees is also under control, the languages definable there occupy exactly the first
ω levels of the hierarchy of R-sets (introduced by Kolmogorov in [19]); all of
them belong to Δ1

2; and all of them are measurable [14].
On the other hand [15,26], the mso theory of reals (R,≤) is undecidable,

the proofs rely on a construction of a very complex1 set Q ⊆ R. Shelah [26]
conjectured, that when we restrict set quantification to Borel subsets of R then
the theory becomes decidable. This conjecture is still open, the best known
result going in that direction follows from Rabin’s theorem [24]: mso of R with
set quantifiers ranging over Π0

2-sets is decidable.
Bojańczyk in [2] proposed an asymptotic extension of mso (denoted mso+u)

by a quantifier U that informally allows to express that the delays between con-
secutive events are unbounded. Although some fragments of mso+u were proved
to be decidable [3–5,8]; the question of decidability of the full logic mso+u was
left open. The first witness that the logic might turn out to be undecidable was
given by a result [16] showing that mso+u over infinite words defines languages
lying arbitrarily high in Projective Hierarchy (i.e. Π1

n-complete). By incorporat-
ing the methods of Shelah [26], this led to the following results.

Theorem 1 ([6]). Assume a set-theoretic axiom that v=l (called Axiom
of Constructibility [13,17]). Let L be an extension of mso logic that defines
a Π1

6-complete set of infinite words. Then the L-theory of the infinite tree is
undecidable.

Corollary 2 ([6]). It is consistent with zfc that the mso+u theory of the
infinite tree is undecidable.

Although the above corollary does not prove undecidability of mso+u, it
implies that there is no concrete algorithm solving that theory which correctness
can be proven in zfc. Thus, there was no hope that the theory may be decidable
in the standard sense. This line of research was later surmounted by a direct
proof of undecidability of mso+u over infinite words [7].
1 A posteriori, the considered set Q needs to violate Baire Property.
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3 Reverse Mathematics

We will now focus on decidable theories, like in the classical theorems of Büchi [9]
and Rabin [24]. We would like to understand how logically difficult these theo-
rems are. The standard notion of complexity used for measuring logical difficulty
of theorems is given by reverse mathematics [12,27]. The recipe is as follows:

1. We choose some logical system to work in, usually it is second-order arith-
metic.

2. We formalise the given theorem as a sentence Φ in that logical system.
3. We choose some very weak basic theory (usually it is a theory called RCA0).
4. Then we prove that over RCA0, the sentence Φ is equivalent to some known

axiom χ.

The last step consists of two implications: one of them boils down to proving
that the theorem follows from RCA0+χ (i.e. one can prove it using only χ). The
second implication is more tricky, it says that χ is necessary for the theorem to
hold, i.e. over RCA0 the pure fact that Φ holds implies χ.

Over the years, many standard mathematical results were characterised in
terms of their axiomatic strength. As it turned out, the set of additional axioms
χ that typically appear in this context is very limited. Actually most of the
every-day mathematics turns out to be equivalent to one of five standard logical
systems, called Big Five [27, page 42]. Among them is Weak König’s Lemma
(denoted WKL0), used in many arguments using compactness. An example of
a commonly used axiom outside Big Five is Ramsey’s Theorem for Pairs and
arbitrarily many colours (RT2

<∞), known to be incomparable to WKL0 [22].
The famous theorem of Büchi states that mso is decidable over infinite words.

From the modern perspective, there are at least two different ways of proving
that result: either by determinisation à la McNaughton [23]; or by direct comple-
mentation as done by Büchi [9]. The combinatorial core of the former approach
is based on applications of König’s Lemma, while the latter relies on Ramsey’s
Theorem. Thus, from the reverse mathematical point of view these seem to be
two orthogonal proofs. However, in both cases the respective principles are used
in a very limited way: König’s Lemma is applied to trees generated by automata;
while Ramsey’s Theorem is applied to colourings that bear additional algebraic
structure.

As it turned out [21], Büchi’s decidability theorem is equivalent over RCA0 to
the principle of induction for Σ0

2 -formulae (denoted Σ0
2 -IND). Also, Σ0

2 -IND was
shown [21] to be equivalent to an additive version of Ramsey’s Theorem and to
imply the automata-related version of König’s Lemma. These results provide a
rather complete picture of the logical strengths of principles involved in Büchi’s
decidability result.

Rabin’s Theorem [24] proving decidability of mso over infinite trees was
always believed to be more demanding than Büchi’s result. In particular, to the
author’s best knowledge there is no known proof of Rabin’s result that would
avoid using automata and determinacy of related games. This observation has
been formalised in [20], where the authors proved that (in a strong sense) Rabin’s
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complementation result is equivalent to the statement of determinacy of games
with winning conditions being Boolean combinations of Π0

2-sets.
In both above cases, the respective theorem about mso turned out to be

equivalent to other standard mathematical statements. This suggests that the
decidability results about a logic that is robust enough must convey certain
knowledge about the whole mathematical universe. Following this idea it seems
interesting and promising to study other decidability theorems for robust logics,
for instance the result of decidability of mso over countable linear orders [11,26].
From the point of view of direct implications, this result is somewhere in-between
the theorems of Büchi and Rabin.

4 Conclusions

The aim of this survey was to present certain perspectives in which decidability of
a given variant of mso is related to a certain measure of complexity for that logic.
The presented examples advocate that, when one faces the question whether a
given logic is decidable, it may be useful to analyse the complexity of the logic
itself (instead of looking directly for an algorithm or a reduction).

For instance, high topological complexity of languages definable in the logic
may indicate (or even prove, see Corollary 2) that the logic cannot be decidable.
Similarly, if decidability of the logic has very strong axiomatic consequences,
there is no hope to prove it without any strong tools.

On the other hand, if the logic seems to have very limited access to the math-
ematical universe, one may expect a direct proof of decidability, for instance by
a reduction to an appropriately chosen logic that is stronger but still decidable.

References

1. Blumensath, A., Colcombet, T., Parys, P.: On a fragment of AMSO and tiling
systems. In: STACS, pp. 19:1–19:14 (2016)
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