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Abstract. Permitting semi-conditional grammars are such extensions of
context-free grammars where each rule is associated with a word v, and
such a rule can be applied to a sentential form w only if v is a subword
of w. In this paper we show that the class of languages generated by
permitting semi-conditional grammars with no erasing rules is strictly
included in the class of context-sensitive languages.

Keywords: Conditional grammars - Permitting context - Generative
power

1 Introduction

Context-free (CF) grammars are extensively studied since they serve as for-
mal models in many areas of computer science. One of their good properties
is that their membership problem is efficiently solvable. These grammars were
invented by Noam Chomsky to describe the structures of words in sentences of
natural languages. However, it turned out that certain natural languages con-
tain phenomena such as cross-serial dependencies, that cannot be handled by CF
grammars (see e.g. [12]). The more powerful context-sensitive (CS) grammars
are able to model cross-dependencies, but the membership problem for them is
already PSPACE-complete. In [11] Joshi gave several properties that a grammar
should have in order to be able to model natural languages. These properties are
the ability to handle limited cross-serial dependencies, the constant growth of
the associated language, and the polynomial time solvability of the membership
problem. Grammars satisfying these properties are called mildly context-sensitive
grammars.
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One way to enrich CF grammars with context sensitivity and, in turn, raise
their generative power is to control their derivations by context conditions. For
example, in random context grammars (RCG’s) [18] two sets of nonterminals,
a permitting P and a forbidding one @), are associated to every context-free
rule. Then a rule is applicable, if it is applicable in the context-free sense and
nonterminals in (Q do not occur, while every nonterminal in P does occur in
the current sentential form. If in an RCG each rule is associated with an empty
forbidding set (resp. permitting set), then the grammar is called a permitting
(resp. forbidding) RCG.

It turned out that RCG’s with erasing rules have equal power to that of
Turing machines, thus recently a restricted variant of them was introduced and
investigated [15]. In these grammars the permitting and forbidding sets are asso-
ciated to the nonterminals rather than to the rules. Moreover, one of these sets
is always a singleton and the other one is empty. We will call these grammars
restricted random context grammars (rRCG’s) in this paper. It turned out that
even with this very limited ability of controlling the derivations these grammars
are equivalent to random context grammars [2,15]. Moreover, permitting rRCG’s
are as powerful as permitting RCG’s [2], and this is the case for the forbidding
variants too if erasing rules are allowed [8].

In [16] a variant of random context grammars, called semi-conditional gram-
mars (SCG’s) were introduced. In these grammars every rule r is associated with
two words, a permitting word v; and a forbidding one vo, and r is applicable
only if v is a subword of the sentential form, but vy is not. Moreover, an SCG
G is of degree (i,j) if the length of its permitting words is at most 7 and that
of the forbidding words is at most j. It was shown in [16] that SCG’s without
erasing rules and with degree (1,2) or (2,1) have equal power to that of CS
grammars. This clearly means that these grammars are too powerful to meet
all the conditions of mild context-sensitivity. It turned out in [16], on the other
hand, that these grammars with degree (1,1) cannot generate all languages in
CS. The invention of SCG’s was motivated by the grammars of Kelemen [13],
where only a permitting word was associated to each rule (we call these gram-
mars permitting semi-conditional grammars in this paper). In [16] it remained an
open question whether permitting SCG’s can generate all CS languages. In this
paper we show that there is a CS language that cannot be generated by any per-
mitting RCG if the use of erasing rules is not allowed. Some results concerning
grammars mentioned in this introduction are given in Fig. 1.

The proof of our result is based on a pumping lemma similar to the one
presented in [6], where it was shown that the class of languages generated by
permitting RCG’s with no erasing rules is strictly included in the class of lan-
guages generated by RCG’s. In the proof of the pumping lemma in [6] the fol-
lowing property was essential: sufficiently long derivations of a permitting RCG
with no erasing rules always contain two sentential forms « and ( such that §
is derived from « and, for every nonterminal A, |a|4 < |8|a (here |a]4 and |5]a
denote the number of occurrences of A in « and 3, respectively). This prop-
erty follows from Dickson’s lemma [4] which states that any infinite sequence
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Fig.1. A comparison of the power of some variants of grammars mentioned in the
introduction. Arrows with solid lines represent strict inclusions, while arrows with
dashed lines indicate inclusions which are not known to be strict. References to the
presented equalities or strict inclusions are also given. Inclusions represented by dashed
lines follow from definitions. SCG, RCGa, and rRCG) (resp. SCG, RCG, and rRCG)
denote the classes of the corresponding grammars with erasing rules (resp. with no
erasing rules). For a class of grammars C, £(C) denotes the class of languages generated
by grammars in C, and pC (resp. fC) denotes that subclass of C, where only permitting
(resp. forbidding) context conditions are used.

E(erCG) = l)SpRCG)
L(pRCG,) = L(prRCG,)

v1, Vg, ... of n-vectors over the natural numbers contains an infinite sub-sequence
v, <, < ..., where < is the componentwise ordering of n-vectors.

In the proof of our pumping lemma (Lemma 2) we need to find such sentential
forms « and (§ in a derivation of a permitting SCG G that satisfy a stronger
condition: if u is a permitting word of G, then 3 should contain at least as many
occurrences of u as the number of these is in a. To do so we will use Higman’s
lemma [10], which ensures that in any infinite sequence vy, vg, . .. of words, there
is an infinite subsequence v;, <; v;, <y ..., where <, is the subsequence (or
scattered subword) relation. However, to find an appropriate o and 8 we cannot
apply directly Higman’s lemma to the sentential forms of a derivation, but rather
to certain carefully defined words obtained from these sentential forms.

The paper is organized as follows. First, we introduce the necessary notions
and notations. Then, in Sect.3 we present the main result of the paper. Finally,
we give some concluding remarks in Sect. 4. Due to space reasons, some proofs
are omitted in the paper. The interested reader can find them in [9].

2 Preliminaries

We define here the necessary notions, however we assume that the reader is
familiar with the basic concepts of the theory of formal languages. For a com-
prehensive guide we refer to [17]. An alphabet X is a finite, nonempty set of
symbols whose elements are also called letters. Words over X' are finite sequences
of letters in X'. As usual, X* denotes the set of all words over X including the
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empty word e. For a letter a € X and a word u € X*, |u| denotes the length of
uw and |ul, is the number of occurrences of a in u. N denotes the set of natural
numbers. For n,m € N, n < m, [n, m] denotes the set {n,n+1,...,m}. Ilfn =1,
then [n, m] is denoted by [m]. The set of positions in u (pos(u) for short) is [|ul].

Let v € X*. A word v is a scattered subword of u, if v can be obtained from
u by erasing some (possibly zero) letters. Moreover, v is a subword of u if there
are words uy,us € X* such that u = ujvus. Let ¢ € pos(u) and m > 1 be such
that i + m — 1 € pos(u). Then subw(u,i,m) denotes that subword of u which
starts on the ith position and has length m. It will always be clear from the
context whether we consider an arbitrary subword of v or that one which starts
on a certain position. Those subwords of u that have length m are also called
m-subwords. The subsequence relation <z over X* is a binary relation defined as
follows. For u,v € X*, u <, v, if u is a scattered subword of v. Let f : [k] — [I]
(k,1 > 1) be a (partial) function. The domain and range of f, denoted by dom(f)
and ran(f), respectively, are defined as follows: dom(f) = {i € [k] | 3j € [I] :
f(i) = j} and ran(f) = {i € [I] | 3j € [k] : f(j) = i}. If I C [K], then f;
denotes the restriction of f to I. Let u,v € X* and f : pos(v) — pos(u) be a
(partial) function. If, for every i € dom(f), subw(v,,1) = subw(u, f(i), 1), then
we call f letter-preserving. A well-quasi-ordering (wqo for short) on a set S is a
reflexive, transitive binary relation < such that any infinite sequence ai,as, ...
(a; € S,1 > 1) contains a pair a; < aj with j < k. The following result is due to
[10] (see also [14]).

Proposition 1. Let X be an alphabet. Then <; is a wgo on X*. Consequently,
for every infinite sequence uy,us, ... (u; € X* i > 1), there is an infinite subse-
quence u;; < Uj, g ....

A semi-conditional grammar (SCG for short) is a 4-tuple G = (V, X, R, S),
where V and X are alphabets of the nonterminal and terminal symbols, respec-
tively (it is assumed that VN X = @), S € V is the start symbol, and R is a finite
set of production rules of the form (A — a,p,q), where A € V,a € (VU X)T
(that is A — « is a usual non-erasing context-free rule), and p,q € (V U X)*.
For such a rule r, the words p and ¢ are called the permitting and forbidding
contexts of r, respectively. The right-hand side of r (denoted by rhs(r)) is a.
We will often denote V' U X by V. The derivation relation = ¢ of G is defined
as follows. For every word ui,uz,a € V& and A € V, u1Aus =g uiauy if
and only if there is a rule (A — «,p,q) € R such that (i) p is a subword of
uyAug, and (ii) if ¢ # €, then ¢ is not a subword of uj Auy. We will often write
= instead of = when G is clear from the context. As usual, the reflexive,
transitive closure of = is denoted by =* and the language generated by G is
LG)={ue X*| S="u}. Aword a € V{ is called a sentential form of G (or
just a sentential form if G is clear from the context). A derivation der from «
to B is a sequence oy = a9 = ... = an41 of sentential forms, for some n > 0
such that oy = @ and a1 = 5. The length of der (denoted by |der|) is n. Let «
and 3 be sentential forms and der a derivation from « to 8. The sentential form
vector of der (denoted by stv(der)) is (u1,...,ux) (k = |af,u; € V&,i € [k]),
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such that 8 = uy ... u, and, for every i € [k], u; is derived from subw(a,i,1).
Let der : oy = ... = ap, (n > 1) and der’ : a, = ... = ap (k > n). Then
der der’ denotes the derivation o = ... = ay.

If, for every rule (A — «,p,q) in R, g = ¢, then G is a permitting SCG, or a
pSCG for short. Let G = (V, X, R, S) be a pSCG. The set of permitting contexts
of Gis pw(G) = {p | (r,p,q) € R} and max,,(g) = max{|u| | u € pw(G)}. We
denote by L(pSCG) and £(CS) the families of languages generated by pSCG’s
and context-sensitive grammars, respectively.

3 The Main Result

Here we show that pSCG’s are strictly weaker than context sensitive grammars
by proving that the language L = {a22n | n > 0} cannot be generated by any
pSCG (Theorem4). The proof, roughly, consists of the following main steps.
First we define the notion of m-embedding (Definition 1). Intuitively, a word «
can be m-embedded to a word g, if there is an injective mapping of the m-
subwords of a to the m-subwords of § such that this mapping preserves the
order of these words and satisfies certain additional conditions. Then we show
that if a pSCG G = (V, X, R, S) with m = max,, () has a derivation der from
ato f (o, 8 € V&) such that |o| < 3] and « can be m-embedded to (3, then
the der can be “pumped” so that the obtained derivation is a valid derivation
of G (cf. Lemma 2, which we will often refer to as our pumping lemma). Finally,
we show that sufficiently long derivations of G always contain sentential forms
a and f such that o can be m-embedded to  (Lemma 3). To this end we will
use the fact that <, is a wqo on V.

Definition 1. Let X be an alphabet, o, 8 € X* k= ||, I = |8], and m > 1. An
m-embedding of o to (3 is a strictly increasing function g : [k —m + 1] — [I] such
that the following (partial) mapping f : pos(8) — pos(«) is letter-preserving
and well defined: for every i € [k —m+ 1] and x € [0,m —1], f(g9(i) + k) =i + k.
If g is an m-embedding, then the above f is denoted by inv,,(g). Moreover, if
an m-embedding of « to § exists, then we denote this by a ~-,, 5.

Example 1. Here we give two examples to demonstrate the mnotion of
m-embedding.

(1) Let « = BAAB and 8 = BAAAB. Any 3-subword of a is a subword of
0B, too. Due to the letter-preserving property, only the following g can be a
3-embedding of a to B: g(1) =1 and g(2) = 3. The mapping f = inv,,(g) is
letter-preserving, but not well defined. Indeed, with i = 1 and k = 2 we get
flg(i) +K) = f(3) =3, while withi =2 and k =0, f(g(z) +x) = f(3) = 2.
This implies that there is no 3-embedding of o to 3.

(2) Let « = ABBAC, f = AABBAABAC and g be the following strictly
increasing function: g(1) = 2,9(2) = 3, and g(3) = 7. Then the mapping
f =1inv,,(g) is letter-preserving and well defined: f(i) =i—1 (i € [2,5]) and
f@)=1i—4 (i €[7,9]). Thus g is a 3-embedding of o to [3.
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The following properties of m-embeddings will be useful in what follows.

Proposition 2. Let X be an alphabet, m > 1, and o, € X*. Assume that g
is an m-embedding of o to f and f = inv,,(g). Then the following statements
hold.

(i) For every i € pos(a), |[{t € pos(B) | f(t) =i} < m.
(i) IFlal = 8], then o = 6.
(iil) Ifi,j € pos(a) with j =i+ 1, then g(j) —g(i) =1 or g(j) — g(i) > m.

Proof. See [9].

We will also need the following operation which inserts words into certain
positions of a word. Let X be an alphabet and o« = X7 ... Xy (k> 1,X; € X,i €
[k]). Let moreover uq,...,u; € X* and f : [k] — [I] be a (partial) function. The
substitution of u = (u1,...,u;) into a by f (denoted by subst(u, «, f)) is the
word 8 = vy ...vg, where v; (i € [k]) is defined as follows. If f(i) is defined, then
let v; = uy(;), and let v; = X; otherwise.

Sometimes we will need to extend a function f used in a substitution. An
extension of f (with respect to «) is a function f defined as follows. For every
i € dom(f), f(i) = f(i), and for every i € [k] — dom(f), f is either undefined or
defined as follows: if there is a j € dom(f) such that subw(a,4,1) = subw(a, 7, 1),
then take such a j and let f(i) = f(j). Notice that f is always an extension of
itself.

Example 2. Let ¥ = {A,B,C}, a = ABCBB and u = (uy,ug,us), where
up = AA,us = ABC,us = CC. Let furthermore [ : [5] — [3] be the following
partial function. f(2) = f(3) =3, f(5) = 1. Then subst(u, o, f) = AugusBu; =
ACCCCBAA and f has two possible extensions other than f. f(l) 1s undefined.
f(2) = f(38) =3, f(5) =1 and f(4) is either 1 or 3 resulting in subst(u, a, f)
equal to AC*A* or ACS A2, respectively.

The following lemma will be crucial in the proof of our pumping lemma.

Lemma 1. Let G = (V, X, R, S) be a pSCG, m = max,,,(q), and a,a’, 3 € V.
Assume that o =& o and o~y 5. Let der be a derivation from « to &', g an
m-embedding of « to 8, and f = inv,,(g). Then, for every extension f of f,

8= B;, where 3; = subst(sfv(der), 8, f).

Proof. Let B’ = subst(stv(der), 3, f). We first show that 8 =, /' by induction
on n = |der|. If n = 0, then one can see that ' = 3, and thus the statement
trivially holds. Assume that it holds for n. We prove it for n 4 1. In this case
der can be written as der = deriders, where dery is ag =g ... =g Qp, ders is
ap =G Qne1, @0 = @, and apy1 = . Let 8, = subst(stv(dery), 8, f). By the
induction hypothesis, there is a derivation der| from ( to §,. Let (u1,...,ux) =
stv(dery) (k = |af). Assume that G rewrites a nonterminal A during o, =G any1
using a rule r = (A — v, p,€) (see Fig.2 for an example).
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Let ¢ € [k] and x € pos(u;) be such that the rewritten A occurs on the
kth position of w;. Let i1 < iz... < i¢ be all the positions in pos(s) with
fi;) =1 (j €[&]). Let (v1,...,u) =sfv(dery) (I =|B|). Then, for every j € [¢],
v;, = u; and thus, for every such j, there is a position x; € pos(3,) satisfying
that #; corresponds to the xth position in v;;. Clearly subw(f,,#;,1) = A and
B = Bni1 = subst((7y),Bn, h) where h : pos(8) — {1} is defined as follows:
h(j) =11if j € {k1,...,Ke}, and it is undefined otherwise. Therefore, to prove
Bn =& (' it is enough to show that G can use r to rewrite each nonterminal A
that occurs on a position £; (j € [£]) in B,.

Since G can apply r at the step a,, =g an41, @ should contain the permit-
ting context p. Then there are u € [k] and v € [0,m — 1] such that p occurs in
the subword u, ...uu4, of o, (notice that G' has no erasing rules). Since g is
an m-embedding of a to 3, it is clear that vy, ... vg(u)4r = Up - - Uptr. Thus,
there is at most one index j € [£] such that vy, ...vg(u)4+, contains that A
which occurs on the x;th position in 3,. If no such j exists, then G can rewrite
all A’s occurring on positions «; (j € [£]) in [, since the permitting context p
is always present as a subword of vy, ... Vg(u)4r- Otherwise let j € [£] be such
that the subword v, . . . vg(4)+» includes that A which occurs on the x;th posi-
tion of f3,. Then G should rewrite first those A’s in [3,, that occur on positions
other that x; and, at the last step, that A which occurs on the x;th position.
Therefore 3, =¢ Bnt1 = (' which implies that § = 3.

To finish the proof of the lemma consider a derivation der’ from (3 to §'.
Looking at the inductive proof of 8 =* 3, one can see that, for each derivation
step in der’, there is a j € dom(f) such that [j,j +m — 1] C dom(f), and the
necessary permitting context is in a sentential form derived from subw(g, j, m).
In other words, those letters in § that are on such positions which are not
included in dom(f) do not occur in the permitting contexts used during der’.
Assume that i € pos(3)—dom(f) such that f(i) = f(j), for some j € dom(f). Let
u be the f(j)th word in sfv(der) and X = subw((3, j,1). Then G derives u during
der’ from this X. On the other hand, by the definition of f, subw(f,i,1) = X.
Thus, der’ can be extended to such a derivation where G, using the appropriate
rules simultaneously, derives u also from that X which occurs on the ith position
of 8. Following this way of thinking one can see that der’ can be extended to a
derivation of 3 7 from @ which completes the proof of the lemma.

To prove out pumping lemma we need the following preparation. Let ¢ :
«a~p, 0 be an m-embedding. The mapping

cmp, (i) = gk—m+1)+i—(k—m+1) foriek—m+2k

{g(z) for i € [k — m + 1]

is called the completion of g. Note that dom(cmp,) = pos(a) and by the
definition of an m-embedding cmp,, is letter-preserving. If f = inv,,(g) then
J(cmp, (i) = i holds for i € [k].

Proposition 3. Let a € X* |a| =k, z; € X*,zi #ec (i € [k]) and B =21 -+ 2
with |B| = 1. Suppose that g : a~»y, B with f = inv,,(g) and g = cmp,,.
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Fig. 2. The inductive proof of Lemma 1 assuming m = 3

Let us introduce the notations z; = 4 if i € dom(f)

T \subw(B,i,1)  ifi & dom(f)’
Clivr) = Sz 47 i € (K € [J2i]) and &(i,r) = S0, Jay| +7 (i € [r €
llz:]])). Then for the mapping g'(C(i,7)) := £(g(i),7) (C(i,7) € | — m +1]),

g’ : B~y subst(u, G, f)
holds, where u = (21,...,2x).
Proof. See [9].

Lemma 2. Let G = (V, X, R, S) be a pSCG and m = max,,,(q). Suppose that
a=*B, 0=y, a~, B, and |a| < |G| hold for some o, B,y € V. Then there
is a ' € X* such that (1) a =*+" and (ii) |y| < || < (m+1)|y|.

Proof. Let k = |a|, I = |0], and g be an m-embedding of « to 3. Let moreover
f = invy,(g), and der’, der’” be any derivations from « to § and from S to
v, respectively. Applying Proposition 3 with these parameters and X = Vg,
u = sfv(der’) we get ¢’ : B~ 8, where 3/ = subst(u, 3, f). Let f' = inv,,(¢).
By Lemmal g =* 3.

Let f” be the following function. For every 7 € pos(3'), if 7 € dom(f’), then
let f'(7) = f'(7). Otherwise let 7 = £(i,r), for some i € [I] and r € [|z;]], and
we define f/(7) as follows. If i € dom(f), then let f'(r) = ¢(f(i),r), and let
f'(7) = i, otherwise. Notice that f’ is a letter preserving function form 3 to
B. Indeed, if i € dom(f), then x; = z5(;), and z; = subw(/3,4,1), otherwise.
Let 7 € pos(B') — dom(f’). Since ¢’ is an m-embedding of 8 to [, there is
a 7' € pos(f') with f/(r') = f'(). Then subw(8,7,1) = subw(3, f'(1),1) =
subw(g, f/(7'),1) = subw(’,7’,1). Thus f" is an extension of f’.

Now let v/ = subst((vl,...,vl),ﬁ’,f’), where (vq,...,v;) = stv(der”). By
Lemmal, 8’ =% /. This, together with a =¢, § and 8 =¢ (' implies a =, +/,
i.e., Statement (i) of the lemma holds. Statement (ii) can be seen as follows. Since
g’ is an m-embedding of 3 to (', for every i € [l], there is a 7 € pos(8’) with
f'(7) = i. Thus, each v; (i € [I]) is substituted for a position in 8’ by f’. Therefore
[v] = |v1 ... 0] < Jsubst((vy,...,v), 8, )] < |subst((ve,...,v), 8, )] = 7]
Moreover, since |a| < |G|, there is an ¢ € [k] such that |z;| > 2. Let j € [I] with
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f(j) =i. Then |z;| > 2,50 |8| =1 <1+1<Y'_, |zs| = |#|. This implies that
|7] = |7’| cannot hold, consequently |y| < |v/].

On the other hand, by (i) of Proposition 2, for every ¢ € [k], z; is substituted
for at most m different positions in 3 by f. Moreover, one can see that, for every
i€ dom(f), f is an injective function from [£(7,1), £(4, |2;])] to [I]. Furthermore,
f' is injective on the set {7 | 7 = £(i,1),i € [I] — dom(f)}, too. Consequently,
for every i € [I], v; is substituted for at most m + 1 different positions in 5’ by
f'. Therefore, |y'] < (m+1)|y| should hold finishing the proof of Statement (ii).

Next we demonstrate some of the constructions used in the previous proof.

Example 3. Let G = (V,X R,S) be a pSCG, « = ABBA, 8 =
EABBFBACA (A,B,C,E,F e VUZX), and m = 2. Let v € X*, and assume
that G has two derivations der’ and der” from « to 8 and from [ to v, respec-
tively. Clearly |a] < |B| and a~, B with the following m-embedding g: g(1) = 2,
9(2) = 3, and ¢g(3) = 6. Then, according to Lemma 2, we can give a v € X*
with the following properties: (1) a =* 4" and (ii) |v| < || < (m + 1)|y|.

Assume, for instance, that stv(der’) = (z1,22,23,24), where z1 = E,
z9 = AB, z3 = BF, and z4 = BACA. Let f = inv,,(g). Then ' =
subst(stv(der’), 8, f) = x1...x9, where x1 = FE, ©o = F, x5 = AB, x4 = BF,
x5 = F, x¢ = BF, x7 = BACA, zg = C, and 9 = A. Now, if we define
g’ according to the proof of Lemma 2, then we get that dom(g’) = [1,8], and
g (i) =i+ 1 ifi€l,3], and ¢'(i) = i + 4, otherwise. It is easy to verify that ¢’
is an m-embedding of B to 3. Let f' = inv,,(¢’). Then dom(f") = [2,5] U8, 13].
Let us define now f' according to the proof of Lemma 2, that is, f'(1) = 1,
f1(6) = f/(7) = 5, f'(14) = 8, and f'(15) = 9. One can check that, for every
T € [1,15]—dom(f’), subw(3',7,1) = subw(83, f'(),1). Assume that sfv(der”) =
v1...v9, where v; € X* (i € pos(B)). Then o' = subst(stv(der”), [, f') =
VU1 ... U5Vs . .. VgUgVg. By (1) of Lemma 2, o =* ', and it is easy to check that
v satisfies Statement (ii) too.

The following proposition together with Lemma 3 will be used to show that
sufficiently long derivations of pSCG’s always contain sentential forms « and (3
satisfying the conditions of Lemma 2. The statement can be seen using Proposi-
tion 1 (see also the proof of Lemma?2 in [6]).

Proposition 4. Let X be an alphabet and ni,ns,... an infinite sequence of
numbers in N. Then there is M € N such that, for every sequence vi,va, ..., U,
where n > M and v; € X* with |v;| < n; (i € [n]), there are numbers i < j in
[M] satisfying v; <s v;.

Let G = (V, X, R, S) be a pSCG and m > 1. We will apply the above result to
appropriate derivations of G in order to find sentential forms « and [ satisfying
a~>p, 8. However, Proposition4 ensures only that we can find such o and f3
which satisfy a <; . Clearly, this does not imply «~-,, 8. Thus we will apply
Proposition 4 not directly to the derivations of G but to sequences of words
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derived from these derivations. To this end we will use two functions wdo and p
defined below.

Let X be an alphabet and m > 1. We denote by X<™ the set of all words
in X* with length at most m. Since X<™ is a finite set, we will treat it as an
alphabet. Now let wdo : X* — (X<™)* be defined as follows. Let u € X*. If |u| <
m, then let wdo(u) = u (that is, v on the right-hand side is considered as a letter
in X<™). If |u| > m, then let wdo(u) = subw(u, 1,m)...subw(u, |u| —m+1,m)
(again, subw(u,i,m) (i € [1,|u| —m+1]) is considered as a letter in =™). The
name wdo comes from the word window, since for a word u, wdo(u) is that word
whose letters are determined by moving a window of length m on u from left to
right. The intuition behind the definition of wdo is the following: if wdo(«) <j
wdo(8), then every m-subword of a has to be an m-subword of 8 too. On the
other hand wdo(a) <, wdo(f) still does not imply a ~~,, 5 (see, for example, the
first item in Example 1). Thus we will use the following function p before applying
wdo on the sentential forms of G. Let X be an alphabet. Then X denotes the

alphabet {a) | a € X,i € [m]}. Now let p : £* — X* be defined as follows. For

aword u = ay...a; € X% (a; € X, € [K]), p(u) = al* ™ m)...agck mod m) |

Intuitively, p associates the number ¢ mod m to the ith letter of u (we put this
number in parentheses in order not to confuse it with the usual notation of the
iteration of a letter). We will see in the proof of the next lemma that for two
sentential forms « and 5 of G, wdo(p(a)) <s; wdo(p(8)) implies a ~=,, (3.

Lemma 3. Let G = (V, X, R,S) be a pSCG and m > 1. Then there is M € N
such that the following holds. For every derivation cg = a1 = ... = ay, of G
with n > M, there are i < j in [M] such that a; ~p, o).

Proof. Let m = maxp, (@), p = max{|rhs(r)| | 7 € R} and consider the sequence
ny,Na,... where n; = ip (i > 1). Let moreover M be the number given in
Proposition4 and a9 = a3 = ... = «a, be a derivation of G with n > M.
Clearly, |wdo(p(«;))| < ny, for every ¢ € [n]. Then, by Proposition4, there are
numbers ¢ < j in [M] such that wdo(p(cy)) <, wdo(p(c;)). We show that
o~ ;. To simplify the notation, let us denote wdo(p(c;)) and wdo(p(a;))
by w and v, respectively. If |u| = 1, then |a;| < m and «; is a subword of «;.
In this case a; ~»y, @; trivially holds. Assume now that |u| > 2, and let k = |u]
and | = |oj|. Since u is a scattered subword of v, there are i1 < ... < i
in pos(v) such that v = subw(v,i1,1)...subw(v,ig,1). Then let g : [k] — [I]
be a strictly increasing function defined as g(v) = i, (v € [k]). Notice that
k = |oyi| —m + 1. Let moreover f : pos(a;) — pos(a;) be a (partial) function
defined as f(g(v) + k) = v+ k (v € [k],k € [0,m — 1]). To see that g is an
m-embedding of a; to a; it is enough to show that f is letter preserving and
well-defined.

Let v € [k]. Using the definition of wdo we get that subw(p(w;),v,m) =
subw(p(e;), g(v), m) and in turn subw(oy, v, m) = subw(c;, g(v), m). Thus f is
letter preserving. Now, let v € [k — 1]. Using again the definition of wdo we
get that subw(p(ay), v, m) = subw(p(e;), g(v), m) and subw(p(a;),v + 1,m) =
subw(p(c;), g(v + 1), m). Thus, the upper index added by p to the first letter of
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subw (e, v, m) should match that of subw(c;, g(v), m). Similar observation holds
for the words subw(c;, v + 1,m) and subw(c;, g(v + 1),m). This implies that
either g(v+1)—g(v) = 1 or g(v+1)—g(v) > m should hold. It is easy to see that
in both cases the definition of f is consistent. Therefore g is an m-embedding of
a; to aj.

Theorem 4. L(pSCG) C L(CS).

Proof. By [16] L(pSCG) C L£(CS). Thus, since L = {agzn | n > 0} is clearly
included in £(CS), it is enough to show that L ¢ L(pSCG). Assume on the
contrary that L € £L(pSCG) and let G be a pSCG with L(G) = L. Let moreover
m = maxp,(g)- Since L is not a context-free language, we can assume that

m > 1. Then let M be the number of Lemma3, and u = aQWMN7 where N =
max{|rhs(r)| | » € R}. Let moreover der : S = ag = a1 = ... = ay, = u be one
of the shortest derivations of G from S to u. Clearly n > M. Thus, by Lemma 3,
there are ¢ < j in [M] such that a; ~»,, ;. We can assume that |o;| < |a;].
Indeed, assume on the contrary that this is not the case. Then, since G has no
erasing rules, ;| = |ey|. This, using (ii) of Proposition 2, implies that o; = ;.
This yields that der’ : ag = ... = a; = 41 = ... = ayp is also a derivation
of G from S to u with |der’| < n. However this contradicts the assumption that
der is a shortest derivation from S to u. Applying Lemma 2 we get that there is
an u' € X* such that o; =* v and |u| < |v/| < (m + 1)|u|. Since S =* «, also
S =* «’ holds. Consequently, u’ € L.

Clearly, the shortest word v € L with |u| < |v| is a2 On the other
hand, /| < (m + 1)22""" < 22" 92N — 02 ) Thus uf| < o
yielding u’ ¢ L which is a contradiction. Therefore L ¢ L(pSCG).

4 Conclusions

In this paper we have investigated permitting semi-conditional grammars intro-
duced by Kelemen [13]. We showed that these grammars are strictly weaker than
context-sensitive grammars when erasing rules are not allowed. However, it is
still open whether this remains true if erasing rules are allowed. In [19] it was
shown that allowing erasing rules does not increase the generative power of per-
mitting random context grammars. To decide whether this holds also for permit-
ting semi-conditional grammars is a possible topic for future work. It is also an
interesting question, for example, whether the inclusion £(pRCG) C L(pSCG)
depicted in Fig. 1 is strict or not.
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