
On the Power of Permitting Semi-conditional
Grammars

Zsolt Gazdag1(B) and Krisztián Tichler2

1 Department of Foundations of Computer Science,
University of Szeged, Szeged, Hungary

gazdag@inf.u-szeged.hu
2 Department of Algorithms and Their Applications,

Eötvös Loránd University, Budapest, Hungary
ktichler@inf.elte.hu

Abstract. Permitting semi-conditional grammars are such extensions of
context-free grammars where each rule is associated with a word v, and
such a rule can be applied to a sentential form u only if v is a subword
of u. In this paper we show that the class of languages generated by
permitting semi-conditional grammars with no erasing rules is strictly
included in the class of context-sensitive languages.

Keywords: Conditional grammars · Permitting context · Generative
power

1 Introduction

Context-free (CF) grammars are extensively studied since they serve as for-
mal models in many areas of computer science. One of their good properties
is that their membership problem is efficiently solvable. These grammars were
invented by Noam Chomsky to describe the structures of words in sentences of
natural languages. However, it turned out that certain natural languages con-
tain phenomena such as cross-serial dependencies, that cannot be handled by CF
grammars (see e.g. [12]). The more powerful context-sensitive (CS) grammars
are able to model cross-dependencies, but the membership problem for them is
already PSPACE-complete. In [11] Joshi gave several properties that a grammar
should have in order to be able to model natural languages. These properties are
the ability to handle limited cross-serial dependencies, the constant growth of
the associated language, and the polynomial time solvability of the membership
problem. Grammars satisfying these properties are called mildly context-sensitive
grammars.

This research was supported by a research grant from the Faculty of Informatics,
Eötvös Loránd University.
Z. Gazdag—Research of this author was partially supported by the Hungarian
National Research, Development and Innovation Office (NKFIH) under grant K
108448.

c© Springer International Publishing AG 2017
É. Charlier et al. (Eds.): DLT 2017, LNCS 10396, pp. 173–184, 2017.
DOI: 10.1007/978-3-319-62809-7 12

174 Z. Gazdag and K. Tichler

One way to enrich CF grammars with context sensitivity and, in turn, raise
their generative power is to control their derivations by context conditions. For
example, in random context grammars (RCG’s) [18] two sets of nonterminals,
a permitting P and a forbidding one Q, are associated to every context-free
rule. Then a rule is applicable, if it is applicable in the context-free sense and
nonterminals in Q do not occur, while every nonterminal in P does occur in
the current sentential form. If in an RCG each rule is associated with an empty
forbidding set (resp. permitting set), then the grammar is called a permitting
(resp. forbidding) RCG.

It turned out that RCG’s with erasing rules have equal power to that of
Turing machines, thus recently a restricted variant of them was introduced and
investigated [15]. In these grammars the permitting and forbidding sets are asso-
ciated to the nonterminals rather than to the rules. Moreover, one of these sets
is always a singleton and the other one is empty. We will call these grammars
restricted random context grammars (rRCG’s) in this paper. It turned out that
even with this very limited ability of controlling the derivations these grammars
are equivalent to random context grammars [2,15]. Moreover, permitting rRCG’s
are as powerful as permitting RCG’s [2], and this is the case for the forbidding
variants too if erasing rules are allowed [8].

In [16] a variant of random context grammars, called semi-conditional gram-
mars (SCG’s) were introduced. In these grammars every rule r is associated with
two words, a permitting word v1 and a forbidding one v2, and r is applicable
only if v1 is a subword of the sentential form, but v2 is not. Moreover, an SCG
G is of degree (i, j) if the length of its permitting words is at most i and that
of the forbidding words is at most j. It was shown in [16] that SCG’s without
erasing rules and with degree (1, 2) or (2, 1) have equal power to that of CS
grammars. This clearly means that these grammars are too powerful to meet
all the conditions of mild context-sensitivity. It turned out in [16], on the other
hand, that these grammars with degree (1, 1) cannot generate all languages in
CS. The invention of SCG’s was motivated by the grammars of Kelemen [13],
where only a permitting word was associated to each rule (we call these gram-
mars permitting semi-conditional grammars in this paper). In [16] it remained an
open question whether permitting SCG’s can generate all CS languages. In this
paper we show that there is a CS language that cannot be generated by any per-
mitting RCG if the use of erasing rules is not allowed. Some results concerning
grammars mentioned in this introduction are given in Fig. 1.

The proof of our result is based on a pumping lemma similar to the one
presented in [6], where it was shown that the class of languages generated by
permitting RCG’s with no erasing rules is strictly included in the class of lan-
guages generated by RCG’s. In the proof of the pumping lemma in [6] the fol-
lowing property was essential: sufficiently long derivations of a permitting RCG
with no erasing rules always contain two sentential forms α and β such that β
is derived from α and, for every nonterminal A, |α|A ≤ |β|A (here |α|A and |β|A
denote the number of occurrences of A in α and β, respectively). This prop-
erty follows from Dickson’s lemma [4] which states that any infinite sequence

On the Power of Permitting Semi-conditional Grammars 175

[7]

L(rRCGλ)
[15]
= L(RCGλ)

[3]
= RE

[16]
= L(SCGλ)

L(SCG)
[16]
= L(CS)

[3]
L(pSCG)

L(prRCG)
[2]
= L(pRCG)

[19]
=

L(CF)

[3]
L(pRCGλ)

[2]
= L(prRCGλ)

L(RCG)
[2]
= L(rRCG)[6]

L(frRCG)

L(frRCG)λ
[8]
= L(fRCG)λ

L(fRCG)
[5]

[1]

Theore
m 4

Fig. 1. A comparison of the power of some variants of grammars mentioned in the
introduction. Arrows with solid lines represent strict inclusions, while arrows with
dashed lines indicate inclusions which are not known to be strict. References to the
presented equalities or strict inclusions are also given. Inclusions represented by dashed
lines follow from definitions. SCGλ, RCGλ, and rRCGλ (resp. SCG, RCG, and rRCG)
denote the classes of the corresponding grammars with erasing rules (resp. with no
erasing rules). For a class of grammars C, L(C) denotes the class of languages generated
by grammars in C, and pC (resp. fC) denotes that subclass of C, where only permitting
(resp. forbidding) context conditions are used.

v1, v2, . . . of n-vectors over the natural numbers contains an infinite sub-sequence
vi1 ≤ vi2 ≤ . . ., where ≤ is the componentwise ordering of n-vectors.

In the proof of our pumping lemma (Lemma 2) we need to find such sentential
forms α and β in a derivation of a permitting SCG G that satisfy a stronger
condition: if u is a permitting word of G, then β should contain at least as many
occurrences of u as the number of these is in α. To do so we will use Higman’s
lemma [10], which ensures that in any infinite sequence v1, v2, . . . of words, there
is an infinite subsequence vi1 ≤s vi2 ≤s . . ., where ≤s is the subsequence (or
scattered subword) relation. However, to find an appropriate α and β we cannot
apply directly Higman’s lemma to the sentential forms of a derivation, but rather
to certain carefully defined words obtained from these sentential forms.

The paper is organized as follows. First, we introduce the necessary notions
and notations. Then, in Sect. 3 we present the main result of the paper. Finally,
we give some concluding remarks in Sect. 4. Due to space reasons, some proofs
are omitted in the paper. The interested reader can find them in [9].

2 Preliminaries

We define here the necessary notions, however we assume that the reader is
familiar with the basic concepts of the theory of formal languages. For a com-
prehensive guide we refer to [17]. An alphabet Σ is a finite, nonempty set of
symbols whose elements are also called letters. Words over Σ are finite sequences
of letters in Σ. As usual, Σ∗ denotes the set of all words over Σ including the

176 Z. Gazdag and K. Tichler

empty word ε. For a letter a ∈ Σ and a word u ∈ Σ∗, |u| denotes the length of
u and |u|a is the number of occurrences of a in u. N denotes the set of natural
numbers. For n,m ∈ N, n < m, [n,m] denotes the set {n, n+1, . . . ,m}. If n = 1,
then [n,m] is denoted by [m]. The set of positions in u (pos(u) for short) is [|u|].

Let u ∈ Σ∗. A word v is a scattered subword of u, if v can be obtained from
u by erasing some (possibly zero) letters. Moreover, v is a subword of u if there
are words u1, u2 ∈ Σ∗ such that u = u1vu2. Let i ∈ pos(u) and m ≥ 1 be such
that i + m − 1 ∈ pos(u). Then subw(u, i,m) denotes that subword of u which
starts on the ith position and has length m. It will always be clear from the
context whether we consider an arbitrary subword of u or that one which starts
on a certain position. Those subwords of u that have length m are also called
m-subwords. The subsequence relation ≤s over Σ∗ is a binary relation defined as
follows. For u, v ∈ Σ∗, u ≤s v, if u is a scattered subword of v. Let f : [k] → [l]
(k, l ≥ 1) be a (partial) function. The domain and range of f , denoted by dom(f)
and ran(f), respectively, are defined as follows: dom(f) = {i ∈ [k] | ∃j ∈ [l] :
f(i) = j} and ran(f) = {i ∈ [l] | ∃j ∈ [k] : f(j) = i}. If I � [k], then f |I
denotes the restriction of f to I. Let u, v ∈ Σ∗ and f : pos(v) → pos(u) be a
(partial) function. If, for every i ∈ dom(f), subw(v, i, 1) = subw(u, f(i), 1), then
we call f letter-preserving. A well-quasi-ordering (wqo for short) on a set S is a
reflexive, transitive binary relation ≤ such that any infinite sequence a1, a2, . . .
(ai ∈ S, i ≥ 1) contains a pair aj ≤ ak with j < k. The following result is due to
[10] (see also [14]).

Proposition 1. Let Σ be an alphabet. Then ≤s is a wqo on Σ∗. Consequently,
for every infinite sequence u1, u2, . . . (ui ∈ Σ∗, i ≥ 1), there is an infinite subse-
quence ui1 ≤s ui2 ≤s

A semi-conditional grammar (SCG for short) is a 4-tuple G = (V,Σ,R, S),
where V and Σ are alphabets of the nonterminal and terminal symbols, respec-
tively (it is assumed that V ∩Σ = ∅), S ∈ V is the start symbol, and R is a finite
set of production rules of the form (A → α, p, q), where A ∈ V, α ∈ (V ∪ Σ)+

(that is A → α is a usual non-erasing context-free rule), and p, q ∈ (V ∪ Σ)∗.
For such a rule r, the words p and q are called the permitting and forbidding
contexts of r, respectively. The right-hand side of r (denoted by rhs(r)) is α.
We will often denote V ∪ Σ by VG. The derivation relation ⇒G of G is defined
as follows. For every word u1, u2, α ∈ V ∗

G and A ∈ V , u1Au2 ⇒G u1αu2 if
and only if there is a rule (A → α, p, q) ∈ R such that (i) p is a subword of
u1Au2, and (ii) if q �= ε, then q is not a subword of u1Au2. We will often write
⇒ instead of ⇒G when G is clear from the context. As usual, the reflexive,
transitive closure of ⇒ is denoted by ⇒∗ and the language generated by G is
L(G) = {u ∈ Σ∗ | S ⇒∗ u }. A word α ∈ V ∗

G is called a sentential form of G (or
just a sentential form if G is clear from the context). A derivation der from α
to β is a sequence α1 ⇒ α2 ⇒ . . . ⇒ αn+1 of sentential forms, for some n ≥ 0
such that α1 = α and αn+1 = β. The length of der (denoted by |der|) is n. Let α
and β be sentential forms and der a derivation from α to β. The sentential form
vector of der (denoted by sfv(der)) is (u1, . . . , uk) (k = |α|, ui ∈ V ∗

G, i ∈ [k]),

On the Power of Permitting Semi-conditional Grammars 177

such that β = u1 . . . uk and, for every i ∈ [k], ui is derived from subw(α, i, 1).
Let der : α1 ⇒ . . . ⇒ αn (n ≥ 1) and der′ : αn ⇒ . . . ⇒ αk (k ≥ n). Then
der der′ denotes the derivation α1 ⇒ . . . ⇒ αk.

If, for every rule (A → α, p, q) in R, q = ε, then G is a permitting SCG, or a
pSCG for short. Let G = (V,Σ,R, S) be a pSCG. The set of permitting contexts
of G is pw(G) = {p | (r, p, q) ∈ R} and maxpw(G) = max{|u| | u ∈ pw(G)}. We
denote by L(pSCG) and L(CS) the families of languages generated by pSCG’s
and context-sensitive grammars, respectively.

3 The Main Result

Here we show that pSCG’s are strictly weaker than context sensitive grammars
by proving that the language L = {a22

n | n ≥ 0} cannot be generated by any
pSCG (Theorem 4). The proof, roughly, consists of the following main steps.
First we define the notion of m-embedding (Definition 1). Intuitively, a word α
can be m-embedded to a word β, if there is an injective mapping of the m-
subwords of α to the m-subwords of β such that this mapping preserves the
order of these words and satisfies certain additional conditions. Then we show
that if a pSCG G = (V,Σ,R, S) with m = maxpw(G) has a derivation der from
α to β (α, β ∈ V ∗

G) such that |α| < |β| and α can be m-embedded to β, then
the der can be “pumped” so that the obtained derivation is a valid derivation
of G (cf. Lemma 2, which we will often refer to as our pumping lemma). Finally,
we show that sufficiently long derivations of G always contain sentential forms
α and β such that α can be m-embedded to β (Lemma 3). To this end we will
use the fact that ≤s is a wqo on V ∗

G.

Definition 1. Let Σ be an alphabet, α, β ∈ Σ∗, k = |α|, l = |β|, and m ≥ 1. An
m-embedding of α to β is a strictly increasing function g : [k − m + 1] → [l] such
that the following (partial) mapping f : pos(β) → pos(α) is letter-preserving
and well defined: for every i ∈ [k −m+1] and κ ∈ [0,m− 1], f(g(i)+κ) = i+κ.
If g is an m-embedding, then the above f is denoted by invm(g). Moreover, if
an m-embedding of α to β exists, then we denote this by α �m β.

Example 1. Here we give two examples to demonstrate the notion of
m-embedding.

(1) Let α = BAAB and β = BAAAB. Any 3-subword of α is a subword of
β, too. Due to the letter-preserving property, only the following g can be a
3-embedding of α to β: g(1) = 1 and g(2) = 3. The mapping f = invm(g) is
letter-preserving, but not well defined. Indeed, with i = 1 and κ = 2 we get
f(g(i) + κ) = f(3) = 3, while with i = 2 and κ = 0, f(g(i) + κ) = f(3) = 2.
This implies that there is no 3-embedding of α to β.

(2) Let α = ABBAC, β = AABBAABAC and g be the following strictly
increasing function: g(1) = 2, g(2) = 3, and g(3) = 7. Then the mapping
f = invm(g) is letter-preserving and well defined: f(i) = i−1 (i ∈ [2, 5]) and
f(i) = i − 4 (i ∈ [7, 9]). Thus g is a 3-embedding of α to β.

178 Z. Gazdag and K. Tichler

The following properties of m-embeddings will be useful in what follows.

Proposition 2. Let Σ be an alphabet, m ≥ 1, and α, β ∈ Σ∗. Assume that g
is an m-embedding of α to β and f = invm(g). Then the following statements
hold.

(i) For every i ∈ pos(α), |{t ∈ pos(β) | f(t) = i}| ≤ m.
(ii) If |α| = |β|, then α = β.
(iii) If i, j ∈ pos(α) with j = i + 1, then g(j) − g(i) = 1 or g(j) − g(i) ≥ m.

Proof. See [9].

We will also need the following operation which inserts words into certain
positions of a word. Let Σ be an alphabet and α = X1 . . . Xk (k ≥ 1,Xi ∈ Σ, i ∈
[k]). Let moreover u1, . . . , ul ∈ Σ∗ and f : [k] → [l] be a (partial) function. The
substitution of u = (u1, . . . , ul) into α by f (denoted by subst(u, α, f)) is the
word β = v1 . . . vk, where vi (i ∈ [k]) is defined as follows. If f(i) is defined, then
let vi = uf(i), and let vi = Xi otherwise.

Sometimes we will need to extend a function f used in a substitution. An
extension of f (with respect to α) is a function f̂ defined as follows. For every
i ∈ dom(f), f̂(i) = f(i), and for every i ∈ [k] − dom(f), f̂ is either undefined or
defined as follows: if there is a j ∈ dom(f) such that subw(α, i, 1) = subw(α, j, 1),
then take such a j and let f̂(i) = f(j). Notice that f is always an extension of
itself.

Example 2. Let Σ = {A,B,C}, α = ABCBB and u = (u1, u2, u3), where
u1 = AA, u2 = ABC, u3 = CC. Let furthermore f : [5] → [3] be the following
partial function. f(2) = f(3) = 3, f(5) = 1. Then subst(u, α, f) = Au3u3Bu1 =
ACCCCBAA and f has two possible extensions other than f . f̂(1) is undefined.
f̂(2) = f̂(3) = 3, f̂(5) = 1 and f̂(4) is either 1 or 3 resulting in subst(u, α, f̂)
equal to AC4A4 or AC6A2, respectively.

The following lemma will be crucial in the proof of our pumping lemma.

Lemma 1. Let G = (V,Σ,R, S) be a pSCG, m = maxpw(G), and α, α′, β ∈ V ∗
G.

Assume that α ⇒∗
G α′ and α �m β. Let der be a derivation from α to α′, g an

m-embedding of α to β, and f = invm(g). Then, for every extension f̂ of f ,
β ⇒∗

G βf̂ , where βf̂ = subst(sfv(der), β, f̂).

Proof. Let β′ = subst(sfv(der), β, f). We first show that β ⇒∗
G β′ by induction

on n = |der|. If n = 0, then one can see that β′ = β, and thus the statement
trivially holds. Assume that it holds for n. We prove it for n + 1. In this case
der can be written as der = der1der2, where der1 is α0 ⇒G . . . ⇒G αn, der2 is
αn ⇒G αn+1, α0 = α, and αn+1 = α′. Let βn = subst(sfv(der1), β, f). By the
induction hypothesis, there is a derivation der′

1 from β to βn. Let (u1, . . . , uk) =
sfv(der1) (k = |α|). Assume that G rewrites a nonterminal A during αn ⇒G αn+1

using a rule r = (A → γ, p, ε) (see Fig. 2 for an example).

On the Power of Permitting Semi-conditional Grammars 179

Let i ∈ [k] and κ ∈ pos(ui) be such that the rewritten A occurs on the
κth position of ui. Let i1 < i2 . . . < iξ be all the positions in pos(β) with
f(ij) = i (j ∈ [ξ]). Let (v1, . . . , vl) = sfv(der′

1) (l = |β|). Then, for every j ∈ [ξ],
vij = ui and thus, for every such j, there is a position κj ∈ pos(βn) satisfying
that κj corresponds to the κth position in vij . Clearly subw(βn, κj , 1) = A and
β′ = βn+1 = subst((γ), βn, h) where h : pos(β) → {1} is defined as follows:
h(j) = 1 if j ∈ {κ1, . . . , κξ}, and it is undefined otherwise. Therefore, to prove
βn ⇒∗

G β′ it is enough to show that G can use r to rewrite each nonterminal A
that occurs on a position κj (j ∈ [ξ]) in βn.

Since G can apply r at the step αn ⇒G αn+1, αn should contain the permit-
ting context p. Then there are μ ∈ [k] and ν ∈ [0,m − 1] such that p occurs in
the subword uμ . . . uμ+ν of αn (notice that G has no erasing rules). Since g is
an m-embedding of α to β, it is clear that vg(μ) . . . vg(μ)+ν = uμ . . . uμ+ν . Thus,
there is at most one index j ∈ [ξ] such that vg(μ) . . . vg(μ)+ν contains that A
which occurs on the κjth position in βn. If no such j exists, then G can rewrite
all A’s occurring on positions κj (j ∈ [ξ]) in βn, since the permitting context p
is always present as a subword of vg(μ) . . . vg(μ)+ν . Otherwise let j ∈ [ξ] be such
that the subword vg(μ) . . . vg(μ)+ν includes that A which occurs on the κjth posi-
tion of βn. Then G should rewrite first those A’s in βn that occur on positions
other that κj and, at the last step, that A which occurs on the κjth position.
Therefore βn ⇒∗

G βn+1 = β′ which implies that β ⇒∗
G β′.

To finish the proof of the lemma consider a derivation der′ from β to β′.
Looking at the inductive proof of β ⇒∗ β′, one can see that, for each derivation
step in der′, there is a j ∈ dom(f) such that [j, j + m − 1] ⊆ dom(f), and the
necessary permitting context is in a sentential form derived from subw(β, j,m).
In other words, those letters in β that are on such positions which are not
included in dom(f) do not occur in the permitting contexts used during der′.
Assume that i ∈ pos(β)−dom(f) such that f̂(i) = f(j), for some j ∈ dom(f). Let
u be the f(j)th word in sfv(der) and X = subw(β, j, 1). Then G derives u during
der′ from this X. On the other hand, by the definition of f̂ , subw(β, i, 1) = X.
Thus, der′ can be extended to such a derivation where G, using the appropriate
rules simultaneously, derives u also from that X which occurs on the ith position
of β. Following this way of thinking one can see that der′ can be extended to a
derivation of βf̂ from β which completes the proof of the lemma.

To prove out pumping lemma we need the following preparation. Let g :
α �m β be an m-embedding. The mapping

cmpg(i) =

{
g(i) for i ∈ [k − m + 1]
g(k − m + 1) + i − (k − m + 1) for i ∈ [k − m + 2, k]

is called the completion of g. Note that dom(cmpg) = pos(α) and by the
definition of an m-embedding cmpg is letter-preserving. If f = invm(g) then
f(cmpg(i)) = i holds for i ∈ [k].

Proposition 3. Let α ∈ Σ∗, |α| = k, zi ∈ Σ∗, zi �= ε (i ∈ [k]) and β = z1 · · · zk

with |β| = l. Suppose that g : α �m β with f = invm(g) and ḡ = cmpg.

180 Z. Gazdag and K. Tichler

1 2 3 4

A

α

αn
αn+1

u1 u2 u3 u4

γ

1 2 3 2 3 4
v1 v2

v3 v4 v5
u1 u2 u3

v6 v7

v8 v9 v10
u2 u3 u4

v11

γ γ

A A

β
βn

βn+1

Fig. 2. The inductive proof of Lemma 1 assuming m = 3

Let us introduce the notations xi =

{
zf(i) if i ∈ dom(f)
subw(β, i, 1) if i �∈ dom(f)

,

ζ(i, r) =
∑i−1

j=1 |zj | + r (i ∈ [k], r ∈ [|zi|]) and ξ(i, r) =
∑i−1

j=1 |xj | + r (i ∈ [l], r ∈
[|xi|]). Then for the mapping g′(ζ(i, r)) := ξ(ḡ(i), r) (ζ(i, r) ∈ [l − m + 1]),

g′ : β �m subst(u, β, f)

holds, where u = (z1, . . . , zk).

Proof. See [9].

Lemma 2. Let G = (V,Σ,R, S) be a pSCG and m = maxpw(G). Suppose that
α ⇒∗ β, β ⇒∗ γ, α �m β, and |α| < |β| hold for some α, β, γ ∈ V ∗

G. Then there
is a γ′ ∈ Σ∗ such that (i) α ⇒∗ γ′ and (ii) |γ| < |γ′| ≤ (m + 1)|γ|.
Proof. Let k = |α|, l = |β|, and g be an m-embedding of α to β. Let moreover
f = invm(g), and der′, der′′ be any derivations from α to β and from β to
γ, respectively. Applying Proposition 3 with these parameters and Σ = VG,
u = sfv(der′) we get g′ : β �m β′, where β′ = subst(u, β, f). Let f ′ = invm(g′).
By Lemma 1 β ⇒∗ β′.

Let f̂ ′ be the following function. For every τ ∈ pos(β′), if τ ∈ dom(f ′), then
let f̂ ′(τ) = f ′(τ). Otherwise let τ = ξ(i, r), for some i ∈ [l] and r ∈ [|xi|], and
we define f̂ ′(τ) as follows. If i ∈ dom(f), then let f̂ ′(τ) = ζ(f(i), r), and let
f̂ ′(τ) = i, otherwise. Notice that f̂ ′ is a letter preserving function form β′ to
β. Indeed, if i ∈ dom(f), then xi = zf(i), and xi = subw(β, i, 1), otherwise.
Let τ ∈ pos(β′) − dom(f ′). Since g′ is an m-embedding of β to β′, there is
a τ ′ ∈ pos(β′) with f ′(τ ′) = f̂ ′(τ). Then subw(β′, τ, 1) = subw(β, f̂ ′(τ), 1) =
subw(β, f ′(τ ′), 1) = subw(β′, τ ′, 1). Thus f̂ ′ is an extension of f ′.

Now let γ′ = subst((v1, . . . , vl), β′, f̂ ′), where (v1, . . . , vl) = sfv(der′′). By
Lemma 1, β′ ⇒∗

G γ′. This, together with α ⇒∗
G β and β ⇒∗

G β′ implies α ⇒∗
G γ′,

i.e., Statement (i) of the lemma holds. Statement (ii) can be seen as follows. Since
g′ is an m-embedding of β to β′, for every i ∈ [l], there is a τ ∈ pos(β′) with
f ′(τ) = i. Thus, each vi (i ∈ [l]) is substituted for a position in β′ by f ′. Therefore
|γ| = |v1 . . . vl| ≤ |subst((v1, . . . , vl), β′, f ′)| ≤ |subst((v1, . . . , vl), β′, f̂ ′)| = |γ′|.
Moreover, since |α| < |β|, there is an i ∈ [k] such that |zi| ≥ 2. Let j ∈ [l] with

On the Power of Permitting Semi-conditional Grammars 181

f(j) = i. Then |xj | ≥ 2, so |β| = l < l + 1 ≤ ∑l
s=1 |xs| = |β′|. This implies that

|γ| = |γ′| cannot hold, consequently |γ| < |γ′|.
On the other hand, by (i) of Proposition 2, for every i ∈ [k], zi is substituted

for at most m different positions in β by f . Moreover, one can see that, for every
i ∈ dom(f), f̂ ′ is an injective function from [ξ(i, 1), ξ(i, |xi|)] to [l]. Furthermore,
f̂ ′ is injective on the set {τ | τ = ξ(i, 1), i ∈ [l] − dom(f)}, too. Consequently,
for every i ∈ [l], vi is substituted for at most m + 1 different positions in β′ by
f̂ ′. Therefore, |γ′| ≤ (m+1)|γ| should hold finishing the proof of Statement (ii).

Next we demonstrate some of the constructions used in the previous proof.

Example 3. Let G = (V,Σ,R, S) be a pSCG, α = ABBA, β =
EABBFBACA (A,B,C,E, F ∈ V ∪ Σ), and m = 2. Let γ ∈ Σ∗, and assume
that G has two derivations der′ and der′′ from α to β and from β to γ, respec-
tively. Clearly |α| < |β| and α �m β with the following m-embedding g: g(1) = 2,
g(2) = 3, and g(3) = 6. Then, according to Lemma 2, we can give a γ′ ∈ Σ∗

with the following properties: (i) α ⇒∗ γ′ and (ii) |γ| < |γ′| ≤ (m + 1)|γ|.
Assume, for instance, that sfv(der′) = (z1, z2, z3, z4), where z1 = E,

z2 = AB, z3 = BF , and z4 = BACA. Let f = invm(g). Then β′ =
subst(sfv(der′), β, f) = x1 . . . x9, where x1 = E, x2 = E, x3 = AB, x4 = BF ,
x5 = F , x6 = BF , x7 = BACA, x8 = C, and x9 = A. Now, if we define
g′ according to the proof of Lemma 2, then we get that dom(g′) = [1, 8], and
g′(i) = i + 1 if i ∈ [1, 3], and g′(i) = i + 4, otherwise. It is easy to verify that g′

is an m-embedding of β to β′. Let f ′ = invm(g′). Then dom(f ′) = [2, 5]∪ [8, 13].
Let us define now f̂ ′ according to the proof of Lemma 2, that is, f̂ ′(1) = 1,
f̂ ′(6) = f̂ ′(7) = 5, f̂ ′(14) = 8, and f̂ ′(15) = 9. One can check that, for every
τ ∈ [1, 15]−dom(f ′), subw(β′, τ, 1) = subw(β, f̂ ′(τ), 1). Assume that sfv(der′′) =
v1 . . . v9, where vi ∈ Σ∗ (i ∈ pos(β)). Then γ′ = subst(sfv(der′′), β′, f̂ ′) =
v1v1 . . . v5v5 . . . v9v8v9. By (i) of Lemma 2, α ⇒∗ γ′, and it is easy to check that
γ′ satisfies Statement (ii) too.

The following proposition together with Lemma 3 will be used to show that
sufficiently long derivations of pSCG’s always contain sentential forms α and β
satisfying the conditions of Lemma2. The statement can be seen using Proposi-
tion 1 (see also the proof of Lemma 2 in [6]).

Proposition 4. Let Σ be an alphabet and n1, n2, . . . an infinite sequence of
numbers in N. Then there is M ∈ N such that, for every sequence v1, v2, . . . , vn

where n ≥ M and vi ∈ Σ∗ with |vi| ≤ ni (i ∈ [n]), there are numbers i < j in
[M] satisfying vi ≤s vj.

Let G = (V,Σ,R, S) be a pSCG and m ≥ 1. We will apply the above result to
appropriate derivations of G in order to find sentential forms α and β satisfying
α �m β. However, Proposition 4 ensures only that we can find such α and β
which satisfy α ≤s β. Clearly, this does not imply α �m β. Thus we will apply
Proposition 4 not directly to the derivations of G but to sequences of words

182 Z. Gazdag and K. Tichler

derived from these derivations. To this end we will use two functions wdo and p
defined below.

Let Σ be an alphabet and m ≥ 1. We denote by Σ≤m the set of all words
in Σ∗ with length at most m. Since Σ≤m is a finite set, we will treat it as an
alphabet. Now let wdo : Σ∗ → (Σ≤m)∗ be defined as follows. Let u ∈ Σ∗. If |u| <
m, then let wdo(u) = u (that is, u on the right-hand side is considered as a letter
in Σ≤m). If |u| ≥ m, then let wdo(u) = subw(u, 1,m) . . . subw(u, |u| −m+1,m)
(again, subw(u, i,m) (i ∈ [1, |u| −m + 1]) is considered as a letter in Σ≤m). The
name wdo comes from the word window, since for a word u, wdo(u) is that word
whose letters are determined by moving a window of length m on u from left to
right. The intuition behind the definition of wdo is the following: if wdo(α) ≤s

wdo(β), then every m-subword of α has to be an m-subword of β too. On the
other hand wdo(α) ≤s wdo(β) still does not imply α �m β (see, for example, the
first item in Example 1). Thus we will use the following function p before applying
wdo on the sentential forms of G. Let Σ be an alphabet. Then Σ̂ denotes the
alphabet {a(i) | a ∈ Σ, i ∈ [m]}. Now let p : Σ∗ → Σ̂∗ be defined as follows. For
a word u = a1 . . . ak ∈ Σ∗ (ai ∈ Σ, i ∈ [k]), p(u) = a

(1 mod m)
1 . . . a

(k mod m)
k .

Intuitively, p associates the number i mod m to the ith letter of u (we put this
number in parentheses in order not to confuse it with the usual notation of the
iteration of a letter). We will see in the proof of the next lemma that for two
sentential forms α and β of G, wdo(p(α)) ≤s wdo(p(β)) implies α �m β.

Lemma 3. Let G = (V,Σ,R, S) be a pSCG and m ≥ 1. Then there is M ∈ N

such that the following holds. For every derivation α0 ⇒ α1 ⇒ . . . ⇒ αn of G
with n ≥ M , there are i < j in [M] such that αi �m αj.

Proof. Let m = maxpw(G), ρ = max{|rhs(r)| | r ∈ R} and consider the sequence
n1, n2, . . . where ni = iρ (i ≥ 1). Let moreover M be the number given in
Proposition 4 and α0 ⇒ α1 ⇒ . . . ⇒ αn be a derivation of G with n ≥ M .
Clearly, |wdo(p(αi))| ≤ ni, for every i ∈ [n]. Then, by Proposition 4, there are
numbers i < j in [M] such that wdo(p(αi)) ≤s wdo(p(αj)). We show that
αi �m αj . To simplify the notation, let us denote wdo(p(αi)) and wdo(p(αj))
by u and v, respectively. If |u| = 1, then |αi| ≤ m and αi is a subword of αj .
In this case αi �m αj trivially holds. Assume now that |u| ≥ 2, and let k = |u|
and l = |αj |. Since u is a scattered subword of v, there are i1 < . . . < ik
in pos(v) such that u = subw(v, i1, 1) . . . subw(v, ik, 1). Then let g : [k] → [l]
be a strictly increasing function defined as g(ν) = iν (ν ∈ [k]). Notice that
k = |αi| − m + 1. Let moreover f : pos(αj) → pos(αi) be a (partial) function
defined as f(g(ν) + κ) = ν + κ (ν ∈ [k], κ ∈ [0,m − 1]). To see that g is an
m-embedding of αi to αj it is enough to show that f is letter preserving and
well-defined.

Let ν ∈ [k]. Using the definition of wdo we get that subw(p(αi), ν,m) =
subw(p(αj), g(ν),m) and in turn subw(αi, ν,m) = subw(αj , g(ν),m). Thus f is
letter preserving. Now, let ν ∈ [k − 1]. Using again the definition of wdo we
get that subw(p(αi), ν,m) = subw(p(αj), g(ν),m) and subw(p(αi), ν + 1,m) =
subw(p(αj), g(ν + 1),m). Thus, the upper index added by p to the first letter of

On the Power of Permitting Semi-conditional Grammars 183

subw(αi, ν,m) should match that of subw(αj , g(ν),m). Similar observation holds
for the words subw(αi, ν + 1,m) and subw(αj , g(ν + 1),m). This implies that
either g(ν+1)−g(ν) = 1 or g(ν+1)−g(ν) ≥ m should hold. It is easy to see that
in both cases the definition of f is consistent. Therefore g is an m-embedding of
αi to αj .

Theorem 4. L(pSCG) � L(CS).

Proof. By [16] L(pSCG) ⊆ L(CS). Thus, since L = {a22
n | n ≥ 0} is clearly

included in L(CS), it is enough to show that L �∈ L(pSCG). Assume on the
contrary that L ∈ L(pSCG) and let G be a pSCG with L(G) = L. Let moreover
m = maxpw(G). Since L is not a context-free language, we can assume that

m ≥ 1. Then let M be the number of Lemma 3, and u = a22
mMN

, where N =
max{|rhs(r)| | r ∈ R}. Let moreover der : S = α0 ⇒ α1 ⇒ . . . ⇒ αn = u be one
of the shortest derivations of G from S to u. Clearly n ≥ M . Thus, by Lemma 3,
there are i < j in [M] such that αi �m αj . We can assume that |αi| < |αj |.
Indeed, assume on the contrary that this is not the case. Then, since G has no
erasing rules, |αi| = |αj |. This, using (ii) of Proposition 2, implies that αi = αj .
This yields that der′ : α0 ⇒ . . . ⇒ αi ⇒ αj+1 ⇒ . . . ⇒ αn is also a derivation
of G from S to u with |der′| < n. However this contradicts the assumption that
der is a shortest derivation from S to u. Applying Lemma 2 we get that there is
an u′ ∈ Σ∗ such that αi ⇒∗ u′ and |u| < |u′| ≤ (m + 1)|u|. Since S ⇒∗ αi, also
S ⇒∗ u′ holds. Consequently, u′ ∈ L.

Clearly, the shortest word v ∈ L with |u| < |v| is a22
mMN+1

. On the other
hand, |u′| ≤ (m + 1)22

mMN

< 22
mMN · 22

mMN

= 22
mMN+1

= |v|. Thus |u′| < |v|
yielding u′ �∈ L which is a contradiction. Therefore L �∈ L(pSCG).

4 Conclusions

In this paper we have investigated permitting semi-conditional grammars intro-
duced by Kelemen [13]. We showed that these grammars are strictly weaker than
context-sensitive grammars when erasing rules are not allowed. However, it is
still open whether this remains true if erasing rules are allowed. In [19] it was
shown that allowing erasing rules does not increase the generative power of per-
mitting random context grammars. To decide whether this holds also for permit-
ting semi-conditional grammars is a possible topic for future work. It is also an
interesting question, for example, whether the inclusion L(pRCG) ⊆ L(pSCG)
depicted in Fig. 1 is strict or not.

Acknowledgement. We are grateful to Erzsébet Csuhaj Varjú for introducing us
the topic of this paper and also for her many useful comments on it. We thank the
anonymous reviewers for their constructive comments, which helped us to improve the
manuscript.

184 Z. Gazdag and K. Tichler

References

1. Bordihn, H., Fernau, H.: Accepting grammars and systems: an overview. In: Devel-
opments in Language Theory, Magdeburg, Germany (1995)

2. Dassow, J., Masopust, T.: On restricted context-free grammars. J. Comput. Syst.
Sci. 78(1), 293–304 (2012)

3. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer,
New York (1989)

4. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Am. J. Math. 35(4), 413–422 (1913)

5. Ewert, S., van der Walt, A.: A shrinking lemma for random forbidding context
languages. Theor. Comput. Sci. 237(1–2), 149–158 (2000)

6. Ewert, S., van der Walt, A.: A pumping lemma for random permitting context
languages. Theor. Comput. Sci. 270(1–2), 959–967 (2002)

7. Gazdag, Z.: A note on context-free grammars with rewriting restrictions. In: Brod-
nik, A., Galambos, G. (eds.) Proceedings of the 2010 Mini-Conference on Applied
Theoretical Computer Science. University of Primorska Press, Koper (2011)

8. Gazdag, Z.: Remarks on some simple variants of random context grammars. J.
Autom. Lang. Comb. 19(1–4), 81–92 (2014)

9. Gazdag, Z., Tichler, K.: On the power of permitting semi-conditional grammars,
extended version. https://www.researchgate.net/publication/312587701 On the
Power of Permitting Semi-conditional Grammars

10. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc.
3(1), 326–336 (1952)

11. Joshi, A.K.: Tree adjoining grammars: how much context-sensitivity is required to
provide reasonable structural descriptions? In: Dowty, D.R., Karttunen, L., Zwicky,
A.M. (eds.) Natural Language Parsing, pp. 206–250. Cambridge University Press,
Cambridge (1985)

12. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall PTR, Upper Saddle River, NJ, USA (2000)

13. Kelemen, J.: Conditional grammars: motivations, definitions, and some properties.
In: Proceedings of the Conference on Automata, Languages and Mathematical
Sciences, Salgótarján, pp. 110–123 (1984)

14. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Trans. Am. Math. Soc. 95(2), 210–225 (1960)

15. Masopust, T.: Simple restriction in context-free rewriting. J. Comput. Syst. Sci.
76(8), 837–846 (2010)

16. Păun, G.: A variant of random context grammars: semi-conditional grammars.
Theor. Comput. Sci. 41, 1–17 (1985)

17. Salomaa, A.: Formal Languages. Academic Press, New York, London (1973)
18. van der Walt, A.: Random context languages. Inf. Process. 71, 66–68 (1972)
19. Zetzsche, G.: On erasing productions in random context grammars. In: Abramsky,

S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 175–186. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14162-1 15

https://www.researchgate.net/publication/312587701_On_the_Power_of_Permitting_Semi-conditional_Grammars
https://www.researchgate.net/publication/312587701_On_the_Power_of_Permitting_Semi-conditional_Grammars
http://dx.doi.org/10.1007/978-3-642-14162-1_15
http://dx.doi.org/10.1007/978-3-642-14162-1_15

	On the Power of Permitting Semi-conditional Grammars
	1 Introduction
	2 Preliminaries
	3 The Main Result
	4 Conclusions
	References

