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Abstract. Using a novel rewriting problem, we show that several nat-
ural decision problems about finite automata are undecidable (i.e., recur-
sively unsolvable). In contrast, we also prove three related problems are
decidable. We apply one result to prove the undecidability of a related
problem about k-automatic sets of rational numbers.
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1 Introduction

Starting with the first result of Turing [16], computer scientists have assem-
bled a large collection of natural decision problems that are undecidable
(i.e., recursively unsolvable); see, for example, the book of Rozenberg and
Salomaa [12].

Although some of these results deal with relatively weak computing models,
such as pushdown automata [2,6], few, if any, are concerned with the very sim-
plest model: the finite automaton. One exception is the following decision prob-
lem, due to Engelfriet and Rozenberg [5, Theorem 15]: given a finite automaton
M with an input alphabet of both primed and unprimed letters (i.e., an alpha-
bet Σ ∪ Σ′, where Σ′ = {a′ : a ∈ Σ}), decide if M accepts a word w where
the primed letters, after the primes have been removed, form a word identical
to that formed by the unprimed letters. This problem was also mentioned by
Hoogeboom [7]. This problem is easily seen to be undecidable, as it is a disguised
version of the classical Post correspondence problem [10].

In this paper we start by proving a novel lemma on rewriting systems. In
Sect. 3, this lemma is then applied to give a new example of a natural problem on
finite automata that is undecidable. In Sect. 4 we prove that a related problem
on the so-called k-automatic sets of rational numbers is also undecidable. In
Sect. 5 we prove the undecidability of yet another problem about finite automata.
Finally, in Sect. 5 we show that it is decidable if a finite automaton accepts two
distinct conjugates.
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2 A Lemma on Rewriting Systems

For our purposes, a rewriting system S over an alphabet Σ consists of a finite
set of context-free rules of the form � → r, where �, r ∈ Σ∗. Such a rewriting
rule applies to the word α�β ∈ Σ∗, and converts it to αrβ. We indicate this by
writing α�β =⇒ αrβ. We use =⇒∗ for the reflexive, transitive closure of =⇒
(so that γ =⇒∗ ζ means that there is a sequence of 0 or more rules taking the
word γ to ζ). A rewriting system is said to be length-preserving if |�| = |r| for
all rewriting rules � → r.

Many undecidable decision problems related to rewriting systems are
known [3]. However, to the best of our knowledge, the following one is new.

REWRITE-POWER

Instance: An alphabet Σ containing the symbols a and b (and possibly other
symbols), and a length-preserving rewriting system S.

Question: Does there exist an integer n ≥ 1 such that an =⇒∗ bn?

Lemma 1. The decision problem REWRITE-POWER is undecidable.

Proof. The standard approach for showing that a rewriting problem is undecid-
able is to reduce from the halting problem, by encoding a Turing machine M
and simulating its computation using the rewriting rules; for example, see [3].

The difficulty with applying that approach in the present case is the lack of
asymmetry, i.e., the fact that the initial word consists of all a’s. Because there is
no distinguished symbol with which to start the simulation, unwanted parallel
simulations of M could occur at different parts of the word.

To deal with this difficulty, we construct a rewriting system that permits
multiple simulations of M to arise, but employs a delimiter symbol $ to ensure
that they do not interfere with each other. Each simulation works on its own
portion of the word, and changes it to b’s (ending by changing the delimiter
symbol as well) only if M halts.

Here are the details. We use the one-tape model of Turing machine from
Hopcroft and Ullman [8], where M = (Q,Ω, Γ, δ, q0, B, qf ). Here Q is the set of
states of M , with q0 ∈ Q the start state and qf ∈ Q the unique final state. Let
Ω be the input alphabet and Γ the tape alphabet, with B ∈ Γ being the distin-
guished blank symbol. Let δ be the (partial) transition function, with domain
Q × Γ and range Q × Γ × {L,R}. We assume without loss of generality that
M halts, i.e., M has no next move, iff it is in state qf . We also assume that
a, b, $ �∈ Γ .

We construct our length-preserving rewriting system mimicking the compu-
tations of M as follows. Let Σ = Γ ∪ Q ∪ {a, b, $}. Let S contain the following
rewriting rules:
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aa → $q0 (1)
a → B (2)

qic → dqj if (qj , d, R) ∈ δ(qi, c) with c, d ∈ Γ (3)
fqic → qjfd if (qj , d, L) ∈ δ(qi, c) and f ∈ Γ (4)
qfc → cqf for all c ∈ Γ (5)
cqf → qfb for all c ∈ Γ (6)
$qf → bb (7)

Rule (1) starts a new simulation. Each simulation has its own head symbol qi

and left end-marker $, and never moves the head symbol past an a, b, or $. This
ensures that the simulations are kept separate from each other. Rule (2) converts
an a to a blank symbol, available for use in a simulation. Rules (3) and (4) are
used to simulate the transitions of M . Once a simulation reaches qf (meaning
that M has halted), its head can be moved to the right using rule (5), past all
of the symbols it has read, and then back to the left using rule (6), changing all
of those symbols to b’s. Finally, the simulation can be stopped using rule (7).

We argue that M halts when run on a blank tape iff an =⇒∗ bn for some
n ≥ 1.

If M halts when run on a blank tape, then there is some number of tape cells
k which it uses. Let n = k+2. Then S can use rule (1) to start a simulation with
the two a’s at the left end of the word, use rule (2) to convert the k remaining
a’s to blank cells, and run the simulation using rules (3) and (4). Eventually
M halts in the final state qf . At that point, S can move the head to the right
end of the word using rule (5), convert all k tape cells to b’s using rule (6), and
then convert the end-marker $ and tape head to b’s with rule (7). Thus we have
an =⇒∗ bn.

For the other direction, if the initial word an is ever transformed into bn,
it means that one or more simulations were run, each of which operated on a
portion of the word without interference from the others. The absence of inter-
ference can be deduced from the shape of the rules. There is only one occurrence
of the marker $ in the left-hand sides of the rules, namely as the leftmost symbol
in the left-hand side of rule (7). Furthermore, $ can only be rewritten to b which
does not occur in any left-hand side.

Each simulation runs M on a blank tape, and uses a number of tape cells
bounded by the length of its portion of the word. Since every portion of the word
was transformed into b’s, M halted in every one of the simulations (otherwise
the word would still contain one or more head symbols and end-markers). The
completion of any one of these simulations is enough to show that M halts when
run on a blank tape.

Therefore M halts when run on a blank tape iff there exists an n ≥ 1 such
that an =⇒∗ bn, completing the reduction from the halting problem. Since the
halting problem is undecidable, REWRITE-POWER is also undecidable. �	
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3 An Undecidable Problem on Finite Automata

Our model of finite automaton is the usual one (e.g., [8]). We now consider
a decision problem on finite automata. To state it, we need the notion of the
product of two words of the same length. Let Σ,Δ be alphabets, and let w ∈ Σ∗,
x ∈ Δ∗, with |w| = |x|. Then by w × x we mean the word over the alphabet
Σ × Δ whose projection π1 over the first coordinate is w and whose projection
π2 over the second coordinate is x. More precisely, if w = a1a2 · · · an and x =
b1b2 · · · bn, then w × x = [a1, b1][a2, b2] · · · [an, bn]. In this case π1(w × x) = w
and π2(w × x) = x. For example, if y = [t, h] [e, o] [r, e] [m, s], then π1(y) = term
and π1(y) = hoes. To simplify notation, we often write

[
w
x

]
in place of w × x.

For example,
[
cat
dog

]
means the same thing as

[
c
d

][
a
o

][
t
g

]
and [c, d][a, o][t, g].

Consider the following decision problem:

ACCEPTS-SHIFT

Instance: An alphabet Γ , a letter c �∈ Γ , and a finite automaton M with input
alphabet (Γ ∪ {c})2.

Question: Does M accept a word of the form xcn × cnx for some x ∈ Γ ∗ and
n ≥ 0?

Theorem 2. The decision problem ACCEPTS-SHIFT is undecidable.

Proof. We reduce from the problem REWRITE-POWER. An instance of this decision
problem is a set S of length-preserving rewriting rules, an alphabet Σ, and letters
a, b ∈ Σ. Define Γ = Σ ∪ {d}, where d �∈ Σ is a new symbol. Now we define the
following regular languages:

E =
{[

e

e

]
: e ∈ Σ

}
and R =

{[
r

�

]
: � → r ∈ S

}

L =
[
d

c

][
a

c

]+[
d

d

](
E∗RE∗

[
d

d

])∗ [
c

b

]+[
c

d

]
.

Let M = (Q,Δ, δ, q0, F ) be a deterministic finite automaton accepting L, with
Δ = (Γ ∪ {c})2. Clearly M can be constructed effectively from the definitions.

We claim that, for all n ≥ 2, we have an−1 =⇒∗ bn−1 iff the language
L = L(M) contains a word of the form xcn × cnx. The crucial observation is
that

u =⇒ v iff
[
v

u

]
∈ E∗RE∗. (8)

This follows immediately from the definitions of E and R.

=⇒: Suppose
u0 := an−1 =⇒ u1 =⇒ · · · =⇒ um = bn−1
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with m ≥ 1 and n ≥ 2. Then
[
ui+1

ui

]
∈ E∗RE∗

for 0 ≤ i < m. Then
[
d

d

][
u1

u0

][
d

d

][
u2

u1

]
· · ·

[
d

d

][
um

um−1

][
d

d

]
∈

[
d

d

] (
E∗RE∗

[
d

d

])∗
.

Hence
[
d

c

][
u0

cn−1

][
d

d

][
u1

u0

][
d

d

][
u2

u1

]
· · ·

[
d

d

][
um

um−1

][
d

d

][
cn−1

um

][
c

d

]
∈ L,

as desired. The first component is du0du1d · · · dumdcn, while the second com-
ponent is cndu0du1 · · · dum−1dumd. Taking x = du0du1d · · · dumd, we see that
xcn × cnx ∈ L.

⇐=: Assume that xcn × cnx ∈ L for some word x with n ≥ 2. Now L consists
only of words of the form

w =
[
d

c

][
a

c

]i[
d

d

][
v0
u0

][
d

d

][
v1
u1

][
d

d

]
· · ·

[
vm

um

][
d

d

][
c

b

]j[
c

d

]

where ut =⇒ vt for 1 ≤ t ≤ m and i, j ≥ 1. Observe that

π1(w) = daidv0dv1 · · · dvmdcj+1 and π2(w) = ci+1du0du1 · · · dumdbjd,

so if π1(w) = xcn and π2(w) = cnx we must have i = j = n − 1 and x =
daidv0dv1 · · · dvmd = du0du1 · · · dumdbjd. Since d is a new symbol, not in the
alphabet of Σ, it follows that u0 = ai, u1 = v0, u2 = v1, . . ., um = vm−1, and
bj = vm.

But then u0 =⇒ v0 = u1, u1 =⇒ v1 = u2, and so forth, up to um−1 =⇒
vm−1 = um, and finally um =⇒ vm = bj . So u0 =⇒∗ vm, and therefore an−1 =⇒∗

bn−1. This completes the proof. �	
Remark 3. In the decision problem ACCEPTS-SHIFT, the undecidability of the
problem arises, in an essential way, from words of the form xcn × cnx where
n < |x|, and not from those words with n ≥ |x| as one might first suspect. More
formally, the related decision problem defined below is actually solvable in cubic
time.

ACCEPTS-LONG-SHIFT

Instance: An alphabet Σ, a letter c �∈ Σ, and a finite automaton M with input
alphabet (Σ ∪ {c})2.

Question: Does M accept a word of the form xcn × cnx for some n ≥ |x|?
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Theorem 4. The decision problem ACCEPTS-LONG-SHIFT is solvable in cubic
time.

Proof. Suppose x = a1a2 · · · am. If y = xcn × cnx and n ≥ |x| then

y = [a1, c] · · · [am, c][c, c]n−m[c, a1][c, a2] · · · [c, am].

Given a DFA M = (Q,Σ, δ, q0, F ), we can create a nondeterministic finite
automaton M ′ that accepts all x for which the corresponding y is accepted
by M . The idea is that M ′ has state set Q′ = Q × Q × Q; on input x the
machine M ′ “guesses” a state q ∈ Q, and stores it in the second component, and
then simulates M on input x × cm in the first component, starting from q0 and
reaching some state p, and simulates M on input cm ×x in the third component,
starting from q. Finally, M ′ accepts if the third component is an element of F
and if there exists a path from p to q labeled [c, c]i for some i ≥ 0. Now we can
test whether M ′ accepts a word by using depth-first or breadth-first search on
the transition diagram of M ′, whose size is at most cubic in terms of the size
of M . �	

4 Application to k-automatic Sets of Rational Numbers

Recently the second author and co-authors defined a notation of k-automaticity
for sets of non-negative rational numbers [11,13], in analogy with the more well-
known concept for sets of non-negative integers [4].

For an integer k ≥ 2 define Σk = {0, 1, . . . , k−1}. If w ∈ Σ∗
k , define [w]k to be

the integer represented by the word w in base k (assuming the most significant
digit is at the left). Let M be a finite automaton with input alphabet Σk × Σk.
We define quok(M) ⊆ Q≥0 to be the set

{
[π1(x)]k
[π2(x)]k

: x ∈ L(M)
}

.

Furthermore, we call a set T ⊆ Q≥0 k-automatic if there exists a finite automaton
M such that T = quok(M).

We first consider the following decision problem:

ACCEPTS-POWER

Instance: An integer k ≥ 2, and a finite automaton M with input alphabet
(Σk)2.

Question: Is quok(L(M)) ∩ {ki : i ≥ 0} nonempty?

Theorem 5. The problem ACCEPTS-POWER is undecidable.

Proof. The basic idea is to reduce once more from REWRITE-POWER, using the
same construction as in the proof of Theorem 2. Our reduction produces an
instance of ACCEPTS-SHIFT consisting of an alphabet Γ of cardinality �, a letter
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c �∈ Γ , and a finite automaton M . By renaming symbols, if necessary, we can
assume the symbols of Γ are the digits 1, 2, . . . , � and c is the digit 0. It then
suffices to take k = � + 1. Then y ∈ L(M) with quok(y) a power of k if and only
if y = x0n × 0nx for some x and some n ≥ 0. Note that, by our construction in
the proof of Theorem2, if M accepts x0n × 0nx, then x contains no 0’s. �	

Now consider a family of analogous decision problems ACCEPTS-POWER(k),
where in each problem k is fixed.

Theorem 6. For each integer k ≥ 2, the decision problem ACCEPTS-POWER(k)
is undecidable.

Proof. We have to overcome the problem that k can depend on the size of Γ .
To do so, we recode all words over the alphabet {0, 1}. It suffices to use the
morphism ϕ defined by

ϕ(c) = 0m+1 ϕ(ai) = 1i0m−i1

where Σ = {a1, a2, . . . , am}. In the proof of Theorem2, we replace E,R,L by
E′, R′, L′, as follows:

E′ =
{[

ϕ(e)
ϕ(e)

]
: e ∈ Σ

}
and R′ =

{[
ϕ(r)
ϕ(�)

]
: � → r ∈ S

}

L′ =
[
ϕ(d)
ϕ(c)

][
ϕ(a)
ϕ(c)

]+[
ϕ(d)
ϕ(d)

] (
E∗RE∗

[
ϕ(d)
ϕ(d)

])∗ [
ϕ(c)
ϕ(b)

]+[
ϕ(c)
ϕ(d)

]
.

The construction works because the blocks for symbols of Σ begin and end with
at least one 1, while the block for c consists of all 0’s. Therefore, if the first
coordinate of an element of L′ has a suffix in 0+, this can only arise from ϕ(c),
and the same for prefixes of the second coordinate. �	

5 Problems About Conjugates

Recall that we say two words x and y are conjugates if one is a cyclic shift of
the other; that is, if there exist u, v such that x = uv and y = vu.

The undecidability result of the previous section suggests studying the fol-
lowing related natural decision problem.

ACCEPTS-GENERAL-SHIFT

Instance: A finite automaton M with input alphabet Σ2.

Question: Does M accept a word of the form x × y for conjugates x, y ∈ Σ∗ ?

Theorem 7. The decision problem ACCEPTS-GENERAL-SHIFT is undecidable.



Undecidability and Finite Automata 167

Proof. We reduce from the problem ACCEPTS-SHIFT. An instance of this problem
is an alphabet Γ , a letter c /∈ Γ , and a finite automaton M with input alphabet
(Γ ∪ {c})2.

First check whether M accepts a word of the form x × x for some x ∈ Γ ∗.
(This is decidable because the language {x × x : x ∈ Γ ∗} is regular.) If so,
ACCEPTS-SHIFT(Γ, c,M) = “yes”. Otherwise, construct a finite automaton M ′

whose language is

L(M) ∩ {sc+ × c+t | s, t ∈ Γ ∗}.

Notice that ACCEPTS-SHIFT(Γ, c,M ′) = ACCEPTS-SHIFT(Γ, c,M). Clearly we
have that if ACCEPTS-GENERAL-SHIFT(M ′) = “no”, then ACCEPTS-SHIFT
(Γ, c,M ′) = “no”.

So suppose that ACCEPTS-GENERAL-SHIFT(M ′) = “yes”. Then M ′ accepts a
word w = x× y for words x = uv, y = vu where u, v ∈ (Γ ∪{c})∗. We now show
that w = zcn × cnz for some z ∈ Γ ∗ and n ≥ 1.

By the construction of M ′, uv ends with c, vu begins with c, and any two
occurrences of c in uv or vu have only c’s between them. Hence if u or v is empty,
then w = cn × cn for some n ≥ 1, and we can take z = ε, the empty word. So
say neither u nor v is empty. Then v begins and ends with c, and hence v is
in c+. It follows that if u contains c, then u begins and ends with c, so again
w = cn × cn for some n ≥ 1, and we can take z = ε. So say u does not contain
c. Then w = ucn × cnu with u ∈ Γ+ and n = |v|, and we can take z = u.

So w = zcn × cnz for some word z ∈ Γ ∗ and n ≥ 1. Therefore we have
ACCEPTS-SHIFT(Γ, c,M ′) = “yes”. This completes the reduction. Then since
ACCEPTS-SHIFT is undecidable by Theorem2, ACCEPTS-GENERAL-SHIFT is also
undecidable. �	

Now we turn to two other decision problems, both inspired by the problem
ACCEPTS-GENERAL-SHIFT. The first is

ACCEPTS-DISTINCT-CONJUGATES

Instance: A DFA M = (Q,Σ, δ, q0, F ).

Question: Does M accept two distinct conjugates uv and vu?

We will prove

Theorem 8. ACCEPTS-DISTINCT-CONJUGATES is decidable.

To prove this theorem, we need the concept of primitive word and primitive
root. A nonempty word x is said to be primitive if it cannot be written in the
form x = yi for a word y and an integer i ≥ 2. The primitive root of a word x is
the unique primitive word t such that x = tj for some j ≥ 1.

Lemma 9. If a DFA M of n states accepts two distinct conjugates, then it
accepts two distinct conjugates uv and vu, with at least one of u and v of length
≤ n2.
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Proof. Let L = L(M), the language accepted by M = (Q,Σ, δ, q0, F ), where
|Q| = n. Suppose that there exist uv ∈ L, vu ∈ L, but uv �= uv. Without loss
of generality, assume |uv| is as small as possible. Assume, contrary to what we
want to prove, that both |u| and |v| are > n2.

Consider the acceptance path of uv through M : it looks like δ(q0, u) = q1
and δ(q1, v) = p1 for some q1 ∈ Q and p1 ∈ F . Similarly, consider the acceptance
path of vu through M : it looks like δ(q0, v) = q2 and δ(q2, u) = p2 for some
q2 ∈ Q and p2 ∈ F .

Now create a new DFA M ′ = (Q × Q,Σ, δ′, q′
0, F

′) by the usual product
construction, where δ′([r, s], a) := [δ(r, a), δ(s, a)] and q′

0 = [q0, q1] and F =
{[q2, p1]}. Then M ′ has n2 states and accepts v.

Since |v| > n2, the acceptance path for v in M ′ visits ≥ n2 + 2 states and
hence some state is repeated, giving us a loop of at most n2 states that can be
cut out. Hence we can write v = v1v2v3, where v2 �= ε and v1v3 �= ε, and M ′

accepts v1v3. In M , then, it follows that δ(q1, v1v3) = p1 and δ(q0, v1v3) = q2,
and hence M accepts the conjugates uv1v3 and v1v3u. Since |uv1v3| < |uv|, the
minimality of |uv| implies that these conjugates cannot be distinct, and so we
must have

uv1v3 = v1v3u. (9)

We can now repeat the argument of the previous paragraph for the word u.
We get a decomposition u = u1u2u3 where u2 �= ε and u1u3 �= ε, and we get

vu1u3 = u1u3v. (10)

Finally, the acceptance paths in M we have created imply that we can cut
out both u2 and v2 simultaneously from uv and vu, and still get words accepted
by M . So u1u3v1v3 and v1v3u1u3 are both accepted. Again, by minimality, we
get that

u1u3v1v3 = v1v3u1u3. (11)

Now, by the Lyndon-Schützenberger theorem (see, e.g., [9,14]), Eq. (11)
implies the existence of a nonempty word t and integers i, j such that u1u3 = ti,
v1v3 = tj . Without loss of generality, we can assume that t is primitive.

Applying the same theorem to Eq. (10) tells us that there exists k such that
v = tk. And applying the same theorem once more to Eq. (9) tells us that there
exists � such that u = t�. But then uv = vu, a contradiction. �	
Remark 10. We observe that the bound of n2 in the previous result is optimal,
up to a constant multiplicative factor. Consider the languages

Lt = (at)+b(at+1)+bb ∪ (at)+bb(at+1)+bb.

Then it is easy to see that Lt can be accepted by a (complete) DFA of
n = 3t + 8 states. The shortest pair of distinct conjugates in Ln, however, are
at(t+1)bat(t+1)bb and at(t+1)bbat(t+1)b, corresponding to u = at(t+1)b of length
t2 + t + 1 and v = at(t+1)bb of length t2 + t + 2. Thus both u and v are of length
n2/9 + O(n).
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We can now prove Theorem 8.

Proof. Given L = L(M), for each nonempty word x define the language

Lx = {y ∈ Σ∗ : xy ∈ L, yx ∈ L, xy �= yx}.

We observe that each Lx is a regular language. To see this, note that we can
write Lx = L1 ∩ L2 ∩ L3, where

L1 = {y ∈ Σ∗ : xy ∈ L}
L2 = {y ∈ Σ∗ : yx ∈ L}
L3 = {y ∈ Σ∗ : xy �= yx}.

Both L1 and L2 are easily seen to be regular, and finite automata accepting
them are easily constructed from M . To see that the same holds for L3, note
that if xy = yx with x nonempty, then by the Lyndon-Schützenberger theorem
it follows that y ∈ t∗, where t is the primitive root of x. Hence L3 = t∗. Therefore
we can construct a finite automaton Mx accepting Lx.

Finally, here is the decision procedure. By Lemma 9 we know that if an n-
state DFA M accepts a pair of words uv and vu with uv �= vu, then it must
accept a pair with either |u| ≤ n2 or |v| ≤ n2. Thus, it suffices to enumerate all
u ∈ Σ∗ of lengths 1, 2, . . . , n2, and compute Mu for each u. If at least one Mu

has L(Mu) nonempty, then answer “yes”; otherwise answer “no”. �	
An alternative approach for proving Theorem8 was suggested by the referee,

as follows:

Proof. We show that ACCEPTS-DISTINCT-CONJUGATES is decidable by reducing
it to the functionality problem for nondeterministic streaming string transducers
(NSSTs) [1]. An NSST is a one-way nondeterministic automaton equipped with
a fixed set of variables in which to store strings. At each step, it reads a symbol
from the input, changes state, and updates its string variables in parallel with
a “copyless assignment”. At the end of the input, it produces an output string
based on its string variables and final state. See [1] for details.

Consider the relation R defined as the set of pairs {(uv, vu) ∈ L(M)×L(M)}.
An NSST T can implement R as a transduction as follows. T uses two string
variables X and Y . Let w be T ’s input. T updates X with X := Xσ whenever
a symbol σ of w is read, until some nondeterministic transition, after which, as
long as symbols σ of w are read, the following updates are performed: X := X
and Y := Y σ. When the end of w is reached, w = uv for u = X and v = Y .
During the computation, T uses its finite-state control to check that w is in
L(M). At the same time, T checks that vu is in L(M) by guessing a state q of
M , simulating M on u starting from q, verifying that M ends u in an accepting
state, simulating M on v starting from q0, and verifying that M ends v in q. If
all of these checks succeed, T outputs Y X = vu.

We say that T is functional if for every input string, T produces at most
one output string. If T is functional, then for every x ∈ L(M), x has at most
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one conjugate in L(M). Then since every string is a conjugate of itself, x has
no conjugates other than x in L(M), and so M does not accept distinct con-
jugates. On the other hand, if M does not accept distinct conjugates, then
for each input x, T can only produce x as output, and so T is functional.
Therefore T is functional iff the answer to ACCEPTS-DISTINCT-CONJUGATES is
“no”. By Theorem 4.1 of [1], checking if T is functional is decidable. Therefore
ACCEPTS-DISTINCT-CONJUGATES is decidable. �	

Our second decision problem is

ACCEPTS-NON-CONJUGATES

Instance: A DFA M = (Q,Σ, δ, q0, F ).

Question: Does M accept two words of the same length that are not conjugates?

We prove

Theorem 11. ACCEPTS-NON-CONJUGATES is decidable.

Proof. Given a formal language L over an ordered alphabet Σ, we define lexlt(L)
to be the union, over all n ≥ 0, of the lexicographically least word of length n in
L, if it exists. As is well-known (see, e.g., [15, Lemma 1]), if L is regular, then so
is lexlt(L). Furthermore, given a DFA for L, we can algorithmically construct a
DFA for lexlt(L).

We also define cyc(L) to be the union, over all words w ∈ L, of the conjugates
of w. Again, as is well-known (see, e.g., [14, Theorem 3.4.3]), if L is regular, then
so is cyc(L). Furthermore, given a DFA for L, we can algorithmically construct
a DFA for cyc(L).

We claim that L contains two words x and y of the same length that are
non-conjugates if and only if L is not a subset of cyc(lexlt(L)).

Suppose such x, y exist. Let t be the lexicographically least word in L of length
|x|. If t is a conjugate of x, then y is not a conjugate of t, so y �∈ cyc(lexlt(L)).
On the other hand, if t is not a conjugate of x, then x �∈ cyc(lexlt(L)). In both
cases L is not a subset of cyc(lexlt(L)).

Suppose L is not a subset of cyc(lexlt(L)). Then there is some word of some
length n in L, say x, that is not a conjugate of the lexicographically least word
of length n, say y. Then x and y are the desired two words.

Putting this all together, we get our decision procedure for the decision prob-
lem ACCEPTS-NON-CONJUGATES: given the DFA M for L, construct the DFA M ′

for L−cyc(lexlt(L)) using the techniques mentioned above. If M ′ accepts at least
one word, then the answer for ACCEPTS-NON-CONJUGATES is “yes”; otherwise it
is “no”. �	
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6 Final Remarks

We still do not know whether the following problem from [11, p. 363] is decidable:

ACCEPTS-INTEGER

Instance: A finite automaton M with input alphabet (Σk)2.

Question: Is quok(L(M)) ∩ N nonempty?

Unfortunately our techniques do not seem immediately applicable to this prob-
lem.

We mention two other problems about finite automata whose decidability is
still open:

1. Given a DFA M with input alphabet {0, 1}, decide if there exists at least one
prime number p such that M accepts the base-2 representation of p.

Remark 12. An algorithm for this problem would allow resolution of the exis-
tence of a Fermat prime 22

k

+ 1 for k > 4.

2. Given a DFA M with input alphabet {0, 1}, decide if there exists at least one
integer n ≥ 0 such that M accepts the base-2 representation of n2.

Acknowledgments. We thank Hendrik Jan Hoogeboom and the referees for their
helpful comments.
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