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Preface

The 21st International Conference on Developments in Language Theory (DLT 2017)
was organized by the Department of Mathematics of the University of Liège, Belgium,
during August 7–11, 2017.

The DLT conference series is one of the major international conference series in
language theory and related areas. The DLT conference was established by G.
Rozenberg and A. Salomaa in 1993. Since then, the DLT conferences have been held
on every odd year: Magdeburg, Germany (1995), Thessaloniki, Greece (1997),
Aachen, Germany (1999), and Vienna, Austria (2001). Since 2001, a DLT conference
has been taking place in Europe on every odd year and outside Europe on every even
year. The locations of DLT conferences since 2002 were: Kyoto, Japan (2002), Szeged,
Hungary (2003), Auckland, New Zealand (2004), Palermo, Italy (2005), Santa Barbara,
California, USA (2006), Turku, Finland (2007), Kyoto, Japan (2008), Stuttgart, Ger-
many (2009), London, Ontario, Canada (2010), Milan, Italy (2011), Taipei, Taiwan
(2012), Marne-la-Vallée, France (2013), Ekaterinburg, Russia (2014), Liverpool, UK
(2015), and Montréal, Canada (2016). This 21st edition was thus the first time that the
conference was organized in Belgium.

The series of International Conferences on Developments in Language Theory
provides a forum for presenting current developments in formal languages and auto-
mata. Its scope is very general and includes, among others, the following topics and
areas: combinatorial and algebraic properties of words and languages; grammars,
acceptors and transducers for strings, trees, graphs, arrays; algebraic theories for
automata and languages; codes; efficient text algorithms; symbolic dynamics; decision
problems; relationships to complexity theory and logic; picture description and anal-
ysis; polyominoes and bidimensional patterns; cryptography; concurrency; cellular
automata; bio-inspired computing; quantum computing.

The papers submitted to DLT 2017 were from 19 countries including Belgium,
Canada, Czech Republic, France, Germany, Hungary, India, Italy, Japan, The
Netherlands, Poland, Portugal, Republic of Korea, Russia, Slovakia, South Africa,
Thailand, and USA.

This volume of Lecture Notes in Computer Science contains the papers that were
presented at DLT 2017. There were 47 qualified submissions. Each submission was
handled by three Program Committee members and received at least three reviews. The
committee decided to accept 24 papers. The volume also includes the abstracts or full
papers of the invited speakers:

– Véronique Bruyère (University of Mons): “Computer-Aided Synthesis: A
Game-Theoretic Approach”

– Sergei Kitaev (University of Strathclyde): “A Comprehensive Introduction to the
Theory of Word-Representable Graphs”

– Robert Mercaş (Loughborough University): “On the Number of Factors with
Maximal-Exponent in Words”



– Balasubramanian Ravikumar (Sonoma State University): “Language Approxima-
tion: Asymptotic and Non-asymptotic Results”

– Eric Rowland (Hofstra University): “Binomial Coefficients, Valuations, and
Words”

– Michał‚ Skrzypczak (University of Warsaw): “Connecting Decidability and Com-
plexity for MSO Logic”

We warmly thank all the invited speakers and all the authors of the submitted
papers. We also would like to thank all the members of the Program Committee and all
the external reviewers (listed in the proceedings) for their excellent work in evaluating
the papers. We finally thank all the members of the Organizing Committee at the
University of Liège.

The organization of the conference benefited from the support of the F.R.S.-FNRS,
the Faculty of Sciences of the University of Liège and the Research Unit in Mathe-
matics of the University of Liège. The reviewing process was organized using the
EasyChair conference system created by Andrei Voronkov. We would like to
acknowledge that this system greatly helped to improve the efficiency of the committee
work. Finally, we wish to thank the editors of the Lecture Notes in Computer Science
series and Springer.

May 2017 Émilie Charlier
Julien Leroy
Michel Rigo
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Computer Aided Synthesis: A Game-Theoretic
Approach

Véronique Bruyère

Computer Science Department, University of Mons, 20 Place du Parc,
7000 Mons, Belgium

Veronique.Bruyere@umons.ac.be

Abstract. In this invited contribution, we propose a comprehensive introduction
to game theory applied in computer aided synthesis. In this context, we give
some classical results on two-player zero-sum games and then on multi-player
non zero-sum games. The simple case of one-player games is strongly related to
automata theory on infinite words. All along the article, we focus on general
approaches to solve the studied problems, and we provide several illustrative
examples as well as intuitions on the proofs.



A Comprehensive Introduction to the Theory
of Word-Representable Graphs

Sergey Kitaev

Department of Computer and Information Sciences, University of Strathclyde,
26 Richmond Street, Glasgow G1 1XH, UK
sergey.kitaev@cis.strath.ac.uk

https://personal.cis.strath.ac.uk/sergey.kitaev/

Abstract. Letters x and y alternate in a word w if after deleting in w all letters but
the copies of x and y we either obtain a word xyxy � � � (of even or odd length) or a
word yxyx � � � (of even or odd length). A graph G ¼ ðV ;EÞ is word-
representable if and only if there exists a word w over the alphabet V such
that letters x and y alternate in w if and only if xy 2 E.

Word-representable graphs generalize several important classes of graphs
such as circle graphs, 3-colorable graphs and comparability graphs. This paper
offers a comprehensive introduction to the theory of word-represent-able graphs
including the most recent developments in the area.



On the Number of Factors
with Maximal-Exponent in Words

Robert Mercaş

Department of Computer Science, Loughborough University, LE11 3TU,
Loughborough, UK

R.G.Mercas@lboro.ac.uk

A repetition (unary pattern) is represented as concatenations of several instances of the
same factor. A word contains a repetition if it has one as a factor, and it is said to be
repetition-free, otherwise. The word shshsh is an example of a cube, that is three
consecutive repetitions of the factor sh. If, for a given alphabet, every infinite word
contains an instance of the repetition, then such a repetition is called unavoidable for an
alphabet of that size. Otherwise, it can be avoided by an infinity of words constructed
over such an alphabet [5].

The investigation of repetitions has been around from the beginnings of the
Combinatorics on Words research area. People were interested in how it is possible to
avoid them [30, 36, 37], what bounds exist on the unavoidable ones [11, 12, 31, 34],
and extended the notion of avoidability to other settings, such as the abelian one
[14–16, 25, 26, 32], the case of words with “don’t cares” [7, 22, 28], as well as other
similar extensions [13, 18, 23, 33, 35]. Counting different types of repetitions has also
been a highly investigated topic [6, 18, 19, 21, 24, 29]. Moreover, most of these topics
have been accompanied by algorithmical results related to the identification and
counting of repetitions [8, 10, 20, 27].

Similar to the way that repetitions are defined, one can extend the notion by
allowing a fractional exponent. A period of a word is an interval at which each of it’s
previous symbols repeat. In the case of repetitions, given that these are concatenations
of the same factor, we immediately conclude that the length of the factor represents a
period of the word. Whence, we can say that every word has an exponent equal to its
length divided by a period. The word alfalfa has a period of 3 and its exponent is
7 / 3. As a direct consequence, considering the prefix of the word that determines its
minimal period, will give us the highest exponent for that word. Maximal-exponent
factors are those factors of a word that have the highest exponent among all factors
of the word. For the word abaca, its maximal-exponent factors are aba and aca,
respectively, each of a 3 / 2 exponent. Bounds on the maximal-exponent that a factor of
a word can have been thoroughly investigated [11, 12, 31, 34]. Even more, recently it
has been proven that every word has at most as many runs as its length [4, 9, 17]. A run
represents a factor of a word that is a repetition of exponent at least two, such that
extending it to either left or right (considering the letter before, or the letter following
the factor) breaks its periodicity (renders a smaller exponent for the newly obtained
factor). The factor anana represents a run in the word bananas since its exponent is
2.5 and both banana and ananas have exponent 1, therefore smaller.



The runs conjecture, which stood open for over 15 years, contributed to the
investigation of the number of maximal-exponent factors in a word. In particular, after
being proven that the number of such factors is no more than 3.11 times the size of the
word [3] when looking at square-free words (the upper bound for words that are not
square-free is the length of the word and is a direct consequence of the runs result) this
bound was already improved in the extended version of the former paper to 2.25 times
the length of the word [1]. Furthermore, in the latter, the authors also provide a lower
bound on the number of such factors, showing that there exist words that have at least
2/3 times the length of the word maximal-exponent factors. An important observation
is that in this particular case, the exponents that are investigated are in fact obtained
with the help of the longest border of the respective factor. A border of a word is any
prefix that also occurs as a suffix of the word.

This talk will focus on work carried out together with Golnaz Badkobeh and
Maxime Crochemore [2] and will have as its main focus both the lower and the upper
bounds on the number of factors with maximal-exponent.

References

1. Badkobeh, G., Crochemore, M.: Computing maximal-exponent factors in an overlap-free
word. J. Comput. Syst. Sci. 82(3), 477–487 (2016)

2. Badkobeh, G., Crochemore, M., Mercaş, R.: Counting maximal-exponent factors in words.
Theor. Comput. Sci. 658, 27–35 (2017)

3. Badkobeh, G., Crochemore, M., Toopsuwan, C.: Computing the maximal-exponent repeats
of an overlap-free string in linear time. In: Calderón-Benavides, L., González-Caro, C.,
Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 61–72. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-34109-0_8

4. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs” theorem.
CoRR abs/1406.0263v7 (2014)

5. Bean, D., Ehrenfeucht, A., McNulty, G.: Avoidable patterns in strings of symbols.
Pac. J. Math. 85, 261–294 (1979)

6. Blanchet-Sadri, F., Mercaş, R., Scott, G.: Counting distinct squares in partial words. In:
International Conference on Automata and Formal Languages. AFL, pp. 122–133 (2008)

7. Blanchet-Sadri, F., Mercaş, R., Scott, G.: A generalization of Thue freeness for partial
words. Theor. Comput. Sci. 410(8–10), 793–800 (2009)

8. Crochemore, M.: An optimal algorithm for computing the repetitions in a word. Inf. Process.
Lett. 12(5), 244–250 (1981)

9. Crochemore, M., Mercas, R.: On the density of lyndon roots in factors. Theor. Comput. Sci.
656, 234–240 (2016)

10. Crochemore, M., Rytter, W.: Squares, cubes, and time-space efficient string searching.
Algorithmica 13(5), 405–425 (1995)

11. Currie, J.D., Rampersad, N.: A proof of Dejean’s conjecture. Math. Comput. 80(274), 1063–
1070 (2011)

12. Dejean, F.: Sur un théorème de Thue. J. Comb. Theor. 13(1), 90–99 (1972)
13. Dekking, F.: On repetitions of blocks in binary sequences. J. Comb. Theor. 20(3), 262–299

(1976)

XIV R. Mercaş

http://dx.doi.org/10.1007/978-3-642-34109-0_8


14. Erdös, P.: Some unsolved problems. Magyar Tudományos Akadémia Matematikai Kutató
Intézete 6, 221–254 (1961)

15. Evdokimov, A.: Strongly asymmetric sequences generated by a finite number of symbols.
Doklady Akademii Nauk SSSR 179, 1268–1271 (1968). Russian. English translation in
Soviet Mathematics Doklady 9(1968), 536–539 (1968)

16. Evdokimov, A.: The existence of a basis that generates 7-valued iteration-free sequences.
Diskretnyĭ Analiz 18, 25–30 (1971)

17. Fischer, J., Holub, Š., I, T., Lewenstein, M.: Beyond the runs theorem. In: Iliopoulos, C.,
Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 277–286. Springer, Cham
(2015). doi:10.1007/978-3-319-23826-5_27

18. Fraenkel, A.S., Simpson, R.J.: How many squares must a binary sequence contain? Electron.
J. Comb. 2, R2 (1995)

19. Fraenkel, A.S., Simpson, R.J.: How many squares can a string contain? J. Comb. Theor. 82
(1), 112–120 (1998)

20. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, New York (1997)

21. Halava, V., Harju, T., Kärki, T.: On the number of squares in partial words. RAIRO - Theor.
Inf. Appl. 44(1), 125–138 (2010)

22. Halava, V., Harju, T., Kärki, T., Séébold, P.: Overlap-freeness in infinite partial words.
Theor. Comput. Sci. 410(8–10), 943–948 (2009)

23. Huova, M., Karhumäki, J., Saarela, A.: Problems in between words and abelian words: k-
abelian avoidability. Theor. Comput. Sci. 454, 172–177 (2012)

24. Ilie, L.: A note on the number of squares in a word. Theor. Comput. Sci. 380(3), 373–376
(2007)

25. Justin, J.: Characterization of the repetitive commutative semigroups. J. Algebra 21, 87–90
(1972)

26. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992). doi:10.1007/3-540-55719-9_62

27. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In:
Annual Symposium on Foundations of Computer Science. FOCS, pp. 596–604 (1999)

28. Manea, F., Mercaş, R.: Freeness of partial words. Theor. Comput. Sci. 389(1–2), 265–277
(2007)

29. Manea, F., Seki, S.: Square-density increasing mappings. In: Manea, F., Nowotka, D. (eds.)
WORDS 2015. LNCS, vol. 9304, pp. 160–169. Springer, Cham (2015). doi:10.1007/978-3-
319-23660-5_14

30. Morse, M., Hedlund, G.: Unending chess, symbolic dynamics and a problem in semigroups.
Duke Math. J. 11(1), 1–7 (1944)

31. Pansiot, J.J.: A propos d’une conjecture de F. Dejean sur les répétitions dans les mots. In:
Diaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 585–596. Springer, Heidelberg (1983).
doi:10.1007/BFb0036939

32. Pleasants, P.: Non repetitive sequences. Proc. Camb. Philos. Soc. 68, 267–274 (1970)
33. Rampersad, N., Shallit, J., Wang, M.W.: Avoiding large squares in infinite binary words.

Theor. Comput. Sci. 339(1), 19–34 (2005)
34. Rao, M.: Last cases of Dejean’s conjecture. Theor. Comput. Sci. 412(27), 3010–3018 (2011)
35. Rao, M.: On some generalizations of abelian power avoidability. Theor. Comput. Sci. 601,

39–46 (2015)

On the Number of Factors with Maximal-Exponent in Words XV

http://dx.doi.org/10.1007/978-3-319-23826-5_27
http://dx.doi.org/10.1007/3-540-55719-9_62
http://dx.doi.org/10.1007/978-3-319-23660-5_14
http://dx.doi.org/10.1007/978-3-319-23660-5_14
http://dx.doi.org/10.1007/BFb0036939


36. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiana
7, 1–22 (1906). (Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor,
Universitetsforlaget, Oslo, Norway (1977), pp. 139–158)

37. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
Videnskabers Selskabs Skrifter, I Mathematisch-Naturwissenschaftliche Klasse Christiana 1,
1–67 , (Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor,
Universitetsforlaget, Oslo, Norway (1977), pp. 413–478) (1912)

XVI R. Mercaş



Language Approximation: Asymptotic
and Non-asymptotic Results

Bala Ravikumar

Department of Computer and Engineering Science, Sonoma State University,
Rohnert Park, CA 94928, USA
ravikuma@sonoma.edu

Abstract. Approximation is a central concept in computational problem solving
and an effective way to deal with intractable problems as well as in contexts with
limited resources. Our specific focus will be on using finite automaton as a
computational model, and study how well various languages can be approxi-
mately recognized by finite automata (FA). In [1] and [10], a notion of
approximation was introduced that measures the proportion of inputs of a
problem (or language L) that are correctly processed by a machine M. In [2–7]
and other works, several regular and non-regular languages were considered and
the question how well they can be approximately recognized by a finite
automaton was addressed. Specifically, in [5], it was shown that Majority lan-
guage over {0, 1} (the set of strings with more 1’s than 0’s) can’t be approx-
imated by a FA of any size much better than a 1-state FA that accepts (or rejects)
all strings. In this presentation, in addition to theoretical results, we will also
explore approximation by finite automaton as a tool for algorithm design - for
recognition, optimization as well as counting problems. We also consider some
decision questions related to approximations - such as computing the success
ratio (defined as the fraction of the inputs correctly processed in the limit) of a
given FA, relative to specific, nonregular languages.

Most of the prior work listed above deals with approximation in an asymptotic
sense - how well is a language approximated by a machine when the length of the
string is arbitrarily large. For the notion of approximation to be useful in practice, we
should consider the case of fixed (or bounded) length inputs. Specifically, we consider
for various languages L (including Majority language and Center = the set of strings
w of length n over {0, 1} such that [n/2]-th bit is 1 where |w| = n), and for a given
integer n, which FA best approximates the language L over strings of length at most
n. We provide a general algorithm to find efficient, and in some cases, an optimal
approximating finite automaton with a specified number of states. Finally, we will
attempt to present some case studies in which approximate computation enables the
solution of hard counting problems.
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Binomial Coefficients, Valuations, and Words

Eric Rowland

Department of Mathematics, Hofstra University, Hempstead, NY 11549, USA
eric.rowland@hofstra.edu

Abstract. The study of arithmetic properties of binomial coefficients has a rich
history. A recurring theme is that p-adic statistics reflect the base-p representa-
tions of integers. We discuss many results expressing the number of binomial

coefficients
n
m

� �
with a given p-adic valuation in terms of the number of

occurrences of a given word in the base-p representation of n, beginning with a
result of Glaisher from 1899, up through recent results by Spiegelhofer–Wallner
and Rowland.



Connecting Decidability and Complexity
for MSO Logic

(Extended Abstract)

Michał Skrzypczak
University of Warsaw, Banacha 2 Warsaw, Poland

mskrzypczak@mimuw.edu.pl

Abstract. This work is about studying reasons for (un)decidability of variants of
Monadic Second-order (MSO) logic over infinite structures. Thus, it focuses on
connecting the fact that a given theory is (un)decidable with certain measures of
complexity of that theory.

The first of the measures is the topological complexity. In that case, it turns
out that there are strong connections between high topological complexity of
languages available in a given logic, and its undecidability. One of the milestone
results in this context is the Shelah’s proof of undecidability of MSO over reals.

The second complexity measure focuses on the axiomatic strength needed to
actually prove decidability of the given theory. The idea is to apply techniques
of reverse mathematics to the classical decidability results from automata theory.
Recently, both crucial theorems of the area (the results of Büchi and Rabin) have
been characterised in these terms. In both cases the proof gives strong relations
between decidability of the mso theory with concepts of classical mathematics:
determinacy, Ramsey theorems, weak Konig’s lemma, etc...
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Computer Aided Synthesis:
A Game-Theoretic Approach

Véronique Bruyère(B)

Computer Science Department, University of Mons,
20 Place du Parc, 7000 Mons, Belgium
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Abstract. In this invited contribution, we propose a comprehensive
introduction to game theory applied in computer aided synthesis. In this
context, we give some classical results on two-player zero-sum games and
then on multi-player non zero-sum games. The simple case of one-player
games is strongly related to automata theory on infinite words. All along
the article, we focus on general approaches to solve the studied problems,
and we provide several illustrative examples as well as intuitions on the
proofs.

Keywords: Games played on graphs · Boolean objective · Quantitative
objective · Winning strategy · Nash Equilibrium · Synthesis

1 Introduction

Game theory is a well-developed branch of mathematics that is applied to var-
ious domains like economics, biology, computer science, etc. It is the study of
mathematical models of interaction and conflict between individuals and the
understanding of their decisions assuming that they are rational [54,70].

The last decades have seen a lot of research on algorithmic questions in game
theory motivated by problems from computer aided synthesis. One important
line of research is concerned with reactive systems that must continuously react
to the uncontrollable events produced by the environment in which they evolve.
A controller of a reactive system indicates which actions it has to perform to
satisfy a certain objective against any behavior of the environment. An example
in air traffic management is the autopilot that controls the speed of the plane,
but have no control on the weather conditions. Such a situation can be modeled
by a two-player game played on a graph: the system and the environment are
the two players, the vertices of the graph model the possible configurations,
the infinite paths in the graph model all the continuous interactions between the
system and the environment. In this game, the system wants to achieve a certain
objective while the environment tries to prevent it to do so. The objectives
of the two players are thus antagonistic and we speak of zero-sum games. In
this framework, checking whether the system is able to achieve its objective
reduces to the existence of a winning strategy in the corresponding game, and
c© Springer International Publishing AG 2017
É. Charlier et al. (Eds.): DLT 2017, LNCS 10396, pp. 3–35, 2017.
DOI: 10.1007/978-3-319-62809-7 1
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building a controller reduces to computing such a strategy [38]. Whether such
a controller can be automatically designed from the objective is known as the
synthesis problem.

Another, more recent, line of research is concerned with the modelization
and the study of complex systems. Instead of the simple situation of a system
embedded in a hostile environment, we are faced with systems/environments
formed of several components each of them with their own objectives that are
not necessarily conflicting. Imagine the situation of several users behind their
computers on a shared network. In this case, we use the model of multi-player
non zero-sum games played on graphs: the components are the different players,
each of them aiming at satisfying his objective. In this context, the synthesis
problem is a little different: winning strategies are no longer appropriate and
are replaced by the concept of equilibrium, that is, a strategy profile where no
player has an incentive to deviate [39]. Different kinds of equilibria have been
investigated among which the famous notion of Nash equilibrium [53].

A lot of study has been done about Boolean objectives, in particular about
the class of ω-regular objectives, like avoiding a deadlock, always granting a
request, etc [38]. An infinite path in the game graph is either winning or losing
depending on whether the objective is satisfied or not. To allow richer objectives,
such as minimizing the energy consumption or guaranteeing a limited response
time to a request, existing models have been enriched with quantitative aspects
in a way to associate a payoff (or a cost) to all paths in the game graph [19]. In
this setting, we speak of quantitative objectives, and a classical decision problem
in two-player zero-sum games is whether there exists a winning strategy for the
system that ensures a payoff satisfying some given constraints no matter how the
environment behaves. For instance we would like an energy consumption lying
within a certain given interval. The same kind of question is also considered for
multi-player non zero-sum games, that is, whether there exists an equilibrium
such that the payoff of each player satisfies the constraints.

Decidability of those problems is not enough. Indeed in case of positive
answer, it is important to know the exact complexity class of the problem and
how complex are the strategies used to solve it. Given past interactions between
the players, a strategy for a player indicates the next action he has to perform.
The amount of memory on those past interactions is one of the ways to express
the complexity of the strategy. The simplest strategies are those that require no
memory at all. When all these characteristics are known and indicate practical
applicability of the models, the final step is the implementation of the solving
strategies into a program (like for instance a controller for a reactive system) by
using adequate data structures and possibly heuristics.

In this article, we propose a comprehensive introduction to classical algo-
rithmic solutions to the synthesis problem for two-player zero-sum games and
for multi-player non zero-sum games. A complementary survey can be found
in [9], and detailed expositions in the case of Boolean objectives are provided
in [38,39]. We study the existence of winning strategies (in two-player zero-
sum games) and equilibria (in multi-player non zero-sum games) satisfying some
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given constraints, in particular the complexity class of the decision problem and
the memory required for the related strategies. We provide several illustrative
examples as well as intuitions on some proofs. We do not intend to present an
exhaustive survey, but rather focus on some lines of research, with an emphasis
on general approaches. In particular, we only consider (i) turned-based (and not
concurrent) games such that the players choose their actions in a turned-based
way (and not concurrently), (ii) deterministic (and not stochastic) games such
that their edges are deterministic and not labeled by probabilities (iii) pure (and
not randomized) strategies such that the next action is chosen in a deterministic
way (and not according to a probability distribution).

Our approach is as follows. We begin with a general definition of game that
includes the class of games with Boolean objectives and the class of games
with quantitative objectives. For two-player zero-sum games, we present a cri-
terium [36] that implies, for several large families of games, the existence of mem-
oryless winning strategies ensuring a payoff satisfying some given constraints. For
non zero-sum multi-player games, we present a characterization of plays (used
for instance in [14,65]) that are the outcome of a Nash equilibrium. The existence
of Nash equilibrium in many different families of games is derived from this char-
acterization, as well as results on the existence of a Nash equilibrium satisfying
some constraints. We also present two other well-studied equilibria: the secure
equilibria [23] and the subgame perfect equilibria [61]. For the studied decision
problems, in addition to the results derived from our general approaches, we
provide in this survey an overview of known results for games with Boolean and
quantitative objectives.

The article is organized in the following way. In Sect. 2, we introduce the
concepts of game and strategy, we then present the studied decision problems,
and we finally recall the Boolean and quantitative objectives that are classically
studied. In Sect. 3 devoted to two-player zero-sum games, we begin with the sim-
ple case of one-player games, and show how the decision problems are connected
to problems in automata theory and numeration systems. We then present the
general criterium mentioned before, and then the solutions to the decision prob-
lems for the classes of games with Boolean and quantitative objectives. Finally,
we present several recent extensions of those classes of games, where for instance
the single objective is replaced by a Boolean intersection of several objectives.
The case of multi-player non zero-sum games is investigated in Sect. 4 by start-
ing with the characterization of outcomes of Nash equilibrium. Derived results
on the existence of Nash equilibrium (under some given constraints) are then
detailed, followed by a study of other kinds of equilibria like secure and subgame
perfect equilibria. We provide a short conclusion in Sect. 5.

2 Terminology and Studied Problems

We consider multi-player turn-based games played on finite directed graphs. The
set of vertices are partitioned among the different players. A play is an infinite
sequence of vertices obtained by moving an imaginary pebble from vertex to
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vertex according to existing edges. The owner of the current vertex decides what
is the next move of the pebble according to some strategy. Each player follows
a strategy in a way to achieve a certain objective. This objective depends on a
preference relation that the player has on the payoffs assigned to plays. In this
section, we introduce all these notions and state the problems studied in this
article.

2.1 Preliminaries

Games. We begin with the notions of arena and game.

Definition 1. An arena is a tuple A = (Π,V, (Vi)i∈Π , E) where:

– Π is a finite set of players,
– V is a finite set of vertices and E ⊆ V × V is a set of edges, such that each

vertex has at least one outgoing edge1,
– (Vi)i∈Π is a partition of V , where Vi is the set of vertices owned2 by player

i ∈ Π.

A play is an infinite sequence ρ = ρ0ρ1 . . . ∈ V ω of vertices such that
(ρk, ρk+1) ∈ E for all k ∈ N. Histories are finite sequences h = h0 . . . hn ∈ V ∗

defined in the same way. We often use notation hv to mention the last vertex
v ∈ V of the history. The set of plays is denoted by Plays and the set of non
empty histories (resp. ending with a vertex in Vi) by Hist (resp. by Histi). A
prefix (resp. suffix ) of a play ρ = ρ0ρ1 . . . is a finite sequence ρ≤n = ρ0 . . . ρn

(resp. infinite sequence ρ≥n = ρnρn+1 . . .). We often use notation hρ for a play of
which history h is prefix. Given a play ρ, we denote by inf(ρ) the set of vertices
visited infinitely often by ρ. We say that ρ is a lasso if it is equal to hgω with h, g
being two histories. This lasso is called simple if hg has no repeated vertices.

Definition 2. A game G is an arena A = (Π,V, (Vi)i∈Π , E) such that each
player i has:

– a payoff function fi : Plays → Pi where Pi is a set of payoffs,
– a preference relation ≺i ⊆ Pi × Pi on his set of payoffs.

A preference relation ≺i is a strict total order3. It allows player i to compare
two plays ρ, ρ′ ∈ Plays with respect to their payoffs: fi(ρ) ≺i fi(ρ′) means that
player i prefers ρ′ to ρ. Given p, p′ ∈ Pi, we write p �i p′ when p ≺i p′ or p = p′;
notice that p ⊀i p′ iff p′ �i p since ≺i is total.

A payoff function fi is prefix-independent if fi(hρ) = fi(ρ) for all hρ ∈ Plays.
It is prefix-linear if for all hρ, hρ′ ∈ Plays,

fi(ρ) �i fi(ρ′) ⇒ fi(hρ) �i fi(hρ′), and (1)
fi(ρ) ≺i fi(ρ′) ⇒ fi(hρ) ≺i fi(hρ′). (2)

1 This condition guarantees that there is no deadlock. It can be assumed w.l.o.g. for
all the problems considered in this article.

2 We also say that player i controls the vertices of Vi.
3 that is, an irreflexive, transitive and total binary relation.
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Any prefix-independent function fi is prefix-linear.
When an initial vertex v0 ∈ V is fixed, we call (G, v0) an initialized game. In

this case, plays and histories are supposed to start in v0, and we then use nota-
tions Plays(v0), Hist(v0), and Histi(v0) (instead of Plays, Hist, and Histi).

Example 3. Consider the initialized two-player game (G, v0) in Fig. 1 such that
player 1 (resp. player 2) controls vertices v0, v2, v3 (resp. vertex v1).4 Both players
use the same set P of payoffs equal to {p1, p2, p3}, and the same payoff function
f that is prefix-independent: f((v0v1)ω) = p1, f(vω

2 ) = p2, and f(vω
3 ) = p3.

The preference relation for player 1 (resp. player 2) is p1 ≺1 p2 ≺1 p3 (resp.
p2 ≺2 p3 ≺2 p1).

v0 v1v2 v3

Fig. 1. A two-player game with payoff functions f = f1 = f2, preference relations
p1 ≺1 p2 ≺1 p3 and p2 ≺2 p3 ≺2 p1, such that f((v0v1)

ω) = p1, f(vω
2 ) = p2, and

f(vω
3 ) = p3

Strategies. Let (G, v0) be an initialized game. A strategy σi for player i in
(G, v0) is a function σi : Histi(v0) → V assigning to each history hv ∈ Histi(v0)
a vertex v′ = σi(hv) such that (v, v′) ∈ E. Thus σi(hv) is the next vertex
chosen by player i (that controls vertex v) after history hv has been played. A
play ρ ∈ Plays(v0) is consistent with σi if ρn+1 = σi(ρ≤n) for all n such that
ρn ∈ Vi.

A strategy σi for player i is positional if it only depends on the last vertex
of the history, i.e., σi(hv) = σi(v) for all hv ∈ Histi(v0). More generally, it
is finite-memory if σi(hv) needs only a finite information out of the history
hv. This is possible with a finite-state machine that keeps track of histories of
plays. The strategy chooses the next vertex depending on the current state of
the machine and the current vertex in the game.5 The previous definition of
positional strategy σi for player i is given for an initialized game (G, v0). We call
it uniform if it is defined for all hv ∈ Histi (instead of Histi(v0)), that is, when
σi is a positional strategy in all initialized games (G, v), v ∈ V .

A strategy profile is a tuple (σi)i∈Π of strategies, where each σi is a strategy
of player i. It is called positional (resp. uniform, finite-memory) if all σi, i ∈ Π,
are positional (resp. uniform, finite-memory). Given an initial vertex v0, such a
strategy profile determines a unique play of (G, v0) that is consistent with all
strategies σi. This play is called the outcome of (σi)i∈Π in (G, v0) and is denoted
by 〈(σi)i∈Π〉v0 .

4 In all examples of this article, circle (resp. square) vertices are controlled by player 1
(resp. player 2).

5 This informal definition is enough for this survey. See for instance [38] for a definition.
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Example 3 (continued). An example of strategy profile (σ1, σ2) in (G, v0) is the
following one:

– the positional strategy σ2 for player 2 is defined such that σ2(hv1) = v3 for
all hv1 ∈ Hist(v0),

– the finite-memory strategy σ1 for player 1 is defined such that σ1(v0) = v1
and σ1(hv0) = v2 for all hv0 ∈ Hist(v0) \ {v0}.6 Hence player 1 chooses to
move to v1 (resp. to v2) at the first visit (resp. next visits) to v0. The needed
memory is whether the current history has visited v0 once or more time.

The outcome 〈(σ1, σ2)〉v0 is equal to v0v1v
ω
3 with payoff p3.

2.2 Studied Problems

In this paper, we want to study two problems. In the first problem, one designated
player, say player 1, wants to apply a strategy that guarantees certain constraints
on the payoffs of the plays (with respect to his preference relation) against any
strategy of the other players. The other players can thus be considered as one
player, say player 2, being the opponent of player 1. This is the class of so-called
two-player zero-sum games.

Problem 4. Let (G, v0) be an initialized two-player zero-sum game and μ, ν ∈ P1

be two bounds. Decide whether player 1 has a strategy σ1 such that μ �1 f1(ρ)
(resp. μ �1 f1(ρ) �1 ν) for all plays ρ ∈ Plays(v0) consistent with σ1.7

Case μ �1 f1(ρ) is called the threshold problem whereas case μ �1 f1(ρ) �1 ν
is called the constraint problem. When a strategy σ1 as required in Problem 4
exists, it is called winning and a play ρ consistent with σ1 is also called winning ;
we also say that player 1 can ensure a payoff f1(ρ) such that μ �1 f1(ρ) (resp.
μ �1 f1(ρ) �1 ν). When this problem is decidable, we are interested in finding
its complexity class and the simplest winning strategies σ1, like positional or
finite-memory ones when they exist.

In a two-player zero-sum game G, the opposition between player 1 and
player 2 is most often described in terms of objectives. An objective Ω for
player 1 is a subset of Plays, here the set of plays ρ such that μ �1 f1(ρ)
(resp. μ �1 f1(ρ) �1 ν). Player 1 wants to ensure a play in Ω against any
strategy of player 2. As an opponent, player 2 wants wants to avoid plays in Ω,
that is, to ensure the opposite objective Plays \ Ω. We say that the game G
with objective Ω is determined if for each initial vertex v0, either player 1 has
a winning strategy to ensure Ω in (G, v0) or player 2 has a winning strategy to
ensure Plays \ Ω. Martin’s theorem [51] states that every two-player zero-sum
game with Borel objectives is determined. Nevertheless, it gives no information
on which player has a winning strategy and on the shape of such a winning
strategy. This motivates studying Problem 4.
6 As player 1 can only loop on vertices v2 and v3, we do not formally define σ1 on

histories ending with v2 or v3.
7 This problem is focused on Player 1, the payoff function f2 and preference relation

≺2 of Player 2 do not matter.
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Example 5. Let us come back to the game of Fig. 1 seen as a two-player zero-sum
game (we thus focus on player 1). In (G, v0), player 1 has a winning strategy
σ1 for the threshold problem with μ = p2, that is, for the objective Ω = {ρ |
f(ρ) ∈ {p2, p3}}: take the positional strategy σ1 such that σ1(v0) = v2. However
he has no winning strategy for the threshold problem with μ = p3. Indeed with
the positional strategy σ2 such that σ2(v1) = v0, player 2 has a winning strategy
for the opposite objective since he can ensure a payoff equal to p1 or p2.

In the second problem studied in this article, we come back to multi-player
games where each player has his own payoff function and preference relation.
Here, the players are not necessarily antagonistic: this is the class of so-called
multi-player non zero-sum games. Instead of looking for a strategy ensuring a
certain objective for one designated player, we are now interested in strategy
profiles, called solution profiles, that provide payoffs satisfactory to all players
with respect to their own objectives. A classical example of solution profile is
the notion of Nash equilibrium (NE) [53]. Informally, a strategy profile is an NE
if no player has an incentive to deviate (with respect to his preference relation)
when the other players stick to their own strategies. In other words, an NE can
be seen as a contract that makes every player satisfied in the sense that nobody
wants to break the contract if the others follow it.

Definition 6. Given an initialized game (G, v0), a strategy profile (σi)i∈Π is a
Nash equilibrium if fi(〈(σi)i∈Π〉v0) ⊀i fi(〈σ′

i, σ−i〉v0) for all players i ∈ Π and
all strategies σ′

i of player i.

In this definition, notation (σ′
i, σ−i) means the strategy profile such that

all players stick to their own strategy except player i who shifts from strat-
egy σi to strategy σ′

i. We say that σ′
i is a deviating strategy from σi. When

fi(〈(σi)i∈Π〉v0) ≺i fi(〈σ′
i, σ−i〉v0), σ′

i is called a profitable deviation for player i
with respect to (σi)i∈Π .
Example 3 (continued). Let us reconsider the non zero-sum game G of Fig. 1 and
the strategy profile (σ1, σ2) given previously in (G, v0) (σ1(v0) = v1, σ1(hv0) = v2
for all hv0 ∈ Hist(v0) \ {v0}, and σ2(hv1) = v3 for all hv1 ∈ Hist(v0)). This
strategy profile is an NE with outcome 〈(σ1, σ2)〉v0 = v0v1v

ω
3 . Indeed, player 1

has no incentive to deviate since the payoff p3 of 〈σ1, σ2〉v0 is the best possible
with respect to ≺1. If player 2 uses the deviating strategy σ′

2 from σ2 such
that σ′

2(v0v1) = v0, then the resulting outcome 〈σ1, σ
′
2〉v0 = v0v1v0v

ω
2 has a less

preferable payoff for him since p2 ≺2 p3. So player 2 has no profitable deviation.
Other kinds of solution profiles will be studied in Sect. 4.

Problem 7. Let (G, v0) be an initialized multi-player non zero-sum game and
(μi)i∈Π , (νi)i∈Π ∈ (Pi)i∈Π be two tuples of bounds. Decide whether there
exists a solution profile (σi)i∈Π such that μi �i fi(〈(σi)i∈Π〉v0) (resp. μi �i

fi(〈(σi)i∈Π〉v0) �i νi) for all players i ∈ Π.

Similarly to Problem 4, the two cases are respectively called threshold problem
and constraint problem, and we want to compute the complexity class and the
simplest solution profiles in case of decidability.
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In Sects. 3 and 4, we present some known results about solutions to Prob-
lems 4 and 7 respectively with an emphasis on general approaches. Before, we
end Sect. 2 with a list of payoff functions that are classically studied.

2.3 Classical Payoff Functions

In the classes of games that are classically studied, each player i ∈ Π uses a
real-valued payoff function fi : Plays → R and a preference relation ≺i equal to
the usual ordering < on Pi = R. Hence, player i prefers to maximize the payoff
fi(ρ) of a play ρ.8 In this classical setting, we focus on two particular subclasses:
the Boolean payoff functions and the quantitative payoff functions.

Boolean Payoff Functions. A particular subclass of games G are those
equipped with Boolean functions fi : Plays → {0, 1}, for all i ∈ Π, where
payoff 1 (resp. payoff 0) means that the play is the most (resp. the less) pre-
ferred by player i. Particularly interesting related objectives are Ωi = {ρ ∈
Plays | fi(ρ) = 1}, i ∈ Π. Classical such objectives Ωi are ω-regular objectives
like the following ones [38,39,55].

Definition 8. – Let U ⊆ V ,
• Reachability : Ωi = {ρ ∈ Plays | ρ visits a vertex of U at least once},
• Safety: Ωi = {ρ ∈ Plays | ρ visits no vertex of U},
• Büchi: Ωi = {ρ ∈ Plays | inf(ρ) ∩ U �= ∅},
• Co-Büchi: Ωi = {ρ ∈ Plays | inf(ρ) ∩ U = ∅}.

– Let c : V → N be a coloring of the vertices by integers,
• Parity: Ωi = {ρ ∈ Plays | the maximum color seen infinitely often along

c(ρ0)c(ρ1) . . . is even}.
– Let (Fk, Gk)1≤k≤l be a family of pairs of sets Fk, Gk ⊆ V ,

• Rabin: Ωi = {ρ ∈ Plays | ∃k, 1 ≤ k ≤ l, such that inf(ρ) ∩ Fk = ∅ and
inf(ρ) ∩ Gk �= ∅},

• Streett: Ωi = {ρ ∈ Plays | ∀k, 1 ≤ k ≤ l, inf(ρ)∩Fk �= ∅ or inf(ρ)∩Gk =
∅}.

– Let F ⊆ 2V be a family of subsets of vertices,
• Muller9 : Ωi = {ρ ∈ Plays | inf(ρ) ∈ F}.

Notice that reachability and safety (resp. Büchi and co-Büchi, Rabin and
Streett) are dual objectives. The complement of a parity (resp. Muller) objective
is again a parity (resp. Muller) objective: from the coloring function c : V → N,
define the new function c′ such that c′(v) = c(v)+1 for all v ∈ V (resp. from the
family F ⊆ 2V , define the new family F ′ = 2V \ F). A Büchi (resp. co-Büchi)
objective is a particular case of a parity objective: assign color 2 to vertices of
8 Alternatively, ≺i can be the ordering > meaning that player i prefers to minimize

the payoff of a play.
9 A colored variant of Muller objective is defined from a coloring c : V → N of the

vertices: the family F is composed of subsets of c(V ) (instead of V ) and Ωi = {ρ ∈
Plays | inf(c(ρ0)c(ρ1) . . .) ∈ F} [39]. See [42] for several variants of Muller games.
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U and 1 to vertices of V \ U (resp. color 1 to U and 0 to V \ U). Similarly, one
can easily prove that a parity objective is both a Rabin and a Streett objective
which are themselves a Muller objective [38].

In the previous definition, the payoff function fi is prefix-independent in each
case except for reachability and safety where only condition (1) of prefix-linearity
is satisfied.

Example 9. Suppose that in the game of Fig. 1, player 1 wants to achieve the
Büchi objective with U = {v2, v3} whereas player 2 wants to achieve the Muller
objective with F = {{v0, v1}, {v3}}. Then the play ρ = (v0v1)ω has payoff (0, 1),
that is a payoff 0 for player 1 and a payoff 1 for player 2.

Quantitative Payoff Functions. Classical quantitative payoff functions fi :
Plays → R are defined from a weight function wi : E → Q as follows [19] (each
edge of the game G is thus labeled by a |Π|-tuple of weights).

Definition 10. Let wi : E → Q be a weight function and λ ∈ ]0, 1[ be a rational
discount factor. Then fi : Plays → R is defined as one among the following
payoff functions: let ρ = ρ0ρ1 . . . ∈ Plays,

– Supremum: Supi(ρ) = supn∈N wi(ρn, ρn+1),
– Infimum: Infi(ρ) = infn∈N wi(ρn, ρn+1),
– Limsup: LimSupi(ρ) = lim sup

n→∞
wi(ρn, ρn+1),

– Liminf: LimInfi(ρ) = lim inf
n→∞ wi(ρn, ρn+1),

– Mean-payoff MPi: MPi(ρ) = lim sup
n→∞

1
n

n−1∑

k=0

wi(ρk, ρk+1),

– Mean-payoff MPi: MPi(ρ) = lim inf
n→∞

1
n

n−1∑

k=0

wi(ρk, ρk+1),

– Discounted sum: Discλ
i (ρ) =

∑∞
n=0 wi(ρn, ρn+1)λn.

Some of these payoff functions provide natural generalizations of the previ-
ous ω-regular objectives. Indeed the supremum (resp. infimum, limsup, liminf)
function is a quantitative generalization of the reachability (resp. safety, Büchi,
co-Büchi) objective. The mean-payoff and discounted sum functions are much
studied in classical game theory [33].

There are two variants of mean-payoff functions because the limit may not
exist. Nevertheless in case of a lasso ρ = hgω, both payoffs MPi(ρ) and MPi(ρ)
coincide and are equal to the average weight of the cycle g (with respect to the
weight function wi).

In Definition 10, the payoff function fi is prefix-independent in limsup, lim-
inf and mean-payoff cases, prefix-linear in discounted sum case, and satisfies
condition (1) of prefix-linearity in supremum and infimum cases.

Example 11. We equip the game of Fig. 1 with two weight functions w1, w2, lead-
ing to the game of Fig. 2. Suppose that f1 = LimSup1 and f2 = MP2. The pref-
erences of the players with respect to plays (v0v1)ω and v0v

ω
2 are opposed since
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v0 v1v2 v3

(1, 3)

(0, 0)

(1, 3)

(0, 0)

(2, 1) (3, 2)

Fig. 2. A quantitative two-player game

f1((v0v1)ω) = 1 < f1(v0vω
2 ) = 2 for player 1, and f2(v0vω

2 ) = 1 < f2((v0v1)ω) = 3
for player 2.

In the sequel, games with the Boolean payoff functions of Definition 8 are
called Boolean games. Similarly games with the quantitative payoff functions
of Definition 10 are called quantitative games. We also speak about reachability
game, supremum game, etc., when we want to refer to a game where all the
players use the same type of payoff function. The complexity results mentioned
later depend on the number of vertices, edges and players, as well as on the
number of colors (resp. pairs, elements of F) for parity (resp. Rabin/Streett,
Muller) games, and on numerical rational values (of weights, discount factor,
and bounds) given in binary for quantitative games.

3 Two-Player Zero-Sum Games

In two-player zero-sum games, players 1 and 2 have opposite objectives. This
class of games has been much studied. In particular solutions to Problem 4
are well established for Boolean games and quantitative games as introduced in
Sect. 2.3. Before presenting them, we begin with the simplest situation of games
played by a unique player and we show that the problems studied in this article
are connected to problems in automata theory and numeration systems.

3.1 One-Player Games

In one-player games, player 1 has no opponent, he is the only player to choose the
next vertex at any moment of a play. In other words, a strategy σ1 for player 1
is nothing else than a play ρ in the game. The statement of Problem 4 thus
simplifies as follows:10

Problem 12. Let (G, v0) be an initialized one-player game. Let μ, ν ∈ P be two
bounds. Decide whether there exists a play ρ ∈ Plays(v0) such that μ � f(ρ)
(resp. μ � f(ρ) � ν)?

10 In Sect. 3.1, we omit index 1 everywhere since player 1 is the unique player of the
game.
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Boolean Games. For Boolean games, this problem is interesting only with
bounds μ = ν = 1. Indeed recall that the payoff function f is Boolean and that
player 1 prefers plays ρ such that f(ρ) = 1. This is the classical well-known non
emptiness problem for automata [55]. For instance, Problem 12 for one-player
reachability (resp. Büchi) games with μ = ν = 1 is the non emptiness problem
for automata accepting finite words (resp. Büchi automata accepting infinite
words).

Theorem 13. Let (G, v0) be an initialized one-player Boolean game. Then
Problem 12 (with μ = ν = 1) is decidable in polynomial time with positional
winning strategies, except for Streett and Muller games where finite-memory
strategies are necessary and sufficient.

Let us comment this theorem. Notice that a winning strategy for player 1
that is finite-memory (resp. positional) means that the corresponding winning
play ρ, or in terms of automata the accepted word, is a (resp. simple) lasso. It is
well-known that positional strategies are sufficient for Büchi objectives. This also
happens for the other objectives except for Streett and Muller objectives (we will
discuss this point in more details in Sect. 3.2, see Theorem 21). Example 14 illus-
trates that finite-memory strategies are necessary for Streett and Muller games.
In cases where positional strategies are sufficient, an algorithm for Problem 12
has thus to concentrate on the existence of winning simple lassos, which can be
easily done in polynomial time. The case of Streett and Muller games can also
be solved in polynomial time [31,41]. Problem 12 is NL-complete for reachability
and Büchi games [45,67] as well as for safety, co-Büchi, Rabin, parity, and Muller
games, and it is P-complete for Streett games [31,60].

Example 14. Consider the initialized one-player game (G, v0) of Fig. 3 with
V = {v0, v1, v2}. For the Muller objective with F = {V } (or the Streett objec-
tive with the two pairs (F1, G1), (F2, G2) such that F1 = {v1}, G1 = V and
F2 = {v2}, G2 = V ), a winning play ρ ∈ Plays(v0) cannot be a simple lasso as
it has to alternate between v1 and v2.

v0 v1v2

Fig. 3. A one-player game

Quantitative Games. Let us turn to quantitative games. The existence of
plays ρ with μ ≤ f(ρ) in one-player quantitative games (threshold problem)
have been studied in [19].

Theorem 15 [19]. Let (G, v0) be an initialized one-player quantitative game,
and μ ∈ Q be a rational threshold. Then deciding whether there exists a play
ρ ∈ Plays(v0) such that μ ≤ f(ρ) is solvable in polynomial time with positional
strategies.
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Let us comment this theorem. Dealing with functions Sup, Inf, LimSup, and
LimInf is equivalent to respectively consider reachability, safety, Büchi, and co-
Büchi objectives (studied in Theorem 13). For instance, satisfying μ ≤ Sup(ρ)
is equivalent to visiting an edge with a weight ≥ μ along ρ. For functions MP,
MP, and Discλ, once one knows that positional strategies are sufficient (we will
discuss this point in more details in Sect. 3.2), the problem again reduces to the
existence of a simple lasso ρ = hgω with maximum payoff f(ρ). In case of mean-
payoff function, recall that both payoffs MP(ρ), MP(ρ) coincide and are equal to
the average weight of the cycle g. A polynomial algorithm is proposed in [47] to
compute a cycle in a weighted graph with maximum average weight. The case of
function Discλ is polynomially solved by a linear programming approach in [2].

We now discuss the existence of a play ρ such that μ ≤ f(ρ) ≤ ν, given two
rational bounds μ, ν ∈ Q (constraint problem). The problem is more involved,
in particular it is currently unsolved for function Discλ.

Theorem 16 [43,66]. Let (G, v0) be an initialized one-player quantitative
(except discounted sum) game, and μ, ν ∈ Q be two rational bounds. Then decid-
ing whether there exists a play ρ ∈ Plays(v0) such that μ ≤ f(ρ) ≤ ν is solvable
in polynomial time. Positional strategies are sufficient for supremum, infimum,
limsup, and liminf games, whereas finite-memory is necessary and sufficient for
mean-payoff MP and MP games.

Let us comment this theorem. If we focus on function LimSup, looking for a
play ρ such that μ ≤ LimSup(ρ) ≤ ν reduces to the non emptiness problem for
Rabin automata (studied in Theorem 13). Indeed the required play ρ is such that
at least one weight seen infinitely often along ρ is ≥ μ and none of them is > ν.
A similar approach exists for functions Sup, Inf and LimInf. Whereas positional
winning strategies are sufficient in all these cases, finite-memory is needed for
mean-payoff functions as indicated in Example 17. Since finite-memory strategies
are sufficient [43], the problem in both cases MP, MP reduces to the existence of
a lasso ρ satisfying the constraints. This can be checked in polynomial time by
solving a linear program [66].

Example 17. Consider the game of Fig. 3 equipped with the weight function w
that labels the two left edges by 0 and the two right edges by 2. A winning play ρ
for μ = ν = 1 cannot be a simple lasso (with payoff either 0 or 2). However the
non simple lasso ρ = (v0v1v0v2)ω is winning.

Concerning function Discλ, Problem 12 is open. It is closely related to the
following open problem, called target discounted-sum problem in [6].

Problem 18. Given three rational numbers a, b and t, and a rational discount
factor λ ∈ ]0, 1[, does there exist an infinite sequence u = u0u1 . . . ∈ {a, b}ω such
that

∑∞
n=0 unλn is equal to t?

The authors of [6] show that Problem 18 is related to several open questions
in mathematics and computer science. In particular it is related to numeration
systems and more precisely to β-representations of real numbers [4,50]. Given
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β > 1 a real number (the base) and A ⊆ N a finite alphabet (the set of digits),
a β-representation of a real number x ≥ 0 is an infinite sequence (xn)n≤k ∈
Aω, also written xk . . . x0.x−1x−2 . . ., such that x =

∑
n≤k xnβn. A well-known

result [58] is that every x ≥ 0 has a β-representation using A = {0, 1, . . . , �β−1�}.
It follows that Problem 18 asks whether t has a β-representation x0.x−1x−2 . . .
(with k = 0) using β = 1

λ and A = {a, b}. This problem is therefore decidable
when a = 0, b = 1 and λ ≥ 1

2 . Indeed using the result of [58], either t > 1
β−1 and

it has no β-representation x0.x−1x−2 . . . ∈ {0, 1}ω, or t ≤ 1
β−1 and it has such a

β-representation. Other partial results to Problem 18 can be found in [6].

3.2 Two-Player Games

We now turn to two-player zero-sum games. In Problem 4, the objective of
player 1 is the set Ω of plays ρ such that μ �1 f1(ρ) (resp. μ �1 f1(ρ) �1 ν),
whereas player 2 has the opposite objective Plays\Ω. Examples of the threshold
problem are the following ones: in a reachability game, player 1 aims at reaching
some target set of vertices whereas player 2 tries to prevent him from reaching
it; in a limsup game, player 1 aims at maximize the payoff LimSup(ρ) of the
play ρ (in a way to be ≥ μ) whereas player 2 tries to minimize it. Recall that
by Martin’s theorem, every two-player zero-sum games with Borel objectives is
determined. This large class of games includes the objectives Ω of player 1 in
Problem 4 for the Boolean and quantitative games introduced in Sect. 2.3. A lot
of research has been developed to solve Problem 4 that we present in this section.
In Sects. 3.2 and 3.3, as the objectives Ω and Plays \ Ω of players 1 and 2 only
depend on f1, ≺1, and P1, we simplify the used notation by omitting index 1.

Criterium for Uniform Optimal Strategies We begin by studying the win-
ning strategies that player 1 can use for the threshold problem in Problem 4.
This is related to the notion of value and optimal strategy.

Definition 19. Let (G, v0) be an initialized two-player zero-sum game. If there
exists val(v0) ∈ P such that

– player 1 has a strategy σ1 such that val(v0) � f(ρ) for all plays ρ in Plays(v0)
consistent with σ1, and

– player 2 has a strategy σ2 such that f(ρ) � val(v0) for all plays ρ in Plays(v0)
consistent with σ2,

then val(v0) = f(〈σ1, σ2〉v0) is the value of v0 and σ1 (resp. σ2) is an optimal
strategy for player 1 (resp. player 2).

Intuitively, val(v0) is the highest threshold μ for which player 1 can ensure
(with an optimal strategy) a payoff f(ρ) such that μ � f(ρ). In this definition,
the antagonistic player 2 behaves in the opposite way. When the value val(v0)
exists and is computable, the threshold problem is easily solved: we just check
whether the given threshold μ satisfies μ � val(v0). Moreover both players can
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limit themselves to use optimal strategies, that is, if player 1 has a winning
strategy (resp. no winning strategy) for the threshold problem, then player 1
(resp. player 2) can use an optimal strategy as winning strategy (resp. for the
opposite objective).
Example 5 (continued). Let us come back to the two-player zero-sum game of
Example 5. Recall that in (G, v0), player 1 has a winning strategy for the thresh-
old problem with μ = p2 but not with μ = p3, meaning that val(v0) = p2. Indeed,
one can check that val(v0) = val(v1) = val(v2) = p2 and val(v3) = p3, and that
both players have optimal strategies that are positional, and even more uni-
form. The values are indicated under the vertices in Fig. 4, and the two uniform
optimal strategies are given as thick edges.

v0 v1v2 v3

p2 p2p2 p3

Fig. 4. Values and uniform optimal strategies for a two-player zero-sum game with
f((v0v1)

ω) = p1 ≺ f(vω
2 ) = p2 ≺ f(vω

3 ) = p3

We will see later in this section that Boolean and quantitative games often
have uniform optimal strategies (see Theorems 21 and 22). In [36], the authors
propose a unified approach to all these results: they give a general criterium on
the payoff function that guarantees uniform optimal strategies for both players.

Theorem 20 [36].11 Let G be a two-player zero-sum game with a preference
relation ≺ on P such that each subset of P has an infimum and a supremum. If
the payoff function f is fairly mixing, that is,

1. ∀hρ, hρ′ ∈ Plays, if f(ρ) � f(ρ′) then f(hρ) � f(hρ′),
2. ∀hρ, hρ′ ∈ Plays, min{f(ρ), f(hω)} � f(hρ) � max{f(ρ), f(hω)},
3. ∀hk ∈ Hist, k ∈ N,

min{f(h0h2h4 . . .), f(h1h3h5 . . .), infk f(hω
k )}

� f(h0h1h2h3 . . .)
� max{f(h0h2h4 . . .), f(h1h3h5 . . .), supk f(hω

k )},
then both players have uniform optimal strategies.

Let us comment this theorem. The first condition is condition (1) of prefix-
linearity. If f is prefix-independent, then the first and the second conditions are
trivially satisfied. The third condition is concerned with shuffles of histories. Let
us apply this theorem to quantitative games, for instance to function LimSup
(see Definition 10). This function is prefix-independent and satisfies the third

11 The hypotheses of this theorem are those given in the full version of [36] available
at http://www.labri.fr/perso/gimbert/.

http://www.labri.fr/perso/gimbert/
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condition since infk LimSup(hω
k ) ≤ LimSup(h0h1h2h3 . . .) ≤ supk LimSup(hω

k ).
One can check that the payoff functions of all quantitative games are fairly
mixing, as well as the payoff functions of the Boolean games with reachability,
safety, Büchi, co-Büchi, and parity objectives [36] (but not with Streett and
Muller objectives).

The proof12 of Theorem 20 is simple and elegant; it is by induction on |E| −
|V |. If |E| = |V | then there is exactly one outgoing edge for each vertex and
thus both players have a unique possible strategy that is therefore uniform and
optimal. Suppose that |E| > |V | and let us focus on player 1 (a symmetric
argument is used for player 2). If all vertices v ∈ V1 have only one outgoing edge,
then player 1 has a unique strategy, and it is uniform and optimal. Suppose that
some v ∈ V1 has at least two outgoing edges. We partition this set of edges into
two non empty subsets E′

v and E′′
v . From G we define two smaller games G′ and

G′′ with the same vertices and edges except that the set of outgoing edges from
v is restricted to E′

v in G′ and to E′′
v in G′′. By induction hypothesis, v has a

value val′(v) in G′ and val′′(v) in G′′, and both players have uniform optimal
strategies, respectively σ′

1, σ
′
2 in G′ and σ′′

1 , σ′′
2 in G′′. W.l.o.g. val′′(v) � val′(v),

we then choose σ′
1 as optimal strategy for player 1 in G and for all u ∈ V , we take

their value val′(u) in G′ as their value in G. Clearly σ′
1 is optimal and uniform

in G. The rest of the proof consists in defining a strategy for player 2 (from σ′
2

and σ′′
2 ) that is optimal in G. This is possible thanks to the three conditions of

Theorem 20 applied on plays decomposed according to occurrences of v.
Further results can be found in [37]: a characterization of payoff functions is

given guaranteeing the existence of uniform optimal strategies for both players.
From this characterization, it follows that if both players have uniform optimal
strategies when playing solitary in one-player games, then they also have uniform
optimal strategies in zero-sum two-player games.

Boolean Games. Let us now focus on Boolean games. As for one-player games,
we limit the study of Problem 4 (threshold and constraint problems) to the only
interesting case μ = ν = 1. The following theorem for two-player games is the
counterpart of Theorem 13 for one-player games.

Theorem 21. Let (G, v0) be an initialized two-player zero-sum Boolean game.
Then Problem 4 (with μ = ν = 1) is

– P-complete with uniform winning strategies for reachability, safety, Büchi,
and co-Büchi objectives [3,30,38,44],

– P-complete with finite-memory winning strategies for Muller13 objective [41],
– NP-complete with uniform winning strategies for Rabin objective [29,30],
– co-NP-complete with finite-memory winning strategies for Streett objec-

tive [16,30],
– in NP ∩ co-NP with uniform winning strategies for parity objectives [30].

12 Theorem 20 is given in [36] for real-valued payoff functions f : Plays → R and the
usual ordering <, but its proof is easily generalized to the statement given here.

13 It is PSPACE-complete for the colored variant of Muller objective [42,52].
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Let us comment this theorem. The existence of uniform winning strategies
(for all objectives except Rabin and Muller objectives) was previously mentioned
as a consequence of Theorem 20 [36]. Notice that here a value val(v0) = 1 is
equivalent to say that player 1 has a winning strategy for Problem 4. In case
player 1 has no winning strategy (val(v0) = 0), it follows that player 2 has a
winning strategy for the opposite objective by Martin’s theorem. Hence Theo-
rem 21 also gives information for player 2 by considering the opposite objective.
In [48], the author gives general conditions on Boolean objectives that guarantee
the existence of a uniform winning strategy for one of the players (and not nec-
essarily for both players). This includes the case of Rabin games where player 1
has a uniform winning strategy (whereas player 2 needs to use a finite-memory
strategy to win the opposite Streett objective).

Problem 4 is decidable in O(|V | + |E|) time for reachability and safety
games [38], and the current best algorithm for Büchi and co-Büchi games is
in O(|V |2) time [22]. For Muller games with F ⊆ 2V , the complexity is in
O(|F| · (|F| + |V | · |E|)2) time [41], whereas for Rabin and Streett games with l
pairs (Fk, Gk), it is in O(|V |l+1l!) time [56]. Concerning parity games, the com-
plexity class of Problem 4 is refined to UP ∩ co-UP in [46] and a major open
problem is whether it can be solved in polynomial time. Very recently, a break-
through quasi-polynomial time algorithm has been proposed in [17] for parity
games.

Quantitative Games Let us turn to quantitative games for which we first
give results for the threshold problem, and then for the constraint problem.
The following theorem provides the known results to the threshold problem. It
describes the simplest form of winning strategies for player 1 (resp. player 2)
when he has a winning strategy for this problem (resp. for ensuring the opposite
objective when player 1 has no winning strategy).

Theorem 22. Let (G, v0) be an initialized two-player zero-sum quantitative
game, and μ ∈ Q be a rational bound. Then the threshold problem (in Prob-
lem 4) is

– P-complete for supremum, infimum, limsup, and liminf games with uniform
winning strategies for both players,

– in NP ∩ co-NP for mean-payoff and discounted sum games with uniform win-
ning strategies for both players [71].

Let us comment this theorem. We already know the existence of uniform
winning strategies from Theorem 20 [36]. The P-completeness for supremum,
infimum, limsup, and liminf games follows from the P-completeness for reacha-
bility, safety, Büchi, and co-Büchi games in Theorem 21. Parity games are poly-
nomially reducible to mean-payoff games [46] which are themselves polynomially
reducible to discounted sum games [71]. For these three classes of games, from
the existence of uniform winning strategies, we get a threshold problem in NP
as follows: guess a uniform strategy σ1 for player 1 (by choosing one outgoing
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edge (v, v′) for all v ∈ V1), fix this strategy σ1 in the game G to get a one-player
game Gσ1 , apply the related polynomial time algorithm of Theorems 13 or 15
(from the point of view of player 2 who controls Gσ1). The co-NP membership
is symmetrically obtained with player 2.

Concerning the constraint problem, recall that it is more complex already
for one-player games (see Sect. 3.1) with no known solution for discounted sum
games (see Problem 18).

Theorem 23. Let (G, v0) be an initialized two-player zero-sum quantitative
(except discounted sum) game, and μ, ν ∈ Q be rational bounds. Then the con-
straint problem (in Problem 4) is

– P-complete for supremum, infimum, limsup, and liminf games with uniform
winning strategies for both players [13,43],

– in NP ∩ co-NP for mean-payoff games with finite-memory (resp. uniform)
winning strategies for player 1 (resp. player 2) [43].

Discounted sum games are studied with bounds μ, ν such that μ < ν (to avoid
the case μ = ν of Problem 18) in [43] where it is proved that the constraint
problem is PSPACE-complete with finite-memory winning strategies for both
players.

3.3 Variants of Preferences

Several extensions14 of two-player zero-sum Boolean and quantitative games
have been studied in the literature, by using preferences that are irreflexive and
transitive but not necessarily total, or more generally by using preorders � that
are reflexive and transitive binary relations (hence, � is not supposed to be total
and one can have p � p′ and p′ � p such that p �= p′).

Such variants naturally appear when we study intersection of objectives
instead of a single objective as in Sect. 2.3:

– Intersection of homogeneous objectives. For instance player 1 has l reachability
objectives U1, . . . , Ul (instead of just one), and he wants to visit all the sets
U1, . . . , Ul.

– Intersection of heterogeneous objectives. In this more general case, player 1 has
several objectives not necessarily of the same type. Let us imagine a situation
where he has two quantitative objectives depending on two weight functions
on the graph, like ensuring a threshold for the liminf of weights with respect
to the first weight function and another threshold for the mean-payoff with
respect to the second weight function.

In this context, for player 1, we consider a tuple f̄ of payoff functions and a
tuple w̄ of weight functions (instead of a single payoff function f defined from a
single weight function w) such that each function fk : Plays → R is defined from
14 The reader who prefers to know classical solutions to Problem 7 for multi-player non

zero-sum games can skip this section and go directly to Sect. 4.
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wk : E → Q.15 Tuples of payoffs p̄ = f̄(ρ) and p̄′ = f̄(ρ′) are then compared
using the usual ordering on tuples of reals: p̄ ≺ord p̄′ iff pk ≤ p′

k for all components
k and there exists k such that pk < p′

k (the preference relation ≺ord is not total).
Let us mention some results first for quantitative objectives and then for Boolean
objectives.

Combination of Quantitative Objectives. The threshold problem takes the
following form: given a tuple μ̄ of rational thresholds, decide whether player 1
has a strategy σ1 that ensures a payoff f̄(ρ) such that μ̄ ≺ord f̄(ρ) for all plays
ρ consistent with σ1.

Theorem 24 [69]. Let (G, v0) be an initialized two-player zero-sum game with
homogeneous intersections of mean-payoff objectives. Then the threshold problem
(in Problem 4) is

– in NP ∩ co-NP for functions MP,
– is co-NP-complete for functions MP.

In both cases, infinite memory is required for winning strategies of player 1
whereas uniform winning strategies are sufficient for player 2.

This theorem indicates different behaviors for the functions MP and MP. This
is illustrated with the example of the initialized one-player game (G, v0) depicted
in Fig. 5, where player 1 wants to ensure the intersection of two homogeneous
objectives. It is shown in [69] that for a pair of functions MP, player 1 can ensure
a threshold (1, 1), and that for a pair of functions MP, he can ensure a threshold
(2, 2) (which is impossible with MP). In both cases infinite memory is necessary.
Indeed recall that with a finite-memory strategy the produced play is a lasso
ρ = hgω such that MP(ρ) = MP(ρ) is the average weight of the cycle g. Here
this average weight has the form a · (2, 0) + b · (0, 0) + c · (0, 2) = (2a, 2c), with
a+b+c = 1 and b > 0. Clearly (1, 1) �≺ord (2a, 2c) showing that player 1 is losing
for threshold (1, 1) with finite-memory strategies.

v0 v1

(0, 0)

(2, 0)
(0, 0)

(0, 2)

Fig. 5. A one-player game with a pair of weight functions w̄

In [68], the author studies objectives equal to Boolean combinations of
inequalities fk(ρ) ∼ μk, with ∼ ∈ {≤,≥} and fk ∈ {MP,MP}: deciding whether
player 1 has a winning strategy in (G, v0) becomes undecidable. However, this

15 This tuple of payoff functions is used by player 1 contrarily to Definition 2 where
function fi is used by player i for all i ∈ Π.
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problem remains decidable and is EXPTIME-complete for CNF/DNF Boolean
combinations of functions taken among {Sup, Inf, LimSup, LimInf,WMP} [13],
where WMP is an interesting window variant of mean-payoff introduced in [20].
The threshold problem is P-complete (resp. EXPTIME-complete) for a single
WMP objective (resp. an intersection of WMP objectives) [20]. Recall that it is
in NP ∩ co-NP for a single function MP or MP (see Theorem 22).

Combination of Boolean Objectives. Concerning one-player games,
Boolean combinations of Büchi and co-Büchi objectives are introduced in [31]
as a generalization of Rabin and Streett objectives. It is proved that the non
emptiness problem for this class of automata is NP-complete (for a comparison
see Theorem 13). Concerning two-player games, the intersection of homogeneous
objectives is simple for safety, co-Büchi, Streett, and Muller cases. Indeed the
intersection of safety (resp. co-Büchi, Streett, Muller) objectives is again a safety
(resp. co-Büchi, Streett, Muller) objective. In the other cases, we have the fol-
lowing results to be compared with those of Theorem 21.

Theorem 25. Let (G, v0) be an initialized two-player zero-sum game with an
intersection of homogeneous objectives. Then Problem 4 is

– PSPACE-complete for reachability objectives with finite-memory winning
strategies for both players [32],

– P-complete for Büchi objectives with finite-memory (resp. uniform) winning
strategies for player 1 (resp. player 2) [21],

– co-NP-complete for parity objectives with finite-memory (resp. uniform) win-
ning strategies for player 1 (resp. player 2) [24],

– PSPACE-complete for Rabin objectives with finite-memory winning strategies
for both players.16

Problem 4 is PSPACE-complete for heterogeneous intersections of reacha-
bility and Büchi objectives [13] as well as for Boolean combinations of Büchi
objectives [1,42].

Lexicographic and Secure Preferences. For a tuple f̄ of payoff functions
defined from a tuple w̄ of weight functions for player 1, let us mention two other
natural preference relations ≺.

Definition 26. Let p̄, p̄′ be two tuples of real payoffs.

– lexicographic preference: p̄ ≺lex p̄′ iff there exists k such that pk < p′
k and

pj = p′
j for all j ≤ k. That is, player 1 prefers to first maximize the first

component, then the second, then the third, etc. (see for instance [5]).
16 We found no reference for this result. The PSPACE membership (resp. the finite

memory of the strategies) follows from [1] (resp. [13]). In [1], games with a union of
a Streett objective and a Rabin objective are shown to be PSPACE-hard. It is thus
also the case for games with a union of Streett objectives. By Martin’s theorem, it
follows that games with an intersection of Rabin objectives are PSPACE-hard.
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– secure preference: p̄ ≺sec p̄′ iff either p1 < p′
1 or {p1 = p′

1, pk ≥ p′
k for

all components k > 1, and there exists k > 1 such that pk > p′
k}. That is,

player 1 prefers to first maximize the first component, and then to minimize
all the other components (see for instance [28]).

The lexicographic preference is total whereas the secure preference is total
only for pairs (instead of tuples) of payoffs. In the latter case, we get a preference
which is close to the lexicographic ordering: player 1 prefers to maximize the first
component, and then to minimize the second one. The secure preference is used
in the notion of secure equilibrium discussed later in Sect. 4.3.

Theorem 27. Let (G, v0) be an initialized two-player zero-sum game.
– Suppose that ≺ is the lexicographic preference ≺lex. Then the threshold problem

(in Problem 4) for function MP is in NP ∩ co-NP with uniform winning
strategies for both players [5].

– Suppose that ≺ is the secure preference ≺sec on pairs of payoffs. Then the
threshold problem (in Problem 4) is in NP ∩ co-NP (resp. P-complete) for
functions MP, MP, and Discλ (resp. for functions Sup, Inf, LimSup, and
LimInf). Moreover both players have uniform (resp. positional) winning strate-
gies for functions LimSup, LimInf, MP, MP, and Discλ (resp. for functions Sup
and Inf) [14].

In this theorem, it is supposed that the components fk of f̄ are all of the same
type (for instance they are all limsup functions); and some results stating the
existence of uniform winning strategies can be established thanks to Theorem 20.
Notice that the secure preference is limited to pairs of payoffs in a way to be
total, which is a necessary condition when dealing with values. Notice also that
the authors in [5] consider liminf average of the weight vector under lexicographic
ordering whereas the authors in [14] consider the secure ordering of components
where each component is the liminf average value.

The threshold problem is studied in [7] in a general context: the players can
use various preorders (like the lexicographic preference, a preorder given by a
Boolean circuit, etc.), the players play concurrently and not in a turned-based
way, and the objectives are Boolean as in Definition 8.

4 Multi-player Non Zero-Sum Games

In multi-player non zero-sum games, the different players i ∈ Π are not nec-
essarily antagonistic, they have their own payoff functions fi and preference
relations ≺i. Each of them follows a strategy σi, the resulting strategy profile
(σi)i∈Π induces a play that should be satisfactory to all players. As explained
in Sect. 2.2 (see Definition 6), a classical solution profile is the notion of NE,
where no player has an incentive to deviate when the other players stick to their
own strategies. It is proved in [25,39] that there exists an NE in every initialized
multi-player non zero-sum game with Borel Boolean objectives. We go further
by presenting in this section additional existence results for quantitative games
and some known results for NEs as a solution to Problem 7 (threshold problem
and constraint problem). As in Sect. 3, we focus on general approaches.
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4.1 Characterization of Outcomes of NE

Given a multi-player non zero-sum game G and an initial vertex v0, we begin
by a characterization of plays ρ ∈ Plays(v0) that are the outcome of an NE
(σi)i∈Π in (G, v0). It will imply the existence of NE in large classes of games
(see Corollaries 29 and 30), and will be useful for the study of Problem 7 (see
Theorems 31 and 32). This characterization is related to a family of two-player
zero-sum games Gi, one for each i ∈ Π, associated with G and defined as follows.
(i) The game Gi has the same arena as G, (ii) the two players are player i
(player 1) and player −i (player 2) formed by the coalition of the other players
j ∈ Π \ {i}, (iii) the payoff function of player i is equal to fi and his preference
relation is equal to ≺i

17. For all v ∈ V , when it exists, we denote by vali(v) the
value of vertex v in game Gi, and by τv

i , τv
−i the related optimal strategies for

players i,−i respectively in (Gi, v) (see Definition 19).

Proposition 28. Let G be a multi-player non zero-sum game such that for all
i ∈ Π,

– the payoff function fi is prefix-linear, and
– in the game Gi, all vertices has a value.

Then ρ = ρ0ρ1 . . . ∈ Plays(v0) is the outcome of an NE in (G, v0) iff vali(ρk) �i

fi(ρ≥k) for all i ∈ Π and all k ∈ N such that ρk ∈ Vi.

The condition of this proposition asks that for all k, if vertex ρk is controlled
by player i, then in the two-player zero-sum game Gi, its value is less preferred
or equal to the payoff of the suffix ρ≥k. The proposed characterization appears
under various particular forms, for instance in [14,39,65]. It is here given under
two general conditions already studied in Sect. 3.2. Recall that almost all the pay-
off functions considered in Sect. 2.3 are prefix-linear and that for all the related
two-player zero-sum games Gi, the vertices have a value. Notice that when fi

is prefix-independent, condition vali(ρk) �i fi(ρ≥k) for all k ∈ N with ρk ∈ Vi

simplifies in max{vali(ρk) | k ∈ N, ρk ∈ Vi} �i fi(ρ) (the maximum exists since
Vi is finite).
Example 3 (continued). An example of NE with outcome ρ = v0v1v

ω
3 was given in

Example 3 for the initialized game (G, v0) of Fig. 1. Let us verify that ρ satisfies
the characterization of Proposition 28. Recall that both players use the same
payoff function f that is prefix-independent. The values of G1 were computed
in Example 5: val1(v0) = val1(v1) = val1(v2) = p2 and val1(v3) = p3. Similarly
one can compute the values of G2: val2(v0) = val2(v2) = p2 and val2(v1) =
val2(v3) = p3. One checks that max{vali(ρk) | k ∈ N, ρk ∈ Vi} �i f(ρ) = p3, for
i = 1, 2.

The proof of Proposition 28 is easy to establish.
Firstly suppose that ρ is the outcome of an NE (σi)i∈Π and that there exist

i ∈ Π and k ∈ N with ρk ∈ Vi such that fi(ρ≥k) ≺i vali(ρk). Let us show that

17 Recall that the payoff function and the preference relation of the second player do
not matter in two-player zero-sum games.
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player i has a profitable deviation σ′
i with respect to (σi)i∈Π in contradiction with

(σi)i∈Π being an NE. The strategy σ′
i consists in playing according to σi until

producing ρ≤k and from ρk in playing according to his optimal strategy τρk

i (in
(Gi, ρk)). The payoff of the resulting play π from ρk is such that vali(ρk) �i fi(π)
by optimality of τρk

i , and thus fi(ρ≥k) ≺i fi(π). From prefix-linearity of fi it
follows that fi(ρ) = fi(ρ<kρ≥k) ≺i fi(ρ<kπ) as required.

Secondly suppose that vali(ρk) �i fi(ρ≥k) for all i ∈ Π and all k ∈ N such
that ρk ∈ Vi. We are going to construct an NE by using a well-known method in
classical game theory that is used in the proof of the Folk Theorem in repeated
games [54]. We define a strategy profile (σi)i∈Π that produces ρ as outcome, and
as soon as some player i deviates from ρ, say at vertex ρk, all the other players (as
a coalition) punish him by playing from ρk the optimal strategy τρk

−i (in (Gi, ρk)).
Let us show that (σi)i∈Π is an NE. Let σ′

i be a deviating strategy from σi for
player i, and let ρ′ be the outcome of the strategy profile (σ′

i, σ−i). Consider the
longest common prefix ρ≤k of ρ and ρ′. Then ρk ∈ Vi and by optimality of τρk

−i ,
we get fi(ρ′

≥k) �i vali(ρk) and thus fi(ρ′
≥k) �i fi(ρ≥k). From prefix-linearity of

fi it follows that fi(ρ′) �i fi(ρ) showing that σ′
i is not a profitable deviation for

player i.
Notice that in this proof, the first (resp. second) implication only requires

condition (2) (resp. (1)) of prefix-linearity of fi. The next corollary follows from
this observation and Proposition 28.

Corollary 29 [27]. Let G be a multi-player non zero-sum game such that for
all i ∈ Π,

– the payoff function fi satisfies fi(ρ) �i fi(ρ′) ⇒ fi(hρ) �i fi(hρ′) for all
hρ, hρ′ ∈ Plays, and

– each game Gi has uniform optimal strategies for both players.

Then there exists a finite-memory NE in each initialized game (G, v0).

This corollary is a generalization of a theorem18 given in [12,27] for the
existence of NEs in games equipped with payoff functions fi : Plays → R,
i ∈ Π. The proof of Corollary 29 is as follows. Let us consider the play ρ ∈
Plays(v0) produced by the players when each player i plays according to his
optimal strategy τi in (Gi, v0) (τv

i = τi for all vertices v since it is uniform). By
construction, ρ is the outcome of an NE because it satisfies the characterization
of Proposition 28. Notice that ρ is a simple lasso since each τi, i ∈ Π, is uniform.
Therefore the strategies of the constructed NE are finite-memory with a small
memory size bounded by |V | + |Π| to remember this lasso and the first player
who deviates from ρ.

The existence of an NE is also guaranteed in the following corollary that
does not require optimal strategies that are uniform, but in counterpart requires
payoff functions that are prefix-independent.

Corollary 30 [27]. Let G be a multi-player non zero-sum game such that for
all i ∈ Π,
18 In [12], one hypothesis is missing: the required optimal strategies must be uniform.
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– the payoff function fi is prefix-independent, and
– each game Gi has (resp. finite-memory) optimal strategies for both players.

Then there exists an (resp. finite-memory) NE in each initialized game (G, v0).

This is a generalization of a result given in [27] for games equipped with
payoff functions fi : Plays → R, i ∈ Π. The proof is as follows: under the
hypotheses of Corollary 30, one can show that there exist optimal strategies τv0

i

in (Gi, v0), i ∈ Π, such that for all plays ρ ∈ Plays(v0) consistent with τv0
i ,

we have max{vali(ρk) | k ∈ N, ρk ∈ Vi} �i fi(ρ). Then as in Corollary 29, we
consider the play ρ ∈ Plays(v0) obtained when each player i plays according
to his optimal strategy τv0

i . As each fi is prefix-independent, ρ satisfies the
characterization of Proposition 28.

From Corollaries 29 and 30, it follows that there exists an NE (which can be
constructed) in every game of Sect. 2.3; the case of Boolean (resp. quantitative)
game is proved in [25,39] (resp. in [12,27]). The existence of an NE in discounted
sum games can be obtained in a second way: the function Discλ is continuous and
all games with real-valued continuous payoff functions always have an NE [35,40].
Notice that the two previous corollaries allow mixing the types of functions fi,
like for instance f1 associated with a Büchi objective, a limsup function f2, a
mean-payoff function f3, etc.

Conditions generalizing those of Corollaries 29 and 30 are given in [59] that
guarantee the existence of a finite-memory NE. Moreover, for most of the given
conditions counterexamples are provided that show that they cannot be dis-
pensed with.

4.2 Solution to Problem 7

In this section we study how to solve Problem 7 for NEs (threshold problem
and constraint problem). The characterization given in Proposition 28 provides
a general approach to solve this problem. Indeed consider the case of initial-
ized games (G, v0) with prefix-independent payoff functions fi and such that
the vertices of each game Gi, i ∈ Π, has a value. Then given two tuples of
bounds (μi)i∈Π , (νi)i∈Π , we simply have to check whether there exists a play
ρ ∈ Plays(v0) such that for all i ∈ Π,

max{vali(ρk) | ρk ∈ Vi} �i fi(ρ) and μi �i fi(ρ) (resp. μi �i fi(ρ) �i νi).(3)

Thanks to this general approach or variations based on Proposition 28, Prob-
lem 7 is solved for Büchi, co-Büchi, Streett, and parity games in [64], and for
the other Boolean games in [26].

Theorem 31 [26,64]. Let (G, v0) be an initialized multi-player non zero-sum
Boolean game. Then Problem 7 is

– is P-complete for Büchi and Muller19 games,
19 We found no reference for Muller objectives. A sketch of proof is given in the appen-

dix. Problem 7 is PSPACE-complete for the colored variant of Muller objectives [26].
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– NP-complete for reachability, safety, co-Büchi, parity and Streett games,
– in PNP, and NP-hard, co-NP-hard for Rabin games.

Let us explain the proof of NP membership for parity games and the con-
straint problem with bounds (μi)i∈Π , (νi)i∈Π . As each Gi is a two-player zero-
sum parity game, recall that the constraint problem is in NP ∩ co-NP with
uniform winning strategies for both players (see Theorem 21). The required algo-
rithm in NP is as follows. (i) For all i ∈ Π, in the game Gi, guess a subset Ui ⊆ V
of vertices and two uniform strategies τi, τ−i for players i,−i respectively (intu-
itively we guess Ui = {v ∈ V | vali(v) = 1} and V \ Ui = {v ∈ V | vali(v) = 0}).
Check in polynomial time20 that τi is a winning strategy for player i for the
constraint problem in each (Gi, v) with v ∈ Ui and that τ−i is a winning strat-
egy for player −i for the opposite objective in each (Gi, v) with v ∈ V \ Ui.
(ii) Then for all i ∈ Π, we guess ri ∈ Vi (intuitively we guess ri such that
vali(ri) = max{vali(ρk) | k ∈ N, ρk ∈ Vi} for the required play ρ). Construct
in polynomial time a one-player game G′ from G such that each set Vi of ver-
tices is limited to {v ∈ Vi | vali(v) ≤ vali(ri)} and the unique player is formed
by the coalition of all players i ∈ Π. (iii) By (3) it remains to check whether
there exists a play ρ in (G′, v0) such that for all i ∈ Π, vali(ri) ≤ fi(ρ) and
μi ≤ fi(ρ) ≤ νi. Recall that the existence of plays satisfying certain constraints
in one-player games was studied in Sect. 3.1, see Theorem 13. Here we are faced
with the existence of a play in game with an intersection of parity objectives
which can be checked in polynomial time by [31].

Problem 7 can be similarly solved for quantitative games.

Theorem 32 [26,64,65]. Let (G, v0) be an initialized multi-player non zero-sum
quantitative (except discounted sum) game. Then Problem 7 is

– P-complete for limsup games,
– NP-complete for supremum, infimum, liminf, mean-payoff MPi, and mean-

payoff MPi games.

The case of supremum, infimum, limsup and liminf games is equivalent to
the case of reachability, safety, Büchi and co-Büchi games presented in Theo-
rem 31, whereas the case of mean-payoff games is studied in [65]. The proof of
NP membership for mean-payoff games is based on the approach (3), and is sim-
ilar to the one given above for parity games. The case of discounted sum games
is open. Indeed it is proved in [14] that Problem 18 reduces to Problem 7 with
the discounted sum function.21

Problem 7 is studied in [7] in a general context: the players can use vari-
ous preorders, they play concurrently and not in a turned-based way, and the
objectives are Boolean as in Definition 8. The general approach proposed in [7]
is different from the one of Proposition 28.

20 Recall our comment after Theorem 22.
21 The reduction is given for another kind of solution profile but it also works for NEs.
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4.3 Other Solution Profiles

In this section, we present some other solution profiles. Indeed the notion of NE
has several drawbacks: (i) Each player is selfish since he is only concerned with
his own payoff, and not with the payoff of the other players. (ii) An NE does not
take into account the sequential nature of games played on graphs. We illustrate
these drawbacks in the following two examples of quantitative game.

Example 33. Consider the two-player quantitative game of Fig. 6 such that fi =
LimSupi for i = 1, 2. The strategy profile depicted with thick edges is an NE.
Notice that player 1 could decide to deviate at v0 by moving to v2. Indeed he
then keeps the same payoff of 1 but also decreases the payoff of player 2 (from 2
to 1) which is bad for player 2. To avoid such a drawback, we will introduce
hereafter the concept of secure equilibrium, where each player take cares of his
own payoff as well as the payoff of the other players (but in a negative way).

Consider now the game of Fig. 7 where the weights of the loops have been
modified. The depicted strategy profile is again an NE. Player 1 has no incentive
to deviate at v0 due to the threat of player 2: player 1 will receive a payoff
of 0 < 1. Such a threat of player 2 is non credible because in the subgame
induced by v2, v3, v4, at vertex v2, it is more rational for player 2 to move to v4
to get a payoff of 2 instead of going to v3 where he only receives a payoff of 1.
To avoid such a drawback, we will introduce hereafter the concept of subgame
perfect equilibrium that takes into account rational behaviors of the players in
all subgames of the initial game.

v0

v1 v2

v3 v4

(0, 0) (0, 0)

(1, 2)
(0, 0) (0, 0)

(1, 1) (2, 0)

Fig. 6. An NE that is not a secure equi-
librium

v0

v1 v2

v3 v4

(0, 0) (0, 0)

(1, 1)
(0, 0) (0, 0)

(0, 1) (3, 2)

Fig. 7. An NE that is not a subgame
perfect equilibrium

Secure Equilibria. The notion of secure equilibrium (SE) is introduced in [23]
for two-player non zero-sum games. The idea of an SE is that no player has an
incentive to deviate in the following sense: he will not be able to increase his
payoff, and keeping the same payoff he will not be able to decrease the payoff of
the other player. An SE can thus be seen as a contract between the two players
which strengthens cooperation: if a player chooses another strategy that is not
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harmful to himself, then this cannot harm the other player if the latter follows
the contract.

The definition of an SE is given in the context of games equipped with payoff
functions fi : Plays → R, i ∈ Π. It uses the notion of secure preference intro-
duced in Sect. 3.3 (see Definition 2622). Let us recall the secure preference ≺sec,i

for player i: given p̄ = (fi(ρ))i∈Π , p̄′ = (fi(ρ′))i∈Π , we have p̄ ≺sec,i p̄′ iff either
pi < p′

i or {pi = p′
i, pk ≥ p′

k for all components k �= i, and there exists k �= i such
that pk > p′

k}. Hence player i prefers to increase his own payoff, and in case of
equality to decrease the payoffs of all the other players. This preference relation
is not total except when there are only two players.

The definition of an SE is very close to the one of NE (see Definition 6). The
only difference is that it uses the secure preference:

Definition 34. Given an initialized game (G, v0), a strategy profile (σi)i∈Π is
a secure equilibrium if

(fi(〈(σi)i∈Π〉v0))i∈Π ⊀sec,i (fi(〈σ′
i, σ−i〉v0))i∈Π

for all players i ∈ Π and all strategies σ′
i of player i.

Example 33 (continued). The strategy profile of Fig. 6 is not an SE because
player 1 has a profitable deviation if at v0 he chooses to move to v2: (1, 2) ≺sec,1

(1, 1).
By definition, every SE is an NE but the converse is false as shown in the

previous example. It is proved in [23] that every two-player non zero-sum game
with Borel Boolean objectives has an SE; this result is generalized to multi-player
games in [28].

Let us turn to quantitative games such that all the players have the same
type of payoff function fi. General hypotheses are provided in [28] that guarantee
the existence of an SE in quantitative games, except for functions MPi and MPi.
Thanks to Corollary 29 and Theorem 27, for two-player23 quantitative games
(now including functions MPi and MPi), there exists such an SE that is finite-
memory [14]. Moreover, with the same general approach (3) described previously
for NEs, Problem 7 is solved as follows for SEs.

Theorem 35 [14]. Let (G, v0) be an initialized two-player non zero-sum quan-
titative (except discounted sum) game. Then Problem 7 for SEs is

– P-complete for supremum, infimum, limsup, and liminf functions,
– in NP ∩ co-NP for functions MPi and MPi.

The case of discounted sum function is open since it is proved in [14] that
Problem 18 reduces to Problem 7 with Discλ. The complexity class of the problem
of deciding whether, in an initialized two-player parity game (G, v0), there exists
an SE with payoff respectively equal to (0, 0), (0, 1), (1, 0), and (1, 1), is studied
in [23,39].
22 The definition was given for player 1.
23 A restriction to two-player games is necessary to deal with a secure preference that

is total.
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Subgame Perfect Equilibria. A solution profile that avoids incredible threats
by taking into account the sequential nature of games played on graphs is the
notion of subgame perfect equilibrium (SPE) [61]. For being an SPE, a strategy
profile is not only required to be an NE from the initial vertex but after every
possible history of the game.

Before giving the definition of an SPE, we need to introduce the following
concepts for an initialized game (G, v0) with payoff functions fi and preference
relations ≺i, for all i ∈ Π. Given a history hv ∈ Hist(v0), the subgame (G|h, v)
of (G, v0) is the initialized game with payoff functions fi|h, i ∈ Π, such that
fi|h(ρ) = fi(hρ) for all plays ρ ∈ Plays(v) (the preference relation of player i is
his preference ≺i in G). Given a strategy σi for player i in (G, v0), the strategy
σi|h in (G|h, v) is defined as σi|h(h′) = σi(hh′) for all h′ ∈ Histi(v).

Definition 36. Given an initialized game (G, v0), a strategy profile (σi)i∈Π is
a subgame perfect equilibrium if (σi|h)i∈Π is an NE in each subgame (G|h, v) of
(G, v0) with hv ∈ Hist(v0).

Example 33 (continued). The strategy profile (σ1, σ2) of Fig. 7 is not an SPE
because in the subgame (G|v0 , v2), player 2 has a profitable deviation with respect
to (σ1|v0 , σ2|v0) if at v2 he chooses to move to v4.

By definition, every SPE is an NE but the converse is false as shown in
the previous example. A well-known result is the existence of an SPE in every
initialized game (G, v0) such that its arena is a tree rooted at v0

24 [49]. The SPE
is constructed backwards from the leaves to the initial vertex v0 in the following
way. Suppose that the current vertex v is controlled by player i, and that for
each son v′ of v one has already constructed an SPE (σv′

i )i∈Π in the subtree
rooted at v′. Then player i chooses the edge (v, v′) such that (σv′

i )i∈Π has the
best outcome with respect to his preference relation ≺i. The resulting strategy
profile (σv

i )i∈Π is an SPE in the subtree rooted at v.
It is proved in [63] that there exists an SPE in every multi-player non zero-

sum game with Borel Boolean objectives, and that in case of ω-regular objectives
there exists one that is finite-memory. Existence of an SPE also holds for games
with continuous real-valued payoff functions [35,40] (this is also holds when the
functions are upper-semicontinuous (resp. lower-semicontinuous) and with finite
range [34] (resp. [57])).

For subgame perfect equilibria, we are not aware of a characterization like
the one in Proposition 28. Therefore a solution to Problem 7 for SPEs needs a
different approach. Few solutions are known: this problem is in EXPTIME for
Rabin games [63] and is NP-hard for co-Büchi games [39].

Whereas NEs exist for large classes of games, see Corollaries 29 and 30, SPEs
fail to exist even in simple games like the one of Fig. 1 [62]. Variants of SPE,
weak SPE and very weak SPE, have thus been proposed in [11] as interesting
alternatives. In a weak SPE (resp. very weak SPE), a player who deviates from
a strategy σ is allowed to use deviating strategies that differ from σ on a finite
number of histories only (resp. only on the initial vertex ). Deviating strategies

24 In this particular context, plays are finite paths.
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that only differ on the initial vertex are a well-known notion that for instance
appears in the proof of Kuhn’s theorem [49] with the one-step deviation property.
By definition, every SPE is a weak SPE, and every weak SPE is a very weak
SPE. Weak SPE and very weak SPE are equivalent notions, but this is not true
for SPE and weak SPE [11].

The following theorem gives two general conditions such that each of them
separately guarantees the existence of a weak SPE.

Theorem 37 [15]. Let G be a multi-player non zero-sum game such that

– either each payoff function fi, i ∈ Π, is prefix-independent,
– or each fi, i ∈ Π, has a finite range.

Then there exists a weak SPE in each initialized game (G, v0).

This theorem has to be compared with Corollary 30 that gives general con-
ditions for the existence of an NE, one of them being prefix-independence of fi,
i ∈ Π. This latter condition is here enough to guarantee the existence of a weak
SPE (the existence of an SPE is not possible as mentioned before with the game
of Fig. 1 [62]). It follows from Theorem 37 that there exists a weak SPE in all the
Boolean and quantitative games of Sect. 2.3 (except for the case of discounted
sum payoff that is neither prefix-independent nor with finite range).

In addition to SEs and (weak) SPEs, other solution profiles have been recently
proposed, like Doomsday equilibria in [18], robust equilibria in [8], and equilibria
using admissible strategies in [10]. We also refer the reader to the survey [9].

5 Conclusion

In this invited contribution, we gave an overview of classical as well as recent
results about the threshold and constraint problems for games played on graphs.
Solutions to these problems are winning strategies in case of two-player zero-
sum games, and equilibria in case of multi-player non zero-sum games. We tried
to present a unified approach through the notion of games equipped with a
payoff function and a preference relation for each player, in a way to include
classes of Boolean games and quantitative games that are usually studied. We
also focussed on general approaches from which one can derived several different
results: a criterium that guarantees the existence of uniform optimal strategies in
two-player zero-sum games, and a characterization of plays that are the outcome
of an Nash equilibrium in multi-player non zero-sum games. Several illustrative
examples were provided as well as some intuition on the proofs when they are
simple.
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Appendix

In this appendix, we give a sketch of proof for Muller games in Theorem 31.
Recall that each player i has the objective Ωi = {ρ ∈ Plays | inf(ρ) ∈ Fi} with
Fi ⊆ 2V , and that the values vali(v), v ∈ V , in each game Gi can be computed
in polynomial time (Theorem 21). To prove P membership for the constraint
problem with bounds (μi)i∈Π , (νi)i∈Π , we apply the approach (3). Notice that
for the required play ρ ∈ Plays(v0) in (3), the set U = inf(ρ) must be a strongly
connected component that is reachable from the initial vertex v0. Moreover if for
some i, fi(ρ) = 0 then vali(ρk) = 0 for all ρk ∈ Vi, and if νi = 0, then fi(ρ) = 0.
We thus proceed as follows. (i) For each i such that νi = 1, for each U ∈ Fi (seen
as a potential U = inf(ρ)), the following computations are done in polynomial
time for all j ∈ Π:

– if μj = 1 ((3) imposes fj(ρ) = 1), test whether U ∈ Fj ,
– if νj = 0 ((3) imposes fj(ρ) = 0), test whether U �∈ Fj and whether each

v ∈ U ∩ Vj has value valj(v) = 0,
– if μj = 0 and νj = 1 ((3) allows either fj(ρ) = 0 or fj(ρ) = 1), then if U �∈ Fj ,

test whether each v ∈ U ∩ Vj has value valj(v) = 0.

Finally, construct in polynomial time the game G′ from G such that each Vj is
limited to {v ∈ Vj | valj(v) = 0} whenever U �∈ Fj , and test whether U is a
strongly connected component that is reachable from v0 in G′. As soon as this
sequence of tests is positive, there exists ρ satisfying (3). (ii) It may happen that
step (i) cannot be applied (because there is no j such that μj = 1, and for j
such that μj = 0 and νj = 1, there is no potential U = inf(ρ)). In this case, we
construct in polynomial time a two-player game G′ from G such that each Vi

is limited to {v ∈ Vi | vali(v) = 0}, player 1 controls no vertex and player 2 is
formed by the coalition of all i ∈ Π, and the objective is a Muller objective with
F = ∪i∈ΠFi. We then test in polynomial time whether player 1 has no winning
strategy from v0 in this Muller game.
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4. Berthé, V., Rigo, M. (eds.): Combinatorics, Words and Symbolic Dynamics, vol.
135. Cambridge University Press, Cambridge (2016)

5. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02658-4 14

http://dx.doi.org/10.1007/978-3-540-45187-7_8
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-642-02658-4_14


32 V. Bruyère

6. Boker, U., Henzinger, T.A., Otop, J.: The target discounted-sum problem. In: LICS
Proceedings, pp. 750–761. IEEE Computer Society (2015)

7. Bouyer, P., Brenguier, R., Markey, N., Ummels, M.: Pure Nash equilibria in con-
current deterministic games. Logical Methods Comput. Sci. 11(2) (2015)

8. Brenguier, R.: Robust equilibria in mean-payoff games. In: Jacobs, B., Löding, C.
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58. Rényi, A.: Representations of real numbers and their ergodic properties. Acta

Math. Acad. Scientiarum Hung. 8(3–4), 477–493 (1957)
59. Le Roux, S., Pauly, A.: Extending finite memory determinacy to multiplayer games.

In: Proceedings of SR. EPTCS, vol. 218, pp. 27–40 (2016)
60. Safra, S., Vardi, M.Y.: On omega-automata and temporal logic (preliminary

report). In: Proceedings of STOC, pp. 127–137. ACM (1989)
61. Selten, R.: Spieltheoretische Behandlung eines Oligopolmodells mit Nach-
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Abstract. Letters x and y alternate in a word w if after deleting in w
all letters but the copies of x and y we either obtain a word xyxy · · · (of
even or odd length) or a word yxyx · · · (of even or odd length). A graph
G = (V, E) is word-representable if and only if there exists a word w
over the alphabet V such that letters x and y alternate in w if and only
if xy ∈ E.

Word-representable graphs generalize several important classes of
graphs such as circle graphs, 3-colorable graphs and comparability
graphs. This paper offers a comprehensive introduction to the theory
of word-represent-able graphs including the most recent developments in
the area.

1 Introduction

The theory of word-representable graphs is a young but very promising research
area. It was introduced by the author in 2004 based on the joint research with
Steven Seif [20] on the celebrated Perkins semigroup, which has played a cen-
tral role in semigroup theory since 1960, particularly as a source of examples
and counterexamples. However, the first systematic study of word-representable
graphs was not undertaken until the appearance in 2008 of the paper [18] by the
author and Artem Pyatkin, which started the development of the theory. One
of the most significant contributors to the area is Magnús M. Halldórsson.

Up to date, nearly 20 papers have been written on the subject, and the core
of the book [17] by the author and Vadim Lozin is devoted to the theory of word-
representable graphs. It should also be mentioned that the software produced
by Marc Glen [7] is often of great help in dealing with word-representation of
graphs.

We refer the Reader to [17], where relevance of word-representable graphs to
various fields is explained, thus providing a motivation to study the graphs. These
fields are algebra, graph theory, computer science, combinatorics on words, and
scheduling. In particular, word-representable graphs are important from graph-
theoretical point of view, since they generalize several fundamental classes of
graphs (e.g. circle graphs, 3-colorable graphs and comparability graphs).
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A graph G = (V,E) is word-representable if and only if there exists a word w
over the alphabet V such that letters x and y, x �= y, alternate in w if and only
if xy ∈ E (see Sect. 2 for the definition of alternating letters). Natural questions
to ask about word-representable graphs are:

– Are all graphs word-representable?
– If not, how do we characterize word-representable graphs?
– How many word-representable graphs are there?
– What is graph’s representation number for a given graph? Essentially, what

is the minimal length of a word-representant?
– How hard is it to decide whether a graph is word-representable or not? (com-

plexity)
– Which graph operations preserve (non-)word-representability?
– Which graphs are word-representable in your favourite class of graphs?

This paper offers a comprehensive introduction to the theory of word-
representable graphs. Even though the paper is based on the book [17] following
some of its structure, our exposition goes far beyond book’s content and it reflects
the most recent developments in the area. Having said that, there is a relevant
topic on a generalization of the theory of word-representable graphs [12,16] that
is discussed in [17, Chap. 6], but we do not discuss it at all.

In this paper we do not include the majority of proofs due to space limitations
(while still giving some proofs, or ideas of proofs whenever possible). Also, all
graphs we deal with are simple (no loops or multiple edges are allowed), and
unless otherwise specified, our graphs are unoriented.

2 Word-Representable Graphs. The Basics

Suppose that w is a word over some alphabet and x and y are two distinct letters
in w. We say that x and y alternate in w if after deleting in w all letters but the
copies of x and y we either obtain a word xyxy · · · (of even or odd length) or a
word yxyx · · · (of even or odd length). For example, in the word 23125413241362,
the letters 2 and 3 alternate. So do the letters 5 and 6, while the letters 1 and 3
do not alternate.

Definition 1. A graph G = (V,E) is word-representable if and only if there
exists a word w over the alphabet V such that letters x and y, x �= y, alternate
in w if and only if xy ∈ E. (By definition, w must contain each letter in V .)
We say that w represents G, and that w is a word-representant.

Definition 1 works for both vertex-labeled and unlabeled graphs because any
labeling of a graph G is equivalent to any other labeling of G with respect to
word-representability (indeed, the letters of a word w representing G can always
be renamed). For example, the graph to the left in Fig. 1 is word-representable
because its labeled version to the right in Fig. 1 can be represented by 1213423.
For another example, each complete graph Kn can be represented by any per-
mutation π of {1, 2, . . . , n}, or by π concatenated any number of times. Also,
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the empty graph En (also known as edgeless graph, or null graph) on vertices
{1, 2, . . . , n} can be represented by 12 · · · (n− 1)nn(n− 1) · · · 21, or by any other
permutation concatenated with the same permutation written in the reverse
order.

3

2 4

1

Fig. 1. An example of a word-representable graph

Remark 1. The class of word-representable graphs is hereditary. That is, remov-
ing a vertex v in a word-representable graph G results in a word-representable
graph G′. Indeed, if w represents G then w with v removed represents G′.
This observation is crucial, e.g. in finding asymptotics for the number of word-
representable graphs [4], which is the only known enumerative result on word-
representable graphs to be stated next.

Theorem 1 ([4]). The number of non-isomorphic word-representable graphs on
n vertices is given by 2

n2
3 +o(n2).

2.1 k-Representability and Graph’s Representation Number

A word w is k-uniform if each letter in w occurs k times. For example, the word
243321442311 is 3-uniform, while 23154 is a 1-uniform word (a permutation).

Definition 2. A graph G is k-word-representable, or k-representable for
brevity, if there exists a k-uniform word w representing it. We say that w k-
represents G.

The following result establishes equivalence of Definitions 1 and 2.

Theorem 2 ([18]). A graph is word-representable if and only if it is k-represent-
able for some k.

Proof. Clearly, k-representability implies word-representability. For the other
direction, we demonstrate on an example how to extend a word-representant
to a uniform word representing the same graph. We refer to [18] for a precise
description of the extending algorithm, and an argument justifying it.

Consider the word w = 3412132154 representing a graph G on five vertices.
Ignore the letter 1 occurring the maximum number of times (in general, there
could be several such letters all of which need to be ignored) and consider the ini-
tial permutation p(w) of w formed by the remaining letters, that is, p(w) records
the order of occurrences of the leftmost copies of the letters. For our example,
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p(w) = 3425. Then the word p(w)w = 34253412132154 also represents G, but it
contains more occurrences of the letters occurring not maximum number of time
in w. This process can be repeated a number of times until each letter occurs the
same number of times. In our example, we need to apply the process one more
time by appending 5, the initial permutation of p(w)w, to the left of p(w)w to
obtain a uniform representation of G: 534253412132154.

Following the same arguments as in Theorem 2, one can prove the follow-
ing result showing that there are infinitely many representations for any word-
representable graph.

Theorem 3 ([18]). If a graph is k-representable then it is also (k + 1)-
representable.

By Theorem 2, the following notion is well-defined.

Definition 3. Graph’s representation number is the least k such that the graph
is k-representable. For non-word-representable graphs (whose existence will be
discussed below), we let k = ∞. Also, we let R(G) denote G’s representation
number and Rk = {G : R(G) = k}.

Clearly, R1 = {G : G is a complete graph}. Next, we discuss R2.

2.2 Graphs with Representation Number 2

We begin with discussing five particular classes of graphs having representation
number 2, namely, empty graphs, trees, forests, cycle graphs and ladder graphs.
Then we state a result saying that graphs with representation number 2 are
exactly the class of circle graphs.

Empty Graphs. No empty graph En for n ≥ 2 can be represented by a single
copy of each letter, so R(En) ≥ 2. On the other hand, as discussed above, En

can be represented by concatenation of two permutations, and thus R(En) = 2.

Trees and Forests. A simple inductive argument shows that any tree T can be
represented using two copies of each letter, and thus, if the number of vertices
in T is at least 3, R(T ) = 2. Indeed, as the base case we have the edge labeled
by 1 and 2 that can be 2-represented by 1212. Now, suppose that any tree on at
most n − 1 vertices can be 2-represented for n ≥ 3, and consider a tree T with
n vertices and with a leaf x connected to a vertex y. Removing the leaf x, we
obtain a tree T ′ that can be 2-represented by a word w1yw2yw3 where w1, w2

and w3 are possibly empty words not containing y. It is now easy to see that the
word w1yw2xyxw3 2-represents T (obtained from T ′ by inserting back the leaf
x). Note that the word w1xyxw2yw3 also represents T .

Representing each tree in a forest by using two letters (trees on one vertex
x and two vertices x and y can be represented by xx and xyxy, respectively)
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and concatenating the obtained word-representants, we see that for any forest
F having at least two trees, R(F ) = 2. Indeed, having two letters in a word-
represent for each tree guarantees that no pair of trees will be connected by
an edge.

Cycle Graphs. Another class of 2-representable graphs is cycle graphs. Note
that a cyclic shift of a word-representant may not represent the same graph, as
is the case with, say, the word 112. However, if a word-representant is uniform,
a cyclic shift does represent the same graph, which is recorded in the following
proposition.

Proposition 1 ([18]). Let w = uv be a k-uniform word representing a graph
G, where u and v are two, possibly empty, words. Then the word w′ = vu also
represents G.

Now, to represent a cycle graph Cn on n vertices, one can first represent the
path graph Pn on n vertices using the technique to represent trees, then make a
1-letter cyclic shift still representing Pn by Proposition 1, and swap the first two
letters. This idea is demonstrated for the graph in Fig. 2 as follows. The steps in
representing the path graph P6 obtained by removing the edge 16 from C6 are

1212 → 121323 → 12132434 → 1213243545 → 121324354656.

The 1-letter cyclic shift gives the word 612132435465 still representing P6 by
Proposition 1, and swapping the first two letters gives the sought representation
of C6: 162132435465.

1 2 3

456

Fig. 2. Cycle graph C6

Ladder Graphs. The ladder graph Ln with 2n vertices, labeled 1, . . . , n,
1′, . . . , n′, and 3n − 2 edges is constructed following the pattern for n = 4 pre-
sented in Fig. 3. An inductive argument given in [15] shows that for n ≥ 2,
R(Ln) = 2. Table 1 gives 2-representations of Ln for n = 1, 2, 3, 4.

Circle Graphs. A circle graph is the intersection graph of a set of chords of
a circle. That is, it is an unoriented graph whose vertices can be associated
with chords of a circle such that two vertices are adjacent if and only if the
corresponding chords cross each other. See Fig. 4 for an example of a circle
graph on four vertices and its associated chords.

The following theorem provides a complete characterization of R2.
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1 2 3

3′2′1′

4

4′

Fig. 3. The ladder graph L4

Table 1. 2-representations of the ladder graph Ln for n = 1, 2, 3, 4

n 2-representation of the ladder graph Ln

1 11′11′

2 1′212′21′2′1

3 12′1′323′32′3′121′

4 1′213′2′434′43′4′231′2′1

Theorem 4. We have

R2 = {G : Gis a circle graph different from a complete graph}.

Proof. Given a circle graph G, consider its representation on a circle by intersect-
ing chords. Starting from any chord’s endpoint, go through all the endpoints in
clock-wise direction recording chords’ labels. The obtained word w is 2-uniform
and it has the property that a pair of letter x and y alternate in w if and only if
the pair of chords labeled by x and y intersect, which happens if and only if the
vertex x is connected to the vertex y in G. For the graph in Fig. 4, the chords’
labels can be read starting from the lower 1 as 13441232, which is a 2-uniform
word representing the graph. Thus, G is a circle graph if and only if G ∈ R2

with the only exception if G is a complete graph, in which case G ∈ R1.

2.3 Graphs with Representation Number 3

Unlike the case of graphs with representation number 2, no characterization of
graphs with representation number 3 is know. However, there is a number of
interesting results on this class of graphs to be discussed next.

The Petersen Graph. In 2010, Alexander Konovalov and Steven Linton
not only showed that the Petersen graph in Fig. 5 is not 2-representable, but
also provided two non-equivalent (up to renaming letters or a cyclic shift)
3-representations of it:

– 1387296(10)7493541283(10)7685(10)194562 and
– 134(10)58679(10)273412835(10)6819726495.

The fact that the Petersen graph does not belong to R2 is also justified by
the following theorem.
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Fig. 4. A circle graph on four vertices and its associated chords

1

2

34

5
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89
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Fig. 5. The Petersen graph

Theorem 5 ([9]). Petersen’s graph is not 2-representable.

Proof. Suppose that the graph is 2-representable and w is a 2-uniform word
representing it. Let x be a letter in w such that there is a minimal number of
letters between the two occurrences of x. Since Petersen’s graph is regular of
degree 3, it is not difficult to see that there must be exactly three letters, which
are all different, between the xs (having more letters between xs would lead to
having two equal letters there, contradicting the choice of x).

By symmetry, we can assume that x = 1, and by Proposition 1 we can assume
that w starts with 1. So, the letters 2, 5 and 6 are between the two 1s, and because
of symmetry, the fact that Petersen’s graph is edge-transitive (that is, each of
its edges can be made “internal”), and taking into account that the vertices 2, 5
and 6 are pairwise non-adjacent, we can assume that w = 12561w16w25w32w4

where the wis are some, possibly empty words for i ∈ {1, 2, 3, 4}. To alternate
with 6 but not to alternate with 5, the letter 8 must occur in w1 and w2. Also,
to alternate with 2 but not to alternate with 5, the letter 3 must occur in w3 and
w4. But then 8833 is a subsequence in w, and thus 8 and 3 must be non-adjacent
in the graph, a contradiction.

Prisms. A prism Prn is a graph consisting of two cycles 12 · · · n and 1′2′ · · · n′,
where n ≥ 3, connected by the edges ii′ for i = 1, . . . , n. In particular, the
3-dimensional cube to the right in Fig. 6 is the prism Pr4.

Theorem 6 ([18]). Every prism Prn is 3-representable.

The fact that the triangular prism Pr3 is not 2-representable was shown in
[18]. The following more general result holds.



A Comprehensive Introduction to the Theory of Word-Representable Graphs 43

Fig. 6. Prisms Pr3 and Pr4

Theorem 7 ([15]). None of prisms Prn is 2-representable.

Theorems 6 and 7 show that Prn ∈ R3 for any n ≥ 3.

Colorability of Graphs in R3. Theorem 11 below shows that R3 does not
even include 2-colorable graphs, and thus any class of c-colorable graphs for
c ≥ 3. Indeed, any c-colorable non-3-representable graph can be extended to a
(c + 1)-colorable graph by adding an apex (all-adjacent vertex), which is still
non-3-representable using the hereditary nature of word-representability (see
Remark 1).

A natural question to ask here is: Is R3 properly included in a class of
c-colorable graphs for a constant c? A simple argument of replacing a vertex
in the 3-representable triangular prism Pr3 by a complete graph of certain size
led to the following theorem.

Theorem 8 ([15]). The class R3 is not included in a class of c-colorable graphs
for some constant c.

Subdivisions of Graphs. The following theorem gives a useful tool for con-
structing 3-representable graphs, that is, graphs with representation number at
most 3.

Theorem 9 ([18]). Let G = (V,E) be a 3-representable graph and x, y ∈ V .
Denote by H the graph obtained from G by adding to it a path of length at least
3 connecting x and y. Then H is also 3-representable.

Definition 4. A subdivision of a graph G is a graph obtained from G by replac-
ing each edge xy in G by a simple path (that is, a path without self-intersection)
from x to y. A subdivision is called a k-subdivision if each of these paths is of
length at least k.

Definition 5. An edge contraction is an operation which removes an edge from
a graph while gluing the two vertices it used to connect. An unoriented graph G
is a minor of another unoriented graph H if a graph isomorphic to G can be
obtained from H by contracting some edges, deleting some edges, and deleting
some isolated vertices.
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Theorem 10 ([18]). For every graph G there are infinitely many 3-
representable graphs H that contain G as a minor. Such a graph H can be
obtained from G by subdividing each edge into any number of, but at least three
edges.

Note that H in Theorem 10 does not have to be a k-subdivision for some k,
that it, edges of G can be subdivided into different number (at least 3) of edges.
In either case, the 3-subdivision of any graph G is always 3-representable. Also,
it follows from Theorem 9 and the proof of Theorem 10 in [18] that a graph
obtained from an edgeless graph by inserting simple paths of length at least 3
between (some) pairs of vertices of the graph is 3-representable.

Finally, note that subdividing each edge in any graph into exactly two edges
gives a bipartite graph, which is word-representable by Theorem 13 (see the
discussion in Sect. 2.4 on why a bipartite graph is word-representable).

2.4 Graphs with High Representation Number

In Theorem 28 below we will see that the upper bound on a shortest word-
representant for a graph G on n vertices is essentially 2n2, that is, one needs at
most 2n copies of each letter to represent G. Next, we consider two classes of
graphs that require essentially n/2 copies of each letter to be represented, and
these are the longest known shortest word-representants.

Crown Graphs

Definition 6. A crown graph (also known as a cocktail party graph) Hn,n is
obtained from the complete bipartite graph Kn,n by removing a perfect matching.
That is, Hn,n is obtained from Kn,n by removing n edges such that each vertex
was incident to exactly one removed edge.

1

1′

H1,1

1

1′

2

2′

H2,2

1

1′

2

2′

3

3′

H3,3

Fig. 7. Crown graphs

See Fig. 7 for examples of crown graphs.
By Theorem 13 below, Hn,n can be represented by a concatenation of per-

mutations, because Hn,n is a comparability graph defined in Sect. 3 (to see this,
just orient all edges from one part to the other). In fact, Hn,n is known to
require n permutations to be represented. However, can we provide a shorter
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representation for Hn,n? It turns out that we can, to be discussed next, but such
representations are still long (linear in n).

Note that H1,1 ∈ R2 by Sect. 2.2. Further, H2,2 �= K4, the complete graph on
4 vertices, and thus H2,2 ∈ R2 because it can be 2-represented by 121′2′212′1′.
Also, H3,3 = C6 ∈ R2 by Sect. 2.2. Finally, H4,4 = Pr4 ∈ R3 by Sect. 2.3. The
following theorem gives the representation number R(Hn,n) in the remaining
cases.

Theorem 11 ([6]). If n ≥ 5 then the representation number of Hn,n is �n/2�
(that is, one needs �n/2� copies of each letter to represent Hn,n, but not fewer).

Crown Graphs with an Apex. The graph Gn is obtained from a crown graph
Hn,n by adding an apex (all-adjacent vertex). See Fig. 8 for the graph G3.

1

1′

2

2′

3

3′

xG3 =

Fig. 8. Graph G3

It turns out that Gn is the worst known word-representable graph in the sense
that it requires the maximum number of copies of each letter to be represented,
as recorded in the following theorem.

Theorem 12 ([18]). The representation number of Gn is 	n/2
.
It is unknown whether there exist graphs on n vertices with representation

number between 	n/2
 and essentially 2n (given by Theorem 29).

3 Permutationally Representable Graphs and Their
Significance

An orientation of a graph is transitive if presence of edges u → v and v → z
implies presence of the edge u → z. An unoriented graph is a comparability graph
if it admits a transitive orientation. It is well known [17, Sect. 3.5.1], and is not
difficult to show that the smallest non-comparability graph is the cycle graph C5.

Definition 7. A graph G = (V,E) is permutationally representable if it can be
represented by a word of the form p1 · · · pk where pi is a permutation. We say
that G is permutationally k-representable.



46 S. Kitaev

For example, the graph in Fig. 1 is permutationally representable, which is
justified by the concatenation of two permutations 21342341.

The following theorem is an easy corollary of the fact that any partially
ordered set can be represented as intersection of linear orders.

Theorem 13 ([20]). A graph is permutationally representable if and only if it
is a comparability graph.

Next, consider a schematic representation of the graph G in Fig. 9 obtained
from a graph H by adding an all-adjacent vertex (apex). The following theorem
holds.

Theorem 14 ([18]). The graph G is word-representable if and only if the graph
H is permutationally representable.

x

H

G =

Fig. 9. G is obtained from H by adding an apex

A wheel graph Wn is the graph obtained from a cycle graph Cn by adding
an apex. It is easy to see that none of cycle graphs C2n+1, for n ≥ 2, is a
comparability graph, and thus none of wheel graphs W2n+1, for n ≥ 2 is word-
representable. In fact, W5 is the smallest example of a non-word-representable
graph (the only one on 6 vertices). Section 6 discusses other examples of non-
word-representable graphs.

As a direct corollary to Theorem 14, we have the following important result
revealing the structure of neighbourhoods of vertices in a word-representable
graph.

Theorem 15 ([18]). If a graph G is word-representable then the neighbourhood
of each vertex in G is permutationally representable (is a comparability graph by
Theorem 13).

The converse to Theorem 15 is not true as demonstrated by the counterex-
amples in Fig. 10 taken from [4,9], respectively.

A clique in an unoriented graph is a subset of pairwise adjacent vertices. A
maximum clique is a clique of the maximum size. Given a graph G, the Maxi-
mum Clique problem is to find a maximum clique in G. It is well known that the
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co-(T2)

Fig. 10. Non-word-representable graphs in which each neighbourhood is permutation-
ally representable

Maximum Clique problem is NP-complete. However, this problem is polynomi-
ally solvable for word-representable graphs, which is a corollary of Theorem 15
and is discussed next.

Theorem 16 ([10,11]). The Maximum Clique problem is polynomially solvable
on word-representable graphs.

Proof. Each neighbourhood of a word-representable graph G is a comparability
graph by Theorem 15. It is known that the Maximum Clique problem is solvable
on comparability graphs in polynomial time. Thus the problem is solvable on G
in polynomial time, since any maximum clique belongs to the neighbourhood of
a vertex including the vertex itself.

4 Graphs Representable by Pattern Avoiding Words

It is a very popular area of research to study patterns in words and permu-
tations1. The book [14] provides a comprehensive introduction to the field. A
pattern is a word containing each letter in {1, 2, . . . , k} at least once for some
k. A pattern τ = τ1τ2 · · · τm occurs in a word w = w1w2 · · · wn if there exist
1 ≤ i1 < i2 < · · · < im ≤ n such that τ1τ2 · · · τm is order-isomorphic to
wi1wi2 · · · wim . We say that w avoids τ if w contains no occurrences of τ . For
example, the word 42316 contains several occurrences of the pattern 213 (all
ending with 6), e.g. the subsequences 426, 416 and 316.

As a particular case of a more general program of research suggested by
the author during his plenary talk at the international Permutation Patterns
Conference at the East Tennessee State University, Johnson City in 2014, one
can consider the following direction (see [17, Sect. 7.8]). Given a set of words
avoiding a pattern, or a set of patterns, which class of graphs do these words
represent?
1 The patterns considered in this section are ordered, and their study comes from

Algebraic Combinatorics. There are a few results on word-representable graphs and
(unordered) patterns studied in Combinatorics on Words, namely on squares and
cubes in words, that are not presented in this paper, but can be found in [17,
Sect. 7.1.3]. One of the results says that for any word-representable graph, there
exists a cube-free word representing it.
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As a trivial example, consider the class of graphs defined by words avoiding
the pattern 21. Clearly, any 21-avoiding word is of the form

w = 11 · · · 122 · · · 2 · · · nn · · · n.

If a letter x occurs at least twice in w then the respective vertex is isolated. The
letters occurring exactly once form a clique (are connected to each other). Thus,
21-avoiding words describe graphs formed by a clique and an independent set.

Two papers, [5,21], are dedicated to this research direction and will be
summarised in this section. So far, apart from Theorem 17 and Corollary 1
below, only 132-avoiding and 123-avoiding words were studied from word-
representability point of view. The results of these studies are summarized in
Fig. 11, which is taken from [21]. In that figure, and more generally in this section,
we slightly abuse the notation and call graphs representable by τ -avoiding words
τ -representable.

Fig. 11. Relations between graph classes taken from [21]

We note that unlike the case of word-representability without extra restric-
tions, labeling of graphs does matter in the case of pattern avoiding represen-
tations. For example, the 132-avoiding word 543212345 represents the graph to
the left in Fig. 12, while no 132-avoiding word represents the other graph in that
figure. Indeed, no two letters out of 1, 2, 3 and 4 can occur once in a word-
representant w or else the respective vertices would not form an independent set.
Say, w.l.o.g. that 1, 2 and 3 occur at least twice in w. But then, because 5 is an
apex, we can find a copy of 5 in w having at least two letters x, y ∈ {1, 2, 3} both
to the left and to the right of the 5, so that the patten 132 in w is inevitable.
Note that the presence of the vertex 4 in our argument is essential, because if we
remove this vertex from the graph to the right in Fig. 12, then the 132-avoiding
word 3532151 would represent the obtained graph.

The following theorem has a great potential to be applicable to the study of
τ -representable graphs for τ of length 4 or more.

Theorem 17 ([21]). Let G be a word-representable graph, which can be repre-
sented by a word avoiding a pattern τ of length k + 1. Let x be a vertex in G
such that its degree d(x) ≥ k. Then, any word w representing G that avoids τ
must contain no more than k copies of x.



A Comprehensive Introduction to the Theory of Word-Representable Graphs 49

2 1

3

5

4 2 5

3

4

1

Fig. 12. 132-representable (left) and non-132-representable (right) labelings of the
same graph

Proof. If there are at least k + 1 occurrences of x in w, we obtain a factor
(i.e. consecutive subword) xw1x · · · wkx, where k neighbours of x in G occur
in each wi. But then w contains all patterns of length k + 1, in particular,
τ Contradiction.

Corollary 1 ([21]). Let w be a word-representant for a graph which avoids a
pattern of length k +1. If some vertex y adjacent to x has degree at least k, then
x occurs at most k + 1 times in w.

4.1 132-Representable Graphs

It was shown in [5] that the minimum (with respect to the number of ver-
tices) non-word-representable graph, the wheel graph W5, is actually a mini-
mum non-132-representable graph (we do not know if there exit other non-132-
representable graphs on 6 vertices).

Theorem 18 ([5]). If a graph G is 132-representable, then there exists a 132-
avoiding word w representing G such that any letter in w occurs at most twice.

Theorems 4 and 18 give the following result.

Theorem 19 ([5]). Every 132-representable graph is a circle graph.

Thus, by Theorems 4, 7 and 19, none of prisms Prn, n ≥ 3, is 132-
representable. A natural question is if there are circle graphs that are not 132-
representable.

Theorem 20 ([21]). Not all circle graphs are 132-representable. E.g. disjoint
union of two complete graphs K4 is a circle graph, but it is not 132-representable.

Theorem 21 ([5]). Any tree is 132-representable.

Note that in the case of pattern avoiding representations of graphs, Theo-
rem 2 does not necessarily work, because extending a representation to a uniform
representation may introduce an occurrences of the pattern(s) in question. For
example, while any complete graph Kn can be represented by the 132-avoiding
word n(n−1) · · · 1, it was shown in [21] that for n ≥ 3 no 2-uniform 132-avoiding
representation of Kn exists. In either case, [21] shows that any tree can actually
be represented by a 2-uniform word thus refining the statement of Theorem 21.
For another result on uniform 132-representation see Theorem 27 below.
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Theorem 22 ([5]). Any cycle graph is 132-representable.

Proof. The cycle graph Cn labeled by 1, 2, . . . , n in clockwise direction can be
represented by the 132-avoiding word

(n − 1)n(n − 2)(n − 1)(n − 3)(n − 2) · · · 45342312.

Theorem 23 ([5]). For n ≥ 1, a complete graph Kn is 132-representable. More-
over, for n ≥ 3, there are

2 + Cn−2 +
n∑

i=0

Ci

different 132-representants for Kn, where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan

number. Finally, K1 can be represented by a word of the form 11 · · · 1 and K2 by
a word of the form 1212 · · · (of even or odd length) or 2121 · · · (of even or odd
length).

As a corollary to the proof of Theorem 23, [5] shows that for n ≥ 3, the
length of any 132-representant of Kn is either n, or n + 1, or n + 2, or n + 3.

4.2 123-Representable Graphs

An analogue of Theorem 19 holds for 123-representable graphs.

Theorem 24 ([21]). Any 123-representable graph is a circle graph.

Fig. 13. Star graph K1,6

Theorem 25 ([21]). Any cycle graph is 123-representable.

Proof. The cycle graph Cn labeled by 1, 2, . . . , n in clockwise direction can be
represented by the 123-avoiding word

n(n − 1)n(n − 2)(n − 1)(n − 3)(n − 1) · · · 23121.

Theorem 26 ([21]). The star graph K1,6 in Fig. 13 is not 123-representable.
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It is easy to see that K1,6 is a circle graph, and thus not all circle graphs
are 123-representable by Theorem 26. Also, by Theorem 26, not all trees are
123-representable.

Based on Theorems 20 and 26, it is easy to come up with a circle graph on
14 vertices that is neither 123- nor 132-representable (see [21]).

As opposed to the situation with 132-representation discussed in Sect. 4.1,
any complete graph Kn can be represented by the 123-avoiding 2-uniform word
n(n−1) · · · 1n(n−1) · · · 1 as observed in [21]. Also, it was shown in [21] that any
path graph Pn can be 123-represented by a 2-uniform word. We conclude with
a general type theorem on uniform representation applicable to both 123- and
132-representations.

Theorem 27 ([21]). Let a pattern τ ∈ {123, 132} and G1, G2, . . . , Gk be τ -
representable connected components of a graph G. Then G is τ -representable if
and only if at most one of the connected components cannot be τ -represented by
a 2-uniform word.

5 Semi-transitive Orientations as a Key Tool in the
Theory of Word-Representable Graphs

Recall the definition of a transitive orientation at the beginning of Sect. 3.
A shortcut is an acyclic non-transitively oriented graph obtained from a

directed cycle graph forming a directed cycle on at least four vertices by chang-
ing the orientation of one of the edges, and possibly by adding more directed
edges connecting some of the vertices (while keeping the graph be acyclic and
non-transitive). Thus, any shortcut

– is acyclic (that it, there are no directed cycles);
– has at least 4 vertices;
– has exactly one source (the vertex with no edges coming in), exactly one sink

(the vertex with no edges coming out), and a directed path from the source
to the sink that goes through every vertex in the graph;

– has an edge connecting the source to the sink that we refer to as the short-
cutting edge;

– is not transitive (that it, there exist vertices u, v and z such that u → v and
v → z are edges, but there is no edge u → z).

Definition 8. An orientation of a graph is semi-transitive if it is acyclic and
shortcut-free.

It is easy to see from definitions that any transitive orientation is neces-
sary semi-transitive. The converse is not true, e.g. the following schematic semi-
transitively oriented graph is not transitively oriented:

transitively oriented transitively oriented
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Thus semi-transitive orientations generalize transitive orientations.
A way to check if a given oriented graph G is semi-transitively oriented is as

follows. First check that G is acyclic; if not, the orientation is not semi-transitive.
Next, for a directed edge from a vertex x to a vertex y, consider each directed
path P having at least three edges without repeated vertices from x to y, and
check that the subgraph of G induced by P is transitive. If such non-transitive
subgraph is found, the orientation is not semi-transitive. This procedure needs
to be applied to each edge in G, and if no non-transitivity is discovered, G’s
orientation is semi-transitive.

As we will see in Theorem 28, finding a semi-transitive orientation is equiv-
alent to recognising whether a given graph is word-representable, and this is
an NP-hard problem (see Theorem 39). Thus, there is no efficient way to con-
struct a semi-transitive orientation in general, and such a construction would
rely on an exhaustive search orienting edges one by one, and thus branching the
process. Having said that, there are several situations in which branching is not
required. For example, the orientation of the partially oriented triangle below
can be completed uniquely to avoid a cycle:

⇒

For another example, the branching process can normally be shorten e.g.
by completing the orientation of quadrilaterals as shown in Fig. 14, which is
unique to avoid cycles and shortcuts (the diagonal in the last case may require
branching).

⇒

⇒

⇒

Fig. 14. Completing orientations of quadrilaterals

The main characterization theorem to date for word-representable graphs is
the following result.

Theorem 28 ([11]). A graph G is word-representable if and only if G admits a
semi-transitive orientation.
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Proof. The backwards direction is rather complicated and is omitted. An algo-
rithm was created in [11] to turn a semi-transitive orientation of a graph into a
word-representant.

The idea of the proof for the forward direction is as follows (see [11] for
details). Given a word, say, w = 2421341, orient the graph represented by w by
letting x → y be an edge if the leftmost x is to the left of the leftmost y in w, to
obtain a semi-transitive orientation:

1 3

4 2

Any complete graph is 1-representable. The algorithm in [11] to turn semi-
transitive orientations into word-representants gave the following result.

Theorem 29 ([11]). Each non-complete word-representable graph G is 2(n −
κ(G))- representable, where κ(G) is the size of the maximum clique in G.

As an immediate corollary of Theorem 29, we have that the recognition prob-
lem of word-representability is in NP. Indeed, any word-representant is of length
at most O(n2), and we need O(n2) passes through such a word to check alter-
nation properties of all pairs of letters. There is an alternative proof of this
complexity observation by Magnús M. Halldórsson in terms of semi-transitive
orientations. In presenting his proof, we follow [17, Remark 4.2.3].

Checking that a given directed graph G is acyclic is a polynomially solvable
problem. Indeed, it is well known that the entry (i, j) of the kth power of the
adjacency matrix of G records the number of walks of length k in G from the
vertex i to the vertex j. Thus, if G has n vertices, then we need to make sure
that the diagonal entries are all 0 in all powers, up to the nth power, of the
adjacency matrix of G. Therefore, it remains to show that it is polynomially
solvable to check that G is shortcut-free. Let u → v be an edge in G. Consider
the induced subgraph Hu→v consisting of vertices “in between” u and v, that is,
the vertex set of Hu→v is

{x | there exist directed paths from u to x and from x to v}.

It is not so difficult to prove that u → v is not a shortcut (that is, is not
a shortcutting edge) if and only if Hu→v is transitive. Now, we can use the
well known fact that finding out whether there exists a directed path from one
vertex to another in a directed graph is polynomially solvable, and thus it is
polynomially solvable to determine Hu→v (one needs to go through n vertices and
check the existence of two paths for each vertex). Finally, checking transitivity
is also polynomially solvable, which is not difficult to see.

The following theorem shows that word-representable graphs generalize the
class of 3-colorable graphs.

Theorem 30 ([11]). Any 3-colorable graph is word-representable.
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Proof. Coloring a 3-colorable graph in three colors, say, colors 1, 2 and 3, and
orienting the edges based on the colors of their endpoints as 1 → 2 → 3, we obtain
a semi-transitive orientation. Indeed, obviously there are no cycles, and because
the longest directed path involves only three vertices, there are no shortcuts.
Theorem 28 can now be applied to complete the proof.

Theorem 30 can be applied to see, for example, that the Petersen graph is
word-representable, which we already know from Sect. 2.3. More corollaries to
Theorem 30 can be found below.

6 Non-word-representable Graphs

From the discussion in Sect. 3 we already know that the wheel graphs W2n+1, for
n ≥ 2, are not word-representable, and that W5 is the minimum (by the number
of vertices) non-word-representable graph. But then, taking into account the
hereditary nature of word-representability (see Remark 1), we have a family
W of non-word-representable graphs characterised by containment of W2n+1

(n ≥ 2) as an induced subgraph.
Note that each graph in W necessarily contains a vertex of degree 5 or more,

and also a triangle as an induced subgraph. Natural questions are if there are non-
word-representable graphs of maximum degree 4, and also if there are triangle-
free non-word-representable graphs. Both questions were answered in affirmative.
The graph to the right in Fig. 10, which was found in [4], addresses the first
question, while the second question is addressed by the following construction
presented in [10].

Let M be a 4-chromatic graph with girth at least 10 (such graphs exist by a
result of Paul Erdős; see [17, Sect. 4.4] for details). The girth of a graph is the
length of a shortest cycle contained in the graph. If the graph does not contain
any cycles (that is, it is an acyclic graph), its girth is defined to be infinity. Now,
for every path of length 3 in M add to M an edge connecting path’s end vertices.
Then the obtained graph is triangle-free and non-word-representable [10].

6.1 Enumeration of Non-word-representable Graphs

According to experiments run by Herman Z.Q. Chen, there are 1, 25 and 929
non-isomorphic non-word-representable connected graphs on six, seven and eight
vertices, respectively. These numbers were confirmed and extended to 68,545 for
nine vertices, and 4,880,093 for 10 vertices, using a constraint programming
(CP)-based method by Özgür Akgün, Ian Gent and Christopher Jefferson.

Figure 15 created by Chen presents the 25 non-isomorphic non-word-
represent-able graphs on seven vertices. Note that the only non-word-
representable graph on six vertices is the wheel W5. Further note that the case
of seven vertices gives just 10 minimal non-isomorphic non-word-representable
graphs, since 15 of the graphs in Fig. 15 contain W5 as an induced subgraphs
(these graphs are the first 11 graphs, plus the 15th, 16th, 18th and 19th graphs).
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Fig. 15. 25 non-isomorphic non-word-representable graphs on seven vertices

6.2 Non-word-representable Line Graphs

The line graph of a graph G = (V,E) is the graph with vertex set E in which two
vertices are adjacent if and only if the corresponding edges of G share a vertex.
The line graph of G is denoted L(G). Line graphs give a tool to construct non-
word-representable graphs as follows from the theorems below.

Theorem 31 ([19]). Let n ≥ 4. For any wheel graph Wn, the line graph L(Wn)
is non-word-representable.

Theorem 32 ([19]). Let n ≥ 5. For any complete graph Kn, the line graph
L(Kn) is non-word-representable.

K1,3 =
C4 =

P4 =

Fig. 16. The claw graph K1,3, the cycle graph C4, and the path graph P4

The following theorem is especially interesting as it shows how to turn essen-
tially any graph into non-word-representable graph.

Theorem 33 ([19]). If a connected graph G is not a path graph, a cycle graph,
or the claw graph K1,3 (see Fig. 16), then the line graph Ln(G) obtained by
application of the procedure of taking the line graph to G n times, is non-word-
representable for n ≥ 4.
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7 Word-Representability and Operations on Graphs

In this section we consider some of the most basic operations on graphs, namely,
taking the complement, edge subdivision, edge contraction, connecting two
graphs by an edge and gluing two graphs in a clique, replacing a vertex with a
module, Cartesian product, rooted product and taking line graph.

We do not consider edge-addition/deletion trivially not preserving (non)-
word-representability, although there are situations when these operations may
preserve word-representability. For example, it is shown in [13] that edge-deletion
preserves word-representability on K4-free word-representable graphs.

Finally, we do not discuss the operations Y → Δ (replacing an induced
subgraph K1,3, the claw, on vertices v0, v1, v2, v3, where v0 is the apex, by the
triangle on vertices v1, v2, v3 and removing v0) and Δ → Y (removing the edges
of a triangle on vertices v1, v2, v3 and adding a vertex v0 connected to v1, v2, v3)
recently studied in [13] in the context of word-representability of graphs.

7.1 Taking the Complement

Starting with a word-representable graph and taking its complement, we may
either obtain a word-representable graph or not. Indeed, for example, both any
graph on at most five vertices and its complement are word-representable. On
the other hand, let G be the graph formed by the 5-cycle (2,4,6,3,5) and an
isolated vertex 1. The 5-cycle can be represented by the word 2542643653 (see
Sect. 2.2 for a technique to represent cycle graphs) and thus the graph G can be
represented by the word 112542643653. However, taking the complement of G,
we obtain the wheel graph W5, which is not word-representable.

Similarly, starting with a non-word-representable graph and taking its com-
plement, we can either obtain a word-representable graph or not. Indeed, the
complement of the non-word-representable wheel W5 is word-representable, as
is discussed above. On the other hand, the graph G having two connected com-
ponents, one W5 and the other one the 5-cycle C5, is non-word-representable
because of the induced subgraph W5, while the complement of G also contains
an induced subgraph W5 (formed by the vertices of C5 in G and any of the
remaining vertices) and thus is also non-word-representable.

7.2 Edge Subdivision and Edge Contraction

Subdivision of graphs (see Definition 4) is based on subdivision of individual
edges, and it is considered in Sect. 2.3 from 3-representability point of view.

If we change “3-representable” by “word-representable” in Theorem 10 we
would obtain a weaker, but clearly still true statement, which is not hard to
prove directly via semi-transitive orientations. Indeed, each path of length at
least 3 added instead of an edge e can be oriented in a “blocking” way, so that
there would be no directed path between e’s endpoints. Thus, edge subdivision
does not preserve the property of being non-word-representable. The following
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theorem shows that edge subdivision may be preserved on some subclasses of
word-representable graphs, but not on the others.

Theorem 34 ([13]). Edge subdivision preserves word-representability on K4-
free word-representable graphs, and it does not necessarily preserve word-
represent-ability on K5-free word-representable graphs.

Recall the definition of edge contraction in Definition 5. By Theorem 10,
contracting an edge in a word-representable graph may result in a non-word-
representable graph, while in many cases, e.g. in the case of path graphs, word-
representability is preserved under this operation.

On the other hand, when starting from a non-word-representable graph, a
graph obtained from it by edge contraction can also be either word-representable
or non-word-representable. For example, contracting any edge incident with the
bottommost vertex in the non-word-representable graph to the right in Fig. 10,
we obtain a graph on six vertices that is different from W5 and is thus word-
representable. Finally, any non-word-representable graph can be glued in a vertex
with a path graph P (the resulting graph will be non-word-representable), so
that contracting any edge in the subgraph formed by P results in a non-word-
representable graph.

7.3 Connecting Two Graphs by an Edge and Gluing Two Graphs
in a Clique

In what follows, by gluing two graphs in a clique we mean the following operation.
Suppose a1, . . . , ak and b1, . . . , bk are cliques of size k in graphs G1 and G2,
respectively. Then gluing G1 and G2 in a clique of size k means identifying each
ai with one bj , for i, j ∈ {1, . . . , k} so that the neighbourhood of the obtained
vertex ci,j is the union of the neighbourhoods of ai and bj .

By the hereditary nature of word-representability (see Remark 1), if at least
one of two graphs is non-word-representable, then gluing the graphs in a clique,
or connecting two graphs by an edge (with the endpoints belonging to different
graphs) will result in a non-word-representable graph.

On the other hand, suppose that graphs G1 and G2 are word-representable.
Then gluing the graphs in a vertex, or connecting the graphs by an edge will
result in a word-representable graph. The latter statement is easy to see using
the notion of semi-transitive orientation. Indeed, by Theorem 28 both G1 and
G2 can be oriented semi-transitively, and gluing the oriented graphs in a ver-
tex, or connecting the graphs by an edge oriented arbitrarily, will not result in
any cycles or shortcuts created. In fact, it was shown in [15] that if G1 is k1-
representable (such a k1 must exist by Theorem 2) and G2 is k2-representable,
then essentially always the graph obtained either by gluing G1 and G2 in a vertex
or by connecting the graphs by an edge is max(k1, k2)-representable.

Even though gluing two word-representable graphs in a vertex (clique of size
1) always results in a word-representable graph, this is not necessarily true for
Gluing graphs in an edge (clique of size 2) or in a triangle (clique of size 3).
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We refer to [17, Sect. 5.4.3] for the respective examples. Glueing two graphs
in cliques of size 4 or more in the context of word-representability remains an
unexplored direction.

7.4 Replacing a Vertex with a Module

A subset X of the set of vertices V of a graph G is a module if all members
of X have the same set of neighbours among vertices not in X (that is, among
vertices in V \ X). For example, Fig. 17 shows replacement of the vertex 1 in
the triangular prism by the module K3 formed by the vertices a, b and c. Thus,
{a, b, c} is a module of the graph on the right in Fig. 17.

Fig. 17. Replacing a vertex by a module

Theorem 35 ([15]). Suppose that G = (V,E) is a word-representable graph and
x ∈ V . Let G′ be obtained from G by replacing x with a module M , where M
is any comparability graph (in particular, any clique). Then G′ is also word-
representable. Moreover, if R(G) = k1 and R(M) = k2 then R(G′) = k, where
k = max{k1, k2}.

7.5 Cartesian Product of Two Graphs

The Cartesian product G�H of graphs G = (V (G), E(G)) and H =
(V (H), E(H)) is a graph such that

– the vertex set of G�H is the Cartesian product V (G) × V (H); and
– any two vertices (u, u′) and (v, v′) are adjacent in G�H if and only if either

• u = v and u′ is adjacent to v′ in H, or
• u′ = v′ and u is adjacent to v in G.

See Fig. 18 for an example of the Cartesian product of two graphs.
A proof of the following theorem was given by Bruce Sagan in 2014. The proof

relies on semi-transitive orientations and it can be found in [17, Sect. 5.4.5].

Theorem 36 (Sagan). Let G and H be two word-representable graphs. Then
the Cartesian product G�H is also word-representable.
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Fig. 18. Cartesian product of two graphs

7.6 Rooted Product of Graphs

The rooted product of a graph G and a rooted graph H (i.e. one vertex of H
is distinguished), G ◦ H, is defined as follows: take |V (G)| copies of H, and for
every vertex vi of G, identify vi with the root vertex of the ith copy of H. See
Fig. 19 for an example of the rooted product of two graphs.
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Fig. 19. Rooted product of two graphs

The next theorem is an analogue of Theorem 36 for the rooted product of
two graphs.

Theorem 37 ([17]). Let G and H be two word-representable graphs. Then the
rooted product G ◦ H is also word-representable.

Proof. Identifying a vertex vi in G with the root vertex of the ith copy of H
in the definition of the rooted product gives a word-representable graph by
the discussion in Sect. 7.3. Thus, identifying the root vertices, one by one, we
will keep obtaining word-representable graphs, which gives us at the end word-
representability of G ◦ H.

7.7 Taking the Line Graph Operation

Taking the line graph operation has already been considered in Sect. 6.2. Based
on the results presented in that section, we can see that this operation can
turn a word-representable graph into either a word-representable graph or non-
word-representable graph. Also, there are examples of when the line graph of
a non-word-representable graph is non-word-representable. However, it remains
an open problem whether a non-word-representable graph can be turned into a
word-representable graph by applying the line graph operation.



60 S. Kitaev

8 Computational Complexity Results and
Word-Representability of Planar Graphs

In this section we will present known complexity results and also discuss word-
representability of planar graphs.

8.1 A Summary of Known Complexity Results

Even though the Maximum Clique problem is polynomially solvable on word-
representable graphs (see Theorem 16), many classical optimization problems are
NP-hard on these graphs. The latter follows from the problems being NP-hard
on 3-colorable graphs and Theorem 30.

The justification of the known complexity results presented in Table 2, as
well as the definitions of the problems can be found in [17, Section 4.2]. However,
below we discuss a proof of the fact that recognizing word-representability is an
NP-complete problem. We refer to [17, Sect. 4.2] for any missed references to the
results we use.

Table 2. Known complexities for problems on word-representable graphs

Problem Complexity

Deciding whether a given graph is word-representable NP-complete

Approximating the graph representation number within a factor of
n1−ε for any ε > 0

NP-hard

Clique covering NP-hard

Deciding whether a given graph is k-word-representable for any
fixed k, 3 ≤ k ≤ �n/2�

NP-complete

Dominating set NP-hard

Vertex colouring NP-hard

Maximum clique in P

Maximum independent set NP-hard

Suppose that P is a poset and x and y are two of its elements. We say that
x covers y if x > y and there is no element z in P such that x > z > y.

The cover graph GP of a poset P has P ’s elements as its vertices, and {x, y}
is an edge in GP if and only if either x covers y, or vice versa. The diagram of
P , sometimes called a Hasse diagram or order diagram, is a drawing of the cover
graph of G in the plane with x being higher than y whenever x covers y in P .
The three-dimensional cube in Fig. 6 is an example of a cover graph.

Vincent Limouzy observed in 2014 that semi-transitive orientations of
triangle-free graphs are exactly the 2-good orientations considered in [22] by
Pretzel (we refer to that paper for the definition of a k-good orientation). Thus,
by Proposition 1 in [22] we have the following reformulation of Pretzel’s result
in our language.
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Theorem 38 (Limouzy). The class of triangle-free word-representable graphs
is exactly the class of cover graphs of posets.

It was further observed by Limouzy, that it is an NP-complete problem to
recognize the class of cover graphs of posets. This implies the following theorem,
which is a key complexity result on word-representable graphs.

Theorem 39 (Limouzy). It is an NP-complete problem to recognize whether
a given graph is word-representable.

8.2 Word-Representability of Planar Graphs

Recall that not all planar graphs are word-representable. Indeed, for example,
wheel graphs W2n+1, or graphs in Fig. 10, are not word-representable.

Theorem 40 ([10]). Triangle-free planar graphs are word-representable.

Proof. By Grötzch’s theorem [23], every triangle-free planar graph is 3-colorable,
and Theorem 30 can be applied.

It remains a challenging open problem to classify word-representable planar
graphs. Towards solving the problem, various triangulations and certain subdivi-
sions of planar graphs were considered to be discussed next. Key tools to study
word-representability of planar graphs are 3-colorability and semi-transitive ori-
entations.

Word-Representability of Polyomino Triangulations. A polyomino is a
plane geometric figure formed by joining one or more equal squares edge to edge.
Letting corners of squares in a polyomino be vertices, we can treat polyominoes
as graphs. In particular, well known grid graphs are obtained from polyominoes
in this way. Of particular interest to us are convex polyominoes. A polyomino is
said to be column convex if its intersection with any vertical line is convex (in
other words, each column has no holes). Similarly, a polyomino is said to be row
convex if its intersection with any horizontal line is convex. A polyomino is said
to be convex if it is row and column convex.

When dealing with word-representability of triangulations of convex poly-
ominoes (such as in Fig. 20), one should watch for odd wheel graphs as induced
subgraphs (such as the part of the graph in bold in Fig. 20). Absence of such
subgraphs will imply 3-colorability and thus word-representability, which is the
basis of the proof of the following theorem.

Theorem 41 ([1]). A triangulation of a convex polyomino is word-representable
if and only if it is 3-colorable. There are non-3-colorable word-representable non-
convex polyomino triangulations.

The case of rectangular polyomino triangulations with a single domino tile
(such as in Fig. 21) is considered in the next theorem.

Theorem 42 ([8]). A triangulation of a rectangular polyomino with a single
domino tile is word-representable if and only if it is 3-colorable.
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Fig. 20. A triangulation of a poyomino

Fig. 21. A triangulation of a rectangular polyomino with a single domino tile

Word-Representability of Near-Triangulations. A near-triangulation is a
planar graph in which each inner bounded face is a triangle (where the outer face
may possibly not be a triangle).

The following theorem is a far-reaching generalization of Theorems 41 and 42.

Fig. 22. Grid-covered cylinder

Theorem 43 ([6]). A K4-free near-triangulation is 3-colorable if and only if it
is word-representable.

Characterization of word-representable near-triangulations (containing K4)
is still an open problem.

Triangulations of Grid-Covered Cylinder Graphs A grid-covered cylinder,
GCC for brevity, is a 3-dimensional figure formed by drawing vertical lines and
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horizontal circles on the surface of a cylinder, each of which are parallel to the
generating line and the upper face of the cylinder, respectively. A GCC can
be thought of as the object obtained by gluing the left and right sides of a
rectangular grid. See the left picture in Fig. 22 for a schematic way to draw a
GCC. The vertical lines and horizontal circles are called the grid lines. The part
of a GCC between two consecutive vertical lines defines a sector.

Any GCC defines a graph, called grid-covered cylinder graph, or GCCG,
whose set of vertices is given by intersection of the grid lines, and whose edges
are parts of grid lines between the respective vertices. A typical triangulation of
a GCCG is presented schematically in Fig. 23.

Word-representability of triangulations of any GCCG is completely charac-
terized by the following two theorems, which take into consideration the number
of sectors in a GCCG.

Theorem 44 ([3]). A triangulation of a GCCG with more than three sectors is
word-representable if and only if it contains no W5 or W7 as an induced subgraph.

Fig. 23. A triangulation of a GCCG

Theorem 45 ([3]). A triangulation of a GCCG with three sectors is word-
representable if and only if it contains no graph in Fig. 24 as an induced subgraph.

Subdivisions of Triangular Grid Graphs. The triangular tiling graph T∞

is the Archimedean tiling 36 (see Fig. 25). By a triangular grid graph G we mean
a graph obtained from T∞ as follows. Specify a finite number of triangles, called
cells, in T∞. The edges of G are then all the edges surrounding the specified cells,
while the vertices of G are the endpoints of the edges (defined by intersecting
lines in T∞). We say that the specified cells, along with any other cell whose all
edges are from G, belong to G.

The operation of face subdivision of a cell is putting a new vertex inside the
cell and making it to be adjacent to every vertex of the cell. Equivalently, face
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Fig. 24. All minimal non-word-representable induced subgraphs in triangulations of
GCCG’s with three sectors

Fig. 25. A fragment of the graph T ∞

subdivision of a cell is replacing the cell (which is the complete graph K3) by a
plane version of the complete graph K4. A face subdivision of a set S of cells of
a triangular grid graph G is a graph obtained from G by subdividing each cell in
S. The set S of subdivided cells is called a subdivided set. For example, Fig. 26
shows K4, the face subdivision of a cell, and A′, a face subdivision of A.

If a face subdivision of G results in a word-representable graph, then the face
subdivision is called a word-representable face subdivision. Also, we say that a
word-representable face subdivision of a triangular grid graph G is maximal if
subdividing any other cell results in a non-word-representable graph.

K4 A A′

Fig. 26. Examples of face subdivisions: K4 is the face subdivision of a cell, and A′ is
a face subdivision of A

An edge of a triangular grid graph G shared with a cell in T∞ that does not
belong to G is called a boundary edge. A cell in G that is incident to at least one
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Fig. 27. Graphs H and K, where boundary edges are in bold

boundary edge is called a boundary cell. A non-boundary cell in G is called an
interior cell. For example, the boundary edges in the graphs H and K in Fig. 27
are in bold.

A face subdivision of a triangular grid graph that involves face subdivision of
just boundary cells is called a boundary face subdivision. The following theorem
was proved using the notion of a smart orientation (see [2] for details).

Theorem 46 ([2]). A face subdivision of a triangular grid graph G is word-
representable if and only if it has no induced subgraph isomorphic to A′′ in
Fig. 28, that is, G has no subdivided interior cell.

Fig. 28. The graph A′′

Theorem 46 can be applied to the two-dimensional Sierpiński gasket graph
SG(n) to find its maximum word-representable subdivision (see [2] for details).

9 Directions for Further Research

In this section we list some of open problems and directions for further research
related to word-representable graphs. The first question though the Reader
should ask himself/herself is “Which graphs in their favourite class of graphs
are word-representable?”.
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– Characterize (non-)word-representable planar graphs.
– Characterize word-representable near-triangulations (containing K4).
– Describe graphs representable by words avoiding a pattern τ , where the notion

of a “pattern” can be specified in any suitable way, e.g. it could be a classical
pattern, a vincular pattern, or a bivincular pattern (see [14] for definitions).

– Is it true that out of all bipartite graphs on the same number of vertices,
crown graphs require the longest word-representants?

– Are there any graphs on n vertices whose representation requires more than
	n/2
 copies of each letter?

– Is the line graph of a non-word-representable graph always non-word-
represent-able?

– Characterize word-representable graphs in terms of forbidden subgraphs.
– Translate a known to you problem on graphs to words representing these

graphs (assuming such words exist), and find an efficient algorithm to solve
the obtained problem, and thus the original problem.

The last two problems are of fundamental importance.
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Binomial Coefficients, Valuations, and Words
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Abstract. The study of arithmetic properties of binomial coefficients
has a rich history. A recurring theme is that p-adic statistics reflect the
base-p representations of integers. We discuss many results expressing
the number of binomial coefficients

(
n
m

)
with a given p-adic valuation

in terms of the number of occurrences of a given word in the base-p
representation of n, beginning with a result of Glaisher from 1899, up
through recent results by Spiegelhofer–Wallner and Rowland.

Keywords: Binomial coefficients · p-adic valuation · Regular sequences

1 Valuations of Binomial Coefficients

In 1852, Kummer [10, pages 115–116] determined the exact power of a prime p
that divides a binomial coefficient

(
n
m

)
. To state this result, let νp(n) denote the

p-adic valuation of n, that is, the exponent of the highest power of p dividing n.

Theorem 1 (Kummer). Let p be a prime, and let n and m be integers with
0 ≤ m ≤ n. Then νp(

(
n
m

)
) is the number of carries involved in adding m to n−m

in base p.

Kummer’s theorem is the first of many results to express arithmetic informa-
tion about binomial coefficients in terms of base-p representations of integers.

Glaisher [6, Sect. 14] seems to have been the first to count binomial coeffi-
cients satisfying a given congruence condition. He showed that the number of
integers m in the range 0 ≤ m ≤ n such that

(
n
m

)
is odd is 2|n|1 . Here |n|1 is the

number of 1s in the standard base-2 representation of n.
Half a century later, Glaisher’s result was generalized to an arbitrary prime by

Fine [5, Theorem 2]. For a prime p and an integer n ≥ 0, let θp,0(n) be the number
of integers m in the range 0 ≤ m ≤ n such that

(
n
m

) �≡ 0 mod p. Let |n|w be
the number of occurrences of the word w in the base-p representation of n. Fine
showed that

θp,0(n) =
p−1∏

d=0

(d + 1)|n|d .

Since the publication of Fine’s result, many authors have been interested in
generalizations to higher powers of p. A natural quantity to study is the number
θp,α(n) of binomial coefficients

(
n
m

)
, for 0 ≤ m ≤ n, with νp(

(
n
m

)
) = α.

c© Springer International Publishing AG 2017
É. Charlier et al. (Eds.): DLT 2017, LNCS 10396, pp. 68–74, 2017.
DOI: 10.1007/978-3-319-62809-7 3
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Carlitz [3, Eqs. (1.7)–(1.9)] gave a recurrence involving θp,α(n) and a sec-
ondary quantity ψp,α(n) defined as the number of integers m in the range
0 ≤ m ≤ n such that νp((m + 1)

(
n
m

)
) = α. Namely,

θp,α(pn + d) = (d + 1)θp,α(n) + (p − d − 1)ψp,α−1(n − 1)

ψp,α(pn + d) =

{
(d + 1)θp,α(n) + (p − d − 1)ψp,α−1(n − 1) if 0 ≤ d ≤ p − 2
pψp,α−1(n) if d = p − 1.

As we will see in Sect. 3, this recurrence comes close to giving a matrix
generalization of Fine’s theorem, but it is not of the right form.

Nonetheless, Carlitz’s recurrence can be used to obtain formulas for θp,α(n).
Let n� · · · n1n0 be the standard base-p representation of n. For α = 1, Carlitz [3,
Eq. (2.5)] showed

θp,1(n) =
�−1∑

i=0

(n� +1)(n�−1+1) · · · (ni+2+1)ni+1(p−ni −1)(ni−1+1) · · · (n0+1).

Dividing by θp,0(n) = (n� + 1) · · · (n0 + 1) gives

θp,1(n)
θp,0(n)

=
�−1∑

i=0

ni+1

ni+1 + 1
· p − ni − 1

ni + 1
.

This equation is our first indication that expressions for θp,α(n)
θp,0(n)

can be simpler

than expressions for θp,α(n) alone. In particular, θp,1(n)
θp,0(n)

is a polynomial in the
variables |n|w for words w ∈ {0, 1, . . . , p − 1}∗ of length 2. For p = 2 we obtain

θ2,1(n) = 2|n|1 · 1
2
|n|10,

which was obtained by Howard [7, Eq. (2.4)] and by Davis and Webb [4, Theo-
rem 7]. For p = 3 we have

θ3,1(n) = 2|n|13|n|2
(

|n|10 +
1
4
|n|11 +

4
3
|n|20 +

1
3
|n|21

)
,

which also follows from the work of Huard, Spearman, and Williams [8]. For
p = 5 we have

θ5,1(n) = 2|n|13|n|24|n|35|n|4
(

2|n|10 +
3
4
|n|11 +

1
3
|n|12 +

1
8
|n|13

+
8
3
|n|20 + |n|21 +

4
9
|n|22 +

1
6
|n|23

+ 3|n|30 +
9
8
|n|31 +

1
2
|n|32 +

3
16

|n|33

+
16
5

|n|40 +
6
5
|n|41 +

8
15

|n|42 +
1
5
|n|43

)
,

and so on.
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2 Formulas for Arbitrary Prime Powers

We have seen that θp,1(n)
θp,0(n)

is a polynomial in |n|w. In fact this is true for θp,α(n)
θp,0(n)

in general. Barat and Grabner [2, Sect. 3] showed this implicitly while studying
the asymptotic behavior of

∑N
n=0 θp,α(n).

Rowland [12] gave an algorithm for computing a polynomial expression for
θp,α(n)
θp,0(n)

. For p = 2 one computes

θ2,2(n) = 2|n|1
(

−1
8
|n|10 + |n|100 +

1
4
|n|110 +

1
8
|n|210

)

(which was obtained by Howard [7, Equation (2.5)] and by Huard, Spearman,
and Williams [9, Theorem C]),

θ2,3(n) = 2|n|1
(

1
24

|n|10 − 1
2
|n|100 − 1

8
|n|110 + 2|n|1000 +

1
2
|n|1010 +

1
2
|n|1100

+
1
8
|n|1110 − 1

16
|n|210 +

1
2
|n|10|n|100 +

1
8
|n|10|n|110 +

1
48

|n|310
)

,

and so on. The number of nonzero terms in the polynomial θ2,α(n)

2|n|1 for α =
0, 1, 2, . . . is sequence A275012 [11]:

1, 1, 4, 11, 29, 69, 174, 413, 995, 2364, 5581, 13082, 30600, 71111, 164660, 379682, . . .
The algorithm for computing these polynomials also establishes bounds on

their total degree and on the length of words that appear.

Theorem 2 (Rowland [12]). Let p be a prime, and let α ≥ 0. Then θp,α(n)
θp,0(n)

is
given by a polynomial of degree α in |n|w for words w satisfying |w| ≤ α + 1.

However, the algorithm is not particularly fast, as it constructs a polynomial
by summing over certain sets of integer partitions. Spiegelhofer and Wallner [14]
produced a faster algorithm by developing a better understanding of the struc-
ture of this polynomial. In particular, they showed that the polynomial repre-
sentation of θp,α(n)

θp,0(n)
is unique, as long as words of the form 0w and w(p − 1)

are not used. Therefore one can talk about the coefficient of a given monomial.
Moreover, this coefficient can be read off from a certain power series. One can see
evidence of this by looking at the coefficient of |n|10 in the expressions computed
for θ2,α(n)

2|n|1 . The sequence of coefficients is

0,
1
2
, −1

8
,

1
24

, − 1
64

,
1

160
, − 1

384
, . . . .

These are the coefficients in the power series for log(1 + x
2 ) at x = 0.

The polynomial

Tp(n, x) :=
n∑

m=0

xνp((n
m)) =

∑

α≥0

θp,α(n)xα

https://oeis.org/A275012
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is a central object in Spiegelhofer and Wallner’s result. Let

T p(w, x) :=
Tp(valp(w), x)
θp,0(valp(w))

,

where valp(w) is the integer obtained by reading w in base p. Define the rational
function

rp(w, x) :=
T p(w, x)T p(wLR, x)
T p(wR, x)T p(wL, x)

,

where the left and right truncations of a word are defined for � ≥ 0, c ∈
{1, . . . , p − 1}, and d ∈ {0, 1, . . . , p − 1} by

εL = ε (c0�)L = ε (c0�w)L = w
εR = ε cR = ε (wd)R = w.

Theorem 3 (Spiegelhofer–Wallner [14]). Let p be a prime, and let α ≥ 0.
Let w1, . . . , wm be words of length ≥ 2 on the alphabet {0, 1, . . . , p − 1} that do
not begin with 0 or end with p − 1. Then the coefficient of |n|k1

w1
· · · |n|km

wm
in the

polynomial θp,α(n)
θp,0(n)

is the coefficient of xα in the power series expansion for

1
k1!

(log rp(w1, x))k1 · · · 1
km!

(log rp(wm, x))km .

3 Matrix Generalizations of Fine’s Theorem

Spiegelhofer and Wallner’s polynomial Tp(n, x) turns out to have a product for-
mula which generalizes Fine’s theorem. Note that the first equation in Carlitz’s
recurrence,

θp,α(pn + d) = (d + 1)θp,α(n) + (p − d − 1)ψp,α−1(n − 1),

can be rewritten in terms of Tp(n, x) as

Tp(pn + d, x) = (d + 1)Tp(n, x) +

{
0 if n = 0
(p − d − 1)xνp(n)+1 Tp(n − 1, x) if n ≥ 1.

To simplify this equation, let us introduce a secondary polynomial

T ′
p(n, x) :=

{
0 if n = 0
xνp(n)+1 Tp(n − 1, x) if n ≥ 1,

so that ψp,α−1(n − 1) is the coefficient of xα in T ′
p(n, x). Then we have

Tp(pn + d, x) = (d + 1)Tp(n, x) + (p − d − 1)T ′
p(n, x).
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We are close to being able to write
[
Tp(pn + d, x)
T ′

p(pn + d, x)

]
= Mp(d)

[
Tp(n, x)
T ′

p(n, x)

]
(1)

for some 2 × 2 matrix Mp(d), thereby expressing Tp(pn + d, x) and T ′
p(pn + d, x)

in terms of Tp(n, x) and T ′
p(n, x). Carlitz’s second equation,

ψp,α(pn + d) =

{
(d + 1)θp,α(n) + (p − d − 1)ψp,α−1(n − 1) if 0 ≤ d ≤ p − 2
pψp,α−1(n) if d = p − 1,

expresses ψp,α(pn + d) in terms of θ and ψ. But because the coefficient of xα in
T ′

p(n, x) is ψp,α−1(n − 1) we instead need to express ψp,α(pn + d − 1) in terms
of θ and ψ. The desired equation is

ψp,α(pn + d − 1) = dθp,α(n) + (p − d)ψp,α−1(n − 1),

which is equivalent to

T ′
p(pn + d, x) = d xTp(n, x) + (p − d)xT ′

p(n, x).

Therefore, the matrix we seek is

Mp(d) =
[
d + 1 p − d − 1
d x (p − d)x

]
.

Theorem 4 (Rowland [13]). Let p be a prime, and let n ≥ 0. Let n� · · · n1n0

be the standard base-p representation of n. Then

Tp(n, x) =
[
1 0

]
Mp(n0)Mp(n1) · · · Mp(n�)

[
1
0

]
.

Setting x = 0 gives Fine’s result as a special case. Namely, the definition of
T ′

p(n, x) implies T ′
p(n, 0) = 0, so Eq. (1) becomes
[
θp,0(pn + d)

0

]
=

[
d + 1 p − d − 1

0 0

] [
θp,0(n)

0

]
,

or simply
θp,0(pn + d) = (d + 1) θp,0(n).

Moreover, Theorem 4 generalizes naturally to multinomial coefficients. For a
k-tuple m = (m1,m2, . . . ,mk) of non-negative integers, define

totalm := m1 + m2 + · · · + mk

and

multm :=
(totalm)!

m1!m2! · · · mk!
.
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Let cp,k(n) be the coefficient of xn in (1 + x + x2 + · · · + xp−1)k. For each
d ∈ {0, 1, . . . , p − 1}, let Mp,k(d) be the k × k matrix whose (i, j) entry is
cp,k(p (j − 1) + d − (i − 1))xi−1. For example, let p = 5 and k = 3; the matrices
M5,3(0), . . . ,M5,3(4) are

⎡

⎣
1 18 6
0 15x 10x
0 10x2 15x2

⎤

⎦ ,

⎡

⎣
3 19 3
x 18x 6x
0 15x2 10x2

⎤

⎦ ,

⎡

⎣
6 18 1
3x 19x 3x
x2 18x2 6x2

⎤

⎦ ,

⎡

⎣
10 15 0
6x 18x x
3x2 19x2 3x2

⎤

⎦ ,

⎡

⎣
15 10 0
10x 15x 0
6x2 18x2 x2

⎤

⎦ .

Theorem 5 (Rowland [13]). Let p be a prime, let k ≥ 1, and let n ≥ 0. Let
e =

[
1 0 0 · · · 0

]
be the first standard basis vector in Z

k. Let n� · · · n1n0 be the
standard base-p representation of n. Then

∑

m∈N
k

totalm=n

xνp(multm) = eMp,k(n0)Mp,k(n1) · · · Mp,k(n�) e�.

The proof essentially amounts to showing that, for d ∈ {0, 1, . . . , p − 1},
0 ≤ i ≤ k − 1, and α ≥ 0, the map β defined by

β(m) := (�m/p�,m mod p)

is a bijection from the set

A =

{
m ∈ N

k : totalm = pn + d − i and νp(multm) = α − νp

(
(pn + d)!

(pn + d − i)!

)}

to the set

B =

k−1⋃

j=0

({
c ∈ N

k : total c = n − j and νp(mult c) = α − νp

(
n!

(n − j)!

)
− j

}

×
{
d ∈ {0, 1, . . . , p − 1}k : totald = pj + d − i

}
)

.

The following lemma implies that if m ∈ A then β(m) ∈ B.

Lemma 6. Let p be a prime, k ≥ 1, n ≥ 0, d ∈ {0, 1, . . . , p − 1}, and 0 ≤ i ≤
k − 1. Let m ∈ N

k with totalm = pn + d − i. Let j = n − total�m/p�. Then
total(m mod p) = pj + d − i, 0 ≤ j ≤ k − 1, and

νp

(
(pn + d)!

(pn + d − i)!

)
+ νp(multm) = νp

(
n!

(n − j)!

)
+ νp(mult�m/p�) + j.
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We conclude by mentioning a connection to regular sequences. A sequence
s(n)n≥0, with entries in some field, is p-regular if the vector space generated by
the set of subsequences {s(pen + i)n≥0 : e ≥ 0 and 0 ≤ i ≤ pe − 1} is finite-
dimensional. For example, the sequence (θp,0(n))n≥0 is a p-regular sequence of
integers [1, Example 14]. It follows from Theorem 5 and [1, Theorem 2.2] that
the sequence of polynomials

⎛

⎜
⎜
⎝

∑

m∈N
k

totalm=n

xνp(multm)

⎞

⎟
⎟
⎠

n≥0

is p-regular for each k.
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Abstract. This work is about studying reasons for (un)decidability
of variants of Monadic Second-order (mso) logic over infinite struc-
tures. Thus, it focuses on connecting the fact that a given theory is
(un)decidable with certain measures of complexity of that theory.

The first of the measures is the topological complexity. In that case,
it turns out that there are strong connections between high topological
complexity of languages available in a given logic, and its undecidabil-
ity. One of the milestone results in this context is the Shelah’s proof of
undecidability of mso over reals.

The second complexity measure focuses on the axiomatic strength
needed to actually prove decidability of the given theory. The idea is
to apply techniques of reverse mathematics to the classical decidability
results from automata theory. Recently, both crucial theorems of the
area (the results of Büchi and Rabin) have been characterised in these
terms. In both cases the proof gives strong relations between decidability
of the mso theory with concepts of classical mathematics: determinacy,
Ramsey theorems, weak Konig’s lemma, etc.

Keywords: Monadic second-order logic · Decidability · Descriptive set
theory · Reverse mathematics

1 Introduction

Monadic Second-order (mso) logic is one of the fundamental logics used in the
areas of verification and model checking. It is a very expressive formalism, com-
prising most of the other logics used for specifications, like ltl, ctl*, modal
μ-calculus, etc. Thus, the decision methods for mso over infinite words [9];
trees [24]; and certain linear orders [26] are commonly used to easily derive
more decidability results. Because of its strength, it seems that mso lies at the
borderline of decidability, a prominent example is the theorem of Shelah [26]
stating that the mso theory of reals is undecidable. Similar undecidability results
hold in the case of infinite words, when adding new monadic predicates [25]; or
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infinite trees when adding a well-order on the nodes [10]. A separate branch of
studies asks which asymptotic extensions of mso are decidable [1,4,7].

Since variants of mso seem to occur on both sides of the decidability
borderline, one can ask the following question: what makes a given theory
(un)decidable? The aim of this work is to survey results answering the above
question using two notions of complexity of the theory.

2 Descriptive Set Theory

The first notion of complexity that we discuss is the topological complexity of
sets available in the given logic. To measure this complexity, one uses Borel and
Projective Hierarchies, see [18]. From this perspective, mso theory of infinite
words is very simple, as all the languages definable there are Boolean combina-
tions of Π0

2-sets [28]. Similarly, the topological complexity of mso over infinite
trees is also under control, the languages definable there occupy exactly the first
ω levels of the hierarchy of R-sets (introduced by Kolmogorov in [19]); all of
them belong to Δ1

2; and all of them are measurable [14].
On the other hand [15,26], the mso theory of reals (R,≤) is undecidable,

the proofs rely on a construction of a very complex1 set Q ⊆ R. Shelah [26]
conjectured, that when we restrict set quantification to Borel subsets of R then
the theory becomes decidable. This conjecture is still open, the best known
result going in that direction follows from Rabin’s theorem [24]: mso of R with
set quantifiers ranging over Π0

2-sets is decidable.
Bojańczyk in [2] proposed an asymptotic extension of mso (denoted mso+u)

by a quantifier U that informally allows to express that the delays between con-
secutive events are unbounded. Although some fragments of mso+u were proved
to be decidable [3–5,8]; the question of decidability of the full logic mso+u was
left open. The first witness that the logic might turn out to be undecidable was
given by a result [16] showing that mso+u over infinite words defines languages
lying arbitrarily high in Projective Hierarchy (i.e. Π1

n-complete). By incorporat-
ing the methods of Shelah [26], this led to the following results.

Theorem 1 ([6]). Assume a set-theoretic axiom that v=l (called Axiom
of Constructibility [13,17]). Let L be an extension of mso logic that defines
a Π1

6-complete set of infinite words. Then the L-theory of the infinite tree is
undecidable.

Corollary 2 ([6]). It is consistent with zfc that the mso+u theory of the
infinite tree is undecidable.

Although the above corollary does not prove undecidability of mso+u, it
implies that there is no concrete algorithm solving that theory which correctness
can be proven in zfc. Thus, there was no hope that the theory may be decidable
in the standard sense. This line of research was later surmounted by a direct
proof of undecidability of mso+u over infinite words [7].
1 A posteriori, the considered set Q needs to violate Baire Property.
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3 Reverse Mathematics

We will now focus on decidable theories, like in the classical theorems of Büchi [9]
and Rabin [24]. We would like to understand how logically difficult these theo-
rems are. The standard notion of complexity used for measuring logical difficulty
of theorems is given by reverse mathematics [12,27]. The recipe is as follows:

1. We choose some logical system to work in, usually it is second-order arith-
metic.

2. We formalise the given theorem as a sentence Φ in that logical system.
3. We choose some very weak basic theory (usually it is a theory called RCA0).
4. Then we prove that over RCA0, the sentence Φ is equivalent to some known

axiom χ.

The last step consists of two implications: one of them boils down to proving
that the theorem follows from RCA0+χ (i.e. one can prove it using only χ). The
second implication is more tricky, it says that χ is necessary for the theorem to
hold, i.e. over RCA0 the pure fact that Φ holds implies χ.

Over the years, many standard mathematical results were characterised in
terms of their axiomatic strength. As it turned out, the set of additional axioms
χ that typically appear in this context is very limited. Actually most of the
every-day mathematics turns out to be equivalent to one of five standard logical
systems, called Big Five [27, page 42]. Among them is Weak König’s Lemma
(denoted WKL0), used in many arguments using compactness. An example of
a commonly used axiom outside Big Five is Ramsey’s Theorem for Pairs and
arbitrarily many colours (RT2

<∞), known to be incomparable to WKL0 [22].
The famous theorem of Büchi states that mso is decidable over infinite words.

From the modern perspective, there are at least two different ways of proving
that result: either by determinisation à la McNaughton [23]; or by direct comple-
mentation as done by Büchi [9]. The combinatorial core of the former approach
is based on applications of König’s Lemma, while the latter relies on Ramsey’s
Theorem. Thus, from the reverse mathematical point of view these seem to be
two orthogonal proofs. However, in both cases the respective principles are used
in a very limited way: König’s Lemma is applied to trees generated by automata;
while Ramsey’s Theorem is applied to colourings that bear additional algebraic
structure.

As it turned out [21], Büchi’s decidability theorem is equivalent over RCA0 to
the principle of induction for Σ0

2 -formulae (denoted Σ0
2 -IND). Also, Σ0

2 -IND was
shown [21] to be equivalent to an additive version of Ramsey’s Theorem and to
imply the automata-related version of König’s Lemma. These results provide a
rather complete picture of the logical strengths of principles involved in Büchi’s
decidability result.

Rabin’s Theorem [24] proving decidability of mso over infinite trees was
always believed to be more demanding than Büchi’s result. In particular, to the
author’s best knowledge there is no known proof of Rabin’s result that would
avoid using automata and determinacy of related games. This observation has
been formalised in [20], where the authors proved that (in a strong sense) Rabin’s
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complementation result is equivalent to the statement of determinacy of games
with winning conditions being Boolean combinations of Π0

2-sets.
In both above cases, the respective theorem about mso turned out to be

equivalent to other standard mathematical statements. This suggests that the
decidability results about a logic that is robust enough must convey certain
knowledge about the whole mathematical universe. Following this idea it seems
interesting and promising to study other decidability theorems for robust logics,
for instance the result of decidability of mso over countable linear orders [11,26].
From the point of view of direct implications, this result is somewhere in-between
the theorems of Büchi and Rabin.

4 Conclusions

The aim of this survey was to present certain perspectives in which decidability of
a given variant of mso is related to a certain measure of complexity for that logic.
The presented examples advocate that, when one faces the question whether a
given logic is decidable, it may be useful to analyse the complexity of the logic
itself (instead of looking directly for an algorithm or a reduction).

For instance, high topological complexity of languages definable in the logic
may indicate (or even prove, see Corollary 2) that the logic cannot be decidable.
Similarly, if decidability of the logic has very strong axiomatic consequences,
there is no hope to prove it without any strong tools.

On the other hand, if the logic seems to have very limited access to the math-
ematical universe, one may expect a direct proof of decidability, for instance by
a reduction to an appropriately chosen logic that is stronger but still decidable.
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Abstract. We investigate the proof complexity of Salomaa’s axiom sys-
tem F1 for regular expression equivalence. We show that for two regular
expression E and F over the alphabet Σ with L(E) = L(F ) an equiv-
alence proof of length O

(|Σ|4 · Tower(max{h(E), h(F )} + 4)
)

can be
derived within F1, where h(E) (h(F ), respectively) refers to the height
of E (F , respectively) and the tower function is defined as Tower(1) = 2
and Tower(k + 1) = 2Tower(k), for k ≥ 1. In other words

Tower(k) = 222
···

2 }
k
.

This is in sharp contrast to the fact, that regular expression equiva-
lence admisses exponential proof length if not restricted to the axiom sys-
tem F1. From the theoretical point of view the exponential proof length
seems to be best possible, because we show that regular expression equiv-
alence admits a polynomial bounded proof if and only if NP = PSPACE.

1 Introduction

Regular expressions were introduced in the seminal paper of Kleene [6] on nerve
nets and finite automata. They allow a beautiful set-theoretic characteriza-
tion of languages accepted by finite automata. Early result concerning regular
expressions can be found in [1,7]. These papers were very influential in shaping
automata theory. Compared to automata, regular expressions are better suited
for human users and therefore are often used as interfaces to specify certain
pattern or languages. On the other hand, automata are regularly used for its
manipulation, since the methods develop during the years turned out to be
usually more efficient compare to those for regular expressions. For instance,
if one wants to check regular expressions for equivalence, they are converted
to equivalent nondeterministic finite automata, followed by determinizing them
to equivalent deterministic finite state devices, which are finally minimized and
checked for equivalence up to isomorphism. It is worth mentioning that a rela-
tively simple decision procedure for the equivalence of regular expressions was
given in [3]. In general the equivalence of regular expression is a costly task,
because it was classified to be PSPACE-complete in [9]—see also [5].

A completely other method for regular expression equivalence, which is
entirely based on regular expressions, is to give a proof in the complete and
c© Springer International Publishing AG 2017
É. Charlier et al. (Eds.): DLT 2017, LNCS 10396, pp. 83–95, 2017.
DOI: 10.1007/978-3-319-62809-7 5
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sound axiom system F1 for regular expression equivalence developed in [8]. It
is clear that with this approach one cannot overcome the PSPACE barrier, but
to our knowledge the proof length complexity of regular expressions and prob-
lems related to this question is not studied in the literature in question up to
now. In general proof complexity asks the question how difficult it is to prove a
theorem—here we view regular expression equivalence as a “theorem” to prove.
One natural measure on the complexity of a theorem is its proof length within
a certain proof system. Thus, the question on the proof length complexity of
Salomaa’s axiom system F1 arises. By a careful analysis of Salomaa’s proof on
the completeness of the axiom system F1 we obtain an upper bound on the proof
length complexity of regular expression equivalence for expressions E and F over
the alphabet Σ, if L(E) = L(F ), which is enormous, namely bounded by

O(|Σ|4 · Tower(max{h(E), h(F )} + 4)),

where h(E) (h(F ), respectively) refers to the height of expression E (F , respec-
tively) and the tower function is defined as Tower(1) = 2 and Tower(k+1) =
2Tower(k), for k ≥ 1. In other words

Tower(k) = 22
2···

2 }
k
.

On the other hand, what happens, if we do not restrict ourselves to regular
expression equivalence proofs in the axiom system F1? This immediately leads
us to proof complexity in general as developed in [2]. The following result is well
known in propositional proof complexity: NP=coNP if and only if the set TAUT
of all propositional tautologies admits a polynomial bounded proof system. The
ultimate goal of propositional proof complexity is to show that there is no propo-
sitional proof system allowing for efficient proofs of tautology. But what is the
relation of the aforementioned result to regular expression equivalence? We show
that within the proof system of [2] that NP=PSPACE if and only if the set

EQUIV = { (E,F ) | E and F are regular expressions with L(E) = L(F ) }

gives rise to a polynomial bounded proof. This is in perfect line with the PSPACE-
completeness of EQUIV of [9]. This already shows that we cannot hope for
“short” proofs on regular expression equivalence because this is equivalent to
a quite unrealistic assumption NP=PSPACE from a computational complexity
perspective.

The paper is organized as follows: in the next section we introduce the neces-
sary notations on regular expressions and the axiom system F1. Then in Sect. 3
we analyse Salomaa’s completeness proof of the axiom system F1 for regular
expression equivalence from [8]. This section is the main part of this paper,
because first we have to show how to obtain an equational characterization of
the involved regular expressions only using the power of the axiom system F1.
Then this characterization is used to develop a proof on equivalence, if both
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given expressions E and F describe the same set, that is L(E) = L(F ). Finally,
in Sect. 4, we study the proof complexity of regular expression equivalence in
general. Due to space limitations almost all proofs are omitted.

2 Preliminaries

We assume the reader to be familiar with the notations in automata and formal
language theory as contained in [4]. Let Σ be an alphabet and Σ∗ the set of all
words over the alphabet Σ, including the empty word λ. A set L ⊆ Σ∗ is called a
language. Operations on languages we are interested in are union, concatenation,
and Kleene star.

The regular expressions over an alphabet Σ and the languages that they
denote are inductively defined as follows:1 0 and every letter a with a ∈ Σ are
regular expressions, and when E andF are regular expressions, then E + F ,
E · F , and E∗ are also regular expressions. The language defined by a regular
expression is defined as follows: L(0) = ∅, L(a) = {a}, L(E +F ) = L(E)∪L(F ),
L(E ·F ) = L(E)·L(F ), and L(E∗) = L(E)∗. Observe, that the empty word must
be represented by 0∗, since we have not introduced an extra regular expression
denoting λ. We write E ≡ F , if the regular expressions E and F are syntactically
the same. Of course E ≡ F implies L(E) = L(F ), but not the other way around.
We assume that bracketing of expressions E1 + E2 + · · · + En is done from left-
to-right, that is ((. . . ((E1 + E2) + E3) + . . .) + En−1) + En. We use the same
convention for concatenation.

In [8] a sound and complete axiom system, called F1, for regular expression
equivalence was given. The axioms of F1 are

(A1) E + (F + G) = (E + F ) + G
(A2) E · (F · G) = (E · F ) · G
(A3) E + F = F + E
(A4) (E + F ) · G = E · G + F · G
(A5) E · (F + G) = E · F + E · G
(A6) E + E = E

(A7) 0∗ · E = E
(A8) 0 · E = 0
(A9) E + 0 = E

(A10) E∗ = 0∗ + E∗ · E
(A11) E∗ = (0∗ + E)∗,

where E, F , and G are regular expressions. The inference rules of F1 are substi-
tution (R1)

E = F C[E] = G

C[F ] = C[E], C[F ] = G

and solution of equations (R2)

E = E · F + G if o(F ) = 0
E = G · F ∗

1 For convenience, parentheses in regular expressions are sometimes omitted and the
concatenation is simply written as juxtaposition. The priority of operators is specified
in the usual fashion: concatenation is performed before union, and star before both
product and union.
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where again E, F , and G are regular expressions and C[E] refers to a regular
expression C that contains E as a subexpression. Here

o(F ) =

{
1 F possesses the e.w.p.
0 otherwise,

where e.w.p. is an abbreviation for empty word property. A regular expression E
possesses e.w.p. if λ ∈ L(E).

A proof in the axiom system F1 is a finite sequence of applications of the
rules R1 and R2 where each equation at the top of the rules is an axiom or
appears at the bottom of an earlier rule in the sentence. An equation E = F
is derivable within the system F1 if there is a proof where the equation E = F
stands at the bottom of the last rule. A set of equations T is derivable from a
finite set of equations S if there is a finite sequence of applications of the rules R1

and R2 where each equation at the top of the rules is an axiom or an equation
out of S or appears at the bottom of an earlier rule in the sentence and all of
the equations of T are contained somewhere in the sequence.

We give a small example of a derivation in the axiom system F1.

Example 1. Obviously L(0 · a) = L(0) and L(a · 0) = L(0), too. While the first
equation 0 · a = 0 is an axiom in the system F1, the latter equation a · 0 = 0 has
to be proven explicitly. The axiom A2 gives us a · (0 · 0) = (a · 0) · 0 and A8 gives
us 0 · 0 = 0. With R1 we get

0 · 0 = 0 a · (0 · 0) = (a · 0) · 0
a · 0 = a · (0 · 0), a · 0 = (a · 0) · 0

Axiom A6 tells us (a · 0 + 0) + (a · 0 + 0) = a · 0 + 0 and one use of R1 gives

(a · 0 + 0) + (a · 0 + 0) = a · 0 + 0 (a · 0 + 0) + (a · 0 + 0) = a · 0 + 0
a · 0 + 0 = (a · 0 + 0) + (a · 0 + 0), a · 0 + 0 = a · 0 + 0

Using R1 again leads to

a · 0 = (a · 0) · 0 a · 0 + 0 = a · 0 + 0
(a · 0) · 0 + 0 = a · 0 + 0, (a · 0) · 0 + 0 = a · 0 + 0

With R1 we get a · 0 + 0 = (a · 0) · 0 + 0 and Axiom A9 implies a · 0 + 0 = a · 0.
Another use of R1 tells us

a · 0 + 0 = a · 0 a · 0 + 0 = (a · 0) · 0 + 0
a · 0 = a · 0 + 0, a · 0 = (a · 0) · 0 + 0

Now we use R2:

a · 0 = (a · 0) · 0 + 0
a · 0 = 0 · 0∗
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The rule R1 gives 0 · 0∗ = a · 0 and Axiom A8 leads us to 0 · 0∗ = 0. We use R1

one last time and obtain

0 · 0∗ = a · 0 0 · 0∗ = 0
a · 0 = 0 · 0∗, a · 0 = 0

So we have found a proof for a · 0 = 0 using R1 seven times and R2 once. �	
Next we define some descriptional complexity measures for regular expres-

sions. For a regular expression E, we define |E|· and |E|∗ to be the numbers of
appearances of the symbols “·” and “∗” in E. For a regular expression E over
the alphabet Σ the height is inductively defined by

h(E) =

⎧
⎪⎨
⎪⎩

0 if E ≡ 0 or E ≡ a, for a ∈ Σ

1 + max{h(F ), h(G)} if E ≡ F + G or E ≡ F · G

1 + h(F ) if E ≡ F ∗.

Finally, we introduce equational characterizations of regular expressions, see,
e.g., [8]. Assume Σ = {a1, a2, . . . , ar}. Then for a regular expression E over the
alphabet Σ an equational characterization is a system of equations

Ei =
r∑

j=1

Ei,jaj + δi, for i = 1, 2, . . . , n,

for some n ≥ 1 and regular expressions E1, E2, . . . , En over Σ with E1 ≡ E.
Furthermore, for every i we have δi ≡ 0 or δi ≡ 0∗. For each i and j there is
a k ∈ {1, 2, . . . , n} such that Ei,j ≡ Ek. From [8, Lemma 4] we know that for
every regular expression there exists a derivable equational characterization in
the axiom system F1.

3 Regular Expression Proof Complexity Within
Salomaa’s Axiom System F1

Our goal is, for regular expressions E and F with L(E) = L(F ), to give an upper
bound for a proof of the equation E = F in the axiom system F1. It suffices to
determine how often the inference rules R1 and R2 are applied. From this one
can deduce a trivial upper bound on the proof length. To do this, (i) we will
first prove some equations that hold for every regular expression and are often
needed in the following (ii) Then, we will give an upper bound for the number
of equations in a derivable equational characterization for a regular expression
and for the proof of the equational characterization. (iii) Finally, we will show
how to derive the equation E = F from the equational characterizations for E
and F . We start with the observation that = is an equivalence relation:

Lemma 2. Let E, F , and G be regular expressions. The equation E = E is
derivable with one use of R1 and no uses of R2. The equation F = E is derivable
from E = F with one use of R1 and no uses of R2. The equation E = G is
derivable from E = F and F = G with two uses of R1 and no uses of R2.
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Next we give upper bounds for the proofs of E · 0 = 0 and E · 0∗ = E.

Lemma 3. For a regular expression E the equation E · 0 = 0 is derivable with
seven uses of R1 and one use of R2. From the equation E · 0 = 0 the equation
E · 0∗ = E is derivable with four uses of R1 and one use of R2.

3.1 Equational Characterizations for Regular Expressions

We analyze the proof of [8, Lemma 4], which uses the inductive definition of
regular expressions, to give an upper bound for the number of equations in a
derivable equational characterization for a regular expression and for the proof
of the equational characterization. Our results are summarized in Table 1. Here,
we only show the result for the equational characterization of E + F . The other
results from Table 1 can be shown by a similar argumentation. All our regular
expressions will be over the alphabet {a1, a2, . . . , ar}. In order to prove the results
from Table 1 we need the following lemma.

Table 1. Equational characterizations of regular expressions over the alphabet Σ of
size r. Here the number of equations derivable with the use of the inference rules R1

and R2 in the axiom system F1 are given. It is assumed that E (F , respectively) has
an equational characterization with n (m, respectively) equations.

Regular expression Axiom system F1

Equational characterization No. of inference rules used

No. of equations R1 R2

0 1 O(r) 0

0∗ 2 O(r) 0

a, for a ∈ Σ 3 O(r) 0

E + F n · m O(r4nm) 0

E · F m · 2n O((r · n)4m · 2n) 2

E∗ 2n O((r · n)4 · 2n) 2

Lemma 4. Let n ≥ 1 and E1, E2, . . . , En be regular expressions. Let F1 be the
same expression as E1 and Fi be the expression Fi−1+Ei, where the symbols Fi−1

and Ei are replaced by the expressions they stand for without adding parentheses,
for i = 2, 3, . . . , n. Let G and H be regular expressions that both can be obtained
from the expression Fn by adding parentheses to give the + symbols that were
added to the Ei a priority. Then we can replace an occurrence of G by H in the
left-hand side of an equation with O(n2) uses of R1 and no use of R2. Obviously
we can deal with · instead of + analogously. �	

Now we are ready to give an upper bound for the number of equations in a
derivable equational characterization for a regular expression of the form E + F
and for the proof of the equational characterization.



On Regular Expression Proof Complexity 89

Lemma 5. Let E be a regular expression with an equational characterization
with n equations and F be a regular expression with an equational characteri-
zation with m equations. Then from these two equational characterizations an
equational characterization for the regular expression E +F with n ·m equations
is derivable with O(r4nm) uses of R1 and no use of R2.

Proof. Let Ei =
∑r

j=1 Ei,jaj + δi, for i = 1, 2, . . . , n, be an equational charac-
terization for E and Fk =

∑r
j=1 Fk,jaj + γk, for k = 1, 2, . . . , m, be an equa-

tional characterization for F . For (i, k) ∈ {1, 2, . . . , n} × {1, 2, . . . ,m}, we get
Ei + Fk = Ei + Fk with one use of R1. Two more uses of R1 give

r∑
j=1

Ei,jaj + δi +

⎛
⎝

r∑
j=1

Fk,jaj + γk

⎞
⎠ = Ei + Fk.

There are 2r + 2 summands on the left-hand side. Because of axiom A3 we can
switch positions of two adjacent summands. However it may be necessary to
change the positions of parentheses first. So we can switch two adjacent sum-
mands with O(r2) uses of R1 due to Lemma 4. With switching adjacent sum-
mands O(r2) times we can get the summands in any order we like. Thus we get∑r

j=1(Ei,jaj + Fk,jaj) + (δi + γk) = Ei + Fk with O(r4) uses of R1. Because of
Axiom A4 we get

∑r
j=1((Ei,j +Fk,j)aj)+(δi +γk) = Ei +Fk with 2r uses of R1.

Let εi,k be the regular expression 0 if δi ≡ γk ≡ 0, and 0∗ otherwise. Axioms A3,
A6, and A9 give us

∑r
j=1((Ei,j +Fk,j)aj)+ εi,k = Ei +Fk with at most two uses

of R1. Another use of R1 leads to Ei + Fk =
∑r

j=1((Ei,j + Fk,j)aj) + εi,k. These
equations, for (i, k) ∈ {1, 2, . . . , n} × {1, 2, . . . ,m}, are an equational characteri-
zation for the regular expression E + F . �	

Having the results from Table 1, we are almost ready, given a regular expres-
sion, to give an explicit formula for an upper bound for the number of equations
in a derivable equational characterization and for the proof of the equational
characterization. To this end we define the tower function Tow by

Tow(b1) = 2b1

and

Tow(b1, b2, . . . , bk) = 2b1·Tow(b2,...,bk),

for b1, b2, . . . , bk > 0. For k ≥ 0, the convention b⊗k = (b, b, . . . , b), where there
are k values b, is used. Then, we define Tower(k) = Tow

(
1⊗k

)
, for k > 0. Thus,

Tower(k) is an exponential tower of height k which has just the number 2 on
each level, that is,

Tower(k) = 22
2···

2 }
k

We need some properties of the Tow function, which can easily be seen:
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Lemma 6. For k > 0 and b1, b2, . . . , bk > 0, we have:

1. Tow(1, b1, b2, . . . , bk) = 2Tow(b1,b2,...,bk).
2. (Tow(b1, b2, . . . , bk))a = Tow(ab1, b2, b3, . . . , bk), for a > 0.
3. Tow(b1, b2, . . . , bk) = Tow(b1, b2, . . . , bi−1, bi · Tow(bi+1, bi+2, . . . , bk)), for

0 < i < k.
4. Tow(bi+1, bi+2, . . . , bk) < Tow(b1, b2, . . . , bi, bi+1, . . . , bk), for 0 < i < k. �	

To get our upper bound for an equational characterization we use the follow-
ing estimation.

Lemma 7. For k ≥ 0, we have

4 · Tow
(
2⊗k, 1, 1

) ≤ (
Tow

(
2⊗k, 1, 1

))2 ≤ Tower(k + 3).

Now we are ready to give an upper bound formula for an equational charac-
terization for a regular expression:

Theorem 8. For a regular expression E an equational characterization with at
most Tower(h(E) + 3)/4 equations is derivable with O(r4 ·Tower(h(E) + 3))
uses of R1 and 2 · (|E|· + |E|∗) uses of R2.

Proof. In the results presented in Table 1 the bound for the number of R1 uses
is given in O-notation. Thus, there is a constant c > 0 such that in each of
the above mentioned lemmata the number of uses of R1 is at most c times the
bound given inside of O-notation. Now we show by induction on the structure
of E that for every regular expression E an equational characterization with at
most Tow

(
2⊗h(E), 1, 1

)
equations is derivable with c · r4 · (Tow

(
2⊗h(E), 1, 1

))2
uses of R1 and 2 · (|E|· + |E|∗) uses of R2. Then, the result follows by Lemma 7.

It remains to prove the above statement by induction. For the base case
let E ≡ 0 or E ≡ ai, for i ∈ {1, 2, . . . , r}. Then h(E) = 0 and, by the the
bounds stated in Table 1 an equational characterization for E with at most
4 = Tow(1, 1) equations is derivable with c · r uses of R1 and no use of R2.
Now, for the inductive step let E ≡ F +G, or E ≡ F ·G, or E = F ∗, for regular
expressions F and G of height at most h(E) − 1, where we set G ≡ 0 in the
last case. Then, by the induction hypothesis equational characterizations for F
and G, both with at most Tow

(
2⊗(h(E)−1), 1, 1

)
equations, are derivable with

2c · r4 · (
Tow

(
2⊗(h(E)−1), 1, 1

))2
uses of R1 and 2 · (|F + G|· + |F + G|∗) uses

of R2. By the results stated in Table 1 an equational characterization for E with
at most

(
2Tow(2⊗(h(E)−1),1,1)

)2

=
(
Tow

(
1, 2⊗(h(E)−1), 1, 1

))2

= Tow
(
2⊗h(E), 1, 1

)

equations is derivable with

2c · r4 ·
(
Tow

(
2⊗(h(E)−1), 1, 1

))2

+ c · r4
(
Tow

(
2⊗(h(E)−1), 1, 1

))5

· 2Tow(2⊗(h(E)−1),1,1) (1)
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uses of R1 and 2 · (|E|· + |E|∗) uses of R2. Simplifying Expression (1) using the
fact that 2n2 + n52n < 24n, for n ≥ 0, which can easily be seen via induction,
we obtain an upper bound of

c · r4 · 24·Tow(2⊗(h(E)−1),1,1) = c · r4 · Tow
(
4, 2⊗(h(E)−1), 1, 1

)

= c · r4 ·
(
Tow

(
2⊗h(E), 1, 1

) )2

for the uses of R1, which proves the stated result. �	

3.2 From Equational Characterizations to the Equality of Regular
Expressions

Given regular expressions E and F with L(E) = L(F ), we will now show how
to derive the equation E = F from their equational characterizations. First, we
give [8, Lemma 4], which shows that the coefficients in equations of the form
E =

∑r
i=1 Eiai + δ are in some sense determined by L(E).

Lemma 9. Let E and F be regular expressions with L(E) = L(F ). Furthermore
let E1, E2, . . . , Er and F1, F2, . . . , Fr be regular expressions and δ, γ ∈ {0, 0∗}
such that E =

∑r
i=1 Eiai + δ and F =

∑r
i=1 Fiai + γ. Then δ ≡ γ and L(Ei) =

L(Fi), for all i ∈ {1, 2, . . . , r}.
In the proof of [8, Theorem 2] it is shown how equational characterizations

for regular expressions E and F with L(E) = L(F ) can be transformed into
a special kind of system of equations, which is later used to derive a proof for
the equation E = F . We analyze how often the rules R1 and R2 are used along
the way:

Lemma 10. Let E be a regular expression with an equational characterization
with n equations and F be a regular expression with an equational characteriza-
tion with m equations and L(E) = L(F ). Then, there exists 1 ≤ k ≤ mn, for each
i ∈ {1, 2, . . . , k} a pair of regular expressions2 (Gi,Hi) with (G1,H1) ≡ (E,F )
and a regular expression εi, and for each (i, h) ∈ {1, 2, . . . , k}2 a regular expres-
sion Di,h with λ /∈ L(Di,h) such that the system of equations

(Gi,Hi) =
k∑

h=1

(Gh,Hh) · Di,h + (εi, εi), for i = 1, 2, . . . , k,

is derivable from the two given equational characterizations with O((mn+r4)mn)
uses of R1 and m + n uses of R2.
2 The notation (E1, E2) ≡ (F1, F2), for regular expressions E1, E2, F1, and F2, stands

for E1 ≡ F1 and E2 ≡ F2. The equation (E1, E2) = (F1, F2) is a shorthand notation
for the system of the two equations E1 = F1 and E2 = F2. Furthermore, the expres-
sions (E1, E2)+(F1, F2) and (E1, E2)·F1 define (E1+F1, E2+F2) and (E1·F1, E2·F1),
respectively.
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Next, we analyze the proof of [8, Lemma 2]. There it is shown how one can
get from the system of equations that we derived in the previous lemma to the
equation E = F . First we make the system of equations smaller by reducing the
parameter k:

Lemma 11. For k ≥ 2, let (Gi,Hi) be a pair of regular expressions and εi be a
regular expression for each i ∈ {1, 2, . . . , k} and let Di,h be a regular expression
with λ /∈ L(Di,h) for each (i, h) ∈ {1, 2, . . . , k}2. Then, from the system of
equations

(Gi,Hi) =
k∑

h=1

(Gh,Hh) · Di,h + (εi, εi), for i = 1, 2, . . . , k,

we can derive a system of equations of the form

(Gi,Hi) =
k−1∑
h=1

(Gh,Hh) · D′
i,h + (ε′

i, ε
′
i), for i = 1, 2, . . . , k − 1,

where all the ε′
i and D′

i,h are regular expressions with λ /∈ L(D′
i,h), with O(k5)

uses of R1 and two uses of R2.

We can reduce k repeatedly with the previous lemma until k = 1. Then, we
can show the equation G1 = H1 with the help of rule R2:

Corollary 12. For k ≥ 1, let (Gi,Hi) be a pair of regular expressions and εi be a
regular expression for each i ∈ {1, 2, . . . , k} and let Di,h be a regular expression
with λ /∈ L(Di,h) for each (i, h) ∈ {1, 2, . . . , k}2. Then, from the system of
equations

(Gi,Hi) =
k∑

h=1

(Gh,Hh) · Di,h + (εi, εi), for i = 1, 2, . . . , k,

one can derive the equation G1 = H1 with O(k6) uses of R1 and 2k uses of R2.

Lemma 10 and Corollary 12 show us how to derive the equation E = F from
the equational characterizations of E and F :

Corollary 13. Let E be a regular expression with an equational characterization
with n equations and F be a regular expression with an equational characteriza-
tion with m equations and L(E) = L(F ). Then, the equation E = F is derivable
from the two given equational characterizations with O((mn)6+r4mn) uses of R1

and 2mn + m + n uses of R2. �	
With Theorem 8 and Corollary 13 we can derive the equation E = F , for

regular expressions E and F with L(E) = L(F ):

Theorem 14. Let E and F be regular expressions with L(E) = L(F ). Then,
the equation E = F is derivable with O(r4 · Tower(h + 4)) uses of R1 and
Tower(h + 4)/1024 uses of R2, where h = max{h(E), h(F )}.
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Proof. By Theorem 8 equational characterizations for E and F , both with at
most Tower(h + 3)/4 equations, are derivable with O(r4 ·Tower(h + 3)) uses
of R1 and

2 · (|E + F |· + |E + F |∗) < 2 · 2h(E+F ) = 2h+2

uses of R2. By Corollary 13 the equation E = F is derivable with

O
(
r4 · (Tower(h + 3))12

) ⊆ O
(
r4 · Tower(h + 4)

)

uses of R1 and

2h+2 + (Tower(h + 3))2/8 + Tower(h + 3)/2 (2)

uses of R2. The term in (2) is bounded from above by

(Tower(h + 3))2/8 + Tower(h + 3) < 2Tower(h+3)−10

= Tower(h + 4) · 2−10,

where we have used n2/8 + n < 2n−10, for n ≥ 16. �	

4 Proof Complexity of Regular Expressions in General

The study of the efficiency of propositional proof systems dates back to the
seminal paper of Cook and Reckhow [2]. There the notion of a proof system in
general was introduced, which reads as follows—we literally take the definition
from there: if L ⊆ Σ∗, a proof system for L is a deterministic polynomial time
computable function f : Σ∗ → L such that f is onto. A proof system is poly-
nomially bounded if there is a polynomial p such that for all y ∈ L there is an
x ∈ Σ∗ such that y = f(x) and |x| ≤ p(|y|), where |z| denotes the length of z. If
y = f(x), then we will say that x is a proof of y, and x is a short proof of y if
in addition |x| ≤ p(|y|). The ultimate goal of propositional proof complexity is
to show that there is no propositional proof system allowing for efficient proofs
of tautology.

Up to our knowledge the relation between proof complexity and regular
expression equivalence is not investigated so far. In the line of the proof of
NP=coNP if and only if the set TAUT of all propositional tautologies admits a
polynomial bounded proof system [2], we show a similar relation for the set

EQUIV = { (E,F ) | E and F are regular expressions with L(E) = L(F ) }

and the complexity classes NP and PSPACE—we assume the reader to be familiar
with the basics in complexity theory as contained in [4]. Note that it is well known
that EQUIV is PSPACE-complete [9].

Theorem 15. NP = PSPACE if and only if EQUIV admits a polynomial bound-
ed proof system.
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Proof. Observe, that EQUIV is in PSPACE. If NP = PSPACE, then EQUIV
belongs to NP. Since a language L is in NP if and only if L = ∅ or L has
a polynomially bounded proof system as shown in [2] it follows that the set
EQUIV obeys a polynomially bounded proof system as well. Conversely we argue
as follows: assume that EQUIV has a polynomially bounded proof system. Then
by the aforementioned statement of [2] it implies that the PSPACE-complete set
EQUIV is in NP, which in turn gives us PSPACE ⊆ NP due to the closure of
both complexity classes under deterministic polynomial many-one reductions.
Hence NP = PSPACE. �	

Can we say more on connection between regular expression and proof sys-
tems? One possibility is to restrict the equivalence problem for regular expres-
sions. If we consider expressions that use union and concatenation only, the
complexity of the equivalence problem drops to coNP-completeness [5]. This
is a dramatic change in complexity compared to the general regular expression
equivalence problem. In similar veins as in the proof above, we can show the next
result, where EQUIVfin refers to the equivalence problem of regular expressions
with the operations union and concatenation only—the subscript “fin” refers to
the fact that the involved expressions can only describe finite languages. The
proof is straight forward and thus left to the reader.

Theorem 16. NP=coNP if and only if EQUIVfin admits a polynomial bounded
proof system. �	

Let us turn back to the equivalence of regular expressions in general. The
most efficient proof that we can come up for EQUIV is simply to convert both
expressions into equivalent nondeterministic finite automata, then to determinize
these automata in order to obtain equivalent deterministic finite state devices,
followed by a minimization, and finally check for isomorphism in order to verify
the equivalence. This strategy leads to a proof system f that is in fact deter-
ministic polynomial time computable on the size of the whole proof x, which
is of exponential length, because the conversion of a regular expression into an
equivalent deterministic finite automaton increases its size at most exponential.
This is far from a polynomially bounded proof system, but it is the best possible
we can come up with at the moment.
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Abstract. We consider jumping finite automata and their operational
state complexity and decidability status. Roughly speaking, a jump-
ing automaton is a finite automaton with a non-continuous input. This
device has nice relations to semilinear sets and thus to Parikh images of
regular sets, which will be exhaustively used in our proofs. In particular,
we prove upper bounds on the intersection and complementation. The
latter result on the complementation upper bound answers an open prob-
lem from G.J. Lavado, G. Pighizzini, S. Seki: Operational State Com-
plexity of Parikh Equivalence [2014]. Moreover, we correct an erroneous
result on the inverse homomorphism closure. Finally, we also consider
the decidability status of standard problems as regularity, disjointness,
universality, inclusion, etc. for jumping finite automata.

1 Introduction

Jumping finite automata were recently introduced in [16] as a machine model
for non-local information processing, which is motivated from modern informa-
tion processing, see, for example, [1]. This non-locality is modeled by a non-
continuous input. Roughly speaking, a jumping finite automaton is an ordinary
finite automaton, which is allowed to read letters from anywhere in the input
string, not necessarily only from the left of the remaining input. Already in [16]
quite a large number of questions regarding jumping automata were studied
and answered: inclusion relations to well-known formal language families, clo-
sure and non-closure results under standard formal language operations, deci-
sion problems on jumping finite automata languages, etc. Since then, a series of
papers [4,5,18,19] pushed the investigation on jumping finite automata further
and obtained results on normalforms for jumping finite automata languages by
shuffle expressions, computational complexity of jumping finite automata prob-
lems, etc. Nevertheless, still several problems for this new device remain open,
such as, for example, questions on the descriptional complexity of operations on
jumping finite automata languages.

Since a jumping finite automata reads the input in a non-continuous fashion,
obviously, the order of the input letters does not matter. Thus, only the number
of symbols in the input is important. Hence, the behavior of jumping automata
is somehow related to the notions of Parikh image and Parikh equivalence. It is
well known that regular and context-free languages cannot be distinguished via
c© Springer International Publishing AG 2017
É. Charlier et al. (Eds.): DLT 2017, LNCS 10396, pp. 96–108, 2017.
DOI: 10.1007/978-3-319-62809-7 6
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Parikh equivalence, since for both languages families the set of Parikh images
coincides with the family of semilinear sets. Recently, several classical results
on automata conversions and operations where studied subject to the notion of
Parikh equivalence. For instance, in [14] it was shown that the cost of the con-
version of an n-state nondeterministic finite automaton into a Parikh equivalent
deterministic finite state device is of order eΘ(

√
n lnn). Yet another example is

the intersection of the Parikh images of an n- and an m-state deterministic finite
automaton with an input alphabet of size k. In [15] it was shown that there is a
deterministic finite automaton with O(p(max{n,m})q(k)) states, where p and q
are polynomials, whose Parikh image equals the intersection of the Parikh images
of the languages accepted by the automata one started from. A close inspection
of these results reveal that there is a nice relation between Parikh images of
regular languages and jumping finite automata via semilinear sets. This connec-
tion makes it possible to transfer results from Parikh images of finite automata
to results on jumping automata and vice versa. Thus one can read the above
mentioned results as results on jumping finite automata, too.

Here we investigate the operational state complexity of jumping finite
automata. In particular, we prove upper bounds on the intersection, comple-
mentation, and inverse homomorphism. For two jumping finite automata with n
and m states and an input alphabet of size k the upper bound on the intersection
is (k · max{n,m})O(k2) in the nondeterministic case and (k · max{n,m})O(k5) in
the deterministic case. Due to the above mentioned close relation between jump-
ing finite automata and Parikh images of regular languages, this bound signif-
icantly improves the corresponding result on Parikh images of finite automata
languages mentioned above. Also in [15] the bound on complementation is stated
as an open problem. Here we show that complementation of an n state jump-
ing finite automaton with an input alphabet of size k can be accepted by a
2kO(k·log(k))nO(k2·log(k))

-state jumping automaton. Thus, our result answers the
aforementioned open question, too. Moreover, we correct an erroneous result
on the inverse homomorphism closure from [16], where we also obtain an upper
bound result. All proofs exhaustively use the relation between jumping automata
and semilinear sets. A summary of our results on the operational state complex-
ity of jumping automata can be found in Table 1. Finally, we also consider the
decidability status of standard problems as regularity, disjointness, universality,
inclusion, etc. for jumping finite automata. There we concentrate on the relation
between jumping finite automata languages and regular sets. In particular, we
study the descriptional complexity of jumping finite automata accepting reg-
ular languages compared to ordinary finite automata. We are able to provide
an exponential lower bound on the conversion from jumping automata to finite
automata, when accepting regular languages only. The question on an upper
bound is stated as an open problem.

This paper is organized as follows. In Sect. 2 we give some basic definitions
concerning jumping automata and semilinear sets. Then we investigate the oper-
ational state complexity of jumping automata in Sect. 3. The operations inter-
section, complementation, inverse homomorphism, and intersection with regular
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Table 1. Operational state complexity results for deterministic jumping finite
automata (DJFAs) and nondeterministic jumping finite automata (NJFAs) over an
input alphabet Σ of size k (k2 for the operation of inverse homomorphism). For
every operation the parameter n is the maximum of the numbers of states of the
operand automata. For the operation of inverse homomorphism we have another
alphabet Γ of size k1, a homomorphism h : Γ ∗ → Σ∗, and the parameter m =
max ({|h(a)|b | a ∈ Γ, b ∈ Σ} ∪ {1}), where |h(a)|b stands for the number of appear-
ances of the symbol b in the word h(a). For the last operation (intersection with regular
languages) the given bounds are valid whenever the resulting language is accepted by
a jumping automaton.

Operation Number of states of the resulting automaton

X = D X = N

XJFA ∩ XJFA → XJFA (k · n)O(k5) (k · n)O(k2)

Σ∗\XJFA → DJFA 2k
O(k·log(k))nO(k2·log(k))

h−1(NJFA) → XJFA 2(k1k2mn)5k1k2+k2
2+O(k1+k2)

(k1k2mn)5k1k2+k2
2+O(k1+k2)

XJFA ∩ XFA → XJFA (k · n)O(k5) (k · n)O(k2)

languages are considered. Finally in Sect. 4 we deal with the decidability of some
problems on jumping automata. Due to space limitations all proofs are omitted.

2 Preliminaries

We assume the reader to be familiar with the basics in automata and formal
language theory as contained, for example, in [7]. Let Z be the set of integers
and N = {0, 1, 2, . . .} be the set of non-negative integers.

For the notion of semilinear sets we follow the notation of Ginsburg and
Spanier [6]. For a natural number k ≥ 1 and finite C,P ⊆ N

k let L(C,P ) denote
the subset

L(C,P ) =

{
x0 +

∑
xi∈P

λi · xi

∣∣∣∣∣ x0 ∈ C and λi ∈ N

}

of N
k. Here the x0 ∈ C are called the constants and the xi ∈ P the periods. If C

is a singleton set we call L(C,P ) a linear subset of N
k. In this case we simply

write L(c, P ) instead of L({c}, P ). A subset of N
k is said to be semilinear if it is

a finite union of linear subsets. We further use |P | to denote the size of a finite
subset P ⊆ N

k and ||P || to refer to the value max{||x|| | x ∈ P}, where ||x|| is
the maximum norm of x, that is, ||(x1, x2, . . . , xk)|| = max{|xi| | 1 ≤ i ≤ k}.
Analogously we write ||A|| for the maximum norm of a matrix A with entries
in Z, i.e. the maximum of the absolute values of all entries of A. The elements
of N

k can be partially ordered by the ≤-relation on vectors. For vectors x,y ∈ N
k

we write x ≤ y if all components of x are less or equal to the corresponding
components of y. In this way we especially can speak of minimal elements of
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subsets of N
k. In fact, due to [3] every subset of N

k has only a finite number of
minimal elements.

Let Σ be an alphabet. Then Σ∗ is the set of all words over Σ, including the
empty word λ. For a language L ⊆ Σ∗ define the set perm(L) = ∪w∈L perm(w),
where perm(w) = {v ∈ Σ∗ | v is a permutation of w}. Then a language L
is permutation closed if L = perm(L). The length of a word w ∈ Σ∗ is
denoted by |w|. For the number of occurrences of a symbol a in w we use
the notation |w|a. We denote the powerset of a set S by 2S . We use ⊆ for
inclusion, and ⊂ for proper inclusion. The Parikh-mapping ψ is the function
ψ(w) = (|w|a1 , |w|a2 , . . . , |w|ak

), if w ∈ Σ∗ with Σ = {a1, a2, . . . , ak}. This map-
ping is extended to languages L ⊆ Σ∗ by ψ(L) = {ψ(w) | w ∈ L}. A language L
is semilinear if its Parikh-mapping is a semilinear set. Furthermore, a language
family is said to be semilinear if all languages in that family are semilinear.
Furthermore, we say that two languages L,M ⊆ Σ∗ are Parikh equivalent if
ψ(L) = ψ(M).

Next, we define jumping finite automata where the notion from [16] is
slightly adapted. A nondeterministic general finite automaton is a quintuple
A = (Q,Σ, δ, q0, F ), where Q is the finite set of states, Σ is the finite set of input
symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and
δ : Q × (Σ ∪ {λ}) → 2Q is the transition function. A nondeterministic general
finite automaton is deterministic if δ(q, a) is a singleton set, for every state q ∈ Q
and letter a ∈ Σ, and δ(q, λ) = ∅ for every state q ∈ Q. In this case we sim-
ply write δ(q, a) = p instead of δ(q, a) = {p}, assuming that δ is a function
from Q × Σ to Q.

One can interpret the general finite automaton A on configurations of the
form QΣ∗ in two ways:

1. As ordinary finite automaton: the move relation 
A of A is defined as

qw 
A pv iff w = av, for v ∈ Σ∗, a ∈ Σ ∪ {λ}, and p ∈ δ(q, a).

As usual 
∗
A refers to the reflexive transitive closure of 
A.

2. As jumping finite automaton: the jumping relation �A of A is defined as

qw �A puv iff w = uav, for u, v ∈ Σ∗, a ∈ Σ ∪ {λ}, and p ∈ δ(q, a).

As usual �
∗
A refers to the reflexive transitive closure of �A.

In case there is no danger of confusion we simply write 
∗ and 
 instead
of 
∗

A and 
A, and �
∗ and � instead of �

∗
A and �A. Thus, we obtain the

following languages from a general finite automaton:

1. The language accepted by an ordinary finite automaton A = (Q,Σ, δ, q0, F )
is defined as LF (A) = {w ∈ Σ∗ | q0w 
∗

A qf , for some qf ∈ F}.
2. The language accepted by a jumping finite automaton A = (Q,Σ, δ, q0, F ) is

defined as LJ(A) = {w ∈ Σ∗ | q0w �
∗
A qf , for some qf ∈ F}.



100 S. Beier et al.

If there is no danger of confusion we simply write L(A) instead of LF (A), for a
finite automaton A, and LJ (B), for a jumping finite automaton B. If for instance,
the NFA A is interpreted as a NJFA A′, then one can simply refer by LJ (A) to
the language L(A′) accepted by A′. This is used to simplify the presentation.
For instance, it holds ψ(LF (A)) = ψ(LJ (A)), which will be used later on.

As usual we write NFA (DFA) for nondeterministic (deterministic) finite
automata. Moreover, NJFA (DJFA) is an abbreviation for nondeterministic
(deterministic) finite jumping automata. The family of languages accepted by
a device of type X is denoted by L (X). Clearly, L (NFA) = L (DFA) is the
family of regular languages. It is well known that every regular language has
a semilinear Parikh mapping; the converse is not true in general. Similarly, for
jumping finite automata we have L (NJFA) = L (DJFA) [16]. Moreover, in [4]
(see also [16]) it is argued that a language is accepted by an NJFA if and only if
the language is permutation closed and its Parikh mapping is semilinear. Thus,
the family of languages accepted by NJFAs or DJFAs is equal to the family
of permutation closed semilinear languages. The closure and non-closure results
of the family of all languages accepted by jumping finite automata have been
obtained in [5,16,18].

3 Operational State Complexity of Jumping Automata

In this section we consider the operational state complexity of jumping finite
automata languages in more detail. Most closure and non-closure results were
originally shown in [16]. For some of these results the operational state com-
plexity is easy to determine such as, for example, for union. Clearly, the upper
bound is n + m + 1 for an NJFA to accept L(A) ∪ L(B), for an n-state NJFA A
and an m-state NJFA B. On the other hand with the cross-product construction
we get the upper bound nm for an DJFA to accept L(A) ∪ L(B), for an n-state
DJFA A and an m-state DJFA B.

For other language operations on jumping finite automata languages, the
operational state complexity is not that obvious such as, for example, intersec-
tion and complementation. Using a previous result on Parikh equivalent finite
automata from [15], a non-trivial upper bound of order O(p(max{n,m})q(k)),
where p and q are polynomials, can be derived for a DJFA accepting the inter-
section of an n- and m-state DJFA language over an alphabet of size k. To our
knowledge a bound for Parikh equivalent NFAs is not known yet. Moreover, the
state complexity of the complement operation on Parikh equivalent automata is
stated as an open problem in [15]. Although, we are working with jumping finite
automata, in passing, we improve on the intersection result and solve the open
problem on the state complexity of the complementation problem on Parikh
equivalent finite state devices. This is due to the close relation between jumping
finite automata, semilinear sets, and Parikh equivalent finite automata.

We will prove upper bounds for the language operations intersection, com-
plementation, and inverse homomorphism on NJFA languages. To do this we
use the following strategy: first we interpret the NJFAs that we start with as
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ordinary NFAs and construct a semilinear presentation of the languages under
consideration. Here the following result shown in [17, Theorem 4.1] will be used.
In fact, it does not explicitly state that the constructed Pi’s are linearly inde-
pendent, but by a careful inspection one observes that they are.

Theorem 1. Let A be an n-state NFA with input alphabet of size k. Then there
exists an index set I with |I| ∈ O(k4k+6nk2+3k+5) such that, for each i ∈ I, there
is a linearly independent subset Pi ⊆ N

k with ||Pi|| ≤ n and an xi ∈ N
k with

||xi|| ∈ O(k4k+6n3k+5) such that ψ(L(A)) =
⋃

i∈I L(xi, Pi).

Then we use a result on the descriptional complexity of our operation applied
to semilinear sets from [2]. Finally we convert the resulting semilinear set back
to an NFA which we interpret as an NJFA with the following theorem.

Theorem 2. Let Σ be an alphabet of cardinality k, let I be a finite index set,
and for each i ∈ I let Pi, Ci ⊂ N

k be finite subsets. We set n = maxi∈I ||Pi||,
m = maxi∈I |Pi|, � = maxi∈I ||Ci||, and L = maxi∈I |Ci|. Then there exists
an NFA A with input alphabet Σ and k · |I| · (L� + mn) + 1 states such that
ψ(L(A)) =

⋃
i∈I L(Ci, Pi).

When ever it is reasonable we also give upper bounds for the operational state
complexity of DJFAs. In order to prove such results we exploit the results for
NJFAs and the following two results from [15] that can immediately be adapted
to jumping automata.

Lemma 3. Let A be an NFA with n states and input alphabet {a1, a2, . . . , ak}.
Then for every i ∈ {1, 2, . . . , k} there exists an NFA Ai with n states such that
L(Ai) = L(A) ∩ {ai}∗. Furthermore there exists an NFA A0 with (k + 1) · n + 1
states such that L(A0) = L(A)\ ⋃k

i=1 L(Ai). If A is deterministic, then so are
the automata A0, A1, . . . , Ak.

For the construction of Ai in the previous lemma it is sufficient to remove
all transitions from A that are not labeled with ai. Automaton A0 is then con-
structed by taking copies of all Ai and a new initial state that leads to the copy
of Ai with input symbol ai. The same constructions can be applied to NJFAs.

The second result from [15] can be adapted to jumping finite automata as
well. It gives us an upper bound of order (k · n)O(k3) for the determinization of
NFAs that accept no unary words.

Theorem 4. Let A be an NFA with n states and an input alphabet of size k
such that every word in L(A) contains at least two different symbols. Then there
exists a Parikh equivalent DFA with O(kk3/2+k2+2k+5n3k3+6k2

) states.

For the adaption, a given NJFA is interpreted as NFA for which the Parikh
equivalent DFA exists. Finally, both are interpreted as jumping automata again.
For every word w over the input alphabet, the NFA accepts some permutation of
w if and only if the DFA accepts some permutation of w. Since the reinterpreta-
tion as jumping automata yields that the NJFA accepts all permutations of some
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input w if and only if the DJFA accepts all permutations of w, we conclude that
both accept the same language. So, on passing we have the following corollary
on the determinization of NJFAs that accept no unary words. The bound is the
same as in the previous theorem.

Corollary 5. Let A be an NJFA with n states and an input alphabet of size k
such that every word in L(A) contains at least two different symbols. Then there
exists an equivalent DJFA with O(kk3/2+k2+2k+5n3k3+6k2

) states. �

3.1 Operational State Complexity of Intersection

In order to deal with the state complexity of the intersection of two NJFA
languages we use the following result from [2] on the operational complexity of
the intersection of two semilinear sets.

Theorem 6. Let
⋃

i∈I L(ci, Pi) and
⋃

j∈J L(cj , Pj) be semilinear subsets of N
k,

for some k ≥ 1. Without loss of generality we may assume that I and J are
disjoint finite index sets. We set n = maxi∈I∪J ||Pi||, m = maxi∈I∪J |Pi|, and
� = maxi∈I∪J ||ci||. Then for every (i, j) ∈ I × J there exist Pi,j , Ci,j ⊆ N

k with

||Pi,j || ≤ 3m2kk/2nk+1,

||Ci,j || ≤ (3m2kk/2nk+1 + 1)�,

and
(⋃

i∈I L(ci, Pi)
)

∩
(⋃

j∈J L(cj , Pj)
)

=
⋃

(i,j)∈I×J L(Ci,j , Pi,j).

Now we are ready to state our result on the state complexity of intersection
of two jumping finite automata. The upper bound for the intersection turns out
to be of order (k · n)O(k2).

Theorem 7. Let A be an m1-state NJFA and B be an m2-state NJFA with an
input alphabet of size k. Then O(k9k2/2+43k/2+21n6k2+16k+16) states, where n =
max{m1,m2}, are sufficient for an NJFA to accept the language L(A) ∩ L(B).

As an immediate byproduct we have shown the following result on ordinary
finite automata and Parikh equivalent languages (cf. [15]).

Corollary 8. Let A be an m1-state NFA and B be an m2-state NFA with an input
alphabet of size k. Then there is an O(k9k2/2+43k/2+21n6k2+16k+16)-state NFA,
where n = max{m1,m2}, whose Parikh image equals ψ(L(A)) ∩ ψ(L(B)). �

Now we turn to the state complexity of the intersection of DJFAs. It will
turn out that the upper bound for the intersection in the deterministic case is
of order (k · n)O(k5).

Theorem 9. Let A be an m1-state DJFA and B be an m2-state DJFA with an
input alphabet of size k. Then O(k27k5/2+183k4/2+196k3

n18k5+84k4+144k3+96k2+2)
states, where n = max{m1,m2}, are sufficient for a DJFA to accept the language
L(A) ∩ L(B).
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As an immediate consequence from the previous theorem we obtain the
following result on the Parikh equivalence of the intersection of DFAs. This
improves a previous result on that subject from [15].

Corollary 10. Let A be an m1-state DFA and B be an m2-state DFA with an
input alphabet of size k. Then O(k27k5/2+183k4/2+196k3

n18k5+84k4+144k3+96k2+2)
states, where n = max{m1,m2}, are sufficient for a DFA, whose Parikh image
is equal to the intersection ψ(L(A)) ∩ ψ(L(B)). �

3.2 Operational State Complexity of Complementation

The next formal language operation that we consider is the complementation.
As stated in [5] the family of jumping automata languages is closed under this
operation. To get an upper bound for the state complexity of the complement
of an NJFA we use the following result from [2] on the operational complexity
of the complement of a semilinear set.

Theorem 11. Let k ≥ 1 and
⋃

i∈I L(xi, Pi) be a semilinear subset of N
k with

I �= ∅ and linearly independent sets Pi. We set n = maxi∈I ||Pi|| and � =
maxi∈I ||xi||. Define q = �log2 |I|�. Then there exists an index set J with

|J | ≤ (4k(n + 1))5(k+2)(3k+2)q+1
(� + 1)k·2q+1

such that, for each j ∈ J , there are Pj , Cj ⊆ N
k with

||Pj || ≤ (4k(n + 1))(k+2)(3k+1)q ,

||Cj || ≤ (4k(n + 1))(k+2)(3k+2)q+k(� + 1),

and N
k\ ⋃

i∈I L(xi, Pi) =
⋃

j∈J L(Cj , Pj).

It will turn out that the upper bound for the complementation of an NJFA
is of order 2kO(k·log(k))nO(k2·log(k))

, even if we want the result to be a DJFA.

Theorem 12. Let A be an n-state NJFA with an input alphabet Σ of size k.
Then 2k(4k+6) log2(3k+2)+O(1)n(k2+3k+5) log2(3k+2) log2(n+1) states are sufficient for an
NJFA or even a DJFA to accept the language Σ∗\L(A).

The upper bound on the complementation of jumping finite automata trans-
fers to finite automata, when considering the Parikh image:

Corollary 13. Let A be an n-state NFA with an input alphabet of size k. Then
there exists a 2k(4k+6) log2(3k+2)+O(1)n(k2+3k+5) log2(3k+2) log2(n+1)-state NFA or even
a DFA, whose Parikh image is equal to N

k\ψ(L(A)). �
This answers an open problem stated in [15].
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3.3 Operational State Complexity of Inverse Homomorphism

Next we consider the operation of inverse homomorphism. In [16, Theorem 42]
it is claimed that the family L (NJFA) is closed under inverse homomorphism,
where the proof relies on an analogous construction as for ordinary finite
automata, which reads as follows: Let A = (Q,Γ, δ, q0, F ) be an NFA, Σ be
an alphabet, and h : Σ∗ → Γ ∗ be a homomorphism. Then the automaton
A′ = (Q,Σ, δ′, q0, F ) accepts the language h−1(L(A)), where

q ∈ δ′(p, a) if and only if pwa 
∗
A q with wa = h(a).

The same construction is used in [16, Theorem 42] to show the closure of
L (NJFA) under inverse homomorphism. However, this construction does not
work in general as shown by the following counterexample.

Example 14. Consider the NJFA A with the input alphabet Σ = {a, b} depicted
on the left of Fig. 1. It is easy to see that L(A) = {w ∈ Σ∗ | |w|a = |w|b}. Set

0 1
a

b
0 1

a

Fig. 1. (Left): NJFA A accepting the set {w ∈ Σ∗ | |w|a = |w|b}. (Right): NJFA A′

induced from A and the homomorphism h : {a}∗ → {a, b}∗ defined by h(a) = ba by
the standard construction on NFAs for the inverse homomorphism closure, accepting
the set {λ}.

Γ = {a} and define the homomorphism h : Γ ∗ → Σ∗ via h(a) = ba. Constructing
the automaton A′ as described above results in the jumping automaton drawn
on the right of Fig. 1. But then

L(A′) = {λ} �= a∗ = h−1(L(A)),

which shows the argument to be invalid. Even a more sophisticated construc-
tion taking permutation of words h(a), for a ∈ Σ, into account is not properly
working.

In the forthcoming we present an explicit construction based on semilinear
sets for the claim on the inverse homomorphism closure of L (NJFA). For this we
use the following result from [2] on the operational complexity of the operation
of inverse homomorphism on semilinear sets.

Theorem 15. Let k1, k2 ≥ 1 and
⋃

i∈I L(ci, Pi) be a semilinear subset of N
k2 .

We set n = maxi∈I ||Pi||, m = maxi∈I |Pi|, and � = maxi∈I ||ci||. Moreover let
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H ∈ N
k2×k1 be a matrix and h : N

k1 → N
k2 be the corresponding linear function

x �→ Hx. Then for every i ∈ I there exist Qi, Ci ⊆ N
k1 with

||Qi|| ≤ (k1 + m + 1)kmin(k1+m,k2)/2
2 · (||H|| + 1)min(k1,k2)(n + 1)min(m,k2),

||Ci|| ≤ (k1 + m + 1)kmin(k1+m,k2)/2
2 · (||H|| + 1)min(k1,k2)(n + 1)min(m,k2)�,

and h−1
(⋃

i∈I L(ci, Pi)
)

=
⋃

i∈I L(Ci, Qi).

We get an upper bound of order (k1k2mn)5k1k2+k2
2+O(k1+k2) for the operation

of inverse homomorphism on NJFAs:

Theorem 16. Let Γ and Σ be two alphabets of size k1 and k2, respectively, and
h : Γ ∗ → Σ∗ be a homomorphism. Let A be an n-state NJFA with input alpha-
bet Σ and set m = max ({|h(a)|b | a ∈ Γ, b ∈ Σ} ∪ {1}). Then there exists an
NJFA with O(k3k1/2+2

1 k5k1k2+7k1+9k2+13
2 m(k1+1)min(k1,k2)n4k1k2+5k1+k2

2+7k2+10)
states accepting the language h−1(L(A)).

The next corollary is an immediate consequence of the previous theorem.

Corollary 17. The language family L (NJFA) is closed under inverse homo-
morphism.

Determinizing the resulting NJFA causes an exponential blow up:

Corollary 18. Let Γ and Σ be two alphabets of size k1 and k2, respectively,
and h : Γ ∗ → Σ∗ be a homomorphism. Let A be an n-state NJFA with input
alphabet Σ and set m = max ({|h(a)|b | a ∈ Γ, b ∈ Σ} ∪ {1}). Then there exists

a DJFA with 2(k1k2mn)5k1k2+k2
2+O(k1+k2)

states accepting the language h−1(L(A)).

3.4 Operational State Complexity of Intersection with Regular
Languages

Now we consider jumping finite automata languages and their intersection with
regular sets in more detail. The language family L (NJFA) is not closed under
intersection with regular languages. However, we have the following result, which
will be utilized later.

Lemma 19. Let A be an NJFA with input alphabet Σ and R ⊆ Σ∗ a regular
language. Then the following statements are equivalent:

1. The language L(A) ∩ R is in L (NJFA).
2. L(A) ∩ R = L(A) ∩ perm(R).
3. L(A) ∩ perm(R) ∩ perm(Σ∗\R) = ∅.

Next we derive an upper bound of order (k · n)O(k2) on the state complexity
of the intersection with regular languages on NJFAs, if the result remains a
language accepted by a jumping automaton.
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Theorem 20. Let A be an m1-state NJFA and B be an m2-state NFA with an
input alphabet of size k. Assume that L(A) ∩ L(B) is in L (NJFA). Then there is
an NJFA with O(k9k2/2+43k/2+21n6k2+16k+16) states, where n = max{m1,m2},
accepting L(A) ∩ L(B).

For deterministic jumping automata we deduce the following upper bound
of order (k · n)O(k5), which can be proven analogously to Theorem20, but using
Theorem 9 instead of Theorem 7.

Theorem 21. Let A be an m1-state DJFA and B be an m2-state DFA with an
input alphabet of size k. Assume that L(A) ∩ L(B) is in L (NJFA). Then there
is a DJFA with O(k27k5/2+183k4/2+196k3

n18k5+84k4+144k3+96k2+2) states, where
n = max{m1,m2}, accepting L(A) ∩ L(B). �

4 Decidability of Problems Involving Jumping Automata

Already in [16] decidability of some problems on jumping automata were consid-
ered. There it was shown that finiteness, infiniteness, membership, and emptiness
of NJFA languages is decidable. The status of other decision problems for NJFAs
is explicitly stated as open problem. Later in [4] the computational complexity
of parsing problems for NJFAs and alternative representations were considered.
Decidability and computational complexity results for semilinear sets and Parikh
images of regular and/or context-free languages can be found in [8–11]. More
recent results on that subject were presented in [12,13,17]. From these papers,
and in particular from the latter one, we can deduce the following decidability
results on jumping finite state devices, which we state without proof.

Theorem 22. Let A and B be two NJFAs with input alphabet Σ. Then the
following problems are decidable:

1. Disjointness: is L(A) ∩ L(B) �= ∅?
2. Universality: is L(A) = Σ∗?
3. Inclusion: is L(A) ⊆ L(B)? �

Instead of relying on results from the literature, some of the above presented
decidability statements can be shown by using some results presented earlier in
this paper. For instance, the decidability status of the universality problem is
seen as follows: Let A be an NJFA with input alphabet Σ. Then by Theorem12
we can construct an NJFA Ā such that L(Ā) = Σ∗\L(A). So, we have L(A) =
Σ∗ if and only if L(Ā) = ∅. Since emptiness is decidable for NJFAs in the same
way as for NFAs the result follows.

In the remainder of this section we again investigate the relation between
jumping finite automata and regular languages. As mentioned earlier, the lan-
guage family L (NJFA) is not closed under intersection with regular languages.
But it is decidable if such an intersection belongs to L (NJFA):

Theorem 23. Let A be an NJFA and B be an NFA. Then it is decidable whether
the language L(A) ∩ L(B) belongs to the language family L (NJFA) or not.
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As a consequence we get the following result.

Corollary 24. Let A be an NFA. Then it is decidable whether L(A) is closed
under permutation.

An NP lower bound on the permutation problem was obtained earlier in [5],
if an NFA is given. Next an NP upper bound is given for DFAs.

Theorem 25. Let A be a DFA. Then the problem to decide whether L(A) is
not closed under permutation is in NP. If the size of the input alphabet is fixed,
then the problem to decide whether L(A) is closed under permutation is in P.

Finally, the regularity problem for NJFAs is decidable, which can be seen by
a result of [6] on semilinear sets. The lower bound on this problem is NP-hardness
as recently shown in [5].

Theorem 26. Let A be an NJFA. Then regularity of L(A) is decidable. �
Now the question on the descriptional complexity of NJFAs or DJFAs accept-

ing a regular language compared to ordinary finite automata may arise. The pre-
viously presented results show that the increase in the number of states for the
conversion of a jumping finite automaton, even a nondeterministic one, accepting
a regular language to an ordinary finite automaton is bounded by a recursive
function. This substantially depends on (i) the decidability of the regularity
for jumping finite automata, (ii) the decidability of the permutation closure for
finite automata, and (iii) the decidability of the equivalence for jumping finite
automata. Unfortunately, we have no explicit upper bound for the conversion.
Nevertheless, we can give an exponential lower bound, which is presented in the
next theorem.

Theorem 27. For any integer n ≥ 1, there exists an (n(n+1)/2)-state DJFA A
with input alphabet Σn = {a1, a2, . . . , an} accepting a regular language such that
any DFA accepting L(A) needs at least n! states.
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Abstract. Symbolic tree transducers are programs that transform data
trees with an infinite signature. In this paper, we show that the equiv-
alence problem of deterministic symbolic top-down tree transducers
(DTop) can be reduced to that of classical DTop. As a consequence
the equivalence of two symbolic DTop can be decided in NExpTime,
when assuming that all operations related to the processing of data val-
ues are in PTime. This result can be extended to symbolic DTop with
lookahead and thus to deterministic symbolic bottom-up tree transduc-
ers.

1 Introduction

Data trees are widely used in various domains of computer science. They repre-
sent programs in compiler construction or program analysis, syntactic sentence
structure in computational linguistics, all or part of the database instances in
semi-structured databases, and structured documents in document processing.
The most widely used current formats for data trees are json (the Java Script
Object Notation) and xml (the eXtensible Markup Language).

We are interested in deciding the equivalence of programs that define trans-
formations on data trees. For instance, we may consider xslt programs defining
xml transformations or Linux installation scripts written in bash that change
the file system tree. Our approach is to compile a subclass of such programs into
classes of tree transducers for which equivalence is decidable. Here we present
a partial landscape of classical classes of tree transducers without data values
[7,8,12], where inclusion is read from left to right:

The class DTopR of deterministic top-down tree transducers with regular
lookahead by a deterministic bottom-up tree automaton is particularly well
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behaved [8]. It is closed under composition, which makes it suitable for compi-
lation of programs, and its equivalence problem is decidable in NExpTime, by
PTime reduction to the equivalence problem of the class DTop, for which equiv-
alence is decidable in NExpTime [11,14,17]. Furthermore, the class DTopR sub-
sumes three other classes of tree transducers with pairwise incomparable expres-
siveness, which capture different aspects of programs: extended DTop with
nested pattern matching, functional top-down tree transducers (functional Top)
that relax the determinism requirement of DTop, and deterministic bottom-up
tree transducers DBup that operate the other way around. The more general
class of macro tree transducers (Mtt) is much more expressive (and includes
lookaheads), but has a long-standing open equivalence problem [9,10,18] and
fails to be closed under composition (though its linear size increase subclass has
better properties).

In contrast to classical machines that operate on ranked trees over finite
signatures, what we need for program verification are generalised machines that
operate on data trees with infinite signatures. Most typically the data values
which label the nodes of data trees may be strings over some finite alphabet
or natural numbers. For dealing with data trees, the classical classes of tree
transducers were extended to symbolic classes [15,19,20], and similarly for other
kinds of finite state machines. The general idea is to use patterns for describing
infinitely many data values in a finite manner, and to allow the transducers to
apply transformations on the data values themselves.

We first illustrate by an example that the class of symbolic extended DTop
is relevant in practice. For this, we consider the following extended DTop, which
performs a routine cleanup and statistics task on a list of log files in a file system,
as illustrated in the example of Fig. 1.

q〈nil〉 → cons〈 file〈“log”, “”〉, nil〉 (1)
q〈cons〈x1, x2〉〉 → cons〈qname〈x1〉, q〈x2〉〉 (2)
qname〈file〈“log”, x2〉〉 → file〈“stats.1”, fstats@@@x2〉 (3)

qname〈file〈x1 : “stats.”(“0”..“9”)+, x2〉〉 → file〈fincr@@@x1, fid@@@x2〉 (4)

Such transducers have nested patterns with variables x1, x2, . . . for matching
subtrees, expressions for matching data values such as “stats.”(“0”..“9”)+ or
cons, and applications of externally defined functions, such as fstats@@@x2, where
fstats is a string transformation that produces statistics from its input string
(log contents). It should be noted that symbolic functional Top are insufficient
for this example since rules such as (3) and (4), with nested patterns, cannot be
expressed in a top-down manner. In contrast, symbolic DBup offer an alternative
solution for this concrete example.

Veanes and Bjørner [19,20] started the study of symbolic transducers. They
showed that equivalence is decidable for symbolic functional Top, if the cor-
responding problems on data pattern and transformations are. In this paper,
we notice that the landscape of tree transducers above remains unchanged when
turning classes of classical tree transducers symbolic. Therefore, we can show that
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the equivalence problem is decidable for the symbolic counterparts of all classes
in the landscape except for Mtt. To see this, note that any symbolic DTop
is a symbolic functional Top, so equivalence for symbolic DTop is decidable.
Furthermore, equivalence for symbolic DTopRs can be reduced to equivalence
of symbolic DTop as in the classical case.

We then start studying the complexity of equivalence for classes of sym-
bolic tree transducers. Our main result is that equivalence for symbolic DTopRs
is in NExpTime, under the assumption that operations on patterns and data
transformations can be performed in PTime. If not, one needs to multiply the
worst case exponential time with the maximal time needed for such operations.
We obtain this result from a novel reduction from the equivalence of symbolic
DTop to the equivalence of classical DTop, using a weakened version of the
origin-equivalence in [3]. This reduction allows us to conclude that the equiva-
lence problem of symbolic DTop is indeed in NExpTime as for classical DTop
(and not in 2NExpTime as a naive analysis would lead to believe). Due to the
modularity of the construction, the equivalence testers obtained for DTopRs are
easy to prove correct, to analyse, and to implement.

2 Tree Automata and Transducers

Some familiarity with formal languages and automata theory, as covered for
instance in [5], is assumed.

Given a set S, we denote its cardinality by |S| and its powerset by 2S . The
set of Boolean values is written B = { 0, 1 }. N is the set of natural integers,
including zero. We write m..n the integer interval [m,n] ∩ N. We will denote
tuples (a0, a1, . . . , an) by a0〈a1, . . . , an〉 or simply as a0 if n = 0.

Let X = { x1, x2, x3, . . . } be a set of variables. For K > 0, we shall often use
the subsets XK = { x1, . . . , xK }. A ranked alphabet Σ is a (potentially infi-
nite) set disjoint from X paired with a function arΣ : Σ → N (or just ar where Σ
is clear from context). The set of ranked trees over Σ with variables in X,
denoted by TΣ(X), is the least set that contains X and all a〈t1, . . . , tn〉 where
a ∈ Σ, n = arΣ(a), t1, . . . , tn ∈ TΣ(X). TΣ(∅) is the set of ground Σ-trees,
also written TΣ . Notions of position, substitution, etc., are all defined as usual.

We next recall the definitions of deterministic top-down tree automata
(Dtta) and deterministic top-down tree transducers (DTop).

Definition 1. A quasi Dtta is a tuple A = (Σ,Q, qini, rhs) such that Σ is a
ranked alphabet, Q a finite set, qini ∈ Q, and rhs is a partial function that maps
pairs (q, a) ∈ Q × Σ to tuples of Qar(a). A Dtta is a quasi Dttafor which Σ is
finite, and thus so is rhs.

The elements of Q are called the states of A, qini its initial state. The rules of
A have the form q〈a〈x1, . . . , xn〉〉 → rhs(q, a), where rhs(q, a) is defined and n =
ar(a). Each state q of a quasi Dtta A recognises a tree language �q�A ⊆ T (Σ),
(or just �q� when A is clear from the context) defined by induction on the trees:
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we have a 〈t1, . . . , tn〉 ∈ �q� iff there is a rule q〈a〈x1, . . . , xn〉〉 → q1, . . . , qn and
tk ∈ �qk� for all k ∈ 1..n. The semantics of the automaton is �A� = �qini�.

Bottom-up tree automata (Buta) are defined similarly and as usual, with
rules of the form a〈q1, . . . , qn〉 → q.

Definition 2. A quasi DTop is a tuple M = (Σ,Δ,Q, ax, rhs) such that Σ
and Δ are ranked alphabets, Q is a finite set, qini ∈ Q, and rhs is a partial
function that maps pairs (q, a) ∈ Q × Σ to TΔ(Q × Xar(a)). A DTop is a quasi
DTop for which Σ and Δ are finite, and thus rhs as well.

Σ and Δ are called input and output alphabets; the other components are
as in automata. Each state q ∈ Q has as semantics a partial function �q� from
TΣ to TΔ, defined by induction on terms t = a〈t1, . . . , tn〉 ∈ TΣ such that:

�q�(t) = rhs(q, a)
[
q′〈xk〉 ← �q′�(tk)

∣
∣ q′ ∈ Q, k ∈ 1.. ar(a)

]
. (5)

The transformation defined by M is the partial function �M� = �qini�.

3 Symbolic Tree Automata and Transducers

In this section, we recall the definitions of symbolic Dtta and symbolic DTop
as in [15]. Symbolic machines are finite representations of potentially infinite
quasi Dtta and quasi DTop. They use descriptors to stand for the potentially
infinite sets and functions. Given a set S, we call a set D paired with a function
�.� : D → S as set of descriptors of elements of S. For instance, we can use the
set E of regular expressions e ∈ E over an alphabet A as descriptors of regular
languages �e� ⊆ A∗. Outside of the definitions, we shall often assimilate the
descriptors and their semantics.

Definition 3. A symbolic Dtta is a tuple A = (Σ,Φ,Q, qini, rhs) such that
(Φ,Q, qini, rhs) is a quasi Dtta with a finite set of rules, Φ is an alphabet of
descriptors for subsets of the alphabet Σ, with ar(a) = ar(ϕ) for any a ∈ �ϕ�
and ϕ ∈ Φ. For all a ∈ Σ and q ∈ Q, there exits at most one ϕ ∈ Φ such that
rhs(q, ϕ) is defined and a ∈ �ϕ�.

The elements of ϕ ∈ Φ are called (descriptors for) guards. A symbolic Dtta
A is a finite representation of a (potentially) infinite quasi Dtta A′ such that for
every rule r of form, q〈ϕ〈x1, . . . , xn〉〉 → q1, . . . , qn of A, and for every a ∈ �ϕ�,
there is a rule q〈a〈x1, . . . , xn〉〉 → q1, . . . , qn in A′. The semantics of A is defined
as that of A′: for all q ∈ Q, �q�A = �q�A′ . Symbolic Buta are defined similarly.

Definition 4. A symbolic Dtta is effective if it satisfies the following condi-
tions, which we always assume: (1) The set of guards Φ is closed under con-
junction and negation, i.e., there exists an algorithm computing some function
∧ : Φ×Φ → Φ such that �ϕ∧ϕ′� = �ϕ�∩ �ϕ′� for all ϕ,ϕ′ ∈ Φ, and an algorithm
computing some function ¬ : Φ → Φ such that �¬ϕ� = Σ \ �ϕ�. (2) There exists
an algorithm deciding membership a ∈ �ϕ� given a guard ϕ ∈ Φ and a label
a ∈ Σ.
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Fig. 1. Log cleanup and statistics: input tree on the left, output on the right.

Definition 5. A symbolic DTop is a tuple M = (Σ,Δ,Φ,F , Q, qini, rhs) such
that (Φ,F , Q, qini, rhs) is a quasi DTop with a finite set of rules, F is an alphabet
of descriptors for partial functions from the input alphabet Σ to the output
alphabet Δ, with ar(�f�(a)) = ar(f) for every a ∈ dom(f) and f ∈ F . The same
conditions on Σ, Φ and rhs apply as for symbolic Dtta above.

The elements of f ∈ F are called (descriptors for) data transformations.
A symbolic DTop M is a finite representation of a (potentially) infinite quasi
DTop M ′ = (Σ,Δ,Q, ax, rhs′), such that for every rule q〈ϕ〈x1, . . . , xn〉〉 →
rhs(q, ϕ) of M , and for every a ∈ �ϕ�, there is a rule q〈a〈x1, . . . , xn〉〉 →
rhs(q, ϕ) [f ← �f�(a) | f ∈ F ] in M ′. The semantics of M is defined as that of
M ′: for all q ∈ Q, �q�M = �q�M ′ .

Definition 6. A symbolic DTop is effective (which is assumed in the remain-
der) if the underlying Dtta is, and (1) There is an algorithm that computes
the value of the data transformation �f�(a) for a given f ∈ F and a ∈ Σ and
returns ⊥ if it is not defined. (2) There is an algorithm that decides whether
the image of a data transformation �f�(Σ) is empty for a given f ∈ F .

In symbolic DTopR, a symbolic Buta on the transducer’s input signa-
ture Σ first annotates the tree with its states P , and then the symbolic DTop
transforms the annotated tree on Σ × P .

Consider the logs of an application on a Unix-flavoured system. The log is a
text file named “log”, here containing “s” for every successful login, and “f” for
every failure. Every week, the old log is discarded and replaced by statistics: the
number of successful and failed logins (Fig. 1). For this, we denote by fstats the
function counting the numbers n,m of occurrences of “s” and “f” in a string (here
a log’s contents), and outputting the string n“;”m. A fresh “log” is then created.
The older log’s statistics are named “stats.1”, “stats.2”, etc. so that higher num-
bers indicate older stats. To model this with a symbolic DTopR, we represent
the contents of the logs folder by a list (cons and nil being the usual construc-
tors) of files, each file being a tree of the form file〈“filename”, “contents”〉. The
input and output alphabets are thus strings, along with file, cons and nil. The
guards will be a small subset of regular expressions on strings plus descriptors
matching cons and nil. The lookahead’s purpose is to check whether the file-
name matches a stat file or not (which cannot be done in a top-down transducer’s
rule, in contrast to the extended rules (3) and (4)) and to annotate the file nodes
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with its findings. Guards are regular expressions. The descriptor matching a spe-
cific string is the string itself; ∗ matches everything; “stats.”(“0”..“9”)+ is the
descriptor matching stats filenames. The lookahead (LA) rules are

“stats.”(“0”..“9”)+〈〉 → pstats file〈pstats, p〉 → pstats file

“log”〈〉 → p file〈p, p〉 → p

(“s” | “f”)∗〈〉 → p cons〈 , p〉 → p nil〈〉 → p

The label functions F are taken as, for instance, the class of rational functions,
which we can implement with word transducers with lookahead [6], satisfying all
requisite properties. We represent a constant function by the string it produces,
the identity by fid, and fincrement for the function taking strings of the form
“stats.” k, where k is the decimal representation of an integer, and yielding
“stats.” (k + 1). We start in state q:

q〈nil : p〉 → cons〈 file〈“log”, “”〉, nil〉 (1’)
q〈cons : p〈x1, x2〉〉 → cons〈qname〈x1〉, q〈x2〉〉 (2’)
qname〈file : p〈x1, x2〉〉 → file〈qlog〈x1〉, qstats〈x2〉〉 (3a)
qname〈file : pstats file〈x1, x2〉〉 → file〈qincr〈x1〉, qid〈x2〉〉 (4a)

qincr〈“stats.”(“0”..“9”)+ : pstats〉 → fincrement (3b)
qid〈∗ : p〉 → fid qstats〈∗ : p〉 → fstats qlog〈“log” : p〉 → “stats.1” . (4b)

4 Domain and Composition

To study problems like computation or equivalence on symbolic DTop, it is
worth considering those problems as extensions of their counterparts for DTop.
Indeed, most difficulties that previous papers [15,19,20] encountered are already
relevant for the composition, normalization, or equivalence problems in the finite-
labelled case [11,16]. Most of those difficulties come from dealing with the domain
of a transducer’s transformation. Since these problems have been solved in DTop
and proofs in symbolic DTop are essentially identical, we shall only present
the results, a reference for the proofs in DTop, and the additional conditions
required of Φ and F for them to carry over to the symbolic case.

The first important results concern automata and their expressive power.
Symbolic Dtta which, as said before, we always assume to be effective, and
have the classical properties of Dtta (e.g. in [5]).

Lemma 7. (1) The class of languages described by symbolic Dtta is closed
under Boolean set operations. (2) If equivalence is decidable on Φ, then equiva-
lence is decidable on symbolic Dtta.

The second important result concerns the domains of symbolic DTop. Sev-
eral or no states can explore a particular subtree. We use previous results on
DTop [11] to see that this domain can be recognized by an automaton.
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Lemma 8. Let M be a symbolic DTop. Then we can build a symbolic Dtta
A such that �A� = dom(�M�).

As pointed out in [15], and contrary to a claim in [20], symbolic DTop
are not closed under composition. To find a class closed under composition, a
solution presented in the DTop case [11] is to consider transducers with domain
inspection: a symbolic DTop with inspection is a pair N = (M,A) of a
symbolic DTop M and a symbolic Dtta A. Its semantic is �N� = �M�|�A�,
the function of M restricted to the language of A. We know that DTop with
inspection are closed under composition [11]. This result extends to symbolic
DTop if the set of functions of F is itself closed under composition, and the
images of guards through functions of F form a suitable set of guards (i.e. they
satisfy the requirements for effectiveness).

Lemma 9. Let F be closed under composition, and N,N ′ be two effective sym-
bolic DTop with inspection using functions of F . Then we can build a symbolic
DTop with inspection N ′′ such that �N ′′� = �N� ◦ �N ′�.

The main intuition behind the generalisation of the classical results [1] is
presented in several papers [15,19,20]; roughly, a rule in N ′′ is the image of the
right-hand side of a rule of N ′ by a state of N . To obtain closure by composi-
tion for symbolic DTop – or indeed for DTop, as the problem is fundamentally
unchanged by the alphabets – necessitates the use of either very strong restric-
tions, as in [15], or the use of domain inspection, which we prefer here.

5 Deciding Equivalence

In this section, we show that, given a few basic properties on label transforma-
tions (mostly that equivalence is decidable for label transformations) the equiva-
lence problem for symbolic DTop is decidable, regardless of linearity, by reducing
that problem to equivalence for DTop, which is known to be decidable. This
method does not involve any external SMT solver, unlike [19,20].

There are two basic observations behind this reduction. First, although Σ,
Φ and F may well be infinite, only a finite number of predicates and transfor-
mations are actually used in a symbolic DTop (or indeed, any pair of symbolic
DTop). These finite subsets of Φ and F will serve as finite input and output
signatures in our reduction. Second, for two symbolic DTop to be equivalent,
they generally need to use the same input label to produce some output label:
two symbolic DTop using the same function on different input nodes will, in
general, produce a different output (see Fig. 2).

To be more specific, we introduce a notion of origin similar to the syntactic
alignments of [2] and the origins of [3], and a weakened version of the origin
equivalence in [3]. We assimilate, in a given tree, the nodes to their addresses
according to the Dewey notation. For instance, in Fig. 1, the node 1 is labelled
by file, and the node 12 in the input is labelled by “ssfsffs”. Let us consider
a symbolic DTop M , as well as a tree t in its domain. For each node π of the
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tree �M�(t), the node at π is created by examining a node μ of t using a rule
of M . This input node is unique (see for example Proposition 52 of [2]) and we
call it the origin node of π for �M�(t). In the symbolic case, we can also track
the function f |ϕ used to transform the label of μ into the label of π through a
rule of guard ϕ, and call it the origin function of π. In Fig. 1, the origin of 12
in the output is 12 in the input, and the origin function is fstats, via rule (4b).

Definition 10. Two equivalent symbolic DTop M,N are weak-origin-
equivalent iff for all t ∈ dom�M�, for any node π of �M�(t), the origin nodes of
π for M and N are identical, or its origin functions for M and N are constant
of same value.

Lemma 11. If two symbolic DTop are equivalent, they are weak-origin-
equivalent.

Intuitively, if M and N are not weak-origin equivalent then, for some tree
t, an output node π comes from two different nodes μ and λ in the input using
non-constant functions. By changing the label of μ without changing the label
of λ, we change �M�(t) and not �N�(t), thus proving that M and N are not
equivalent.

We now present the reduction from equivalence of symbolic DTop to that of
DTop. Let M = (Φ,Σ,F ,Δ, P, pini, R) and N = (Φ,Σ,F ,Δ,Q, qini, S) be two
symbolic DTop. We build their DTop representations, the DTop M and N .
Strictly speaking we should write MM,N and NM,N , as the construction is spe-
cific to the pair of transducers under consideration, and the same applies to the
representation of each component of the transducers – Φ, Σ, etc. – which we
define below. In this section we assimilate descriptors ϕ, f and their semantics
�ϕ�, �f� to lighten the notations.

We make the following additional equivalence-testing assumptions: for
all ϕ,ψ ∈ Φ, it is decidable whether ϕ = ψ. For all f, g ∈ F and all ϕ ∈ Φ, it is
decidable whether there exists some c ∈ Δ such that f(ϕ) = {c}, and this c is
computable; and it is decidable whether f |ϕ = g|ϕ.

The finite information relevant to the behaviour of symbolic DTop is
which guards are satisfied. Thus we let Π = { gd(r) | r ∈ R ∪ S } ⊆ Φ
be the subset of guards actually used by either of the two transduc-
ers. The finite alphabet Σ representing Σ is defined as Σ = 2Π . The
representation of a ∈ Σ is

a = { π ∈ Π | a ∈ π } ∈ Σ . (6)

The representation of a guard ϕ ∈ Π is ϕ = { Π ′ ⊆ Π | ϕ ∈ Π ′ } ⊆ Σ. The
representation of an input tree t ∈ T (Σ) is defined inductively as

a(t1, . . . , tn) =
{

(a, b)(u1, . . . , un)
∣
∣ b ∈ B, ui ∈ ti,∀i

}
∈ T (Σ × B) , (7)

where the addition of the bit b, called obit (origin bit), will be
used to store just enough information about origins to ensure weak ori-
gin equivalence between M and N . Accordingly, the representation
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of a label transformation f restricted to ϕ, with obit b is defined as

f |ϕ, b =

{
c if f(ϕ) = {c}, and
(f |ϕ, b) otherwise.

(8)

The representation of a rule r ∈ R ∪ S, of the form r = q〈ϕ〈x1, . . . , xn〉〉 →
t, is given by the set r of all classical rules

q〈(ρ, b)〈x1, . . . , xn〉〉 → t
[
f ← (f |ϕ, b)

∣
∣ f ∈ F

]
, (9)

for all b ∈ B, ρ ∈ ϕ. Letting R =
⋃

r∈R r and S =
⋃

s∈S s, we finally have
M = (Σ,Δ,P, pini, R) and N = (Σ,Δ,Q, qini, S).

This representation is built so that the following holds: let t be a tree of
dom(�M�), a node π in �M�(t), its origin node μ and its origin function f |ϕ.
Then for any tree u ∈ t, the node π in �M�(u) is c if f(ϕ) = {c}, (f |ϕ, b)
otherwise, with b the obit under μ in u. This leads to the following result.

Theorem 12. Let M,N be two symbolic DTop, as above. Then �M� = �N� if
and only if �M� = �N�.

Proof. First, we consider domain equality: the domain of M is the set of all the
representations of trees of dom(�M�). Hence M and N are of same domain if
and only if M and N are of same domain. Let us now assume that the domains
are the same. Suppose M and N are not equivalent; let t be an input tree such
that u = �M�(t) �= �N�(t) = v. We consider an address π that exists both in u
and v but where the label at π differs in u and v. In M the origin node of π is
μ; the origin function is f |ϕ. In N the origin node of π is λ; the origin function
is g|ψ. Since the label at π differs in u and v, there must be a difference of origin
node or functions.

If f |ϕ �= g|ψ, they can’t be constants of same value, otherwise the label at π
would be the same in u and v. This means that their representations will differ
in M and N . Hence for any t′ ∈ t, the label at π would differ in �M�(t′) and
�N�(t′). Hence �M� �= �N�.

If f |ϕ = g|ψ, then μ �= λ, and f |ϕ can’t be a constant, otherwise the label
at π would be the same in u and v. We pick t′ a representation of t where the
obit under μ is 1, and the obit under λ is 0. The label at π in �M�(t′) would be
(f |ϕ, 1), but the label at π in �N�(t′) would be (f |ϕ, 0). Hence �M� �= �N�.

Conversely, suppose M and N are not equivalent; let t′ be an input tree such
that u′ = �M�(t′) �= �N�(t′) = v′. We consider an address π′ that exists both in
u′ and v′ but where the label at π′ differs in u′ and v′. In M the origin node of π′

is μ′, and in N the origin node of π′ is λ′. Thus, μ′ and λ′ are also the origin node
of π′ in M and N for all t such that t′ ∈ t. If μ′ �= λ′, we remark that the label of
the nodes at π′ cannot be the same constant c. This combined with the disparity
of node origins means that M and N are not weak-origin-equivalent, and thus
not equivalent. If μ′ = λ′, then the label at π′ in u′ and v′ are representations of
different functions (or constants) f |ϕ and g|ϕ. There is at least one value a ∈ ϕ
such that f(a) �= g(a). We pick a tree t such that t′ ∈ t and the label at μ′ in t
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Fig. 2. Using obits to deduce origins. We represent the obits with colours: ◦ are
nodes of obit 0, • are nodes of obit 1. We apply two transformations τ1 and τ2 on
an input tree (here in the middle): τ1 replaces its right leaf by a copy of the left one,
while τ2 replaces its left leaf by a copy of the right one. Without the obits, these
two transformations would look identical. However, as seen above, the obits allow a
distinction between τ1 and τ2 for some input tree.

is labeled a. The node π′ in �M�(t) is labeled f(a), while the node π′ in �N�(t)
is labeled g(a). Hence �M� �= �N�. ��

Corollary 13. Under the equivalence-testing assumptions above, the equiva-
lence problem for symbolic DTop is reducible to the equivalence problem on
DTop, in ExpTime in the worst case, plus, at worst, an exponential number of
operations in Φ and F .

Proof. Given that the construction of DTop representations in Theorem 12 is
effective, we can build them and decide the equivalence of the representations. ��

The exact complexity of this algorithm relies on the complexity of the
various operations related to the equivalence-testing assumptions (computing
intersections, deciding function equivalence) in these sets, but also on the pre-
cise number of intersections and negations we have to perform in Φ. To com-
pute these representations, we build all guards ϕ such that for some label a,
ϕ = (

⋂
π∈a π) \ (

⋃
π′ �∈a π′), and decide function equivalence on these ϕ for the

functions used in M and N . In the case where guards are all disjoint, the reduc-
tion to DTop is actually polynomial. In practice, it can be expected that few
intersections actually need to be computed. The representations a can also be
made more parsimonious by taking into account only tests that actually apply
during the run, which can be done as in the construction of Lemma8.

In any case, we can express the number of states and rules in M and N
independently of Φ and F : the states are unchanged, and the number of rules
increases, at worst, exponentially.

Lemma 14. For M,N two symbolic DTop, their DTop representations M
and N are DTop with an exponential number of rules and the same number of
states.

Since the problem of DTop equivalence is NExpTime [13], a näıve app-
roach to calculating the complexity of symbolic DTop equivalence would yield
a 2NExpTime algorithm, plus an exponential number of operations in Φ and
F . However, upon finer analysis, the complexity of DTop equivalence is tied to
the height of a counter-example between two non-equivalent transducers. This
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height is, in the worst case scenario, exponential in the number of states in the
studied DTop. Since representations do not create new states, the height of the
counter-examples is unchanged, and the exponentials do not compound.

Theorem 15. The equivalence problem for symbolic DTop is in NExpTime,
plus, at worst, an exponential number of operations in Φ and F .

5.1 Extension to Symbolic DTopR

We want to extend our results from symbolic DTop to the wider class of symbolic
DTopR. This class is relevant for several reasons. The first is that it is more
expressive than the class of symbolic DTop with inspection, and subsumes other
relevant classes, such as single-valued symbolic DTop [19,20]. It also possesses
interesting properties. Notably, just as it was the case for DTopR [8], the class
of symbolic DTopR is closed under composition.

We want to study the equivalence problem of symbolic DTopR. For DTop,
the addition of a regular lookahead does not prevent the equivalence problem
from being decidable, as it is polynomially reduced to equivalence on plain DTop
(see [17]). This result can be carried over to the symbolic case, with the same
method: annotating with both lookaheads.

Lemma 16. One can polynomially reduce the equivalence problem of symbolic
DTopR to the equivalence problem of symbolic DTop with inspection.

This reduction in polynomial time can be combined with our previous results
(Corollary 13 and Theorem 15) to provide the following complexity result:

Theorem 17. Under the assumptions of Corollary 13, the equivalence problem
for symbolic DTopR is decidable in NExpTime, plus, at worst, an exponential
number of operations in Φ and F .

This result is quite useful, as several DTop classes are fragments of the class
of DTopR, and their decidability and complexity results can thus be transposed
to the symbolic case. Notably, DBup and nondeterministic functional Top can
be expressed as DTopR.

Corollary 18. Under the assumptions of Theorem13, the equivalence problem
for deterministic symbolic bottom-up tree transducers and nondeterministic sym-
bolic functional top-down tree transducers is decidable.

6 Conclusion

The algorithm presented here provides a novel approach to deciding equivalence
for symbolic DTop, and supports non-linear symbolic DTop, by reduction to
DTop equivalence. Note that decidability of equivalence for DTopR [17] works
in a comparable way: rather than finding a normal form, the two regular looka-
heads are “harmonized” into one, then the problem is reduced to DTop equiv-
alence. The methods presented in this paper also apply to symbolic DTopR

without a critical jump in complexity.
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Our method does not involve the computation of a normal form, which is
a rather classical technique to decide transducer equivalence [4,11], with appli-
cations to learning. It is interesting to see if normal forms could be defined for
symbolic DTop. This looks challenging, however, as it seems more general than
finding normal forms for DTopR, which remains an open problem.

A first possible extension of our model would be to allow the lookahead to
have registers, i.e. to memorize some data from the bottom of the tree to annotate
the upper part of the tree with it. Under reasonable restrictions, it is likely that
we might adapt our methods to reduce the equivalence problem for these objects
to the same problem on DTopR, thus providing a decidability result.

Furthermore, we would like to find out whether this kind of reduction can
be applied to more general classes of transducers such as macro tree transducers
(with linear size increase), for which equivalence is decidable [10]. If so, then the
decidability results can fairly easily be lifted to symbolic generalisations of the
class, at the cost of a few exponential blowups in complexity.

As a final mention, the inversion problem is interesting for symbolic trans-
formations on words and trees, and is relevant to the applications we consider.

References

1. Baker, B.S.: Composition of top-down and bottom-up tree transductions. Inf. Con-
trol 41(2), 186–213 (1979)

2. Boiret, A.: Normalization and learning of transducers on trees and words. Ph.D.
thesis, Lille University, France (2016)

3. Bojańczyk, M.: Transducers with origin information. In: Esparza, J., Fraigniaud,
P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 26–37.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43951-7 3

4. Choffrut, C.: Minimizing subsequential transducers: a survey. Theor. Comput. Sci.
292(1), 131–143 (2003)

5. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
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15. Fülöp, Z., Vogler, H.: Forward and backward application of symbolic tree trans-
ducers. Acta Inf. 51(5), 297–325 (2014)

16. Lemay, A., Maneth, S., Niehren, J.: A learning algorithm for top-down XML trans-
formations. In: PODS, pp. 285–296. ACM (2010)

17. Maneth, S.: Equivalence problems for tree transducers: a brief survey. In: Ésik, Z.,
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Abstract. Itwas conjectured by Černý in 1964, that a synchronizingDFA
on n states always has a synchronizing word of length at most (n−1)2, and
he gave a sequence of DFAs for which this bound is reached. Until now a
full analysis of all DFAs reaching this bound was only given for n ≤ 4, and
with bounds on the number of symbols for n ≤ 10. Here we give the full
analysis for n ≤ 6, without bounds on the number of symbols.

For PFAs on n ≤ 6 states we do a similar analysis as for DFAs and find
the maximal shortest synchronizing word lengths, exceeding (n − 1)2 for
n = 4, 5, 6. For arbitrary n we use rewrite systems to construct a PFA on
three symbols with exponential shortest synchronizing word length, giving
significantly better bounds than earlier exponential constructions. We give
a transformation of this PFA to a PFA on two symbols keeping exponential
shortest synchronizing word length, yielding a better bound than applying
a similar known transformation.

1 Introduction and Preliminaries

A deterministic finite automaton (DFA) over a finite alphabet Σ is called syn-
chronizing, if it admits a synchronizing word. A word w ∈ Σ∗ is called synchro-
nizing (or directed, or reset), if, starting in any state q, after reading w, one
always ends in one particular state qs. So reading w acts as a reset button: no
matter in which state the system is, it always moves to the particular state qs.
Now Černý’s conjecture [2] states:

Every synchronizing DFA on n states admits a synchronizing word of
length ≤ (n − 1)2.

Surprisingly, despite extensive effort, this conjecture is still open, and even
the best known upper bounds are still cubic in n. In 1983 Pin [8] established
the bound 1

6 (n3 − n). Only very recently a slight improvement was claimed by
Szyku�la [11]. For a survey on synchronizing automata and Černý’s conjecture,
we refer to [13].
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Formally, a deterministic finite automaton (DFA) over a finite alphabet Σ
consists of a finite set Q of states and a map δ : Q × Σ → Q.1 For w ∈ Σ∗

and q ∈ Q, we define qw inductively by qλ = q and qwa = δ(qw, a) for a ∈ Σ,
where λ is the empty word. So qw is the state where one ends, when starting in
q and reading the symbols in w consecutively, and qa is a short hand notation
for δ(q, a). A word w ∈ Σ∗ is called synchronizing, if a state qs ∈ Q exists such
that qw = qs for all q ∈ Q.

In [2], Černý already gave DFAs for which the bound of the conjecture is
attained: for n ≥ 2 the DFA Cn is defined to consist of n states 1, 2, . . . , n, and
two symbols a, b, acting by qa = q + 1 for q = 1, . . . , n − 1, δ(n, a) = 1, and
qb = q for q = 2, . . . , n, 1b = 2.

1 2

34

a, b

a

a

a

b

bb
C4

For n = 4, this is depicted on the right. For Cn,
the string w = b(an−1b)n−2 of length |w| = (n− 1)2

satisfies qw = 2 for all q ∈ Q, so w is synchronizing.
No shorter synchronizing word exists for Cn, as is
shown in [2], showing that the bound in Černý’s
conjecture is sharp.

A DFA on n states is critical, if its shortest syn-
chronizing word has length (n−1)2. One goal of this
paper is to investigate all critical DFAs up to some
size. To exclude infinitely many trivial extensions,
we only consider basic DFAs: no two distinct symbols act in the same way in the
automaton, and no symbol acts as the identity. Obviously, adding the identity
or copies of existing symbols has no influence on synchronization.

An extensive investigation was already done by Trahtman in [12]: by com-
puter support and clever algorithms, all critical DFAs on n states and k symbols
were investigated for 3 ≤ n ≤ 7 and k ≤ 4, and for n = 8, 9, 10 and k = 2. Here,
a minimality requirement was added: examples were excluded if criticality may
be kept after removing one symbol. Then up to isomorphism there are exactly
8 of them, apart from the basic Černý examples: 3 with 3 states, 3 with 4, one
with 5 and one with 6. In [4], the minimality requirement and restrictions on
alphabet size were dropped and several more examples were found that Traht-
man originally expected not to exist. All these are extensions of known examples:
in total there are exactly 15 basic critical DFAs for n = 3 and exactly 12 basic
critical DFAs for n = 4. In this paper, we show that for n = 5, 6, no more critical
DFAs exist than the four known ones, without any restriction on the number of
symbols.

A generalization of a DFA is a Partial Finite Automaton (PFA); the only
difference is that now the transition function δ is allowed to be partial. In a
PFA, qw may be undefined, in fact it is only defined if every step is defined. A
word w ∈ Σ∗ is called carefully synchronizing for a PFA, if a state qs ∈ Q exists
such that qw is defined and qw = qs for all q ∈ Q. Stated in words: starting
in any state q and reading w, every step is defined and one always ends in

1 For synchronization the initial state and the set of final states in the standard defi-
nition may be ignored.
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state qs. As being a generalization of DFAs, the shortest carefully synchronizing
word may be longer. For n = 4, 5, 6 we show that this is indeed the case by
finding the maximal shortest carefully synchronizing word length to be 10, 21 and
37, respectively. The maximal length grows exponentially in n, as was already
observed by Rystsov [10]. Martyugin [7] established the lower bound Ω(3n/3)
with a construction in which the number of symbols is linear in n. In a recent
paper, the upper bound O((3 + ε)

n
3 ) was proved [5].

Until recently it was an open question if exponential lower bounds can be
achieved with a constant alphabet size. We answer this question by giving a
construction of a PFA on n states and three symbols with exponential short-
est synchronizing word length. The key idea is that synchronization is forced
to mimic exponentially many string rewrite steps, similar to binary counting.
Our three-symbol PFA can be transformed to a two-symbol PFA by a standard
construction for which we develop a substantial improvement. Independent of
our work, recently in [14] it was shown that exponential bounds exist for every
constant alphabet size and for two symbols the bound Ω(2n/35) was given. Our
basic construction strongly improves this and gives length Ω(φn/3) for the three-
symbol PFA and length Ω(φn/5) for the two-symbol PFA, where φ = 1+

√
5

2 . Some
optimizations yield further improvements.

The basic tool to analyze (careful) synchronization is the power automaton.
For any DFA or PFA (Q,Σ, δ), its power automaton is the DFA (2Q, Σ, δ′) where
δ′ : 2Q × Σ → 2Q is defined by δ′(V, a) = {q ∈ Q | ∃p ∈ V : δ(p, a) = q}, if
δ(p, a) is defined for all p ∈ V , otherwise δ′(V, a) = ∅. For any V ⊆ Q,w ∈ Σ∗,
we define V w as above, using δ′ instead of δ. From this definition, one easily
proves that V w = {qw | q ∈ V } if qw is defined for all q ∈ V , otherwise V w = ∅,
for any V ⊆ Q,w ∈ Σ∗. A set of the shape {q} for q ∈ Q is called a singleton.
So a word w is (carefully) synchronizing, if and only if Qw is a singleton. Hence
a DFA (PFA) is (carefully) synchronizing, if and only if its power automaton
admits a path from Q to a singleton, and the shortest length of such a path
corresponds to the shortest length of a (carefully) synchronizing word.

This paper is organized as follows. In Sect. 2 we describe our exhaustive
analysis of DFAs on at most 6 states. In Sect. 3 we give our results for PFAs
on at most 6 states. In Sect. 4 we present our construction of PFAs on three
symbols with exponential shortest carefully synchronizing word length. In Sect. 5
we improve the transformation used by Martyugin [7] and Vorel [14] to reduce
to alphabet size two. Section 6 discusses optimizations. We conclude in Sect. 7.

2 Critical DFAs on at Most 6 States

A natural question when studying Černý’s conjecture is: what can be said about
automata in which the bound of the conjecture is actually attained, the so-called
critical automata? Throughout this section we restrict ourselves to basic DFAs.
As has already been noted by several authors [4,12,13], critical DFAs are rare.
There is only one construction known which gives a critical DFA for each n,
namely the well-known sequence Cn, discovered by and named after Černý [2].
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Apart from this sequence, all known critical DFAs have at most 6 states. In
[4], all critical DFAs on less than 5 states were identified, without restriction on
the size of the alphabet. For n = 5 and 6 it was still an open question if there
exist critical (or even supercritical) DFAs, other than those already discovered
by Černý, Roman [9] and Kari [6]. In this paper we verify that this is not the
case, so for n = 5 only two critical DFAs exist (Černý, Roman) and also for
n = 6 only two exist (Černý, Kari). In fact our results also prove the following
theorem (previously only known for n ≤ 5, see [3]):

Theorem 1. Every synchronizing DFA on n ≤ 6 states admits a synchronizing
word of length at most (n − 1)2.

As the number of DFAs on n states grows like 2n
n

, an exhaustive search is a
non-trivial affair, even for small values of n. The problem is that the alphabet
size in a basic DFA can be as large as nn − 1. Up to now for n = 5, 6 only DFAs
with at most four symbols were checked by Trahtman [12]. Here we give describe
our algorithm to investigate all DFAs on 5 and 6 states, without restriction on
the alphabet size.

Before explaining the algorithm, we introduce some terminology. A DFA B
obtained by adding some symbols to a DFA A will be called an extension of
A. If A = (Q,Σ, δ), then S ⊆ Q will be called reachable if there exists a word
w ∈ Σ∗ such that Qw = S. We say that S is reducible if there exists a word w
such that |Sw| < |S|, and we call w a reduction word for S. Our algorithm is
mainly based on the following observation:

Property 2. If a DFA A is synchronizing, and B is an extension of A, then B is
synchronizing as well and its shortest synchronizing word is at most as long as
the shortest synchronzing word for A.

The algorithm roughly runs as follows. We search for (super)critical DFAs
on n states, so a DFA is discarded if it synchronizes faster, or if it does not
synchronize at all. For a given DFA A = (Q,Σ, δ) which is not yet discarded or
investigated, the algorithm does the following:

1. If A is synchronizing and (super)critical, we have identified an example we
are searching for.

2. If A is synchronizing and subcritical, it is discarded, together with all its
possible extensions (justified by Property 2).

3. If A is not synchronizing, then find an upper bound L for how fast any
synchronizing extension of A will synchronize (see below). If L < (n − 1)2,
then discard A and all its extensions. Otherwise, discard only A itself.

The upper bound L for how fast any synchronizing extension of A will syn-
chronize, is found by analyzing distances in the directed graph of the power
automaton of A. For S, T ⊆ Q, the distance from S to T in this graph is equal
to the length of the shortest word w for which Sw = T , if such a word exists.
We compute L as follows:
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1. Determine the size |S| of a smallest reachable set. Let m be the minimal
distance from Q to a set of size |S|.

2. For each k ≤ |S|, partition the collection of irreducible sets of size k into
strongly connected components. Let mk be the number of components plus
the sum of their diameters.

3. For each reducible set of size k ≤ |S|, find the length of its shortest reduction
word. Let lk be the maximum of these lengths.

4. Now note that a synchronizing extension of A will have a synchronizing word
of length at most

L = m +
|S|∑

k=2

(mk + lk).

The algorithm performs a depth-first search. So after investigating a DFA,
first all its extensions (not yet considered) are investigated before moving on.
Still, we can choose which extension to pick first. We would like to choose an
extension that is likely to be discarded immediately together with all its exten-
sions. Therefore, we apply the following heuristic: for each possible extension B
by one symbol, we count how many pairs of states in B would be reducible. The
extension for which this is maximal is investigated first. The motivation is that
a DFA is synchronizing if and only if each pair is reducible [2].

Finally, we note that we have described a primitive version of the algorithm
here. The algorithm which has actually been used also takes symmetries into
account, making it almost n! times faster. For the source code, we refer to [1].

3 PFAs on at Most 6 States

In the remainder of this paper, we study PFAs and shortest carefully synchro-
nizing word lengths. In this section, we focus on PFAs on at most 6 states. In
the next section, we construct PFAs with shortest carefully synchronizing words
of exponential lengths for general n.

To find PFAs with small number of states and long shortest carefully syn-
chronizing word, we exploit that Property 2 also holds for PFAs. However, for
PFAs it is not true that reducibility of all pairs of states guarantees careful syn-
chronization. Therefore, we apply a different search algorithm. Technical details
are discussed in [1].

For n ≤ 6, our algorithm has identified the maximal length of a shortest
carefully synchronizing word in a PFA on n states. The results are:

n 2 3 4 5 6

maximal length 1 4 10 21 37

We observe that PFAs exist for n = 4, 5, 6 with shortest carefully synchroniz-
ing word lengths exceeding (n − 1)2. Note that for n = 5, 6 this even exceeds
the Pin-Frankl bound 1

6 (n3 − n) for DFAs from [8]. Where for n ≥ 5 no crit-
ical DFAs are known with more than three symbols, PFAs with long shortest
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carefully synchronizing word lengths tend to have more symbols: for n = 4, 5, 6
states the minimal numbers of symbols achieving the maximal shortest carefully
synchronizing word lengths 10, 21 and 37 are 3, 6, 6, respectively. Below we give
examples of PFAs on 4, 5 and 6 states reaching these lengths.

a, c

b

b, c

b, c

a

aa

b

a, d, e, f

c

c

c

d

e

e

f
a

a, b

a, b

a, b, c, d

The left one has two synchronizing words of length 10: abcabab(b+c)ca. The right
one has unique shortest synchronizing word abcabdbebcabdbfbcdeca of length 21.

b

a, b, d, e, f

c

b

c
d

c

e
f

e
a

a

a, b

a, b

a, b, c, d

The shortest synchronizing word is ab2ab2cb2ab2db2eb2cb2ab2db2fb2cdecb2a for
this PFA on 6 states. It is unique and has length 37.

4 Exponential Bounds for PFAs

In this section, we construct for any k ≥ 3 a strongly connected PFA on n = 3k
states and three symbols, for which we show that it is carefully synchronizing,
and the shortest carefully synchronizing word has length Ω(φn/3) for φ = 1+

√
5

2 =
1.618 · · · . The set of states is Q = {Ai, Bi, Ci | i = 1, . . . , k}. If a set S ⊆ Q
contains exactly one element of {Ai, Bi, Ci} for every i, it can be represented by
a string over {A,B,C} of length k. The idea of our construction is that the PFA
will mimic rewriting the string C2Ak−2 to the string C2Ak−3B with respect to
the rewrite system R, which consists of the following three rules

BBA → AAB, CBA → CAB, CCA → CCB.

The key argument is that this rewriting is possible, but requires an exponential
number of steps. This is elaborated in the following lemma, in which we use
→R for rewriting with respect to R, that is, u →R v, if and only if u = u1�u2

and v = u1ru2, for strings u1, u2 and a rule � → r in R. Its transitive closure
is denoted by →+

R. We write fib for the standard fibonacci function, defined by
fib(i) = i for i = 0, 1, and fib(i) = fib(i−1)+fib(i−2) for i > 1. It is well-known
that fib(n) = Θ(φn).
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Lemma 3. For k ≥ 3, we have CCAk−2 →+
R CCAk−3B. Furthermore, the

smallest possible number of steps for rewriting CCAk−2 to a string ending in B,
is exactly fib(k) − 1.

Proof. For the first claim we do induction on k. For k = 3, we have CCA →R

CCB. For k = 4, we have CCAA →R CCBA →R CCAB. For k > 4, applying
the induction hypothesis twice, we obtain

CCAk−2 →+
R CCAk−4BA →+

R CCAk−5BBA →R CCAk−3B.

For the second claim, we define the weight W (u) of a string u = u1u2 · · · uk over
{A,B,C} of length k by

W (u) =
∑

i:ui=B

(fib(i) − 1).

So every B on position i in u contributes fib(i) − 1 to the weight, and the other
symbols have no weight.

Now we claim that W (v) = W (u)+1 for all strings u, v with u →R v and u, v
only having C’s in the first two positions. Since the Cs only occur at positions
1 and 2, by applying CCA → CCB, the weight increases by fib(3) − 1 = 1 by
the creation of B on position 3, and by applying CBA → CAB, it increases by
fib(4) − 1 − (fib(3) − 1) = 1 since B on position 3 is replaced by B on position
4. By applying BBA → AAB, the contributions to the weight fib(i) − 1 and
fib(i + 1) − 1 of the two Bs are replaced by fib(i + 2) − 1 of the new B, which is
an increase by 1 according to the definition of fib.

So this weight increases by exactly 1 at every rewrite step, hence it requires
exactly fib(k) − 1 steps, to go from the initial string CCAk−2 of weight 0 to the
weight fib(k) − 1 of a B symbol on the last position k, if that is the only B, and
more steps if there are more Bs. 	


Now we are ready to define the PFA on Q = {Ai, Bi, Ci | i = 1, . . . , k} and
three symbols. The three symbols are a start symbol s, a rewrite symbol r and
a cyclic shift symbol c. The transitions are defined as follows (writing ⊥ for
undefined):

Ais = Bis= Cis = Ci, for i = 1, 2,
Ais = Bis= Cis = Ai, for i = 3, . . . , k,

A1r =⊥, B1r = A1, C1r = C1,
A2r =⊥, B2r = A2, C2r = C2,
A3r =B3, B3r = ⊥, C3r = B2,
Air =Ai, Bir = Bi, Cir = Ci, for i = 4, . . . , k,

Aic= Ai+1, Bic= Bi+1, Cic= Ci+1, for i = 1, . . . , k − 1,
Akc= A1, Bkc= B1, Ckc= C1.

A shortest carefully synchronizing word starts by s, since r is not defined
on all states and c permutes all states. After s, the set of reached states is
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S(CCAk−2) = {C1, C2, A3, . . . , Ak}. Here, for a string u = a1a2 · · · ak of length
k over {A,B,C}, we write S(u) for the set of k states, containing Ai if and only
if ai = A, containing Bi if and only if ai = B, and containing Ci if and only if
ai = C, for i = 1, 2, . . . , k. Note that for x ∈ {A,B,C} and v ∈ {A,B,C}k−1,
we have S(vx)c = S(xv), so c performs a cyclic shift on strings of length k.

The next lemma states that the symbol r indeed mimicks rewriting: applied
on sets of the shape S(u), up to cyclic shift it acts as rewriting on u with respect
to R defined above.

Lemma 4. Let u be a string of the shape CCw, where w ∈ {A,B}k−2. If u →R v
for a string v, then S(u)circk−i = S(v) for some i < k.

Conversely, if u does not end in B and there exists an i such that r is defined
on S(u)ci, then u →R v for a string v of the shape CCw, where w ∈ {A,B}k−2.

Proof. First assume that u →R v. If u = u1BBAu2 and v = u1AABu2, then let
i = |u2| + 3, so

S(u)circk−i = S(u1BBAu2)circk−i = S(BBAu2u1)rck−i

= S(AABu2u1)ck−i = S(u1AABu2) = S(v).

If u = u1CBAu2 and v = u1CABu2, then again let i = |u2| + 3, so

S(u)circk−i = S(u1CBAu2)circk−i = S(CBAu2u1)rck−i

= S(CABu2u1)ck−i = S(u1CABu2) = S(v).

Finally, if u = u1CCAu2 and v = u1CCBu2, then u1 = ε and the result follows
for i = 0.

Conversely, suppose that S(u)cir is defined. Since S(u)ck = S(u), we may
assume that i < k and can write u = u1u2, such that |u2| = i. Then S(u)ci =
S(w), where w = u2u1. Write w = a1a2 · · · ak. Since S(u2u1)r is defined, we get
a1 �= A, a2 �= A and a3 �= B. Among these 8 cases, a1 = a2 = a3 = C does not
occur since u only contains 2 Cs, and a1a2 = BC or a2a3 = BC does not occur
since u does not end in B. The remaining 3 cases are

a1a2a3 = BBA, a1a2a3 = CBA, and a1a2a3 = CCA,

where a1a2a3 is replaced by the corresponding right hand side of the rule by the
action of r. Then in S(u)circk−i, the two Cs are on positions 1 and 2 again,
and we obtain S(u)circk−i = S(v) for a string v of the given shape, satisfying
u→Rv. 	


Combining Lemmas 3 and 4 and the fact that fib(n) = Ω(φn), we obtain the
following.

Corollary 5. There is a word w such that S(CCAk−2)w = S(CCAk−3B); the
shortest word w for which S(CCAk−2)w is of the shape S(u)ci for u ending in
B has length Ω(φk).
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Now we are ready to prove the lower bound:

Lemma 6. If w is carefully synchronizing, then |w| = Ω(φk).

Proof. Assume that w is a shortest carefully synchronizing word. Then we
already observed that the first symbol of w is s, and w yields S(CCAk−2) after
the first step in the power automaton. By applying only c-steps and r-steps,
according to Lemma 4, only sets of the shape S(u)ci for which CCAk−2 →+

R u
can be reached, until u ends in B. In this process, each r-step corresponds to a
rewrite step. Applying the third symbol s does not make sense, since then we go
back to S(CCAk−2). According to Corollary 5, in the power automaton at least
Ω(φk) steps are required to reach a set which is not of the shape S(u)ci. So for
reaching a singleton, the total number of steps is at least Ω(φk). 	


Note that for the reasoning until now, the definition of C3r = B2 did not
play a role, and by s, r all states were replaced by states having the same index.
But after the last symbol of u has become B, this C3r = B2 will be applied,
leading to a subset in which no state of the group A3, B3, C3 occurs any more.
Now we arrive at the main theorem.

Theorem 7. For every n there is a carefully synchronizing PFA on n states
and three symbols with shortest carefully synchronizing word length Ω(φn/3).

Proof. If n = 3k we take our automaton, otherwise we add one or two states on
which r, c are undefined and s maps to A1, having no influence on the argument.
The bound was proved in Lemma6; it remains to prove that the automaton is
carefully synchronizing, that is, it is possible to end up in a singleton in the
power automaton.

Let w be the word from Corollary 5. Since S(CCAk−2)w = S(CCAk−3B)
and the number of c’s in w is divisible by k, we have C1w = C1, C2w = C2,
A3w = A3, . . . , Ak−1w = Ak−1, Akw = Bk. Hence

{A1, B1, C1}swcr = {C1}cr = {C2} ⊆ {A1, B1, C1}c,

{A2, B2, C2}swcr = {C2}cr = {B2} ⊆ {A2, B2, C2},

{Ai, Bi, Ci}swcr = {Ai}cr = {Ai+1} ⊆ {Ai, Bi, Ci}c, for i = 3, 4, . . . , k − 1,
{Ak, Bk, Ck}swcr = {Bk}cr = {A1} ⊆ {Ak, Bk, Ck}c.

So for all i �= 2, {Ai, Bi, Ci}swcr is contained in the cyclic successor {Ai, Bi, Ci}c
of {Ai, Bi, Ci}. {A2, B2, C2}swcr is just contained in {A2, B2, C2} itself. Since
for any i, one can take the cyclic successor of {Ai, Bi, Ci} at most k − 1 times
before ending up in {A2, B2, C2}, we deduce that

{Ai, Bi, Ci}(swcr)k−1 ⊆ {A2, B2, C2} for i = 1, 2, . . . , k.

As {A2, B2, C2}s = {C2}, we obtain the carefully synchronizing word (swcr)k−1s
of the PFA. 	




DFAs and PFAs with Long Shortest Synchronizing Word Length 131

5 Reduction to Two Symbols

In this section we construct PFAs with two symbols and exponential shortest
carefully synchronizing word length. We do this by a general transformation to
two-symbol PFAs, as was done before, e.g. in [14]. There a PFA on n states and
m symbols was transformed to a PFA on mn states and two symbols, preserving
synchronization length. In the next theorem, we improve this resulting number
of states to (m − 1)n or even less, only needing a mild extra condition. Using
this result, we reduce our 3-symbol PFA with synchronizing length Ω(φn/3) to
a 2-symbol PFA with synchronizing length Ω(φn/5).

Theorem 8. Let P = (Q,Σ) be a carefully synchronizing PFA with |Q| = n,
|Σ| = m, and shortest carefully synchronizing word length f(n). Assume s ∈ Σ
and Q′ ⊆ Q satisfy the following properties.

1. there is some number p such that all symbols are defined on Qsp for a complete
symbol s,

2. qs = q for all q ∈ Q′, and
3. qa = qb for all q ∈ Q′ and all a, b ∈ Σ \ {s}.
Let n′ = n − |Q′|. Then there exists a carefully synchronizing PFA on n + n′·
(m − 2) states and 2 symbols, with shortest carefully synchronizing word length
at least f(n).

Note that if Q′ = ∅ then only requirement 1 remains, and the resulting
number of states is n + n′(m − 2) = (m − 1)n.

Proof. Write Q = {1, 2, . . . , n}, Q′ = {n′ +1, . . . , n}, and Σ = {s, a1, . . . , am−1}.
Let the states of the new PFA be P1,j for j = 1, . . . , n and Pi,j for i = 2, . . . , m−1,
j = 1, . . . , n′. Define the following two symbols a, b on these states:

Pi,ja =

⎧
⎪⎨

⎪⎩

Pi+1,j , if i < m − 1, j ≤ n′,
P1,js, if i = m − 1, j ≤ n′,
P1,j , if i = 1, j > n′.

P1,1 · · · P1,n′ P1,n′+1 · · · P1,n

P2,1 · · · P2,n′

...
...

Pm−1,1 · · · Pm−1,n′

and Pi,jb = P1,jai
, for all i = 1, . . . ,m − 1 and j = 1, . . . , n for which Pi,j exists

and jai is defined.
If we arrange the states as indicated above, then on the leftmost n′ columns,

a moves the states one step downward if possible, and for the bottom row jumps
to the top row and acts there as s. For the remainder of the top row a also acts
as s (which is the identity). On the leftmost n′ columns, the symbol b acts as ai

on row i and then jumps to the top line. For the remainder of the top row, all
ai act in the same way and b acts likewise.

Define ψ(ai) = ai−1b for i = 1, . . . ,m−1, and ψ(s) = am−1. Then on the top
line ψ(ai) acts in the same way as ai in the original PFA. Similarly, ψ(s) acts
as s. On any other row, ψ(s) acts as s, too. Since every symbol ai is defined on
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qsp for every q ∈ Q, we obtain that ψ(s)pb = a(m−1)pb is defined on every state
and ends up in the top row.

Assume that w is carefully synchronizing in the original PFA. Then by the
above observations, a(m−1)pbψ(w) is carefully synchronizing in the new PFA.
Conversely, any carefully synchronizing word of the new PFA can be written
as ψ(w)aj , where 0 ≤ j ≤ m − 2 and ψ(w) is a concatenation of blocks of the
form ψ(l), l ∈ Σ. Now note that aj can never synchronize two distinct states in
the top row. Therefore, ψ(w) synchronizes the top row and consequently w is
synchronizing in the original PFA. Clearly |ψ(w)aj | ≥ |w| ≥ f(n). 	


We apply Theorem 8 to our basic construction with 3k states and m = 3
symbols; note that s, c are defined on all states and r is defined on Qs, so the
requirements of Theorem 8 hold for p = 1. As r and c act differently on all states,
the only option for Q′ is Q′ = ∅. Hence we obtain a carefully synchronizing PFA
on (m−1)3k = 6k states and two symbols, with shortest carefully synchronizing
word length Ω(φk). For n being the number of states of the new PFA, this is
Ω(φn/6).

However, instead of our three symbols s, c, r we also get careful synchroniza-
tion on the three symbols s, c, rc with careful synchronization length of the same
order. But then for i = 4, . . . , k we have Ais = Ai and Aic = Airc, so we may
choose Q′ = {A4, . . . , Ak} in Theorem 8, by which n′ = 3k − (k − 3) = 2k + 3,
yielding a PFA on two symbols and 5k + 3 states. This results in the following
theorem, where for n not of the shape 5k + 3 we add ≤ 4 extra states to achieve
this shape, where b is undefined on the new states and a maps the new states to
existing states.

Theorem 9. For every n there is a carefully synchronizing PFA on n states
and two symbols with shortest carefully synchronizing word length Ω(φn/5).

6 Further Optimizations

Some further optimizations are possible. For instance, for any h ≥ 2 we can take
h + 1 rewrite rules

CiBh−iA → CiAh−iB

for i = 0, . . . , h, and construct a PFA on the n = 3k states Ai, Bi, Ci for i =
1, . . . , k with a similar s, c, and r, mimicking the rewrite rules in which the
rewriting takes place in the states with indexes ≤ h+1. For h = 2, this coincides
with our construction, but for h > 2, this gives a better bound Ω(ak), where a is
the real zero of xh −xh−1 −· · ·−x−1 in between 3/2 and 2. As this value tends
to 2 for increasing h, for every ε > 0, we achieve the bound Ω((2 − ε)n/3) for
three symbols and Ω((2 − ε)n/5) for two symbols. For further improvements to
Ω((4−ε)n/5) = Ω((2−ε)2n/5) for three symbols and Ω((4−ε)n/6) = Ω((2−ε)n/3)
for two symbols, we refer to the extended version [1].
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7 Conclusions

For every n we constructed a PFA on n states and 3 symbols for which careful
synchronization is forced to mimic rewriting with respect to a string rewriting
system. This system requires an exponential number of steps to reach a string
of a particular shape. The resulting exponential synchronization length is much
larger than the cubic upper bound for synchronization length of DFAs. We show
that for n = 4 the shortest synchronization length for a PFA already can exceed
the maximal shortest synchronization length for a DFA. For n = 4, 5, 6 we found
greatest possible shortest synchronization lengths, both for DFAs and PFAs,
where for DFAs until now this was only fully investigated for n ≤ 4, that is, by
not assuming any bound on the number of symbols. Both for DFAs and PFAs
better techniques are needed to do the same analysis for n = 7 or higher.
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Abstract. We contribute new relations to the taxonomy of different
conversions from regular expressions to equivalent finite automata. In
particular, we are interested in ordinary transformations that construct
automata such as, the follow automaton, the partial derivative automa-
ton, the prefix automaton, the automata based on pointed expressions
recently introduced and studied, and last but not least the position,
or Glushkov automaton (APOS), and their double reversed construction
counterparts. We deepen the understanding of these constructions and
show that with the artefacts used to construct the Glushkov automa-
ton one is able to capture most of them. As a byproduct we define a
dual version A←−−

POS
of the position automaton which plays a similar role

as APOS but now for the reverse expression. It turns out that although
the conversion of regular expressions and reversal of regular expressions
to finite automata seems quite similar, there are significant differences.

1 Introduction

It is well known that regular expressions define exactly the same languages as
deterministic or nondeterministic finite automata. The conversion between these
representations has been intensively studied for more than half a century—see,
e.g., Gruber and Holzer [11] for a recent survey on this subject w.r.t. descrip-
tional complexity. There are a few classical algorithms and variants thereof for
converting finite automata into equivalent regular expressions and as shown
in [17] all these approaches are more or less reformulations of the same under-
lying algorithmic idea, and they yield (almost) the same regular expressions.
For the converse transformation, that is, the conversion of regular expressions
into equivalent finite automata, the situation is much more diverse, since the
algorithmic underlying ideas already are different. Nevertheless, for some of the
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algorithms the constructed automata can still be related to each other by deter-
minisation and/or quotients w.r.t. equivalence relations. For instance, by Ilie
and Yu [12] it was shown that for a regular expression α the follow automa-
ton AF(α) is isomorphic (�) to the quotient of the position or Glushkov [10]
automaton APOS(α) w.r.t. the relation ≡F, that is, AF(α) � APOS(α)/≡F.
Another relation is that the determinisation of the position automaton APOS(α)
is the McNaughton and Yamada [14] automaton AMY(α), or in mathematical
notation D(APOS(α)) = AMY(α). From the variety of contructions from regular
expressions to equivalent finite automata these are only two examples where the
position automaton plays a central role.

We contribute further relations to the taxonomy of conversions from regular
expressions to finite automata—see Fig. 1 on page 11. Arrows, that are displayed
in bold in that figure correspond to new contributions in this paper. Provenance
of results that are not original is well indicated. Besides the above mentioned
follow automaton AF we also consider the partial derivative automaton APD of
Mirkin [15] and Antimirov [2], the prefix automaton APre of Yamamoto [19], and
contructions based on a recent approach of Asperti et al. [3] and by Nipkow and
Traytel [16] by pointed expressions that lead to the mark after and mark before
automata AMA and AMB, respectively. Pointed expressions are an alternative
representation of sets of positions. For the follow automaton AF we show that
it can be directly computed from the expression by labelling states not with
positions but with their Follow sets and their finality, and that the quotient of
the determinised follow automaton w.r.t. a right-invariant relation ≡s, which is
a generalization of the ≡F-relation, leads to the mark before automaton AMB. It
is known that AMA is isomorphic to the Yamada-McNaughton automaton AMY,
which is proven to be the determinisation of the prefix automaton APre. From
AMA to AMB we present a homomorphism, showing that AMA cannot be smaller
than AMB—compare with [16].

When considering pointed expressions with only one point marking we obtain
the position automaton in case of the mark after interpretation, while the other
interpretation leads us to a dual version A←−−

POS
of the position automaton. We

show that the double reverse construction APOS(αR)R is isomorphic to A←−−
POS

(α)
and that the determinisation of A←−−

POS
(α) yields AMB(α). Our study provides evi-

dence that A←−−
POS

plays a similar role as APOS, but for the reverse expression αR

instead of the expression α. This is supported by the fact that D(APOS(αR)R)
is isomorphic to D(AF(αR)R) and D(APD(αR)R). It is worth mentioning that
the double reverse automata APre(αR)R and its determinisation D(APre(αR)R)
get out of the line since the latter automaton turns out to be not isomorphic to
D(APOS(αR)R). This shows, that although the taxonomy of “ordinary” conver-
sions and double reversal conversions is quite similar, there are subtle differences
that break the symmetry. Most proofs of our results are based on Glushkov’s
position concept which turns out to be highly valuable and can be used to
describe automata constructions that look different at first sight, not only for
the implementation use but also from the theoretical perspective. Due to space
limitations, most proofs are omitted.
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2 Preliminaries

In this section we review some basic definitions about regular expressions and
finite automata and fix notation. Given an alphabet (finite set of letters or
alphabet symbols) Σ, the set RE of regular expressions, α, over Σ is defined
inductively by: ∅, ε and every letter σi is a regular expression, when α and α′

are regular expressions then (α + α′), (α · α′), and (α�) are regular expressions.
The language associated to α is denoted by L(α) and defined as usual. The
alphabetic size |α|Σ is its number of letters. We denote the subset of Σ containing
the symbols that occur in α by Σα. We define ε(α) by ε(α) = ε if ε ∈ L(α),
and ε(α) = ∅ otherwise. By abuse of notation, we consider εS = S and ∅S = ∅,
for any set S. A nondeterministic finite automaton (NFA) is a five-tuple A =
〈Q,Σ, δ, I, F 〉 where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the
set of initial states, F ⊆ Q is the set of final states, and δ : Q × (Σ ∪ {ε}) → 2Q

is the transition function. We consider the size of an NFA as its number of
states. An NFA that has transitions labelled with ε is an ε-NFA. In this paper,
excepted when explicitly mentioned, we will consider NFAs without ε transitions.
The transition function can be extended to words and to sets of states in the
natural way. When I = {q0}, we use I = q0. We define the finality function ε
on Q by ε(q) = ε if q ∈ F and ε(q) = ∅, otherwise. For S ⊆ Q we have ε(S) = ε
iff there is some state q ∈ S with ε(q) = ε, and ε(S) = ∅ otherwise. An NFA
accepting a non-empty language is trim if every state is accessible from an initial
state and every state leads to a final state. The language accepted by A is L(A)
= {w ∈ Σ� | δ(I, w) ∩ F �= ∅ }. Two automata are equivalent if they accept the
same language. If two automata A and B are isomorphic, we write A � B.

An NFA is deterministic (DFA) if |δ(q, σ)| ≤ 1, for all (q, σ) ∈ Q × Σ, and
|I| = 1. In this case, we simply write δ(p, a) = q instead of δ(p, a) = {q}. We can
convert an NFA A into an equivalent DFA D(A) by the determinisation opera-
tion D, using the well-known subset construction, where only subsets reachable
from the initial subset of D(A) are used. Formally, D(A) = 〈QD, Σ, δD, ID, FD〉,
where QD ⊆ 2Q, ID = I, δD(S, σ) =

⋃
q∈S δ(q, σ) for S ⊆ Q, σ ∈ Σ, and

FD = {S ∈ QD | S ∩ F �= ∅ }. Note that S ∈ FD if and only if ε(S) = ε.
An equivalence relation ≡ on Q is right invariant w.r.t. an NFA A if

and only if: ≡ ⊆ (Q − F )2 ∪ F 2; and ∀p, q ∈ Q,σ ∈ Σ, if p≡ q, then ∀p′ ∈
δ(p, σ) ∃q′ ∈ δ(q, σ) such that p′ ≡ q′. Given a set of states S ⊆ Q, we denote
S/≡ = { [q] | q ∈ S }. Note that p≡ q implies δ(p, σ)/≡ = δ(q, σ)/≡ , for
p, q ∈ Q and σ ∈ Σ. Furthermore, if A is deterministic, then p≡ q implies
δ(p, σ)≡ δ(q, σ). If ≡ is a right-invariant relation on Q, the quotient automaton
A/≡ is given by A/≡ = 〈Q/≡ , Σ, δ/≡ , [q0], F/≡ 〉, where δ/≡ ([p], σ) = { [q] |
q ∈ δ(p, σ) } = δ(p, σ)/≡ . It is easy to see that L (A/≡ ) = L(A). Given a right-
invariant relation ≡ w.r.t. an NFA A, we can consider the natural extension of ≡
w.r.t. D(A), where for X,Y ⊆ 2Q we have X ≡ Y if and only if X/≡ = Y/≡ .
The following lemma relates determinisation with these right-invariant relations.

Lemma 1. D (A/≡ ) = D(A)/≡ , if ≡ is a right-invariant relation w.r.t. A.
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3 The Position Automaton and “The Rest”

In this section we recall the definition of the position automaton and several
related automata constructions. In particular, the determinisation of the posi-
tion automaton, some ε-NFAs, derivative based constructions and the follow
automaton are considered. We show that the latter can be obtained directly
from the regular expression.

To decide if a word is represented by a regular expression, one can scan the
symbols of the regular expression in a specific way. For instance, given α =
a(bb + aba)�b the word abbabab can be obtained by scanning the first a, the two
consecutive bs and then the second a, the third b, the third a, and the last b.
This illustrates that uniquely identifying each letter of a regular expression is
important for word recognition. Formally, given α ∈ RE, one can mark each
occurrence of a letter σ with its position in α, considering reading it from left
to right. The resulting regular expression is a marked regular expression α with
all symbols distinct and over the alphabet Σα. Then, a position i ∈ [1, |α|Σ ]
corresponds to the symbol σi in α, and consequently to exactly one occurrence
of σ in α. For instance, α = a1(b2b3 + a4b5a6)�b7. The same notation is used for
unmarking, α = α. Let Pos(α) = {1, 2, . . . , |α|Σ}, and Pos0(α) = Pos(α) ∪ {0}.

Positions were used by Glushkov [10] to define an NFA equivalent to α,
usually called the position automaton or Glushkov automaton (APOS(α)). Each
state of the automaton, except for the initial state, corresponds to a position and
there exists a transition from a position i to position j by a letter σ such that
σj = σ, if σi can be followed by σj in some word represented by α. More formally
this reads as follows: the sets characterising the positions that can begin, end
or be followed in words of L(α) are, First(α) = { i | σiw ∈ L(α) }, Last(α) =
{ i | wσi ∈ L(α) }, and Follow(α) = { (i, j) | u σiσjv ∈ L(α) } respectively. We
also define Last0(α) = Last(α) ∪ ε(α){0}. Furthermore, given i ∈ Pos(α) and
S ∈ 2Pos0(α), let Follow(α, i) = { j | (i, j) ∈ Follow(α) }, Follow(α, 0) = First(α)
and Follow(α, S) =

⋃
i∈S Follow(α, i). The position automaton for α is

APOS(α) = 〈Pos0(α), Σ, δPOS, 0, Last0(α)〉,

where δPOS(i, σ) = { j | j ∈ Follow(α, i) and σ = σj }.

Proposition 2 ([10]). L(APOS(α)) = L(α).

The following example gives some intuition on the construction of the position
automaton and its behaviour. Note that ε(0) = ε(α), and we will use either one
or the other as it will be more convenient.

Example 3. Consider α = (b + ab)� + b� with α = (b1 + a2b3)� +
b�
4. Then, First(α) = {1, 2, 4}, Last0(α) = {0, 1, 3, 4} and Follow(α) =

{(1, 1), (1, 2), (2, 3), (3, 1), (3, 2), (4, 4)}. The position automaton APOS for α is
depicted below.
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0

1

2 3

4

b

b

a

a

b

b

a

b

b

��
Note that each state, different from 0, in the position automaton corresponds

to a symbol σi in α, where σ is the symbol just read. Thus, one can define
a function Select that selects from a set of positions S ⊆ Pos(α), those that
correspond to a given letter, i.e., Select : 2Pos(α) × Σ → 2Pos(α) defined is by

Select(S, σ) = { i | i ∈ S and σi = σ }.

Then, δPOS can be defined by composing Follow with Select, i.e.,

δPOS(i, σ) = Select(Follow(α, i), σ). (1)

The same notion1 was used by McNaughton and Yamada [14] to define an
automaton which corresponds to the determinisation of the position automaton.
With the definition of δPOS in (1) and considering the determinisation algorithm,
the McNaughton and Yamada DFA can be defined as

AMY(α) = D(APOS(α)) = 〈QMY, Σ, δMY, {0}, FMY〉,

where QMY ⊆ 2Pos0(α), FMY = {S ∈ QMY | ε(S) = ε } and for S ∈ 2Pos(α) and
σ ∈ Σ, δMY(S, σ) = Select(Follow(α, S), σ).

Proposition 4 ([14]). L(AMY(α)) = L(α).

Example 5. Applying the McNaughton-Yamada construction to α from
Example 3, we obtain the following DFA, AMY(α):

{0} {2}

{1, 4}

{3}

{1}

a

b

b

a

b

ba

a
b ��

1 Some authors use slightly different notions of marking [8,14], which have in common
that each symbol in the marked expression corresponds to exactly one occurrence of
a symbol in the original expression.
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In the forthcoming we review the Thompson like construction of the follow
automaton AF, which was introduced by Ilie and Yu in [12]. We show that one
can directly construct this automaton by an appropriate state labeling inspired
by the position automaton APOS. Then we recall some constructions of automata
from regular expressions based on derivatives and variants, such as, e.g.,
Brzozowski’s construction by derivatives and the construction of Mirkin [15]
and Antimirov [2] by partial derivatives. Here we focus on known results char-
acterizing these automata as quotients of the position automaton.

3.1 The Follow Automaton AF

The most used conversion from regular expressions to equivalent ε-NFAs is
the Thompson conversion [18], Aε-T. An improved use of ε-transitions lead to
the definition of the ε-follow automaton [12]. From a Thompson automaton, if
ε-transitions are eliminated in an adequate manner, the position automaton is
obtained [1,9]. Eliminating ε-transitions from the ε-follow automaton, the result-
ing automaton is the follow automaton AF(α) which was introduced by Ilie and
Yu [12] in 2003.

Proposition 6 ([12]). L(AF(α)) = L(α).

They also showed that the follow automaton is a quotient of the position
automaton, obtained by identifying positions with the same Follow set. For
instance, in the position automaton of Example 3, one can see that Follow(α, 1) =
Follow(α, 3) = {1, 2}, and that 1 and 3 are both accepting states. Formally, Ilie
and Yu considered the right-invariant equivalence relation ≡F defined on the set
of states Pos0(α), w.r.t. APOS(α), by

i ≡F j ⇔ Follow(α, i) = Follow(α, j) and ε(i) = ε(j),

and showed that AF(α) � APOS(α)�≡F
.

We show that AF(α) can be directly computed from α, by labelling states
not with positions i ∈ Pos0(α), but with their Follow sets and their finality. Let

AF(α) = 〈F(α), Σ, δF, (Follow(α, 0), ε(0)), FF〉,

where F(α) = { (Follow(α, i), ε(i)) | i ∈ Pos0(α) } ⊆ 2Pos(α) × {ε, ∅}, FF =
{ (S, c) ∈ F(α) | c = ε } and for (S, c) ∈ F(α) and σ ∈ Σ,

δF((S, c), σ) = { (Follow(α, j), ε(j)) | j ∈ Select(S, σ) }.

The transition function δF is defined as a composition of Select with Follow,
instead of Follow with Select as for δPOS (and δMY). It is necessary to include
the finality of a position in the label of the corresponding state, since there might
be positions with the same Follow, but different finalities. This can, for instance,
be observed in the automaton for α = a(b�c)�. With this definition of AF we
obtain an alternative proof of the result by Ilie and Yu.
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Proposition 7. AF(α) � APOS(α)/≡F.

Proof. Consider ϕF : Pos0(α)/≡F −→ F(α) defined by ϕF([i]) =
(Follow(α, i), ε(i)). By definition, ϕF is a bijection and preserves initial as well
as final states. Furthermore, for [i] ∈ Pos0(α)/≡F and σ ∈ Σ we have

ϕF(δPOS�≡F
([i], σ)) = ϕF({ [j] | j ∈ Select(Follow(α, i), σ) })

= { ϕF([j]) | j ∈ Select(Follow(α, i), σ) }
= δF((Follow(α, i), ε(i)), σ) = δF(ϕF([i]), σ).

This shows that ϕF is an isomorphism. ��

3.2 Derivative Based Constructions

Brzozowski [5] defined a DFA equivalent to a regular expression using the notion
of derivative. The derivative of α ∈ RE w.r.t. σ ∈ Σ is σ−1α, such that
L(σ−1α) = {w | σw ∈ L(α)}. This notion can be extended to words: ε−1α = α
and (σw)−1α = w−1(σ−1α). The set of all derivatives of α, {w−1α | w ∈ Σ� }
may not be finite. For finiteness, Brzozowski considered the quotient of that set
modulo some regular expressions equivalences.

The partial derivative automaton APD(α) of a regular expression α was
defined independently by Mirkin [15] and Antimirov [2]. Champarnaud and Ziadi
stated the equivalence of the two formulations [6], and proved that APD is a quo-
tient of the APOS by a right-invariant relation (≡c) [7].

The prefix automaton APre was introduced by Yamamoto [19] as a quotient
of the Aε-T automaton. Maia et al. [13] characterised the APre automaton as a
solution of a system of left RE equations and express it as a quotient of APOS by
a left-invariant equivalence relation (≡�), i.e., a right-invariant relation w.r.t. the
reversal of APOS, cf. Sect. 5.

4 Automata Based on Pointed Expressions

Next we review two automata constructions, AMB and AMA, that are based
on recent approaches of Asperti et al. [3] and by Nipkow and Traytel [16]
using pointed expressions. In a pointed regular expression, several positions are
selected, and are graphically marked with a point corresponding to a letter.
Those automata correspond to two different interpretations of a pointed expres-
sion, i.e., of a given set of positions S: in the first case, given a letter σ one selects
which positions from S correspond to that letter and then determines which pos-
sible positions can follow; in the second case the set of positions S corresponds
to where one can be after reading the letter σ. For instance, the pointed regular
expression a(•bb+•aba)�•b characterises the set of positions {2, 4, 7}. Intuitively,
these are the positions which have been reached after reading some prefix of an
input word. Asperti et al. thought that their algorithm “au point” computed
a DFA isomorphic to AMY(α), but Nipkow and Traytel [16] showed that their
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construction led to a dual automaton and called it mark before, AMB, while AMY

was isomorphic to a mark after, AMA. Using the notation of the previous section,
a transition in AMA is a composition of Follow with Select similarly as described
in (1), while in AMB it will be a composition of Select with Follow. Because of
the behaviour of the transition function δMY of AMY(α), Nipkow and Traytel
called this construction mark after (AMA(α)).

In this section, we show that the AMB is isomorphic to a quotient of the
determinisation of AF, and as a corollary it follows that AMA (AMY) cannot be
smaller than AMB (as already stated by Nipkow and Traytel). Moreover, we also
consider the case, where one restricts pointed regular expressions with only one
point marking a position. Obviously, the mark after automaton of single pointed
expressions is related to the position automaton.

4.1 The Automaton AMB Versus D(AF)

As mentioned above, Asperti et al. introduced the notion of pointed regular
expression in order to obtain a compact representation of a set of positions.
However, a point was used to mark a position to be visited when reading a letter
instead of a position reached after reading the letter, as is the case for APOS

and AMA. The resulting construction was called mark before, AMB, by Nipkow
and Traytel. In our framework, this means that δMB is a composition of Follow
with Select. Formally, given α ∈ RE, let

AMB(α) = 〈QMB, Σ, δMB, (Follow(α, 0), ε(0)), FMB〉,
where QMB ⊆ 2Pos(α) × {∅, ε}, and for (S, c) ∈ QMB and σ ∈ Σ,

δMB((S, c), σ) = (Follow(α,Select(S, σ)), ε(Select(S, σ))),

and FMB = { (S, c) | c = ε }. In QMB we consider only the states that are
accessible from the initial state by δMB.

Proposition 8 ([3,16]). L(AMB(α)) = L(α).

Example 9. Consider again the regular expression α from Example 3. The
AMB(α) DFA is depicted below.

{1, 2, 4} {3} {1, 2}

b

a b

a

b

Note that the first state label is the set First(α), and one can see that two states
are saved when comparing with AMA, in Example 5. ��

One could expect that the AMB construction was isomorphic to the determin-
isation of AF. But we will see that in general that is not the case. The determin-
isation of AF, D(AF(α)) = 〈QD(AF), Σ, {(Follow(α, 0), ε(0))}, δD(AF), FD(AF)〉,
can be obtained by the subset construction.



142 S. Broda et al.

Example 10. Considering again the regular expression α from Example 3, the
AF(α) and D(AF(α)) are respectively:

{1, 2, 4}

{1, 2}

{3}

{4}

b

b

a

a

b

b

b

{{1, 2, 4}} {{3}}

{{1, 2}, {4}}

{{1, 2}}

a

b

b

a

b

b

a

It is clear that D(AF(α)) is not isomorphic to AMB(α) (see Example 9). How-
ever if one merges the states labeled by {({1, 2, 4}, ε)} and {({1, 2}, ε), ({4}, ε)}
in D(AF(α)), the DFA AMB(α) is obtained. Next we prove that if certain sets
of sets in the determinisation of AF are flattened the resulting automaton is
isomorphic to AMB. ��

Let ≡s be the equivalence relation on 2F(α) defined by,

I ≡s J ⇔
⋃

(S, )∈I

S =
⋃

(S, )∈J

S and ε(I) = ε(J).

Proposition 11. L (D(AF(α))/≡s) = L(D(AF(α))).

Proposition 12. D(AF(α))/≡s � AMB(α).

Nipkow and Traytel presented a homomorphism from AMA to AMB, showing
that AMA cannot be smaller than AMB. The same result is a direct corollary of
the above results.

Corollary 13. Let ϕF be defined as in the proof of Proposition 7. Then we have
ϕF (D (APOS(α)/≡F))/≡s = ϕF (D(APOS(α))/≡F)/≡s � AMB(α).

Example 14. Considering AMY (AMA) from Example 5, we have {1} ≡F {3},
since [1]≡F = [3]≡F . Furthermore,

ϕF({[0]≡F}) = {({1, 2, 4}, ε)} ≡s {({1, 2}, ε), ({4}, ε)} = ϕF({[1]≡F , [4]≡F}). ��

4.2 The Dual Position Automaton

If one considers pointed regular expressions with only one point marking a posi-
tion to be visited when reading a letter, an NFA, dual of APOS (A←−−

POS
), can be

defined. We show that its determinisation yields AMB. Given a regular expres-
sion α, with n = |α|Σ = |Pos(α)|, the set of states of A←−−

POS
is Pos(α) plus an

unique final state n + 1. The set of initial states is Follow(α, 0) ∪ ε(α){n + 1}.
From a state i ∈ Pos(α) reading σ ∈ Σ one can move to Follow(α, i) if σi = σ.
That is, by first selecting Select({i}, σ) which is i if σi = σ, and empty otherwise,
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and then applying Follow. Moreover, if ε(i) = ε there is a transition to n + 1.
Formally,

A←−−
POS

(α) = 〈Pos(α) ∪ {n + 1}, Σ, δ←−−
POS

,Follow(α, 0) ∪ ε(α){n + 1}, {n + 1}〉,

with δ←−−
POS

(i, σ) = Follow(α,Select({i}, σ))∪ ε(Select({i}, σ)){n+1}. This means
that δ←−−

POS
(i, σ) = Follow(α, i) ∪ ε(i){n + 1}, only if i ∈ Pos(α) and σi = σ, being

the empty set otherwise.

Example 15. Considering again the regular expression α from Example 3, the
A←−−

POS
(α) is the following:

1

2 3 5

4

b

b

b

a

b

b

b
b

b

Observe that for each state of A←−−
POS

all transitions leaving it have the same
label. This is exactly the opposite of the position automaton APOS, where for
each state all transitions into it have the same label.

Proposition 16. D(A←−−
POS

(α)) � AMB(α).

5 Reversals and Automata Constructions

Given a language L the reversal of L, LR, is the language obtained by reversing
all the words in L. The reversal of a regular expression α is denoted by αR, and is
inductively defined by: αR = α for α ∈ Σ ∪{ε, ∅}, (α+β)R = βR +αR, (αβ)R =
βRαR and (α�)R = (αR)�. The reversal αR describes L(α)R. In the same way,
given an automaton A = 〈Q,Σ, δ, I, F 〉 its reversal is AR = 〈Q,Σ, δR, F, I〉,
where δR(q, σ) = { p | q ∈ δ(p, σ) } and L(AR) = L(A)R.

Given α, any of the automata constructions in the previous sections can be
applied to αR. If one reverses the resulting automaton, an alternative automa-
ton construction for L(α) is obtained. In this section we establish some rela-
tions between the direct constructions and the double reversed ones. We show
that APOS(αR)R � A←−−

POS
. We also show that determinising any quotient of

APOS(αR)R by a right-invariant relation is the same as determinising APOS(αR)R

and thus, by Proposition 16, the resulting automata are all isomorphic to AMB.
The same does not hold if one considers quotients by a left-invariant relation,
and we illustrate that with the APre construction.

Our first result on reversals of expressions and automata reads as follows:

Proposition 17. APOS(αR)R � A←−−
POS

(α).
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For the position automaton several quotients were presented in Sect. 3 for
which different DFAs could be obtained by determinisation. For the dual con-
struction, A←−−

POS
, the determinisation of any quotient by a right-invariant relation

is isomorphic to AMB. The following simple lemma explains the reason.

Lemma 18. Let A be a trim NFA and consider ≡ a right-invariant relation
w.r.t. A. Then, D(AR/≡) = D(AR).

This result has direct consequences for all constructions, that can be obtained
as a quotient of the position automaton by some right-invariant relation. In
particular, we have

Proposition 19. D(APOS(αR)R) � D(APD(αR)R) � D(AF(αR)R) � AMB(α).

Note that Lemma 18 does not hold for left-invariant relations. In particular,
one can consider the APre construction mentioned in Sect. 3.2.

Proposition 20. For α = a� + (a + b)a�, D(APre(αR)R) �� D(APOS(αR)R).

However, Lemma 18 also implies that if a relation ≡ is a left-invariant equiv-
alence relation w.r.t an NFA A then D(A/≡) = D(A). In particular, the deter-
minisation of APre is isomorphic to the determinisation of APOS, i.e., AMY.

Proposition 21. D(APre(α)) � AMY(α).

6 Taxonomy

In Fig. 1 the relations between the different automata are graphically repre-
sented. The two top nodes correspond to regular expressions. Each other node
corresponds to a particular automaton, up to isomorphism, and edges between
two nodes represent transformation algorithms, such as epsilon elimination (ε)
determinisation (D), reversal (R), quotient by some equivalence relation, or a
specific construction. Edges in bold correspond to contributions in this paper.
Different nodes represent objects for which there is some witness that distin-
guishes them. The relation between D(APD(α)) and AB(α) was obtained by
Nipkow and Traytel, and the ones between AB(α) and AMB(α) were obtained
by Asperti et al.. The resulting automaton (between AB(α) and AMB(α) in
the diagram) is the only one for which we do not have witnesses distinguish-
ing it from the others. Brzozowski [4] showed that for a trim NFA A, D(A)
is minimal if AR is deterministic. Consequently, one obtains the nice property
that, whenever X(α) is a deterministic automaton, for instance AMB and AMA,
then D(X(αR)R) is the minimal DFA for L(α). Experimental results suggest
that AMB(α) is never larger than D(APD(α)), so that should be investigated in
future work.
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Olivier Carton1(B), Léo Exibard2, and Olivier Serre1
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2 Département d’Informatique, ENS de Lyon, Lyon, France

Abstract. In this article we consider two-way two-tape (alternating)
automata accepting pairs of words and we study some closure properties
of this model. Our main result is that such alternating automata are not
closed under complementation for non-unary alphabets. This improves
a similar result of Kari and Moore for picture languages. We also show
that these deterministic, non-deterministic and alternating automata are
not closed under composition.

Keywords: Alternating · Multi-tape automata · Complementation

1 Introduction

In this article we consider two-way two-tape (alternating) automata that are
designed to recognize binary relations between finite words. Although these
automata are quite natural as read-only Turing machines, almost no work has
been devoted to this model of computation. We study their properties, with a
special focus on their closure properties, in particular under complementation
and composition.

Finite states machines with inputs and outputs are widely used in many dif-
ferent areas like coding [11], computer arithmetics [12], natural language process-
ing [13] and program analysis [2]. The simplest model is obtained by adding out-
puts to a classical finite-state (non)-deterministic one-way automaton to get a
machine known as a transducer. In a transducer, the input word is only scanned
once by a one-way head and the output is produced by the transitions used along
the reading. A transducer can equivalently be seen as a machine with two tapes,
one for the input and the other for the output, that are scanned once by two
one-way heads. Relations realized by this kind of machines are called rational.
They have been intensively studied since the early days of automata theory [3]
and they enjoy some nice properties [14]. They are, for instance, closed under
composition, but not under complementation.

Rational relations turn out to form a rather small class, hence classes of
stronger transducers have been introduced by enriching transducers with extra
features like two-wayness and/or alternation. A well studied class is that of two-
way transducers in which the input word is scanned by a two-way head and
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the output is produced (or equivalently scanned) by a one-way head. In that
class, deterministic machines are of special interest as they are equivalent to
MSO-transductions and turn out to be closed under composition [4].

In this article, we consider machines with two tapes which are both scanned
by two-way heads. In this model, it is important to consider the output word as
already written, and not produced on some output tape to ensure consistency,
as it is scanned several times.

Another key feature, used to increase either the expressive power or the
succinctness of finite state machines, is alternation, which allows the machine to
spawn several copies of itself. Alternation often provides for free closure under
complementation for machines on finite structures like words or trees. Indeed,
the dual machine obtained by swapping existential and universal states and
complementing the acceptance condition accepts the complement language as
long as all computations terminate: if the run of a machine may loop, the closure
under complementation of alternating machines may no longer hold.

Picture automata introduced in [1] scan a 2-dimensional array of symbols
with moves in the four cardinal directions to either accept or reject it. As in the
case of two-way automata, the border of the array is marked by special symbols.
A run of such an automaton may loop as it can scan the same position twice
with the same control state. These picture automata differ from classical word or
tree automata where all variants (deterministic, non-deterministic, alternating)
are equivalent. Indeed, it has been shown by Kari and Moore that alternating
picture automata are not closed under complementation as soon as the alphabet
size is greater than 1 [8]. This means that loops are inherent to the model and
that they cannot be removed.

In this article, we show that two-tape two-way alternating automata are not
closed under complementation either. Picture automata are actually very close
to the model that we consider. In particular they coincide for unary alphabets.
Indeed, over a unary alphabet, a pair of words is merely a pair of integers (their
lengths) and this is equivalent to a two-dimensional array on a unary alphabet.
However, as soon as the alphabets have cardinality at least 2, the models are
distinct. Indeed, for an alphabet of size k, the number of m × n-arrays is kmn

while the number of pairs of words is only km+n.
The fact that the two models coincide for unary alphabets allows us to recover

immediately some separation and undecidability properties. For instance, it has
been shown that such deterministic picture automata are strictly less powerful
than non-deterministic ones which are, in turn, less powerful than alternating
automata [8]. These results carry over the two-tape two-way automata that we
consider.

To prove that alternating automata are not closed under complementation,
we use a counter-example that is close to the one in [9] for picture automata.
However, since our coding is different, we need some extra arguments to show
that it is accepted by an alternating automaton and, to show that its complement
cannot, we use a more direct proof.
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2 Two-Way Two-Tape Automata

In this article, Σ is a finite alphabet and Σ∗ denotes the set of finite words over
Σ. For a word u ∈ Σ∗, we denote its length by |u|, and for each 1 ≤ i ≤ |u| we
denote by ui its i-th letter. From now on, � (begin) and � (end) are reserved
characters not belonging to Σ and marking word boundaries. For simplicity of
notation, we let Σ�

� = Σ ∪ {�,�}. For u ∈ Σ∗, we let u�
� = �u�, with u�

�0 = �,
u�

�|u|+1 = � and u�
�i = ui for each 1 ≤ i ≤ |u|.

A (non-deterministic) two-way two-tape finite automaton is a tuple A =
(Q,Σ,Δ, I, F ), where Q is the set of states, and I, F ⊆ Q are respectively the
sets of initial and final states. We call Δ ⊆ (

Q × Σ�
� × Σ�

�
) × (Q × {�,�,�}

× {�,�,�}) the transition relation. We use the notation p a1,a2|d1,d2−−−−−−−→ q for
(p, a1, a2, q, d1, d2) ∈ Δ. We require that the reading heads cannot cross the
words boundaries, i.e. for every transition p a1,a2|d1,d2−−−−−−−→ q and every i = 1, 2 if
ai = � (resp. ai = �) then di 	= � (resp. di 	= �).

An automaton A is said to be deterministic whenever for every state p ∈ Q
and every letters a1, a2 ∈ Σ, there exists at most one q ∈ Q, d1, d2 ∈ {�,�,�}
such that p a1,a2|d1,d2−−−−−−−→ q.

Note that extending the model to more than two tapes is straightforward.
Note also that if we restrict the model to a single tape we retrieve the classical
notion of two-way automata on finite words (Fig. 1).

Q

� u1 · · · ui · · · um � First Tape

� v1 · · · vj · · · vn � Second Tape

Fig. 1. Schema of a two-way two-tape finite automaton

A configuration is a triple (q, i, j) ∈ Q × N × N, where q is the current state,
and i (resp. j) is the position of the reading head on the first (resp. second) tape
(recall that the � marker is by convention at position 0).

We say that a configuration (q2, i2, j2) is a successor of a configuration
(q1, i1, j1) with regard to input (u, v), written (q1, i1, j1)

(u,v)� (q2, i2, j2), when
automaton A can go from one configuration to the next in a single step, i.e. if
q1

(u�
�)i1 ,(v

�
�)j1 |d,e−−−−−−−−−−−→ q2, and if i2 = i1+χ(d) and j2 = j1+χ(e), where χ(�) = −1,

χ(�) = 0 and χ(�) = 1.
A run of A on input (u, v) ∈ Σ∗ × Σ∗ is a (possibly infinite) sequence

(pk, ik, jk)1≤k<n, where n ∈ N ∪ {∞}, of successive configurations: for every
1 ≤ k < n, one has (pk, ik, jk)

(u,v)� (pk+1, ik+1, jk+1).
An initial run is a run starting with an initial configuration, i.e. one such

that p0 ∈ I and i0 = j0 = 0. It is accepting when it is moreover finite and
contains a final state f ∈ F , i.e. there exists k ≤ n such that pk ∈ F .
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The relation R (A) accepted by a two-way two-tape automaton A is the set
of pairs (u, v) such that there exists an accepting run of A on input (u, v).

We now introduce alternating automata, which generalize non-deterministic
automata. An alternating automaton is an automaton whose set of control states
is partitioned into existential (Q∃) and universal (Q∀) states. A configuration is
defined as in the non-deterministic setting and it is existential (resp. universal)
if the control state is.

Runs of alternating automata are (possibly infinite) trees whose nodes are
labeled by configurations, and such that each inner node u labeled by a config-
uration C satisfies the following conditions:

– If C is existential then u has a single son that is labeled by a successor
configuration of C.

– If C is universal and if {C1, . . . , Ck} denotes all successor configurations of
C, then u has k sons each of them labeled by a different Ci for 1 ≤ i ≤ k.

A run is accepting if it is finite, its root is labeled by an initial configuration
and all its leaves are labeled either by accepting configurations, or by universal
configurations that have no successor configuration. Again, we define the relation
accepted by an alternating automaton as those pairs of words over which there is
an accepting run. Note that non-deterministic automata correspond to the case
where Q∀ = ∅.

First we remark that if we restrict the model by forbidding the reading heads
to go to the left, we obtain a 1-way model that recognizes the rational relations,
i.e. those realized by transducers [14]. Not surprisingly this is a restriction as
two-way two-tape automata can, for instance, recognize deterministically the
relation {(u, ũ) | u ∈ Σ∗}, where ũ denotes the reverse of u. The corresponding
automaton is depicted in Fig. 2. This relation cannot be recognized by classical
one-way transducers.

qi q qf

�, Σ� | �, �

�, � | �, �

a, a | �, �

b, b | �, �

�, � | �, �

Fig. 2. Automaton recognizing {(u, ũ) | u ∈ Σ∗} when Σ = {a, b}

Our model captures much more complex relations. It is shown in the next
section that two-way two-tape automata can recognize the relation Coprime =
{(ap, aq) | p ∧ q = 1}, where p ∧ q denotes the greatest common divisor of p and
q, by implementing a variant of the Euclidean algorithm.
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3 Picture Languages

For brevity we simply recall here some key notions on picture languages: we refer
the reader to [5] for an excellent survey on the topic with complete definitions
of all objects discussed below.

A picture p of dimensions m × n is a matrix over a finite alphabet Σ. For
every 1 ≤ i ≤ m and 1 ≤ j ≤ n, we write pi,j for the content of the cell at
position (i, j). To recognize pictures, we add a special marker # /∈ Σ all around
the picture p, i.e. we adopt the convention that for all 0 ≤ i ≤ m + 1 and
0 ≤ j ≤ n + 1, p0,j = pm+1,j = pi,0 = pi,n+1 = #. We write Σ∗∗ for the set of
all pictures over Σ. A picture language is thus a subset of Σ∗∗.

In order to recognize picture languages, 4-way automata were first introduced
in [1]. Such an automaton has a single head which is able to move on a two-
dimensional array of symbols (surrounded by markers) in the four directions (up,
down, left, right) and accepts when reaching a final state. A schema is provided
in Fig. 3.

Q

#

#

#

#

#

#

#

#

#

#

#

#

# # # # # #

# # # # # #

ui,j

Fig. 3. Schema of a 4-way automaton

The link between two-way two-tape automata and picture automata is pro-
vided by special pictures, called products of words, that we now define. For
u, v ∈ Σ∗, we define the picture u ⊗ v = ((ui, vj)) 1 ≤ i ≤ |u|

1 ≤ j ≤ |v|
over the product

alphabet Σ × Σ.
Thus, any relation R ⊆ Σ∗ × Σ∗ is mapped to a picture language L⊗

R ⊆
(Σ × Σ)∗∗. Moreover, over unary alphabets, pictures languages and binary rela-
tions over words are in one-to-one correspondance as the pair (am, an) unambigu-
ously represents an image of dimensions m×n and conversely. Consequently, for
L ⊆ {a}∗∗, L is recognizable by a 4-way deterministic (resp. non-deterministic,
alternating) automaton iff R is recognizable by a deterministic (resp. non-
deterministic, alternating) two-way two-tape automaton where R is the unique
relation such that L = L⊗

R.
Thus, all the results known for unary picture languages also hold in our

model when |Σ| = 1. In particular, in [8], it is shown that determinism is strictly
weaker than non-determinism, the latter being weaker than alternation: DFA �

NFA � AFA where DFA (resp. NFA, AFA) is the class of relations recognized by
deterministic (resp. non-deterministic, alternating) two-way two-tape automata.
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The relation R = {(aw, ah) | ∃i, j ∈ N, w = ih + j(h + 1)} is such that R /∈
DFA,R ∈ NFA,R /∈ NFA,R ∈ AFA, where R denotes the complement of R in
Σ∗ ×Σ∗. In [10], it is shown that the emptiness problem is undecidable even for
a unary alphabet.

(p, 1)

(1, q)

p

q

2n

2n

Fig. 4. Euclidean algorithm (left) and squares of size 2n (right)

The following examples from [9] show that picture automata and two-way
two-tape automata are really expressive. The relation Coprime = {(ap, aq) |
p ∧ q = 1} can be recognized by a deterministic automaton implementing a
variant of the Euclidean algorithm. The automaton follows diagonals until it
reaches either one of (p, 1) or (1, q) or one of (0, 0), (p, 0), (0, q) or (p, q). In the
former case, it accepts and in the latter case, it rejects.

A more sophisticated deterministic automaton can recognize the relation
{(2n, 2n) | n ∈ N} following the schema in Fig. 4 (right). The automaton moves
with a ratio of 1/2 as long as it is possible (i.e. while the remaining length is
divisible by 2), and it accepts if it reaches the bottom-right square. An even
more sophisticated deterministic automaton can accept the relation {(22

n

, 22
n

) |
n ∈ N}.

4 Alternating Two-Way Two-Tape Are Not Closed
Under Complementation

Our main result is the following. Note that the case of unary alphabets is still
an open problem.

Theorem 1. The class of relations recognized by alternating two-way two-tape
automata is not closed under complementation as soon as the alphabet is not
unary.



Two-Way Two-Tape Automata 153

In this proof we denote by AFA the class of relations recognized by alter-
nating two-way two-tape automata, and by co-AFA the class of relations whose
complement is recognized by alternating two-way two-tape automata. Hence, we
aim to prove that AFA and co-AFA are distinct, and this is achieved by defining
a well-chosen relation P and show that P ∈ AFA but P /∈ co-AFA. The first
point is proved by giving an explicit alternating two-way two-tape automaton
recognizing P (Lemma 2); the second point is proved by contradiction using a
game-theoretic approach combined with a combinatorial argument (Lemma3).

The proof is inspired by the one in [8] establishing that the set of picture
languages recognized by alternating 4-way automata is not closed under com-
plementation. One difference is that the counter-example they exhibit cannot be
used in our setting as the images that are considered are not product of words
(as defined in Sect. 3). Hence, even if the general idea — coding a permutation to
build a counter-example — is similar to the one in [8], our coding is different and
therefore new ideas are needed to prove that we can accept this relation with an
alternating two-way two-tape automaton. The proof that the complement is not
recognizable by an alternating two-way two-tape automaton, even if it shares
ideas with the one in [8], is somehow more direct as it does not appeal to an
intermediate class.

In the following, if c1, . . . , cn are n words of length n over alphabet {0, 1} we
identify the tuple (c1, . . . , cn) with the n×n matrix whose i-th column is ci. We
define the relation P by

P = {(an, c1# · · · #cn$c1# · · · #cn) | n ∈ N, (c1, . . . , cn) ∈ Sn}
where Sn denotes the set of all (n × n {0, 1}-matrix coding) permutations over
{1, . . . , n}. See Fig. 5 for an example.

0 0 1 $ 0 0 1

1 0 0 $ 1 0 0

0 1 0 $ 0 1 0

(a3, 010#001#100$010#001#100)

Fig. 5. Two identical permutations separated by $s and the corresponding encoding

As announced, we start by showing that P ∈ AFA.

Lemma 2. There exists an alternating two-way two-tape automaton recognizing
P.

Proof. We describe below how to check whether a pair (an, c) ∈ a∗×{0, 1, $,#}∗

is in P. As the an word is used only to store position we sometimes refer to the
content of the first tape as the counter.

To decide if (an, c) ∈ P, we have to check two things. The first one is whether
c is of the form σ1$σ2, where σ1, σ2 are the encodings of two permutations of
dimension n and the second one is whether σ1 = σ2.
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For the first step, we only explain how to check the property for σ1 as the case
of σ2 is checked in the same way. Assume σ1 = c0#c1# · · · #cn (checking that
there are n block is easy). We first need to check that each ci (i.e. each column)
has length n and contains exactly one 1: this is easy (the length condition being
checked thanks to the first tape). We then need to check that for each k = 1, . . . , n
there is exactly one ci whose k-th letter is a 1 (i.e. each row contains exactly one
1). This property is checked for each k = 1, . . . , n in increasing order starting
from k = 1, and at the beginning of step k the head in the counter in the first
tape is at position k and the head in the second tape is at the beginning of σ1:
now going left on the counter and right on the second tape at the same speed
the k-th symbol of c1 is reached (just before the left marker is read on the first
tape); then the automaton goes back to the beginning of c1 and the counter is
increased back to k; finally the second head goes to the beginning of c2 (going
to the right until reading a #), then c2 is processed in the same way, and so on
until reading a $ meaning that cn was processed and that one can go back to
the beginning of the second tape and start again but now for k + 1.

We are now left with checking that σ1 = σ2 knowing that both σ1 and
σ2 encode a permutation. For that we use the same approach as the one in
[8, Lemma 2, Condition (*)]. More precisely, we use the following property:
two permutations are different iff there exists an inversion i.e. there exists
i 	= i′, σ1(i) < σ1(i′) but σ2(i) > σ2(i′). This can be checked by trying all
possible way of moving in the associated picture (as illustrated in Fig. 5) in the
following fashion (see Fig. 6): from a 1 move right to another column but stay
on the same side of the column of $s. Find the 1 on that column. Then move to
the other 1 that is on the same row, on the opposite side of the column of $s,
and repeat: then, the machine enters an infinite loop iff it finds an inversion [8].

$
$
$
$
$
$
$
$
$

1

1

1

1

Fig. 6. Loop corresponding to an inversion

The first step (finding a 1) is easy and done using universal states (which
ensures that we do the check for all possible 1). Moving to another column on
the right is easy: simply use a universal state and keep moving the head to the
right passing one or more # but stopping before reading the $. Finding the 1 on
the column is easy (look for it in between the left and right #). Finally, moving
to the other 1 on the same row on the opposite side of the $ is achieved by using
the counter to keep in memory the row number j, and then go to the other side
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and check every column until finding the one with a 1 on the j-th row (this
is done with the same trick used previously to check that each row contains a
single 1). If at some point when moving to a column to the right the automaton
hit a $ then it goes to a final state. The automaton accepts the desired language
for the following reason: if an inversion exists, it is found (thanks to universal
choices) and leads to a looping hence, rejecting, computation; if not, whatever
the universal choices are the automaton is getting closer and closer to the $ and
eventually hit it thus reaching a final state.

Therefore, we built an alternating two-way two-tape automaton recognizing
P. More generally, the ideas used in the first part of the proof can be used to prove
the following: for any picture language L recognizable by a 4-way automaton,
the relation {(amax(n,m), c1# · · · #cm) | (c1, . . . , cm) is an n × m picture in L} is
recognizable by a two-way two-tape automaton. ��

We now show that the complement of P cannot be recognized by an alter-
nating two-way two-tape automaton.

Lemma 3. Relation P /∈ co-AFA.

Proof. The proof is by contradiction assuming the existence of an alternat-
ing two-way two-tape automaton A = (Q,Σ,Δ, I, F ) such that a pair (u, v)
is accepted by A iff (u, v) /∈ P. Hence, a pair (an, c) is rejected by A iff if
belongs to P.

We now rephrase the fact that (an, c) is rejected by A, to that end we use
a game-theoretic flavoured argument. Indeed, another way of thinking about a
run of an alternating automaton is as a two-player games where the existential
player is in charge of choosing the transition in existential configurations while
the universal player takes care of universal configurations. The winning condition
for the existential player is that a final configuration is eventually reached. In
particular A rejects its input iff the universal player has a winning strategy, i.e.
a playing policy ensuring no final state is ever reached whatever the existential
player does. Moreover, this strategy can be chosen to be positional, i.e. only
depending on the configuration, not on how it was reached (see e.g. [6]).

Fix an input of the form (an, σ$σ) ∈ P. A strategy for the universal player
and the proof that it is a winning one can be described as follows. For each
position 0 ≤ j ≤ 2n+2 on the second tape (including the markers) we associate
a n + 2 tuple τj = (τ0,j , . . . , τn+1,j) of functions describing what configurations
can appear when the heads are at position (i, j) and for universal ones what the
strategy of the universal player is. Hence for each 0 ≤ i ≤ n + 1, τi,j is a map
from Q such that:

– if q ∈ Q∃, τi,j(q) is either ⊥ (meaning (q, i, j) is not reachable) or � (reach-
able)

– if q ∈ Q∀, τi,j(q) is either ⊥ (not reachable) or a transition in Δ starting with
(q, x, y) where x (resp. y) is the letter at position i (resp. j) in the first (resp.
second) tape, including markers. The latter case means that configuration
(q, i, j) can appear and gives the corresponding move in the universal player
strategy.
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Such an object τ0, . . . , τ2n+2 is a proof of reject if it satisfies the following
four conditions.

1. For each initial state q ∈ I, τ0,0(q) 	= ⊥ (all initial configurations are allowed).
2. For each final state q ∈ F and each i, j, τi,j(q) = ⊥ (no final configuration

can be reached).
3. For each existential state q and each i, j such that τi,j(q) = �, for each

possible successor (q′, i′, j′) of (q, i, j) one has that τi′,j′(q′) 	= ⊥ (all successors
of allowed existential configurations are allowed).

4. For each universal state q and each i, j such that τi,j(q) 	= ⊥, if one denotes
by (q′, i′, j′) the configuration reached from (q, i, j) applying transition τi,j(q)
then τi′,j′(q′) 	= ⊥ (an allowed universal configurations has its successor
described by the strategy allowed).

It is then standard to notice that A has no accepting run over (an, σ$σ) iff
there is a proof of reject for it.

Now, for a fixed n, consider the number of possible values for the central
part (τn, τn+1, τn+2) of a proof: it is smaller than ((|Δ| + 1)|Q|)3n. Hence, for n
large enough it is smaller than n!. For such n it means that there are two distinct
permutations σ 	= σ′ such that the proofs of reject for σ$σ and for σ′$σ′ coincide
on their central part: hence, they can be combined (glue the left part of the first
proof with the right part of the second), leading a proof of reject for σ$σ′. But
this leads a contradiction as σ$σ′ /∈ P and therefore is accepted by A. ��

5 Union, Intersection and Composition

In this section, we study the closure under union, intersection and composition
of two-way two-tape automata.

5.1 Closure Under Union and Intersection

Concerning closure under union and intersection we have the following picture.

Lemma 4. Relations recognized by deterministic ( resp. non-deterministic, resp.
alternating) two-way two-tape automata are closed under union and intersection.

Proof (sketch). For non-deterministic automata union is for free; intersection is
simply obtained by simulating the first automaton, and if it reaches an accept-
ing state, simulating the second automaton. For alternating automata both clo-
sures are for free. For deterministic automata, intersection can be obtained as
in the non-deterministic case. Concerning union, one can no longer use non-
determinism and hence, one needs to simulate successively the two automata.
However this does not work in general as a two-way two-tape automaton can
reject by entering an infinite loop. Hence, one must first get rid of such phenom-
enon: this can be achieved thanks to a method due to Sipser [15], which ensures
that a deterministic two-way two-tape automaton never rejects by looping. ��

Remark that preventing deterministic two-way two-tape automata from
rejecting by looping can be used to prove that the class of relations they recognize
is also closed under complementation, and therefore forms a Boolean algebra.
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5.2 Non-closure Under Composition

In this section, we prove that the class of relations recognized by two-way two-
tape automata is not closed under composition, even in the deterministic case.

Theorem 5. Relations recognized by deterministic ( resp. non-deterministic,
resp. alternating) two-way two-tape automata are not closed under composition.

Proof. The proof works the same way for all three models. One first establishes
(see Lemma 6 below) an elementary bound on the growth of the functions recog-
nized by our model, and then exhibit (see Lemma7 below) a recognizable relation
breaking this bound when self-composed. ��

We now give the lemmas used in the proof of Theorem 5. The following lemma
bounds the growth of the functions, that is functional relations recognized by
two-way two-tape automata (a similar statement can easily be obtained for alter-
nating two-way two-tape automata with a doubly exponential bound instead).

Lemma 6. If f is a function recognized by a two-way two-tape automaton, then
there exists k ∈ N such that for all n ∈ N and u ∈ Σn, one has |f(u)| ≤ (

2nk
nk+1

)
,

where
(
n
k

)
denotes the binomial coefficient.

Proof. Let A be a two-way two-tape automaton recognizing a function f . Let
n ∈ N, and u ∈ Σn. Finally, let k be the size of A. Fixing u, we easily build from
A a two-way automaton with nk states accepting the singleton language {f(u)}.
Now, thanks to a result by Kapoutsis [7] establishing that any m-state two-way
automaton can be transformed into an equivalent equivalent non-deterministic
finite automaton with

(
2m
m+1

)
states, we have that {f(u)} is accepted by a non-

deterministic finite automaton with
(

2nk
nk+1

)
states. As the shortest word accepted

by an m-state non-deterministic finite automaton has length at most m, it con-
cludes the proof. ��

For i ∈ N and n ≥ log2(i) let 〈i〉n ∈ {0, 1}n be the writing of i in base 2 on n
bits, with the less significant bit on the left (possibly padded with zeros). For
example, 〈6〉5 = 01100. We are now ready to exhibit a function with an expo-
nential growth and recognized by a deterministic two-way two-tape automaton.

Lemma 7. The function E = {(w,#w0#w1# . . . #w2|w|−1#) | wi = 〈i〉|w|} is
recognizable by a deterministic two-way two-tape automaton.

The proof is based on the concept of so-called synchronous relations. A rela-
tion is synchronous if it is recognized by a synchronous transducer, which can
be simulated by a two-way two-tape automaton whose two heads always move
simultaneously to the right and which accepts once the two inputs words are
entirely scanned. An example of such a relation is I = {(〈i〉n , 〈i + 1〉n) | n ≥
1 and 0 ≤ i ≤ 2n − 1} since an integer can deterministically be incremented
starting from its less significant digit. Note that a synchronous transducer can
always be made deterministic as it is a classical automaton over the product
alphabet.
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Lemma 8. Let R be a synchronous relation. Then {(w,#u#v#) | (u, v) ∈
R, |w| = |u| = |v|} is recognized by a deterministic two-way two-tape automaton.

The rough idea to prove Lemma 8 is to use the first tape to keep track of the
position when alternatively reading the u and v part of the word written on the
second tape.

Now, using Lemma 8 with relation I we conclude that the relation J =
{(w,# 〈i〉|w| # 〈i + 1〉|w| # | 0 ≤ i ≤ 2|w| − 1} is recognizable by a deterministic
two-way two-tape automaton.

Finally, E is recognized by iterating the methods for J (this is made possible
thanks to the presence of #) and stopping once the second word is only composed
of 1 s.
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Abstract. Using a novel rewriting problem, we show that several nat-
ural decision problems about finite automata are undecidable (i.e., recur-
sively unsolvable). In contrast, we also prove three related problems are
decidable. We apply one result to prove the undecidability of a related
problem about k-automatic sets of rational numbers.

Keywords: Finite automata · Undecidability · Conjugate · Power

1 Introduction

Starting with the first result of Turing [16], computer scientists have assem-
bled a large collection of natural decision problems that are undecidable
(i.e., recursively unsolvable); see, for example, the book of Rozenberg and
Salomaa [12].

Although some of these results deal with relatively weak computing models,
such as pushdown automata [2,6], few, if any, are concerned with the very sim-
plest model: the finite automaton. One exception is the following decision prob-
lem, due to Engelfriet and Rozenberg [5, Theorem 15]: given a finite automaton
M with an input alphabet of both primed and unprimed letters (i.e., an alpha-
bet Σ ∪ Σ′, where Σ′ = {a′ : a ∈ Σ}), decide if M accepts a word w where
the primed letters, after the primes have been removed, form a word identical
to that formed by the unprimed letters. This problem was also mentioned by
Hoogeboom [7]. This problem is easily seen to be undecidable, as it is a disguised
version of the classical Post correspondence problem [10].

In this paper we start by proving a novel lemma on rewriting systems. In
Sect. 3, this lemma is then applied to give a new example of a natural problem on
finite automata that is undecidable. In Sect. 4 we prove that a related problem
on the so-called k-automatic sets of rational numbers is also undecidable. In
Sect. 5 we prove the undecidability of yet another problem about finite automata.
Finally, in Sect. 5 we show that it is decidable if a finite automaton accepts two
distinct conjugates.
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2 A Lemma on Rewriting Systems

For our purposes, a rewriting system S over an alphabet Σ consists of a finite
set of context-free rules of the form � → r, where �, r ∈ Σ∗. Such a rewriting
rule applies to the word α�β ∈ Σ∗, and converts it to αrβ. We indicate this by
writing α�β =⇒ αrβ. We use =⇒∗ for the reflexive, transitive closure of =⇒
(so that γ =⇒∗ ζ means that there is a sequence of 0 or more rules taking the
word γ to ζ). A rewriting system is said to be length-preserving if |�| = |r| for
all rewriting rules � → r.

Many undecidable decision problems related to rewriting systems are
known [3]. However, to the best of our knowledge, the following one is new.

REWRITE-POWER

Instance: An alphabet Σ containing the symbols a and b (and possibly other
symbols), and a length-preserving rewriting system S.

Question: Does there exist an integer n ≥ 1 such that an =⇒∗ bn?

Lemma 1. The decision problem REWRITE-POWER is undecidable.

Proof. The standard approach for showing that a rewriting problem is undecid-
able is to reduce from the halting problem, by encoding a Turing machine M
and simulating its computation using the rewriting rules; for example, see [3].

The difficulty with applying that approach in the present case is the lack of
asymmetry, i.e., the fact that the initial word consists of all a’s. Because there is
no distinguished symbol with which to start the simulation, unwanted parallel
simulations of M could occur at different parts of the word.

To deal with this difficulty, we construct a rewriting system that permits
multiple simulations of M to arise, but employs a delimiter symbol $ to ensure
that they do not interfere with each other. Each simulation works on its own
portion of the word, and changes it to b’s (ending by changing the delimiter
symbol as well) only if M halts.

Here are the details. We use the one-tape model of Turing machine from
Hopcroft and Ullman [8], where M = (Q,Ω, Γ, δ, q0, B, qf ). Here Q is the set of
states of M , with q0 ∈ Q the start state and qf ∈ Q the unique final state. Let
Ω be the input alphabet and Γ the tape alphabet, with B ∈ Γ being the distin-
guished blank symbol. Let δ be the (partial) transition function, with domain
Q × Γ and range Q × Γ × {L,R}. We assume without loss of generality that
M halts, i.e., M has no next move, iff it is in state qf . We also assume that
a, b, $ �∈ Γ .

We construct our length-preserving rewriting system mimicking the compu-
tations of M as follows. Let Σ = Γ ∪ Q ∪ {a, b, $}. Let S contain the following
rewriting rules:
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aa → $q0 (1)
a → B (2)

qic → dqj if (qj , d, R) ∈ δ(qi, c) with c, d ∈ Γ (3)
fqic → qjfd if (qj , d, L) ∈ δ(qi, c) and f ∈ Γ (4)
qfc → cqf for all c ∈ Γ (5)
cqf → qfb for all c ∈ Γ (6)
$qf → bb (7)

Rule (1) starts a new simulation. Each simulation has its own head symbol qi

and left end-marker $, and never moves the head symbol past an a, b, or $. This
ensures that the simulations are kept separate from each other. Rule (2) converts
an a to a blank symbol, available for use in a simulation. Rules (3) and (4) are
used to simulate the transitions of M . Once a simulation reaches qf (meaning
that M has halted), its head can be moved to the right using rule (5), past all
of the symbols it has read, and then back to the left using rule (6), changing all
of those symbols to b’s. Finally, the simulation can be stopped using rule (7).

We argue that M halts when run on a blank tape iff an =⇒∗ bn for some
n ≥ 1.

If M halts when run on a blank tape, then there is some number of tape cells
k which it uses. Let n = k+2. Then S can use rule (1) to start a simulation with
the two a’s at the left end of the word, use rule (2) to convert the k remaining
a’s to blank cells, and run the simulation using rules (3) and (4). Eventually
M halts in the final state qf . At that point, S can move the head to the right
end of the word using rule (5), convert all k tape cells to b’s using rule (6), and
then convert the end-marker $ and tape head to b’s with rule (7). Thus we have
an =⇒∗ bn.

For the other direction, if the initial word an is ever transformed into bn,
it means that one or more simulations were run, each of which operated on a
portion of the word without interference from the others. The absence of inter-
ference can be deduced from the shape of the rules. There is only one occurrence
of the marker $ in the left-hand sides of the rules, namely as the leftmost symbol
in the left-hand side of rule (7). Furthermore, $ can only be rewritten to b which
does not occur in any left-hand side.

Each simulation runs M on a blank tape, and uses a number of tape cells
bounded by the length of its portion of the word. Since every portion of the word
was transformed into b’s, M halted in every one of the simulations (otherwise
the word would still contain one or more head symbols and end-markers). The
completion of any one of these simulations is enough to show that M halts when
run on a blank tape.

Therefore M halts when run on a blank tape iff there exists an n ≥ 1 such
that an =⇒∗ bn, completing the reduction from the halting problem. Since the
halting problem is undecidable, REWRITE-POWER is also undecidable. �	
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3 An Undecidable Problem on Finite Automata

Our model of finite automaton is the usual one (e.g., [8]). We now consider
a decision problem on finite automata. To state it, we need the notion of the
product of two words of the same length. Let Σ,Δ be alphabets, and let w ∈ Σ∗,
x ∈ Δ∗, with |w| = |x|. Then by w × x we mean the word over the alphabet
Σ × Δ whose projection π1 over the first coordinate is w and whose projection
π2 over the second coordinate is x. More precisely, if w = a1a2 · · · an and x =
b1b2 · · · bn, then w × x = [a1, b1][a2, b2] · · · [an, bn]. In this case π1(w × x) = w
and π2(w × x) = x. For example, if y = [t, h] [e, o] [r, e] [m, s], then π1(y) = term
and π1(y) = hoes. To simplify notation, we often write

[
w
x

]
in place of w × x.

For example,
[
cat
dog

]
means the same thing as

[
c
d

][
a
o

][
t
g

]
and [c, d][a, o][t, g].

Consider the following decision problem:

ACCEPTS-SHIFT

Instance: An alphabet Γ , a letter c �∈ Γ , and a finite automaton M with input
alphabet (Γ ∪ {c})2.

Question: Does M accept a word of the form xcn × cnx for some x ∈ Γ ∗ and
n ≥ 0?

Theorem 2. The decision problem ACCEPTS-SHIFT is undecidable.

Proof. We reduce from the problem REWRITE-POWER. An instance of this decision
problem is a set S of length-preserving rewriting rules, an alphabet Σ, and letters
a, b ∈ Σ. Define Γ = Σ ∪ {d}, where d �∈ Σ is a new symbol. Now we define the
following regular languages:

E =
{[

e

e

]
: e ∈ Σ

}
and R =

{[
r

�

]
: � → r ∈ S

}

L =
[
d

c

][
a

c

]+[
d

d

](
E∗RE∗

[
d

d

])∗ [
c

b

]+[
c

d

]
.

Let M = (Q,Δ, δ, q0, F ) be a deterministic finite automaton accepting L, with
Δ = (Γ ∪ {c})2. Clearly M can be constructed effectively from the definitions.

We claim that, for all n ≥ 2, we have an−1 =⇒∗ bn−1 iff the language
L = L(M) contains a word of the form xcn × cnx. The crucial observation is
that

u =⇒ v iff
[
v

u

]
∈ E∗RE∗. (8)

This follows immediately from the definitions of E and R.

=⇒: Suppose
u0 := an−1 =⇒ u1 =⇒ · · · =⇒ um = bn−1
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with m ≥ 1 and n ≥ 2. Then
[
ui+1

ui

]
∈ E∗RE∗

for 0 ≤ i < m. Then
[
d

d

][
u1

u0

][
d

d

][
u2

u1

]
· · ·

[
d

d

][
um

um−1

][
d

d

]
∈

[
d

d

] (
E∗RE∗

[
d

d

])∗
.

Hence
[
d

c

][
u0

cn−1

][
d

d

][
u1

u0

][
d

d

][
u2

u1

]
· · ·

[
d

d

][
um

um−1

][
d

d

][
cn−1

um

][
c

d

]
∈ L,

as desired. The first component is du0du1d · · · dumdcn, while the second com-
ponent is cndu0du1 · · · dum−1dumd. Taking x = du0du1d · · · dumd, we see that
xcn × cnx ∈ L.

⇐=: Assume that xcn × cnx ∈ L for some word x with n ≥ 2. Now L consists
only of words of the form

w =
[
d

c

][
a

c

]i[
d

d

][
v0
u0

][
d

d

][
v1
u1

][
d

d

]
· · ·

[
vm

um

][
d

d

][
c

b

]j[
c

d

]

where ut =⇒ vt for 1 ≤ t ≤ m and i, j ≥ 1. Observe that

π1(w) = daidv0dv1 · · · dvmdcj+1 and π2(w) = ci+1du0du1 · · · dumdbjd,

so if π1(w) = xcn and π2(w) = cnx we must have i = j = n − 1 and x =
daidv0dv1 · · · dvmd = du0du1 · · · dumdbjd. Since d is a new symbol, not in the
alphabet of Σ, it follows that u0 = ai, u1 = v0, u2 = v1, . . ., um = vm−1, and
bj = vm.

But then u0 =⇒ v0 = u1, u1 =⇒ v1 = u2, and so forth, up to um−1 =⇒
vm−1 = um, and finally um =⇒ vm = bj . So u0 =⇒∗ vm, and therefore an−1 =⇒∗

bn−1. This completes the proof. �	
Remark 3. In the decision problem ACCEPTS-SHIFT, the undecidability of the
problem arises, in an essential way, from words of the form xcn × cnx where
n < |x|, and not from those words with n ≥ |x| as one might first suspect. More
formally, the related decision problem defined below is actually solvable in cubic
time.

ACCEPTS-LONG-SHIFT

Instance: An alphabet Σ, a letter c �∈ Σ, and a finite automaton M with input
alphabet (Σ ∪ {c})2.

Question: Does M accept a word of the form xcn × cnx for some n ≥ |x|?
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Theorem 4. The decision problem ACCEPTS-LONG-SHIFT is solvable in cubic
time.

Proof. Suppose x = a1a2 · · · am. If y = xcn × cnx and n ≥ |x| then

y = [a1, c] · · · [am, c][c, c]n−m[c, a1][c, a2] · · · [c, am].

Given a DFA M = (Q,Σ, δ, q0, F ), we can create a nondeterministic finite
automaton M ′ that accepts all x for which the corresponding y is accepted
by M . The idea is that M ′ has state set Q′ = Q × Q × Q; on input x the
machine M ′ “guesses” a state q ∈ Q, and stores it in the second component, and
then simulates M on input x × cm in the first component, starting from q0 and
reaching some state p, and simulates M on input cm ×x in the third component,
starting from q. Finally, M ′ accepts if the third component is an element of F
and if there exists a path from p to q labeled [c, c]i for some i ≥ 0. Now we can
test whether M ′ accepts a word by using depth-first or breadth-first search on
the transition diagram of M ′, whose size is at most cubic in terms of the size
of M . �	

4 Application to k-automatic Sets of Rational Numbers

Recently the second author and co-authors defined a notation of k-automaticity
for sets of non-negative rational numbers [11,13], in analogy with the more well-
known concept for sets of non-negative integers [4].

For an integer k ≥ 2 define Σk = {0, 1, . . . , k−1}. If w ∈ Σ∗
k , define [w]k to be

the integer represented by the word w in base k (assuming the most significant
digit is at the left). Let M be a finite automaton with input alphabet Σk × Σk.
We define quok(M) ⊆ Q

≥0 to be the set
{

[π1(x)]k
[π2(x)]k

: x ∈ L(M)
}

.

Furthermore, we call a set T ⊆ Q
≥0 k-automatic if there exists a finite automaton

M such that T = quok(M).
We first consider the following decision problem:

ACCEPTS-POWER

Instance: An integer k ≥ 2, and a finite automaton M with input alphabet
(Σk)2.

Question: Is quok(L(M)) ∩ {ki : i ≥ 0} nonempty?

Theorem 5. The problem ACCEPTS-POWER is undecidable.

Proof. The basic idea is to reduce once more from REWRITE-POWER, using the
same construction as in the proof of Theorem 2. Our reduction produces an
instance of ACCEPTS-SHIFT consisting of an alphabet Γ of cardinality �, a letter
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c �∈ Γ , and a finite automaton M . By renaming symbols, if necessary, we can
assume the symbols of Γ are the digits 1, 2, . . . , � and c is the digit 0. It then
suffices to take k = � + 1. Then y ∈ L(M) with quok(y) a power of k if and only
if y = x0n × 0nx for some x and some n ≥ 0. Note that, by our construction in
the proof of Theorem2, if M accepts x0n × 0nx, then x contains no 0’s. �	

Now consider a family of analogous decision problems ACCEPTS-POWER(k),
where in each problem k is fixed.

Theorem 6. For each integer k ≥ 2, the decision problem ACCEPTS-POWER(k)
is undecidable.

Proof. We have to overcome the problem that k can depend on the size of Γ .
To do so, we recode all words over the alphabet {0, 1}. It suffices to use the
morphism ϕ defined by

ϕ(c) = 0m+1 ϕ(ai) = 1i0m−i1

where Σ = {a1, a2, . . . , am}. In the proof of Theorem2, we replace E,R,L by
E′, R′, L′, as follows:

E′ =
{[

ϕ(e)
ϕ(e)

]
: e ∈ Σ

}
and R′ =

{[
ϕ(r)
ϕ(�)

]
: � → r ∈ S

}

L′ =
[
ϕ(d)
ϕ(c)

][
ϕ(a)
ϕ(c)

]+[
ϕ(d)
ϕ(d)

] (
E∗RE∗

[
ϕ(d)
ϕ(d)

])∗ [
ϕ(c)
ϕ(b)

]+[
ϕ(c)
ϕ(d)

]
.

The construction works because the blocks for symbols of Σ begin and end with
at least one 1, while the block for c consists of all 0’s. Therefore, if the first
coordinate of an element of L′ has a suffix in 0+, this can only arise from ϕ(c),
and the same for prefixes of the second coordinate. �	

5 Problems About Conjugates

Recall that we say two words x and y are conjugates if one is a cyclic shift of
the other; that is, if there exist u, v such that x = uv and y = vu.

The undecidability result of the previous section suggests studying the fol-
lowing related natural decision problem.

ACCEPTS-GENERAL-SHIFT

Instance: A finite automaton M with input alphabet Σ2.

Question: Does M accept a word of the form x × y for conjugates x, y ∈ Σ∗ ?

Theorem 7. The decision problem ACCEPTS-GENERAL-SHIFT is undecidable.
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Proof. We reduce from the problem ACCEPTS-SHIFT. An instance of this problem
is an alphabet Γ , a letter c /∈ Γ , and a finite automaton M with input alphabet
(Γ ∪ {c})2.

First check whether M accepts a word of the form x × x for some x ∈ Γ ∗.
(This is decidable because the language {x × x : x ∈ Γ ∗} is regular.) If so,
ACCEPTS-SHIFT(Γ, c,M) = “yes”. Otherwise, construct a finite automaton M ′

whose language is

L(M) ∩ {sc+ × c+t | s, t ∈ Γ ∗}.

Notice that ACCEPTS-SHIFT(Γ, c,M ′) = ACCEPTS-SHIFT(Γ, c,M). Clearly we
have that if ACCEPTS-GENERAL-SHIFT(M ′) = “no”, then ACCEPTS-SHIFT
(Γ, c,M ′) = “no”.

So suppose that ACCEPTS-GENERAL-SHIFT(M ′) = “yes”. Then M ′ accepts a
word w = x× y for words x = uv, y = vu where u, v ∈ (Γ ∪{c})∗. We now show
that w = zcn × cnz for some z ∈ Γ ∗ and n ≥ 1.

By the construction of M ′, uv ends with c, vu begins with c, and any two
occurrences of c in uv or vu have only c’s between them. Hence if u or v is empty,
then w = cn × cn for some n ≥ 1, and we can take z = ε, the empty word. So
say neither u nor v is empty. Then v begins and ends with c, and hence v is
in c+. It follows that if u contains c, then u begins and ends with c, so again
w = cn × cn for some n ≥ 1, and we can take z = ε. So say u does not contain
c. Then w = ucn × cnu with u ∈ Γ+ and n = |v|, and we can take z = u.

So w = zcn × cnz for some word z ∈ Γ ∗ and n ≥ 1. Therefore we have
ACCEPTS-SHIFT(Γ, c,M ′) = “yes”. This completes the reduction. Then since
ACCEPTS-SHIFT is undecidable by Theorem2, ACCEPTS-GENERAL-SHIFT is also
undecidable. �	

Now we turn to two other decision problems, both inspired by the problem
ACCEPTS-GENERAL-SHIFT. The first is

ACCEPTS-DISTINCT-CONJUGATES

Instance: A DFA M = (Q,Σ, δ, q0, F ).

Question: Does M accept two distinct conjugates uv and vu?

We will prove

Theorem 8. ACCEPTS-DISTINCT-CONJUGATES is decidable.

To prove this theorem, we need the concept of primitive word and primitive
root. A nonempty word x is said to be primitive if it cannot be written in the
form x = yi for a word y and an integer i ≥ 2. The primitive root of a word x is
the unique primitive word t such that x = tj for some j ≥ 1.

Lemma 9. If a DFA M of n states accepts two distinct conjugates, then it
accepts two distinct conjugates uv and vu, with at least one of u and v of length
≤ n2.
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Proof. Let L = L(M), the language accepted by M = (Q,Σ, δ, q0, F ), where
|Q| = n. Suppose that there exist uv ∈ L, vu ∈ L, but uv �= uv. Without loss
of generality, assume |uv| is as small as possible. Assume, contrary to what we
want to prove, that both |u| and |v| are > n2.

Consider the acceptance path of uv through M : it looks like δ(q0, u) = q1
and δ(q1, v) = p1 for some q1 ∈ Q and p1 ∈ F . Similarly, consider the acceptance
path of vu through M : it looks like δ(q0, v) = q2 and δ(q2, u) = p2 for some
q2 ∈ Q and p2 ∈ F .

Now create a new DFA M ′ = (Q × Q,Σ, δ′, q′
0, F

′) by the usual product
construction, where δ′([r, s], a) := [δ(r, a), δ(s, a)] and q′

0 = [q0, q1] and F =
{[q2, p1]}. Then M ′ has n2 states and accepts v.

Since |v| > n2, the acceptance path for v in M ′ visits ≥ n2 + 2 states and
hence some state is repeated, giving us a loop of at most n2 states that can be
cut out. Hence we can write v = v1v2v3, where v2 �= ε and v1v3 �= ε, and M ′

accepts v1v3. In M , then, it follows that δ(q1, v1v3) = p1 and δ(q0, v1v3) = q2,
and hence M accepts the conjugates uv1v3 and v1v3u. Since |uv1v3| < |uv|, the
minimality of |uv| implies that these conjugates cannot be distinct, and so we
must have

uv1v3 = v1v3u. (9)

We can now repeat the argument of the previous paragraph for the word u.
We get a decomposition u = u1u2u3 where u2 �= ε and u1u3 �= ε, and we get

vu1u3 = u1u3v. (10)

Finally, the acceptance paths in M we have created imply that we can cut
out both u2 and v2 simultaneously from uv and vu, and still get words accepted
by M . So u1u3v1v3 and v1v3u1u3 are both accepted. Again, by minimality, we
get that

u1u3v1v3 = v1v3u1u3. (11)

Now, by the Lyndon-Schützenberger theorem (see, e.g., [9,14]), Eq. (11)
implies the existence of a nonempty word t and integers i, j such that u1u3 = ti,
v1v3 = tj . Without loss of generality, we can assume that t is primitive.

Applying the same theorem to Eq. (10) tells us that there exists k such that
v = tk. And applying the same theorem once more to Eq. (9) tells us that there
exists � such that u = t�. But then uv = vu, a contradiction. �	
Remark 10. We observe that the bound of n2 in the previous result is optimal,
up to a constant multiplicative factor. Consider the languages

Lt = (at)+b(at+1)+bb ∪ (at)+bb(at+1)+bb.

Then it is easy to see that Lt can be accepted by a (complete) DFA of
n = 3t + 8 states. The shortest pair of distinct conjugates in Ln, however, are
at(t+1)bat(t+1)bb and at(t+1)bbat(t+1)b, corresponding to u = at(t+1)b of length
t2 + t + 1 and v = at(t+1)bb of length t2 + t + 2. Thus both u and v are of length
n2/9 + O(n).
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We can now prove Theorem 8.

Proof. Given L = L(M), for each nonempty word x define the language

Lx = {y ∈ Σ∗ : xy ∈ L, yx ∈ L, xy �= yx}.

We observe that each Lx is a regular language. To see this, note that we can
write Lx = L1 ∩ L2 ∩ L3, where

L1 = {y ∈ Σ∗ : xy ∈ L}
L2 = {y ∈ Σ∗ : yx ∈ L}
L3 = {y ∈ Σ∗ : xy �= yx}.

Both L1 and L2 are easily seen to be regular, and finite automata accepting
them are easily constructed from M . To see that the same holds for L3, note
that if xy = yx with x nonempty, then by the Lyndon-Schützenberger theorem
it follows that y ∈ t∗, where t is the primitive root of x. Hence L3 = t∗. Therefore
we can construct a finite automaton Mx accepting Lx.

Finally, here is the decision procedure. By Lemma 9 we know that if an n-
state DFA M accepts a pair of words uv and vu with uv �= vu, then it must
accept a pair with either |u| ≤ n2 or |v| ≤ n2. Thus, it suffices to enumerate all
u ∈ Σ∗ of lengths 1, 2, . . . , n2, and compute Mu for each u. If at least one Mu

has L(Mu) nonempty, then answer “yes”; otherwise answer “no”. �	
An alternative approach for proving Theorem8 was suggested by the referee,

as follows:

Proof. We show that ACCEPTS-DISTINCT-CONJUGATES is decidable by reducing
it to the functionality problem for nondeterministic streaming string transducers
(NSSTs) [1]. An NSST is a one-way nondeterministic automaton equipped with
a fixed set of variables in which to store strings. At each step, it reads a symbol
from the input, changes state, and updates its string variables in parallel with
a “copyless assignment”. At the end of the input, it produces an output string
based on its string variables and final state. See [1] for details.

Consider the relation R defined as the set of pairs {(uv, vu) ∈ L(M)×L(M)}.
An NSST T can implement R as a transduction as follows. T uses two string
variables X and Y . Let w be T ’s input. T updates X with X := Xσ whenever
a symbol σ of w is read, until some nondeterministic transition, after which, as
long as symbols σ of w are read, the following updates are performed: X := X
and Y := Y σ. When the end of w is reached, w = uv for u = X and v = Y .
During the computation, T uses its finite-state control to check that w is in
L(M). At the same time, T checks that vu is in L(M) by guessing a state q of
M , simulating M on u starting from q, verifying that M ends u in an accepting
state, simulating M on v starting from q0, and verifying that M ends v in q. If
all of these checks succeed, T outputs Y X = vu.

We say that T is functional if for every input string, T produces at most
one output string. If T is functional, then for every x ∈ L(M), x has at most
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one conjugate in L(M). Then since every string is a conjugate of itself, x has
no conjugates other than x in L(M), and so M does not accept distinct con-
jugates. On the other hand, if M does not accept distinct conjugates, then
for each input x, T can only produce x as output, and so T is functional.
Therefore T is functional iff the answer to ACCEPTS-DISTINCT-CONJUGATES is
“no”. By Theorem 4.1 of [1], checking if T is functional is decidable. Therefore
ACCEPTS-DISTINCT-CONJUGATES is decidable. �	

Our second decision problem is

ACCEPTS-NON-CONJUGATES

Instance: A DFA M = (Q,Σ, δ, q0, F ).

Question: Does M accept two words of the same length that are not conjugates?

We prove

Theorem 11. ACCEPTS-NON-CONJUGATES is decidable.

Proof. Given a formal language L over an ordered alphabet Σ, we define lexlt(L)
to be the union, over all n ≥ 0, of the lexicographically least word of length n in
L, if it exists. As is well-known (see, e.g., [15, Lemma 1]), if L is regular, then so
is lexlt(L). Furthermore, given a DFA for L, we can algorithmically construct a
DFA for lexlt(L).

We also define cyc(L) to be the union, over all words w ∈ L, of the conjugates
of w. Again, as is well-known (see, e.g., [14, Theorem 3.4.3]), if L is regular, then
so is cyc(L). Furthermore, given a DFA for L, we can algorithmically construct
a DFA for cyc(L).

We claim that L contains two words x and y of the same length that are
non-conjugates if and only if L is not a subset of cyc(lexlt(L)).

Suppose such x, y exist. Let t be the lexicographically least word in L of length
|x|. If t is a conjugate of x, then y is not a conjugate of t, so y �∈ cyc(lexlt(L)).
On the other hand, if t is not a conjugate of x, then x �∈ cyc(lexlt(L)). In both
cases L is not a subset of cyc(lexlt(L)).

Suppose L is not a subset of cyc(lexlt(L)). Then there is some word of some
length n in L, say x, that is not a conjugate of the lexicographically least word
of length n, say y. Then x and y are the desired two words.

Putting this all together, we get our decision procedure for the decision prob-
lem ACCEPTS-NON-CONJUGATES: given the DFA M for L, construct the DFA M ′

for L−cyc(lexlt(L)) using the techniques mentioned above. If M ′ accepts at least
one word, then the answer for ACCEPTS-NON-CONJUGATES is “yes”; otherwise it
is “no”. �	
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6 Final Remarks

We still do not know whether the following problem from [11, p. 363] is decidable:

ACCEPTS-INTEGER

Instance: A finite automaton M with input alphabet (Σk)2.

Question: Is quok(L(M)) ∩ N nonempty?

Unfortunately our techniques do not seem immediately applicable to this prob-
lem.

We mention two other problems about finite automata whose decidability is
still open:

1. Given a DFA M with input alphabet {0, 1}, decide if there exists at least one
prime number p such that M accepts the base-2 representation of p.

Remark 12. An algorithm for this problem would allow resolution of the exis-
tence of a Fermat prime 22

k

+ 1 for k > 4.

2. Given a DFA M with input alphabet {0, 1}, decide if there exists at least one
integer n ≥ 0 such that M accepts the base-2 representation of n2.

Acknowledgments. We thank Hendrik Jan Hoogeboom and the referees for their
helpful comments.

References

1. Alur, R., Deshmukh, J.V.: Nondeterministic streaming string transducers. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 1–20.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22012-8 1

2. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase
structure grammars. Z. Phonetik. Sprachwiss. Kommuniationsforsch. 14, 143–172
(1961)

3. Book, R.V., Otto, F.: String-Rewriting Systems. Springer, New York (1993). doi:10.
1007/978-1-4613-9771-7

4. Cobham, A.: Uniform tag sequences. Math. Syst. Theor. 6, 164–192 (1972)
5. Engelfriet, J., Rozenberg, G.: Fixed point languages, equality languages, and rep-

resentation of recursively enumerable languages. J. Assoc. Comput. Mach. 27,
499–518 (1980)

6. Ginsburg, S., Rose, G.F.: Some recursively unsolvable problems in ALGOL-like
languages. J. Assoc. Comput. Mach. 10, 29–47 (1963)

7. Hoogeboom, H.J.: Are there undecidable properties of non-turing-complete
automata? Posting on stackexchange, 20 October 2012. http://cs.stackexchange.
com/questions/1697/are-there-undecidable-properties-of-non-turing-complete-
automata

http://dx.doi.org/10.1007/978-3-642-22012-8_1
http://dx.doi.org/10.1007/978-1-4613-9771-7
http://dx.doi.org/10.1007/978-1-4613-9771-7
http://cs.stackexchange.com/questions/1697/are-there-undecidable-properties-of-non-turing-complete-automata
http://cs.stackexchange.com/questions/1697/are-there-undecidable-properties-of-non-turing-complete-automata
http://cs.stackexchange.com/questions/1697/are-there-undecidable-properties-of-non-turing-complete-automata


172 J. Endrullis et al.

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

9. Lyndon, R.C., Schützenberger, M.P.: The equation aM = bNcP in a free group.
Mich. Math. J. 9, 289–298 (1962)

10. Post, E.: Absolutely unsolvable problems and relatively undecidable propositions:
account of an anticipation. In: Davis, M. (ed.) The Undecidable, pp. 338–433.
Raven Press, Hewlett (1965)

11. Rowland, E., Shallit, J.: Automatic sets of rational numbers. Int. J. Found. Com-
put. Sci. 26, 343–365 (2015)

12. Rozenberg, G., Salomaa, A.: Cornerstones of Undecidability. Prentice-Hall,
New York (1994)

13. Schaeffer, L., Shallit, J.: The critical exponent is computable for automatic
sequences. Int. J. Found. Comput. Sci. 23, 1611–1626 (2012)

14. Shallit, J.: A Second Course in Formal Languages and Automata Theory.
Cambridge University Press, Cambridge (2009)

15. Shallit, J.O.: Numeration systems, linear recurrences, and regular sets. Inf. Com-
put. 113, 331–347 (1994)

16. Turing, A.M.: On computable numbers, with an application to the Entscheidung-
sproblem. Proc. Lond. Math. Soc. 42, 230–265 (1936)



On the Power of Permitting Semi-conditional
Grammars

Zsolt Gazdag1(B) and Krisztián Tichler2

1 Department of Foundations of Computer Science,
University of Szeged, Szeged, Hungary

gazdag@inf.u-szeged.hu
2 Department of Algorithms and Their Applications,
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Abstract. Permitting semi-conditional grammars are such extensions of
context-free grammars where each rule is associated with a word v, and
such a rule can be applied to a sentential form u only if v is a subword
of u. In this paper we show that the class of languages generated by
permitting semi-conditional grammars with no erasing rules is strictly
included in the class of context-sensitive languages.
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1 Introduction

Context-free (CF) grammars are extensively studied since they serve as for-
mal models in many areas of computer science. One of their good properties
is that their membership problem is efficiently solvable. These grammars were
invented by Noam Chomsky to describe the structures of words in sentences of
natural languages. However, it turned out that certain natural languages con-
tain phenomena such as cross-serial dependencies, that cannot be handled by CF
grammars (see e.g. [12]). The more powerful context-sensitive (CS) grammars
are able to model cross-dependencies, but the membership problem for them is
already PSPACE-complete. In [11] Joshi gave several properties that a grammar
should have in order to be able to model natural languages. These properties are
the ability to handle limited cross-serial dependencies, the constant growth of
the associated language, and the polynomial time solvability of the membership
problem. Grammars satisfying these properties are called mildly context-sensitive
grammars.
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One way to enrich CF grammars with context sensitivity and, in turn, raise
their generative power is to control their derivations by context conditions. For
example, in random context grammars (RCG’s) [18] two sets of nonterminals,
a permitting P and a forbidding one Q, are associated to every context-free
rule. Then a rule is applicable, if it is applicable in the context-free sense and
nonterminals in Q do not occur, while every nonterminal in P does occur in
the current sentential form. If in an RCG each rule is associated with an empty
forbidding set (resp. permitting set), then the grammar is called a permitting
(resp. forbidding) RCG.

It turned out that RCG’s with erasing rules have equal power to that of
Turing machines, thus recently a restricted variant of them was introduced and
investigated [15]. In these grammars the permitting and forbidding sets are asso-
ciated to the nonterminals rather than to the rules. Moreover, one of these sets
is always a singleton and the other one is empty. We will call these grammars
restricted random context grammars (rRCG’s) in this paper. It turned out that
even with this very limited ability of controlling the derivations these grammars
are equivalent to random context grammars [2,15]. Moreover, permitting rRCG’s
are as powerful as permitting RCG’s [2], and this is the case for the forbidding
variants too if erasing rules are allowed [8].

In [16] a variant of random context grammars, called semi-conditional gram-
mars (SCG’s) were introduced. In these grammars every rule r is associated with
two words, a permitting word v1 and a forbidding one v2, and r is applicable
only if v1 is a subword of the sentential form, but v2 is not. Moreover, an SCG
G is of degree (i, j) if the length of its permitting words is at most i and that
of the forbidding words is at most j. It was shown in [16] that SCG’s without
erasing rules and with degree (1, 2) or (2, 1) have equal power to that of CS
grammars. This clearly means that these grammars are too powerful to meet
all the conditions of mild context-sensitivity. It turned out in [16], on the other
hand, that these grammars with degree (1, 1) cannot generate all languages in
CS. The invention of SCG’s was motivated by the grammars of Kelemen [13],
where only a permitting word was associated to each rule (we call these gram-
mars permitting semi-conditional grammars in this paper). In [16] it remained an
open question whether permitting SCG’s can generate all CS languages. In this
paper we show that there is a CS language that cannot be generated by any per-
mitting RCG if the use of erasing rules is not allowed. Some results concerning
grammars mentioned in this introduction are given in Fig. 1.

The proof of our result is based on a pumping lemma similar to the one
presented in [6], where it was shown that the class of languages generated by
permitting RCG’s with no erasing rules is strictly included in the class of lan-
guages generated by RCG’s. In the proof of the pumping lemma in [6] the fol-
lowing property was essential: sufficiently long derivations of a permitting RCG
with no erasing rules always contain two sentential forms α and β such that β
is derived from α and, for every nonterminal A, |α|A ≤ |β|A (here |α|A and |β|A
denote the number of occurrences of A in α and β, respectively). This prop-
erty follows from Dickson’s lemma [4] which states that any infinite sequence
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[7]

L(rRCGλ)
[15]
= L(RCGλ)

[3]
= RE

[16]
= L(SCGλ)

L(SCG)
[16]
= L(CS)

[3]
L(pSCG)

L(prRCG)
[2]
= L(pRCG)

[19]
=

L(CF)

[3]
L(pRCGλ)

[2]
= L(prRCGλ)

L(RCG)
[2]
= L(rRCG)[6]

L(frRCG)

L(frRCG)λ
[8]
= L(fRCG)λ

L(fRCG)
[5]

[1]

Theo
rem 4

Fig. 1. A comparison of the power of some variants of grammars mentioned in the
introduction. Arrows with solid lines represent strict inclusions, while arrows with
dashed lines indicate inclusions which are not known to be strict. References to the
presented equalities or strict inclusions are also given. Inclusions represented by dashed
lines follow from definitions. SCGλ, RCGλ, and rRCGλ (resp. SCG, RCG, and rRCG)
denote the classes of the corresponding grammars with erasing rules (resp. with no
erasing rules). For a class of grammars C, L(C) denotes the class of languages generated
by grammars in C, and pC (resp. fC) denotes that subclass of C, where only permitting
(resp. forbidding) context conditions are used.

v1, v2, . . . of n-vectors over the natural numbers contains an infinite sub-sequence
vi1 ≤ vi2 ≤ . . ., where ≤ is the componentwise ordering of n-vectors.

In the proof of our pumping lemma (Lemma 2) we need to find such sentential
forms α and β in a derivation of a permitting SCG G that satisfy a stronger
condition: if u is a permitting word of G, then β should contain at least as many
occurrences of u as the number of these is in α. To do so we will use Higman’s
lemma [10], which ensures that in any infinite sequence v1, v2, . . . of words, there
is an infinite subsequence vi1 ≤s vi2 ≤s . . ., where ≤s is the subsequence (or
scattered subword) relation. However, to find an appropriate α and β we cannot
apply directly Higman’s lemma to the sentential forms of a derivation, but rather
to certain carefully defined words obtained from these sentential forms.

The paper is organized as follows. First, we introduce the necessary notions
and notations. Then, in Sect. 3 we present the main result of the paper. Finally,
we give some concluding remarks in Sect. 4. Due to space reasons, some proofs
are omitted in the paper. The interested reader can find them in [9].

2 Preliminaries

We define here the necessary notions, however we assume that the reader is
familiar with the basic concepts of the theory of formal languages. For a com-
prehensive guide we refer to [17]. An alphabet Σ is a finite, nonempty set of
symbols whose elements are also called letters. Words over Σ are finite sequences
of letters in Σ. As usual, Σ∗ denotes the set of all words over Σ including the
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empty word ε. For a letter a ∈ Σ and a word u ∈ Σ∗, |u| denotes the length of
u and |u|a is the number of occurrences of a in u. N denotes the set of natural
numbers. For n,m ∈ N, n < m, [n,m] denotes the set {n, n+1, . . . ,m}. If n = 1,
then [n,m] is denoted by [m]. The set of positions in u (pos(u) for short) is [|u|].

Let u ∈ Σ∗. A word v is a scattered subword of u, if v can be obtained from
u by erasing some (possibly zero) letters. Moreover, v is a subword of u if there
are words u1, u2 ∈ Σ∗ such that u = u1vu2. Let i ∈ pos(u) and m ≥ 1 be such
that i + m − 1 ∈ pos(u). Then subw(u, i,m) denotes that subword of u which
starts on the ith position and has length m. It will always be clear from the
context whether we consider an arbitrary subword of u or that one which starts
on a certain position. Those subwords of u that have length m are also called
m-subwords. The subsequence relation ≤s over Σ∗ is a binary relation defined as
follows. For u, v ∈ Σ∗, u ≤s v, if u is a scattered subword of v. Let f : [k] → [l]
(k, l ≥ 1) be a (partial) function. The domain and range of f , denoted by dom(f)
and ran(f), respectively, are defined as follows: dom(f) = {i ∈ [k] | ∃j ∈ [l] :
f(i) = j} and ran(f) = {i ∈ [l] | ∃j ∈ [k] : f(j) = i}. If I � [k], then f |I
denotes the restriction of f to I. Let u, v ∈ Σ∗ and f : pos(v) → pos(u) be a
(partial) function. If, for every i ∈ dom(f), subw(v, i, 1) = subw(u, f(i), 1), then
we call f letter-preserving. A well-quasi-ordering (wqo for short) on a set S is a
reflexive, transitive binary relation ≤ such that any infinite sequence a1, a2, . . .
(ai ∈ S, i ≥ 1) contains a pair aj ≤ ak with j < k. The following result is due to
[10] (see also [14]).

Proposition 1. Let Σ be an alphabet. Then ≤s is a wqo on Σ∗. Consequently,
for every infinite sequence u1, u2, . . . (ui ∈ Σ∗, i ≥ 1), there is an infinite subse-
quence ui1 ≤s ui2 ≤s . . ..

A semi-conditional grammar (SCG for short) is a 4-tuple G = (V,Σ,R, S),
where V and Σ are alphabets of the nonterminal and terminal symbols, respec-
tively (it is assumed that V ∩Σ = ∅), S ∈ V is the start symbol, and R is a finite
set of production rules of the form (A → α, p, q), where A ∈ V, α ∈ (V ∪ Σ)+

(that is A → α is a usual non-erasing context-free rule), and p, q ∈ (V ∪ Σ)∗.
For such a rule r, the words p and q are called the permitting and forbidding
contexts of r, respectively. The right-hand side of r (denoted by rhs(r)) is α.
We will often denote V ∪ Σ by VG. The derivation relation ⇒G of G is defined
as follows. For every word u1, u2, α ∈ V ∗

G and A ∈ V , u1Au2 ⇒G u1αu2 if
and only if there is a rule (A → α, p, q) ∈ R such that (i) p is a subword of
u1Au2, and (ii) if q �= ε, then q is not a subword of u1Au2. We will often write
⇒ instead of ⇒G when G is clear from the context. As usual, the reflexive,
transitive closure of ⇒ is denoted by ⇒∗ and the language generated by G is
L(G) = {u ∈ Σ∗ | S ⇒∗ u }. A word α ∈ V ∗

G is called a sentential form of G (or
just a sentential form if G is clear from the context). A derivation der from α
to β is a sequence α1 ⇒ α2 ⇒ . . . ⇒ αn+1 of sentential forms, for some n ≥ 0
such that α1 = α and αn+1 = β. The length of der (denoted by |der|) is n. Let α
and β be sentential forms and der a derivation from α to β. The sentential form
vector of der (denoted by sfv(der)) is (u1, . . . , uk) (k = |α|, ui ∈ V ∗

G, i ∈ [k]),
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such that β = u1 . . . uk and, for every i ∈ [k], ui is derived from subw(α, i, 1).
Let der : α1 ⇒ . . . ⇒ αn (n ≥ 1) and der′ : αn ⇒ . . . ⇒ αk (k ≥ n). Then
der der′ denotes the derivation α1 ⇒ . . . ⇒ αk.

If, for every rule (A → α, p, q) in R, q = ε, then G is a permitting SCG, or a
pSCG for short. Let G = (V,Σ,R, S) be a pSCG. The set of permitting contexts
of G is pw(G) = {p | (r, p, q) ∈ R} and maxpw(G) = max{|u| | u ∈ pw(G)}. We
denote by L(pSCG) and L(CS) the families of languages generated by pSCG’s
and context-sensitive grammars, respectively.

3 The Main Result

Here we show that pSCG’s are strictly weaker than context sensitive grammars
by proving that the language L = {a22

n | n ≥ 0} cannot be generated by any
pSCG (Theorem 4). The proof, roughly, consists of the following main steps.
First we define the notion of m-embedding (Definition 1). Intuitively, a word α
can be m-embedded to a word β, if there is an injective mapping of the m-
subwords of α to the m-subwords of β such that this mapping preserves the
order of these words and satisfies certain additional conditions. Then we show
that if a pSCG G = (V,Σ,R, S) with m = maxpw(G) has a derivation der from
α to β (α, β ∈ V ∗

G) such that |α| < |β| and α can be m-embedded to β, then
the der can be “pumped” so that the obtained derivation is a valid derivation
of G (cf. Lemma 2, which we will often refer to as our pumping lemma). Finally,
we show that sufficiently long derivations of G always contain sentential forms
α and β such that α can be m-embedded to β (Lemma 3). To this end we will
use the fact that ≤s is a wqo on V ∗

G.

Definition 1. Let Σ be an alphabet, α, β ∈ Σ∗, k = |α|, l = |β|, and m ≥ 1. An
m-embedding of α to β is a strictly increasing function g : [k − m + 1] → [l] such
that the following (partial) mapping f : pos(β) → pos(α) is letter-preserving
and well defined: for every i ∈ [k −m+1] and κ ∈ [0,m− 1], f(g(i)+κ) = i+κ.
If g is an m-embedding, then the above f is denoted by invm(g). Moreover, if
an m-embedding of α to β exists, then we denote this by α �m β.

Example 1. Here we give two examples to demonstrate the notion of
m-embedding.

(1) Let α = BAAB and β = BAAAB. Any 3-subword of α is a subword of
β, too. Due to the letter-preserving property, only the following g can be a
3-embedding of α to β: g(1) = 1 and g(2) = 3. The mapping f = invm(g) is
letter-preserving, but not well defined. Indeed, with i = 1 and κ = 2 we get
f(g(i) + κ) = f(3) = 3, while with i = 2 and κ = 0, f(g(i) + κ) = f(3) = 2.
This implies that there is no 3-embedding of α to β.

(2) Let α = ABBAC, β = AABBAABAC and g be the following strictly
increasing function: g(1) = 2, g(2) = 3, and g(3) = 7. Then the mapping
f = invm(g) is letter-preserving and well defined: f(i) = i−1 (i ∈ [2, 5]) and
f(i) = i − 4 (i ∈ [7, 9]). Thus g is a 3-embedding of α to β.
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The following properties of m-embeddings will be useful in what follows.

Proposition 2. Let Σ be an alphabet, m ≥ 1, and α, β ∈ Σ∗. Assume that g
is an m-embedding of α to β and f = invm(g). Then the following statements
hold.

(i) For every i ∈ pos(α), |{t ∈ pos(β) | f(t) = i}| ≤ m.
(ii) If |α| = |β|, then α = β.
(iii) If i, j ∈ pos(α) with j = i + 1, then g(j) − g(i) = 1 or g(j) − g(i) ≥ m.

Proof. See [9].

We will also need the following operation which inserts words into certain
positions of a word. Let Σ be an alphabet and α = X1 . . . Xk (k ≥ 1,Xi ∈ Σ, i ∈
[k]). Let moreover u1, . . . , ul ∈ Σ∗ and f : [k] → [l] be a (partial) function. The
substitution of u = (u1, . . . , ul) into α by f (denoted by subst(u, α, f)) is the
word β = v1 . . . vk, where vi (i ∈ [k]) is defined as follows. If f(i) is defined, then
let vi = uf(i), and let vi = Xi otherwise.

Sometimes we will need to extend a function f used in a substitution. An
extension of f (with respect to α) is a function f̂ defined as follows. For every
i ∈ dom(f), f̂(i) = f(i), and for every i ∈ [k] − dom(f), f̂ is either undefined or
defined as follows: if there is a j ∈ dom(f) such that subw(α, i, 1) = subw(α, j, 1),
then take such a j and let f̂(i) = f(j). Notice that f is always an extension of
itself.

Example 2. Let Σ = {A,B,C}, α = ABCBB and u = (u1, u2, u3), where
u1 = AA, u2 = ABC, u3 = CC. Let furthermore f : [5] → [3] be the following
partial function. f(2) = f(3) = 3, f(5) = 1. Then subst(u, α, f) = Au3u3Bu1 =
ACCCCBAA and f has two possible extensions other than f . f̂(1) is undefined.
f̂(2) = f̂(3) = 3, f̂(5) = 1 and f̂(4) is either 1 or 3 resulting in subst(u, α, f̂)
equal to AC4A4 or AC6A2, respectively.

The following lemma will be crucial in the proof of our pumping lemma.

Lemma 1. Let G = (V,Σ,R, S) be a pSCG, m = maxpw(G), and α, α′, β ∈ V ∗
G.

Assume that α ⇒∗
G α′ and α �m β. Let der be a derivation from α to α′, g an

m-embedding of α to β, and f = invm(g). Then, for every extension f̂ of f ,
β ⇒∗

G βf̂ , where βf̂ = subst(sfv(der), β, f̂).

Proof. Let β′ = subst(sfv(der), β, f). We first show that β ⇒∗
G β′ by induction

on n = |der|. If n = 0, then one can see that β′ = β, and thus the statement
trivially holds. Assume that it holds for n. We prove it for n + 1. In this case
der can be written as der = der1der2, where der1 is α0 ⇒G . . . ⇒G αn, der2 is
αn ⇒G αn+1, α0 = α, and αn+1 = α′. Let βn = subst(sfv(der1), β, f). By the
induction hypothesis, there is a derivation der′

1 from β to βn. Let (u1, . . . , uk) =
sfv(der1) (k = |α|). Assume that G rewrites a nonterminal A during αn ⇒G αn+1

using a rule r = (A → γ, p, ε) (see Fig. 2 for an example).
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Let i ∈ [k] and κ ∈ pos(ui) be such that the rewritten A occurs on the
κth position of ui. Let i1 < i2 . . . < iξ be all the positions in pos(β) with
f(ij) = i (j ∈ [ξ]). Let (v1, . . . , vl) = sfv(der′

1) (l = |β|). Then, for every j ∈ [ξ],
vij = ui and thus, for every such j, there is a position κj ∈ pos(βn) satisfying
that κj corresponds to the κth position in vij . Clearly subw(βn, κj , 1) = A and
β′ = βn+1 = subst((γ), βn, h) where h : pos(β) → {1} is defined as follows:
h(j) = 1 if j ∈ {κ1, . . . , κξ}, and it is undefined otherwise. Therefore, to prove
βn ⇒∗

G β′ it is enough to show that G can use r to rewrite each nonterminal A
that occurs on a position κj (j ∈ [ξ]) in βn.

Since G can apply r at the step αn ⇒G αn+1, αn should contain the permit-
ting context p. Then there are μ ∈ [k] and ν ∈ [0,m − 1] such that p occurs in
the subword uμ . . . uμ+ν of αn (notice that G has no erasing rules). Since g is
an m-embedding of α to β, it is clear that vg(μ) . . . vg(μ)+ν = uμ . . . uμ+ν . Thus,
there is at most one index j ∈ [ξ] such that vg(μ) . . . vg(μ)+ν contains that A
which occurs on the κjth position in βn. If no such j exists, then G can rewrite
all A’s occurring on positions κj (j ∈ [ξ]) in βn, since the permitting context p
is always present as a subword of vg(μ) . . . vg(μ)+ν . Otherwise let j ∈ [ξ] be such
that the subword vg(μ) . . . vg(μ)+ν includes that A which occurs on the κjth posi-
tion of βn. Then G should rewrite first those A’s in βn that occur on positions
other that κj and, at the last step, that A which occurs on the κjth position.
Therefore βn ⇒∗

G βn+1 = β′ which implies that β ⇒∗
G β′.

To finish the proof of the lemma consider a derivation der′ from β to β′.
Looking at the inductive proof of β ⇒∗ β′, one can see that, for each derivation
step in der′, there is a j ∈ dom(f) such that [j, j + m − 1] ⊆ dom(f), and the
necessary permitting context is in a sentential form derived from subw(β, j,m).
In other words, those letters in β that are on such positions which are not
included in dom(f) do not occur in the permitting contexts used during der′.
Assume that i ∈ pos(β)−dom(f) such that f̂(i) = f(j), for some j ∈ dom(f). Let
u be the f(j)th word in sfv(der) and X = subw(β, j, 1). Then G derives u during
der′ from this X. On the other hand, by the definition of f̂ , subw(β, i, 1) = X.
Thus, der′ can be extended to such a derivation where G, using the appropriate
rules simultaneously, derives u also from that X which occurs on the ith position
of β. Following this way of thinking one can see that der′ can be extended to a
derivation of βf̂ from β which completes the proof of the lemma.

To prove out pumping lemma we need the following preparation. Let g :
α �m β be an m-embedding. The mapping

cmpg(i) =

{
g(i) for i ∈ [k − m + 1]
g(k − m + 1) + i − (k − m + 1) for i ∈ [k − m + 2, k]

is called the completion of g. Note that dom(cmpg) = pos(α) and by the
definition of an m-embedding cmpg is letter-preserving. If f = invm(g) then
f(cmpg(i)) = i holds for i ∈ [k].

Proposition 3. Let α ∈ Σ∗, |α| = k, zi ∈ Σ∗, zi �= ε (i ∈ [k]) and β = z1 · · · zk

with |β| = l. Suppose that g : α �m β with f = invm(g) and ḡ = cmpg.
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Fig. 2. The inductive proof of Lemma 1 assuming m = 3

Let us introduce the notations xi =

{
zf(i) if i ∈ dom(f)
subw(β, i, 1) if i �∈ dom(f)

,

ζ(i, r) =
∑i−1

j=1 |zj | + r (i ∈ [k], r ∈ [|zi|]) and ξ(i, r) =
∑i−1

j=1 |xj | + r (i ∈ [l], r ∈
[|xi|]). Then for the mapping g′(ζ(i, r)) := ξ(ḡ(i), r) (ζ(i, r) ∈ [l − m + 1]),

g′ : β �m subst(u, β, f)

holds, where u = (z1, . . . , zk).

Proof. See [9].

Lemma 2. Let G = (V,Σ,R, S) be a pSCG and m = maxpw(G). Suppose that
α ⇒∗ β, β ⇒∗ γ, α �m β, and |α| < |β| hold for some α, β, γ ∈ V ∗

G. Then there
is a γ′ ∈ Σ∗ such that (i) α ⇒∗ γ′ and (ii) |γ| < |γ′| ≤ (m + 1)|γ|.
Proof. Let k = |α|, l = |β|, and g be an m-embedding of α to β. Let moreover
f = invm(g), and der′, der′′ be any derivations from α to β and from β to
γ, respectively. Applying Proposition 3 with these parameters and Σ = VG,
u = sfv(der′) we get g′ : β �m β′, where β′ = subst(u, β, f). Let f ′ = invm(g′).
By Lemma 1 β ⇒∗ β′.

Let f̂ ′ be the following function. For every τ ∈ pos(β′), if τ ∈ dom(f ′), then
let f̂ ′(τ) = f ′(τ). Otherwise let τ = ξ(i, r), for some i ∈ [l] and r ∈ [|xi|], and
we define f̂ ′(τ) as follows. If i ∈ dom(f), then let f̂ ′(τ) = ζ(f(i), r), and let
f̂ ′(τ) = i, otherwise. Notice that f̂ ′ is a letter preserving function form β′ to
β. Indeed, if i ∈ dom(f), then xi = zf(i), and xi = subw(β, i, 1), otherwise.
Let τ ∈ pos(β′) − dom(f ′). Since g′ is an m-embedding of β to β′, there is
a τ ′ ∈ pos(β′) with f ′(τ ′) = f̂ ′(τ). Then subw(β′, τ, 1) = subw(β, f̂ ′(τ), 1) =
subw(β, f ′(τ ′), 1) = subw(β′, τ ′, 1). Thus f̂ ′ is an extension of f ′.

Now let γ′ = subst((v1, . . . , vl), β′, f̂ ′), where (v1, . . . , vl) = sfv(der′′). By
Lemma 1, β′ ⇒∗

G γ′. This, together with α ⇒∗
G β and β ⇒∗

G β′ implies α ⇒∗
G γ′,

i.e., Statement (i) of the lemma holds. Statement (ii) can be seen as follows. Since
g′ is an m-embedding of β to β′, for every i ∈ [l], there is a τ ∈ pos(β′) with
f ′(τ) = i. Thus, each vi (i ∈ [l]) is substituted for a position in β′ by f ′. Therefore
|γ| = |v1 . . . vl| ≤ |subst((v1, . . . , vl), β′, f ′)| ≤ |subst((v1, . . . , vl), β′, f̂ ′)| = |γ′|.
Moreover, since |α| < |β|, there is an i ∈ [k] such that |zi| ≥ 2. Let j ∈ [l] with



On the Power of Permitting Semi-conditional Grammars 181

f(j) = i. Then |xj | ≥ 2, so |β| = l < l + 1 ≤ ∑l
s=1 |xs| = |β′|. This implies that

|γ| = |γ′| cannot hold, consequently |γ| < |γ′|.
On the other hand, by (i) of Proposition 2, for every i ∈ [k], zi is substituted

for at most m different positions in β by f . Moreover, one can see that, for every
i ∈ dom(f), f̂ ′ is an injective function from [ξ(i, 1), ξ(i, |xi|)] to [l]. Furthermore,
f̂ ′ is injective on the set {τ | τ = ξ(i, 1), i ∈ [l] − dom(f)}, too. Consequently,
for every i ∈ [l], vi is substituted for at most m + 1 different positions in β′ by
f̂ ′. Therefore, |γ′| ≤ (m+1)|γ| should hold finishing the proof of Statement (ii).

Next we demonstrate some of the constructions used in the previous proof.

Example 3. Let G = (V,Σ,R, S) be a pSCG, α = ABBA, β =
EABBFBACA (A,B,C,E, F ∈ V ∪ Σ), and m = 2. Let γ ∈ Σ∗, and assume
that G has two derivations der′ and der′′ from α to β and from β to γ, respec-
tively. Clearly |α| < |β| and α �m β with the following m-embedding g: g(1) = 2,
g(2) = 3, and g(3) = 6. Then, according to Lemma 2, we can give a γ′ ∈ Σ∗

with the following properties: (i) α ⇒∗ γ′ and (ii) |γ| < |γ′| ≤ (m + 1)|γ|.
Assume, for instance, that sfv(der′) = (z1, z2, z3, z4), where z1 = E,

z2 = AB, z3 = BF , and z4 = BACA. Let f = invm(g). Then β′ =
subst(sfv(der′), β, f) = x1 . . . x9, where x1 = E, x2 = E, x3 = AB, x4 = BF ,
x5 = F , x6 = BF , x7 = BACA, x8 = C, and x9 = A. Now, if we define
g′ according to the proof of Lemma 2, then we get that dom(g′) = [1, 8], and
g′(i) = i + 1 if i ∈ [1, 3], and g′(i) = i + 4, otherwise. It is easy to verify that g′

is an m-embedding of β to β′. Let f ′ = invm(g′). Then dom(f ′) = [2, 5]∪ [8, 13].
Let us define now f̂ ′ according to the proof of Lemma 2, that is, f̂ ′(1) = 1,
f̂ ′(6) = f̂ ′(7) = 5, f̂ ′(14) = 8, and f̂ ′(15) = 9. One can check that, for every
τ ∈ [1, 15]−dom(f ′), subw(β′, τ, 1) = subw(β, f̂ ′(τ), 1). Assume that sfv(der′′) =
v1 . . . v9, where vi ∈ Σ∗ (i ∈ pos(β)). Then γ′ = subst(sfv(der′′), β′, f̂ ′) =
v1v1 . . . v5v5 . . . v9v8v9. By (i) of Lemma 2, α ⇒∗ γ′, and it is easy to check that
γ′ satisfies Statement (ii) too.

The following proposition together with Lemma 3 will be used to show that
sufficiently long derivations of pSCG’s always contain sentential forms α and β
satisfying the conditions of Lemma2. The statement can be seen using Proposi-
tion 1 (see also the proof of Lemma 2 in [6]).

Proposition 4. Let Σ be an alphabet and n1, n2, . . . an infinite sequence of
numbers in N. Then there is M ∈ N such that, for every sequence v1, v2, . . . , vn

where n ≥ M and vi ∈ Σ∗ with |vi| ≤ ni (i ∈ [n]), there are numbers i < j in
[M ] satisfying vi ≤s vj.

Let G = (V,Σ,R, S) be a pSCG and m ≥ 1. We will apply the above result to
appropriate derivations of G in order to find sentential forms α and β satisfying
α �m β. However, Proposition 4 ensures only that we can find such α and β
which satisfy α ≤s β. Clearly, this does not imply α �m β. Thus we will apply
Proposition 4 not directly to the derivations of G but to sequences of words
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derived from these derivations. To this end we will use two functions wdo and p
defined below.

Let Σ be an alphabet and m ≥ 1. We denote by Σ≤m the set of all words
in Σ∗ with length at most m. Since Σ≤m is a finite set, we will treat it as an
alphabet. Now let wdo : Σ∗ → (Σ≤m)∗ be defined as follows. Let u ∈ Σ∗. If |u| <
m, then let wdo(u) = u (that is, u on the right-hand side is considered as a letter
in Σ≤m). If |u| ≥ m, then let wdo(u) = subw(u, 1,m) . . . subw(u, |u| −m+1,m)
(again, subw(u, i,m) (i ∈ [1, |u| −m + 1]) is considered as a letter in Σ≤m). The
name wdo comes from the word window, since for a word u, wdo(u) is that word
whose letters are determined by moving a window of length m on u from left to
right. The intuition behind the definition of wdo is the following: if wdo(α) ≤s

wdo(β), then every m-subword of α has to be an m-subword of β too. On the
other hand wdo(α) ≤s wdo(β) still does not imply α �m β (see, for example, the
first item in Example 1). Thus we will use the following function p before applying
wdo on the sentential forms of G. Let Σ be an alphabet. Then Σ̂ denotes the
alphabet {a(i) | a ∈ Σ, i ∈ [m]}. Now let p : Σ∗ → Σ̂∗ be defined as follows. For
a word u = a1 . . . ak ∈ Σ∗ (ai ∈ Σ, i ∈ [k]), p(u) = a

(1 mod m)
1 . . . a

(k mod m)
k .

Intuitively, p associates the number i mod m to the ith letter of u (we put this
number in parentheses in order not to confuse it with the usual notation of the
iteration of a letter). We will see in the proof of the next lemma that for two
sentential forms α and β of G, wdo(p(α)) ≤s wdo(p(β)) implies α �m β.

Lemma 3. Let G = (V,Σ,R, S) be a pSCG and m ≥ 1. Then there is M ∈ N

such that the following holds. For every derivation α0 ⇒ α1 ⇒ . . . ⇒ αn of G
with n ≥ M , there are i < j in [M ] such that αi �m αj.

Proof. Let m = maxpw(G), ρ = max{|rhs(r)| | r ∈ R} and consider the sequence
n1, n2, . . . where ni = iρ (i ≥ 1). Let moreover M be the number given in
Proposition 4 and α0 ⇒ α1 ⇒ . . . ⇒ αn be a derivation of G with n ≥ M .
Clearly, |wdo(p(αi))| ≤ ni, for every i ∈ [n]. Then, by Proposition 4, there are
numbers i < j in [M ] such that wdo(p(αi)) ≤s wdo(p(αj)). We show that
αi �m αj . To simplify the notation, let us denote wdo(p(αi)) and wdo(p(αj))
by u and v, respectively. If |u| = 1, then |αi| ≤ m and αi is a subword of αj .
In this case αi �m αj trivially holds. Assume now that |u| ≥ 2, and let k = |u|
and l = |αj |. Since u is a scattered subword of v, there are i1 < . . . < ik
in pos(v) such that u = subw(v, i1, 1) . . . subw(v, ik, 1). Then let g : [k] → [l]
be a strictly increasing function defined as g(ν) = iν (ν ∈ [k]). Notice that
k = |αi| − m + 1. Let moreover f : pos(αj) → pos(αi) be a (partial) function
defined as f(g(ν) + κ) = ν + κ (ν ∈ [k], κ ∈ [0,m − 1]). To see that g is an
m-embedding of αi to αj it is enough to show that f is letter preserving and
well-defined.

Let ν ∈ [k]. Using the definition of wdo we get that subw(p(αi), ν,m) =
subw(p(αj), g(ν),m) and in turn subw(αi, ν,m) = subw(αj , g(ν),m). Thus f is
letter preserving. Now, let ν ∈ [k − 1]. Using again the definition of wdo we
get that subw(p(αi), ν,m) = subw(p(αj), g(ν),m) and subw(p(αi), ν + 1,m) =
subw(p(αj), g(ν + 1),m). Thus, the upper index added by p to the first letter of
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subw(αi, ν,m) should match that of subw(αj , g(ν),m). Similar observation holds
for the words subw(αi, ν + 1,m) and subw(αj , g(ν + 1),m). This implies that
either g(ν+1)−g(ν) = 1 or g(ν+1)−g(ν) ≥ m should hold. It is easy to see that
in both cases the definition of f is consistent. Therefore g is an m-embedding of
αi to αj .

Theorem 4. L(pSCG) � L(CS).

Proof. By [16] L(pSCG) ⊆ L(CS). Thus, since L = {a22
n | n ≥ 0} is clearly

included in L(CS), it is enough to show that L �∈ L(pSCG). Assume on the
contrary that L ∈ L(pSCG) and let G be a pSCG with L(G) = L. Let moreover
m = maxpw(G). Since L is not a context-free language, we can assume that

m ≥ 1. Then let M be the number of Lemma 3, and u = a22
mMN

, where N =
max{|rhs(r)| | r ∈ R}. Let moreover der : S = α0 ⇒ α1 ⇒ . . . ⇒ αn = u be one
of the shortest derivations of G from S to u. Clearly n ≥ M . Thus, by Lemma 3,
there are i < j in [M ] such that αi �m αj . We can assume that |αi| < |αj |.
Indeed, assume on the contrary that this is not the case. Then, since G has no
erasing rules, |αi| = |αj |. This, using (ii) of Proposition 2, implies that αi = αj .
This yields that der′ : α0 ⇒ . . . ⇒ αi ⇒ αj+1 ⇒ . . . ⇒ αn is also a derivation
of G from S to u with |der′| < n. However this contradicts the assumption that
der is a shortest derivation from S to u. Applying Lemma 2 we get that there is
an u′ ∈ Σ∗ such that αi ⇒∗ u′ and |u| < |u′| ≤ (m + 1)|u|. Since S ⇒∗ αi, also
S ⇒∗ u′ holds. Consequently, u′ ∈ L.

Clearly, the shortest word v ∈ L with |u| < |v| is a22
mMN+1

. On the other
hand, |u′| ≤ (m + 1)22

mMN

< 22
mMN · 22

mMN

= 22
mMN+1

= |v|. Thus |u′| < |v|
yielding u′ �∈ L which is a contradiction. Therefore L �∈ L(pSCG).

4 Conclusions

In this paper we have investigated permitting semi-conditional grammars intro-
duced by Kelemen [13]. We showed that these grammars are strictly weaker than
context-sensitive grammars when erasing rules are not allowed. However, it is
still open whether this remains true if erasing rules are allowed. In [19] it was
shown that allowing erasing rules does not increase the generative power of per-
mitting random context grammars. To decide whether this holds also for permit-
ting semi-conditional grammars is a possible topic for future work. It is also an
interesting question, for example, whether the inclusion L(pRCG) ⊆ L(pSCG)
depicted in Fig. 1 is strict or not.
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Abstract. Motivated by the Babai conjecture and the Černý conjecture,
we study the reset thresholds of automata with the transition monoid
equal to the full monoid of transformations of the state set. For automata
with n states in this class, we prove that the reset thresholds are upper-
bounded by 2n2 − 6n + 5 and can attain the value n(n−1)

2
. In addition,

we study diameters of the pair digraphs of permutation automata and

construct n-state permutation automata with diameter n2

4
+ o(n2).

1 Background and Overview

Completely reachable automata, i.e., deterministic finite automata in which every
non-empty subset of the state set occurs as the image of the whole state set under
the action of a suitable input word, appeared in the study of descriptional com-
plexity of formal languages [26] and in relation to the Černý conjecture [13].
In [6] an emphasis has been made on automata in this class with minimal tran-
sition monoid size. In the present paper we focus on automata being in a sense
the extreme opposites of those studied in [6], namely, on automata of maximal
transition monoid size. In other words, we consider automata with full transi-
tion monoid, i.e., transition monoid equal to the full monoid of transformations
of the state set; clearly, automata with this property are completely reachable.
There are several reasons justifying special attention to automata with full tran-
sition monoid. First, as observed in [6], the membership problem for this class
of automata is decidable in polynomial time (of the size of the input automa-
ton) while the complexity of membership in the class of all completely reach-
able automata still remains unknown. Second, this class contains automata that
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correspond to Brzozowski’s most complex regular languages [7] and to other reg-
ular languages that play a distinguished role in descriptive complexity analysis.
Finally, and most importantly from our viewpoint, automata with full transi-
tion monoid are synchronizing and their synchronization issues constitute a sort
of meeting point for two famous open problems—the Babai conjecture and the
Černý conjecture. Next, we recall these conjectures and outline the contribution
of the present paper in view of these problems.

1.1 The Babai Conjecture

Let A be a set of generators of a finite group G. The Cayley graph Γ (G,A)
consists of G as the set of vertices and the edges {g, ga} for all g ∈ G, a ∈ A.
The diameter of Γ (G,A) is the maximum among the lengths of shortest paths
between any two vertices. In group theory terms, the diameter of Γ (G,A) is the
smallest � such that every g ∈ G can be represented as g = aε1

1 aε2
2 · · · aε�

� , where
εi ∈ {1,−1} and ai ∈ A for all i = 1, . . . , �. The diameter diam(G) of G is the
maximal diameter of Γ (G,A) among all generating sets A of G. The notion of
group diameter is related to the growth rate in groups, expander graphs, random
walks on groups and their mixing times, see, e.g., [23,33]. Recently, the following
conjecture received significant attention:

Conjecture 1 (Babai [4]). The diameter of each non-abelian finite simple group
G does not exceed (log |G|)O(1), where the implied constant is absolute.

Note that for the case of the symmetric group Sn, this conjecture readily
implies diam(Sn) ≤ nO(1). (The group Sn is not simple but for n ≥ 5 it contains
a non-abelian simple subgroup of index 2.)

The Babai conjecture was proved for various classes of groups, but despite
intensive research effort it remains open, see [22] for an overview. In the case of
Sn, a recent breakthrough gives only a quasipolynomial upper bound, namely,
exp(O((log n)4 log log n), and it relies on the Classification of Finite Simple
Groups [22]. It is even more astonishing if we compare it to the best known
lower bound in this case: for the classical set of generators consisting of the
transposition (1, 2) and the full cycle (1, 2, . . . , n), every permutation in Sn can
be expressed as a product of at most ∼ 3n2

4 (asymptotically) generators [40].

1.2 The Černý Conjecture

Recall that a deterministic finite state automaton (DFA) is a triple1 〈Q,Σ, δ〉,
where Q is a finite set of states, Σ is a finite set of input symbols called the
alphabet, and δ is a function δ : Q × Σ → Q called the transition function. A
word is a sequence of letters from the alphabet. The length of a word is the
number of its letters. We can look at δ(q, a) as the result of the action of the
letter a ∈ Σ at the state q ∈ Q. We extend this action to the action of words

1 As initial and final states play no role in our considerations, we omit them.
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over Σ on Q denoting, for any word w and any state q ∈ Q, the state resulting in
successive applications of the letters of w from left to right by q·w. For a subset
P ⊆ Q, we write P ·w for the set {p·w | p ∈ P}.

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exist a word w and
a state f such that Q·w = {f}. Any such word is called a synchronizing or
reset word. The minimum length of reset words for A is called the reset thresh-
old of A and is denoted by rt(A ). Synchronizing automata appear in various
branches of mathematics and are related to synchronizing codes [5], part orient-
ing problems [27,28], substitution systems [16], primitive sets of matrices [19],
synchronizing groups [3], convex optimization [20], and consensus theory [11].

Conjecture 2 (Černý [9,10]). The reset threshold of an n-state synchronizing
automaton is at most (n − 1)2.

If the conjecture holds true, then the value (n − 1)2 is optimal, since for
every n there exists an n-state automaton Cn with the reset threshold equal to
(n − 1)2 [9].

The Černý conjecture has gained a lot of attention in automata theory. It has
been shown to hold true in various special classes [14,21,24,31,35,36], but in the
general case, it remains open for already half a century. For more than 30 years,
the best upper bound was n3−n

6 , obtained in [15,30] and independently in [25].
Recently, a small improvement on this bound has been reported in [37]: the new
bound is still cubic in n but improves the coefficient 1

6 at n3 by 4
46875 . A survey

on synchronizing automata and the Černý conjecture can be found in [38].
In order to make the relationship between the Černý and the Babai conjec-

tures more visible, we borrow from [2] the idea of restating the former in terms
similar to those used in the formulation of the latter. Let Tn be the full trans-
formation monoid of an n-element set Q. A transformation t ∈ Tn is a constant
if there exists f ∈ Q such that for all q ∈ Q we have t(q) = f . We can state
the Černý conjecture as follows: for every set of transformations A ⊆ Tn, if the
submonoid generated by A contains a constant, then there exists a constant g
such that g = a1a2 · · · a�, where � ≤ (n − 1)2 and ai ∈ A for all i = 1, . . . , �. It is
easy to see that this formulation is equivalent to the original one by treating the
letters of an automaton as the transformations of its state set since reset words
precisely correspond to constant transformations.

1.3 Our Contributions

The first part of our paper is devoted to the following hybrid Babai–Černý prob-
lem2: given a set of generators A of the full transformation monoid Tn, what is
the length �(A) of the shortest product a1a2 · · · a� with ai ∈ A which is equal to
a constant? Namely, we are interested in the bounds on �(A) that depend only
on n. The hybrid Babai–Černý problem is a special case of the Černý problem.
2 During the preparation of this paper we discovered that the same question was also

posed in [34, Conjecture 3], though its connection with Babai’s problem was not
registered there.
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Indeed, it is a restriction to the class of DFAs with the transition monoid, i.e.,
the transformation monoid generated by the actions of letters, equal to Tn. Of
course, the general cubic upper bound is valid, but not the lower bound, since the
Černý automata Cn do not belong to this class (even though they are completely
reachable, see [6]). In Sect. 2 we establish that the growth rate of �(n) is Θ(n2),
more precisely, we show that n(n−1)

2 ≤ �(n) ≤ 2n2 − 6n + 5. We also present
the exact values of �(n) for small values of n resulting from our computational
experiments. Our contribution can be also seen as a progress towards resolution
of Conjecture 3 from [34].

The second part of our paper is devoted to a “local” version of the Babai
problem where we restrict our attention to the action on the set of (unordered)
pairs. Let A be a set of permutations from Sn. The pair digraph P (A) consists
of pairs {i, j} as the set of vertices and the edges ({i, j}, {ia, ja}) for all i, j
and a ∈ A. The diameter of P (A), denoted diamP (A), is the maximum among
the lengths of shortest (directed) paths between any two vertices. We study the
behavior of diamP (A) in terms of n. The problem comes from analysis of certain
aspects of Markov chains and group theory [17], but our interest in it is mainly
motivated by its importance for the theory of synchronizing automata. Indeed,
every synchronizing automaton A must have a letter a, say, whose action merges
a pair of states. Thus, one can construct a reset word for A by successively
moving pairs of states to a pair merged by a. If A possesses sufficiently many
letters acting as permutations (as automata with the full transition monoid do),
one can move pairs by these permutations, and hence, upper bounds on the
diameter of the corresponding pair digraph induce upper bounds on rt(A ).

Clearly, diam P (A) ≤ n(n−1)
2 for all A ⊆ Sn. In Sect. 3 we establish the lower

bound n2

4 + o(n2) on diam P (A) by presenting a series of examples with only
two generators for every odd n.

Due to the space constraints, proofs of Theorem 1, Lemmas 5 and 6 and
Theorem 9 have been moved to the extended version and are available on the
page https://arxiv.org/abs/1704.04047.

1.4 Related Work

The diameters of groups and semigroups constitute a relatively well studied
topic. A general discussion on diameters and growth rates of groups can be
found in [23]. Various results about the diameter of Tn and its submonoids are
described in [29,34]. The length of the shortest representation of a constant
(including the case of partially defined transformations) is typically studied in
the framework of synchronizing automata, see [1,38,39].

2 Automata with Full Transition Monoid

2.1 Näıve Construction

Recall that, on the one hand, the Černý automata Cn from [9] have two letters
of which one acts as a cyclic permutation and the other fixes all states, except

https://arxiv.org/abs/1704.04047
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Fig. 1. The automaton CBn,k

one, which is mapped to the next element in the cyclic order defined by the
cyclic permutation. On the other hand, the extremal case of the Babai conjec-
ture for Sn is composed of a cyclic permutation and the transformation which
fixes all elements except two, which are neighbors in the cyclic order defined by
the cyclic permutation. Therefore, one could wonder if a combination of these
transformations could result in a DFA with both large reset threshold and full
transition monoid.

The construction is defined as follows. There are n states q1, . . . , qn and
three letters a, b, and c. The letter a acts as a cyclic permutation on the states,
following their indices. The letter b fixes all states, except q1, which is mapped
to q2 by b. The letter c fixes all states, except qk and qk+1, for some k, which are
swapped by c. The resulting automaton CBn,k is shown in Fig. 1. We notice that
if we remove the letter c, we obtain the automaton Cn from the Černý family
providing the largest currently existing lower bound in the Černý problem, and
if we remove the letter b, we obtain a generating set of the group Sn providing
the largest currently existing lower bound in the Babai problem for Sn. Also
observe that in the case where k = 2, our automaton is nothing but Brzozowski’s
“Universal Witness” [7] recognizing the most complex regular language, i.e., the
language witnessing at once practically all tight lower bounds found for the state
complexity of various operations with regular languages, see [7, Theorem 6]. The
next result shows that, however, the reset threshold of the automaton CBn,k is
upper-bounded by O(n log n), while, as we show later, among automata with full
transition monoid there exist ones whose reset threshold is a quadratic function
of their state number.

Theorem 1. The automaton CBn,k has a reset word of length at most
4n
log2 n�.

2.2 Random Sampling and Exhaustive Search

Every DFA with the transition monoid Tn necessarily has permutation letters
that generate the whole symmetric group Sn and a letter of rank n − 1 (i.e., a
letter whose image has n− 1 elements). It is a well known fact that the converse
is also true, i.e., the transition monoid of any automaton with permutation
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letters generating Sn and a letter of rank n − 1 is equal to Tn, see, e.g., [18,
Theorem 3.1.3].

Relying on a group-theoretic result by Dixon [12], Cameron [8] observed that
an automaton formed by two permutation letters taken uniformly at random and
an arbitrary non-permutation letter is synchronizing with high probability. We
give an extension by using another non-trivial group-theoretical result, namely,
the following theorem by Friedman et al. [17].

Theorem 2. For every r and d ≥ 2 there is a constant C such that for d per-
mutations π1, π2, . . . , πd of Sn taken uniformly at random, the following property
Fr holds with probability tending to 1 as n → ∞: for any two r-tuples of distinct
elements in {1, 2, . . . , n}, there is a product of less than C log n of the πi’s which
maps the first r-tuple to the second.

Corollary 3. There is a constant C such that the reset threshold of an n-state
automaton with two random permutation letters and an arbitrary non-permuta-
tion letter does not exceed Cn log n with probability that tends to 1 as n → ∞.

Proof. Let A = 〈Q,Σ, δ〉 stand for the automaton in the formulation of the
corollary. We let a ∈ Σ be the non-permutation letter and assume that the two
permutation letters in Σ have the property F2 of Theorem 2 for r = 2 with
some constant C. By Theorem 2 this assumption holds true with probability
that tends to 1 as n → ∞.

There exists two different states q1, q2 ∈ Q such that q1·a = q2·a. The set
Q·a contains less than n elements. If |Q·a| = 1, then a is a reset word for A .
If |Q·a| > 1, take two different states p1, p2 ∈ Q·a. By F2, there is a product w
of less than C log n of the permutation letters such that pi·w = qi for i = 1, 2.
Now |Q·awa| < |Q·a|. If |Q·awa| = 1, awa is a reset word for A . If |Q·awa| > 1,
we apply the same argument to a pair of different states in Q·awa. Clearly, the
process results in a reset word in at most n − 1 steps while the suffix appended
at each step is of length at most C log n + 1. Hence the length of the reset word
constructed this way is at most (C + 1)n log n. �

Corollary 3 indicates that one can hardly discover an n-state automaton
with the transition monoid equal to Tn and sufficiently large reset threshold by
a random sampling. Therefore, we performed an exhaustive search among all
automata with two permutation letters generating Sn and one letter of rank
n − 1. Our computational results are summarized in Table 1.

Table 1. The largest reset thresholds of n-state automata two permutation letters
generating Sn and one letter of rank n− 1

Number of states 2 3 4 5 6 7

Reset threshold 1 4 8 14 19 27

As n grows, the reset thresholds of the obtained examples become much
smaller than (n − 1)2. We were unable to derive a series of n-state three-letter
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automata with the transition monoid Tn and quadratically growing reset thresh-
olds. We suspect that the reset threshold of automata in this class is o(n2).

In the case of unbounded alphabet, for every n, we present an n-state automa-
ton Vn with the transition monoid Tn such that rt(Vn) = n(n−1)

2 . The state set of
Vn is Qn = {q0, . . . , qn−1} and the input alphabet consists of n letters a1, . . . , an.
The transition function is defined as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qi·aj = qi for 0 ≤ i < n, 1 ≤ j < n, i �= j, i �= j + 1, j �= n,
qi·ai = qi−1 for 0 < i ≤ n − 1,
qi·ai+1 = qi+1 for 0 ≤ i < n − 1,
q0·an = q1·an = q0,
qi·an = qi for 2 ≤ i ≤ n − 1.

Simply speaking, every letter ai for i ≤ n − 1 swaps the states qi and qi−1 and
fixes the other states. The letter an brings both q0 and q1 to q0 and fixes the
other states. The automaton V5 is depicted in Fig. 2.

q0 q1 q2 q3 q4

a2, a3, a4, a5

a1

a1, a5

a2

a3, a4

a2

a3

a1, a4, a5

a3

a4

a1, a2, a5

a4

a1, a2, a3, a5

Fig. 2. The automaton V5

Recall that a state z of an DFA is said to be a sink state (or zero) if z·a = z
for every input letter a. It is known that every n-state synchronizing automaton
with zero can be reset by a word of length n(n−1)

2 , cf. [31]. To show that this
upper bound is tight for each n, Rystsov [31] constructed an n-state and (n−1)-
letter synchronizing automaton Rn with zero which cannot be reset by any word
of length less than n(n−1)

2 . In fact, our automaton Vn is a slight modification of
Rn as the latter automaton is nothing but Vn without the letter a1.

Theorem 4. For every n, the automaton Vn has Tn as its transition monoid
and rt(Vn) = n(n−1)

2 .

Proof. The letters a1, . . . , an−1 generate Sn because the product a1 · · · an−1 is a
full cycle and any full cycle together with any transposition generates Sn. Since
the letter an has rank n − 1, it together with a1, . . . , an−1 generates Tn.

The automaton Vn is synchronizing because so is the restricted automaton
Rn, and rt(Vn) ≤ n(n−1)

2 because every reset word for Rn resets Vn as well.
It remains to verify that the length of any reset word for Vn must be at least
n(n−1)

2 . Let w be a reset word of minimum length for Vn. Since an is the only non-
permutation letter, we must have w = w′an for some w′ such that |Qn·w′| > 1.
This is only possible when Qn·w′ = {q0, q1} whence Qn·w = {q0}. Consider
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the function f from the set of all non-empty subsets of Qn into the set of non-
negative integers defined as follows: if S = {qs1 , . . . , qst

}, then f(S) =
∑t

i=1 si.
Clearly, f({q0}) = 0 and f(Qn) = n(n−1)

2 . For any set S and any letter aj , we
have f(S·aj) ≥ f(S) − 1 since each letter only exchanges two adjacent states
or maps q1 and q0 to q0. Thus, when we apply the word w letter-by-letter, the
value of f after the application of the prefix of w of length i cannot be less than
n(n−1)

2 − i. Hence, to reach the value 0, we need at least n(n−1)
2 letters. �

2.3 Upper Bound on the Reset Threshold

We now provide a quadratic upper bound on the reset words of automata with
the transition monoid equal to Tn. Our proof is inspired by the method of
Rystsov [32] adapted to our case.

Let A = 〈Q,Σ, δ〉 be a DFA. Given a proper non-empty subset R ⊂ Q and a
word w over Σ, we say that R can be extended by w if the cardinality of the set
Rw−1 = {q ∈ Q | q·w ∈ R} is greater than |R|. Now assume that |Q| = n and the
transition monoid of A coincides with the full transformation monoid Tn. Then
there is a letter x of rank n−1. The set Q\Q·x consists of a unique state, which
is called the excluded state for x and is denoted by excl(x). Furthermore, the set
Q·x contains a unique state p such that p = q1·x = q2·x for some q1 �= q2; this
state p is called the duplicate state for x and is denoted by dupl(x). We notice
that a non-empty subset R ⊂ Q can be extended by x if and only if dupl(x) ∈ R
and excl(x) /∈ R. Moreover, if a word w is a product of permutation letters, R can
be extended by the word wx if and only if dupl(x) ∈ Rw−1 and excl(x) /∈ Rw−1.
To better understand which extensions are possible, we construct a series of
directed graphs (digraphs) Γi, i = 0, 1, . . . , with the set Q as the vertex set.

The digraph Γ0 has the set E0 = {(excl(x),dupl(x))} as its edge set. Let Π be
the set of permutation letters of A . Notice that Π generates the symmetric group
Sn. By Πi we denote the set of words of length at most i over the letters in Π. The
digraph Γi for i > 0 has the edge set Ei = {(excl(x)·w,dupl(x)·w) | w ∈ Πi}.
The digraphs Γi, i = 0, 1, . . . , form a sort of stratification for the graph Γ∞ with
the edge set E∞ = ∪∞

i=0Ei; the latter digraph has been studied in [6,32] (in the
context of arbitrary completely reachable automata). Observe that none of the
digraphs Γi, i = 0, 1, . . . , have loops.

Recall that a digraph is said to be strongly connected if for every pair of its
vertices, there exists a directed path from the first vertex to the second. We need
the two following lemmas.

Lemma 5. If the digraph Γk is strongly connected, then every proper non-empty
subset in Q can be extended by a word of length at most k + 1.

Lemma 6. The digraph Γ2n−3 is strongly connected.

Theorem 7. Let A be an n-state automaton with the transition monoid equal
to Tn. The reset threshold of A is at most 2n2 − 6n + 5.
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Proof. Let x be a letter of rank n−1 and h = dupl(x). We extend the set {h} by
x, getting a subset R2 with |R2| ≥ 2. Lemmas 5 and 6 imply that proper non-
empty subsets in Q can be extended by words of length at most 2n−2. Starting
with R2, we extend subsets until we reach the full state set. Let ui be the word
of length at most 2n − 2 used for the i-th of these extensions and let m be the
number of the extensions. Observe that m ≤ n − 2. Clearly, the word um · · · u1x
resets A and has the length at most 1 + (n − 2)(2n − 2) = 2n2 − 6n + 5. �
Remark 8. Let A = 〈Q,Σ, δ〉 be an n-state DFA that has a letter of rank
n − 1, and let P be the subgroup of the symmetric group Sn generated by the
permutation letters from Σ. Our proof of Theorem 7 actually works in the case
if P is a 2-transitive group, that is, P acts transitively on the set of ordered
pairs of Q.

3 Bounds on the Diameter of the Pair Digraph

In this section we present a lower bound on the largest diameter of the pair
digraph P (A) for A ⊆ Sn. We proceed by presenting subsets A ⊆ Sn for every
odd n whose diameter is n2

4 + o(n2). In order to simplify the presentation, we
mostly use automata terminology and describe the corresponding examples as
a family of automata Fn = 〈Qn, A, δ〉 (the input letters of Fn form the subset
A). We let Qn = {q1, . . . , qn} and denote pairs of states such as {qi, qj} simply
by qiqj .

q1

q2

q3

q4

q5q6 q7
a

b

a

b

a

b

a

b

b

ab

a

a
b

Fig. 3. The automaton F7

The automaton F7 shown in Fig. 3 is the first of the family Fn. The digraph
of pairs of its states is shown in Fig. 4. One can verify that the shortest word
mapping q2q4 to q4q7 has length 15.

The automata of the family are obtained recursively, starting with F7. From
Fn, we construct Fn+2. The effect of the letters is the same for the states
q1, . . . , qn−2 in Fn and Fn+2. The effect of the letters a and b at the states
qn−1, qn, qn+1 and qn+2 is defined as follows: the letters mapping qn−1 and qn

to themselves in Fn exchange qn−1 with qn+1 and qn with qn+2 respectively
in Fn+2. The other letter maps qn+1 and qn+2 to themselves and qn−1, qn to
qn−3 and respectively qn−2. The result is shown in Fig. 5 (for n ≡ 3 (mod 4)),
in which k stands for n−5

2 .
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Fig. 4. The pair digraph of F7

q1

q2

q3

q4

q5q6 · · ·· · · q2k+3 q2k+5q2k+4

a

b

a

b

a

b
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b
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a a
b

b

ab

ab
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Fig. 5. The automaton F2k+5, with k odd

Theorem 9. For odd n ≥ 7, the diameter of the pair digraph of the automaton
Fn is at least n2

4 + o(n2).

Proof Sketch. For the automaton Fn (n > 7, n ≡ 3 (mod 4)), we claim that any
word mapping q2q4 to qk+2qk+4 with k = n−5

2 has length at least n2

4 + 5n
4 −7. For

this, we define a function N which associates a non-negative integer N(qiqj) to
each pair qiqj , i < j. This function is such that if a pair qiqj is mapped by a or b
to a pair qi′qj′ , then N(qi′qj′) ≥ N(qiqj)−1. This implies that if (qiqj)·w = qsqt

for some word w, then the length of w is at least N(qiqj)−N(qsqt). The number
assigned to qk+2qk+4 is 0, while the number given to q2q4 is equal to n2

4 + 5n
4 −7,

thus, the claim holds. The values of the function N are provided in the extended
version.

In addition, a word of length n2

4 + 5n
4 − 7 that maps q2q4 to qk+2qk+4 is

described in the extended version. Therefore n2

4 + 5n
4 − 7 is the exact value of

the “distance” between these two particular pairs.
A similar argument holds for n ≡ 1 (mod 4), with the distance between two

particular pairs of states being at least n2

4 + 5n
4 − 7.5. �

Our numerical experiments confirm that n2

4 + 5n
4 − 7 is indeed the diameter

of the pair graph of the automaton Fn for n ≡ 3 (mod 4) from n = 11 to n = 31
while n2

4 + 5n
4 − 7.5 is the exact value of the diameter for n ≡ 1 (mod 4) from

n = 13 to n = 29.
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We have also computed the largest diameter of the pair digraph P (A) for
all A ⊆ Sn with |A| = 2 and n = 5, 7, 9 and performed a number of random
sampling experiments with two permutations for larger values of n. The experi-
mental results suggest that the pair digraph of the automaton Fn has the largest
diameter among all possible pair digraphs. Thus, we formulate the following:

Conjecture 3. The diameter of the pair digraph for a subset of Sn is bounded
above by n2

4 + o(n2).

4 Conclusion

We studied the hybrid Babai–Černý problem, where the question is to find tight
bounds on the reset threshold for automata with the full transition monoid. We
presented a series of n-state automata Vn in this class with the reset threshold
equal to n(n−1)

2 , thus establishing a lower bound for the problem, and found an
upper bound with the same growth rate, namely, 2n2+o(n2). We also described a
series of n-state automata with diameter of the pair digraph equal to n2

4 +o(n2).
For follow-up work, one direction is to refine the bounds with respect to the

constants that do not match yet. Also, a lower bound for the hybrid problem
using only three letters (generators) is of interest, since the number of letters of
the presented family Vn is equal to the number of states.
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Abstract. Cellular automata are a parallel model of computation. This
paper presents studies about the impact of the choice of the neighborhood
on small complexity classes, mainly the real time class. The main result
states that given two neighborhoods N and N ′, if N has a limiting
vertex in some direction and N ′ have no vertex in that direction then
there is a language recognizable in real time with N ′ and not with N .
One easy corollary is that real time classes for two neighborhoods may
be incomparable (and such neighborhoods are easy to construct).

1 Introduction

Cellular automata (CA) were first introduced in the 1940s (published posthu-
mously in 1966) by J. von Neumann and S. Ulam as a mathematical model to
study self-replication [5]. A cellular automaton is made of an infinity of identical
cells, disposed on the Z

2 grid, each connected to its four nearest neighbors. Each
cell is in a specific state from a finite set common to all cells (for example dead
or alive). The evolution of this system is discrete and massively parallel. At each
time step, every cell changes its state into a new one determined by its previous
state and those of its neighbors.

Although this model was initially designed to be studied as a dynamical
system, A.R. Smith III proved that it is possible to embed Turing machines in
cellular automata [7], proving this system to be a convenient model for massively
parallel computation.

The initial model of Ulam and von Neumann has quickly been modified,
mainly regarding two aspects. The first one is the two-dimensionality of the
model. Replacing Z by Z

d it is easy to adapt cellular automata to any dimension.
Another way to modify the model is to change the definition of neighbors, that
is changing the way cells are connected to each other.

Our main interest is to understand the differences (in terms of computational
properties) induced by the choice of the neighbors. It is well known that every
neighborhood gives the same computational speed up to a multiplicative con-
stant. Therefore we are interested in classes of very small complexity, namely the
real time class. The real time is in some way the time needed by the automaton
to read its input. The real time class is therefore the set of languages recog-
nizable in real time. This class obviously depends on the dimension and on the
neighborhood of the automata.
c© Springer International Publishing AG 2017
É. Charlier et al. (Eds.): DLT 2017, LNCS 10396, pp. 198–209, 2017.
DOI: 10.1007/978-3-319-62809-7 14
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It has been shown by Poupet [6] that one-dimensional neighborhoods can
be partitioned into two categories: those which connect cells in both directions
and those where cells are only connected in one direction. Moreover, allowing
transmission of information in both directions really adds computational power
in real time [1]. The two-dimensional case is much more complex. Although some
results show the equivalence in real time of some neighborhoods [2,3], Terrier
showed in [8] that Moore and von Neumann neighborhoods are not equivalent
for real time computation. More precisely there is a language recognizable in
real time with von Neumann neighborhood but not with Moore neighborhood.
Terrier later expanded the result to every neighborhood with a limiting vertex
(instead of just Moore neighborhood) [9].

This language is the first example of a language recognizable in real time with
some neighborhoods but not with some others. This is the first step towards a
more precise classification of languages. Indeed we could classify languages inside
the already small class of real time recognizable languages by looking at the set
of neighborhoods which allows to recognize it. Even though the whole classifica-
tion is a really long term goal, studying the algorithmic properties induced by
different neighborhoods seem to be the best way to work towards it.

The following paper presents two results. The first one is a generalization of
Terrier’s proof in order to expand the result to a whole class of languages instead
of the specific one she introduced. The second result, probably the most inter-
esting one, consists in showing that two neighborhoods with different limiting
vertices induce incomparable real time classes. An immediate corollary of this
theorem is that there is an infinite family of neighborhoods which classes are all
incomparable with each other.

2 Definitions

2.1 Cellular Automata

Definition 1 (Cellular Automaton). A cellular automaton (CA) is a
quadruple A = (d,Q,N , δ) where:

– d ∈ N is the dimension of A;
– Q is a finite set whose elements are called states;
– N ⊂ Z

d is a finite set called neighborhood of A such that 0 ∈ N ;
– δ : QN → Q is the local transition function of A.

A configuration of the automaton is a mapping C : Z
d → Q. The elements of

Z
d are called cells and for a given cell c ∈ Z

d, we say that C(c) is the state of c in
the configuration C. The set of all configurations over Q is denoted Conf(Q). For
a given configuration C ∈ Conf(Q) and a cell c ∈ Z

d, define the neighborhood
of c in C

NC(c) =
{N → Q

n �→ C(c + n)
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Fig. 1. von Neumann neighborhood (left) and Moore neighborhood (right).

From the local transition function δ, we define the global transition function ΔA
of the automaton. The image of a configuration C by ΔA is obtained by replacing
the state of each cell c by the image by δ of the neighborhood of c in C:

ΔA :

⎧⎨
⎩

Conf(Q) → Conf(Q)

C �→
{

Z
d → Q
c �→ δ(NC(c))

In this article, we will only consider 2-dimensional CA with various neighbor-
hoods. From now on every definition is given for 2-dimensional neighborhoods.
Two neighborhoods are of particular interest: von Neumann neighborhood and
Moore neighborhood (see Fig. 1).

2.2 Neighborhoods

Definition 2 (Convex Hull). A neighborhood N , as a subset of N
2 can also

be seen as a subset of R
2. As such, we define its continuous convex hull (denoted

CH(N )) is the smallest convex set of R
2 that contains N . It is a polygon which

vertices are elements of N . Those vertices are called the vertices of N .

In the paper we will also use the following notations:

nx = (max{x ∈ Q | (x, 0) ∈ CH(N )}, 0).

ny = (0,max{y ∈ Q | (0, y) ∈ CH(N )}).

N k+1 = N k ⊕ N .

Definition 3 (Completeness). We say that a neighborhood N is complete, if
Z
2 =

⋃ N k.

Definition 4 (Convexity). We say that a neighborhood N is convex, if N =
CH(N )

⋂
Z
2.

2.3 Language Recognition

In this paper, we focus on performing language recognition with 2-dimensional
cellular automata. The languages we are interested in are languages of 2-
dimensional finite words. One can think of several ways to deal with finite words
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with infinite cellular automata. Different ways of defining the recognition process
can be found for example in [4] or [8]. We choose here to define an initial config-
uration where a finite number of cells are in states that represent the letters of
the input word and all the others are in a specific quiescent state we denote by
�. The result of the computation will be read on the bottom left corner of the
input word. The bottom left cell will enter in an accepting state only for words
of the language.

Definition 5 (Language Recognizer). Given a finite alphabet Σ and a lan-
guage L ⊆ Σ∗∗, a 2-dimensional CA A with states Q is said to recognize L in
time f : N

2 → N with accepting states Qa ⊆ Q and quiescent state q0 ∈ Q if,
Σ ⊆ Q and for any word w of size n×m in Σ∗∗, starting from the configuration

Z
2 → Q

(x, y) �→
{

wx,y if x ∈ �0, n − 1� and y ∈ �0,m − 1�
q0 otherwise

the state of the origin at time f(n,m) is in Qa if and only if w ∈ L.

Definition 6 (Real Time). The real time (denoted RT(N , n,m)) corresponds
to the minimal time such that the state of the origin cell depend on the whole
input word. It is a function of both the neighborhood and the size of the input.
Formally:

RT(N , n,m) = min{t ∈ N | �0, n − 1� × �0,m − 1� ⊂ N t}
Definition 7 (Real Time class). We say that a language L is recognizable in
real time with a neighborhood N if there is a cellular automaton with neighbor-
hood N which recognizes L in real time. That is each word of L of size (n × m)
is either accepted or rejected in at most RT(N , n,m) time steps. We denote by
CAN (RT) the class of languages recognizable in real time with N .

In the whole paper, we are only interested in complete neighborhoods, for
convenience we will now omit the word complete, and simply talk about neigh-
borhoods. Moreover, the following theorem, by V. Poupet and M. Delacourt
in [2] allows us to consider only convex neighborhoods.

Theorem 8 (Poupet and Delacourt 2007). Given any complete neighbor-
hood N , we have CACH(N )(RT) ⊆ CAN (RT).

3 Difference Between Real and Linear Time

In this section we recall a language introduced by V. Terrier in [8]. This language
cannot be recognized in real time by any neighborhood with some specific vertex,
called limiting vertex. Her proof involves some precise counting argument. We
will expand her result to a set of languages for which the same kind of counting
argument works. We will then, in the next section, show how to build such a
language so that it can be recognized by some specific neighborhood.
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Definition 9 (Limiting vertex). Given a neighborhood N and v = (a, b) ∈ N ,
we say that v is a limiting vertex if:

– v is a vertex of N ,
– both a and b are positive,
– [|0, a|] × [|0, b|] ⊆ N .

This definition of a limiting vertex may seem pretty specific but it is in
fact rather reasonable to consider neighborhoods with such a vertex. To have a
vertex with both coordinates positive means that there is a south west direction
in which the information can travel faster by going south and west at the same
time than by going south then west. The limiting condition means that in order
to go south (or west) it is at least as fast to go straight south (or west) than to
use this diagonal movement.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

011

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0111

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

Fig. 2. Two words of size 12 × 12, the one on the left is in L, the one on the right is
not. Yellow cells are the one containing the code, and therefore marked. (Color figure
online)

The language L is composed of 2-dimensional words (called pictures) over
{0, 1}2 that is each cell contains a couple of bits. On the second component, the
only 1’s are on the right of the topmost row and on the top of the rightmost
column. Those strings can be seen as integers. We denote those numbers x and
y. We say that a picture W of size n×m is in L if W (n−x,m−y) = 1. If x > n
or y > m then W is not in L (see Fig. 2).

Theorem 10 (V. Terrier 2004). Let N be a neighborhood with at least one
limiting vertex v = (a, b), then L /∈ CAN (RT).

For our purpose, we will need to extend the theorem to a bigger set of lan-
guages. We will keep the main idea of the language L, the coordinates of a cell
c are given in a part of the input, far from the origin, and the result depends on
the bit contained in cell c. We then try to find the minimal conditions such that
the counting argument involved in V. Terrier’s proof can be adapted.

First of all we consider two-dimensional words with any finite alphabet Σ .
We then define the following set of languages:
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Definition 11 (Encoded Languages). An encoded language any language L
such that there exist a function C : Σ∗∗ �→ Z

2 with the following properties:

– w ∈ L ⇔ w(C(w)) = 1,
– there is an integer k such that C(w) only depends on the letters of w placed

on the k log(n + m) rightmost columns and k log(n + m) topmost lines, and
on n and m where (n × m) is the size of w,

– denote by I(n,m) the image of C restricted to words of size (n × m), then
|I(n,m)

⋂
�0, n� × �0,m�| ≥ nm

l , for some integer l.

In order to simplify the construction in Sect. 4 we want to restrict the lan-
guages to some inputs. Formally we define a restriction on the size of the input
as follows:

Definition 12 (Restriction of a language). If L is a 2-dimensional language
over Σ, we say that L′ is a size-restriction of L if there is a property P over
couples of integers such that w ∈ L′ ⇔ (w ∈ L & P (n,m)) where w is of size
(n × m).

Theorem 13. Let L be a size-restriction of an encoded language, N a neigh-
borhood with a limiting vertex (x, y). If L contains arbitrarily large words of size
(n×m) with n

m = x
y then it is not recognizable in real time with neighborhood N .

Proof. The main idea of the proof is that the information contained in the fur-
thest cells from the origin have to be brought back to the origin using a nearly
optimal path. For some inputs, the optimal path is a straight line to the origin.
In such an input, this information can only interact with a restricted number of
cells, along the path. We can then show that this number is small enough that it
cannot contain all the information contained in the original input, in particular
some information about cells that could be designed by the encoding are lost.

We will now suppose that such a language is recognizable and find a contra-
diction.

Let N be a neighborhood with a limiting vertex v = (a, b). Let L be a
size-restriction of an encoded language with arbitrarily large inputs of ratio a

b .
Suppose there is an automaton A with this neighborhood which recognizes L.

Now take n and m such that n
m = a

b and L contains a word of size (n × m).
Therefore, there is a function C such that L contains each word w of size (n×m)
such that w(C(w)) = 1. Accordingly to our definition, there is a constant c such
that C only depends on cells in a rectangle of size c. log(n + m) × c. log(m + n)
in the north east corner of the input.

To formally prove our claims, we introduce the following notations:

Definition 14 (Notations)

– RT = RT(N , n,m)
– U = �n − c log(n + m), n� × �m − c log(n + m),m�.
– V = (�0, n� × �0,m�)\U .
– K(t) = −N t(U) ∩ NRT−t(0).
– T (t) = N (K(t))\K(t).
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The set U is the set of cells containing relevant information for the coding
C. V denotes the other cells of the input. The set K(t) is the set of cells which
at time t depends on the input on U and are still relevant for the recognition
(meaning that they can affect the state of the origin before real time). The set
T (t) contains each cell needed to compute the states of the cells of K(t + 1) at
time t + 1, knowing the state of the cells of K(t) at time t. For convenience we
will say states of K(t) for states of the cells of K(t) at time t, and states of T (t)
for states of cells of T (t) at time t.

First we can remark that the states of T (t) do not depend on the input on
U . Indeed, the states of T (t) are relevant for the computation of the states of
K(t + 1) and therefore relevant for the recognition. If any such state depended
on the input in U , it would be in K(t). In other words, the states of T (t) are
uniquely determined by the input on V .

Moreover we can see that the knowledge of the states of T (t) for all t allows us
to compute K(RT) given K(0). Now notice that U = K(0) and K(RT) contains
only the origin. Therefore two inputs on V which lead to the same states in T (t)
are equivalent, that is for any input on U the result of the computation is the
same with any of the two inputs on V . From this it is easy to see that there is
at most |Q|T equivalence classes where T =

∑RT
t=0 |T (t)|

The third constraint on the function C (having an image big enough inside
V ) implies that there is at least 2

nm
l equivalence classes for inputs on V . Indeed

if two inputs differ on a cell inside the image of C, the result of the computation
with both inputs should not be the same when U designs this cell.

The rest of the proof consists in bounding the size of T (t) in order to achieve
a contradiction regarding this number of equivalence classes.

Lemma 15. The size of K(t) is bounded by a O(log(n) + log(m)) which does
not depend on t.

Proof. First of all, it is easy to see that |T (t)| is bounded by |K(t)| × |N |. This
is why we are now trying to bound |K(t)|.

The part NRT−t(0) have the shape of the convex hull of N , centered in the
origin cell. One extremum point is (RT−t)v. Consider W (t) the minimal cone
anchored in (RT−t)v which contains NRT−t(0) (see Fig. 3). As v is a vertex,
this cone is less than a half plane, and because v is limiting, it contains more
than the south west quarter of the plane. In particular W (0) contains the whole
input.

Now consider N −t(U). We denote by u0 the cell (n − c log(n + m),m −
clog(m + n)), on the bottom left of U .

The shape of this part is slightly more complicated but one can check that
one extremum point is ((n − c log(n + m),m − clog(m + n)) − tv) = u0 − tv. We
similarly define W ′(t) the minimal cone anchored in u0−tv, containing N −t(U).
Now remark that those two cones are symmetric up to translation. Indeed, the
angles of the cones are the same and only depend on the shape of N .
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K(t) is then contained in the intersection of W (t) and W ′(t) (see Fig. 3). As
the angle of the cones does not depend on time, the size of K(t) only depends
on the distance between the two anchors of the cones. Moreover this size of the
intersection is always polynomial in this distance (quadratic in dimension 2).
Clearly the distance between the two anchors, uO − tv and (RT−t)v, does not
depend on t. Therefore we only have to bound the distance between u0 and RT v.

Because the vertex v is limiting, and because the proportion of the input is
well chosen (the same proportion as v), we know that RT v = (n,m). It is then
rather easy to see that the distance between the anchors is ‖(c.log(n), c.log(m))‖.

The size of K(t) is therefore bounded by some O(log(n) + log(m)) Thus the
lemma is proved.

Fig. 3. The set U is in red, both W (t) and W ′(t) are in green. The intersection is
therefore in darker green. The left picture is taken at time t = 0 and the right one at
t = 2. (Color figure online)

The number of equivalence classes is therefore bounded by
2O(RT(log(n)+log(m)) = 2O((n+m)(log(n)+log(m)) which contradicts the fact that
there is at least 2

nm
l classes.

4 Incomparability Between Neighborhoods

The previous section introduced a convenient class of languages that are not real
time recognizable with some neighborhoods. In this section we will construct
specific languages in this class to prove that the real time recognition classes of
many neighborhoods cannot be compared. Before proving our theorem we shall
recall another result from V. Terrier.

Theorem 16 (V. Terrier 1999). The language L can be recognized in real
time with von Neumann neighborhood.
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Proof. The automaton will have two tasks to perform in parallel. The first one
is numbering lines and columns, starting from the north east corner. Therefore
in all the rest of the section, the ith column (row) denotes the ith one starting
from the right (top) of the picture. In particular the first column denotes the
rightmost one and the first row denotes the topmost one. V. Terrier explains
how the numbering can be done such that the ith bit of the number of the jth

column (or row) can be known at time i + j − 1 (see Fig. 4).

t = 0 t = 7

00
0
0

0
0

0

00
0

0

1
1

1

1 1
1
1

1
1

1
1
1 1

1
1 1

1
1

Fig. 4. Numbering rows and columns.

One important remark is that this counting is made using only two vertices
of von Neumann neighborhood, the north and east ones. At the same time,
the automaton starts copying the first column and the first row on every other
column and row. This copying is made on another layer of the automaton, not
destroying any information. At time t, the bit of least weight of the number of
the tth column (row) is known, and the last column (row) is copied on the tth

one. The automaton immediately starts a comparison between the code and the
number of the column (row). This comparison ends at the end of the code (which
has to be recognizable). If the two numbers correspond, a signal is sent, waiting
to cross a row signal of same nature. When the two signals cross each other, if
the cell hosting the crossing contains a 1, a specific signal is sent towards the
origin in order the make the automaton accept the word. Otherwise no signal is
sent and the origin stays in a reject state. Once more all this work is done using
only the same two vertices of von Neumann neighborhood.

Theorem 17. If N is a neighborhood with a limiting vertex v = (a, b) and N ′

is another neighborhood with no vertex (c, d) having slope α = c
d = a

b , then
CAN ′(RT) � CAN (RT).

The idea here is to create a specific encoding, and therefore a language that
cannot be recognized in real time with N , which “helps” N ′.

Proof. We will focus on the neighborhood N ′, as the condition for being not
recognizable with N are, with the previous theorem, rather easy to achieve.
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Consider v1 the first vertex of N ′ of slope greater than α, v2 the last one of
slope lower than α (see Fig. 5(a)). If v1 is not in the north east quarter, we
will consider n′

y instead, and n′
x instead of v2 if it is outside the north east

quarter similarly. These two vectors are a linear combination of v1 and v2 in
that particular case. However, they might not be in N ′. If so we consider the
smallest power of N ′ for which they are, which exists because N ′ is supposed
to be complete. The construction will be presented for this neighborhood, as an
automaton with N ′ can simulate its behavior in real time.

(a) The neighborhood N ′ in blue
have no vertex of slope α. the two
vertices v1 and v2 are the first ones
after and before α.

(b) A word with a grid marked in dark
green (we do not show the marking of
the borders), and a code depicted in
blue.

Fig. 5. (a) The neighborhood N ′ in blue have no vertex of slope α. The two vertices
v1 and v2 are the first ones after and before α. (b) A word with a grid marked in dark
green (we do not show the marking of the borders), and a code depicted in blue. (Color
figure online)

The language we define is constructed on two layers: one is used to mark
some specific grid, and the other should contain some geometric transformation
of a word of L.

The first layer needs 6 symbols, one for cells outside the grid, one for cells
in the grid and 4 to mark each border of the grid. To build an acceptable grid
for a word w, pick a cell c = k1v1 + k2v2 near the north-east corner of the word
(that is neither c+ v1 nor c+ v2 are in w), and mark every cell i = i1v1 + i2v2 =
c − j1v1 − j2v2. Those cells are exactly the ones accessible from the origin by v1
and v2, and that can access c with the same vectors.

We can easily construct a bijection between this grid and a rectangle of Z
2,

associating v1 to (0, 1) and v2 to (1, 0). That is, we can associate to each word
w with such a grid a smaller word w′.
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The new language we consider is the set of words w with the described grid
on one layer, and such that it is associated to a word of L (considering only the
second layer of the associated word).

Moreover we restrict this language to pictures of size (n,m) with ( n
m = α.

Without any restriction N ′ would not be able to recognize our language.
One example of a word in this language is depicted in Fig. 5(b).
First, we prove that this language is not recognizable in real time with N .

Because of the “maximality” of the cell c delimiting the grid, the codes are
contained in a small area near the north-east corner. Moreover the image of the
code contains every cell of the grid, which is a linear subset of w. Therefore by
the Theorem 13, this language is not recognizable in real time with N .

Now we have to check that it is recognizable with N ′. To do that we construct
an automaton with N ′ the following way: the automaton will at the same time

– check that the input has the right proportion,
– check that the grid is correctly marked,
– check that the word on the grid is in L.

The first verification can be done by sending a signal from the north-east
corner, at maximum speed, with the right slope α. As N ′ have no vertex of
slope α, we will use a combination of v1 and v2 to approximate it. The signal
then have an average slope of α but will differ from the correct path by a constant
value from time to time. As α is rational, this difference is easy to correct near
the origin.

The second point can be done locally in one step. If an error is detected by
a cell on the grid, it is sent to the origin is less than the real time, using vertices
v1 and v2. However it is possible that some cells located outside the main grid,
are also marked as cells in the grid. As all the interactions are made accordingly
to v1 and v2 nothing happening outside the main grid (the one started by the
origin cell, and closed by marked borders) can interfere with the result of the
computation.

To do the last step remark that, by associating v1 to (0, 1) and v2 to (1, 0)
the automaton will, on the grid, simulate any automaton with von Neumann
neighborhood working on the associated word. In particular we can simulate
the one that recognizes L in real time. This real time is less than the real time
with only v1 and v2 as vertices (it is the optimal time for the cell c to send its
information to the origin). Because N ′ does not have any vertex between v1 and
v2, its real time is no less than this one.

Corollary 18. Any two neighborhoods with incomparable sets of limiting ver-
tices induce incomparable real time classes.

5 Conclusion

In this paper we investigated the link between real time computational power and
neighborhood in two dimensions. One first observation made by Victor Poupet
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in [2] was that only the shape of the convex hull matters. This is why, in this
paper, every result is stated using this notion only. The notion of limiting ver-
tex appears to be particularly relevant when looking at the limits of real time
computation. This vertex is the witness (or the cause) of a weakness of the neigh-
borhood. V. Terrier already used similar notions in [9] in order to answer to the
question of the equality between real time and linear time. She showed that those
classes are different for many neighborhoods. However it remains open for some
others, as von Neumann neighborhood for example.

In our work, we adapted those results to get differences between real time
classes for different neighborhoods. Indeed, although the equality of the convex
hulls implies the equality of the real time class, the difference does not always
imply the difference of those classes. Some cases of equality had already been
showed in [3] for example. Some trivial inclusions are also known. Our result of
incomparability is the first of its kind.

Even though we now better understand the differences between neighbor-
hoods, many questions remain open, especially concerning von Neumann neigh-
borhood. Moreover some neighborhoods which do not fulfill the hypothesis of
our theorem are still poorly understood, mainly the one with some vertices, but
no limiting ones.
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Abstract. We introduce representable tree series over commutative
semirings, which extend representable sets [10] to the weighted setting.
We prove that restricted representable tree series are exactly those tree
series that can be recognized by weighted tree automata. Moreover, we
investigate the relation between unrestricted representable tree series and
weighted monadic second-order logic.

1 Introduction

Recognizable languages and recognizable tree languages are well-developed and
robust language classes as they can be described by many equivalent devices,
such as grammars, automata, logics and many more. One such device are the
representable sets introduced by Medvedev [10]. Representable sets form a class
of languages that contains particular simple languages, called elementary sets,
and that is closed under particular operations, the elementary operations. As
Medvedev showed, the class of representable sets coincides with the class of
recognizable languages.

Later on representable sets were lifted to the tree case by Costich [4]. More-
over, he could reduce the four elementary sets and five elementary operations
defined by Medvedev to three and four, respectively. Again, he achieved an equiv-
alence result and, hence, obtained a Medvedev characterization of recognizable
tree languages.

Also in the weighted setting, recognizable series [2] and recognizable tree
series [1] form language classes that can be described by several formalisms.
However, in the literature a quantitative version of Medvedev’s result is still
open. We close this gap here by introducing representable tree series that are
built from elementary tree series and elementary operations. In comparison to
Costich, we can again reduce the number of elementary tree series by one. How-
ever, to obtain a characterization for recognizable tree series, we have to restrict
our representable tree series: We limit the application of one particular elemen-
tary operation to recognizable step functions. With the help of this restriction
we obtain a Medvedev characterization of recognizable tree series.

Supported by DFG Graduiertenkolleg 1763 (QuantLA).

c© Springer International Publishing AG 2017
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Moreover, we investigate the relation between unrestricted representable tree
series and weighted monadic second-order logic [5]. Their relation is interesting
because, to obtain a characterization of recognizable tree series, MSO-formulas
also have to be restricted (by avoiding universal second-order quantification and
by restricting universal first-order quantifications to recognizable step functions)
[7]. Here we will prove that the class of representable tree series is a proper
subclass of the class of tree series definable by weighted MSO-formulas.

2 Trees, Tree Series, and Tree Automata

Let N be the set of natural numbers including zero. We let [n] = {1, . . . , n} for
n ∈ N. Let A be a set. The set of all subsets of A is denoted by P(A). For sets
A1, . . . , An and a = (a1, . . . , an) ∈ A1 × . . .×Ak we let (a)i = ai for each i ∈ [n].

A ranked alphabet is a tuple (Σ, rk) where Σ is a finite set and rk: Σ → N.
For every n ∈ N, we denote the set of all symbols of Σ with rank n by Σn. By
writing {γ1, . . . , γl}n we mean that γ1, . . . , γl have rank n.

Let U be a set disjoint from Σ. The set of trees over Σ and U , denoted by
TΣ(U), is the smallest set T such that (i) Σ0 ∪ U ⊆ T and (ii) if σ ∈ Σn with
n ≥ 1 and ξ1, . . . , ξn ∈ T , then σ(ξ1, . . . , ξn) ∈ T . We denote TΣ(∅) by TΣ and
identify σ() with σ. Each set L ⊆ TΣ is called a tree language.

Let ξ ∈ TΣ . The set of positions of ξ is denoted by pos(ξ) ⊆ N
∗ and for

each ρ ∈ pos(ξ) we let ξ(ρ) denote the symbol of ξ at position ρ. We abbreviate
|pos(ξ)| by |ξ| and |{ρ ∈ pos(ξ) | ξ(ρ) = γ}| by |ξ|γ . We denote by �ξ the
lexicographic order on pos(ξ). Moreover, the set of subtrees of ξ is denoted by
sub(ξ) and for each ρ ∈ pos(ξ) we let ξ|ρ denote the subtree of ξ at position ρ.

A semiring is an algebraic structure (K,+, ·, 0, 1) such that (K,+, 0) is a
commutative monoid and (K, ·, 1) is a monoid, · distributes over +, and a · 0 =
0 · a = 0 for every a ∈ K. We say that K is commutative if k · k′ = k′ · k for
every k, k′ ∈ K. We often identify (K,+, ·, 0, 1) with its carrier set K.

Note: From here on let Σ and Δ be ranked alphabets and let K be a com-
mutative semiring.

A tree series (over Σ and K) is a mapping r : TΣ → K and we denote
the set of all such tree series by K〈〈TΣ〉〉. For each L ⊆ TΣ we define the
characteristic tree series 1L : TΣ → K by letting 1L(ξ) = 1 if ξ ∈ L and 0
otherwise. Now let r, s ∈ K〈〈TΣ〉〉. We let supp(r) = {ξ ∈ TΣ | r(ξ) �= 0} and
im(r) = {r(ξ) | ξ ∈ TΣ}. The sum r + s and the Hadamard product r � s
are defined pointwise for each ξ ∈ TΣ as follows: (r + s)(ξ) = r(ξ) + s(ξ) and
(r � s)(ξ) = r(ξ) · s(ξ); (a · r)(ξ) = a · r(ξ) for a ∈ K.

Let X = {x1, x2, . . .} be a set of variables and let h : Σ → TΔ(X) be a
mapping such that h(Σn) ⊆ TΔ({x1, . . . , xn}). In the usual way, we can extend
h to a tree homomorphism h : TΣ → TΔ. We say that h is alphabetic if for each
σ ∈ Σn we have h(σ) = δ(x1, . . . , xn) for some δ ∈ Δn. In this case we extend h
to a mapping h : K〈〈TΣ〉〉 → K〈〈TΔ〉〉 by letting (h(s))(ξ) =

∑
ξ′∈h−1(ξ) s(ξ′).

A weighted tree automaton over Σ and K ((Σ,K)-wta) is a tuple A =
(Q, δ, F ) where Q is a finite set of states, δ = (δσ | σ ∈ Σ) is a family of
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transition mappings δσ : Qk × Q → K with k ∈ N, σ ∈ Σk, and F : Q → K
assigns root weights. We call A (total) deterministic (or a (Σ,K)-(t)dwta) if for
each σ ∈ Σ, q1, . . . , qrk(σ) ∈ Q there is at most (exactly) one q ∈ Q such that
δσ(q1 . . . qrk(σ), q) �= 0. We say A has Boolean transition weights or Boolean root
weights if im(δσ) ⊆ {0, 1} for each σ ∈ Σ or im(F ) ⊆ {0, 1}, resp.

Let ξ ∈ TΣ . A run of A on ξ is a mapping κ : pos(ξ) → Q and we denote by
RunA(ξ) the set of all runs of A on ξ. We define the mapping wtA

ξ : RunA(ξ) →
K by letting for each κ ∈ RunA(ξ)

wtA
ξ (κ) =

∏
ρ∈pos(ξ) δξ(ρ)

(
κ
(
ρ1

)
. . . κ

(
ρ rk(ξ(ρ))

)
, κ

(
ρ
))

.

Then the tree series recognized by A is the mapping �A� : TΣ → K given for
each ξ ∈ TΣ by

�A�(ξ) =
∑

κ∈RunA(ξ) F (κ(ε)) · wtA
ξ (κ).

We say that a tree series r is (deterministically) (Σ,K)-recognizable if there
is a (Σ,K)-(d)wta A such that �A� = r.

Now let A = (Q, δ, F ) be a (Σ,B)-wta where B denotes the Boolean semiring.
Then we identify δ with the family δ′ = (δ′

σ | σ ∈ Σ) where for each k ∈ N,
σ ∈ Σk we let δ′

σ ⊆ Qk ×Q and we identify F with the set supp(F ). We call A a
tree automaton over Σ (or a Σ-ta) and we define the language recognized by A
as the set L(A) = supp(�A�). Moreover, if A is total and deterministic (or short
a Σ-dta), we also write δσ(q1, . . . , qrk(σ)) = q.

3 Representable Tree Series

The aim of this section is to define a weighted version of the representable
sets introduced by Medvedev, called representable tree series1. These tree series
are built up from particular operations, called elementary operations, that are
applied to particular tree series, called elementary tree series.

Definition 1. We call the following tree series over Σ and K elementary :

(i) for each σ ∈ Σ and a ∈ K the tree series rtσ,a ∈ K〈〈TΣ〉〉 defined for each
ξ ∈ TΣ by rtσ,a(ξ) = a if ξ(ε) = σ and 0 otherwise, and

(ii) for each n ≥ 1, γ1, . . . , γn ∈ Σ, and a ∈ K the tree series nxtγ1...γn,a ∈
K〈〈TΣ〉〉 defined for each ξ ∈ TΣ by nxtγ1...γn,a(ξ) = a if ξ(ε) ∈ Σn and
ξ(i) = γi for each i ∈ [n], and 0 otherwise.

Definition 2. We call the following operations on tree series elementary : (i)
+, (ii) �, (iii) alphabetic tree homomorphisms, (iv) the restriction mapping
rst : K〈〈TΣ〉〉 → K〈〈TΣ〉〉 which is defined for each s ∈ K〈〈TΣ〉〉 and ξ ∈ TΣ by

(rst(s))(ξ) =
∏

ρ∈pos(ξ) s(ξ|ρ).

1 Note that here the notion of representable tree series is different from the one in [3].
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Note that in the case Σ = Σ0 ∪ Σ1 our definition of the restriction mapping
coincides with (rst(s))(ξ) =

∏
t∈sub(ξ) s(t) for each s ∈ K〈〈TΣ〉〉 and ξ ∈ TΣ .

The class of K-representable tree series, denoted by REPR(K), is the smallest
class of tree series that contains for each ranked alphabet Σ the elementary tree
series over Σ and K and that is closed under elementary operations. Moreover,
for each ranked alphabet Σ, the class REPR(Σ,K) of (Σ,K)-representable tree
series is the subclass of REPR(K) containing all tree series of type TΣ → K.

A term made up of elementary tree series and elementary operations that
results in a (Σ,K)-representable tree series is called a (Σ,K)-representation.
Clearly, each (Σ,K)-representation e can be seen as a tree by considering ele-
mentary series as nullary symbols and elementary operations as unary respec-
tively binary symbols. Then we denote by ht(e) the height of the tree associated
to e, defined as usual.

Example 3. Let Σ = {α}0 ∪ {γ, δ}1 and K = (N,+, ·, 0, 1). The tree series s
mapping each ξ ∈ TΣ to 2|ξ|γ can be expressed by the (Σ,N)-representation
e = rst(rtγ,2 + (rtδ,1 + rtα,1)). Its height is ht(e) = 3.

The next property of the restriction function follows directly from the def-
inition of the set of positions: For each n ∈ N, σ ∈ Σn, ξ1, . . . , ξn ∈ TΣ ,
and s ∈ K〈〈TΣ〉〉 we have that (rst(s))(σ(ξ1, . . . , ξn)) = s(σ(ξ1, . . . , ξn)) ·
(rst(s))(ξ1) · . . . · (rst(s))(ξn).

4 Medvedev Characterization

In this section we want to characterize recognizable tree series by means of
(Σ,K)-representations. However, we cannot do this directly, as not all tree
series that are representable are also recognizable, as illustrated by the following
example.

Example 4. Let Σ = {α}0 ∪ {γ}1 and K = (N,+, ·, 0, 1). Moreover, let
rexp : TΣ → K be the tree series mapping each tree γn(α) ∈ TΣ to 2(n+1)2

for n ∈ N. It is well-known that this tree series is not recognizable [7, p. 236].
Now consider the (Σ,K)-representation

eexp = rst(rtγ,2 + rtα,2) � rst(rst(rtγ,4 + rtα,1)).

Since for each m ≥ 1 and x ∈ {2, 4} it holds that rtγ,x(γm(α)) = x we obtain

rst(rtγ,2 + rtα,2)(γn(α)) =
∏

t∈sub(γn(α))(rtγ,2 + rtα,2)(t) = 2(n+1)

and, with a similar argument, rst(rtγ,4 + rtα,1)(γn(α)) = 4n. Using the
Gaussian sum it follows that

rst(rst(rtγ,4 + rtα,1))(γn(α)) =
∏

t∈sub(γn(α)) rst(rtγ,4 + rtα,1)(t)

= 1 · 41 · . . . · 4n = 4
n2+n

2 = 2(n
2+n).

Then following the definition of � we obtain that eexp(γn(α)) = 2(n+1)·2(n2+n) =
2(n+1)2 = rexp(γn(α)) and hence that rexp is (Σ,K)-representable.
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To obtain a characterization of recognizable tree series, we therefore have to
restrict representable tree series. For this we use the concept of recognizable
step functions that describe almost Boolean tree series. We say that a tree series
r ∈ K〈〈TΣ〉〉 is a recognizable step function if r =

∑n
i=1 ki · 1Li

for some n ≥ 1,
ki ∈ K, and recognizable tree languages Li, i ∈ [n]. It is rather folklore that
recognizable step functions can be recognized by very restricted weighted tree
automata as stated in the next lemma.

Lemma 5. Let r ∈ K〈〈TΣ〉〉 be a recognizable step function. Then there exists
a (Σ,K)-tdwta A with Boolean transition weights such that �A� = r.

Proof (sketch). We can assume that each step language Li can be recognized by
a Σ-dta Ai. We construct a (Σ,K)-tdwta A that uses as states the Cartesian
product of the states of A1, . . . , An. When assigning a run to a tree ξ, A simulates
in the ith component of its states the run of Ai on ξ. The weight of a final state
is the sum of all weights kj where Aj results in a final state. �

Now we will restrict our (Σ,K)-representations by limiting the usage of the
restriction function. A tree series r ∈ K〈〈TΣ〉〉 is restricted (Σ,K)-representable
if it can be expressed by a (Σ,K)-representation where the restriction mapping
rst is only applied to recognizable step functions.

In the rest of this section we will prove the following theorem which extends
the Medvedev characterization for tree languages to the weighted setting.

Theorem 6. Let K be a commutative semiring and r ∈ K〈〈TΣ〉〉. Then r is
restricted (Σ,K)-representable if and only if r is (Σ,K)-recognizable.

Proof. This follows directly from Lemmas 11 and 12.

4.1 Restricted Representable Implies Recognizable

First we wish to prove that each restricted representable tree series is recog-
nizable. For this, we show that the elementary tree series are recognizable and
that elementary operations preserve recognizability. In fact, we even prove that
the elementary tree series are recognizable step functions as we will need this
property in the proof of the opposite direction.

Lemma 7. Let a ∈ K and σ ∈ Σ. Then rtσ,a is a recognizable step function.

Proof. It is clear that the language L containing all trees ξ with ξ(ε) = σ is
Σ-recognizable. Then rtσ,a = a · 1L is a recognizable step function. �
Lemma 8. Let a ∈ K, n ≥ 1, and γ1, . . . , γn ∈ Σ. Then nxtγ1...γn,a is a
recognizable step function.

Proof. We construct the tree automaton A = (Q, δ, F ) with Q = {q0, qf}∪{qγi
|

i ∈ [n]} and F = {qf} as follows. For each k ∈ N, σ ∈ Σ(k), and q1, . . . , qk ∈ Q we
let (q1 . . . qk, qγi

) ∈ δσ if σ = γi for some i ∈ [n] and (q1 . . . qk, q0) ∈ δσ otherwise.
Moreover, if k = n, then we let (qγ1 . . . qγn

, qf ) ∈ δσ. It is not hard to see that
L(A) = {ξ ∈ TΣ | ξ(ε) ∈ Σn, ξ(i) = γi, i ∈ [n]}. Therefore, nxtγ1...γn,a =
a · 1L(A), which is a recognizable step function. �



A Medvedev Characterization of Recognizable Tree Series 215

It is well-known that sum, Hadamard product, and alphabetic tree homo-
morphisms preserve recognizability. Moreover, the recognizable step functions
are closed under the first two operations.

Lemma 9 ([9, Theorem 3.8], [6, Lemma 5.9]). Let h : TΣ → TΔ be an alphabetic
tree homomorphism and let r, s ∈ K〈〈TΣ〉〉.
(1) If r and s are (Σ,K)-recognizable, then r + s and r � s are (Σ,K)-

recognizable, and h(r) is (Δ,K)-recognizable.
(2) If r and s are recognizable step functions, then r + s and r � s are so.

It remains to prove that the restriction function preserves recognizability
provided it is applied to a recognizable step function.

Lemma 10. Let r ∈ K〈〈TΣ〉〉 be a recognizable step function. Then rst(r) is
(Σ,K)-recognizable.

Proof. Let A = (Q, δ, F ) be a (Σ,K)-wta recognizing r. By Lemma 5 we can
assume that A is total deterministic and has Boolean transition weights; in this
case the weight of a tree only comes from final state weights. We construct a wta
B that simulates A on each input, but assigns to each transition a final state
weight of A. Formally, we construct the wta B recognizing rst(r) as follows. We
let B = (Q, δ′, F ′) where F ′(q) = 1 for each q ∈ Q. Moreover, the family δ′ of
transitions is defined as follows. For each σ ∈ Σ, q, q1, . . . , qrk(σ) ∈ Q we let

δ′
σ(q1 . . . qrk(σ), q) = F (q) · δσ(q1 . . . qrk(σ), q).

Clearly, B is deterministic. Since A is total deterministic and has Boolean tran-
sition weights, for each ξ ∈ TΣ there exists exactly one κ ∈ RunA(ξ) with
wtA

ξ (κ) = 1, we denote this κ by κξ. Moreover, since supp(δ) ⊇ supp(δ′), κξ is
the only run in RunB(ξ) which can have a non-zero weight.

Next we prove by structural induction that (rst(�A�))(ξ) = �B�(ξ) for each
ξ ∈ TΣ .

First, let ξ = α for some α ∈ Σ0. Note that (rst(�A�))(α) = �A�(α). Then

rst(�A�))(α) =
∑

κ∈RunA(α) F (κ(ε)) · δα(ε, κ(ε))

=
∑

κ∈RunB(α) F ′(κ(ε)) · δ′
α(ε, κ(ε))

= �B�(α).

Next let ξ = σ(ξ1, . . . , ξn) for some n ≥ 1, σ ∈ Σn, and ξ1, . . . , ξn ∈ TΣ . Then

(rst(�A�))(ξ) = �A�(ξ) · (rst(�A�))(ξ1) · . . . · (rst(�A�))(ξn)
= �A�(ξ) · �B�(ξ1) · . . . · �B�(ξn) (IH)

=
( ∑

κ∈RunA(ξ) F (κ(ε)) · wtA
ξ (κ)

) · �B�(ξ1) · . . . · �B�(ξn)

=
(
F (κξ(ε)) · wtA

ξ (κξ)
) · �B�(ξ1) · . . . · �B�(ξn)

=
(
F (κξ(ε)) · δσ(κξ(1) . . . κξ(n), κξ(ε))

) · �B�(ξ1) · . . . · �B�(ξn)
= δ′

σ(κξ(1) . . . κξ(n), κξ(ε)) · �B�(ξ1) · . . . · �B�(ξn)
(∗)
= �B�(ξ),
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where (∗) holds since B is deterministic and F ′(q) = 1 for each q ∈ Q, and
�B�(ξi) = wtB

ξi
(κξi

) for each i ∈ [n]. This proves that rst(�A�) = �B�. �
Using Lemmas 7–10 we can prove the next lemma by induction on the struc-

ture of restricted (Σ,K)-representations.

Lemma 11. Let K be a commutative semiring and let r ∈ K〈〈TΣ〉〉. If r is
restricted (Σ,K)-representable, then r is (Σ,K)-recognizable.

4.2 Recognizable Implies Restricted Representable

Now we prove that each recognizable tree series is restricted representable by
constructing a restricted (Σ,K)-representation. As the restriction function can
only be applied to recognizable step functions, at this place we need the closure
of the recognizable step functions under sum and Hadamard product that was
shown beforehand.

Lemma 12. Let K be a commutative semiring and let r ∈ K〈〈TΣ〉〉. If r is
(Σ,K)-recognizable, then r is restricted (Σ,K)-representable.

Proof. Let A = (Q, δ, F ) be a (Σ,K)-wta such that �A� = r. Then let Ω be a
new ranked alphabet such that Ωn = {(σ, q) | σ ∈ Σn, q ∈ Q} for each n ∈ N.
Moreover, we define the alphabetic tree homomorphism h : TΩ → TΣ by letting
h((σ, q)) = σ(x1, . . . , xn) for each (σ, q) ∈ Ωn, n ∈ N. Now we construct the
three tree series

s1 =
∑

(σ,q)∈Ω :
q∈supp(F )

rt(σ,q),F (q), s2 =
∑

(σ,q)∈Ω0
rt(σ,q),δσ(ε,q), and

s3 =
∑

n≥1,(σ,q)∈Ωn,
(σi,qi)∈Ω,i∈[n]

(nxt(σ1,q1)...(σn,qn),1 � rt(σ,q),δσ(q1...qn,q))

and we let s = h(s1 � rst(s2 + s3)). By Lemmas 7, 8, and 9(2) we have that
s2+s3 is a recognizable step function. Thus, s is restricted (Σ,K)-representable.
Next we show that �A� = s.

Intuitively, a tree t in TΩ can be seen as a tree ξ ∈ TΣ extended by labeling
each node additionally with the appropriate state from some run in RunA(ξ).
Formally, for each tree ξ ∈ TΣ we define a bijection runξ : RunA(ξ) → TΩ such
that for each κ ∈ RunA(ξ) and ρ ∈ pos(ξ) we have runξ(κ)(ρ) = (ξ(ρ), κ(ρ)).
Then we can prove by structural induction over ξ that for each κ ∈ RunA(ξ) :

wtA
ξ (κ) = (rst(s2 + s3))(runξ(κ)). (∗)

We proceed with

h(s1 � rst(s2 + s3))(ξ) =
∑

t∈h−1(ξ) s1(t) · rst(s2 + s3)(t)

=
∑

κ∈RunA(ξ) s1(runξ(κ)) · rst(s2 + s3)(runξ(κ))
(†)
=

∑
κ∈RunA(ξ) F (κ(ε)) · rst(s2 + s3)(runξ(κ))

(∗)
=

∑
κ∈RunA(ξ) F (κ(ε)) · wtA

ξ (κ) = �A�(ξ).
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where (†) holds since s1(runξ(κ)) = rt(ξ(ε),κ(ε)),F (κ(ε))(runξ(κ)) = F (κ(ε)).
This proves that �A� = s and, therefore, each (Σ,K)-recognizable tree series
is restricted (Σ,K)-representable. �

5 Comparison with Unrestricted MSO

This section investigates the relation between unrestricted (Σ,K)-representations
and weighted monadic second-order logic. We will prove that MSO-formulas are
more expressive than representations.

Let V be a finite set of first-order variables (often denoted by x, y, or z)
and second-order variables (as X, Y , or Z). The set MSO(Σ,K) of weighted
MSO-formulas over Σ and K is given by the EBNF

ψ ::= labelσ(x) | edgei(x, y) | x ∈ X | x � y

ϕ ::= k | ψ | ¬ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ

where k ∈ K, σ ∈ Σ, and i ∈ [maxrk(Σ)]. As usual, we use the macro
edge(x, y) = edge1(x, y) ∨ . . . ∨ edgemaxrk(Σ)(x, y).

Let ϕ ∈ MSO(Σ,K). We denote the set of free variable of ϕ by Free(ϕ). Recall
that for each set V of variables and tree ξ ∈ TΣ , a V-assignment for ξ is a function
mapping each first-order variable in V to a position of ξ and each second-order
variable in V to a subset of positions of ξ. We denote the set of all V-assignments
for ξ by ΦV,ξ. For each ρ ∈ ΦV,ξ, i ∈ pos(ξ), and I ⊆ pos(ξ), the assignment
updates ρ[x �→ i] and ρ[X �→ I] are defined as usual. In addition, we define the
update ρ + i by letting (ρ + i)(x) = iρ(x) and (ρ + i)(X) = {iw | w ∈ ρ(X)}
for each x,X ∈ V. Moreover, we recall the usual technique of encoding a pair
(ξ, ρ) as a tree over the ranked alphabet ΣV = Σ × P(V) preserving the ranks
of Σ; we identify Σ∅ with Σ. Then a tree ζ ∈ TΣV is called valid if for each
first-order variable x ∈ V there exists exactly one position i ∈ pos(ζ) such that
x ∈ (ζ(i))2; we denote the set of all valid trees in TΣV by T v

ΣV . As usual, we will
not distinguish between T v

ΣV and {(ξ, ρ) | ξ ∈ TΣ , ρ ∈ ΦV,ξ}.
Now let ϕ ∈ MSO(Σ,K) and let V be a finite set of variables containing

Free(ϕ). The semantics of ϕ with respect to V is the tree series �ϕ�V : TΣV → K
such that supp(�ϕ�V) ⊆ T v

ΣV and inductively defined as in Fig. 1. As usual, we
abbreviate �ϕ�Free(ϕ) by �ϕ�. A tree series s : TΣ → K is called (Σ,K)-definable
if there is a ϕ ∈ MSO(Σ,K) with �ϕ� = s.

Let K = B be the Boolean semiring. Then MSO(Σ,B) reduces to the classical
unweighted MSO formulas where we define for each ϕ ∈ MSO(Σ,B) the set of
models LV(ϕ) = supp(�ϕ�V). We abbreviate MSO(Σ,B) by MSO(Σ).

Now let ψ ∈ MSO(Σ). We call a formula ϕ ∈ MSO(Σ,K) an unambiguous
formula representing ψ if �ϕ� = 1L(ψ).

Proposition 13 ([8, Proposition 5.3]). For each ψ ∈ MSO(Σ) we can effectively
construct an unambiguous formula ϕ ∈ MSO(Σ,K) representing ψ, i.e., such
that �ϕ� = 1L(ψ).
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Fig. 1. The semantics of a formula ϕ ∈ MSO(Σ, K) with respect to V.

In [8] the construction for a syntactically unambiguous formula was given. We
will not recall it here, but assume that the unambiguous formula ϕ ∈ MSO(Σ,K)
representing ψ results from this construction and denote it by ψ+.

Now we will prove that elementary operations preserve (Σ,K)-definability.

Lemma 14. Let s1, s2 be (Σ,K)-definable tree series. Then s1 +s2 and s1 �s2
are (Σ,K)-definable.

It is not hard to see that also definable tree series are closed under alphabetic
tree homomorphisms, even if they are not recognizable.

Lemma 15. Let s be a (Σ,K)-definable tree series and h : TΣ → TΔ an alpha-
betic tree homomorphism. Then h(s) is (Δ,K)-definable.

Proof. Let ϕ ∈ MSO(Σ,K) such that s = �ϕ�. We enumerate Σ = {σ1, . . . , σn}
for some n ∈ N. We let V = {Xσ | σ ∈ Σ} be a set of second-order variables.
Then let

ψ = ∃Xσ1 . . . ∃Xσn
.(ϕ′ ∧ ψ+

part ∧ ψ+
check)

with the following intuition. For each tree ζ ∈ TΔ, ∃Xσ1 . . . ∃Xσn
guesses an

assignment of positions of ζ to symbols from Σ. Then ψpart checks whether this
assignment forms a partitioning, i.e., each position is assigned to exactly one
symbol from Σ, and ψcheck ensures that the assignment encodes a preimage ξ of
h. Additionally, ϕ′ simulates ϕ on ξ. Formally,

– ϕ′ is obtained from ϕ by replacing each occurrence of labelσ(x) by (x ∈ Xσ),
– ψpart = ∀x.

( ∨
i∈[n]((x ∈ Xσi

) ∧ ∧
j∈[n]:j �=i ¬(x ∈ Xσj

))
)
, and

– ψcheck = ∀x.
( ∧

i∈[n](¬(x ∈ Xσi
) ∨ labelh(σi)(x))

)
.

It is not hard to see that �ψ� = h(�ϕ�). �
Lemma 16. Let s be a (Σ,K)-definable tree series. Then rst(s) is (Σ,K)-
definable.
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Proof. Let ϕ ∈ MSO(Σ,K) such that s = �ϕ�. We define the following for-
mulas in MSO(Σ) modeling paths between positions:2 We let closed(X) =
∀x.∀y.(¬ edge(x, y) ∨ ¬(x ∈ X) ∨ (y ∈ X)) and

– P(x, y) = ∀X.(¬closed(X) ∨ ¬(x ∈ X) ∨ (y ∈ X)), and
– P(x,Y) = ∀y.(¬(y ∈ Y) ∨ P(x, y)).

Intuitively, P(x, y) holds if there is a path from x to y (and y is below x) and
P(x,Y) holds if there is for each y ∈ Y such a path from x to y.

Now let z be a new variable not occurring in ϕ. Then we define the mapping
πz : MSO(Σ,K) → MSO(Σ,K) inductively on the structure of ϕ as follows:

πz(ψ)=ψ for an atom ψ, πz(∃x.ψ)= ∃x.P(z, x)+ ∧ πz(ψ),

πz(¬ψ)=¬ψ for an atom ψ, πz(∀x.ψ)= ∀x.(¬P(z, x))+ ∨ (P(z, x)+ ∧ πz(ψ)),

πz(ψ1 ∧ ψ2)=πz(ψ1) ∧ πz(ψ2), πz(∃X.ψ)= ∃X.P(z,X)+ ∧ πz(ψ),

πz(ψ1 ∨ ψ2)=πz(ψ1) ∨ πz(ψ2), πz(∀X.ψ)= ∀X.(¬P(z,X))+ ∨ (P(z,X)+ ∧ πz(ψ))

Intuitively, πz(ϕ) restricts the evaluation of ϕ on a tree ξ to the subtree of ξ at
the position assigned to z. Then we construct the formula ϕ′ = ∀z.πz(ϕ).

Next we show that rst(�ϕ�) = �ϕ′�. For this, we prove the following
statement (†): For all ξ ∈ TΣ , V ⊇ Free(ϕ), i ∈ pos(ξ), and ρ ∈ ΦV,ξ|i :
�ϕ�V(ξ|i, ρ) = �πz(ϕ)�V∪{z}(ξ, (ρ + i)[z �→ i]). We prove (†) by structural induc-
tion on ϕ.

Let ϕ = labelσ(x) and note that �ϕ� can only be 1 or 0. Let ζ = ξ|i. Then

�labelσ(x)�V(ζ, ρ) = 1 ⇔ ζ|ρ(x) = σ

⇔ ξ|(ρ+i)(x) = σ

⇔ �labelσ(x)�V(ξ, ρ + i) = 1
⇔ �πz(labelσ(x))�V(ξ, ρ + i) = 1
⇔ �πz(labelσ(x))�V∪{z}(ξ, (ρ + i)[z �→ i]) = 1.

All other cases of ϕ being an atom or of the form ¬ψ for some atom ψ can be
proved analogously.

Now let ϕ = ∃x.ψ and assume that the statement holds for ψ. Then

�∃x.ψ�V(ζ, ρ) =
∑

k∈pos(ζ)�ψ�V∪{x}(ζ, ρ[x �→ k])

=
∑

k∈pos(ζ)�πz(ψ)�V∪{x,z}(ξ, (ρ[x �→ k] + i)[z �→ i]) (IH)

=
∑

k∈pos(ξ) : ∃k′ : k=ik′�πz(ψ)�V∪{x,z}(ξ, (ρ + i)[x �→ k][z �→ i])

=
∑

k∈pos(ξ) : ∃k′ : k=ik′�πz(ψ)�V∪{x,z}(ξ, (ρ + i)[z �→ i][x �→ k])

=
∑

k∈pos(ξ)

(
�P(z, x)+�V∪{x,z}(ξ, (ρ + i)[z �→ i][x �→ k])

· �πz(ψ)�V∪{x,z}(ξ, (ρ + i)[z �→ i][x �→ k])
)

(*)

2 In MSO(Σ), ¬ can appear anywhere.
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=
∑

k∈pos(ξ)�P(z, x)+ ∧ πz(ψ)�V∪{x,z}(ξ, (ρ + i)[z �→ i][x �→ k])

=�∃x.P (z, x)+ ∧ πz(ψ)�V∪{x,z}(ξ, (ρ + i)[z �→ i])
=�πz(∃x.ψ)�V∪{z}(ξ, (ρ + i)[z �→ i]) (Constr.)

where (*) holds since �P(z, x)+�V∪{x,z}(ξ, (ρ + i)[z �→ i][x �→ k]) = 1 if k = ik′

for some k′ ∈ N
∗ and 0 otherwise. It is not hard to see that for all other cases of

ϕ we can argue in a similar way. Therefore, these cases are omitted here. This
finishes the proof of the statement (†).

Now let ξ ∈ TΣ . Then

rst(�ϕ�)(ξ) =
∏

i∈pos(ξ)�ϕ�(ξ|i)
(†)
=

∏
i∈pos(ξ)�πz(ϕ)�{z}(ξ, [z �→ i]) = �∀z.πz(ϕ)�(ξ)

Thus, rst(�ϕ�) is (Σ,K)-definable. �
Using the subsequent lemmas we can prove the first main result of this

section.

Theorem 17. Let K be a commutative semiring and let r ∈ K〈〈TΣ〉〉. If r is
(Σ,K)-representable, then r is (Σ,K)-definable.

Proof. Clearly, elementary tree series are (Σ,K)-definable. Using now
Lemmas 14, 15, and 16, we can prove the theorem by induction on the structure
of (Σ,K)-representations. �

However, we obtain that (Σ,K)-expression are weaker than MSO-formulas
as it is shown in the next theorem.

Theorem 18. Let K be a commutative semiring. There is a (Σ,K)-definable
tree series r that is not (Σ,K)-representable.

Proof. Consider the ranked alphabet Σ = {α}0∪{γ}1, the semiring (N,+, ·, 0, 1)
and the formula ϕ = ∀X.2 in MSO(Σ,N). Clearly, for each ξ ∈ TΣ we have
�ϕ�(ξ) = 2(2

|ξ|). On the other hand, we will show that every (Σ,N)-representable
tree series is bounded exponentially.

For this, we define ê(n) = max({e(ξ) | ξ ∈ TΣ , |ξ| = n}) for each (Σ,N)-
representation e and each n ∈ N. Now we prove by structural induction that for
each (Σ,N)-expression e and n ∈ N we have ê(n) ∈ O(2(n

ht(e))).
Let, for each n ∈ N, ξn = argmaxζ∈TΣ : |ζ|=ne(ζ). First, let e = rtγ,k for some

γ ∈ Σ, k ∈ N. Clearly, ê(n) ∈ O(1) ⊆ O(2(n
ht(e))). This holds for all elementary

series.
Now, let e = rst(e1) and assume that the statement holds for e1. Let

sub(ξn) = {t1, . . . , tn} with ht(ti) < ht(ti+1) for i ∈ [n − 1]. Then

ê(n) = e(ξn) = e1(t1) · . . . · e1(tn) ≤ ê1(1) · . . . · ê1(n)

∈ O(2(1
ht(e1)) · . . . · 2(n

ht(e1))) ⊆ O(2n·(nht(e1))) = O(2(n
ht(e))).
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All other cases of e can be proved with similar arguments. This finishes the
proof of the induction statement. So if �ϕ� were (Σ,N)-representable, then for
each ξ ∈ TΣ we had �ϕ�(ξ) ∈ O(2|ξ|c) for some constant c, which clearly is a
contradiction. �

As a last point we conjecture that also the fragment of MSO(Σ,K) that
uses no second-order universal quantification is more expressive than (Σ,K)-
representations. For this, consider the ranked alphabet Σ = {α}0 ∪ {γ, δ}1,
the semiring (N,+, ·, 0, 1), and the tree series s given by the semantics of the
formula ϕ = ∀y.Pγ(y) → 2. It is easy to see that for each tree ξ ∈ TΣ we have
�ϕ�(ξ) = 2|ξ|γ and, as shown in Example 3, this tree series is (Σ,N)-representable.
Now consider the tree series �∀x.ϕ� that maps each tree ξ ∈ TΣ to 2|ξ|·|ξ|γ .
We believe that this tree series is not (Σ,N)-representable anymore with the
following intuition: We can only obtain a tree series with this growth by nesting
at least two restriction functions. But restriction functions do not only consider
the number of γs in ξ but also the positions of their occurrences and, thus, may
map trees with the same height and number of γs to different values. However,
a proof of this conjecture is left as an open problem.

Acknowledgement. The author thanks Tobias Denkinger and Johannes Osterholzer
for several useful discussions concerning the content of this work.
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Abstract. We examine the descriptive complexity of the combined

unary operation Σ∗L and investigate the trade-offs between various mod-
els of finite automata. We consider complete and partial deterministic
finite automata, nondeterministic finite automata with single or multiple
initial states, alternating, and boolean finite automata. We assume that
the argument and the result of this operation are accepted by automata
belonging to one of these six models. We investigate all possible trade-
offs and provide a tight upper bound for 32 of 36 of them. The most
interesting result is the trade-off from nondeterministic to deterministic
automata given by the Dedekind number M(n − 1). We also prove that

the nondeterministic state complexity of Σ∗L is 2n−1 which solves an

open problem stated by Birget [1996, The state complexity of Σ∗L and
its connection with temporal logic, Inform. Process. Lett. 58, 185–188].

1 Introduction

Formal languages may be recognized by several kinds of formal systems. Dif-
ferent classes of formal systems can be compared either from the point of view
of their computational power, or from the descriptive complexity point of view.
As for computational power, for example, deterministic and nondeterministic
finite automata recognize the same class of languages, while the class of lan-
guages recognized by deterministic pushdown automata is strictly included in
the class of languages recognized by nondeterministic ones. However, from the
descriptive complexity point of view, there is an exponential gap between the
cost of description of regular languages by deterministic and nondeterministic
finite automata [14,16–18,20].

Descriptive complexity, which measures the cost of description of languages
by different formal systems, was deeply investigated in last three decades (cf. [1,7,
15,22]) mostly in the class of regular languages. Several kinds of finite automata
were proposed and the trade-offs between the costs of description in different
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classes of automata were examined. Let us mention at least the exact trade-
off

(
2n

n+1

)
for the conversion of two-way nondeterministic automata to one-way

nondeterministic automata [11], and the exact trade-off for the conversion of
self-verifying automata to deterministic automata given by the function that
counts the maximal number of maximal cliques in a graph with n vertices [10].

In 1996, Jean-Camille Birget [2] answered the following question of Jean-
Éric Pin. Let L be a regular language over an alphabet Σ recognized by a
nondeterministic finite automaton (NFA) or a deterministic finite automaton
(DFA) with n states. How many states are sufficient and necessary in the worst
case for an NFA (DFA) to recognize the language Σ∗L? The notation L stands
for the complement of L. Birget provided the exact trade-off from DFAs to NFAs,
and lower and upper bounds for the nondeterministic state complexity of Σ∗L.

The motivation of Pin’s question came from the word model of Propositional
Temporal Logic [5]. The set of all models of a formula ϕ over a fixed alphabet
Σ is a formal language L(ϕ) over Σ which has the non-trivial property of being
regular and aperiodic. Some of the temporal operators used in this logic are ◦
(“next”) and � (“eventually”, or “at some moment in the future”); there are
also the usual boolean operations −, ∧, ∨. A natural dual to the “eventually”
operator is the “forever” (or, “always in the future”) operator �, defined to be
− � − (“not eventually not”). Formulas and their models are related as follows:
L(ϕ) = L(ϕ), L(ϕ∧ψ) = L(ϕ)∩L(ψ), L(ϕ∨ψ) = L(ϕ)∪L(ψ), L(◦ϕ) = ΣL(ϕ),
L(�ϕ) = Σ∗L(ϕ). Thus L(�ϕ) = L(�ϕ) = Σ∗L(ϕ). Hence in [2], Birget studied
the state complexity of the “forever” operator.

Here we continue this research by investigating the complexity of the forever
operator for different models of finite automata. We consider complete and par-
tial deterministic finite automata, nondeterministic automata with a single or
multiple initial states, and boolean automata with a single initial state, called
alternating finite automata in [6], or with an initial function [4]. Similarly as
Jean-Éric Pin, we ask the following question: If a language L is represented by
an n-state automaton of some model, how many states are sufficient and neces-
sary in the worst case for an automaton of some other model to accept Σ∗L?

We study all the possible 36 trade-offs, and except for four cases, we always
get tight upper bounds. In particular, we are able to prove that the upper bound
on the nondeterministic state complexity of Σ∗L is 2n−1. This improves Birget’s
upper bound 2n+1+1 and meets his lower bound for DFA-to-NFA trade-off. The
most interesting result of this paper is the tight upper bound for the NFA-to-
DFA trade-off given by the Dedekind number M(n−1); recall that the Dedekind
number M(n) counts the number of antichains of subsets of an n-element set. To
get lower bounds, we describe languages over a fixed alphabet, except for four
cases where the alphabet grows exponentially with n. In most cases our worst-
case examples are binary and unary, and these alphabets are always optimal.
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2 Preliminaries

We assume that the reader is familiar with basic notions in automata theory.
For details, we refer to [19,21].

We use standard models of (complete) deterministic finite automata (DFAs),
partial deterministic finite automata (PFAs), nondeterministic finite automata
with a single initial state (NFAs), nondeterministic finite automata with multi-
ple initial states (NNFAs), boolean finite automata (BFAs), and boolean finite
automata with a single initial state (AFAs).

We call a state of an NNFA A = (Q,Σ, ·, I, F ) sink state if it has a loop on
every input symbol. For a symbol a and states p and q, we say that (p, a, q) is
a transition in the NNFA A if q ∈ p · a, and for a string w, we write p

w−→ q if
q ∈ p · w. We also say that the state q has an in-transition on symbol a, and the
state p has an out-transition on symbol a.

Let q be a state of a DFA A. To omit the state q means to remove it from the
state set and to remove also all its in-transitions and out-transitions. To replace
the state q with a sink state means to remove each its out-transition (q, a, p) and
add a loop (q, a, q) for each a.

The reverse of a string is defined as εR = ε and (wa)R = awR for each symbol
a and string w. The reverse of a language L is the language LR = {wR | w ∈ L}.
The reverse of an NNFA A = (Q,Σ, ·, I, F ) is an NNFA AR obtained from A by
reversing all the transitions and by swapping the roles of initial and final states.
The NNFA AR recognizes the reverse of L(A).

Every NNFA A = (Q,Σ, ·, I, F ) can be converted to an equivalent DFA
D(A) = (2Q, Σ, · , I, F ′) where F ′ = {S ∈ 2Q | S∩F 
= ∅}. We call the DFA D(A)
the subset automaton of the NNFA A. We use the following proposition to prove
reachability of states in a subset automaton in some cases.

Proposition 1. In the subset automaton of the NFA shown in Fig. 1 (left), each
subset containing 0 is reachable from {0}, and in the subset automaton of the
NFA shown in Fig. 1 (right), each subset is reachable from {0, 1, . . . , n − 1}. �

0 1 . . . n− 1
a a, b a, b

a, b

a, b

0 1 . . . n− 1
a a a

a

b b

Fig. 1. The NFAs used in Proposition 1

To prove distinguishability, we use the following notions and observations.
A state q of an NFA A = (Q,Σ, ·, s, F ) is called uniquely distinguishable (cf. [3])
if there is a string w which is accepted by A from and only from the state q.
A transition (p, a, q) in the NFA A is called a unique in-transition if there is
no state r of A such that r 
= p and (r, a, q) is a transition in A. A state q is
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uniquely reachable from a state p, if there is a sequence of unique in-transitions
(pi−1, ai, pi) (1 ≤ i ≤ k) such that p0 = p and pk = q.

Proposition 2 (cf. [3]). If there is a uniquely distinguishable state of an NFA A
that is uniquely reachable from any other state of A, then the subset automaton
D(A) does not have equivalent states. �

A boolean finite automaton (BFA, cf. [4]) is a quintuple A = (Q,Σ, δ, gs, F ),
where Q is a finite non-empty set of states such that Q = {q1, . . . , qn}, Σ is an
input alphabet, δ is the transition function that maps Q × Σ into the set Bn

of boolean functions with variables {q1, . . . , qn}, gs ∈ Bn is the initial boolean
function, and F ⊆ Q is the set of final states. The transition function δ is
extended to the domain Bn ×Σ∗ as follows: For all g in Bn, a in Σ, and w in Σ∗,
we have δ(g, ε) = g; if g = g(q1, . . . , qn), then δ(g, a) = g(δ(q1, a), . . . , δ(qn, a));
δ(g, wa) = δ(δ(g, w), a). Next, let f = (f1, . . . , fn) be the boolean vector with
fi = 1 iff qi ∈ F . The language accepted by the BFA A is the set of strings
L(A) = {w ∈ Σ∗ | δ(gs, w)(f) = 1}. A boolean finite automaton is called
alternating (AFA, cf. [6]) if the initial function is a projection g(q1, . . . , qn) = qi.

We use the following observations for trade-offs between various automata
throughout this paper. We provide the proof of case (e) since all the remaining
cases are either well known, or follow from [4,13], [6, Theorem 4.1 and Corollary
4.2], and [9, Lemmas 1 and 2]. We use the claim in Lemma 3(a) quite often in
the paper without referring to Lemma 3(a) again and again.

Lemma 3 (Properties of Finite Automata). Let L be a regular language.

(a) The language L is accepted by an n-state BFA (AFA) if and only if LR is
accepted by a DFA of 2n states (of which 2n−1 are final, respectively).

(b) Let LR be a regular language accepted by a minimal n-state DFA. Then every
BFA for L has at least �log n� states.

(c) If the minimal DFA for LR has more than 2n−1 final states, then every AFA
for L has at least n + 1 states.

(d) Let L be unary. Then L is accepted by an n-state BFA (AFA) if and only if
L is accepted by a DFA of 2n states (of which 2n−1 are final).

(e) If L is accepted by an n-state BFA (AFA), then L is accepted by an n-state
BFA (AFA, respectively).

(f) If L is accepted by an n-state BFA, then L is accepted by an AFA of at most
n + 1 states, and by an NNFA of at most 2n states.

(g) If L is accepted by an n-state NNFA, then L is accepted by an NFA of at
most n + 1 states and by a PFA of at most 2n − 1 states. If L is accepted by
an n-state PFA, then L is accepted by a DFA of at most n + 1 states.

Proof. (e) Let L be accepted by an n-state BFA (AFA). Then, by (a), the lan-
guage LR is accepted by a DFA of 2n states (of which 2n−1 are final). Then the
complement LR is also accepted by a DFA of 2n states (of which 2n−1 are final).
Since LR = L

R
, the claim follows again by (a). �
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If u, v, and w are strings over Σ such that w = uv, then u is a prefix of
w and v is a suffix of w. A language L is prefix-closed (suffix-closed) if w ∈ L
implies that every prefix (suffix) of w is in L.

In 1996, Birget [2] studied the state complexity of the “forever” operator
Σ∗L on DFAs and NFAs. Here we continue this research and to simplify the
exposition, we use the following notation:

b(L) = Σ∗L. (1)

3 Results

We start with an investigation of some properties of the “forever” operator.

Lemma 4 (Properties of Σ∗L). Let L be a regular language and b(L) = Σ∗L.

(a) b(L) = {w ∈ L | every suffix of w is in L}.
(b) b(L) = ∅ if and only if ε /∈ L.
(c) b(L) = L if and only if L is suffix-closed.
(d) If LR is accepted by a DFA A, then b(L)R is accepted by a DFA obtained

from A by replacing each non-final state of A with a non-final sink state. �
In what follows we consider six models of finite automata: DFAs, PFAs,

NFAs, NNFAs, AFAs, and BFAs. We try to answer the following question. If a
language L is represented by an n-state automaton of some model, how many
states are sufficient and necessary in the worst case for an automaton of some
other model to accept the language b(L) = Σ∗L? We first consider upper bounds.
Although we have 36 possible trade-offs, it is enough to prove only some of them.
The remaining trade-offs follow either from inclusions of some models of finite
automata or from Lemma 3. For the (N)NFA-to-(P)DFA trade-offs, we need the
Dedekind number M(n) which counts the number of antichains of subsets of an
n-element set. The number M(n) lies in the order of magnitude 22

Θ(n)
[12]:

2n−log n ≤
(

n

�n/2�
)

≤ log2 M(n) ≤
(

n

�n/2�
)(

1 + O

(
log n

n

))
≤ 2n+1−(log n)/2.

It follows that log2 M(n) lies in the order of magnitude 2n−Θ(log n). Moreover,
we assume that ε ∈ L and L 
= Σ∗ in the statement of the next theorem because
otherwise b(L) is empty or equals Σ∗ by Lemma 4(b) and (c).

Theorem 5 (Upper Bounds). Let L be a regular language such that ε ∈ L
and L 
= Σ∗. Let L be accepted by a finite automaton A of n states.

(1) If A is a DFA, then b(L) is accepted by a DFA of at most 2n−1 states.
(2) If A is a PFA, then b(L) is accepted by a PFA of at most 2n−1 states.
(3) If A is an NFA, then b(L) is accepted by

(a) an NFA of at most 2n−1 states;
(b) a PFA of at most M(n − 1) − 1 states.
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(4) If A is an NNFA, then b(L) is accepted by
(a) an NNFA of at most 2n − 2 states.
(b) a PFA of at most M(n) − 1 states.

(5) If A is an AFA, then b(L) is accepted by
(a) an AFA of at most n states;
(b) an NNFA of at most 2n−1 states.

(6) If A is a BFA, then b(L) is accepted by
(a) a BFA of at most n states;
(b) an NNFA of at most 2n − 1 states.

Proof (1). We first interchange final and non-final states in A to get the DFA A
for L. Then we add a loop on every input symbol in the initial state of A to
get an NFA N for Σ∗L. In D(N), only subsets containing the initial state are
reachable. Finally, we again interchange the final and non-final states of D(N).

(2) Let A = (Q,Σ, ·, s, F ) be an n-state PFA for L. It is enough to show
that the language Σ∗L is accepted by a DFA of at most 2n−1 + 1 states, one of
which is final sink state. To get an (n+1)-state DFA A for L, we first add a new
non-final sink state qd to A. Then, for each transition which is undefined in A,
we add the corresponding transition to qd. Finally, we interchange final and non-
final states of the resulting automaton. We construct an (n+1)-state NFA N for
Σ∗L from DFA A, by adding a loop on each input symbol in the initial state s.
In the corresponding subset automaton, each reachable subset must contain s.
Moreover, the state qd is a final sink state. It follows that each string is accepted
by N from qd, and therefore each subset containing qd, is equivalent to {qd}. In
total, we get at most 2n−1 + 1 reachable and pairwise distinguishable states.

(3a) Let A = (Q,Σ, ·, s, F ) be an n-state NFA for L. We have s ∈ F since
ε ∈ L. We reverse A to get an n-state NNFA AR for LR with a unique final
state s. In the subset automaton D(AR), we omit all the non-final subsets, that is,
all subsets not containing s, to get a 2n−1-state PFA B with the initial state F .
All states of B are final, and all of them contain s. We have two cases. If there is
a final subset of D(AR) which is not reachable in B, then we reverse B and add
a new initial state to get an NFA for b(L) of at most 2n−1 states. Otherwise,
we modify PFA B as follows. We make all states of B non-final, except for {s}.
Next, we add the ε-transition to {s} from any other state in B. Denote the
resulting ε-NFA by B′. We can show that L(B′) = L(B). This means that B′ is
a 2n−1-state ε-NFA with one final state for b(L)R. By reversing B′ and removing
ε-transitions, we get a 2n−1-state NFA for b(L).

(3b) It is enough to show that Σ∗L is accepted by a DFA of at most M(n−1)
states, one of which is a final sink state. Let A = (Q,Σ, ·, s, F ) be an n-state
NFA for L, and B be the 2n-state subset automaton of A. We interchange the
final and non-final states in B, to get a 2n-state DFA B for L. To get a 2n-state
NFA N for Σ∗L, we add a loop on each input symbol in the initial state of the
DFA B. Finally, let C be the subset automaton of N . Then C is a DFA for Σ∗L.
Formally, we have

B = D(A) = (2Q, Σ, ·, {s}, FB) where FB = {X ⊆ Q | X ∩ F 
= ∅});
B = (2Q, Σ, ·, {s}, FB) where FB = 2Q \ FB = {X ⊆ Q | X ⊆ Q \ F});
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N = (2Q, Σ, ◦, {s}, FB) where for each X in 2Q and each a in Σ,
{s} ◦ a = {{s}, {s} · a}, and
X ◦ a = {X · a} if X 
= {s};

C = D(N) = (22
Q

, Σ, ◦, {{s}}, FC) where FC = {X ∈ 22
Q | X ∩ FB 
= ∅}.

Thus, the states of C are sets of subsets of Q, and a state S = {S1, S2, . . . , Sk} is
final if there is an i such that Si ⊆ Q\F . Our aim is to show that C has at most
M(n − 1) reachable and pairwise distinguishable states. We first show that each
state of C is equivalent to an antichain in 2Q. Let S ⊆ T ⊆ Q and w be accepted
by N from the state T . We can show that w is accepted by N also from S. Thus
if in a state S = {S1, S2, . . . , Sk} of C we have Si ⊆ Sj for some i and j, then
S is equivalent to S \ {Sj}. It follows that each state of C is equivalent to an
antichain in 2Q. Moreover, since N has a loop on each symbol in its initial state
{s}, and C is the subset automaton of N , each reachable state of C must contain
the set {s}, that is, each reachable antichain has a form {{s}, S2, S3, . . . , Sk},
where k ≥ 1, and {S2, S3, . . . , Sk} is an antichain in 2Q\{s}. This gives the upper
bound M(n−1). Notice that the empty antichain corresponds to the initial state
{{s}}. We also have to count the antichain {∅} which is unreachable final sink
state, but it is equivalent to the reachable state {{s}, ∅}.

(4a) If all the states of a given NNFA are initial, then L is suffix-closed, and
therefore b(L) = L by Lemma 4(c). Otherwise, LR is accepted by a PFA which
has 2n − 1 states, and at least one of them is non-final. Omit all the non-final
states to get a PFA for b(L)R (cf. Lemma 4(d)), and reverse the resulting PFA
to get the desired NNFA for b(L).

(4b) Similarly as in (3b), we prove that only states S = {I, S1, S2, . . . , Sk}
where {S1, S2, . . . , Sk} is an antichain in 2Q are pairwise distinguishable.

(5a) If L is accepted by an n-state AFA, then LR is accepted by a DFA of 2n

states of which 2n−1 are final. Replace each non-final state with a non-final sink
state to get a DFA for b(L)R of 2n states of which 2n−1 are final. Hence b(L) is
accepted by an n-state AFA.

(5b) In the DFA for b(L)R obtained as in case (5a), we omit the non-final
sink states to get an equivalent PFA of 2n−1 states. By reversing this PFA, we
get a 2n−1-state NNFA for b(L).

(6a) If A is an n-state BFA, then LR is accepted by a DFA of 2n states.
Replace each non-final state with a non-final sink state to get a DFA for b(L)R

of 2n states given by Lemma 4(d). Hence b(L) is accepted by an n-state BFA.
(6b) In the DFA for b(L)R obtained as in case (6a), we omit the non-final

sink states to get an equivalent PFA of at most 2n −1 states; recall that L 
= Σ∗.
By reversing this PFA, we get the desired NNFA for b(L). �

Now we turn our attention to lower bounds. We again need to prove only
some of them and all the remaining bounds follow from the inclusions of models
or from Lemma 3. However, in some cases, we use witnesses over a smaller
alphabet for the bound that follows from some other trade-off.

In 32 of 36 cases, our lower bounds meet the upper bounds given by
Theorem 5. The remaining four cases are the trade-offs from NNFA to DFA,
PFA, NFA, and NNFA. With the exception of four trade-offs, our witness
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languages are defined over a fixed alphabet of size one, two, three, or four.
The binary case is always optimal in the sense that there is no unary language
meeting the upper bound (and the unary alphabet is always optimal :-).

Theorem 6 (Lower Bounds). There exists a regular language L accepted by
an n-state finite automaton A such that A is

(1) a ternary DFA and every BFA for b(L) has at least n states;
(2) a ternary DFA and every NNFA for b(L) has at least 2n−1 states;
(3) a binary DFA and every PFA for b(L) has at least 2n−1 states;
(4) a quaternary PFA and every DFA for b(L) has at least 2n−1 + 1 states;
(5) an NFA and every DFA for b(L) has at least M(n − 1) states;
(6) a binary NNFA and every AFA for b(L) has at least n + 1 states;
(7) a unary AFA and

(a) every BFA for b(L) has at least n states;
(b) every NNFA for b(L) has at least 2n−1 states;

(8) a binary AFA and every NFA for b(L) has at least 2n−1 + 1 states;
(9) a binary AFA and every DFA for b(L) has at least 22

n−1
states;

(10) a unary BFA and
(a) every AFA for b(L) has at least n + 1 states;
(b) every NNFA for b(L) has at least 2n − 1 states;

(11) a binary BFA and every NFA for b(L) has at least 2n states;
(12) a binary BFA and every DFA for b(L) has at least 22

n−1 states.

Proof. (1) Let L be the language accepted by the DFA A shown in Fig. 2. We
reverse A to get an NFA AR for LR. Using Propositions 1 and 2, we can prove
that in the minimal DFA for LR we have 2n−1 final states and one non-final
sink state, so the language LR is prefix-closed. Therefore L is suffix-closed, so
b(L) = L. Since the minimal DFA for LR has 2n−1 + 1 states, every BFA for L,
so for b(L), has at least n states.

(2) This case follows from the proof of [2, Theorem 2(a)].
(3) Let L be accepted by DFA A = ({0, . . . , n−1}, {a, b}, ·, 0, {0, 1, . . . , n−2}),

where i · a = (i + 1) mod n, 0 · b = 0, and i · b = (i + 1) mod n if i 
= 0.
We construct an n-state NFA N for Σ∗L by interchanging final and non-final

states in A and by adding the transition (0, a, 0). It is enough to prove that the
subset automaton D(N) has at least 2n−1 reachable and pairwise distinguishable
states. We prove reachability by using Proposition 1. To prove distinguishabil-
ity, notice that the state n − 1 is uniquely distinguishable by ε in N and it
is uniquely reachable from any other state through unique in-transitions on a.
By Proposition 2, the subset automaton D(N) does not have equivalent states.
Since D(N) has no non-final sink state, it is also a minimal PFA. Notice that the
lower bound 2n−1 for a DFA accepting b(L) follows from the proof. In [2, Proof
of Theorem 2(b)], it is claimed that this bound is met by the binary language
a{a, b}n−2. However, the minimal DFA for this language has n + 1 states.

(4) Let L be the language accepted by the PFA A shown in Fig. 3. We con-
struct an (n+1)-state NFA N for Σ∗L as follows. First, we add a new non-final
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sink state n and the transitions on a, b, c from n − 1 to n. Then we make state
n final, and all the remaining states non-final.
Finally, we add transitions (0, a, 0) and (0, d, 0). By using Propositions 1 and 2
we can show that D(N) has 2n−1 + 1 reachable and pairwise distinguishable
states.

(5) Let L be accepted by the n-state NFA A = (Q,Σ, · , 0, F ), where
Q = {0, 1, . . . , n − 1}, Σ = {aX , bX | X ⊆ Q}, F = Q \ {n − 1}, and the
transition function is defined as follows:

0 · aX = X and i · aX = {i} if i 
= 0,

i · bX =

{
{n − 1}, if i ∈ X;
{0}, if i /∈ X.

Then B = D(A) = (2Q, Σ, · , {0}, 2Q \ {{n − 1}, ∅});
B = (2Q, Σ, · , {0}, {{n − 1}, ∅});
N = (2Q, Σ, ◦ , {0}, {{n − 1}, ∅}) where

{0} ◦ a = {0} ∪ {0} · a,
X ◦ a = X · a if X 
= {0};

C = D(N) = (22
Q

, Σ, ◦ , {{0}}, {X ∈ 22
Q | X ∩ {{n − 1}, ∅} 
= ∅}). Our aim

is to show that C has at least M(n−1) reachable and distinguishable states. Let
S1, S2, . . . , Sk be subsets of Q such that 0 /∈ Si for every i. Then in C we have

{{0}} aS1−−→ {{0}, S1}
aS2−−→ {{0}, S1, S2}

aS3−−→ . . .
aSk−−→ {{0}, S1, S2, . . . , Sk}.

It follows that every state S = {{0}, S1, S2, . . . , Sk} where {S1, S2, . . . , Sk} is
an antichain of subsets of {1, 2, . . . , n − 1} is reachable. We can prove that two
distinct antichains are distinguishable. It follows that C has at least M(n − 1)
reachable and distinguishable states.

(6) Let L be accepted by the NNFA A shown in Fig. 4. Since each state of
A is initial, L is suffix-closed, so b(L) = L. We can show that the minimal DFA
for LR has more than 2n−1 final states. It follows that every AFA for L, so for
b(L), has at least n + 1 states.

(7) Let L = {ai | 0 ≤ i ≤ 2n−1 − 1}. Then L is a unary language accepted
by a 2n-state DFA with 2n−1 final states. So L is accepted by an n-state AFA.
Since L is suffix-closed, b(L) = L. (a) Since the minimal DFA for L has 2n−1 +1
states, every BFA for L has at least n states. (b) The longest string in L is of
length 2n−1 − 1, and therefore every NNFA for L has at least 2n−1 states.

(8) Let K be accepted by the 2n-state DFA A shown in Fig. 5; notice that
A has 2n−1 final states. Set L = KR. Then L is accepted by an n-state AFA.
By Lemma 4(d), if we omit all non-final states of A, we get a PFA C for b(L)R

of 2n−1 states, all of them final. It is shown in [8, Theorem 2] that every NFA
for L(C)R has at least 2n−1 + 1 states. Since L(C)R = b(L), the claim follows.

(9) Let K be accepted by the 2n-state DFA A shown in Fig. 6; notice that
A has 2n−1 final states. Set L = KR. Then the language L is accepted by an n-
state AFA. By Lemma 4(d), if we omit all non-final states of A, we get a PFA C
for b(L)R of 2n−1 states, all of them final. Next, we reverse the PFA C to get
an NNFA N = ({0, 1, . . . , 2n−1 −1}, {a, b}, ·R , {0, 1, . . . , 2n−1 −1}, {0}) for b(L).
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0 1 2 . . . n−2 n−1

a, b

a a, b a, b a, b a, b

b

c

c

c c
c

Fig. 2. The DFA for L such that every BFA for Σ∗L has n states

0 1 . . . n− 2 n− 1
a, d a, b, d a, b, d a, b, d

b, c c c

d

Fig. 3. The PFA for L such that every DFA for Σ∗L has 2n−1 + 1 states

0 1 . . . n− 2 n− 1
a a a a

a

b b b

Fig. 4. The NNFA for L such that every AFA for Σ∗L has n + 1 states

0 1 . . . 2n−1−1 2n−1 . . . 2n−1
a a a

b

a

a, b a, b

Fig. 5. The reverse of the witness for the AFA-to-NFA trade-off

By Proposition 1, the subset automaton D(N) has 22
n−1

reachable states. To
prove distinguishability, notice that the state 0 is uniquely distinguishable by ε,
and it is uniquely reachable from any other state through unique in-transitions
on symbol a. By Proposition 2, the subset automaton has no equivalent states.

(10) Let L = {ai | 0 ≤ i ≤ 2n − 2}. Then L is a unary language accepted
by a minimal 2n-state DFA A, so L is accepted by a n-state BFA. Since L is
suffix-closed, b(L) = L. (a) Every AFA accepting L has at least n+1 states since
the number of final states in A is greater than 2n−1. (b) The longest string in L
is of length 2n − 2, and therefore every NNFA for L has at least 2n − 1 states.

(11) Let K be accepted by the 2n-state DFA A shown in Fig. 7. Set L = KR.
Then L is accepted by an n-state BFA. Now the proof goes exactly the same
way as in the case (8) and it results in the lower bound 2n.

(12) Let K be accepted by the 2n-state DFA A shown in Fig. 8. Set L = KR.
Then L is accepted by an n-state BFA. Now the proof goes exactly the same
way as in the case (9) and it results in the lower bound 22

n−1. �
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0 1 2 . . . 2n−1−1 2n−1 . . . 2n−1
a a a a

a
b

b b b a, b a, b

Fig. 6. The reverse of the witness for the AFA-to-DFA trade-off

0 1 . . . 2n−2 2n−1
a a a

b

a
a, b

Fig. 7. The reverse of the witness for the BFA-to-NFA trade-off

0 1 2 . . . 2n−2 2n−1
a a a a

a
b

b b b a, b

Fig. 8. The reverse of the witness for the BFA-to-DFA trade-off

Table 1. The complexity of Σ∗L for various types of finite automata

L\b(L) DFA |Σ| PFA |Σ| NFA |Σ| NNFA |Σ| AFA |Σ| BFA |Σ|
DFA 2n−1 2 2n−1 2 2n−1[2] 3 2n−1[2] 3 n 3 n 3

PFA 2n−1 + 1 4 2n−1 2 2n−1 3 2n−1 3 n 3 n 3

NFA M(n−1) 2n+1 M(n−1)−1 2n+1 2n−1 3 2n−1 3 n 3 n 3

NNFA ≥ M(n−1) 2n+1 ≥ M(n−1)−1 2n+1 ≥ 2n−1 3 ≥ 2n−1 3 n + 1 2 n 2

≤ M(n) ≤ M(n) − 1 ≤ 2n−1 ≤ 2n−2

AFA 22
n−1

2 22
n−1 − 1 2 2n−1 + 1 2 2n−1 1 n 1 n 1

BFA 22
n−1 2 22

n−1 − 1 2 2n 2 2n − 1 1 n + 1 1 n 1

4 Conclusions

We investigated the descriptive complexity of Σ∗L over complete and partial
deterministic, nondeterministic, alternating, and boolean finite automata. For
each trade-off, except for those starting with NNFAs, we provided tight upper
bounds for complexity of Σ∗L depending on the complexity of L. The most
interesting result is the tight upper bound on NFA-to-DFA trade-off given by
the Dedekind number M(n − 1). However, we used a growing alphabet of size
2n+1 to get the lower bound in this case. Except for (N)NFA-to-(P)DFA trade-
offs, all witnesses are described over an alphabet of fixed size. Moreover, binary
and unary alphabets are optimal for their respective cases. Whenever we have
a larger alphabet, we do not know whether or not it is optimal. The precise
complexity for NNFA-to-(P)DFA and NNFA-to-(N)NFA trade-offs remains open
as well (Table 1).
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Abstract. We introduce a model of one-way language acceptors (a vari-
ant of a checking stack automaton) and show the following decidability
properties:
1. The deterministic version has a decidable membership problem but

has an undecidable emptiness problem.
2. The nondeterministic version has an undecidable membership prob-

lem and emptiness problem.
There are many models of accepting devices for which there is no dif-
ference with these problems between deterministic and nondeterministic
versions, i.e., the membership problem for both versions are either decid-
able or undecidable, and the same holds for the emptiness problem. As
far as we know, the model we introduce above is the first one-way model
to exhibit properties (1) and (2). We define another family of one-way
acceptors where the nondeterministic version has an undecidable empti-
ness problem, but the deterministic version has a decidable emptiness
problem. We also know of no other model with this property in the lit-
erature. We also investigate decidability properties of other variations of
checking stack automata (e.g., allowing multiple stacks, two-way input,
etc.). Surprisingly, two-way deterministic machines with multiple check-
ing stacks and multiple reversal-bounded counters are shown to have a
decidable membership problem, a very general model with this property.

Keywords: Checking stack automata · Pushdown automata · Decid-
ability · Reversal-bounded counters

1 Introduction

The deterministic and nondeterministic versions of most known models of lan-
guage acceptors exhibit the same decidability properties for each of the mem-
bership and emptiness problems. For example, for one-way models, it is easy to
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show (by coding the “transition rules” on the input string) that the emptiness
problem is decidable for the deterministic version if and only if it is decidable for
the nondeterministic version. For a formal proof of this, it is possible to either
use the model of Abstract Families of Acceptors (AFAs) from [3], or a type of
abstract store types used in this paper. For the membership problem, as far as
we know, no one-way model has been shown to exhibit different decidability
properties for deterministic and nondeterministic versions.

A one-way checking stack automaton [4] is similar to a pushdown automaton
that cannot erase its stack, but can enter and read the stack in two-way read-only
mode, but once this mode is entered, the stack cannot change. Here, we intro-
duce a new model of one-way language acceptors that exhibits the decidability
properties above. It is defined by augmenting a checking stack automaton with
reversal-bounded1 counters, and the deterministic and nondeterministic versions
are denoted by DCSACM and NCSACM, respectively. The models with two-way
input (with end-markers) are called 2DCSACM and 2NCSACM. These are gener-
alized further to models with k checking stacks: k-stack 2DCSACM and k-stack
2NCSACM.

We show the following results concerning membership and emptiness:

1. The membership and emptiness problems for NCSACMs are undecidable, even
when there are only two reversal-bounded counters.

2. The emptiness problem for DCSACM is decidable when there is only one
reversal-counter but undecidable when there are two reversal-bounded coun-
ters.

3. The membership problem for k-stack 2DCSACMs is decidable for any k.

We define another family of one-way acceptors where the deterministic ver-
sion has a decidable emptiness problem, but the nondeterministic version has an
undecidable emptiness problem. Further, we introduce a new family with decid-
able emptiness, containment, and equivalence problems, which is one of the most
powerful families to have these properties (one-way deterministic machines with
one reversal-bounded counter and a checking stack that can only read from the
stack at the end of the input). We also investigate the decidability properties
of other variations of checking stack automata (e.g., allowing multiple stacks,
two-way input, etc.).

Many proofs are omitted due to space constraints, but are found in online
in [9].

2 Preliminaries

This paper requires basic knowledge of automata and formal languages [7].
We use a variety of machine models here, mostly built on top of the checking

stack. It is possible to define each machine model directly. An alternate approach

1 A counter is reversal-bounded if there is a bound on the number of changes between
increasing and decreasing.
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is to define “store types” first, which describes just the behavior of the store,
including instructions that can change the store, and the manner in which the
store can be read. This can capture standard types of stores studied in the
literature, such as a pushdown, or a counter. Defined generally enough, it can also
define a checking stack, or an l-reversal-bounded counter (one that makes at most
l alternations between increasing and decreasing). Then, machines using one or
more store types can be defined, in a standard fashion. A (Ω1, . . . , Ωk) machine
is a machine with k stores, where Ωi describes each store. This is the approach
taken here, in a similar fashion to the one taken in [2] or [3] to define these same
types of automata. This generality will also help in illustrating what is required
to obtain certain decidability properties; see e.g. Lemma 1 and Proposition 2
which are proven generally for arbitrary store types.

Due to space constraints, we will omit such definitions and refer to [9] (similar
definitions also appear in [8]). Here, all machine models will only be described
informally. A checking stack is similar to a pushdown, although initially, it is
only possible to push to the checking stack (without popping). Then, at some
point, it is possible to read from within the checking stack (without erasing it),
in a two-way read-only fashion. However, once this reading has started, then the
stack can no longer be changed. Thus, there are two phases, a “writing phase”,
where it can push or stay (no pop), and a “reading phase”, where it enters the
stack in read-only mode. But once it starts reading, it cannot change the stack
again.

The different machine modes are combinations of either one-way or two-way,
deterministic or nondeterministic, and r-head for some r ≥ 1, For example,
one-way, 1-head, deterministic, is a machine mode. Given a sequence of store
types Ω1, . . . , Ωk and a machine mode, one can study the set of all (Ω1, . . . , Ωk)
machines with this mode. The set of all such machines with a mode is said to
be complete. Any strict subset is said to be incomplete. Given a set of (com-
plete or incomplete) machines M of this type, the family of languages accepted
by these machines is denoted L(M). For example, the set of all one-way deter-
ministic pushdown automata is complete. But consider the set of all one-way
deterministic pushdown automata that can only decrease the size of the stack
when scanning the right end-marker. Then, the instructions available to such
machines depend on the location of the input (whether it has reached the end of
the input or not). Therefore, this is an incomplete set of automata. Later in the
paper, we will consider variations of checking stack automata such as one called
no-read, which means that they do not read from the inside of the checking stack
before hitting the right input end-marker. This is similarly an incomplete set of
automata since the instructions allowed differs depending on the input position.

The class of one-way deterministic (resp. nondeterministic) checking stack
automata is denoted by DCSA (resp., NCSA) [4]. The class of deterministic (resp.
nondeterministic), finite automata is denoted by DFA (resp., NFA) [7].

For k, l ≥ 1, the class of one-way deterministic (resp. nondeterministic) l-
reversal-bounded k-counter machines is denoted by DCM(k, l) (resp. NCM(k, l)).
If only one integer is used, e.g. NCM(k), this class contains all l-reversal-bounded
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k counter machines, for some l, and if the integers is omitted, e.g., NCM and
DCM, they contain all l-reversal-bounded k counter machines, for some k, l.
Note that a counter that makes l reversals can be simulated by � l+1

2 � 1-reversal-
bounded counters [10]. Closure and decidable properties of various machines
augmented with reversal-bounded counters have been studied in the literature
(see, e.g., [10]). For example, it is known that the membership and emptiness
problems are decidable for NCM [10].

Also, here we will study the following new classes of machines that have not
been studied in the literature: one-way deterministic (resp. nondeterministic)
machines defined by stores consisting of one checking stack and k l-reversal-
bounded counters, denoted by DCSACM(k, l) (resp. NCSACM(k, l)), those with
k-reversal-bounded counters, denoted by DCSACM(k) (resp. NCSACM(k)), and
those with some number of reversal-bounded counters, denoted by DCSACM
(resp. NCSACM).

All models above also have two-way versions of the machines defined, denoted
by preceding them with 2, e.g. 2DCSA, 2NCSA, 2NCM(1), 2DFA, 2NFA, etc.

We will also define models with k checking stacks for some k, which we will
precede with the phrase “k-stack”, e.g. k-stack 2DCSA, k-stack 2NCSA, k-stack
2DCSACM, k-stack 2NCSACM, etc. When k = 1, then this corresponds with
omitting the phrase “k-stack”.

3 A Checking Stack with Reversal-Bounded Counters

Before studying a new type of store and machine model, we determine several
properties that are equivalent for any complete set of machines. This helps to
demonstrate what is required to potentially have a machine model where the
deterministic version has a decidable membership problem with an undecidable
emptiness problem, while both problems are undecidable for the nondeterminis-
tic version.

First, we examine a machine’s behavior on one word.

Lemma 1. Let M be a one- or two-way, r-head, for some r ≥ 1, (Ω1, . . . , Ωk)-
machine, and let w ∈ Σ∗. We can effectively construct another (Ω1, . . . , Ωk)-
machine Mw that is one-way and 1-head which accepts λ if and only if M accepts
w. Furthermore, Mw is deterministic if M is deterministic.

Proof. The input w is encoded in the state of Mw, and Mw on input λ, simulates
the computation of M and accepts λ if and only if M accepts w. This uses a
subset of the sequence of transitions used by M . Since Mw is only reading λ,
two-way input is not needed in Mw, and the r-heads are simulated completely
in the finite control. ��

Then, for all machines with the same store types, the following decidability
problems are equivalent:

Proposition 2. Consider store types (Ω1, . . . , Ωk). The following problems are
equivalently decidable, for the stated complete sets of automata:
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1. the emptiness problem for one-way deterministic (Ω1, . . . , Ωk)-machines,
2. the emptiness problem for one-way nondeterministic (Ω1, . . . , Ωk)-machines,
3. membership problem for one-way nondeterministic (Ω1, . . . , Ωk)-machines,
4. acceptance of λ, for one-way nondeterministic (Ω1, . . . , Ωk)-machines,
5. the membership problem for two-way r-head (for r ≥ 1) nondeterministic

(Ω1, . . . , Ωk)-machines.

It is important to note that this proposition is not necessarily true for incom-
plete sets of automata, as the machines constructed in the proof need to be
present in the set. We will see some natural restrictions later where this is not
the case, such as sets of machines where there is a restriction on what instructions
can be performed on the store based on the position on the input. And indeed,
to prove the equivalence of (1) and (2) above, the deterministic machine created
reads a letter for every transition of the nondeterministic machine applied. So,
consider a set of automata that is only allowed to apply a strict subset of store
instructions before the end-marker. Let M be a nondeterministic machine of this
type, and say that M applies some instruction on the end-marker that is not
available to the machine before the end-marker. But the deterministic machine
M ′ created from M in Proposition 2 reads an input letter when every instruction
is applied, even those applied on the end-marker of M . But since M ′ is reading
an input letter during this operation, it would violate the instructions allowed
by M ′ before the end-marker.

The above proposition indicates that for complete sets of one-way machines,
membership for nondeterminism, emptiness for nondeterminism, and emptiness
for determinism are equivalent. Thus, the only one that can potentially differ is
membership for deterministic machines. Yet we know of no existing model where
it differs from the other three properties. We examine one next.

Next, we will study NCSACMs and DCSACMs, which are NCSAs and DCSAs
(nondeterministic and deterministic checking stack automata) respectively, aug-
mented by reversal-bounded counters. First, two examples will be shown, demon-
strating a language that can be accepted by a DCSACM.

Example 3. Consider the language L = {(an#)n | n ≥ 1}. A DCSACM M with
one 1-reversal-bounded counter can accept L as follows: M when given an input
w (we may assume that the input is of the form w = an1# · · · ank# for some
k ≥ 1 and ni ≥ 1 for 1 ≤ i ≤ k, since the finite control can check this), copies
the first segment an1 to the stack while also storing number n1 in the counter.
Then M goes up and down the stack comparing n1 to the rest of the input to
check that n1 = · · · = nk while decrementing the counter by 1 for each segment
it processes. Clearly, L(M) = L and M makes only 1 reversal on the counter.
We will show in Proposition 5 that L cannot be accepted by an NCSA.

Example 4. Let L = {aibjck | i, j ≥ 1, k = i ·j}. We can construct a DCSACM(1)
M to accept L as follows. M reads ai and stores ai in the stack. Then it reads
bj and increments the counter by j. Finally, M reads ck while moving up and
down the stack containing ai and decrementing the counter by 1 every time the
stack has moved i cells, to verify that k is divisible by i and k/i = j. Then M
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accepts L, and M needs only one 1-reversal counter. We will see in Proposition 29
that L cannot be accepted by a 2DCM(1).

The following shows that, in general, NCSACMs and DCSACMs are compu-
tationally more powerful than NCSAs and DCSAs, respectively.

Proposition 5. There are languages in L(DCSACM(1, 1)) − L(NCSA). Hence,
L(DCSA) � L(DCSACM(1, 1)), and L(NCSA) � L(NCSACM(1, 1)).

Proof. Consider the language L = {(an#)n | n ≥ 1} from Example 3. L cannot
be accepted by an NCSA; otherwise, L′ = {an2 | n ≥ 1} can also be accepted
by an NCSA (since NCSA languages are closed under homomorphism), but it
was shown in [4] that L′ cannot be accepted by any NCSA. However, Example
3 showed that L can be accepted by a DCSACM. ��

We now proceed to show that the membership problem for DCSACMs
is decidable. In view of Lemma 1, our problem reduces to deciding, given a
DCSACM M , whether it accepts λ. So we only need to worry about the opera-
tion of the checking stack and the counters. For acceptance of λ, the next lemma
provides a normal form.

Lemma 6. Let M be a DCSACM. We can effectively construct a DCSACM M ′

such that:

– all counters of M ′ are 1-reversal-bounded and each must return to zero before
accepting,

– M ′ always writes on the stack at each step during the writing phase,
– the stack head returns to the left end of the stack before accepting,

whereby M ′ accepts λ if and only if M accepts λ.

In view of Lemma 6, we may assume that a DCSACM writes a symbol at the
end of the stack at each step during the writing phase. This is important for
deciding the following problem.

Lemma 7. Let M be a DCSACM satisfying the assumptions of Lemma 6. We
can effectively decide whether or not M on λ input has an infinite writing phase
(i.e., will keep on writing).

From this, decidability of acceptance of λ is straightforward.

Lemma 8. It is decidable, given a DCSACM M satisfying the assumptions of
Lemma 6, whether or not M accepts λ.

From Lemmas 1, 6, and 8:

Proposition 9. For r ≥ 1, the membership problem for r-head 2DCSACM is
decidable.

We now give some undecidability results. The proofs will use the following
result in [10]:
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Proposition 10 [10]. It is undecidable, given a 2DCM(2) M over a letter-
bounded language, whether L(M) is empty.

Proposition 11. The membership problem for NCSACM(2) is undecidable.

Proof. Let M be a 2DCM(2) machine over a letter-bounded language. Construct
from M an NCSACM M ′ which, on λ - input (i.e. the input is fixed), guesses an
input w to M and writes it on its stack. Then M ′ simulates the computation
of M by using the stack and two reversal-bounded counters and accepts if and
only if M accepts. Clearly, M ′ accepts λ if and only if L(M) is not empty which
is undecidable by Proposition 10. ��

By Propositions 2 and 11, the following is true:

Corollary 12. The emptiness problem for DCSACM(2) is undecidable.

The next restriction serves to contrast this undecidability result. Consider an
NCSACM where during the reading phase, the stack head crosses the boundary
of any two adjacent cells on the stack at most d times for some given d ≥ 1. Call
this machine a d-crossing NCSACM. Then we have:

Proposition 13. It is decidable, given a d-crossing NCSACM M , whether or
not L(M) = ∅.
Proof. Define a d-crossing NTMCM to be an nondeterministic Turing machine
with a one-way read-only input tape and a d-crossing read/write worktape (i.e.,
the worktape head crosses the boundary between any two adjacent worktape
cells at most d times) augmented with reversal-bounded counters. Note that a
d-crossing NCSACM can be simulated by a d-crossing NTMCM. It was shown in
[6] that it is decidable, given a d-crossing NTMCM M , whether L(M) = ∅. The
proposition follows. ��

Although we have been unable to resolve the open problem as to whether
the emptiness is decidable for both NCSACM and DCSACM with one reversal-
bounded counter, as with membership for the nondeterministic version, we show
they are all equivalent to an open problem in the literature.

Proposition 14. The following are equivalent:

1. the emptiness problem is decidable for 2NCM(1),
2. the emptiness problem is decidable for NCSACM(1),
3. the emptiness problem is decidable for DCSACM(1),
4. the membership problem is decidable for r-head 2NCSACM(1),
5. it is decidable if λ is accepted by a NCSACM(1).

It is indeed a longstanding open problem as to whether the emptiness problem
for 2NCM(1) is decidable [10].

Now consider the following three restricted models, with k counters: For
k ≥ 1, a DCSACM(k) (NCSACM(k)) machine is said to be:
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– no-read/no-counter if it does not read the checking stack nor use any counter
before hitting the right input end-marker,

– no-read/no-decrease if it does not read the checking stack nor decrease any
counter before hitting the right input end-marker,

– no-read if it does not read the checking stack before hitting the right input
end-marker.

We will consider the families of DCSACM(k) (NCSACM(k)) machines satisfying
each of these three conditions.

Proposition 15. For any k ≥ 1, every 2DCM(k) machine can be effectively
converted to an equivalent no-read/no-decrease DCSACM(k) machine, and vice-
versa.

From this, the following is immediate, since emptiness for 2DCM(1) is known
to be decidable [11].

Corollary 16. The emptiness problem for no-read/no-decrease DCSACM(1) is
decidable.

In the first part of the proof of Proposition 15, the DCSACM(k) machine
created from a 2DCM(k) machine was also no-read/no-counter. Therefore, the
following is immediate:

Corollary 17. For k ≥ 1, the family of languages accepted by the following
three sets of machines coincide:

– all no-read/no-decrease DCSACM(k) machines,
– all no-read/no-counter DCSACM(k) machines,
– 2DCM(k).

One particularly interesting corollary of this result is the following:

Corollary 18. 1. The family of languages accepted by no-read/no-decrease
(respectively no-read/no-counter) DCSACM(1) is effectively closed under
union, intersection, and complementation.

2. Containment and equivalence are decidable for languages accepted by no-
read/no-decrease DCSACM(1) machines.

This follows since this family is equal to 2DCM(1), and these results hold for
2DCM(1) [11]. Something particularly noteworthy about closure of languages
accepted by no-read/no-decrease 2DCSACM(1) under intersection, is that, the
proof does not follow the usual approach for one-way machines. Indeed, it would
be usual to simulate two machines in parallel, each requiring its own counter (and
checking stack). But here, only one counter is needed to establish intersection,
by using a result on two-way machines. Later, we will show that Corollary 18,
part 2 still holds for no-read DCSACM(1)s.

Also, since emptiness is undecidable for 2DCM(2), even over letter-bounded
languages [10], the following is true:
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Corollary 19. The emptiness problem for languages accepted by no-read/no-
counter DCSACM(2) is undecidable, even over letter-bounded languages.

Turning now to the nondeterministic versions, from the first part of
Proposition 15, it is immediate that for any k ≥ 1, every 2NCM(k) can be
effectively converted to an equivalent no-read/no-decrease NCSACM(k). But,
the converse is not true combining together the following two facts:

Proposition 20. 1. For every k ≥ 1, the emptiness problem for languages
accepted by 2NCM(k) over a unary alphabet is decidable.

2. The emptiness problem for languages accepted by no-read/no-counter (or no-
read/no-decrease) NCSACM(2) over a unary alphabet is undecidable.

Proof. The first part was shown in [11]. For the second part, it is known that
the emptiness problem for 2DCM(2) M (even over a letter-bounded language) is
undecidable by Proposition 10. We construct a no-read/no-counter NCSACM(2)
M ′ which, on a unary input, nondeterministically writes some string w on the
stack. Then M ′ simulates M using w. The result follows since L(M ′) = ∅ if and
only if L(M) = ∅. ��

In contrast to part 2 of this proposition:

Proposition 21. For any k ≥ 1, the emptiness problem for languages accepted
by no-read/no-decrease DCSACM(k) machines over a unary alphabet, is decid-
able.

Proof. If M is a no-read/no-decrease DCSACM(k) over a unary alphabet, we can
effectively construct an equivalent 2DCM(k) M (over a unary language) from
Proposition 15. The result follows since the emptiness problem for 2NCM(k)
over unary languages is decidable [11]. ��

Combining these two results yields the following somewhat strange contrast:

Corollary 22. Over a unary input alphabet and for all k ≥ 2, the emptiness
problem for no-read/no-counter NCSACM(k)s is undecidable, but decidable for
no-read/no-counter DCSACM(k)s.

As far as we know, this demonstrates the first known example of a family of
one-way acceptors where the nondeterministic version has an undecidable empti-
ness problem, but the deterministic version has a decidable emptiness problem.
This presents an interesting contrast to Proposition 2, where it was shown that
for complete sets of automata for any store types, the emptiness problem of the
deterministic version is decidable if and only if it is decidable for the nonde-
terministic version. However, the set of unary no-read/no-counter NCSACM(k)
machines can be seen to not be a complete set of automata, as a complete
set of machines contains every possible machine involving a store type. This
includes those machines that read input letters while performing read instruc-
tions on the checking stack. And indeed, to prove the equivalence of (1) and (2)
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in Proposition 2, the deterministic machine created reads a letter for every tran-
sition applied, which can produce machines that are not of the restriction no-
read/no-counter.

When there is only one counter, decidability of the emptiness problem for
no-read/no-decrease NCSACM(1), and for no-read/no-counter NCSACM(1) can
be shown to be equivalent to all problems listed in Proposition 14. This is
because (2) of Proposition 14 implies each immediately, and each implies (1) of
Proposition 14, as a 2NCM(1) machine M can be converted to a no-read/no-
decrease, or no-read/no-counter NCSACM(1) machine where the input is copied
to the stack, and then the 2NCM(1) machine simulated.

Therefore, it is open as to whether the emptiness problem for no-read/no-
decrease (or no-read/no-counter) NCSACM(1) is decidable, as this is equivalent
to the emptiness problem for 2NCM(1). One might again suspect that decid-
ability of emptiness for no-read/no-decrease DCSACM(1) implies decidability
of emptiness for no-read/no-decrease NCSACM(1) by Proposition 2. However,
it is again important to note that Proposition 2 only applies to complete sets
of machines, including those machines that read input letters while performing
read instructions on the checking stack, again violating the ‘no-read/no-decrease’
condition.

Even though it is open as to whether the emptiness problem is decidable for
no-read/no-decrease NCSACM(1)s, we have the following result, which contrasts
Corollary 18, part 2:

Proposition 23. The universe problem is undecidable for no-read/no-counter
NCSACM(1)s. (Thus, containment and equivalence are undecidable.)

Proof. It is known that the universe problem for a one-way nondeterministic 1-
reversal-bounded one-counter automaton M is undecidable [1]. Clearly, we can
construct a no-read/no-counter NCSACM(1) M ′ to simulate M . ��

In the definition of a no-read/no-decrease DCSACM, we imposed the con-
dition that the counters can only decrement when the input head reaches the
end-marker. Consider the weaker condition no-read, i.e., the only requirement
is that the machine can only enter the stack when the input head reaches the
end-marker, but there is no constraint on the reversal-bounded counters. It is
an interesting open question about whether no-read DCSACM(k) languages are
also equivalent to a 2DCM(k) (we conjecture that they are equivalent). However,
the following stronger version of Corollary 16 can be proven.

Proposition 24. The emptiness problem is decidable for no-read DCSACM(1)s.

We can further strengthen Proposition 24 somewhat. Define a restricted no-
read NCSACM(1) to be a no-read NCSACM(1) which is only nondeterministic
during the writing phase. Then the proof of Proposition 24 applies to the fol-
lowing, as the sequence of transition symbols used in the proof can be simulated
deterministically:

Proposition 25. The emptiness problem is decidable for languages accepted by
restricted no-read NCSACM(1)s.
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While we are unable to show that the intersection of two no-read DCSACM(1)
languages is a no-read DCSACM(1) language, we can prove:

Proposition 26. It is decidable, given two no-read DCSACM(1)s M1 and M2,
whether L(M1) ∩ L(M2) = ∅.

One can show that no-read DCSACM(1) languages are effectively closed under
complementation. Thus, from Proposition 26:

Corollary 27. The containment and equivalence problems are decidable for no-
read DCSACM(1)s.

No-read DCSACM(1) is indeed quite a large family for which emptiness,
equality, and containment are decidable. The proof of Proposition 26 also applies
to the following:

Proposition 28. It is decidable, given two restricted no-read NCSACM(1)s M1

and M2, whether L(M1) ∩ L(M2) = ∅.
Finally, consider the general model DCSACM(1) (i.e., unrestricted). While it

is open whether no-read DCSACM(1) is equivalent to 2DCM(1), we can prove:

Proposition 29. L(2DCM(1)) � L(DCSACM(1)).

Proof. It is obvious that any 2DCM(1) can be simulated by a DCSACM(1) (in fact
by a no-read/no-counter DCSACM(1)). Now let L = {aibjck | i, j ≥ 1, k = i · j}.
We can construct a DCSACM(1) M to accept L by Example 4. However, it was
shown in [5] that L cannot be accepted by a 2DCM(1) by a proof that shows
that if L can be accepted by a 2DCM(1), then one can use the decidability of
the emptiness problem for 2DCM(1)s to show that Hilbert’s Tenth Problem is
decidable. ��

4 Multiple Checking-Stacks with Reversal-Bounded
Counters

In this section, we will study deterministic and nondeterministic k-checking-stack
machines. These are defined by using multiple checking stack stores. Implied from
this definition is that each stack has a “writing phase” followed by a “reading
phase”, but these phases are independent for each stack.

A k-stack DCSA (NCSA respectively) is the deterministic (nondeterministic)
version of this type of machine. The two-way versions (with input end-markers)
are called k-stack 2DCSA and k-stack 2NCSA, respectively. These k-stack models
can also be augmented with reversal-bounded counters and are called k-stack
DCSACM, k-stack NCSACM, k-stack 2DCSACM, and k-stack 2NCSACM.

Consider a k-stack DCSACM M . By Lemma 1, for the membership problem,
we need only investigate whether λ is accepted. Also, as in Lemma 6, we may
assume that each stack pushes a symbol at each move during its writing phase,
and that all counters are 1-reversal-bounded.
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We say that M has an infinite writing phase (on λ input) if no stack enters
a reading phase. Thus, all stacks will keep on writing a symbol at each step. If
M has a finite writing phase, then directly before a first such stack enters its
reading phase, all the stacks would have written strings of the same length.

Lemma 30. Let k ≥ 1 and M be a (k + 1)-stack DCSACM M satisfying the
assumption of Lemma 6.

1. We can determine if M has an infinite writing phase. If so, M does not accept
λ.

2. If M has a finite writing phase, we can construct a k-stack DCSACM M ′′

such that M ′′ accepts λ if and only if M accepts λ.

Notice that M ′′ has fewer stacks than M . Then, from Proposition 9 (the result
for a single stack) and using Lemma 30 recursively:

Proposition 31. The membership problem for k-stack DCSACMs is decidable.

Then, by Lemma 1:

Corollary 32. The membership problem for r-head k-stack 2DCSACM is decid-
able.
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Abstract. The notion of rank of a language with respect to an inde-
pendence alphabet is generalized from concatenations of two words to an
arbitrary fixed number of words. It is proved that in the case of free com-
mutative monoids, as well as in the more general case of direct products
of free monoids, sequences of ranks of regular languages are exactly non-
decreasing sequences that are eventually constant. On the other hand, by
uncovering a relationship between rank sequences of regular languages
and rational series over the min-plus semiring, it is shown that already
for free products of free commutative monoids, rank sequences need not
be eventually periodic.

Keywords: Trace language · Rank · Regular language · Rational series ·
Tropical semiring

1 Introduction

It is a classical observation that the commutative closure of a regular set of words
is not necessarily regular; for instance, the closure of (ab)∗ consists of all words
where both letters a and b have the same number of occurrences. In the more
general setting of trace alphabets, where some pairs of letters commute and some
do not, the most useful technique for proving regularity of the closure of a given
regular set of words under the trace equivalence is based on the notion of rank,
introduced by Hashiguchi [4]. The idea of this notion is to cut an arbitrary word
from the closure into a prefix and a suffix, and then ask into how many segments
the prefix and the suffix have to be split, so that some word from the original
set can be obtained by shuffling independent segments. In the above mentioned
case of the language (ab)∗, when the word anbn is cut right in the middle, each
copy of the letter a has to be moved separately into a different position between
copies of b on the right to obtain a word from (ab)∗; this shows that the rank of
(ab)∗ is unbounded. On the other hand, if a regular language L ⊆ Σ∗ has finite
rank n, one can consider for each word all possible decompositions to n segments,
and in this way obtain an equivalence relation on Σ∗ of finite index such that
equivalent words reach the same state in the minimal automaton of the closure
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of L; in other words, this equivalence relation is finer than the syntactic right
congruence of the closure. In particular, this implies that the closure is regular.

The crucial property of the rank is that its finiteness is preserved by several
basic language-theoretic operations, most importantly concatenation of arbitrary
languages and Kleene star of languages consisting solely of connected words (the
behaviour of the rank with respect to operations was studied in detail by Klunder
et al. [5]). This property makes rank the best tool for proving characterizations of
recognizable sets in trace monoids by certain rational expressions (see [2]). The
appropriate generalization of rank was used by Droste and Kuske [3] to obtain
such a characterization of recognizable sets also for a larger class of monoids,
so-called divisibility monoids. The notion of rank turned out to be useful also in
another more general setting of semi-commutations. In particular, it was used
by Ochmański and Wacrenier [7] to solve the problem of characterizing pairs of
semi-commutation relations such that for every regular language closed under
the first relation, its closure under the second relation is again regular.

In spite of a significant interest in this notion, answers to many basic ques-
tions about the rank are not known. For instance, while it is known due to
Sakarovitch [8] that trace alphabets for which one can algorithmically decide
whether the closure of a given regular language is regular are precisely those
that define free products of free commutative monoids, decidability of finiteness
of the rank of a regular language is an open problem.

Once it is known that a language has a finite rank, one can ask whether there
also exists a bound on the required number of segments when a word from the
closure is cut into three or more pieces instead of just two. Such decompositions
are often studied in the theory of regular languages; in particular, the definition of
a syntactic monoid is based on decomposing words into triples, and if the number
of segments were bounded also in this case, it would be possible to construct
an equivalence relation of finite index finer than the syntactic congruence of the
closure, similarly to the construction of an equivalence relation finer than the
syntactic right congruence described above. However, it turns out that there exist
regular languages with finite rank, where decompositions into triples require an
unbounded number of segments. This leads us to consider the generalized notion
of rank for an arbitrary fixed number of cuts. In this way, for each independence
alphabet, every language is assigned a sequence of non-negative integers (possibly
including infinity), expressing how the required number of segments increases
with respect to the number of allowed cuts.

This paper studies basic properties of these rank sequences. The generalized
rank is defined in Sect. 2. In Sect. 3 it is shown that both in the case of free
commutative monoids and in the case of direct products of free monoids (that
is, trace alphabets with a transitive dependence relation), rank sequences of reg-
ular languages are exactly all non-decreasing and eventually constant sequences.
However, it turns out that, in general, rank sequences need not be even eventu-
ally periodic; more precisely, in Sect. 4, it is proved that every sequence obtained
from some rational series over the min-plus semiring by taking the nth element
equal to the maximum of all coefficients of words of length at most n, is the
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rank sequence of some regular language with respect to a transitive indepen-
dence relation (that is, for a free product of free commutative monoids).

2 Definition

The paper deals with the monoid Σ∗ consisting of all words over a finite alpha-
bet Σ. Any subset L of Σ∗ is called a word language. The number of occurrences
of a letter a ∈ Σ in a word w ∈ Σ∗ is referred to as |w|a. For w ∈ Σ∗ and Γ ⊆ Σ,
the notation πΓ (w) stands for the word obtained from w by deleting all letters
not belonging to Γ . The empty word is denoted by ε.

Trace monoids are determined by prescribing which pairs of letters commute.
This is expressed by an irreflexive and symmetric binary relation I on Σ, called
an independence relation. Its complement D = (Σ × Σ) \ I is the corresponding
dependence relation. The pair (Σ, I) is called an independence alphabet. Let ∼I

be the congruence of Σ∗ generated by the set { (ab, ba) | (a, b) ∈ I }. The trace
monoid M(Σ, I) is then defined as the quotient monoid Σ∗/ ∼I . Thus, elements
of M(Σ, I), called traces, are precisely classes of words that can be obtained from
each other by successively commuting some neighbouring independent letters.

Trace languages are arbitrary subsets of M(Σ, I). Trace languages can be also
viewed as sets of words closed under ∼I . In order to describe a trace language T ,
it is sufficient to provide an arbitrary word language L such that T consists
precisely of those traces which have some representative in L; viewed as a set of
words, the trace language T is then equal to the closure of L under ∼I , that is
{w ∈ Σ∗ | ∃u ∈ L : w ∼I u }, which will be denoted by L.

The definition of the rank of a word language L with respto an indepen-
dence alphabet is based on the following characterization of equivalence of a
concatenation of several words to a given word.

Lemma 1. Let (Σ, I) be an independence alphabet, m a positive inte-
ger, and w, u0, . . . , um ∈ Σ∗ words. The equivalence u0 . . . um ∼I w
holds if and only if there exist a non-negative integer n and words
u0,0, . . . , u0,n, . . . , um,0, . . . , um,n ∈ Σ∗ such that

1. uk ∼I uk,0 . . . uk,n for all k ∈ {0, . . . , m},
2. u0,0 . . . um,0 . . . u0,n . . . um,n = w,
3. for all k, � ∈ {0, . . . , m} satisfying k > � and i, j ∈ {0, . . . , n} satisfying i < j,

all letters of uk,i are independent of all letters of u�,j.

The rank of L expresses into how many segments words u0, . . . , um in
Lemma 1 have to be cut, so that the segments can be shuffled to get some
word w ∈ L.

Definition 2. Let (Σ, I) be an independence alphabet and m a non-negative
integer. Assume that L ⊆ Σ∗ and u0, . . . , um ∈ Σ∗ are such that u0 . . . um ∈ L.
Define Rank(L;u0, . . . , um) as the smallest non-negative integer n such that there
exist words w ∈ L and u0,0, . . . , um,n ∈ Σ∗ satisfying conditions 1–3 of Lemma 1.
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The m-rank of L is defined as the supremum of all values Rank
(L;u0, . . . , um) for admissible words u0, . . . , um ∈ Σ∗, that is, Rankm(L) is equal
to

max{Rank(L;u0, . . . , um) | u0 . . . um ∈ L } if the maximum exists,
0 if L = ∅,
ω otherwise.

The original rank introduced by Hashiguchi [4] coincides with the 1-rank of
the above definition. For m = 0, one obtains Rank0(L) = 0 for every language
L, and consequently, we will be interested only in Rankm(L) for positive inte-
gers m; however, 0-rank will be employed in formulas for calculating the rank
of more complex languages. Note that the value Rank(L;u0, . . . , um) depends
only on non-empty words in the sequence u0, . . . , um, that is, it does not change
if some empty words are added or omitted. This in particular implies that for
every language L, the rank sequence (Rankm(L))∞

m=1 is non-decreasing. Another
consequence is that the rank sequence of a finite language L is eventually con-
stant.

Example 3. Consider the word language L = a∗b∗a∗ over the alphabet Σ =
{a, b}, with (a, b) ∈ I. Its closure L is the whole set Σ∗. The value of Rank1(L)
is 0, because for arbitrary words u0, u1 ∈ Σ∗, the words u0,0 = a|u0|ab|u0|b
and u1,0 = b|u1|ba|u1|a satisfy the conditions of Lemma 1 for n = 0 and w =
a|u0|ab|u0u1|ba|u1|a .

Now take three words u0 = u2 = b and u1 = a, satisfying u0u1u2 ∈ L. These
words are the only representatives of their traces. Therefore, bab is the only
word that can be obtained from u0u1u2 by reordering letters within the factors
u0, u1 and u2. However, this word does not belong to L, which shows that
Rank2(L) > 0. In order to show that Rankm(L) = 1 for all m ≥ 2, it is sufficient
to provide appropriate decompositions of arbitrary words u0, . . . , um ∈ Σ∗, for
instance uk,0 = a|uk|a and uk,1 = b|uk|b for k ∈ {0, . . . , m}.

3 Direct Products of Free Monoids

This section is devoted to the description of rank sequences of arbitrary word
languages over trace alphabets whose dependence relation is transitive; the cor-
responding trace monoids are direct products of free monoids over the connected
components of the graph (Σ,D). It turns out that all these rank sequences are
eventually constant, that is, there exists some positive integer m0 such that for
all m ≥ m0, the values of Rankm(L) are equal. Since rank sequences are always
non-decreasing, this is actually equivalent to saying that one of the following
two possibilities arises: either there exists some m for which Rankm(L) = ω, or
the sequence is bounded. The following definition describes the property of a
language that decides whether the former or the latter possibility is true.

Definition 4. Let (Σ, I) be an independence alphabet, with D transitive. The
alternation complexity of a word language L ⊆ Σ∗ with respect to I is defined
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as the least non-negative integer n such that for each word w ∈ L there exist
words v0, . . . , vn ∈ Σ∗ such that v0 . . . vn ∈ L, v0 . . . vn ∼I w and for each
i ∈ {0, . . . , n}, all letters occurring in vi are pairwise dependent. If such an
integer n does not exist, then we say that the alternation complexity is infinite.

Proposition 5. Let (Σ, I) be an independence alphabet, with D transitive, and
let L ⊆ Σ∗ be a word language. If the alternation complexity of L is an integer n,
then Rankm(L) ≤ n for every m. If the alternation complexity of L is infinite,
then Rankd−1(L) = ω, where d is the number of connected components of (Σ,D).

Proof. First assume that the alternation complexity of L is an integer n. Con-
sider arbitrary words u0, . . . , um ∈ Σ∗ such that u0 . . . um ∈ L. The definition
of alternation complexity provides us with words v0, . . . , vn ∈ Σ∗ such that
v0 . . . vn ∈ L, u0 . . . um ∼I v0 . . . vn and for each i ∈ {0, . . . , n}, all letters in vi

are pairwise dependent. Each of the required words uj,i can then be chosen so
that it consists precisely of occurrences of letters common to uj and vi.

Now assume that Rankd−1(L) is equal to a positive integer n, and let us
prove that the alternation complexity of L is finite. Let Σ0 ∪ . . . ∪ Σd−1 be the
decomposition of Σ to components of the graph (Σ,D), that is, Σk × Σk ⊆ D
and Σk × Σ� ⊆ I for k 
= �. Take any v ∈ L and consider words uk = πΣk

(v)
for k = 0, . . . , d − 1. The equality Rankd−1(L) = n, applied to the sequence
u0, . . . , ud−1, provides us with certain words u0,0, . . . , ud−1,n ∈ Σ∗ such that
the word w = u0,0 . . . ud−1,0 . . . u0,n . . . ud−1,n belongs to L. Since all letters in
different words uk are pairwise independent, the word v represents the same
trace as the word u0 . . . ud−1, which is ∼I -equivalent to w by conditions 1 and 3
of Lemma 1. Because all letters of each word uk,i are pairwise dependent, this
shows that the alternation complexity of L is at most d · (n + 1) − 1. ��

In the rest of this section, it will be shown that every non-decreasing and
eventually constant sequence of non-negative integers and infinity is in fact a
rank sequence of some regular language over an alphabet with all letters inde-
pendent. Such languages will be constructed by combining several languages
whose rank sequences begin with finitely many zeros, then jump to a prescribed
value n, either a positive integer or infinity, and continue as constant sequences
forever. With this aim, let m be a positive integer and consider the independence
alphabet (Σ, I) with Σ = {a0, a1, . . . , am} and all letters independent.

First, we deal with the simpler case of n = ω. In this case, the language with
the required properties is Lm =

⋃m
�=0(Lm,�)m, where

Lm,� =
∏

{ a∗
i (a�ai)∗ | i = 0, . . . , m, i 
= � }.

The basic idea is that for any given words u0, . . . , um−1 ∈ Σ∗, there exists
� ∈ {0, . . . , m} such that in each word uj , there is a letter different from a� with
at least the same number of occurrences. This allows one to produce a word from
Lm,� by commuting letters in uj . On the other hand, such an index � does not
exist in the case of words uj = an

j , for j = 0, . . . , m.
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Lemma 6. For k < m, Rankk(Lm) = 0, and for k ≥ m, Rankk(Lm) = ω.
Moreover, Rank(Lm; an

0 , . . . , an
m) = n − 1 holds for every positive integer n.

A regular language, whose rank sequence begins with finitely many zeros and
continues to infinity with values equal to a given positive integer n, is constructed
by adding some words to the language Lm in order to decrease the infinite values
of ranks. These additional words are prescribed by the language

Km,n = {w ∈ Σ∗ | |w|a0 < n or |w|a1 < n }
∪ {w ∈ Σ∗ | πa0,a1(w) ∈ {a0, a1}∗a0a

+
1 (a0a1)n−1 }

∪ {w ∈ Σ∗ | πa0,a1(w) ∈ {a0, a1}∗a1a
+
0 (a1a0)n−1 }.

Lemma 7. The languages Lm and Km,n satisfy Lm ∪ Km,n = Σ∗, Rankk(Lm∪
Km,n) = 0 for k < m and Rankk(Lm ∪ Km,n) = n − 1 for k ≥ m. Moreover,
Rank(Lm ∪ Km,n; ah

0 , . . . , ah
m) = n − 1 holds for every h ≥ n.

Theorem 8. For every infinite sequence whose each member is a non-negative
integer or ω, the following statements are equivalent.

1. The sequence is the rank sequence of some language with respect to a trace
alphabet with a transitive dependence relation.

2. The sequence is the rank sequence of a regular language with respect to a trace
alphabet with all distinct letters pairwise independent.

3. The sequence is non-decreasing and eventually constant.

Proof. The first statement implies the third one by Proposition 5. In order
to prove that the third statement implies the second one, observe that every
non-decreasing and eventually constant sequence can be obtained by taking the
maximum of finitely many sequences, each of which consists of finitely many
zeros, followed by an infinite constant sequence. According to Lemmata 6 and 7,
every such sequence is the rank sequence of a regular language with respect to
a trace alphabet with all letters independent. A regular language for the origi-
nal sequence can then be obtained as the union of these languages, considered
over disjoint alphabets. The proof of the theorem is complete, since the first
statement is a trivial consequence of the second one. ��

4 Free Products of Free Commutative Monoids

This section deals with rank sequences of regular languages with respect to
trace alphabets defining free products of free commutative monoids, that is, such
that the relation I ∪ idΣ is transitive. The goal of this section is to show that
for these trace alphabets there is a close relationship between rank sequences
of some regular languages and rational series over the min-plus semiring. This
relationship is used to prove that there exist regular languages such that their
rank sequences with respect to these trace alphabets are not eventually periodic,
as their growth rate is sublinear.
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4.1 Rational Series Over the Min-plus Semiring

Let us begin by introducing notation for rational series; for a more detailed
introduction to rational series the reader is referred to the book by Berstel and
Reutenauer [1]. Recall that the min-plus semiring T consists of all non-negative
integers together with the additional element ∞. In our setting, it is more natural
to work with the extended min-plus semiring Tω, as introduced by Leung [6],
which additionally contains the element ω. In this semiring, the minimum opera-
tion is defined according to the ordering 0 < 1 < . . . < ω < ∞, and the addition
operation is defined in the usual way, with the additional rules ω+n = max{ω, n}
for all n ∈ Tω.

A (min,+)-automaton S = (Γ,Q,E, ι, τ) over an alphabet Γ consists of a
finite set of states Q, a weighted transition relation E : Q × Γ × Q → T and
mappings ι, τ : Q → T determining initial and terminal weights of states, respec-
tively. Here, labelling a transition with the element ∞ is used to express that
the transition actually does not exist, while the element ω will serve to express
that certain sets of finite weights are unbounded. Since we are not interested in
the constant coefficient of the series, we can assume, without loss of generality,
that ι, τ : Q → {0,∞}, and we will view both ι and τ as sets of states, consisting
precisely of states mapped to 0. The automaton S defines a rational series, which
is a mapping S : Γ+ → T. For a positive integer n and letters γ1, . . . , γn ∈ Γ ,
the value S(γ1 . . . γn) is defined as the minimum of the sums

E(q0, γ1, q1) + E(q1, γ2, q2) + . . . + E(qn−1, γn, qn),

over all choices of states q0, . . . , qn ∈ Q with q0 ∈ ι and qn ∈ τ , if such a choice
exists, and as ∞ otherwise.

In what follows we will be particularly interested in the growth of the coef-
ficients of the series S. This will be expressed by the notation Smax(m), for a
positive integer m, which stands for the maximum of the values S(w), for non-
empty words w of length at most m and such that S(w) 
= ∞; if S(w) = ∞ for
all w of length at most m, then Smax(m) is defined as 0.

For our purposes, it will be useful to view the (min,+)-automaton S as
a homomorphism ϕS from Γ+ to the monoid MQ of Q × Q matrices over
the extended min-plus semiring Tω (with matrix multiplication as operation),
defined by the rule ϕS(γ)(p, q) = E(p, γ, q) for γ ∈ Γ and p, q ∈ Q. For every
matrix M ∈ MQ, let the notation minι,τ (M) stand for the value min{M(p, q) |
p ∈ ι, q ∈ τ }. The formula for calculating the coefficients of the series S can
now be written as S(w) = minι,τ (ϕS(w)). Consequently, the value Smax(m) is
equal to the maximum of all values minι,τ (M) smaller than ∞, over all matrices
M that can be obtained as a product of at most m matrices from the set ϕS(Γ ).

In the following construction, we need a generalization of the monoid of
(min,+)-matrices MQ that allows to provide every matrix with a certain price
that has to be paid each time this matrix is used. This generalization NQ is
obtained as a direct product of MQ and the additive monoid of non-negative
integers (N0,+). The projection homomorphisms from NQ to MQ and N0 will
be denoted by μ and π, respectively. A (min,+)-automaton S can be viewed
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as a homomorphism ψS : Γ+ → NQ defined by ψS(γ) = (ϕS(γ), 1) for γ ∈ Γ .
Words having an accepting path in S are precisely those whose image under
this homomorphism belongs to the subset N (ι,τ)-acc

Q of NQ, which consists of all
elements (M,m) such that M(p, q) 
= ∞ for some p ∈ ι and q ∈ τ . Using ψS , the
value Smax(m) can be calculated as the maximum of values minι,τ (μ(ψS(w))),
for all w ∈ Γ+ such that ψS(w) ∈ N (ι,τ)-acc

Q and π(ψS(w)) ≤ m. Equivalently,
the formula for calculating Smax(m) can be written in terms of the subsemigroup
〈ψS(Γ )〉 of NQ generated by images of letters under ψS :

Smax(m) = max
{

min
ι,τ

(μ(N))
∣
∣ N ∈ 〈ψS(Γ )〉 ∩ N (ι,τ)-acc

Q , π(N) ≤ m
}
. (1)

4.2 Representing Rank Sequences by Rational Series

Assume that (Σ, I) is an independence alphabet, with I ∪ idΣ transitive. This
means that Σ is a disjoint union of subalphabets Σi for i = 1, . . . , c such that
Σi × Σi ⊆ I ∪ idΣ and Σi × Σj ⊆ D for i 
= j. Every non-empty word u over
Σ can be uniquely factorized as u = u1 . . . u�, with uk a non-empty word for
k ∈ {1, . . . , �}, where each word uk is a maximal factor of u consisting of letters
from the same subalphabet Σik , and ik 
= ik+1. Then all words from the trace of
u are obtained by arbitrarily changing the order of letters within each factor uk.

Assume that a language L ⊆ Σ∗ is given by a generalized non-deterministic
automaton A = (Σ,Q,F, ι, τ), with each edge labelled by an ε-free regular lan-
guage over one of the subalphabets Σi, and such that no two consecutive edges
are labelled by languages over the same subalphabet. In other words, the transi-
tion relation is F : Q × Q → P(Σ+), with each F (p, q) a regular subset of some
Σ+

i , and it satisfies the condition that if ∅ 
= F (p, q) ⊆ Σ+
i and ∅ 
= F (q, r) ⊆ Σ+

j ,
then i 
= j. Note that such an automaton exists for every regular language L.

Example 9. Let the independence alphabet be ({a, b, c} , I), with only a and b
independent. The language L = (abc)∗ is defined by the generalized automaton

���������	
������p

{ab}
���������	q

{c}
��

.

Our goal is to reformulate the calculation of ranks for the language L and
(m + 1)-tuples of words over Σ in terms of ranks for the languages F (p, q) and
sequences of words over the corresponding subalphabets Σi. This is achieved by
introducing a one-to-one correspondence that relates every sequence of words
over Σ with the sequence of its maximal subsequences consisting of letters over
the same subalphabet Σi, as demonstrated by the following example.

Example 9 (continued). For the sequence abcb, a, c over {a, b, c}, the associated
sequence of sequences over {a, b} and {c} is (ab), (c), (b, a), (ε, c). Note that one
can recover the original sequence from the new one by concatenating all words
between commas inside particular sequences: ab · c · b, a · ε, c.
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Ranks of sequences of words over Σi are encoded into elements of NQ: for
i ∈ {1, . . . , c} and w0, . . . , wm ∈ Σ∗

i , with m ≥ 0 and wm 
= ε, let N(w0, . . . , wm)
denote the element (M,m) of NQ, where the matrix M is defined by the rule

M(p, q) =

{
Rank(F (p, q);w0, . . . , wm) if w0 . . . wm ∈ F (p, q),
∞ otherwise.

Let GA be the subset of NQ consisting of all such elements N(w0, . . . , wm).

Example 9 (continued). Let us describe all elements of GA for L = (abc)∗.
If the word w0 . . . wm belongs neither to {ab} = {ab, ba}, nor to {c} = {c},
then N(w0, . . . , wm) =

(( ∞ ∞∞ ∞
)
,m

)
. If w0 . . . wm = ab, then N(w0, . . . , wm) =(( ∞ 0∞ ∞

)
,m

)
. The same result is obtained if w0 . . . wm = ba and both letters

belong to the same word wi. If w0 . . . wm = ba and letters a and b belong to dif-
ferent words wi, then N(w0, . . . , wm) =

(( ∞ 1∞ ∞
)
,m

)
(note that m is at least 1

in this case). Finally, if w0 . . . wm = c, then N(w0, . . . , wm) =
(( ∞ ∞

0 ∞
)
,m

)
.

Proposition 10. For every positive integer m,

Rankm(L) = sup{min
ι,τ

(μ(N)) | N ∈ 〈GA〉 ∩ N (ι,τ)-acc
Q , π(N) ≤ m }. (2)

The main drawback of formula (2) is that the set GA is infinite. If the rank
sequence of every language F (p, q) is bounded, then GA can be replaced with its
finite subset consisting of elements minimal with respect to a suitable ordering
of NQ. Moreover, this set can be further modified, so that the second component
of each element is equal to 1: elements with second component 0 can be joined
with other elements, while elements with second component greater than 1 have
to be split, which can be achieved by extending the set of states Q.

Example 9 (continued). The minimal elements of GA are
(( ∞ ∞∞ ∞

)
, 0

)
,

(( ∞ 0∞ ∞
)
, 0

)
,

(( ∞ 1∞ ∞
)
, 1

)
and

(( ∞ ∞
0 ∞

)
, 0

)
.

After multiplying the only element having non-zero second coordinate by other
elements, and then removing them, this list changes to

(( ∞ 1∞ ∞
)
, 1

)
,
(( ∞ ∞∞ ∞

)
, 1

)
,
(( ∞ ∞∞ 1

)
, 1

)
,
((

1 ∞∞ ∞
)
, 1

)
. (3)

The only elements of the subsemigroup generated by these elements that belong
to N (ι,τ)-acc

Q are
((

m ∞∞ ∞
)
,m

)
for positive integers m. Formula (2) now gives

Rankm(L) = m. Note that these values of ranks come from products alternating
elements N(b, a) and N(c), which expresses the necessity of interchanging the
order of a and b in each factor ba split between consecutive words uk and uk+1.

Once the modified set GA in formula (2) consists of finitely many elements
whose second component is 1, this formula becomes essentially the same as
formula (1), giving the following result.
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Theorem 11. Let (Σ, I) be an independence alphabet with I ∪ idΣ transitive. If
L ⊆ Σ∗ is a regular language given by a generalized non-deterministic automaton
A such that

– each edge of A is labelled by an ε-free regular language over one of the com-
ponents of the graph (Σ, I) with all ranks finite, and

– every two consecutive edges are labelled by languages over different compo-
nents of (Σ, I),

then there exists a (min,+)-automaton S such that Rankm(L) = Smax(m) for
all positive integers m.

Example 9 (continued). For L = (abc)∗, all elements in (3) have the second com-
ponent equal to 1, which allows one to directly construct the (min,+)-automaton
S over an alphabet Γ = {γ, δ, ζ, η}, whose letters correspond to matrices in (3):

���������	
������p
η|1��

γ|1
���������	q

ζ|1��

.

4.3 Encoding Rational Series into Ranks

The aim of the rest of the section is to construct, for any given (min,+)-
automaton S = (Γ,Q,E, ι, τ), a generalized automaton A accepting a language
L such that Rankm(L) = Smax(m) for every positive integer m. This automaton
will be obtained by choosing one subalphabet consisting of independent letters
for every letter of the alphabet Γ and replacing each edge labelled by this letter
with an appropriate regular language whose all ranks are equal to the weight
of this edge. However, when the construction of Subsect. 4.2 is applied to the
resulting generalized automaton in order to reconstruct the original (min,+)-
automaton, it inevitably introduces new letters, whose corresponding values in
NQ have the second component equal to zero. This is why the automaton S
has to be adjusted, so that these undesired letters do not influence the resulting
sequence, which is calculated by formula (2) instead of formula (1). Each of these
new letters can be viewed as a shadow of the original letter, in the sense that it
performs the same actions on the automaton, but it is neither counted towards
the length of the word, nor has any influence on the weight of the computation.

Let S = (Γ,Q,E, ι, τ) be a (min,+)-automaton. For every letter γ ∈ Γ , intro-
duce a copy γ̃ of this letter, called its shadow, and let Γsh denote the extended
alphabet Γ ∪{ γ̃ | γ ∈ Γ }. Extend the mapping E to the alphabet Γsh by setting
E(p, γ̃, q) = 0 if E(p, γ, q) 
= ∞, and E(p, γ̃, q) = ∞ if E(p, γ, q) = ∞. The
sequence defined by the automaton S is thus extended to all words over Γsh.
The corresponding sequence Ssh

max representing the growth of the coefficients of
the series is then defined by setting Ssh

max(m) equal to the supremum of the coef-
ficients S(w), for words w ∈ (Γsh)+ such that S(w) 
= ∞ and the number of
occurrences of the original letters from Γ in w is at most m.
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Proposition 12. For every (min,+)-automaton S = (Γ,Q,E, ι, τ) there exists
a (min,+)-automaton T = (Γ,Q′, E′, ι, τ) such that Smax(m) = Tmax(m) =
T sh
max(m) for all positive integers m.

The automaton T is constructed by adding new paths to the automaton S,
called jumps. Each of these jumps is a copy of an existing path of length at most
2 · 2|Q|2 − 1 in S, as far as letters labelling the edges are concerned; however,
on these new paths all weights of the individual edges of the original path are
concentrated to one edge, leaving all the other edges with weight zero. The idea
of this construction is to allow one to use jumps whenever there are shadows
available within a word, so that the original letters can be used on transitions
with weight zero, while shadows are matched to the high-valued edges of jumps,
which are consequently not counted towards the weight of the computation. It
can be proved that in this way, the weight of all words with shadows becomes
smaller than the weight of some shorter words without shadows.

Theorem 13. For every (min,+)-automaton S, there exists an independence
alphabet (Σ, I), with I ∪ idΣ transitive, and a word language L ⊆ Σ∗ such that
Smax(m) = Rankm(L) for all positive integers m.

Proof. According to Proposition 12, we can assume that the (min,+)-automaton
S = (Γ,Q,E, ι, τ) is such that Smax(m) = Ssh

max(m) for all positive integers m.
Elements of NQ describing the behaviour of shadows are determined by the
mapping θS : Γ → NQ defined by the rule θS(γ) = (Mγ , 0), where Mγ(p, q) is
obtained from E(p, γ, q) by replacing all values other than ∞ with 0. In terms
of elements of NQ, the above assumption means that Smax(m) is equal to

max
{

min
ι,τ

(μ(N))
∣
∣ N ∈ 〈ψS(Γ ) ∪ θS(Γ )〉 ∩ N (ι,τ)-acc

Q , π(N) ≤ m
}
. (4)

Let the independence alphabet (Σ, I) consist of a two-letter component Σγ =
{a0,γ , a1,γ} for each letter γ ∈ Γ and one additional singleton component {b}.
The language L will be described by a generalized non-deterministic automaton
A constructed basically by labelling each edge of S with a suitable ε-free regular
language, instead of a letter and a weight. However, in order to ensure that
consecutive edges of A are labelled with languages over different components,
each state of S has to be split into two states connected by an edge labelled with
the language {b}. Accordingly, let Q′ = { q′ | q ∈ Q } be a disjoint copy of Q and
let A = (Σ,Q∪Q′, F, ι, τ), with F (q, q′) = {b} for all q ∈ Q. The other edges of A
are labelled by languages studied in Lemma 7: let Lγ,n be a copy of the language
(L1 ∪ K1,n) \ {ε}, with letters a0 and a1 replaced by a0,γ and a1,γ , respectively.
For every edge of S from p to q labelled with γ, let F (p′, q) = Lγ,E(p,γ,q)+1.

The ranks of the language defined by the automaton A will be calculated
using Proposition 10. In order to do this, it is not necessary to describe the
whole set GA, since any subset of GA containing all of its minimal elements
can be used instead. As all ranks of the language {b} are equal to zero, the
only minimal element of GA derived from words over the subalphabet {b} is



258 M. Kunc and J. Meitner

N(b) = (Mb, 0), where Mb(q, q′) = 0 for all q ∈ Q, and all the other entries of
Mb are ∞.

Now consider some γ ∈ Γ . Note that since Lγ,n = (Σγ)+ for all n by
Lemma 7, all matrices of elements of GA derived from words over Σγ have
exactly the same entries equal to ∞. Words over Σγ determine only one poten-
tial minimal element whose second coordinate is 0, namely N(a0,γ) = (Mγ,0, 0),
where Mγ,0(p′, q) = 0 for p, q ∈ Q such that E(p, γ, q) 
= ∞, and all the other
entries of Mγ,0 are ∞.

It remains to describe minimal elements of GA contributed by words over Σγ

that have a non-zero second coordinate. According to Lemma 7, for all positive
integers k, the value of Rankk(Lγ,E(p,γ,q)+1) is E(p, γ, q). Moreover, Lemma 7
states that these values are reached by the same pair of words (ah

0,γ , ah
1,γ),

where h is an arbitrary integer greater than all weights E(p, γ, q) of edges of S
labelled with γ. Therefore, the only potential minimal element is N(ah

0,γ , ah
1,γ) =

(Mγ,1, 1), where Mγ,1(p′, q) = E(p, γ, q) for p, q ∈ Q such that E(p, γ, q) 
= ∞,
and all the other entries of Mγ,1 are equal to ∞.

The formula for calculating ranks in Proposition 10 takes into account only
elements of the subsemigroup 〈GA〉 that belong to the set N (ι,τ)-acc

Q . The only
way to produce such elements is to alternately multiply N(b) with elements
(Mγ,0, 0) or (Mγ,1, 1), beginning with N(b) and ending with one of the other
generators. In other words, such elements are obtained as products of elements
(Mb · Mγ,0, 0) and (Mb · Mγ,1, 1). However, these elements are equal to θS(γ)
and ψS(γ), respectively, apart from having matrices on their first coordinates
extended to the dimensions (Q ∪ Q′) × (Q ∪ Q′) with entries equal to ∞. This
shows that the formula of Proposition 10 gives the same result as formula (4),
which proves the equality Smax(m) = Rankm(L). ��

As it was proved by Simon [9] that for every positive integer n there exists a
(min,+)-automaton S such that the sequence (Smax(m))∞

m=1 grows asymptoti-
cally as n

√
m, Theorem 13 implies that there exists a word language whose rank

sequence with respect to an independence alphabet with transitive independence
relation has such an asymptotic growth rate; in particular, it is not eventually
periodic.

Acknowledgments. We are grateful to Jacques Sakarovitch and Sylvain Lombardy
for pointing us to the result of Simon [9].
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Abstract. Etessami et al. [5] showed that satisfiability of two-variable
first order logic FO2[<] on word models is Nexptime-complete. We
extend this upper bound to the slightly stronger logic FO2[<, succ, ≡],
which allows checking whether a word position is congruent to r modulo
q, for some divisor q and remainder r. If we allow the more powerful
modulo counting quantifiers of Straubing, Thérien et al. [22] (we
call this two-variable fragment FOmod2[<, succ]), satisfiability becomes
Expspace-complete. A more general counting quantifier, FOunC2[<
, succ], makes the logic undecidable.

1 Introduction

It is well known that first order logic cannot express counting properties like
modulo counting. Two-variable logic cannot express threshold counting. One
option is to add counting quantifiers, but there are many ways of doing this, see
for example Paris and Wilkie [14], Cai et al. [3], Straubing et al. [22], Schweikardt
[16]. In this work, we look at extensions of first order logic with a few counting
quantifiers.

In the most general setting FOunC, we have counting terms and allow their
comparison. This logic can define addition [9] and is equivalent to the well studied
majority logic [7]. Hence, by an old result of Robinson [15], in the presence of
the unary predicates (for |Σ| ≥ 2), satisfiability is undecidable.

In the more restricted FOmod, counting can only be done modulo a number.
From Büchi’s theorem [2], the satisfiability problem can be decided by building
an automaton and checking for its emptiness. This is, like FO, nonelementary
on the quantifier depth.

So it is of interest to study the counting quantifiers in a weaker framework,
such as the two-variable sublogic, studied in Grädel et al. [6], Pacholski et al.
[13], Straubing and Thérien [21]. Etessami et al. [5], showed that satisfiability of
FO2[<] over finite words is Nexptime-complete. This was further extended to
words over arbitrary linear orderings in [11]. On the other hand satisfiability of
FO2[<] over constant alphabet is Np-complete as shown by Weis and Immerman
[26]. With only two variables, having successor as an atomic formula increases
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expressiveness and the logic FOmod2[<, succ] is a well studied class. Straub-
ing et al. [20] give an algebraic characterisation of this logic. In another paper
Straubing and Thérien [21] show that any formula in this logic is equivalent
to a formula with all modulo quantifiers inside existential quantifiers. Moreover
they show that FOmod2[<, succ] = Σ2MOD[<, succ] ∩ Π2MOD[<, succ]. Inter-
estingly the language (ab)∗ can be expressed in the logic FOmod2[<] and FO[<],
but not in FO2[<] [21]. Tesson and Thérien [23] review the connections between
FOmod2[<, succ], algebra and circuit complexity (Table 1).

Table 1. Complexity of satisfiability of various fragments of two variable logics. Those
not cited are the results of this paper.

Logic |Σ| ≥ 2

FO2[<] Nexptime-complete [5] (over fixed alphabet, Np-complete [26])

FO2[<, succ] Nexptime-complete [5]

FO2[<, ≡] Nexptime-complete

FO2[<, succ, ≡] Nexptime-complete

FOmod2[<] Expspace-complete

FOmod2[<, succ, ≡] Expspace-complete

FOunC2[<] Undecidable

Our contribution. What is known about the satisfiability problems for these log-
ics over word models? The complexities in the table are tight. In this paper we
show that the Etessami, Vardi, Wilke upper bound for FO2[<, succ] [5] extends
to the slightly stronger FO2[<, succ,≡], and also that their lower bound holds
for FO2[<,≡] for a constant alphabet size; recall that FO2[<] is Np-complete for
a constant alphabet [26]. Secondly, we show that FOmod2[<, succ] is Expspace-
complete. Our upper bound results assume that the integers in modulo quan-
tifiers and modulo predicates are in binary, whereas our lower bound results
assume they are in unary. Thus the complexity does not depend on the repre-
sentation of integers. Our third contribution is to show that the two variable
fragment of counting logic FOunC2[<] is undecidable. The PhD thesis [19] con-
tains many of these results. It also shows that two-variable Presburger arithmetic
(where y = x+1 and y = x+x are definable) in the presence of unary predicates
is undecidable.

Structure of the paper. In the next section, we formally introduce the counting
quantifiers and the various logics we look into. In Sect. 3, we give the upper
bound results, namely the Expspace upper bound for FOmod2[<, succ] and the
Nexptime algorithm for FO2[<, succ,≡]. Section 4 gives corresponding lower
bounds and the undecidability of FOunC2[<].
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2 Preliminaries

We denote by N the set of all natural numbers {0, 1, 2, . . . }. An alphabet Σ is
a finite set of symbols. Each letter a of Σ is also the name of a unary predicate
which holds at positions which have that letter. We will use a left end-marker
for a word, which is outside Σ. The set of nonempty subsets of Σ is denoted
by P(Σ). The set of all finite words over Σ is denoted by Σ∗. The length of a
word w is denoted by |w|. For a word w ∈ Σ∗ the notation w(i) denotes the ith

letter in w, i.e. w = w(0)w(1)w(2) . . . w(|w|), here w(0) is the left end-marker,
w(1) . . . w(|w|) are the letter positions. Let V = {x1, x2, . . . } be a set of variables.
A word model over (Σ,V) is a pair (u, s), where u ∈ Σ∗ and s : V → {0, . . . , |u|}.

First order logic (FO[<]) over a finite alphabet Σ is a logic which can be
inductively built using the following operations.

a(x), a ∈ Σ | x < y | x = y | α1 ∨ α2 | ¬α | ∃x α

We will also consider other regular relations like (a) succ : where succ(x, y) says
that y = x + 1 and (b) x ≡ r mod q, where q > 1.

We use the superscript 2 to denote the sublogics which (perhaps repeat-
edly) use only two variables. For example, the two-variable fragment of FO[<]
is denoted by FO2. Over finite words, FO2 can talk about occurrences of letters
and also about the order in which they appear [17]. The satisfiability problem
for a formula α checks if there is a model (in our case, a word model) for it.
Complexity of satisfiability problems for two-variable logics are the focus of this
study.

Counting quantifiers. We now introduce the syntax for the counting capabilities
which extend FO. In the most general setting FOunC[<], we have counting terms
and allow their comparison. The additional syntax is

#x(α) ∼ xj | #x(α) ∼ max | #x(α) ∼ n, n ∈ N

Here α is an inductively defined FOunC[<] formula, max denotes the last posi-
tion of a word, x, xj ∈ V and ∼ is in {<,=, >}. The interpretation of the counting
term #x(α) is |{i | w, s[x 
→ i] |= α, 1 ≤ i ≤ |w|}|. Quantification is over letter
positions and not over the end-marker. The positions 0, 1, . . . , |w| interpret the
counts 0, 1, . . . , |w| respectively. Counts greater than |w| do not have an interpre-
tation on this word. Hence in the semantics below we do not require a different
sort for numbers, a formal difficulty pointed out to us by Anand Pillay.

(w, s) |= #x(α) ∼ xj ⇔ |{i | (w, s[x 
→ i]) |= α, 1 ≤ i ≤ |w|}| ∼ s(xj)
(w, s) |= #x(α) ∼ max ⇔ |{i | (w, s[x 
→ i]) |= α, 1 ≤ i ≤ |w|}| ∼ |w|
(w, s) |= #x(α) ∼ n ⇔ |{i | (w, s[x 
→ i]) |= α, 1 ≤ i ≤ |w|}| ∼ n, n ∈ N

Modulo counting quantifiers. In the more restricted FOmod[<], counting terms
cannot be compared with variables, but only compared modulo a number. The
extended syntax is:

#x(α) ≡ r mod q
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The semantics is given as follows for r, q ∈ N, q > 1.

(w, s) |=#x(α) ≡ r mod q ⇔ |{i | (w, s[x 
→ i]) |= α, 1 ≤ i ≤ |w|}| ≡ r mod q

For example, if a count in a word is 0, it maps to the position 0, and this
is interpreted as even because 0, an even number, maps to this position. For
later convenience, we define the abbreviated quantifier Odd y(α) to stand for
#y(α) ≡ 1 mod 2, and similarly Even y(α). Counting the parity of a letter a
requires an FOmod formula, such as Even y(a(y)).

We will use MOD[<] when first order quantifiers are not allowed. Also, we use
FOmod(q)[<] (respectively MOD(q)[<]) and FOmod(D)[<] (resp. MOD(D)[<])
when the divisors in the modulo counting is restricted to be q or from the set of
divisors D.

Modulo counting positions. The logic FO[<,≡] extends FO[<] with the following
unary relations.

xi ≡ r mod q, r, q ∈ N, q > 1

which is true iff s(xi) when divided by q leaves a remainder of r mod q. This
allows comparison of positions.

Examples. Let us look at some example languages definable in the logics. Even
length words over alphabet {a, b} can be expressed in FO2[<,≡] by max ≡ 0
mod 2, and in MOD2(2)[<] by #x(a(x) ∨ b(x)) ≡ 0 mod 2. By refining this
sentence with the one below, the language (ab + ba)∗ can also be described in
FO2[<,≡].

∀x∀y
((

succ(x, y) ∧ x ≡ 1 mod 2
) ⇒ (

(a(x) ⇒ b(y)) ∧ (b(x) ⇒ a(y))
))

The regular language which allows at most k more a’s than b’s in every prefix
can be defined in first order logic [24]. The simple FOunC[<,+k] sentence below
can be written using the successor relation and one additional variable. We do
not know whether the language can be defined in FOunC2[<, succ]. A similar
example was brought to our notice by Diego Figueira.

∀x∃y

((
#y

(
y ≤ x ∧ a(y)

)
= y

)
∧

(
y ≤ #y

(
y ≤ x ∧ b(y)

)
+ k

))

The FOunC2[<] sentence below defines the nonregular context-free language
{anbn | n ≥ 1}.

∃x∃y

( (
y = #y

(
y ≤ x ∧ a(y)

) ∧ y = #y
(
y ≤ x ∧ (a(y) ∨ b(y))

))∧
(
y = #y

(
y > x ∧ b(y)

) ∧ y = #y
(
y > x ∧ (a(y) ∨ b(y))

)))

Sizes. The size of a formula is defined inductively as usual. We use binary-size
and unary-size to mean that the length of natural number constants is counted
as written in binary and unary respectively. For example the number ten (10 in
the decimal notation we use) has binary-size 4 and unary-size 10.
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3 Upper Bounds via Linear Temporal Logic

Temporal logic. The temporal logic UTL over the set of propositions A is the
logic with the set of formulas closed under Boolean operations, and including a
when a is a letter in A, and Fϕ,Pϕ,Xϕ,Yϕ when ϕ is a formula. To state the
semantics fix a word u ∈ P(A)∗. A position i ≤ |u| satisfies the formula a if i
is labeled with the letter a, the formula Xϕ (resp. Yϕ) if position i + 1 (resp.
i − 1) satisfies formula ϕ, and the formula Fϕ (resp. Pϕ) if there is a position
i ≤ j ≤ |u| (resp. i ≥ j) that satisfies the formula ϕ. The semantics for Boolean
connectives are defined in the usual way. The language of the formula ϕ is the
set of all u ∈ P(A)∗ that satisfy ϕ.

Modulo counting temporal logic. The logic UTLmod extends UTL with the
following modulo counting operators.

MODP
r,qϕ | MODF

r,qϕ

For a word u ∈ P(A)∗, formula MODP
r,qϕ (resp. MODF

r,qϕ) is satisfied at a
position i ≤ |u| if the number of positions j ≤ i (resp. j ≥ i) which satisfy ϕ is
r mod q.

The logic UTLmod gives a linear time translation into FOmod2[<, succ].
There is an exponential time translation in the reverse direction.

Lemma 1. [5,18] For an FOmod2[<, succ] formula α of quantifier depth d
and binary-size n there exists an UTLmod formula α′ of operator depth 2d
and binary-size at most O(2n), such that α and α′ accept the same set of word
models. Moreover this translation can be done in exponential time.

From our earlier work, we know that UTLmod satisfiability is in Pspace.

Theorem 2. [10] Satisfiability of UTLmod is Pspace-complete.

Combining Lemma 1 with the above Theorem we get:

Theorem 3. FOmod2[<, succ] satisfiability is in Expspace.

Length counting temporal logic. For FO2[<, succ,≡] we can do better. For this,
we introduce the logic UTLlen that extends UTL with a restricted modulo
counting operator.

MODP
r,q true | MODF

r,q true

Note that in this logic, we can measure the distance of a position (modulo some
number) from the start or end of a word.

We next show that a satisfiable UTLlen formula ϕ has a model which is
exponential in the modality depth and number of propositions (the size of the
formula is irrelevant) and polynomial in lcm(ϕ). Here, lcm(ϕ) stands for the
least common multiple of the integers q which occur as divisors in a modulo
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predicate in ϕ. Following Etessami et al. [5] we define an UTLlen formula ϕ to
be of depth (k, k′) if its {F,P} depth is k and its {X,Y} depth is k′.

For a word w and a position i, the (k, k′,m)-type of i in w is the set of all
UTLlen(m) formulas of depth (k, k′) that hold in w at i. The following lemma
says that the question of satisfiability can be reduced to counting the number of
(k, k′,m)-types possible in a word. Let T (k, k′,m) be the maximum number of
distinct (k, k′,m)-types possible in a word. It can be counted inductively.

Lemma 4. For all k, k′,m, T (k + 1, k′,m) ≤ (2T (k, k′,m) + 1)T (0, k′,m).

Proof (following [5], Lemmas 2,5). Let w be a word. Then the (k+1, k′,m)-type
at position i in w is uniquely given by the (0, k′,m)-type at i, the (k, k′,m)-types
that occur to its right and the (k, k′,m)-types that occur to its left. ��

A “snipping” lemma gives a small model property for formulas in UTLlen.

Lemma 5. Let m ∈ N and let ϕ be an UTLlen(m) formula of depth (k, k′).
Then if ϕ is satisfiable, it is satisfiable in a model of size T (k, k′,m) + 1.

Proof (following [5], Lemma 4). Let w = u0u1 . . . un be a model for ϕ and let
n > T (k, k′,m) + 1. Then there exists i < j ≤ n such that the (k, k′,m)-type at
positions i and j are the same. The word ŵ = u0u1 . . . uiuj+1 . . . un obtained by
removing the intervening portion continues to be a model for ϕ. ��

Lemma 6 now shows that a satisfiable UTLlen formula ϕ has a model which
is exponential in the operator depth and number of propositions (the size of the
formula is irrelevant). The divisors contribute a multiplicative factor.

Lemma 6. Let ϕ be an UTLlen formula of operator depth d and num-
ber of propositions p. If ϕ is satisfiable, it has a satisfying model of size
O(lcm(ϕ)2d2

22pd2
).

Proof. Let m = lcm(ϕ) and let w be a word model over p propositions and let
the depth of ϕ be (k, k′). The lemma follows from Lemma 5 if we can show that
the number of (k, k′,m)-types is bounded by m2d2

22pd2
. The (0, k′,m)-type at

a position depends on the current position and k′ positions to its left and k′

positions to its right. Each position satisfies some subset of propositions and
(i mod m) for some i < m. Thus T (0, k′,m) is bounded by (m2p)2k′+1. Hence
T (k, k′,m) ≤ (2T (k − 1, k′,m) + 1)(m2p)2k′+1 = O((m2p)2kk′

).

The above small model property for UTLlen gives us that:

Theorem 7. FO2[<, succ,≡] satisfiability is in Nexptime.

Proof. Lemma 1 shows that for every FO2[<, succ,≡] formula α, there exists
an UTLlen formula α′ such that α and α′ have the same satisfying models.
Moreover, if the quantifier depth of α is d, then the operator depth of α′ is 2d.
Lemma 6 shows that every satisfying UTLlen formula α′ of operator depth 2d
has a satisfying model of size s = O(lcm(α)4d2

24pd2
). A Nexptime machine can

guess this model and verify it in time s2 × |α|.
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4 Lower Bounds via Tiling Problems

The lower bound results in this section are shown by reducing from Tiling prob-
lems. We define the required Tiling problems now.

Tiling problems. A tiling system is a tuple S = (T,R,D), where T is a finite
set of tiles, R ⊆ T × T and D ⊆ T × T are, respectively, the right (hori-
zontal) and down (vertical) adjacency relations. A tiling problem is the tuple
(S, n, top1, ..., topn, bot), where n ∈ N and top1, ..., topn, bot ∈ T. A tiling of an
m × k grid G ⊆ N

2 is a mapping τ : G → T respecting the right and down rela-
tions, that is, whenever (i, j+1) or (i+1, j) is in G, we have R(τ(i, j+1), τ(i, j))
or D(τ(i + 1, j), τ(i, j)), as the case may be.

We give below two versions of the tiling problem (S, n, top1, ..., topn, bot)
corresponding to Expspace and Nexptime Turing machines respectively [4].

Rectangle tiling problem. Do there exist an m and a tiling of an m× 2n grid such
that the first n tiles in the top row are top1, ..., topn in order and there exists a
tile bot in the bottom row?

Proposition 8. [4] There exists a tiling system S = (T,R,D), such that its
Rectangle tiling problem (S, n, top1, ..., topn, bot) is Expspace-complete.

Square tiling problem. Does there exist a tiling of a 2n × 2n grid, such that the
first n tiles in the top row are top1, ..., topn in order and there exists a tile bot in
the bottom row?

Proposition 9. [4] There exists a tiling system S = (T,R,D), such that its
Square tiling problem (S, n, top1, ..., topn, bot) is Nexptime-complete.

4.1 Modulo Counting is Expspace-Hard

We show that satisfiability of FOmod2[<] is Expspace-hard by reducing from
the Expspace-complete Rectangle tiling problem. The following lemma shows
that x ≡ y mod 2n is definable by a MOD2[<] formula, which allows us to assert
the down relation of the tiling system.

Lemma 10. There is a polynomial time algorithm which given an n ∈ N out-
puts Congn

1 (x, y) in MOD2[<] , where Congn
1 (x, y) is of binary-size O(n) and

quantifier depth 2 such that Congn
1 (x, y) is true if and only if x ≡ y mod 2n.

There is also a formula Congn
2 (x, y) ∈ MOD2(2)[<] of unary-size O(n2) and

quantifier depth n2, such that Congn
2 (x, y) is true iff x ≡ y mod 2n.

Proof. We first give Congn
1 which is of quantifier depth 2. For all i ≤ n, we give

formulas lsbi(x) such that lsbi(x) is true if and only if the ith least significant bit
of x is 1. lsb1(x) is true if x is odd and is given by the formula Odd y(y ≤ x).
For all i ≥ 2:

lsbi(x) := Odd y
(
y < x ∧ (

#x(x ≤ y) ≡ (2i−1 − 1) mod 2i−1
))
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The claim is now proved by induction on the number of positions y which satisfy
the conditions

y < x and y ≡ (
2i−1 − 1) mod 2i−1. (1)

When this number is 0 there is no y which satisfies property (1). This means
the ith lsb is 0. For the induction step, assume the claim to be true for a number
k. Consider the first position z where the count is k + 1. Then we know that
z − 1 ≡ (

2i−1 − 1) mod 2i−1. This implies that if we add 1 to z − 1 the ith bit
toggles. Since the claim is true when the count is k + 1, we have by induction
that lsb1(x) is true if x is odd. Now Congn

1 (x, y) :=
∧n

i=1

(
lsbi(x) ⇔ lsbi(y)

)
.

The binary-size of Congn
1 (x, y) is O(n).

Note that the unary-size of Congn
2 is exponential in n, because we need to

encode numbers 2i. This can be reduced as follows. We can replace the subfor-
mula x ≡ (2i−1 − 1) mod 2i−1 in lsbi by Congi−1

2 (x, 2i−1 − 1). An inductive
replacement will give us a formula Congn

2 ∈ MOD2(2)[<] of size O(n2) and
quantifier depth n2. ��

In the above lemma, Congn
1 has quantifier depth 2 and in binary notation,

and Congn
2 is in unary notation and has quantifier depth polynomial in n. If we

want both unary notation and constant quantifier depth, we need to introduce
modulo counting over primes and use Chinese remaindering.

Lemma 11. For every n > 1, there is a number q > 2n and a formula
Congn

3 (x, y) in MOD2[<] of unary-size O(n4) and quantifier depth 1 such that
Congn

3 (x, y) is true if and only if x ≡ y mod q.

Proof. Let p1, ..., pn be the first n primes and q =
∏n

i=1 pi be their product.
Clearly q ≥ 2n. For all numbers x, y ∈ N, Chinese remaindering says that the
vector (x mod p1, . . . , x mod pn) = (y mod p1, . . . , y mod pn) if and only if
x ≡ y mod q. The following formula asserts this

Congn
3 (x, y) :=

∧
j≤n

∨
rj<pj

((
x ≡ rj mod pj

) ∧ (
y ≡ rj mod pj

))

Note that (x ≡ rj mod pj) can be asserted by the following MOD2[<] formula,(
#y(y ≤ x) ≡ rj mod pj

)
. By the prime number theorem, asymptotically there

are n primes within the first n log n numbers and hence one can generate the
first n primes in time polynomial in n. Therefore, the unary-size of Congn

3 is∑
j≤n

∑
i≤pj

i ≤ ∑
k≤q k ≤ n4. ��

We will now go to our Expspace-hardness result. Assume |Σ| ≥ 2. Below
we show the hardness for three classes of logics, each depending on the formula
Congn

i , where i ∈ {1, 2, 3} we choose from the above Lemmas.

Theorem 12. The satisfiability problem for the following logics over a constant
alphabet is Expspace-hard.
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1. FOmod2(2)[<] formulas (using unary notation).
2. FOmod2(D)[<] formulas (using binary notation) of quantifier depth 3, where

D = {2i | i ∈ N}.
3. FOmod2[<] formulas (using unary notation) of quantifier depth 3.

Proof. The proof of the three claims differ only on the use of Congn formula and
therefore we follow the same proof for all the three claims. We show Expspace
hardness by reducing from the Expspace-complete Rectangle tiling problem
I = (S, n, top1, . . . , topn, bot) where S = (T,R,D) and T = {T1, . . . , Tt} given
by Proposition 8.

We give a polynomial time algorithm which when given the tiling problem
I outputs the formula ψI such that there is a tiling for I if and only if ψI is
satisfiable. The alphabet for ψI is Σ = T × P(TDn) × P(TRt), where TDn =
{TDn

1 , . . . , TDn
t } and TRt = {TRt

1 , . . . , TRt
t } are two copies of T. Note that we

are overriding the symbol T to mean both tiles and part of the alphabet. It will
be clear from the context of the proof what we refer to.

We associate a word model wτ ∈ Σ∗ with a tiling τ such that τ is a tiling
for I iff wτ |= ψI. In fact every position in wτ contains atmost 2 letters from
TDn and atmost 2 letters from TRt. We denote by wτ (i, j) the letter at the
(i − 1)2n + jth position in wτ . We will ensure that wτ will satisfy the property
τ(i, j) = Tl ⇔ wτ (i, j) ∈ Tl × P(TDn) × P(TRt).

The formula ψI is written as a conjunction of the formulas ψinit, ψfinal, ψnext

and ψconstraints describing the initial configuration, the final configuration, the
next move, and the tiling constraints respectively. The formula for the initial
configuration, ψinit is the conjunction of α1, ..., αn, where αi says that the ith

cell in the first row contains the tile topi. This is encoded by saying that the first
location x which satisfies x ≡ i (mod 2n) is the ith cell in the first row.

αi := ∀x
((

Congn(x, i) ∧ ∀y < x ¬Congn(y, i)
)

=⇒ topi(x)
)

Congn denotes one of Congn
j , where j ∈ {1, 2, 3} (comes from either Lemma

10 or Lemma 11). Similarly, ψfinal is given by saying ∃y bot(y). We also need to
ensure that there is exactly one tile Tk ∈ T in a cell. This is asserted by a sentence
ψconstraints in FO2[<]. The hardest part of the reduction is to ensure that the rela-
tions down D and right R are respected in the word model. This is given by the
sentence ψnext which is a conjunction of the formulae ψdown and ψright.

We will now explain how the down constraints are respected. Let us assume
Tk ∈ τ(i, j) and the down constraint D(Tk, Tl) is true. We need to now assert
that wτ (i + 1, j) contains Tl. The idea is to count modulo 2, the number of
occurrences of TDn

l in all cells above i and in the same column. That is, we
count the size of the set {k | TDn

l ∈ τ(k, j), k < i}. If this count is even then
we force TDn

l to be true at wτ (i, j), otherwise we force TDn
l to be false. This

ensures that the count {k | TDn
l ∈ τ(k, j), k ≤ i} is odd. For other tiles we

ensure that the count is even. We preserve this invariant at every cell. Hence the
tile at (i + 1, j) can be determined by looking at the counts for every tile TDn

l
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and setting that tile whose count is odd. The following formula says that in the
column strictly above x, there is an even number of occurrences of TDn

l .

φl(x) := Even y
(
TDn

l (y) ∧ y < x ∧ Congn(x, y)
)

Now if we want to transfer the information that the cell right below x has to
contain letter Tl, we set the count of TDn

l on this column above and including
position x to be odd. This can be asserted by the formula, φl(x) ⇔ Tl(x). The
following formula ψ1(x) transfers this information by taking into consideration
the down constraints.

ψ1(x) :=
t∧

k=1

(
Tk(x) =⇒

( ∨
(Tk,Tl)∈D

(
φl(x) ∧

∧
j �=l

¬φj(x)
)))

Now we need to set the tiles at wτ (i + 1, j) by looking at the count of TDn
l

strictly above and in the same column as x. The following formula ψ2(x) says
that if you see an odd number of occurrences of the letter TDn

l ∈ TDn in the
column strictly above x, then we set letter Tl ∈ T to be true at x.

ψ2(x) :=
t∧

l=1

(
Odd y

(
TDn

l (y) ∧ y < x ∧ Congn(x, y)
))

=⇒ Tl(x)

The formula ψdown is a conjunction of the formulas ψ1 and ψ2. A similar formula
ψright using the letters TRt can assert that the right relations R are ensured. ��

4.2 Modulo Predicates are Harder Than Linear Order

We now show that FO2[<,≡] is Nexptime-hard even for a constant alphabet,
as opposed to FO2[<] being Np-complete [26].

Theorem 13. FO2[<,≡] satisfiability is Nexptime-hard (constant alphabet
size).

Proof. We reduce from the Nexptime-complete Square tiling problem given
by Proposition 9. We introduce 2n distinct primes, p1, ..., pn (for encoding row
index), and q1, ..., qn(for encoding column index). These primes can encode any
cell (i, j). One now writes a formula αdown(x) which asserts there exists a y such
that the row index of y is one more than that of x and the column index of x
and y are the same. The formula can also specify that y should satisfy the down
constraints. Similarly one can write a formula to force the right constraints. It
is easy to write the initial and final conditions. ��

4.3 General Counting is Undecidable

We show that the satisfiability problem of FOunC[<, succ] with just two vari-
ables is undecidable. Grädel et al. [6] had showed this over graphs. Here we show
that it is undecidable even over words.
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Theorem 14. Satisfiability of FOunC2[<, succ] over words is undecidable.

Proof. Recall that a 2-counter automatonM = (Q,→, q0, qn) is a finite automaton
over the alphabet A = {inck, deck, zerok | k = 1, 2} with both counters initially
set to zero. Reachability over 2-counter automata is undecidable [12]. A valid run
q0

a0→q1
a1→ . . .

an→qn on the word a0a1 . . . an satisfies the property that for all i from 0
to n, there is an ai-labeled transition from qi−1 to qi and ai is enabled at qi−1. Here
are the enabling conditions for k = 1, 2 which enforce the semantics of counters:
inck is always enabled, zerok is enabled if the count of inck labels for j < i equals
the count of deck labels for j < i, and deck is enabled if the count of inck labels for
j < i exceeds that of deck labels for j < i. A zero test on counter 1 at position x is
written as follows ∃y(y = #y(y < x∧ inc1(y))∧ y = #y(y < x∧ dec1(y))). Given
these conditions, it is easy to see that reachability from q0 to qn can be expressed
by an FOunC2[<, succ] formula over the monadic predicates Q ∪ A. ��

5 Outlook

In an earlier paper [10], we studied the effect of adding modulo counting to
linear temporal logic LTL. In this paper we carried out the same effort for two-
variable first order logic FO2, also in the presence of counting quantifiers and
unary predicates.

Over words, the logic FOmod [1] is a strict subset of monadic second order
logic; the latter is pleasant to use and has a well-developed theory [2,25]. The
main advantage of the modulo counting logics is that they directly represent
numbers using standard binary notation and the two variable fragment provide
an elementary decision procedure. This is also the case if we add threshold
counting quantifiers [8]. We can also add both kinds of quantifiers at the cost of
an extra exponent, but we do not know whether this is necessary. We also leave
open the complexity of decidability in modulo counting logic MOD[<].

In this paper we show that once we add unary predicates (in other words, a
small alphabet of letters), even over two variables, general counting quantifiers
bring undecidability. In the absence of unary predicates, Presburger logic is well
known to be decidable, also in the presence of counting quantifiers [16].

Acknowledgments. We would like to thank four DLT referees and the DLT program
committee for their suggestions to improve this paper.
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22. Straubing, H., Thérien, D., Thomas, W.: Regular languages defined with general-
ized quantifiers. Inf. Comput. 118(3), 389–301 (1995)

23. Tesson, P., Thérien, D.: Logic meets algebra: the case of regular languages. Log.
Meth. Comp. Sci. 3(1), 1–26 (2007)

24. Thomas, W.: Classifying regular events in symbolic logic. J. Comput. Syst. Sci.
25(3), 360–376 (1982)

25. Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Language Theory, vol. III, pp. 389–455. Springer, Heidelberg
(1997)

26. Weis, P., Immerman, N.: Structure theorem and strict alternation hierarchy for
FO2 on words. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646,
pp. 343–357. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74915-8 27

http://dx.doi.org/10.1007/978-3-642-15643-4_19
http://dx.doi.org/10.1007/3-540-46011-X_20
http://dx.doi.org/10.1007/3-540-46011-X_20
http://dx.doi.org/10.1007/978-3-540-74915-8_27


Deleting Deterministic Restarting Automata
with Two Windows
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Abstract. We study deterministic restarting automata with two win-
dows. In each cycle of a computation, these det-2-RR-automata can per-
form up to two delete operations, one with each of their two windows.
We study the class of languages accepted by these automata, comparing
it to other well-known language classes and exploring closure properties.

Keywords: Restarting automaton · Language class · Closure property

1 Introduction

The restarting automaton introduced in [9] and many of its later variants are
motivated by techniques and problems from linguistics. The original model of
the restarting automaton was presented in order to model the so-called ‘analysis
by reduction,’ which is a technique used in linguistics to analyze sentences of
natural languages that have free word order. This technique consists in a step-
wise simplification of an extended sentence such that the (in)correctness of the
sentence is not affected (see, e.g., [9,11,20]). Accordingly, a restarting automaton
M consists of a flexible tape with end markers, a read/write window of a fixed
size k ≥ 1, and a finite-state control. It works in cycles, where each cycle begins
with the window at the left end of the tape and M being in its initial state.
During a cycle M scans the current tape contents from left to right and executes
a single length-reducing rewrite step. The cycle ends with a restart that takes
the window back to the left end of the tape and resets M to its initial state.
A computation is completed by a tail computation that is similar to a cycle
but that ends with accepting or rejecting the input. In its rewrite steps M may
introduce non-input symbols, so-called auxiliary symbols. This type of restarting
automaton is called an RRWW-automaton. By placing certain restrictions on the
definition, we obtain various subclasses of restarting automata (see, e.g., [16]).

In order to investigate the complexity of the word order of languages, the
freely rewriting restarting automaton (FRR-automaton) was introduced in [17]
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É. Charlier et al. (Eds.): DLT 2017, LNCS 10396, pp. 272–283, 2017.
DOI: 10.1007/978-3-319-62809-7 20



Deleting Deterministic Restarting Automata with Two Windows 273

(see also [15]), which is defined like an RRWW-automaton, but which is allowed
to perform an arbitrary positive number of rewrite steps in a cycle. Then in [18],
a restricted type of FRR-automata is shown to be closely related to parallel
communicating grammar systems with regular control. Further, in [13] a model
of the restarting automaton is studied which has a single window that can move
in both directions along the tape, and that can perform an arbitrary number of
delete operations in a cycle. In [19,20] this model is even extended to produce
structured output in the form of a (dependency) tree for the given input.

A serious problem in analysis of (some) free word order languages is caused
by long-distance scrambling, which induces a dependency of items across a large
distance (see, e.g., [21]). Certainly, the use of two independent heads or windows
can help in this matter. And indeed, in [7] an ad-hoc variant of the restarting
automaton is defined that has two windows: one window can only delete a single
symbol in a rewrite step, and the other window may rewrite a non-empty word
into a word of length at most one. It is shown in [7] that a certain restricted
type of these restarting automata corresponds to sorted dependency insertion
grammars with regular selectors that work in top-down derivation style. How-
ever, restarting automata with two windows have not yet been studied in a
systematic way.

Here we present the first such study, concentrating on a rather restricted
type, called det-2-RR-automaton. Such an automaton is deterministic, and the
rewrite operations that it can perform are only deletions. In addition, we require
that within a cycle, each of the two windows executes at most one such operation.

Obviously, the det-2-RR-automaton is an extension of the deterministic two-
head finite-state acceptor. However, it is much more powerful, as it accepts,
for example, the language Lpal = {wwR | w ∈ {a, b}∗} of palindromes of even
length, which is not accepted by any multi-head finite-state acceptor [8], and
it accepts the copy language Lcopy = {ww | w ∈ {a, b}∗}, which is not even
growing context-sensitive [2].

We show that with respect to the size of the windows, the det-2-RR-automata
yield a strictly increasing infinite hierarchy of language classes that are all incom-
parable to the (deterministic) context-free languages, the Church-Rosser lan-
guages [14], and the growing context-sensitive languages [6] with respect to
inclusion. On the other hand, the union of all these classes strictly includes
the deterministic context-free languages. Further, all these language classes are
closed under the operation of complementation, but they are not closed under
intersection (with regular sets), union, non-erasing morphisms, or inverse mor-
phisms. Finally, while the membership problem is decidable in quadratic time
for each language that is accepted by a det-2-RR-automaton, emptiness, finite-
ness, universality, inclusion, and equivalence are all undecidable for det-2-RR-
automata. In fact, these problems are not even recursively enumerable.

The paper is structured as follows. In Sect. 2, we present the definition of the
det-2-RR-automaton and some examples illustrating its expressive power. In
Sect. 3, we show that the simple language of a det-2-RR-automaton is accepted
by a nondeterministic 2-head writing finite automaton [22]. Then, in Sect. 4,
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we establish the announced hierarchy and in Sect. 5, we study closure and
non-closure properties for the language classes accepted by det-2-RR-automata.
Finally, we address decision problems for det-2-RR-automata in short.

2 Definitions

For a finite alphabet Σ, Σ∗ is the set of all words over Σ, and Σ+ = Σ∗
�{λ},

where λ denotes the empty word. The length of a word w is written as |w|.
A det-2-RR-automaton consists of a finite-state control, a flexible tape with

endmarkers, and two windows of a fixed finite size. Formally, it is defined by a
7-tuple M = (Q,Σ, c, $, δ, q0, k), where Q is a finite set of states, Σ is a finite
input alphabet, c and $ are special letters that mark the left and right border of
the tape (these letters are not elements of Σ), q0 ∈ Q is the initial state, k ≥ 1 is
the size of the windows, and δ : Q×PCk ×PCk → OP is the transition function.
Here PCk denotes the set of all possible words that can occur in a window of M ,
and OP is the set of possible operations, which are defined as follows:

– An operation of the form δ(q, u1, u2) = (q′,MVRi), i ∈ {1, 2}, moves win-
dow i one position to the right and changes the state to q′. However, such an
operation is only applicable if ui �= $.

– An operation of the form δ(q1, u1, u2) = (q′,DELi(v)), i ∈ {1, 2}, replaces the
factor ui contained in window i by the word v, where v is a proper scattered
subword of ui, moves this window by |ui|−|v| steps to the right (which means
that window i is refilled from the right), and changes the state to q′. Here
some restrictions apply in that the delimiters c and $ must not be deleted and
that the window cannot be moved across the right sentinel $. In addition, if
one or more of the letters deleted are currently also contained in the other
window, then this window is also refilled from the right.

– An operation of the form δ(q, u1, u2) = Restart moves both windows to the
left end of the tape such that the first letter they contain is the left sentinel c,
and resets the state to the initial state q0.

– An operation of the form δ(q, u1, u2) = Accept causes M to halt and accept.

If δ(q, u1, u2) is undefined, then M halts without accepting. It is required that
before the first restart operation and between any two successive restart opera-
tions, each window can execute at most one delete operation, that at least one
delete operation is indeed executed, and that after the last restart operation
in a computation, none, one, or two delete operations (of different windows)
can be performed. For each k ≥ 1, we use det-2-RR(k) to denote the class of
deterministic 2-RR-automata with windows of size k.

The notions of cycle and tail computations carry over from RR-automata
(see, e.g., [16]). However, as a det-2-RR-automaton has two windows we use
the additional symbols H1, H2, and H1,2 to denote the positions of these
windows, where H1 (H2) is placed immediately to the left of the first let-
ter that is currently inside window one (two), and H1,2 is used if both win-
dows are at the same position. Then the language accepted by M is the set
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L(M) = {w ∈ Σ∗ | (q0,H1,2cw$) �∗
M Accept}, where �M denotes the single-step

computation relation that M induces on its set of configurations, and �∗
M denotes

its reflexive and transitive closure. By L(det-2-RR(k)) we denote the class of lan-
guages that are accepted by det-2-RR-automata with windows of size k, and
L(det-2-RR) :=

⋃
k≥1 L(det-2-RR(k)).

Example 1. A det-2-RR(1)-automaton M for the marked copy language L′
copy =

{wcw | w ∈ {a, b}∗} is given through the following transition function, where
x, x′ ∈ {a, b}, y ∈ {a, b, c}, and z ∈ {a, b, $}:

δ(q0, c, c) = (q1,MVR1), δ(q1, y, c) = (q2,MVR2),
δ(q2, c, c) = (q3,MVR1), δ(q3, $, c) = Accept,
δ(q2, x, x′) = (q2,MVR2), δ(q2, x, c) = (q4,MVR2),
δ(q4, x, x) = (q5,DEL1(λ)), δ(q5, y, x) = (q6,DEL2(λ)),
δ(q6, y, z) = Restart.

Example 2. Let L∞ denote the following language on Σ = {a, b,#,&}:

L∞ = {w1#w2# · · · #wn&wn# · · · #w2#w1 | n ≥ 1, w1, w2, . . . , wn ∈ {a, b}∗}
It is known that this language is not accepted by any multi-head PDA [3,4].
However, based on Example 1 it can be shown that L∞ is accepted by a deter-
ministic 2-RR(1)-automaton. ��

It is easily seen that the marked palindromic language L′
pal = {wcwR | w ∈

{a, b}∗} is accepted by some det-2-RR(1)-automaton. However, as shown in [22]
this language is not accepted by any two-head writing NFA (see Sect. 3), and,
as pointed out in [8], it is not accepted by any multi-head NFA. In fact, also
the language Lpal = {wwR | w ∈ {a, b}∗} of palindromes of even length without
a middle marker is accepted by a det-2-RR(2)-automaton that, in each cycle,
deletes the first and the last letter, if they coincide.

Example 3. A det-2-RR(2)-automaton Mcopy for the copy language Lcopy =
{ww | w ∈ {a, b}∗} is given through the following transition function, where
d, e, f, g ∈ {a, b}:

(1) δ(q0, cd, cd) = (q1,MVR2), (9) δ(q2, de, fg) = (q0,MVR1),
(2) δ(q0, de, fg) = (q1,MVR2), (10) δ(q2, de, f$) = (q3,MVR1),
(3) δ(q1, cd, de) = (q2,MVR2), (11) δ(q3, de, d$) = (q4,DEL1(e)),
(4) δ(q1, de, fg) = (q2,MVR2), (12) δ(q4, de, f$) = (q5,DEL2($)),
(5) δ(q2, cd, ef) = (q0,MVR1), (13) δ(q5, de, $) = Restart,
(6) δ(q2, cd, e$) = (q3,MVR1), (14) δ(q0, c$, c$) = Accept,
(7) δ(q5, $, $) = Restart, (15) δ(q5, d$, $) = Restart.
(8) δ(q4, d$, d$) = (q5,DEL2($)),

Given an input of the form w = a1a2 · · · anb1b2 · · · bn of length 2n, Mcopy

cycles through the states q0, q1, and q2, in each round moving window 2 two
letters to the right and window 1 only one letter to the right. Hence, when
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window 2 reaches the suffix bn$, then window 1 contains the factor anb1. Now
Mcopy enters state q3 and checks whether an = bn holds. In the affirmative, the
letters an and bn are deleted and Mcopy restarts; otherwise, Mcopy gets stuck
and therewith rejects. It follows that indeed L(Mcopy) = Lcopy. ��

Observe that the language Lcopy is not even growing context-sensitive [2],
and so it is not accepted by any weakly monotone RRWW-automaton [12].

3 Simple Languages of Det-2-RR-Automata

In [22] the one-way multi-head writing finite automaton is introduced. A one-way
n-head writing finite automaton (wNFA(n)) is essentially defined like an n-head
NFA that, in addition to moving its heads from left to right, can execute rewrite
steps that replace the current symbol under a head by another symbol.

It is known that the language class L(wNFA(2)) is closed under the opera-
tions of union, product, Kleene star, intersection with regular languages, λ-free
morphisms, and inverse morphisms, but that the language L′

pal = {wcwR | w ∈
{a, b}∗} is not accepted by any wNFA(2) [22]. Here we are interested in wNFA(2)
because of their ability to simulate tail computations of det-2-RR-automata.

Definition 4. Let M = (Q,Σ, c, $, δ, q0, k) be a det-2-RR-automaton. The sim-
ple language Lsim(M) of M is the sublanguage of L(M) that consists of all those
words w ∈ Σ∗ that M accepts through tail computations, that is,

Lsim(M) = {w ∈ Σ∗ | (q0,H1,2cw$) �∗
M Accept without using a restart}.

Lemma 5. For each det-2-RR(1)-automaton M , Lsim(M) ∈ L(wDFA(2)).

Proof. Let M = (Q,Σ, c, $, δ, q0, 1) be a det-2-RR-automaton with window
size 1. A wDFA(2) A can simulate the tail computations of M by using its
two heads to simulate the two windows of size 1 of M . In addition, a delete
operation a 	→ λ of M is simulated by the rewrite operation a → #a, where
{#a | a ∈ Σ} are new auxiliary symbols. When a head of A reaches one of these
auxiliary symbols, then it just moves on to the next symbol without changing
the state. It now follows easily that L(A) = Lsim(M). ��

However, for det-2-RR-automata M with window size k ≥ 2, the situation is
more complicated. First of all, a wDFA(2) A has only two heads that each see a
single symbol only. Hence, each head must make k move-right steps until it has
seen the current content of the corresponding window of M . Next, A may have
to simulate a delete operation of M , which deletes between 1 and k letters from
the k letters inside one of the windows. For simulating these deletions, A would
have to move back to the left, which it cannot do. Thus, instead of first reading all
the k letters inside the corresponding window of M , A guesses the last k−1 letters
when it sees only the first letter. This means that the simulating 2-head writing
finite automaton will be nondeterministic. After guessing the next k − 1 letters
(for each of its heads), A simulates the next operation of M , realizing deletions
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of the form a 	→ λ by rewrites of the form a 	→ #a. Here, the information on
the deleted letters is important for the following reason. A window of M may
delete some letters that are also contained in the other window. Now for the
det-2-RR(k)-automaton M that does not cause any problems, since M has seen
both window contents before executing these deletions, but for the simulating
wNFA(2) A, this would cause a problem as it must still verify the correctness
of the letters guessed. However, by simulating a delete operation a 	→ λ by the
rewrite operation a 	→ #a, this information is saved, allowing A to perform the
required verification. Accordingly, we get the following weaker result.

Lemma 6. For each det-2-RR(k)-automaton M , Lsim(M) ∈ L(wNFA(2)).

4 The Hierarchy

Next we will show that the det-2-RR-automata yield a strictly increasing infinite
hierarchy of language classes based on the window size.

Let ϕ : {a, b, c}∗ → {a′, b′, c}∗ be the morphism that is defined through
a 	→ a′, b 	→ b′, and c 	→ c, and let Lpal,ϕ = {wc(ϕ(w))R | w ∈ {a, b}∗} be a
variant of the language of marked palindromes. It is easily seen that Lpal,ϕ is
accepted by a det-2-RR(1)-automaton, but not by any 2-head writing NFA.

Now, for an integer k ≥ 2, let ψk : {a, b, c, a′, b′}∗ → {a1, a2, b1, b2, c}∗ be the
morphism that is defined through a 	→ a1a

k−1
2 , b 	→ b1b

k−1
2 , c 	→ c, a′ 	→ ak−1

2 a1,
and b′ 	→ bk−1

2 b1. Then

L
(k)
pal,ϕ := ψk(Lpal,ϕ) = {ψk(w)c(ψk(w))R | w ∈ {a, b}∗}.

Proposition 7. For all k ≥ 2, L
(k)
pal,ϕ ∈ L(det-2-RR(k))�L(det-2-RR(k − 1)).

Proof. The language L
(k)
pal,ϕ is obtained from Lpal,ϕ = {wc(ϕ(w))R | w ∈ {a, b}∗}

by replacing each letter a or b by the block a1a
k−1
2 or b1b

k−1
2 and by replacing

each letter a′ or b′ by the block ak−1
2 a1 or bk−1

2 b1. Thus, from the det-2-RR(1)-
automaton for Lpal,ϕ we easily obtain a det-2-RR(k)-automaton for L

(k)
pal,ϕ.

Assume now that M is a det-2-RR-automaton with windows of size k − 1
such that L(M) = L

(k)
pal,ϕ, and let x = ψk(u)c(ψk(u))R ∈ L

(k)
pal,ϕ. Then M has an

accepting computation on input x. Assume that this computation begins with
a cycle that rewrites x into the word y. In the corresponding rewrite steps, M
deletes between 1 and 2k − 2 letters, that is, 1 ≤ |x| − |y| ≤ 2k − 2. From the
form of the words in the language L

(k)
pal,ϕ it then follows that y �∈ L

(k)
pal,ϕ, which

contradicts the correctness preserving property for M (see, e.g., [16]).
Hence, the accepting computation of M on input x must be a tail computa-

tion, which implies that L
(k)
pal,ϕ is accepted by a wNFA(2). However,

ψ−1
k (L(k)

pal,ϕ) = {x ∈ {a, b, c, a′, b′}∗ | ψk(x) ∈ L
(k)
pal,ϕ}

= {x ∈ {a, b, c, a′, b′}∗ | ∃w ∈ {a, b}∗ : ψk(x) = ψk(w)c(ψk(w))R}
= {wc(ϕ(w))R | w ∈ {a, b}∗} = Lpal,ϕ,
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Fig. 1. Relating the det-2-RR-automata to the Chomsky hierarchy.

and as L(wNFA(2)) is closed under inverse morphisms (see above), it follows
that the language Lpal,ϕ is accepted by a wNFA(2), a contradiction. Thus, we
see that L

(k)
pal,ϕ is not accepted by any det-2-RR(k − 1)-automaton. ��

This result yields the following infinite hierarchy.

Corollary 8. L(det-2-RR(k)) � L(det-2-RR(k + 1)) for all k ≥ 1.

As for all k ≥ 1, the language L
(k)
pal,ϕ is deterministic context-free, we obtain

the following incomparability results from Example 1 and Proposition 7. Here
(D)CFL denotes the (deterministic) context-free languages, CRL the Church-
Rosser languages [14], and GCSL the growing context-sensitive languages [6].

Corollary 9. For k ≥ 1, the language class L(det-2-RR(k)) is incomparable to
the classes DCFL, CFL, CRL, and GCSL with respect to inclusion.

Concerning the deterministic 2-RR-automata with windows of arbitrary size,
however, we have the following result.

Corollary 10. DCFL = L(det-mon-RR) � L(det-RR) � L(det-2-RR).

The equality DCFL = L(det-mon-RR) was shown in [11], and in [10] an
example of a non-context-free language is given that is accepted by a det-RR-
automaton. The properness of the last inclusion follows from Example 1. The
diagram in Fig. 1 summarizes all the inclusion relations derived above. Below we
will encounter a Church-Rosser language that is not accepted by any det-2-RR-
automaton, but it remains open whether CFL is contained in L(det-2-RR).
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5 Closure Properties

We begin with a simple positive result that is easily proved using standard
techniques.

Proposition 11. The language classes L(det-2-RR(k)), k ≥ 1, and L(det-2-RR)
are closed under complementation.

The language L
(k)
pal,ϕ is obtained as the image of the language Lpal,ϕ under

the morphism ψk. From Proposition 7 we know that ψ2(Lpal,ϕ) �∈ L(det-2-RR(1)),
while Lpal,ϕ ∈ L(det-2-RR(1)). Let ψ : {a1, a2, b1, b2, c}∗ → {a1, a2, b1, b2, c}∗ be
the morphism that is defined through a1 	→ a1, a2 	→ a2

2, b1 	→ b1, b2 	→ b22, and
c 	→ c. Then ψ ◦ ψk = ψ2k−1, and hence, we see from Proposition 7 that, for all
k ≥ 2, L

(k)
pal,ϕ ∈ L(det-2-RR(k)), but that ψ(L(k)

pal,ϕ) = L
(2k−1)
pal,ϕ �∈ L(det-2-RR(k)).

Hence, we have the following non-closure property.

Proposition 12. For each k ≥ 1, the language class L(det-2-RR(k)) is not
closed under λ-free morphisms.

Let ψ∗ : {a, b, a′, b′, c}∗ → 2{a1,a2,b1,b2,c}∗
be the regular substitution that is

defined through a 	→ a1 · a∗
2, b 	→ b1 · b∗

2, a′ 	→ a∗
2 · a1, b′ 	→ b∗

2 · b1, and c 	→ c. By
L
(∗)
pal,ϕ we denote the language L

(∗)
pal,ϕ = ψ∗(Lpal,ϕ).

Lemma 13. L
(∗)
pal,ϕ ∈ L(det-2-RR(1)).

Proof. A det-2-RR(1)-automaton M∗ for the language L
(∗)
pal,ϕ works in essen-

tially the same way as the det-2-RR(1)-automaton M for the language L′
pal =

{wcwR | w ∈ {a1, b1}∗} (see the remark after Example 2). However, each time
M∗ encounters an occurrence of a letter a2 or b2, it simply deletes that letter and
restarts. Observe that in this situation, M∗ can use its second window to first
check that the tape content is from the regular set ψ∗({a, b}∗) · c · ψ∗({a′, b′}∗).
It is now easily seen that M∗ accepts the language L

(∗)
pal,ϕ. ��

For k ≥ 1, let Rk be the language that is given through the regular expression
Rk =

(
(a1 · ak

2) ∪ (b1 · bk
2)

)∗ ·c·((ak
2 · a1) ∪ (bk

2 · b1)
)∗

. Then L
(k+1)
pal,ϕ = L

(∗)
pal,ϕ∩Rk.

Hence, we see from Proposition 7 that L
(∗)
pal,ϕ ∩ Rk is not accepted by any det-2-

RR(k)-automaton, which yields the following non-closure property.

Proposition 14. For each k ≥ 1, the language class L(det-2-RR(k)) is not
closed under intersection with regular languages.

As each regular language is accepted by a det-2-RR(1)-automaton, this result
has the following consequences in combination with Proposition 11.

Corollary 15. For each k ≥ 1, the language class L(det-2-RR(k)) is neither
closed under union nor under intersection.
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Finally, we consider inverse morphisms. Let Γ8 = {a, b, c, d, x1, x2, x3, x4},
Γ9 = Γ8 ∪ {x0}, let D∗

8 be the Dyck language over Γ8 ∪ Γ 8 (see, e.g., [1]), let
D∗

9 be the Dyck language over Γ9 ∪ Γ 9, and let LD = D∗
9 ∩ (x0 · D∗

8 · x̄0). The
following is easily seen.

Lemma 16. LD ∈ L(det-2-RR(1)).

Let Σ = {a0, a1, a2, a3, a4, b0, b1, b2, b3, b4, c, d1, d2, e1, e2}, let p, q be two dis-
tinct primes, and let ψp,q : Σ∗ → (Γ9 ∪ Γ 9)∗ be the morphism that is given
through the following table:

a0 	→ x0ax1, a2 	→ x̄2ax1, a3 	→ x̄3āx4, b4 	→ x̄4b̄x3, d2 	→ x̄2d
px2,

a1 	→ x̄1ax2, b2 	→ x̄2bx1, b3 	→ x̄3b̄x4, c 	→ x̄1cc̄x3, e1 	→ x̄3d̄
qx3,

b1 	→ x̄1bx2, b0 	→ x̄3āx̄0, a4 	→ x̄4āx3, d1 	→ x̄1d
px1, e2 	→ x̄4d̄

qx4.

Now let Lp,q = ψ−1
p,q(LD) = {w ∈ Σ∗ | ψp,q(w) ∈ LD}. Further, let

π : {a0, a1, a2, a3, a4, b0, b1, b2, b3, b4, c}∗ → {a, b, c, d}∗ be the morphism defined
through a0 	→ d, b0 	→ d, c 	→ c, and ai 	→ a, bi 	→ b for i = 1, 2, 3, 4. Then
w ∈ Σ∗ belongs to the language Lp,q if and only if

w = a0d
i0
1 α

(1)
1 di1

2 α
(2)
2 di2

1 · · · di2k−1
2 α

(2k)
2 di2k

1 cej2k
1 γ

(2k)
3 e

j2k−1
2 γ

(2k−1)
4 · · · γ(1)

4 ej0
1 b0

for some k ≥ 0, i0, i1, . . . , i2k, j0, j1, . . . , j2k ≥ 0 satisfying ir · p = jr · q for all
0 ≤ r ≤ 2k, and α

(1)
1 , α

(3)
1 , . . . , α

(2k−1)
1 ∈ {a1, b1}, α

(2)
2 , α

(4)
2 , . . . , α

(2k)
2 ∈ {a2, b2},

γ
(2)
3 , γ

(4)
3 , . . . , γ

(2k)
3 ∈ {a3, b3}, and γ

(1)
4 , γ

(3)
4 , . . . , γ

(2k−1)
4 ∈ {a4, b4} such that

π(α(1)
1 α

(2)
2 . . . α

(2k)
2 ) = π(γ(1)

4 γ
(2)
3 . . . γ

(2k)
3 ).

Lemma 17. Lp,q �∈ L(wNFA(2)).

Proof. Let R = a0 · ({a1, b1} · {a2, b2})∗ · c · ({a3, b3} · {a4, b4})∗ · b0. Then

Lp,q ∩ R = {a0α
(1)
1 α

(2)
2 · · · α(2k)

2 cγ
(2k)
3 γ

(2k−1)
4 · · · γ(1)

4 b0 |
α
(1)
1 , α

(3)
1 , . . . , α

(2k−1)
1 ∈ {a1, b1}, α

(2)
2 , α

(4)
2 , . . . , α

(2k)
2 ∈ {a2, b2},

γ
(2)
3 , γ

(4)
3 , . . . , γ

(2k)
3 ∈ {a3, b3}, and γ

(1)
4 , γ

(3)
4 , . . . , γ

(2k−1)
4 ∈ {a4, b4}

such that π(α(1)
1 α

(2)
2 · · · α(2k)

2 ) = π(γ(1)
4 γ

(2)
3 · · · γ(2k)

3 )},

and π(Lp,q ∩ R) = {ducuRd | u ∈ ({a, b}2)∗}.
Now assume that Lp,q is accepted by a wNFA(2). As L(wNFA(2)) is closed

under intersection with regular languages and λ-free morphisms [22], it follows
that also the language π(Lp,q ∩R) is accepted by a wNFA(2). However, from the
proof of the fact that the language L′

pal of marked palindromes is not accepted
by any wNFA(2) [22], it follows that π(Lp,q ∩ R) = {ducuRd | u ∈ ({a, b}2)∗}
is not accepted by a wNFA(2), either. This contradiction shows that Lp,q is not
accepted by any wNFA(2). ��

Based on this result we can now derive the following.
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Proposition 18. Lp,q �∈ L(det-2-RR(k)) for any k < max{p, q}.
Proof. Assume that M is a det-2-RR(k)-automaton such that L(M) = Lp,q. By
Lemma 17, Lp,q is not accepted by any wNFA(2), which implies by Lemma 6
that Lp,q is not the simple language Lsim(M). Now consider a word w ∈ Lp,q of
the form

w = a0d
q
1α

(1)
1 dq

2α
(2)
2 · · · α(2r)

2 dq
1ce

p
1γ

(2r)
3 ep

2γ
(2r−1)
4 · · · γ(1)

4 ep
1b0,

where r ≥ 1 is sufficiently large such that w is not accepted in a tail computation.
Then on input w, M executes a cycle that rewrites the word w into a word z,
where z ∈ Lp,q and |w| − 1 ≥ |z| ≥ |w| − 2k. In this cycle M cannot delete two
corresponding factors α

(i)
μ and γ

(i)
5−μ, where μ ∈ {1, 2} and 1 ≤ i ≤ 2r, as in that

case z would contain the factor dq
μdq

3−μ. Hence, M must delete two corresponding
factors dq

ν and ep
ν , which implies that k ≥ max{p, q}. ��

From the proof above it follows easily that Lp,q is accepted by a det-2-
RR-automaton with windows of size max{p, q}. Lemma 16 and Proposition 18
together yield the following non-closure property, as Lp,q = ψ−1(LD).

Proposition 19. For each k ≥ 1, the language class L(det-2-RR(k)) is not
closed under inverse morphisms.

We suppose that the language classes L(det-2-RR(k)) are not closed under
product and Kleene star, either. For k ≥ 2, we expect that the language
L2
pal = {uuRvvR | u, v ∈ {a, b}∗} is not accepted by any det-2-RR(k)-automaton,

although Lpal is. This would prove non-closure under product for all k ≥ 2.
Next we extend the above non-closure properties to the class L(det-2-RR).

In [10] a det-R-automaton M with a window of size five is presented that accepts
a language L(M) ⊆ {a, b}∗ such that L(M)∩ (ab)∗ = {(ab)2

n | n ≥ 0}, where M
deletes exactly one symbol within each cycle. Hence, we can transform M into
a det-2-RR(1)-automaton M1 such that L(M1) = L(M). From this observation
the following non-closure property can be derived.

Proposition 20. The language class L(det-2-RR) is not closed under intersec-
tion with regular sets.

From Propositions 11 and 20 we obtain the following non-closure property.

Corollary 21. The language class L(det-2-RR) is not closed under union.

Finally, let ψ : a∗ → {a, b}∗ be the morphism defined by a 	→ ab. Then
ψ−1(L(M)) = ψ−1(L(M) ∩ (ab)∗) = ψ−1({(ab)2

n | n ≥ 0}) = {a2n | n ≥ 0},
which is a Church-Rosser language [14] that can be shown to be not accepted
by any det-2-RR-automaton by using the same kind of reasoning as in the proof
of Proposition 20. This then yields the following.

Corollary 22. The language class L(det-2-RR) is not closed under inverse mor-
phisms.

It remains to show that L(det-2-RR) is not closed under λ-free morphisms,
product, and Kleene star, either.
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6 Conclusion

Finally, we shortly look at the algorithmic properties of det-2-RR(k)-automata.

Proposition 23. L(det-2-RR) ⊆ DTIME(n2).

Proof. Let M be a det-2-RR-automaton. Given a word w of length n as input,
the computation of M consists of at most n cycles and a tail. Each cycle consists
of O(n) many steps, as in each step, one of the two heads is moved at least one
position to the right. This also holds for the tail computation. Hence, M can be
simulated by a deterministic multi-tape Turing machine in time O(n2). ��

From Proposition 23 we see that the non-emptiness problem for det-2-RR-
automata is recursively enumerable. In fact, this is the best we can do. Recall that
the language VALID(T ) of valid computations of a single-tape Turing machine T
is accepted by a 2-head DFA [8]. In fact, one can effectively construct a 2-head
DFA A for this language from T . Then L(A) is empty (finite) iff L(T ) is empty
(finite). As emptiness and finiteness are not even recursively enumerable for
Turing machines, this yields the following result.

Proposition 24. For all k ≥ 1, emptiness, finiteness, regularity, context-free-
ness, universality, inclusion, and equivalence are not recursively enumerable for
det-2-RR(k)-automata.

To sum up, we have presented a deterministic version of the restarting
automaton that has two windows which can delete symbols from the tape. We
have seen that based on the window size, we obtain an infinite strictly increas-
ing hierarchy of language classes the union of which includes the deterministic
context-free languages. Unfortunately, these classes are not closed under most of
the operations considered. In fact, they are actually anti-AFLs, if they are not
closed under product and Kleene star, either. Anti-AFLs are sometimes referred
to as ‘unfortunate families of languages,’ but there is linguistical evidence that
such language families might be of crucial importance, since the family of natural
languages is an anti-AFL, too [5].
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13. Lopatková, M., Plátek, M., Sgall, P.: Towards a formal model for functional gen-
erative description - analysis by reduction and restarting automata. The Prague
Bull. Math. Linguist. 87, 7–26 (2007)

14. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal
languages. J. ACM 35, 324–344 (1988)
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Abstract. The prefix distance between two words x and y is defined as
the number of symbols in x and y that do not belong to their longest com-
mon prefix. The relative prefix distance from a language L1 to a language
L2, if finite, is the smallest integer k such that for every word in L1, there
is a word in L2 with prefix distance at most k. We study the prefix dis-
tance between regular, visibly pushdown, deterministic context-free, and
context-free languages. We show how to compute the distance between
regular languages and determine whether the distance is bounded. For
deterministic context-free languages and visibly pushdown languages, we
show that the relative prefix distance to and from regular languages is
decidable.

1 Introduction

Distances on words are typically defined to compare the similarity between two
words. The prefix distance between two words x and y is defined as the number
of symbols in x and y that do not belong to their longest common prefix. In
some sense, the prefix distance measures the distance of objects arranged in a
hierarchical structure [19]. The edit distance, which counts the minimum number
of insertions, deletions, and substitutions required to transform one word into
another, is more commonly used for string comparisons. However, the prefix
distance is often simpler to compute than the edit distance and may suffice for
certain applications, such as defect measurement [12] and intrusion detection [5].
Beyond string comparisons, the prefix distance also has interesting topological
properties and is used to characterize the subsequentiality of functions [2].

These distance measures can be extended to sets of words, or languages.
The standard topological definition for a distance over words when extended to
languages takes the minimum of the distances between a word in each language
and has been well studied [10,11,13,14,17]. Choffrut and Pighizzini [8] consider
an alternate definition for distance between languages, called the relative or
Hausdorff distance. The relative distance from one language to another is defined
as the supremum over all words in the first language of the distance to the second
language and is non-symmetric. A symmetric distance can be attained by simply
taking the minimum of the relative distance in each direction.

Choffrut and Pighizzini study the distance between languages from the point
of view of relations on words. They study various distances on subclasses of deter-
ministic rational relations, showing that questions about distances are decidable
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-62809-7 21



Relative Prefix Distance Between Languages 285

for recognizable relations and undecidable for deterministic rational relations
with respect to the prefix, suffix, and subword distances.

The relative distance has applications in verification, as a generalization of
the language inclusion problem. For instance, Benedikt et al. [3,4] consider the
one-sided relative edit distance to measure the cost of repairing regular specifi-
cations. They give an algorithm for deciding when the distance between regular
languages is bounded and give complexity results for computing the edit distance
between regular languages. Chatterjee et al. [7] consider the same problems for a
context-free language and a language belonging to a subclass of the context-free
languages.

In this paper, we study the relative prefix distance between various classes
of languages. We show that the relative prefix distance between DFAs (deter-
ministic finite automata) can be computed in polynomial time while computing
the relative prefix and suffix distance between NFAs (nondeterministic finite
automata) is PSPACE-complete. We also consider the computational problem
of computing the relative prefix distance between more general classes of lan-
guages. For a fixed value k, deciding whether the relative prefix distance from
a context-free language to a DFA (respectively, an NFA) language is at most k
can be done in polynomial time (respectively, is EXPTIME-complete). On the
other hand, computing the relative prefix distance from a regular language to
a context-free language is undecidable. We show that the prefix distance neigh-
bourhood of a DCFL (deterministic context-free language) is deterministic and
this yields an algorithm to compute the relative prefix distance from a regu-
lar language to a DCFL. Finally, we show that computing the relative prefix
distance from one visibly pushdown language to another is EXPTIME-complete
while computing the relative prefix distance from a DCFL to a visibly pushdown
language, or vice versa, is undecidable.

2 Preliminaries

Here we briefly recall some definitions and notation used in the paper. For all
unexplained notions on finite automata and regular languages the reader may
consult the textbook by Shallit [18] or the survey by Yu [20]. A survey of distances
is given by Deza and Deza [9].

In the following, Σ is always a finite alphabet, the set of words of Σ is denoted
Σ∗, and ε denotes the empty word. The reversal of a word w ∈ Σ∗ is denoted by
xR. The length of a word w is denoted by |w|. The cardinality of a finite set S is
denoted |S| and the power set of S is 2S . A word w ∈ Σ∗ is a subword or factor
of x if and only if there exist words u, v ∈ Σ∗ such that x = uwv. If u = ε, then
w is a prefix of x. If v = ε, then w is a suffix of x.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F )
where Q is a finite set of states, Σ is an alphabet, δ is a transition function
δ : Q × Σ → 2Q, q0 ∈ Q is a set of initial states, and F ⊆ Q is a set of final
states. A word w ∈ Σ∗ is accepted by A if for some q0 ∈ Q0, δ(q0, w) ∩ F �= ∅
and the language recognized by A consists of all words accepted by A. An NFA
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is a deterministic finite automaton (DFA) if for all q ∈ Q and a ∈ Σ, δ(q, a)
either consists of one state or is undefined.

A pushdown automaton (PDA) is a tuple P = (Q,Σ, Γ, δ, q0, F ) where Q is
a finite set of states, Σ is an alphabet, Γ is a stack alphabet, δ is a transition
function δ : Q×Σ ∪{ε}×Γ → 2Q×Γ ∗

, q0 ∈ Q is an initial state, and F ⊆ Q is a
set of final states. For a transition (q′, β) ∈ δ(q, a, α), the PDA pops the symbol
α from the top of the stack and pushes the symbols β onto the stack.

A configuration of a PDA is a triple (q, w, π) where q ∈ Q is the current
state, w ∈ Σ∗ is the remaining input, and π ∈ Γ ∗ is the contents of the stack.
For a transition (q′, β) ∈ δ(q, a, α), we write (q, aw, απ) 	 (q′, w, βπ). We denote
by 	∗ a sequence of transitions between the two configurations. Then a word w
is accepted by a PDA if (q0, w, ε) 	∗ (qf , ε, π) for qf ∈ F and π ∈ Γ ∗.

A PDA is a deterministic pushdown automaton (DPDA) if the transition
function satisfies |δ(q, a, α)| ≤ 1 for all q ∈ Q, a ∈ Σ ∪ {ε}, and α ∈ Γ , and that
for all q ∈ Q and α ∈ Γ , if δ(q, ε, α) �= ∅, then δ(q, a, α) = ∅ for all a ∈ Σ. It
is well known that the class of deterministic context-free languages is a proper
subclass of the context-free languages.

A visibly pushdown automaton is a tuple V = (Q,Σ, Γ, δ, q0, F ) as in a push-
down automaton, with the additional constraint that the alphabet Σ and tran-
sition function δ are partitioned into three sets

– call actions Σc with the transition function δc : Q × Σc → 2Q×Σ ,
– return actions Σr with the transition function δr : Q × Σr × Γ → 2Q,
– internal actions Σi with the transition function δi : Q × Σi → 2Q.

The stack operations of a VPA are determined entirely by the input symbols.
Specifically, upon reading a call action, the VPA must push to the stack and upon
reading a return action, the VPA must pop from the stack. It is well known that
the class of languages accepted by VPAs, the visibly pushdown languages, is a
proper subclass of the deterministic context-free languages [1].

A finite state transducer, or transducer, is a tuple T = (Q,Σ,Δ, δ, q0, F ),
where Q is a finite set of states, Σ and Δ are finite alphabets, δ ⊆ Q×Σ∗×Δ∗×Q
is a finite set of transitions, q0 ∈ Q is an initial state, and F ⊆ Q is a set of
accepting states. An accepting computation of T is a sequence of elements of δ

(q0, x1, y1, q1)(q1, x2, y2, q2) · · · (qn−1, xn, yn, qn)

where qn ∈ F . We say the transducer maps the input string x = x1 · · · xn to the
output string y = y1 · · · yn, which we denote by x →T y. The set {(x, y) | x →T y}
is the relation realized by T . We define the transduction realized by T by

T (x) = {y ∈ Δ∗ | x →T y}.

2.1 Distances

A function d : Σ∗ × Σ∗ → N ∪ {0} is a distance if it satisfies for all x, y ∈ Σ∗

1. d(x, y) = 0 if and only if x = y,
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2. d(x, y) = d(y, x),
3. d(x, z) ≤ d(x, y) + d(y, z) for z ∈ Σ∗.

A distance between words can be extended to a distance between a word w ∈ Σ∗

and a language L ⊆ Σ∗ by

d(w,L) = min{d(w,w′) | w′ ∈ L}.

We define the relative distance [8] from a language L1 to language L2 to be

d(L1|L2) = sup{d(w1, L2) | w1 ∈ L1}.

In other words, d(L1|L2) is the value of the maximum distance from any word in
L1 to the language L2. Note that under this definition, d(L1|L2) is not symmetric
and can be unbounded.

The prefix distance of x and y counts the number of symbols which do not
belong to the longest common prefix of x and y. It is defined by

dp(x, y) = |x| + |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ zΣ∗}.

The suffix distance and subword distance can be similarly defined by considering
the number of symbols of x and y which do not belong to the longest common
suffix (subword, respectively) of x and y.

The neighbourhood of a language L of radius k with respect to a distance d
is the set of all words v ∈ Σ∗ such that d(u, v) ≤ k for some u ∈ L [6]. More
formally,

E(L, d, k) = {w ∈ Σ∗ | d(w,L) ≤ k}.

It has been shown that the neighbourhoods of a regular language with respect
to the prefix, suffix, and subword distances are regular [16].

3 Relative Prefix Distance Between Regular Languages

Choffrut and Pighizzini [8] showed that the main questions about the almost-
reflexivity of a recognizable relation is decidable. Here, we show that these ques-
tions are computable in polynomial time if the languages are given as DFAs and
that they are PSPACE-complete for NFAs.

Since the relative distance can be unbounded, we would like to characterize
when, for two given languages, the distance is finite. In the following result, we
show that the distance is either bounded by a function of the state complexity
of the languages, or it is unbounded. First, we establish a simple lemma.

Lemma 1. Let A1 and A2 be two NFAs recognizing L1 and L2 with n1 and n2

states respectively. Suppose u ∈ L1, v ∈ L2 and let p be the longest word satisfying
u = pu′, v = pv′. Then there exists a word pw ∈ L2 such that |w| < n2 − 1.

Proof. This follows directly from the Pumping Lemma [18]. ��
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Theorem 2. Let L1, L2 be regular languages recognized by NFAs A1 and A2

with n1 and n2 states, respectively. Suppose dp(L1|L2) is bounded. Then,

dp(L1|L2) ≤ n1 + n2 − 2

Proof. Let u ∈ L1 and v ∈ L2 such that

k = dp(u, v) = dp(u,L2) = dp(L1, L2) < ∞
and suppose k > n1 + n2 − 2. We write u = pu′ and v = pv′, with p be being
the longest common prefix of u and v. Since dp(u, v) = minw∈L2{dp(u,w)}, by
Lemma 1, we have |v′| ≤ n2 − 1, which implies that |u′| > n1 − 1.

By the Pumping Lemma [18], we can write u′ = xyz where |yz| < n1 − 1,
|y| > 0 and pxyiz ∈ L1 for any i ∈ N. Consider a word u2 = pxy2z ∈ L1 and let
v2 ∈ L2 be a word such that dp(u2, v2) = dp(u2, L2). That is, v2 is the word in
L2 which is closest to u2. By our assumption, we have dp(u2, v2) ≤ k. Now let q
be the longest word such that u2 = qu′

2 and v2 = qv′
2.

First, suppose that |q| ≤ |pxy|. Let 
 = |pxy| − |q|. Then,

k ≤ dp(u, v2) = 
 + |z| + |v′
2| < 
 + |y| + |z| + |v′

2| = dp(u2, v2) = k

which is a contradiction. Next, suppose that |q| > |pxy|. Recall that u = pxyz
and let q′ be such that v2 = pxyq′v′

2. By Lemma 1, let w be such that |w| < n2−1
and pxyw ∈ L2. Then we have

k ≤ dp(u, pxyw) = |z| + |w| ≤ n1 − 1 + n2 − 1 < k

which again is a contradiction. Therefore, k ≤ n1 + n2 − 2. ��
Example 3. We will show that this bound is reachable. Let Σ = {a, b} and let
L1 = Σ∗aΣn1−2 and L2 = Σ∗bΣn2−2. Note that L1 can be recognized by an
NFA with n1 states and L2 can be recognized by an NFA with n2 states. We
observe that for any word in w ∈ L1, we have dp(w,L2) ≤ n1 + n2 − 2.

If the distance is bounded, then it is possible construct a neighbourhood of
finite radius with respect to the given distance.

Lemma 4. Let L1 and L2 be languages. Then dp(L1|L2) ≤ k if and only if
L1 ⊆ E(L2, dp, k).

Theorem 5. Let A1 and A2 be DFAs. Then it is decidable in polynomial time
whether dp(L(A1)|L(A2)) is bounded.

Proof. By Theorem 2, we know that dp(L(A1)|L(A2)) ≤ n1 + n2 − 2 if it is
bounded. Otherwise, it is unbounded. Therefore, it is enough to check

L(A1) ⊆ E(L(A2), dp, n1 + n2 − 2).

It is known that the size of a DFA for E(L(A2), dp, n1 + n2 − 2) is at most
n2(n2−1)

2 + n1 + n2 − 1 states, which is polynomial in n2 and can be constructed
in polynomial time [16]. Then since the inclusion problem for DFAs is decidable
in polynomial time, checking the above inclusion can also be done in polynomial
time. ��
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Theorem 6. Let A1 and A2 be DFAs. Then dp(L(A1)|L(A2)) is computable in
polynomial time.

We will now show that the same questions are PSPACE-complete when we are
given nondeterministic finite automata. First, we will make use of the following
observation.

Lemma 7. Consider languages L1 and L2 over an alphabet Σ. Let # be a sym-
bol not in Σ and k ∈ N. Then

dp(L1#k|L2) ≤ k iff L1 ⊆ L2.

Theorem 8. Let k ∈ N be fixed. For given NFAs A1 and A2, deciding whether
or not dp(L(A1)|L(A2)) ≤ k is PSPACE-complete.

Proof. First, we note that given an n-state NFA A, we can construct an NFA
A′ for E(L(A), dp, k) with at most n + k states [16]. To see that the problem is
in PSPACE, we note that the problem is equivalent to deciding

L(A1) ⊆ E(L(A2), dp, k).

To see that the problem is PSPACE-hard, we reduce from NFA universality.
Suppose we are given an NFA A. Then by Lemma 7, L(A) = Σ∗ if and only if
dp(Σ∗#k|L(A)) ≤ k. ��
Corollary 9. Let A1 and A2 be NFAs. Then the problem of deciding whether
dp(L(A1)|L(A2)) is bounded is PSPACE-complete.

We can derive some results for the suffix distance as well, by using its symme-
try with the prefix distance. One might assume that this means the complexity
of questions regarding the relative suffix distance follow straightforwardly from
our results on the relative prefix distance. However, computing the neighbour-
hood with respect to the suffix distance is much more difficult than for the prefix
distance. First, as a corollary of the bound from Theorem2, we get:

Corollary 10. Let L1, L2 be regular languages recognized by NFAs A1 and A2

with n1 and n2 states, respectively. Then either ds(L1|L2) ≤ n1 + n2 − 2 or
ds(L1|L2) is unbounded.

Proposition 11. Let A1 and A2 be DFAs with n1 and n2 states, respectively.
Then deciding whether ds(L(A1)|L(A2)) is bounded is in PSPACE.

Proof. We can construct an NFA for the language E(L(A2), ds, n1 + n2 − 2)
that has at most n2 + (n1 + n2 − 2) states. Thus, we can decide the inclusion
L1 ⊆ E(L2, ds, n1 + n2 − 2) in PSPACE. ��
We note that the current best known DFA construction for E(L(A2), ds, n1 +
n2 −2) has at most n1 +2n2 states, and is therefore not known to be polynomial
in n2 [15].

Corollary 12. Let A1 and A2 be NFAs. Then the problem of deciding whether
ds(L(A1)|L(A2)) is bounded is PSPACE-complete.
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4 Relative Prefix Distance and Context-Free Languages

Here, we consider the relative distance on non-regular languages. The dis-
tance from one context-free language to another is undecidable by Choffrut and
Pighizzini [8]. Thus, we consider the distance between context-free languages and
regular languages. First, we define the following useful finite-state transducer.

Let Pk = (Qk, Σ,Σ, δk, I, Fk) be a finite state transducer, shown in Fig. 1,
with Qk = {0, . . . , k}, I = {0}, Fk = Qk, and transitions

– (0, a, a, 0) for all a ∈ Σ,
– (i, a, ε, i + 1) for all a ∈ Σ and 0 ≤ i ≤ k − 1,
– (i, ε, a, i + 1) for all a ∈ Σ and 0 ≤ i ≤ k − 1,
– (i, a, b, i + 2) for all a, b ∈ Σ with a �= b and 0 ≤ i ≤ k − 2.

0start

1

2

3

4

· · ·

· · ·

σ/σ

σ/ε, ε/σ

σ/ε, ε/σ

σ/ε, ε/σ

σ/ε, ε/σ

σ/ε, ε/σ

σ/σ′

σ/σ′

σ/σ′

σ/σ′

σ/σ′

Fig. 1. The transducer Pk with σ, σ′ ∈ Σ

Lemma 13. Let w ∈ Σ∗. Then Pk(w) = E(w, dp, k).

It is not difficult to see that for a language L, we have Pk(L) = E(L, dp, k).
A similar transducer Sk with respect to the suffix distance can be defined by
replacing the transition (0, a, a, 0) for all a ∈ Σ with (k, a, a, k) for all a ∈ Σ∗.
We make use of the fact that context-free languages are closed under rational
transductions to get the following result.

Proposition 14. Let L be a context-free language. Then for every k ≥ 0, the
neighbourhood E(L, dp, k) is context-free.

Proposition 15. Let k ∈ N be fixed. Given a regular language L1 and a context-
free language L2, determining whether or not dp(L1|L2) ≤ k is undecidable.

On the other hand, computing the relative distance from a context-free lan-
guage to a regular language becomes decidable, and when the regular language
is given by a DFA, this problem can even be decided in polynomial time. First,
we will state the following useful fact from Chatterjee et al. [7].

Proposition 16 ([7]). Given a PDA P and an NFA A, the inclusion L(P ) ⊆
L(A) can be decided in EXPTIME. Given a deterministic PDA P and an NFA
A, it is EXPTIME-hard to decide whether or not L(P ) ⊆ L(A).
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Proposition 17. Let k ∈ N be fixed.

1. Given an NFA A and a PDA P , deciding whether or not dp(L(P )|L(A)) ≤ k
is EXPTIME-complete.

2. Given a DFA B and a PDA P , it can be decided in polynomial time whether
or not dp(L(P )|L(B)) ≤ k.

It is clear that by symmetry, we would attain the same results for the suffix
distance between a context-free language and a regular language. However, if we
consider the distance between a DCFL and a regular language, we get different
results for the prefix and suffix distance. First, we show that the neighbourhood
of a DCFL with respect to the suffix distance need not be a DCFL.

Lemma 18. There exist a deterministic context-free language L and integer k
for which E(L, ds, k) is not a deterministic context-free language.

This lemma, together with Proposition 15, leads to some fairly straightfor-
ward results.

Proposition 19. Let k ∈ N be fixed. Given a DPDA P and an NFA A,

1. deciding whether or not ds(L(A)|L(P )) ≤ k is undecidable.
2. deciding whether or not ds(L(P )|L(A)) ≤ k is EXPTIME-complete.

Differing from the case of the suffix distance, we show that neighbourhoods
of DCFLs with respect to the prefix distance are also DCFLs.

Theorem 20. Let L be a deterministic context-free language. Then for every
k ≥ 0, the neighbourhood E(L, dp, k) is a deterministic context-free language.

Proof. Given a DPDA A recognizing L, we will construct a DPDA A′ that
recognizes the neighbourhood E(L, dp, k). We need to determine whether the
input word w has prefix distance at most k from some word in L. We can
simulate a computation of w on A and based on the current state and the top
k symbols of the pushdown stack, we can determine the length of a path to or
from a closest final state of A. If such a path of length less than k exists, then
w has a prefix distance of less than k from some word in L. This requires that
we know what the top k symbols of the pushdown stack are, so we simulate the
top of the stack via the finite state memory and store the rest of the stack on
the pushdown stack as normal.

Let L be recognized by a DPDA A = (Q,Σ, Γ, δ, q0, F ). Then for each state
q ∈ Q and string of stack symbols π ∈ Γ≤k, we define the following function
ϕA,k : Q × Γ≤k → N,

ϕA(q, π) = min
w∈Σ∗

({|w| | (q, w, π) 	∗ (q′, ε, π′)} ∪ {k + 1})

for some q′ ∈ F and π′ ∈ Γ ∗. The function ϕA,k(q, π) gives the length of a
shortest word w such that for any word x that reaches the state q with π on
the top of the stack, we have xw ∈ L if |w| ≤ k. Based on this function, we



292 T. Ng et al.

can construct a DPDA A′ = (Q′, Σ, Γ, δ′, q′
0, F

′) that recognizes the language
E(L, dp, k).

Let Q′ = Q × Γ≤k × {0, . . . , k + 1} ∪ {p1, . . . , pk}. We set the initial state to
be q′

0 = (q0, ε, ϕA(q0, ε)). The set of final states is defined

F ′ = Q × Γ≤k × {0, . . . , k} ∪ {p1, . . . , pk}.

We describe the transition function of A′ by first describing the operation of
the stack. We keep track of the top k symbols of the stack “in memory” in the
states and store the rest of the stack as normal. Consider a state q, a symbol
a ∈ Σ, and let (q′, β) = δ(q, a, α), where α is the top of the pushdown stack of
A and β = β1 · · · β|β| is the symbols to be pushed onto the pushdown stack of
A. Let π = γ1 · · · γ|π| be the top of the pushdown stack with |π| ≤ k to be kept
in memory.

Consider the state (q, π, i) in A′ with γ1 = α. First, we consider β = ε to
demonstrate a pop action. First, we consider when |π| ≤ k. This occurs when the
size of the in-memory portion of the stack has at most k elements and therefore,
the size of the entire stack has at most k elements. In this case, the stack of
A′ is empty and the stack operations are performed only on the in-memory
portion of the stack. Thus, for a transition δ(q, a, α) in A, we have the transition
δ′((q, π, i), a, ε) = ((q′, γ2 · · · γ|π|, j), ε).

If |π| > k and the stack contains m > k symbols, then the top k symbols
of the stack of A are stored as π and the rest of the m − k stack symbols are
on the pushdown stack of A′. In this case, A′ will pop the topmost symbol α′

on its stack to append to the end of π and remove the first symbol γ1 of π to
simulate a pop from the top of the in-memory portion of the stack. Formally,
the transition is δ′((q, π, i), a, α′) = (q′, γ2 · · · γkα′, j), ε), where α′ is the top of
the pushdown stack of A′.

Now, for β �= ε, we demonstrate the push action. Let π′ = β ·γ2 · · · γ|π|. First
we consider when |π′| ≤ k. In this case, γ1 is popped as above and now we need
to push the symbols onto the stack. Since the size of the stack is less than k, we
store the entire contents in memory and we have δ′((q, π, i), a, ε) = ((q′, π′, j), ε).
If |π′| > k, then we keep the first k symbols in memory and push the rest onto
the stack. Let π′ = η1 · · · η|π′|. Then we have the transition δ′((q, π, i), a, α′) =
((q′, η1 · · · ηk, j), ηk+1 · · · η|π′|α′), where α′ is the top of the pushdown stack of A′.

To see that this is all deterministic, we recall that each transition of A is
uniquely determined by the current state q, input symbol a, and the top of
the stack α. Each of the above transitions of A′ is still uniquely determined by
the same items, noting that α is γ1, the first symbol of π and that the stack
additional stack manipulations are determined by π, which is part of the state,
and α′, the top of the pushdown stack of A′.

Now, we consider the step counter in the third component of a state of A′.
The counter either increments by one for each input symbol that is read, or takes
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on the value ϕA(q, π) if it is smaller than the number of steps. Formally, for a
transition δ′((q, π, i), a, α) = ((q′, π′, j), β) of A′, we define j by

j = min(i + 1, ϕA(q′, π′)).

Finally, we consider transitions that were undefined in A. We define a chain
of k new states pi, 1 ≤ i ≤ k. For each pi and 1 ≤ i ≤ k − 1, reading any symbol
will transition to state pi+1 and there are no outgoing transitions from pk. If on
a state (q, π, j) with the top symbol of the pushdown stack α we ever read an
input symbol a such that the transition δ(q, a, α) is undefined, then based on the
step counter component j, the machine A′ enters the chain of k states at pj+1.

Now we show that a word w ∈ Σ∗ reaches a state (q, π, i) if and only if there
exists some word x ∈ L such that dp(w, x) = i if i ≤ k. First suppose that w
reaches (q, π, i). Then this means w reaches the state q on the original machine.
One of three cases is possible.

1. If i ≤ k and ϕA(q, π) = i, then there exists some suffix x′ of length i such
that wx′ ∈ L(A). This gives us dp(w, x) = dp(w,wx′) = |x′| = i.

2. If i ≤ k and ϕA(q, π) < i, then on some prefix p of w, the first case applied.
That is, for w = pw′, there exists a word x = px′ and dp(p, x) = |x′| = i−|w′|.
This implies that dp(w, x) = |x′| + |w′| = i.

3. If i > k, then i = k + 1 and neither of the two cases above apply. Then there
is no word x such that dp(w, x) ≤ k.

From the above, we observe that if w didn’t reach a state in the original DPDA
A, then, on some prefix p with w = pw′, reading p takes A′ to the state (q, π, i).
Then reading w′ takes the machine to a state p|w′|+i if i + |w′| ≤ k.

Since all states except for states of the form (q, π, k +1) are accepting states,
we have L(A′) = E(L(A), dp, k) and A′ has O(nk|Γ |k) states. ��

Recall from Proposition 15 that the relative prefix distance from a regular
language to a context-free language is undecidable. We get contrasting results
for DCFLs using the construction from Theorem 20 and the fact that DCFLs
are closed under complement.

Proposition 21. Let k ∈ N be fixed.

1. Given an NFA A and a DPDA P , it can be decided in polynomial time whether
or not dp(L(A)|L(P )) ≤ k.

2. Given a DFA B and a DPDA P , it can be decided in polynomial time whether
or not dp(L(B)|L(P )) ≤ k.

Now, we consider the class of visibly pushdown languages. The class of VPLs
is known to be a proper subclass of DCFLs. First, we show that the relative
prefix distance between a DCFL and VPL is undecidable.

Proposition 22. Let k ∈ N be fixed. Given a visibly pushdown automaton A
and a deterministic pushdown automaton P ,
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1. determining whether or not dp(L(A)|L(P )) ≤ k is undecidable.
2. determining whether or not dp(L(P )|L(A)) ≤ k is undecidable.

Unlike DCFLs, the VPLs are closed under typical language operations and the
standard questions involving VPLs are decidable. This will allow us to consider
the problem of deciding whether the prefix distance from a VPL to another VPL is
within k. First, we will show that the prefix neighbourhood of a VPL is also a VPL.

Theorem 23. Let L be a visibly pushdown language. Then E(L, dp, k) is a vis-
ibly pushdown language for all k ≥ 0.

Proof. Let A be a visibly pushdown automaton that recognizes L. We will modify
the construction of the prefix neighbourhood DPDA defined in the proof of
Theorem 20 to construct a VPA A′ that recognizes E(L, dp, k). To preserve the
visibly pushdown property, we must push and pop from the stack as dictated by
call and return symbols. This is only an issue when the stack of A has size less
than k. In the DCFL construction, we simply ignored the stack, but we cannot
do this for a VPA.

To solve this, we add a new symbol � to the stack alphabet. Let q ∈ Q,
a ∈ Σc, and let (q′, β) = δc(q, a). Consider the state (q, π, i) with π = γ1 · · · γ|π|
and |π| < k. On this transition, the VPA A must push β onto the stack. In the
VPA A′, we add β to the top of the stack in memory and push a dummy symbol
� onto the stack. Then our transition in A′ is δ′

c((q, π, i), a) = ((q′, βπ, j),�).
Now let a ∈ Σr be a return action and consider the transition δr(q, a, α) = q′

of A. The VPA A must pop α from the stack, but if |π| < k, the stack of
A′ contains only �s. Then the corresponding pop action on A′ is to pop a �
off of the stack, use γ1 to determine the transition, and remove γ1 from the
in-memory portion of the stack. Then our corresponding transition in A′ is
δ′
r((q, γ2 · · · γ|π|, i), a,�) = q′. Since a � is only pushed onto the stack when-

ever a call action is read and popped whenever a return action is read, we are
guaranteed to have exactly as many �s as there are symbols in the in-memory
portion of the stack.

Once the in-memory portion of the stack reaches k symbols, the VPA behaves
exactly like the DPDA that was constructed in Theorem 20 until the stack size
becomes less than k again. Furthermore, since the construction preserves the
determinism of the DCFL, if the VPA A is deterministic, then the VPA A′ that
is constructed via this process will also be deterministic. ��
Proposition 24. Let k ∈ N be fixed. For given VPAs A1 and A2, deciding
dp(L(A1)|L(A2)) ≤ k is EXPTIME-complete.
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Abstract. We present two related results on the prefix tree of all binary
cube-free words. First, we show that non-branching paths in this tree are
short: such a path from a node of nth level has length O(log n). Second,
we prove that the lower density of the set of branching points along
any infinite path is at least 23/78. Our results are based on a technical
theorem describing the mutual location of “almost cubes” in a cube-
free word.

Keywords: Cube-free word · Power-free word · Prefix tree

1 Introduction

Power-free words and languages are studied in lots of papers starting with the
seminal work by Thue [14], but the number of challenging open problems is still
quite big. One group of problems concerns the internal structure of power-free
languages. Such a language can be viewed as a poset with respect to prefix, suffix,
or factor order; by “internal structure” we mean the structure of these posets.
In the case of prefix or suffix order, the diagram of the poset is a tree; since
power-free languages are closed under reversal, these two trees are isomorphic.
Each node of a prefix tree generates a subtree and is a common prefix of its
descendants. In this paper, we study the prefix tree of the language of binary
cube-free words.

The structure of prefix trees of k-power-free languages is discussed in a series
of papers. For all these languages, the subtree generated by any word has at least
one leaf [1]. Further, it is always decidable whether a given word generates finite
or infinite subtree, and every infinite subtree branches infinitely often [2,3]. All
other results concern particular languages. Among these languages, the binary
overlap-free language has the simplest structure due to its slow (polynomial)
growth and immense connection to the Thue-Morse word. The finiteness prob-
lem for subtrees of the tree of binary overlap-free words was solved in [9] in a
constructive way (the general solution [3] is non-constructive), together with the
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proof of existence of arbitrarily large finite subtrees. Furthermore, it is decidable
(even in linear time!) whether the subtrees generated by two given words are
isomorphic [12].

For the tree of ternary square-free words it is known that (a) finite subtrees
of arbitrary depth can be built [7], (b) the share of branching points in an infinite
path is at least 2/9 [8], (c) if a node of depth n has a single descendant of depth
n + m, then m = O(log n) [8]. If we take the subtree consisting of all infinite
branches of the original tree, then the analog of (c) with the bound m = O(n2/3)
is known [10,11]. However, for the binary counterpart of this tree, namely, for the
tree of binary cube-free words, only the analog of (a) is known [6]. The aim of this
paper is to prove that the analogs of (b) (with the constant 23/78) and of (c) hold
for the prefix tree of binary cube-free words. Note that the property (b) shows
that both mentioned trees are reasonably “uniform” in terms of branching. The
exponential growth rate for the ternary square-free (binary cube-free) language
is ≈1.30176 (resp., ≈1.45758) [13], and this is the average number of children of
a node in the corresponding tree. The lower bound of 1 + 2/9 (resp., 1 + 23/78),
stemming from (b), is not very far from this average.

The paper follows the same general line as [8], but the study of cube-free
words requires different technique. In particular, the interaction between the
“almost cubic” factors in cube-free words (see Theorem 1) is much more compli-
cated than the interaction of “almost squares” in square-free words.

2 Preliminaries and Formulation of Main Results

We study words over the binary alphabet {a, b}. The empty word is denoted
by λ. Finite [infinite] words over an alphabet Σ are treated as functions w :
{1, . . . , n} → Σ [resp., w : N → Σ]. We write [i . . . j] for the range i, i+1, . . . , j
of positive integers and w[i . . . j] for the factor of the word w occupying this
range; w[i . . . i] = w[i] is just the ith letter of w. A word w has period p < |w|
if w[1 . . . |w|−p] = w[p+1 . . . |w|]. Two basic properties of periodic words (see,
eg., [5]) will be widely used.

Lemma 1 (Lyndon, Schutzenberger). If uv = vw �= λ, then there are
words x �= λ, y and an integer n such that u = xy,w = yx and v = (xy)nx.

Lemma 2 (Fine, Wilf). If a word u has periods p and q and |u| ≥ p+q−gcd
(p, q) then u has period gcd(p, q).

Standard notions of factor, prefix, and suffix are used. A cube is a nonempty
word of the form uuu. A word is cube-free if it has no cubes as factors; a cube
is minimal if it contains no other cubes as factors. A p-cube is a minimal cube
of period p.

The set of binary cube-free words is infinite and can be represented by the
prefix tree T , in which each cube-free word is a node, λ is the root, and any two
nodes w and wx are connected by a directed edge labeled by the letter x. By a
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subtree in T we mean a tree consisting of a node and all its descendants in T .
Branching point is a node with two children.

In a cube-free word w, we call a letter w[i] fixed by a p-cube if
w[i−3p+1 . . . i−1]y is a p-cube, where y is the letter distinct from w[i]. Note
that w[1 . . . i] in this case is the only child of the word w[1 . . . i−1] in the tree T .
A fixed context of w is any word v such that in the word wv each letter of v is
fixed by some cube.

Theorem 3. A fixed context of a binary cube-free word w has length O(log |w|).
Theorem 4. Let w be an infinite binary cube-free word and let b(n) be the
number of branching points in the path from the root to the vertex w[1 . . . n] in
the tree T . Then lim infn→∞

b(n)
n ≥ 23

78 .

3 Letters Fixed by Short Cubes

We call cubes with periods ≤ 8 short. Our first goal is to give an upper bound on
the number of letters in a cube-free word that are fixed by short cubes. Namely,
we will prove the following result.

Lemma 5. Suppose that t, l ≥ 1 are integers and w is a cube-free word such
that either |w| ≥ t+l or w is infinite. Then the range [t+1 . . . t+l] contains at
most 7l+24

13 positions in which the letters of w are fixed by short cubes.

Proof. The proof by hand would require a huge case analysis, so we used a com-
puter search instead. Consider the language L of all binary words containing
no cubes of period ≤ 8. It is regular, because is given by a finite set of forbid-
den factors; studying such “regular approximations” is a standard approach to
power-free languages (see, e.g., [13, Sect. 3]). A recognizing partial deterministic
automaton A for L can be built by a variation of the classical Aho-Corasick
algorithm. The automaton accepts by any state and rejects if it cannot read
the word. The situation when A reads u[1 . . . i−1] and cannot read u[i] means
exactly that u[1 . . . i] ends with a cube of period ≤ 8. Consider an accepting
walk in A for a cube-free word w. The letter w[i] is fixed by a short cube iff
the reading of w[1 . . . i−1] ends in a vertex of outdegree 1 (we call these vertices
fixed ; the absent edge corresponds to the cube).

Let d be the maximum share of fixed vertices in a simple cycle in A, c be
the maximum difference between the numbers of fixed and non-fixed vertices in
a simple path in A. If d ≥ 1/2, l ≥ c, then the range [t+1 . . . t+l] contains at
most c + d(l − c) positions in which the letters of w are fixed by short cubes.
Indeed, consider the walk corresponding to w[t+1 . . . t+l] when A reads w. This
walk can be viewed as a simple path of length k ≥ 0 with some cycles of total
length l −k attached to it; each cycle, in turn, is built from simple cycles. There
are at most k+c

2 fixed vertices in the path (the origin of the path corresponds to
w[t] and thus does not count), and at most d(l − k) such vertices in the cycles.
For d ≥ 1/2 we have k+c

2 + d(l − k) ≤ c + d(l − c), as desired. The exhaustive
search of simple cycles of A gives d = 7/13, c = 4. The lemma now follows.
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Remark 6. To find cycles, we used Johnson’s algorithm [4]. In our case it works
in O(|A|C) time, where C is the number of cycles. But this number depends
exponentially on the automaton’s size and the automaton’s size depends expo-
nentially on the length of the longest forbidden word. So while we processed A
in less than a minute, the same task for cubes of period ≤ 9 seems not feasible
for a personal computer.

4 Long Cubes

The following theorem describe the restrictions on the cubes of similar length
fixing closely located letters.

Theorem 7. Suppose that t, l ≥ 1, p, q ≥ 2 are integers, w is a word of length
t+l such that w[1 . . . t+l−1] is cube-free, the letter w[t] is fixed by a p-cube, and
w ends with a q-cube. Then q is outside the red zone in Fig. 1.

. . .

. . .
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(2p; p)

(5p; 2p)(4p; 2p)

(2p; 3p
2 ) ( 5p

2 ; 3p
2 )

( 5p
3 ; p)

Fig. 1. The restrictions on fixing letters in a cube-free word. If w[t] is fixed by a p-cube
and w[t + l] is fixed by a q-cube, then q (as a function of l with parameter p) must be
outside the red polygon, including red border lines and red points. (Color figure online)

Remark 8. The restrictions of Theorem 7 are sharp in the sense that for any
green point in Fig. 1 with rational coordinates one can find an instance word w
(with p and q big enough); these examples can be derived from the corresponding
constructions in the proof.

Proof. Let P = w[t − 3p + 1 . . . t − 2p] and P ′ = w[t − p + 1 . . . t]. Then
w[t − 3p + 1 . . . t] = PPP ′. W.l.o.g. let P end with a, then P ′ ends with b.
We denote the cube with period q at the end of w by v = QQQ.

There are four cases depending on the position of w where the word v begins
(see Fig. 2):
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I)

v

w
II)

v

w

III)

v

w
IV)

v

w

Fig. 2. Mutual location of factors w with period p and v with period q.

(I) 3q ≥ 3p + l;
(II) 2p + l ≤ 3q < 3p + l;

(III) p + l ≤ 3q < 2p + l;
(IV) 3q ≤ p + l.

The corresponding areas are indicated in Fig. 1, separated by the dotted lines
q = l/3 + p, q = l/3 + 2p/3, q = l/3 + p/3.

[I.] The word w[t − 3p + 1 . . . t−1] has periods p and q (or q ≥ 3p, which
agrees with Fig. 1). By Lemma 2 we obtain 3p − 1 < p + q − 1 and then q > 2p,
in agreement with Fig. 1.

[II.] Applying Lemma 2 in this case we obtain p < q (the word w[t − 2p +
1 . . . t− 1] has periods p and q: 2p− 1 < p+ q − 1). Let q < 2p. Then left Q ends
in P ′ and PPP ′ can be factorized as shown in Fig. 3, x, z �= λ. Both y and z are
prefixes of Q. If z is a prefix of y, then Q begins with zz; but left Q is preceeded
by z, so we obtain a cube zzz, a contradiction. Hence, ya is a prefix of z; let
z = yaz′. Further, z is also a prefix of yaxz. By Lemma 1 we can write yax =
fg, z = (fg)nf for some words f, g. If n ≥ 1 then Q begins with fgfgf and ends
with fg and we obtain a cube on the border of two Q’s, a contradiction. Hence,
z = f = yaz′, yax = fg, x = z′g and PPP ′ = z′gyaz′ya z′gyaz′ya z′gyaz′yb. We
get the following equalities:

p = 2|z′|+ 2|y|+ |g|+ 2,
q = 3|z′|+ 3|y|+ 2|g|+ 3,
l = 5|z′|+ 4|y|+ 4|g|+ 4.

Using these estimations of p, q, l we want to find

(a) α, β ≥ 0 such that q ≤ αp + βl for any |z′|, |y|, |g|;
(b) ᾱ, β̄ ≥ 0 such that q ≥ ᾱp + β̄l for any |z′|, |y|, |g|.

x x xz z zy y ya a b
P P

QQ

P ′

Fig. 3. The case 2p + l ≤ 3q < 3p + l, q < 2p
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For α, β, ᾱ, β̄ we have vector inequalities with the coordinates |z′|, |y| + 1, |g|:
⎛
⎝

3
3
2

⎞
⎠ ≤ α

⎛
⎝

2
2
1

⎞
⎠ + β

⎛
⎝

5
4
4

⎞
⎠ ;

⎛
⎝

3
3
2

⎞
⎠ ≥ ᾱ

⎛
⎝

2
2
1

⎞
⎠ + β̄

⎛
⎝

5
4
4

⎞
⎠

Then all pairs (α, β) and (ᾱ, β̄) are located in the first quadrant as in Fig. 4a.

1

3
4

3
5
1
2

2
3 ; 1

3

) 1, 1
4

)

1 3
2 2

ᾱ, β̄

α, β

a
l

p

3
2

1

1
2

3
5

1
2 ; 1

4

)

2
3 1

ᾱ, β̄

α, β

b
l

p

1
2

1

1
2

2
3

1
3 ; 1

3

) 1
2 ; 1

4

)

1
ᾱ, β̄

α, β

c
l

p

3
5
1
2 2

3 ; 1
3

)

1 3
2 2

ᾱ, β̄

α, β

d
l

p

Fig. 4. Solutions for inequalities q ≤ αp + βl , q ≥ ᾱp + β̄l.

Now we relate the bounds q ≤ αp+βl, q ≥ ᾱp+ β̄l to the inequalities 2p+l ≤
3q < 3p + l defining the area II. The strongest bounds are on the boundaries;
comparing them we have the best upper bound at the vertex (1, 0.25): q ≤ p+ l

4 .
The best lower bound is at the vertex (32 , 0): q ≥ 3

2p. Finally the permitted values
of q are inside the triangle with the sides q = 3p

2 (not reachable as |g| �= 0),
q = p + l

4 (reachable when |z′| = 0), and q = 2p
3 + l

3 (the area boundary); the
vertices are (2p; 3

2p), ( 52p; 3
2p), (4p, 2p), as in Fig. 1.

III. In this case q �= p, q �= p
2 since P �= P ′. If q < p

2 there are no restrictions.
III.1: q > l, and then q < p (also q > p

2 from above). Let QQQ start at ith
position of the middle P . Then P [i . . . p]P [1 . . . p − 1] is p- and q-periodic, so its
length is less than p + q − 1 be Lemma 2. Then |Q| > |P [i . . . p]| and left Q ends
in P ′; we denote parts of w as in Fig. 5. Since Q = xyaz = tx, Lemma 1 implies
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x = (fg)nf, t = fg, yaz = gf for some f, g. Since tQ = ttx is cube-free, n = 0. If
f is a prefix of g, then Q2 = fgffgf contains f3. Similarly, if g is a prefix of f ,
then tQ2 = fgfgffgf contains (fg)3. So f and g are not prefixes of each other.
Last Q = fgf begins with yb and in first Q, gf begins with ya, therefore, y is
the longest common prefix of f and g: f = ybf ′, g = yag′. Estimate p, q and l:

x xz zy yt ta b
P P

Q Q Q

P ′

Fig. 5. The case p + l ≤ 3q < 2p + l, q < p, q > l.

p = 3|f |+ 2|g| = 5(|y| + 1)|+ 3|f ′|+ 2|g′|,
q = 2|f |+ |g| = 3(|y| + 1)|+ 2|f ′|+ |g′|,
l = q− |yb| = 2(|y| + 1)|+ 2|f ′|+ |g′|.

We want upper [lower] bound for q in the form q ≤ αp + βl [resp., q ≥ ᾱp + β̄l],
valid for any values of |y|, |f ′|, |g′|. Then

⎛
⎝

3
2
1

⎞
⎠ ≤ α

⎛
⎝

5
3
2

⎞
⎠ + β

⎛
⎝

2
2
1

⎞
⎠ ;

⎛
⎝

3
2
1

⎞
⎠ ≥ ᾱ

⎛
⎝

5
3
2

⎞
⎠ + β̄

⎛
⎝

2
2
1

⎞
⎠

This means that all pairs (α, β) and (ᾱ, β̄) are located in the first quadrant as
in Fig. 4b. In the stripe p + l < 3q < 2p + l the best upper bounds are q ≤ 3l

2
(not reachable since |f ′| = |g′| = 0 implies that no letter can precede PPP ′),
q ≤ p

2 + l
4 (reachable if |g′| = 0); lower bounds q ≥ p

2 , q ≥ l (both not reachable).
This gives us a quadrangle with vertices (p3 ; p

2 ); (2p5 ; 3p
5 ); (2p3 ; 2p

3 ); (p2 ; p
2 ).

III.2: q ≤ l, q < p. As in III.1, the left Q ends in P ′ by Lemma 2. The parts
of w are denoted in Fig. 6. We use Lemma 1 for tx and its prefix x: t = fg, x =
(fg)nf for some f, g. Since ttx as a factor of PP , one has n = 0. Further,
Q = faz = fgfby; g = ag′, z = g′fby. Then PP ′ = g′fbyfagfa g′fbyfagfb,
Q = fag′fby. Estimate p, q and l:

p = 3(|f | + 1)|+ 2|g′|+ |y|,
q = 2(|f | + 1)|+ |g′|+ |y|,
l = 2(|f | + 1)|+ |g′|+ 2|y|.

x xz z yt ta b
P P

Q Q Q

P ′

Fig. 6. The case p + l ≤ 3q < 2p + l, q < p, q ≤ l.
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Using these equations, we find pairs (α, β), (ᾱ, β̄) from vector inequalities
⎛
⎝

2
1
1

⎞
⎠ ≤ α

⎛
⎝

3
2
1

⎞
⎠ + β

⎛
⎝

2
1
2

⎞
⎠ ;

⎛
⎝

2
1
1

⎞
⎠ ≥ ᾱ

⎛
⎝

3
2
1

⎞
⎠ + β̄

⎛
⎝

2
1
2

⎞
⎠

The solutions are given in Fig. 4c. Similar to III.1, the best bounds leave for q
a triangle with sides q = l; q = l

4 + p
2 ; q = l

3 + p
3 (all reachable) and vertices:

(p2 ; p
2 ); (2p3 ; 2p

3 ); (2p; p). Together with the quadrangle from case III.1, we get the
quadrangle with the vertices (p3 ; p

2 ); (p2 ; p
2 ); (2p; p); (2p5 ; 3p

5 ) from Fig. 1.
III.3: q ≤ l, q > p. Similar to the previous cases, we denote the parts of w

(Fig. 7), write t = fg, x = fgf by Lemma 1 and then Q = fgfazt = fby, g =
bg′, PP ′ = zfbg′fa zfbg′fb, Q = fbg′fazt. We find p, q, l and get vector
inequalities:

x xz z yt ta b
P P

Q Q

P ′

Fig. 7. The case p + l ≤ 3q < 2p + l, q > p, q ≤ l.

p = 2(|f | + 1)|+ |g′|+ |z|,
q = 3(|f | + 1)|+ 2|g′|+ |z|,
l = 5(|f | + 1)|+ 4|g′|+ 2|z|;

⎛
⎝

3
2
1

⎞
⎠ ≤ α

⎛
⎝

2
1
1

⎞
⎠ + β

⎛
⎝

5
4
2

⎞
⎠ ;

⎛
⎝

3
2
1

⎞
⎠ ≥ ᾱ

⎛
⎝

2
1
1

⎞
⎠ + β̄

⎛
⎝

5
4
2

⎞
⎠ .

The solutions are given in Fig. 4d. The best upper and lower bounds give a
quadrangle with sides q = p; q = 3l

5 q = l
2 (all non-reachable); q = l

3 + 2p
3

(reachable with |g′| = 0), and vertices (5p3 ; p); (2p; p); (4p; 2p); (5p2 ; 3p
2 ) and sides.

This quadrangle is in Fig. 1 next to the triangle from Case II.
Thus we identified all “green” (and thus “red”) parts of the areas I, II, III,

getting the full picture from Fig. 1. (In area IV, the intersection of w and v is
too small to impose a restriction.) Theorem 7 is proved. ��

Our aim is to find, using Theorem7, the upper bound on the share of positions
in which the letters of a cube-free word w are fixed by cubes with “close” periods.

Lemma 9. Suppose that t, l ≥ 1, p ≥ 2 are integers, and w is a cube-free
word such that either |w| ≥ t + l or w is infinite. Then the range [t + 1 . . . t+ l]
contains less than 3

2 + 3l
4p positions in which the letters of w are fixed by cubes

with periods in the range [p . . . 2p − 1].
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Remark 10. The bound in Lemma 9 is not optimal; in fact, an asymptotically
optimal ratio is 2l

3p , not 3l
4p . This ratio can be attained by using the periods p

and 	 3p
2 
 + 1 interchangeably. But the proof we know for this better bound is

tedious. Since this bound does not affect Theorem 3 and very slightly improve
the constant in Theorem 4, we do not give the proof here.

Proof. Our aim is to place points into the horizontal stripe bounded by the lines
q = p and q = 2p − 1 (cf. Fig. 1; 0 on the l-axis corresponds to t+1) to achieve
the maximum density of their l-coordinates (as the limit of the number of such
coordinates in [0 . . . n] as n → ∞). The points are ordered by their l-coordinate.
The location of points is subject to the restriction that each point is outside the
red polygons of all previous points; the set of points satisfying this restriction
is called valid. Since we are interested in the upper bound, we allow non-integer
coordinates of points. First note that for any point (l̄, q̄) the next point in a valid
set is strictly to the right of the line q = 3

2 (l − l̄) (the shortest red line segment
in Fig. 1 belongs to this line). So for this next point we have l − l̄ > 2

3q ≥ 2
3p.

Next we release the restrictions, replacing the red polygon in Fig. 1 with a
smaller quadrangle with the borders q = 3

8 l+ 1
2p, q = 3

4 l (these two lines intersect
at the point (43p, p)), q = 2p and l = 0; see Fig. 8, the borders are excluded.
Clearly, since the restricted area became smaller, we can place points with either
the same or bigger density; in particular, all valid sets will remain valid. The
intersection of such a quadrangle built for the point (l̄, q̄) with the stripe p ≤

. . .

0 �

q

p 2p 3p

p
2

p

2p

( 4
3p, p)

Fig. 8. The released restrictions on fixing letters in a cube-free word. Borders are
excluded from restrictions.
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q ≤ 2p − 1 is called below the (l̄, q̄)-polygon. We call two slanted segments of the
boundary of the polygon the lower and upper segments, respectively.

Claim. Let (l1, q1), (l2, q2) be two points in a valid set, l2 > l1. Then both
slanted segments of the (l2, q2)-polygon are on the right of the corresponding
segments of the (l1, q1)-polygon.

Proof. The upper segments are given by the equations q = 3
4 (l−l1) and q = 3

4 (l−
l2), respectively. Since l2 > l1, the latter segment is of the right of the former one.
For the lower segments note that the point (l′, p) on the line q = 3

8 (l − l1) + 1
2q1

satisfies l′ ≤ l2, while the point (l′′, p) on the line q = 3
8 (l − l2) + 1

2q2 satisfies
l′′ > l2. ��

Let S = {(l0, q0), . . . , (ls, qs)} be a set of points from our stripe, l0 < · · · < ls.
We call S semi-valid if each (li, q) is outside all (lj , qj)-polygons with j < i. Claim
implies a nice property: S is semi-valid iff each (li, q) is outside the (li−1, qi−1)-
polygon.

We will modify a semi-valid schedule S to estimate ls − l0. First we replace
(ls, qs) with (ls, p). This “move down” obviously keeps the point outside the
previous polygon. Then consider three successive points (l′, q′), (l′′, q′′), (l̂, p) in
a semi-valid set.

Note that l̂ − l′′ ≥ 8
3 (p − q′′

2 ). Further, l′′ − l′ ≥ 8
3 (q′′ − q′

2 ) if l′′ ≤ l′ and
l′′ − l′ ≥ 4

3q′′ otherwise. In both cases we can replace (l′′, q′′) with the point
(l̃, p), where l̃ = l′ + 8

3 (p − q′

2 ), getting a semi-valid set again. Indeed, in both
cases (l̃, p) is on the border of the (l′, q′)-polygon (so l̃ ≤ l′′), and the difference
l̂ − l̃ is at least 4

3p.
Now we proceed as follows: we replace all points in S, right to left, except

for (l0, s0), by the points with the q-coordinate p. The difference between the l-
coordinates of successive points is at least 4

3p. Thus, ls−l0 ≥ 4
3 (s−1)p+(l∗ −l0),

where l∗ is the coordinate of the point replacing l1. In addition we know that in
a valid set the l-coordinates of successive points differ by at least 2

3p. Gathering
these results, we obtain

4
3
p(s − 1) +

2
3
p + 1 ≤ l,

implying s+1 < l−2p/3
4p/3 . The result now follows. ��

Proof (of Theorem3). Let v be a fixed context of w, |w| = n, |v| = l. Thus, the
cube-free word wv ends with l fixed letters. By Lemma 5, at most 7l+24

13 of these
positions are fixed by short cubes (with periods ≤ 8). We partition the range
[9 . . . 	n+l

3 
] of all possible longer periods into ranges of the form [p . . . 2p−1]
starting from the left (the last range can be incomplete). The number of ranges
is the minimal number k such that 2k · 9 − 1 ≥ 	n+l

3 
, i.e., k = �log 1
9	n+l+3

3 
.
By Lemma 9, the periods from the ith smallest range fix less than 3

2 + 3l
9·2i+1

positions. Since the total number of fixed positions is l, we have

l ≤ 7l

13
+

24
13

+
3
2
k +

3l

36

(1 − 1/2k

1 − 1/2

)
=

55l

78
+

24
13

+
3
2
k − l

6 · 2k
. (1)
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Observing that k ≤ �log n+l+3
27 , 2k < n+l+3

27 , we get from (1)

23l

78
<

3
2

⌈
log

n+l+3
27

⌉
+

24
13

− 9l

2(n+l+3)
,

and thus
l <

117
23

⌈
log

n+l+3
27

⌉
+

144
23

− 351l

23(n+l+3)
. (2)

If l ≥ n − 2, then (2) implies l < 117
23 �log 2l+5

27 + 144
23 − 351l

46l+115 , but this inequality
clearly has no positive integer solutions. Therefore l ≤ n − 3 for any n, and we
have, from (2),

l <
117
23

⌈
log

2n

27

⌉
+

144
23

<
117
23

log
n

27/4
+

144
23

<
117
23

log n − 7

whence the result. ��
Proof (of Theorem4). Assume to the contrary that lim infn→∞

b(n)
n < 23

78 . Then
there exist α < 23

78 , {li}∞
1 such that b(li) ≤ αli. Consider the (λ,w[1 . . . li])-path.

The letters in it are partitioned in three sets: fixed by short cubes, fixed by long
cubes, and not fixed. Lemmas 5 and 9 and our assumption give upper bounds
for the numbers of letters in each part. Similar to (1), (2), we get the following
formula (recall that now we have n = 0):

li <
7li + 24

13
+

3
2

⌈
log

li + 3
27

⌉
+

li
6

− 9li
2(li + 3)

+ αli.

Then
(
23
78 − α

)
li < 3

2 log li − O(1). This inequality should hold for any li,
but it has only finitely many integer solutions. This contradiction proves the
theorem. ��
Remark 11. The increase of the upper bound on the periods of short cubes leads
to better bounds in Theorem4. For example, if we replace the maximum period
8, used in Lemma 5, with 7 we get 57

208 ≈ 0.274 instead of 23
78 ≈ 0.295.

5 Conclusion

This paper evens out the knowledge on the prefix trees of binary cube-free and
ternary square-free words. The trees appear to have similar structure, which is
not surprising since these languages have lot in common (in contrast with the
language and the prefix tree of binary overlap-free words). The natural next
steps in the study of these two trees are the answers to the following questions
related to Theorem 3:

(1) is it true that every finite subtree in these trees has size O(log n), where n
is the depth of its root?

(2) is it true that the same logarithmic upper bound works for the distance
between branching nodes in the subtree consisting of all infinite branches of
the original prefix tree?
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Abstract. Limited automata are one-tape Turing machines that are
allowed to rewrite the content of any tape cell only in the first d visits,
for a fixed constant d. When d = 1 these models characterize regular
languages. An exponential gap between the size of limited automata
accepting unary languages and the size of equivalent finite automata
is proved. Since a similar gap was already known from unary context-
free grammars to finite automata, also the conversion of such grammars
into limited automata is investigated. It is proved that from each unary
context-free grammar it is possible to obtain an equivalent 1-limited
automaton whose description has a size which is polynomial in the size
of the grammar. Furthermore, despite the exponential gap between the
sizes of limited automata and of equivalent unary finite automata, there
are unary regular languages for which d-limited automata cannot be
significantly smaller than equivalent finite automata, for any arbitrar-
ily large d.

1 Introduction

The investigation of computational models and of their computational power
is a classical topic in computer science. For instance, characterizations of the
classes in the Chomsky hierarchy by different types of computational devices are
well-known. In particular, the class of context-free languages is characterized in
terms of pushwdown automata. A less known characterization of this class has
been obtained in 1967 by Hibbard, in terms of Turing machines with rewriting
restrictions, called limited automata [2]. For each integer d ≥ 0, a d-limited
automaton is a one-tape Turing machine which can rewrite the content of each
tape cell only in the first d visits. For each d ≥ 2, the class of languages accepted
by these devices coincides with the class of context-free languages, while for d = 1
only regular languages are accepted [2,14].

More recently, limited automata have been investigated from the descrip-
tional complexity point of view, by studying the relationships between the sizes
of their descriptions and those of other equivalent formal systems. In [11], it has
been proved that each 1-limited automaton M with n states can be simulated by
a one-way deterministic automaton with a number of states double exponential
in a polynomial in n. The upper bound reduces to a single exponential when M
is deterministic. Furthermore, these bounds are optimal, namely, they cannot
be reduced in the worst case. In [12], it has been shown how to transform each

c© Springer International Publishing AG 2017
É. Charlier et al. (Eds.): DLT 2017, LNCS 10396, pp. 308–319, 2017.
DOI: 10.1007/978-3-319-62809-7 23
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given 2-limited automaton M into an equivalent pushdown automaton, having
a description of exponential size with respect to the description of M . Even for
this simulation, the cost cannot be reduced in the worst case. On the other hand,
the converse simulation is polynomial in size. In [4], it is proved that the cost of
the simulation of d-limited automata by pushdown automata remains exponen-
tial even when d > 2. A subclass of 2-limited automata, which still characterizes
context-free languages but whose members are polynomially related in size with
pushdown automata, has been investigated in [10].

In all above mentioned results, lower bounds have been obtained by providing
witness languages defined over a binary alphabet. In the unary case, namely in
the case of languages defined over a one-letter alphabet, it is an open question if
these bounds remain valid. It is suitable to point out that in the unary case the
classes of regular and context-free languages collapse [1] and, hence, d-limited
automata are equivalent to finite automata for each d > 0. The existence of unary
1-limited automata which require a quadratic number of states to be simulated
by two-way nondeterministic finite automata has been proved in [11], while in [12]
it has been shown that the set of unary strings of length multiple of 2n, can be
recognized by a 2-limited automaton of size O(n), for any fixed n > 0. On the
other hand, each (even two-way nondeterministic) finite automaton requires a
number of states exponential in n to accept the same language. The investigation
of the size of unary limited automata has been deepened in [5], where the authors
stated several bounds for the costs of the simulations of different variants of unary
limited automata by different variants of finite automata. Among these results,
they proved the existence of languages accepted by 4n-states 1-limited automata
which require n ·e

√
n lnn states to be accepted by two-way nondeterministic finite

automata.
In this paper we improve these results, by obtaining an exponential gap

between unary 1-limited automata and finite automata. We show that for
each n > 1 the singleton language {a2n} can be recognized by a deterministic
1-limited automaton having 2n + 1 many states and a description of size O(n).
Since the same language requires 2n +1 states to be accepted by a one-way non-
deterministic automaton, it turns out that the state gap between deterministic
1-limited automata and one-way nondeterministic automata in the unary case is
the same as in the binary case. We will also observe that the gap does not reduce
if we want to convert unary deterministic 1-limited automata into two-way non-
deterministic automata. However, when converting finite automata into limited
automata, a size reduction corresponding to such a gap is not always achievable,
even if we convert a unary finite automaton into a nondeterministic d-limited
automaton for any arbitrarily large d.

In the second part of the paper, we consider unary context-free grammars.
The cost of the conversion of these grammars into finite automata has been
investigated in [9] by proving exponential gaps. Here, we study the conversion
of unary context-free grammars into limited automata. With the help of a result
presented in [8], we prove that each unary context-free grammar G can be con-
verted into an equivalent 1-limited automaton whose description has a size which
is polynomial in the size of G.
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2 Preliminaries

In this section we recall some basic definitions useful in the paper. Given a
set S, #S denotes its cardinality and 2S the family of all its subsets. Given an
alphabet Σ and a string w ∈ Σ∗, let us denote by |w| the length of w and by ε
the empty string.

We assume the reader familiar with notions from formal languages and
automata theory, in particular with the fundamental variants of finite automata
(1-dfas, 1-nfas, 2-dfas, 2-nfas, for short, where 1/2 mean one-way/two-way
and d/n mean deterministic/nondeterministic, respectively) and with context-
free grammars (cfgs, for short). For further details see, e.g., [3].

Given an integer d ≥ 0, a d-limited automaton (d-la, for short) is a tuple
A = (Q,Σ, Γ, δ, qI , F ), where Q is a finite set of states, Σ is a finite input
alphabet, Γ is a finite working alphabet such that Σ ∪ {�,�} ⊆ Γ , �, � /∈ Σ
are two special symbols, called the left and the right end-markers, δ : Q ×
Γ → 2Q×(Γ\{�,�})×{−1,+1} is the transition function. At the beginning of the
computation, the input is stored onto the tape surrounded by the two end-
markers, the left end-marker being at the position zero. Hence, on input w, the
right end-marker is on the cell in position |w| + 1. The head of the automaton
is on cell 1 and the state of the finite control is the initial state qI . In one move,
according to δ and to the current state, A reads a symbol from the tape, changes
its state, replaces the symbol just read from the tape by a new symbol, and moves
its head to one position forward or backward. In particular, (q,X,m) ∈ δ(p, a)
means that when the automaton in the state p is scanning a cell containing the
symbol a, it can enter the state q, rewrite the cell content by X, and move the
head to left, if m = −1, or to right, if m = +1. Furthermore, the head cannot
violate the end-markers, except at the end of computation, to accept the input,
as explained below. However, replacing symbols is allowed to modify the content
of each cell only during the first d visits, with the exception of the cells containing
the end-markers, which are never modified. For technical details see [12].

An automaton A is said to be limited if it is d-limited for some d ≥ 0.
A accepts an input w if and only if there is a computation path which starts
from the initial state qI with the input tape containing w surrounded by the
two end-markers and the head on the first input cell, and which ends in a final
state q ∈ F after violating the right end-marker. The language accepted by A
is denoted by L(A). A is said to be deterministic (d-dla, for short) whenever
#δ(q, σ) ≤ 1, for any q ∈ Q and σ ∈ Γ .

In this paper we are interested to compare the size of the description of
devices and formal systems. As customary, to measure the size of a finite automa-
ton we consider the cardinality of the state set. For a context-free grammar we
count the total number of symbols which are used to write down its productions.

For d-limited automata, the size depends on the number q of states and on
the cardinality m of the working alphabet. In fact, given these two parameters,
the possible number of transitions is bounded by 2q2m2. Hence, if q and m
are polynomial with respect to given parameters, also the size of the d-la is
polynomial.
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The costs of the simulations of 1-la by finite automata have been investigated
in [11], proving the following result:

Theorem 1. Let M be an n-state 1-la. Then M can be simulated by a 1nfa

with n · 2n2
states and by a 1dfa with 2n·2n2

states. Furthermore, if M is deter-
ministic then an equivalent 1dfa with no more than n · (n + 1)n states can be
obtained.

Using witness languages over a binary alphabet, it has been shown that
the exponential gaps and the double exponential gap in Theorem1 cannot be
reduced [11].

3 On the Size of Unary Limited Automata

In this section we compare the sizes of unary limited automata with the sizes of
equivalent finite automata. Our main result is that unary 1-las can be exponen-
tially more succinct than finite automata even while comparing unary determin-
istic 1-las with two-way nondeterministic automata. However, there are unary
regular languages that do not have any d-limited automaton which is signifi-
cantly more succinct than finite automata, even for arbitrarily large d.

Let us start by showing that, for each n > 1, the language Ln = {a2n}, which
requires 2n + 1 states to be accepted by a 1-nfa, can be accepted by a 1-dla of
size O(n). Let us proceed by steps. In order to illustrate the construction, first it
is useful to discuss how Ln can be accepted by a linear bounded automaton Mn

(i.e., a Turing machine that can use as storage the tape which initially contains
the input, by rewriting its cells an unbounded number of times).

Mn works in the following way:

i. Starting from the first input symbol, Mn scans the input tape from left to
right by counting the as until the right end-marker is reached. Each odd-
counted a is overwritten by X. A counter modulo 2 is enough to implement
this step.

ii. The previous step is repeated n times, after moving backward the head until
reaching the left end-marker. If in one of the first n−1 iterations Mn discovers
that the number of as at the end of the iterations was odd, then Mn rejects.
After the last iteration, Mn accepts if only one a is left on the tape.

It is possible to modify Mn, without any increasing of the number of the states,
introducing a different kind of writing at step i.: at the first iteration, the machine
uses the symbol 0 instead of X for rewriting, at the second one it uses the
symbol 1, and so on. During the last check, the symbol n is written on the
last cell of the input tape if it contains an a. If the original input is completely
overwritten, then the automaton accepts. For example, in the case n = 4, at the
end of computation, the content of the input tape will be 0102010301020104.

Considering the last extension of Mn, we are now going to introduce a
1-la Nn, accepting the language Ln, based on the guessing of the final tape
content of Mn.
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In the first phase, Nn scans the input tape, replacing each a with a nonde-
terministically chosen symbol in {0, . . . , n}. This requires one state. Next, the
machine, after moving backward the head to the left end-marker, makes a scan
from left to right for each i = 0, . . . , n− 1, where it checks if the symbol i occurs
in all odd positions, where positions are counted ignoring the cells containing
numbers less than i. This control phase needs three states for each value of i:
one for moving backward the head and two for counting modulo 2 the positions
containing symbols greater or equal to i. Finally, the automaton checks if only
the last input cell contains a n (two states), in such case the input is accepted.
The total number of states of Nn is 3(n + 1), that, even in this case, is linear in
the parameter n. This gives us a 1-la of size O(n) accepting Ln.

We are now going to prove that we can do better. In fact, we will show
that switching to the deterministic case for the limited automata model, the size
of the resulting device does not increase. Actually, we will slightly reduce the
number of states, while using the same working alphabet.

Let us observe that the final tape content of Mn and of Nn, if the input is
accepted, corresponds to the first 2n elements of the binary carry sequence [13]
defined as follows:

– The first two elements of the sequence are 0 and 1.
– The next elements of the sequence are recursively obtained concatenating the

just constructed sequence to a copy of itself and by replacing the last element
by its successor.

For example, from 01, concatenating itself and adding 1 to the last element of
the obtained sequence, we get 0102, from which, iterating the last procedure it
is possible to obtain 01020103, and so on.

Remark 2. Each symbol 0 ≤ i < n of the binary carry sequence occurs 2n−i−1

times, starting in position 2i and at distance 2i+1, i.e., it occurs in positions
2i(2j − 1), for j = 1, . . . , 2n−i−1. Instead, the symbol i = n occurs in posi-
tion 2n only.

Remark 2 is a direct consequence of the recursive definition of the sequence.
Consider, as an example, the sequence x = 01020103: reading x from left to
the right, the symbol 0 appears for the first time in position 20 and then in
positions 3, 5, 7; 1 in positions 2, 6; 2 in position 4; and, finally, 3 in position 8.

We will show that this sequence can be generated by a 1-dla and written on
its tape, without counting large indices as 2i.

To this aim, we introduce the function BIS, that associates with a given
sequence of integers s = σ1σ2 · · · σj , its backward increasing sequence, namely
the longest strictly increasing sequence obtained taking the elements of s start-
ing from the end, and using the greedy method. Formally, BIS(σ1σ2 · · · σj) =
(i1, i2, . . . , ir), j, r > 0, if and only if i1 = σh1 , i2 = σh2 , . . . , in = σhr

where h1 = j, ht = max{h′ < ht−1 | σh′ > σht−1} for t = 2, . . . , r, and σh′ < σhr

for 0 < h′ < hr.
For example, for j = 11, BIS(01020103010) = (0, 1, 3). Notice that in the

binary representation of j, namely 1011, the bits set to 1 occur, respectively,
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in position 0, 1, and 3. This fact is true for each j, as proved in the following
lemma, i.e., the value of BIS, applied to the first j elements of the binary carry
sequence, are the positions of bits equal to 1 in the binary representation of j,
from the less significative bit.

Lemma 3. Let σ1σ2 · · · σj be the first j elements of the binary carry sequence,
j > 0. If BIS(σ1σ2 · · · σj) = (i1, i2, . . . , ir) then j =

∑r
t=1 2it .

Proof. Considering the recursive definition of the binary carry sequence, we can
proceed by induction on j, where the basis j = 1, 2 is trivial from the definition.

– If j is a power of 2, namely j = 2k, for some k ≥ 0, then, considering
Remark 2 with n = k, k is the maximum number in the sequence and it
occurs in position j only. So, BIS(σ1σ2 · · · σj) = (k).

– If j is not a power of 2, namely 2k < j < 2k+1, j = 2k + j′ for some k >
0, 0 < j′ < 2k, then, by construction, k is the maximum number which
occurs in the sequence, and the elements σ2k+1 · · · σj are equal to the first j′

elements σ1σ2 · · · σj′ . So, BIS(σ1σ2 · · · σj) is obtained by appending k at the
end of BIS(σ1σ2 · · · σj′).
Let BIS(σ1σ2 · · · σj′) = (i1, . . . , ir′), r′ = r − 1. Then BIS(σ1σ2 · · · σj) =
(i1, . . . , ir′ , ir), ir = k. Furthermore, by induction hypothesis, j′ =

∑r′

t=1 2it .
Then j = 2k + j′ = 2k +

∑r′

t=1 2it =
∑r

t=1 2it . �	
We are going to define a 1-dla An = (Q,Σ, Γ, δ, q1, F ) accepting the lan-
guage Ln. The automaton An works by replacing the content of cell i, in the
first visit, by the symbol σi of the binary carry sequence.

Remark 4. Given the first i−1 elements of the binary carry sequence σ1σ2· · ·σi−1,
it is possible to deterministically determine the next element σi only looking at
the previous elements of the sequence. In particular, σi has to be determined so
that BIS(σ1σ2 · · · σi) is the positions of bits equal to 1 in the binary representation
of i. This can be obtained computing from the binary representation of i − 1 the
representation of i. Hence, σi is the smallest integer greater than or equal to 0 not
occurring in BIS(σ1σ2 · · · σi−1).

The automaton An implements the procedure summarized in Algorithm1 —
note that, for ease of presentation, the algorithm assumes that the machine starts
the computation with the head on the left end-marker — and it is defined as
follows: Q = {qI , qF , q1, . . . , qn, p1, . . . , pn−1}, Σ = {a}, Γ = {0, . . . , n}, qI is the
initial state and qF is the unique final one. The transitions in δ are defined as
follows (the remaining transitions are undefined):

i. δ(qI , a) = (p1, 0,−1)
ii. δ(pi, σ) = (pi, σ,−1), for i = 2, . . . , n − 1 and σ < i − 1
iii. δ(pi, i) = (pi+1, i,−1), for i = 1, . . . , n − 2
iv. δ(pi, σ) = (qi, σ,+1), for i = 1, . . . , n − 1 and (σ > i or σ = �)
v. δ(pn−1, n − 1) = (qn, n − 1,+1)
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Algorithm 1. Recognition of the language Ln

1 start with the head on the left end-marker
2 while symbol under the head �= n do
3 move the head to the right
4 write 0
5 j ← 0
6 repeat
7 while symbol under the head ≤ j and �= � do
8 move the head to the left

9 j ← j + 1

10 until symbol under the head �= j
11 repeat
12 move the head to the right

13 until symbol under the head = a
14 write j

15 move the head to the right
16 if symbol under the head = � then Accept
17 else Reject

vi. δ(qi, σ) = (qi, σ,+1), for i = 1, . . . , n and σ < i
vii. δ(qi, a) = (qI , i,+1), for i = 1, . . . , n − 1
viii. δ(qn, a) = (qF , n,+1)
ix. δ(qF ,�) = (qF ,�,+1)

We finally observe that An has 2n + 1 states, which is linear in the parame-
ter n.

The machine starts in the initial state qI . Since each symbol σ 
= 0 is preceded
by 0 (a 0 occurs in each odd position), the automaton moves the head to the
right and writes a 0 before of each symbol in Γ\{0} (transition i. – lines 3
and 4). Everytime the head is in a odd position p, the automaton has to look
backward for the minimum integer j such that j is not in BIS(σ1, . . . , σp). This
is done with transitions from ii. to v. – lines from 6 to 10. After that, An moves
its head to the right until the first a is reached (transitions vi. – lines from 11
to 13) and writes the symbol j (transitions vii. – line 14). This is repeated until
the symbol n is written on the input tape. At this point is sufficient to verify
if the next symbol on the input tape is the right end-marker: in this case, the
automaton accepts (transitions viii. and ix. – lines from 15 to 17).

Hence we conclude that the language Ln is accepted by a 1-dla with O(n)
many states, while it is an easy observation that each 1nfa accepting it
requires 2n + 1 states. We can even obtain a stronger result by proving that
between unary 1-dlas and 2nfas, there is the same gap. This gives the main
result of this section:
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Theorem 5. For each integer n > 1 there exists a unary language Kn such
that Kn is accepted by a deterministic 1-la with O(n) states and a working
alphabet of size O(n) while each 2nfa accepting it requires 2n states.

Proof (outline). With some minor changes, the above presented automaton An

can accept Kn = {a2n}∗. From Theorem 9 in [7], each 2nfa requires at least 2n

many states to accept the same language. �	
We conclude this section, by proving that the exponential gap between unary

limited automata and finite automata is not always achievable.

Theorem 6. There exist constants c, n0 such that for all integers n ≥ n0 there
exists a unary 1dfa accepting a finite language L with at most n states, such
that for any d-la accepting L with d > 0, q states, and a working alphabet of m
symbols, it holds that qm ≥ cn1/2.

Proof. There are 2O(q2m2) different limited automata such that the cardinal-
ities of the set of states and of the working alphabet are bounded by q
and m, respectively. On the other hand, the number of different subsets
of {a0, a1, . . . , an−1} is 2n. Hence kq2m2 ≥ n for a constant k > 0 and each
sufficiently large n, which implies qm ≥ cn1/2, where c = 1/k1/2. Note that each
subset of {a0, a1, . . . , an−1} is accepted by a (possibly incomplete) 1dfa with at
most n states. �	

Notice that the result in Theorem6 does not depend on d, i.e., the lower
bound holds even taking an arbitrarily large d. In the case d = 1, the argument
in the proof can be refined to show that qm1/2 ≥ cn1/2.

4 Unary Grammars Versus Limited Automata

In Sect. 3 we proved an exponential gap between unary 1-las and finite
automata. A similar gap was obtained between unary cfgs and finite
automata [9]. Hence, it is natural to study the size relationships between unary
cfgs and 1-las. Here, we prove that each context-free grammar specifying a
unary language can be converted into an equivalent 1-la which has a set of
states and a working alphabet whose sizes are polynomial with respect to the
description of the grammar.

Let us start by presenting some notions and preliminary results useful to
reach our goal.

Definition 7. A bracket alphabet Ωb is a finite set containing an even number
of symbols, say 2k, with k > 0, where the first k symbols are interpreted as left
brackets of k different types, while the remaining symbols are interpreted as the
corresponding right brackets. The Dyck language DΩb

over Ωb is the set of all
sequences of balanced brackets from Ωb.

An extended bracket alphabet Ω is a nonempty finite set which is the union
of two, possibly empty, sets Ωb and Ωn, where Ωb, if not empty, is a bracket
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alphabet, and Ωn is a set of neutral symbols. The extended Dyck language D̂Ω

over Ω is the set of all the strings that can be obtained by arbitrarily inserting
symbols from Ωn in strings of DΩb

. Given an integer d > 0, the extended Dyck
language with nesting depth bounded by d over Ω, denoted as D̂

(d)
Ω is the subset

of D̂Ω consisting of all strings where the nesting depth of brackets is at most d.

Example 8. Let Ωb = { ( , [ , ) , ] }, Ωn = { | }, and Ω = Ωb ∪ Ωn.
Then ( [ [ ] ] ) [ ] ∈ DΩb

⊂ D̂Ω , | ( | [ [ ] | ] ) [ | ] ∈ D̂
(3)
Ω \D̂

(2)
Ω .

It is well-known that Dyck languages, and so extended Dyck languages, are
context-free and nonregular. However, the subset obtained by bounding the nest-
ing depth by each fixed constant is regular. We are interested in the recognition
of such languages by “small” two-way automata:

Lemma 9. Given an extended bracket alphabet with k types of brackets and an
integer d > 0, the language D̂

(d)
Ω can be recognized by a 2dfa with O(k ·d) many

states.

Proof. We can define a 1-dfa M which verifies the membership of its input w

to D̂
(d)
Ω by making use of a counter c. In a first scan M checks whether or

not the brackets are correctly nested, regardless their types. This is done as
follows. Starting with 0 in c, M scans the input from left to right, incrementing
the counter for each left bracket and decrementing it for each right bracket. If
during this process the counter exceeds d or becomes negative then M rejects.
M also rejects if at the end of this scan the value which is stored in the counter
is positive.

In the remaining part of the computation, M verifies that the corresponding
left and right brackets are of the same type. To this aim, starting from the left
end-marker, M moves its head to the right, to locate a left bracket. Then, it
moves to the right to locate the corresponding right bracket in order to check
if they are of the same type. To this aim, M uses the counter c, which initially
contains 0 and increments or decrements it for each left or right bracket to the
right of the one under consideration. When a cell containing a right bracket is
reached with 0 in c, M checks if it is matching with the left bracket. If this is not
the case, then M stops and rejects. Otherwise, M should move back its head to
the matched left bracket in order to continue the inspection. This can be done
by moving the head to the left and incrementing or decrementing the counter
for each right or left bracket, respectively, up to reach a cell containing a left
bracket when 0 is in c.

This process is stopped when the right end-marker is reached and all pairs
of brackets have been inspected. Notice that neutral symbols are completely
ignored.

In its finite control, M keeps the counter c, that can assume d + 1 different
values, and remembers the type of the left bracket, to verify the matching with
the corresponding right bracket and then to move back the head to the left
bracket. This gives O(k · d) many states. �	
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The following nonerasing variant of the Chomsky-Schützenberger represen-
tation theorem for context-free languages, proved by Okhotin [8], is crucial to
obtain our main result:

Theorem 10. A language L ⊆ Σ∗ is context-free if and only if there exist an
extended bracket alphabet ΩL, a regular language RL ⊆ Ω∗

L and a letter-to-letter
homomorphism h : ΩL → Σ such that L = h(D̂ΩL

∩ RL).

In [10], it was observed that the language RL of Theorem 10 is local1 and
the size of the alphabet Ω is polynomial with respect to the size of a context-
free grammar G generating L. This was used to prove that each context-free
grammar G can be transformed into an equivalent strongly limited automaton
(a special kind of 2-la) whose description has polynomial size with respect to
the description of G. In the following, when L is specified by a context-free
grammar G, i.e., L = L(G), we will write ΩG and RG instead of ΩL and RL,
respectively.

Our goal, here, is to build 1-las of polynomial size from unary context-free
grammars. To this aim, using the fact that factors in unary strings commute,
by adapting the argument used to obtain Theorem10, we prove the following
result:

Theorem 11. Let L ⊆ {a}∗ be a unary regular language and G = (V, {a}, P, S)
be a context-free grammar of size s generating it. Then, there exist an extended
bracket alphabet ΩG and a regular language R̂G ⊆ Ω∗

G such that L = h(D̂(#V )
ΩG

∩
R̂G), where:

– D̂
(#V )
ΩG

is the extended Dyck language over ΩG with nesting depth bounded
by #V ,

– h is the letter-to-letter homomorphism from ΩG to {a}.
Furthermore, the size of ΩG is polynomial in the size s of the grammar G and
the language R̂G is recognized by a 2nfa with a number of states polynomial
in s.

Proof (outline). Given a context-free grammar G = (V, {a}, P, S) specifying a
unary language L, we first obtain the representation in Theorem10. According
to Theorem 5.2 in [10], the size of the alphabet ΩG is polynomial with respect to
the size of the description of G. Each pair of brackets in ΩG represents the root
of a derivation tree of G, which starts from a certain variable of G and produces
a terminal string.

If a sequence w ∈ Ω∗
G contains a pair of brackets corresponding to a variable A

which is nested, at some level, in another pair corresponding to the same variable,
then w can be replaced by a sequence w′, of the same length, which is obtained by
replacing the factor of w delimited by the outer pair of brackets corresponding
1 A language L is local if there exist sets A ⊆ Σ × Σ, I ⊆ Σ, and F ⊆ Σ such
that w ∈ L if and only if all factors of length 2 in w belong to A and the first and
the last symbols of w belong to I and F , respectively [6].
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to A, by the factor delimited by the inner pair, and by moving the removed
part at the end of w. For instance, w = (S (A (B )B (C (A (B )B )A )C )A )S can be
replaced by w′ = (S (A (B )B )A )S (A (B )B (C )C )A, where, for the sake of simplicity,
subscripts represent variables corresponding to brackets. In this way, each time
the nesting depth is greater than #V , it can be reduced by repeatedly moving
some part to the end. So, from each string in D̂ΩG

, we can obtain an “equivalent”
string of the same length in D̂

(#V )
ΩG

.
The regular language RG should be modified accordingly. While in the repre-

sentation in Theorem 10, the first and the last symbol of a string w ∈ D̂ΩG
∩RG

represent a matching pair corresponding to the variable S, after the above
transformation, valid strings should correspond to sequences of blocks of brack-
ets where the first block represents a derivation tree of a terminal string
from S, while each of the subsequent blocks represents a gap tree from a vari-
able A, namely a tree corresponding to a derivation of the form A

+⇒ aiAaj ,
with i + j > 0, where A already appeared in some of the previous blocks. This
condition, together with the conditions on RG, can be verified by a 2nfa with a
polynomial number of states. �	
Notice that if we omit the state bound for the 2nfa accepting R̂G, the statement
of Theorem 11 becomes trivial: just take L = RG and Ω̂G = {a} where a is a
neutral symbol.

Using Theorem 11, we now prove the main result of this section:

Theorem 12. Each context-free grammar of size s generating a unary language
can be converted into an equivalent 1-la having a size which is polynomial in s.

Proof. Let G = (V, {a}, P, S) be the given grammar, L ⊆ {a}∗ be the unary
language generated by it, ΩG be the extended bracket alphabet and R̂G be the
regular language obtained from G according to Theorem 11.

We define a 1-la M which works in the following steps:

1. M makes a complete scan of the input tape from left to right, by rewriting
each input cell by a nondeterministically chosen symbol from ΩG. Let w ∈ Ω∗

G

be the string written on the tape at the end of this phase.
2. M checks whether or not w ∈ D̂

(#V )
ΩG

.
3. M checks whether or not w ∈ R̂G.
4. M accepts if and only if the outcomes of steps 2 and 3 are both positive.

According to Lemma 9, step 2 can be done by simulating a 2dfa with O(#ΩG ·
#V ) many states, hence a number polynomial in s. Furthermore, by Theorem11,
also step 3 can be performed by simulating a 2nfa with a number of states
polynomial in s. Hence M has a size which is polynomial in s. �	

We point out that from Theorem12 and the exponential gap from unary cfgs
to 1nfas proved in [9], we can derive an exponential gap from unary nondeter-
ministic 1-las to 1nfas. In Sect. 3 we proved that the gap remains exponential
if we restrict to unary deterministic 1-las and consider equivalent 2nfas.
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5 Conclusion

In [11], using languages defined over a binary alphabet, exponential size gaps
have been proved for the conversion of 1-las into 2-nfas and of 1-dlas into
1dfas. As a consequence of our results, these exponential gaps hold even if we
restrict to unary languages. On the other hand, the size gap between 1-las
and 1-dfas is double exponential. Even in this case, the proof in [11] relies on
witness languages defined over a binary alphabet. We leave as an open question
to investigate whether or not a double exponential gap is possible between 1-las
and 1-dfas even in the unary case.

Another question we leave open is whether or not 1-las and cfgs are poly-
nomially related in the unary case. While in Sect. 4 we proved that from each
unary cfg we can build a 1-la of polynomial size, at the moment we do not
know the converse relationship.
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1 Univ. Paul-Valéry Montpellier 3, UFR 6, Dpt MIAp, Case J11,
Rte de Mende, 34199 Montpellier Cedex 5, France

2 LIRMM (CNRS, Univ. Montpellier), UMR 5506 - CC 477,
161 rue Ada, 34095 Montpellier Cedex 5, France

gwenael.richomme@lirmm.fr

Abstract. G. Fici proved that a finite word has a minimal suffix
automaton if and only if all its left special factors occur as prefixes.
He called LSP all finite and infinite words having this latter property.
We characterize here infinite LSP words in terms of S-adicity. More pre-
cisely we provide a finite set of morphisms S and an automaton A such
that an infinite word is LSP if and only if it is S-adic and all its directive
words are recognizable by A.

Keywords: Generalizations of Sturmian words · Morphisms · S-adicity

1 Introduction

Extending an initial work by M. Sciortino and L.Q. Zamboni [15], G. Fici investi-
gated relations between the structure of the suffix automaton built from a finite
word w and the combinatorics of this word [8]. He proved that words having
their associated automaton with a minimal number of states (with respect to
the length of w) are the words having all their left special factors as prefixes.
G. Fici asked in the conclusion of his paper for a characterization of the set of
words having the previous property, that he called the LSP property, both in
the finite and the infinite case. We provide such a characterization for infinite
words in the context of S-adicity.

We assume that readers are familiar with combinatorics on words; for omit-
ted definitions (as for instance, factor, prefix, . . . ) see, e.g., [6,13,14]. Given an
alphabet A, A∗ is the set of all finite words over A and Aω is the set of all infinite
words over A. A finite word u is a left special factor of a finite or infinite word
w if there exist at least two distinct letters a and b such that both au and bu
occur in w. Given two alphabets A and B, a morphism (endomorphism when
A = B) f is a map from A∗ to B∗ such that for all words u and v over A,
f(uv) = f(u)f(v). Morphisms extend naturally to infinite words.

Let S be a set of morphisms. An infinite word w is said S-adic if there exists
a sequence (fn)n≥1 of morphisms in S and a sequence of letters (an)n≥1 such
that limn→+∞ |f1f2 · · · fn(an+1)| = +∞ and w = limn→+∞ f1f2 · · · fn(aω

n+1).
The sequence (fn)n≥1 is called the directive word of w. We consider here S-
adicity in a rather larger way: a word w is S-adic with directive word (fn)n≥1 if
c© Springer International Publishing AG 2017
É. Charlier et al. (Eds.): DLT 2017, LNCS 10396, pp. 320–331, 2017.
DOI: 10.1007/978-3-319-62809-7 24
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there exists an infinite sequence of infinite words (wn)n≥1 such that w1 = w and
wn = fn(wn+1) for all n ≥ 1. Denoting wk = fkfk+1 · · · fn(aω

n+1) shows that if
the former definition is verified, the latter is also verified. This second definition
may include degenerated cases as, for instance, the word aω that is {Id}-adic
with Id the morphism mapping a on a. For more information on S-adic systems,
readers can consult, e.g., papers [2,3] and their references.

Let pw be the factor complexity of the infinite word w, that is the function
that counts the number of different factors of w. If w is an infinite LSP word,
by definition, it has at most one left special factor of each length. Thus it is well-
known that pw(n + 1) − pw(n) ≤ #A − 1 (where for any set X, #X denotes the
cardinality of X). We let readers verify that all infinite LSP words are uniformly
recurrent (all factors occur infinitely many times with bounded gaps). By a result
of S. Ferenczi [7] (see also [9–11]), there exists a finite set S of morphisms such
that all infinite LSP words are S-adic. But this general result does not provide
a characterization of infinite LSP words.

Our characterization is twofold. First we exhibit an adapted finite set of
morphisms SbLSP. Second we show that there exists an automaton that recog-
nizes the set of directive words of infinite LSP words. In the binary case, our
result can be seen as a version for infinite words of a result of M. Sciortino
and L.Q. Zamboni [15] (see the conclusion). In the ternary case, morphisms in
SbLSP are the mirror morphisms of Arnoux-Rauzy-Poincaré morphisms (here f
is a mirror morphism of g if f(a) is the mirror image or reversal of g(a) for all
letters a). These morphisms were used by V. Berthé and S. Labbé [5] to provide
an S-adic system recognizing sequences arising from the study of the Arnoux-
Rauzy-Poincaré multidimensional continued fraction algorithm. For alphabets
of cardinality at least 4, new morphisms appear.

The paper is organized as follows. After introducing in Sect. 2 our basis of
morphisms SbLSP, in Sect. 3, we show that all infinite LSP words are SbLSP.
Section 4 introduces a property of infinite LSP words and a property of mor-
phisms in SbLSP that allow to explain why the LSP property is lost when applying
a LSP morphism to an infinite LSP word. Section 5 allows to trace the origin of
the previous property of infinite LSP words. Based on this information, Sect. 6
defines our automaton and Sect. 7 proves our characterization of infinite LSP
words. We end with a few words on characterizations of finite LSP words.

2 Some Basic Morphisms

We call basic LSP morphism on an alphabet A, or bLSP in short, any endomor-
phism f of A∗ that verifies:

– there exists a letter α such that f(α) = α, and
– for all letters β �= α, there exists a letter γ such that f(β) = f(γ)β

We let SbLSP(A) (or shortly SbLSP when A is clear) denote the set of all bLSP
morphisms over the alphabet A. Observe that for any bLSP morphism f , there
exists a unique letter α such that f(α) = α. We let first(f) denote this letter as it
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is also the first letter of f(β) for any letter β. We also let [u1, u2, . . .] denote the
morphism defined by a �→ u1, b �→ u2, . . . . For instance, [a, ab, abc, abcd, abcde]
defines the morphism f such that f(a) = a, f(b) = ab, f(c) = abc, f(d) = abcd,
f(e) = abcde.

Remark 1. By definition of bLSP morphisms, given an alphabet A, there is a
bijection between SbLSP(A) and the set of labeled rooted trees with label in
A (all labels are on vertices and distinct vertices have distinct labels). Given
a labeled rooted tree T = (A,E), the associated bLSP morphism f is the one
such that, for all letters β, f(β) is the word obtained concatenating vertices on
the path in T from the root to β. For instance, the rooted trees associated with
morphisms [a, ab, abc, abcd], [a, ab, abc, abd], [a, ab, abc, ad] and [a, ab, ac, ad] are
given in Fig. 1.

a b c d a b c

d

a b c

d

a

b

c

d

Fig. 1. Rooted trees associated with bLSP morphisms

The previous remark allows to enumerate bLSP morphisms (see Sequence
A000169 in The On-Line Encyclopedia of Integer Sequences (https://oeis.org/
A000169) whose first values are 1, 2, 9, 64, 625, 7776, 117649, 2097152).

Here follows some examples of bLSP morphisms.

– SbLSP({a, b}) = {[a, ab], [ba, b]}. These morphisms are well-known in the con-
text of Sturmian words. They are denoted τa and τb in [4] from which it can
be seen that standard Sturmian words are non-periodic {τa, τb}-adic words
(see also [12]).

– SbLSP({a, b, c}) = {[a, ab, abc], [a, ab, ac], [a, acb, ac], [ba, b, bac], [ba, b, bc],
[bca, b, bc], [ca, cb, c], [ca, cab, c], [cba, ca, c]} = {p−1 ◦ [a, ab, abc] ◦ p, p−1 ◦
[a, ab, ac] ◦ p | p ∈ perm(A)} where perm(A) is the set of all endomorphisms
of A∗ whose restriction to the set of letters is a permutation of the alphabet.
As mentioned in the introduction, these sets SbLSP({a, b, c}) is also the set
of mirror morphisms considered in [5], that is mirrors of the Poincaré sub-
stitutions (defined for {i, j, k} = {a, b, c} by i �→ ijk, j �→ jk, k �→ k) and
the Arnoux-Rauzy substitutions (defined for {i, j, k} = {a, b, c} by i �→ ik,
j �→ jk, k �→ k).

– The set SbLSP({a, b, c, d}) is the set of all morphisms on the form p−1◦f ◦p for
p ∈ perm(A), and f being one of the following morphisms: [a, ab, abc, abcd],
[a, ab, abc, abd], [a, ab, abc, ad] and [a, ab, ac, ad].

https://oeis.org/A000169
https://oeis.org/A000169
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We end this section with some basic properties of bLSP morphisms that
follow directly from the definition. For a non-empty word u, let first(u) denote
its first letter, last(u) its last letter and alph(u) its set of letters.

Property 2. Let f be a bLSP morphism over the alphabet A.

1. there exists a unique letter α ∈ A such that for all β ∈ A, first(f(β)) = α;
2. for all β ∈ A, last(f(β)) = β;
3. there exists a unique letter α ∈ A such that f(α) = α: α = first(f);
4. f(A) is a suffix code (no word of f(A) is a suffix of another word in f(A));
5. f is injective both on the set of finite words and the set of infinite words;
6. for all β ∈ A, x, y ∈ A∗, if |x| = |y| and if xβ and yβ are factors of words in

f(A), then x = y;
7. for all letters β, γ, |f(β)|γ ≤ 1.

3 SbLSP-Adicity of Infinite LSP Words

Proposition 3. Any infinite LSP word is SbLSP-adic.

Given a set S of morphisms, in order to prove that infinite words verifying a
property P are S-adic, it suffices to prove that for all infinite words w verifying
P that:

1. there exists f ∈ S and an infinite word w′ such that w = f(w′), and
2. if w = f(w′) with f ∈ S, then w′ verifies Property P .

Hence Proposition 3 is a direct consequence of the next two lemmas.

Lemma 4. Given any finite or infinite LSP word w, there exist a bLSP mor-
phism f on alph(w) and an infinite word w′ such that w = f(w′).

Proof. Let w be a non-empty finite or infinite LSP word and let α be its first
letter. Let X be the set of words over alph(w)\{α} such that w can be factorized
over {α} ∪ X. Let G be the graph (alph(w), E) with E the set of edges (β, γ)
such that βγ is a factor of a word αu with u ∈ X. By LSP Property of w, each
letter occurring in a word of X is not left special in w. Hence G is a rooted tree
with α as root, that is, for any letter β, there exists a unique path from α to β.
We let uβ denote the word obtained by concatenating the letters occurring in
the path. Let f be the morphism defined by f(β) = uβ . By construction, f is
bLSP and w = f(w′) for a word w′. ��
Remark 5. The word w′ in Lemma 4 is unique. The morphism f is not unique
but its restriction to alph(w′) is. It can also be observed that this restriction is
entirely defined by the first letter of w and the factors of length two of w.

Lemma 6. For any bLSP morphism f and any infinite word w, if f(w) is LSP
then w is LSP.
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Proof. Assume by contradiction that w is not LSP. This means that w has (at
least) one left special factor that is not one of its prefixes. Considering such a
factor of minimal length, there exist a word u and letters a, b, β, γ such that
a �= b, β �= γ, ua is a prefix of w, βub and γub are factors of w. Recall that f
is a bLSP morphism: let α = first(f). The word f(u)f(a)α is a prefix of f(w).
Moreover by Property 2(2), words βf(u)f(b)α and γf(u)f(b)α are factors of w
(here the fact that w is infinite is needed: each factor is followed by a letter
whose image begins with α). As f(a) �= f(b) and as the letter α occurs only as
a prefix in f(a) and f(b), f(a)α is not a prefix of f(b)α and, conversely, f(b)α
is not a prefix of f(a)α. Hence there exist a word v and letters α′, β′ such that
α′ �= β′, vα′ and vβ′ are respectively prefixes of f(a)α and f(b)α. It follows that
f(u)vα′ is a prefix of f(w) while βf(u)vβ′ and γf(u)vβ′ are factors of f(w):
f(w) is not LSP. ��

Observe that Lemma 6 does not hold for finite words. For instance the word
baa is not LSP while its image abaa by the morphism [a, ab] is LSP.

To end this section let us mention (without proof by lack of space) that in
the binary case the converses of Lemma 6 and Proposition 3 hold.

Proposition 7. If w is a binary LSP infinite word and if f belongs to the set
{[a, ab], [ba, b]} then f(w) is also LSP. Consequently a binary word is LSP if and
only if it is {[a, ab], [ba, b]}-adic.

4 Fragility of Infinite LSP Words

For alphabets of cardinality at least 3, the converse of Lemma6 is false: there
exist an infinite LSP word w and a bLSP morphism f such that f(w) is not
LSP. For instance, let F be the well-known Fibonacci word (the fixed point of the
endomorphism [ab, a]), and let g be the bLSP morphism [a, acb, ac]. The word
g2(F) begins with the word g2(ab) = g(aacb) = aaacacb that contains the factor
ac which is left special but not a prefix of the word. Hence the word g2(F) is
not LSP while F is LSP and g is bLSP (actually one can prove, using Lemma10
below, that g(F) is LSP).

In what follows, we introduce some properties of LSP words and morphisms
that explain in which context a (breaking) bLSP morphism can map a (fragile)
infinite LSP word on a non-LSP word.

Definition 8. Let a, b, c be three pairwise distinct letters. An infinite word w
is (a, b, c)-fragile if there exist a word u and distinct letters α and β such that
the word ua is a prefix of w and the words αub and βuc are factors of w. We
will also say that w is (a, b, c, α, β)-fragile when we need letters α and β. The
word u is also called an (a, b, c, β, γ)-fragility of w.

For instance, the empty word ε is an (a, b, c, c, a)-fragility of g(F): εa is a
prefix of g(F) = aacb · · · while cεb and aεc are factors of g(F). More generally
any factor abc or acb in an infinite word starting with the letter a (and with
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a �= b �= c �= a) produces an (a, b, c)-fragility. One can also observe that, by
symmetry of the definition, any (a, b, c)-fragile word is also (a, c, b)-fragile. Finally
let us note that no fragility exists in words over two letters (as the definition
needs three pairwise distinct letters).

The main idea of introducing the previous notion is that for any (a, b, c)-
fragile LSP word w, there exists a bLSP morphism such that f(w) is not LSP.
For instance, if u, α, β,w are as in Definition 8, the word g(u)aa is a prefix of
g(w) whereas words αg(u)acb and βg(u)ac are factors of g(w), so that g(w) is
not LSP since g(u)ac is left special but not a prefix of g(w).

Definition 9. Let a, b, c be three pairwise distinct letters. A morphism f is LSP
(a, b, c)-breaking, if for all (a, b, c)-fragile infinite LSP word w, f(w) is not LSP.

For instance, the morphism g = [a, acb, ac] is (a, b, c)-breaking.

Lemma 10. Let w be an infinite LSP word and let f be a bLSP morphism. The
following assertions are equivalent:

1. The word f(w) is not LSP;
2. There exist some pairwise distinct letters a, b, c such that w is (a, b, c)-fragile

and the longest common prefix of f(b) and f(c) is strictly longer than the
longest common prefix of f(a) and f(b);

3. There exist some pairwise distinct letters a, b, c, such that w is (a, b, c)-fragile
and f is LSP (a, b, c)-breaking.

Proof. 1 ⇒ 2. Assume first that f(w) is not LSP. There exists a left special
factor V of f(w) which is not a prefix of f(w). Let v be the longest common
prefix of V and f(w). Let a′, b′ be the letters such that va′ is a prefix of f(w) and
vb′ is a prefix of V : by construction a′ �= b′. Let also β, γ be distinct letters such
that βV and γV are factors of f(w) (also βvb′ and γvb′ are factors of f(w)).

By Property 2, the letter α = first(f) is the unique letter that can be left
special in f(w). This implies v �= ε and first(v) = first(f). As α occurs exactly
at the first position in all images of letters, occurrences of α mark the beginning
of images of letters in f(w). Considering the last occurrence of α in v, we can
write v = f(u)αx with |x|α = 0. Let a, b, c be letters such that:

– ua is a prefix of w, and, va′ = f(u)αxa′ is a prefix of f(ua) when a′ �= α or
v = f(ua) when a′ = α;

– βub is a factor of w, and, βvb′ is a prefix of βf(ub) when b′ �= α or v = f(ub)
when b′ = α;

– γuc is a factor of w, and, γvb′ is a prefix of γf(uc) when b′ �= α or v = f(uc)
when b′ = α.

As a′ �= b′, we have a �= b and a �= c. Observe that until now we did not use the
fact that w is LSP. This implies b �= c (and so b′ �= α). Indeed otherwise ub would
be a left special factor of w without being one of its prefixes: a contradiction
with the fact that w is an LSP word. Thus w is (a, b, c)-fragile.
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This ends the proof of Part 1 ⇒ 2 as αxb′ is a common prefix of f(b) and
f(c) and αx is the longest common prefix of f(a) and f(b).

2 ⇒ 3. By hypothesis, f(a) = vδw1, f(b) = vγw2 and f(c) = vγw3 for letters
δ, γ and words w1, w2 and w3 with δ �= γ. Let w′ be any LSP (a, b, c)-fragile
infinite word. Let u′, α′, β′ be the word and letters such that u′a is a prefix of
w′ while α′u′b and β′u′c are factors of w′ with α′ �= β′. The word f(w′) has
f(u′)vδ as a prefix and words α′f(u′)vγ and β′f(u′)vγ as factors. As δ �= γ, the
word f(w′) is not LSP. The morphism f is LSP (a, b, c)-breaking.

3 ⇒ 1. This follows the definition of (a, b, c)-fragile words and LSP (a, b, c)-
breaking morphisms. ��

Observe that we have also proved the next result.

Corollary 11. A bLSP morphism is LSP (a, b, c)-breaking for pairwise distinct
letters a, b and c if and only if the longest common prefix of f(b) and f(c) is
strictly longer than the longest common prefix of f(a) and f(b).

5 Origin of Fragilities

Before characterizing infinite LSP words, we need to know how fragilities in an
LSP word can appear. This is explained by next result. For a set X of words,
we let Fact(X) denote the set of factors of words in X.

Lemma 12. Assume a word u is an (a, b, c, β, γ)-fragility of f(w) for an infinite
word w (not necessarily LSP) over an alphabet A and f is a bLSP morphism
(by definition of fragilities, a, b, c, β, γ are letters).

– (New fragilities). If u = ε, then a = first(f) and βb, γc ∈ Fact(f(alph(w))).
– (Propagated fragilities). If u �= ε, there exist letters a′, b′, c′ in alph(w) and

an (a′, b′, c′, β, γ)-fragility v of w such that |v| < |u|, f(v) is a proper prefix
of u and words ua, βub, γuc are respectively prefixes of f(va′)α, βf(vb′)α,
γf(vc′)α with α = first(f).

Proof. (New fragilities). If u = ε, it follows from the definition of an (a, b, c, β, γ)-
fragility that a = first(w) and βb, γc are factors of f(w). Now observe that,
still by the same definition, a �∈ {b, c}. Thus by definition of bLSP morphisms,
a = first(f) and βb, γc belong to Fact(f(alph(w))).

(Propagated fragilities). We assume here that u is not empty. Let α = first(f).
Considering the last occurrence of α in u, observe that the word u can be decom-
posed in a unique way as u = f(v)αx with v, x words such that |x|α = 0. As u
is an (a, b, c, β, γ)-fragility of f(w), there exist words w1, w2 and w3 such that:

– |w1|α = |w2|α = |w3|α = 0;
– f(v)αxw1α is a prefix of f(w) and a = first(w1α);
– βf(v)αxw2α and γf(v)αxw3α are factors of f(w) with b = first(w2α) and

c = first(w3α).
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By definition of a bLSP morphism, there exist letters a′, b′, c′ such that f(a′) =
αxw1, f(b′) = αxw2, f(c′) = αxw3. These letters a′, b′, c′ are pairwise distinct
since letters a = first(w1α), b = first(w2α) and c = first(w3α) are pairwise
distinct. Moreover va′ is a prefix of w and words βvb′ and γvc′ are factors of
w (remember that α marks the beginning of letters in f(w) as f is a bLSP
morphism). Hence the word v is an (a′, b′, c′, β, γ)-fragility of w. Finally let us
observe that |v| ≤ |f(v)| < |u|. ��

6 An Automaton to Follow Fragilities

In this section, we introduce an automaton that allows to recognize all directive
words of LSP words viewed as SbLSP-adic words. We will prove the converse in
next section. Observe that transitions of the automaton are defined in order to
follow fragilities using Lemma12.

Definition 13. We let AbLSP denote the non-deterministic automaton whose
elements are described below.

– The alphabet of AbLSP is the set bLSP of basic LSP morphisms.
– The set of states Q is the set 2A×bLSP×2A5

. Hence a state is the data of a
sub-alphabet of A, of a bLSP morphism and of a set of 5-tuples (a, b, c, β, γ)
of letters whose aim is to represent the set of fragilities of a word. For a state
q, we let alph(q) denote the sub-alphabet of A, by bLSP(q) the morphism
and by set(q) the set of 5-tuples.

– The set of transitions Δ is the set of triples (q, f, q′) such that
1. f = bLSP(q);
2. alph(q) = alph(f(alph(q′)));
3. if (a, b, c, β, γ) ∈ set(q′) then f is not LSP (a, b, c)-breaking;
4. set(q) is the set of all 5-tuples (a, b, c, β, γ) such that a, b, c, β, γ are

letters of alph(q), a �= b �= c �= a, β �= γ and one of the following two
conditions holds:
(a) a = first(f), βb, γc in Fact(f(alph(q′))) and β �= γ;
(b) there exist a′, b′, c′ such that (a′, b′, c′, β, γ) ∈ set(q′) and a word x

such that xa ∈ pref(f(a′)α), xb ∈ pref(f(b′)α) and xc ∈ pref(f(c′)α)
with α = first(f).

– All states are initial.

Figure 2 shows this automaton when the alphabet is {a, b}. In this figure,
τa = [a, ab] and τb = [ba, b]. States q with set(q) �= ∅ are not drawn since binary
infinite LSP words contain no fragilities. Moreover states (∅, τa, ∅) and (∅, τb, ∅),
({a}, τb, ∅) and ({b}, τa, ∅) are not drawn as there are no transition leaving them.

For alphabets with at least three letters, automaton AbLSP is too huge to
be drawn even restricting to states q such that set(q) is a set of fragilities of an
LSP word.

An infinite word f over bLSP is said to be recognized by AbLSP if there exists
an infinite path in AbLSP whose label is f . The aim of AbLSP is to recognize
bLSP directive words of infinite LSP words.



328 G. Richomme

{a}, τa, ∅ {a, b}, τb, ∅ {a, b}, τa, ∅ {b}, τb, ∅τb

τa

τb

τa

τa τa τbτb

Fig. 2. AbLSP for the binary alphabet

Let w be an LSP word. We associate with w a state of AbLSP that we let
denote q(w). This state is the state q such that:

– alph(q) = alph(w):
– bLSP(q) is any morphism f such that w = f(w′) for some word w′ (such a

morphism exists by Lemma 4).
– set(q) is the set of all 5-tuples (a, b, c, β, γ) such that w is (a, b, c, β, γ)-fragile.

The fact that, for any LSP word w, any of its directive word is recognized
by w, is a direct consequence of next lemma.

Lemma 14. Let w, w′ be LSP words such that w = f(w′) with f =
bLSP(q(w)). The transition (q(w),bLSP(q(w)), q(w′)) exists in AbLSP.

Proof. Let f = bLSP(q(w)). Observe that alph(q(w)) = alph(w), w = f(w′)
and alph(q(w′)) = alph(w′). Whence we have alph(q(w)) = alph(f(alph
(q(w′))).

By Lemma 12 and the definition of q(w), a 5-tuple (a, b, c, β, γ) belongs to
set q(w) if and only if one of the following two conditions holds:

– a = first(f), βb, γc belong to Fact(f(alph(w′)))
– there exist a′, b′, c′, β, γ in alph(w′) and an (a, b, c, β, γ)-fragility u of w and

an (a′, b′, c′, β, γ)-fragility v of w′ such that |v| < |u|, f(v) is a proper prefix
of u and words ua, βub, γuc are respectively prefixes of f(va′)α, βf(vb′)α),
γf(vc′)α with α = first(f).

For the second case, u = f(v)x for a word x. The word xa is a prefix of f(a′)α,
xb is a prefix of f(b′)α and xc is a prefix of f(c′)α. As w′ is (a′, b′, c′, β, γ)-
fragile, (a′, b′, c′, β, γ) ∈ set(q(w′)). Thus in both cases, Condition 4 for (q(w),
bLSP(q(w), q(w′)) to be a transition of AbLSP is verified.

To end the proof we have to check Property 3 of transitions of AbLSP.
Assume there exists an (a, b, c, β, γ)-fragility in set(q(w′)). By definition of
q(w′), this implies that w′ has an (a, b, c, β, γ)-fragility. As w = f(w′) is LSP,
f = bLSP(q(w)) is not LSP (a, b, c)-breaking. ��

7 A Characterization of LSP Words

Theorem 15. A word w is LSP if and only if it is SbLSP-adic and all of its
directive word are recognized by the automaton AbLSP.



A Characterization of Infinite LSP Words 329

Proof. Proposition 3 and Lemma 14 prove the only if part of Theorem15. Let us
prove the if part of Theorem15.

Assume, by contradiction, that AbLSP recognizes a directive word f of a word
w which is SbLSP-adic but not LSP. Such a word contains a left special factor
u that is not a prefix of w. Among all possible triples (f ,w, u), choose one such
that |u| is minimal.

For n ≥ 1, we let fn denote the nth letter of f and wn the word directed by
(fk)k≥n (w1 = w; w2 is directed by f2f3 · · · ; wn = fn(wn+1) for n ≥ 1).
Step 1: w2 contains a fragility

First observe |u| ≥ 2. Indeed we have |u| �= 0 as the empty word is a prefix
of w. Moreover, by the structure of images of the bLSP morphism f1, only the
letter first(f1) can be left special, whence |u| �= 1.

Let α = first(w) = first(f1). Considering the last occurrence of α in u, the
word u can be decomposed in a unique way u = f1(v)αx with v, x words such
that |x|α = 0.

As u is left special, there exist distinct letters β and γ such that βu and γu
are factors of w. As the letter α marks the beginning of images of letters in w
and as for all letters δ, f1(δ) ends with δ, we deduce that βv and γv are factors
of w2. As |v| < |u| and by choice of the triple (f ,w, u), the word v is a prefix of
w2. Consequently f1(v)α is a prefix of w and so x �= ε.

Assume there exists a unique letter b such that βvb is a factor of w and u
is a prefix of f(vb). Assume also that b is the unique letter c such that γvc is a
factor of w and u is a prefix of f(vc). As u is not a prefix of w = f1(w2) and as
u is a prefix of f1(vb), the word vb is not a prefix of w2. By choice of the triple
(f ,w, u), |vb| ≥ |u|. As |v| < |u|, we get |vb| = |u| = |f1(v)αx|. As |f1(v)| ≥ |v|,
it follows x = ε: a contradiction.

From what precedes, we deduce the existence of two distinct letters b and c
such that βvb and γvc are factors of w2 with u a prefix of f1(vb) and f1(vc). As
u is not a prefix of w = f1(w2), the letter a that follows the prefix v of w2 is
different from b and c. Hence the word w2 is (a, b, c, β, γ)-fragile and v is such a
fragility.
Step 2: f1 is LSP (a, b, c)-breaking

By definition of letters b and c at Step 1, the word αx is a common prefix of
f1(b) and f1(c). Also as u = f1(v)αx is not a prefix of w while f1(v)a is a prefix
of w, the word αx is not a prefix of f1(a). By Corollary 11, f1 is (a, b, c)-breaking.
Step 3: Origin of fragilities of w2

Applying iteratively Lemma12, we deduce the existence of an integer n ≥ 2,
a sequence of triples of pairwise distinct letters (ai, bi, ci)i∈{2,··· ,n}, a sequence
of (ai, bi, ci, β, γ)-fragilities (vi)i∈{2,··· ,n} such that:

– vi occurs in wi for all i ∈ {2, · · · , n};
– (a2, b2, c2) = (a, b, c) and v2 = v;
– |vi+1| < |vi| for all i ∈ {2, · · · , n − 1};
– vn = ε.
– words viai, βvibi, γvici are respectively prefixes of the words fi(vi+1ai+1)αi,

βfi(vi+1bi+1)αi, γfi(vi+1ci+1)αi where αi = first(fi) for i ∈ {2, · · · , n − 1};
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– an = first(fn);
– βbn, γcn belong to Fact(fn(alph(wn+1))).

Step 4: Conclusion Let (qi)i≥1 be the sequence of states along a path recognizing
f : for all n ≥ 1, (qn, fn, qn+1) is a transition of AbLSP.

At the end of Step 3, we learn that there exists an (an, bn, cn)-fragility
in fn(wn+1). Hence an, bn, cn are pairwise distinct letters. Especially as
a = first(fn) �∈ {bn, cn} by properties of bLSP morphisms, the words βbn and
γcn are factors of images of letters, say b′

n and c′
n. As alph(qn) = alph(fn(qn+1)),

this implies that b′
n and c′

n belong to alph(qn+1) and an, bn and cn belong to
alph(qn). Moreover, as βbn, γcn are factors of words in fn(alph(qn+1)), we deduce
that (an, bn, cn, β, γ) ∈ set(qn).

By backward induction, we can show that for all i, 2 ≤ i ≤ n, (ai, bi, ci, β, γ) ∈
set(qn). Especially (a2, b2, c2, β, γ) ∈ set(q2). As, by Step 2, f1 is LSP (a2, b2, c2)-
breaking and (q1, f1, q2) is a transition of AbLSP, we get our final contradiction.
��

8 Conclusion

Recall that G. Fici [8] asked for a characterization of both finite and infinite
words. Observe that it can be proved that any non-empty finite LSP word w is
right extendable to a longer LSP word (That is there exists a letter a occurring
in w such that wa is a LSP). As a consequence one can prove:

Lemma 16. A finite word is LSP if and only if it is a prefix of an infinite LSP
word.

This result shows that any characterization of infinite LSP words provides
naturally a characterization of finite LSP words (adding “is a prefix of” before
the characterization of infinite LSP words). For instance in the binary case, this
allows to find back M. Sciortino and L.Q. Zamboni’s result [15]: “binary words
having suffix automaton with the minimal possible numbers of states are exactly
the finite prefixes of standard Sturmian words” (that can be reformulated after
G. Fici’s work: “finite binary LSP words are exactly the finite prefixes of standard
Sturmian words”). For this purpose, one can first see from Theorem15 and Fig. 2
that directive words of binary infinite LSP words are ultimately τa or ultimately
τb or ultimately contain both τa and τb. By classical results (see, e.g., [1]) it
can be deduced that an infinite LSP word is an infinite repetition of a finite
standard word or is an infinite standard word. As any power of a finite standard
word is a prefix of an infinite standard word (see [14, Chap. 2] for instance), we
get M. Sciortino and L.Q. Zamboni’s result.

We end this paper mentioning natural questions arising from this work. Can
a smaller automaton than AbLSP can be found for recognizing directive words
of LSP infinite words? Can a similar S-adicity system can be found for infinite
words having at most one left special factor? Does there exist a finite or infinite
set S of morphisms such that an infinite word is LSP if and only if it S-adic (as
it occurs for infinite balanced binary words)?
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Abstract. We consider a computational model which is known as set
automata. The set automata are one-way finite automata with an addi-
tional storage—the set. There are two kinds of set automata—the deter-
ministic and the nondeterministic ones. We denote them as DSA and
NSA respectively. The model was introduced by M. Kutrib, A. Malcher,
M. Wendlandt in 2014 in [3,4]. It was shown that DSA-languages look
similar to DCFL due to their closure properties and NSA-languages look
similar to CFL due to their undecidability properties.

In this paper we show that this similarity is natural: we prove that
languages recognizable by NSA form a rational cone, so as CFL. The
main topic of this paper is computational complexity: we prove that
languages recognizable by DSA belong to P, and the word membership
problem is P-complete for DSA without ε-loops; languages recognizable
by NSA are in NP, and there are NP-complete languages among them.
Also we prove that the emptiness problem is PSPACE-hard for DSA.

Keywords: Set automata · Automata theory · Formal languages ·
Rational cone · Computational complexity · Membership problem

1 Introduction

We consider a computational model which is known as set automata. A set
automaton is a one-way finite automaton equipped with an additional storage—
the set S—which is accessible through the work tape. On processing of a word,
the set automaton can write a query z on the work tape and perform one of the
following operations: the operation in inserts the word z into the set S, the opera-
tion out removes the word z from the set S if S contains z, and the operation test
is the query that verifies whether z belongs to S. After the query the work tape is
erased.

There are two kinds of set automata—the deterministic and the nondeter-
ministic ones. We denote them as DSA and NSA respectively.

If determinism or nondeterminism of an automaton is not significant, we use
abbreviation SA, and we refer to the class of languages recognizable by (N)SA
as SA. We denote as DSA the class of languages recognizable by DSA.
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1.1 The Definition, Known Properties and Examples

We start with formal definitions. A set automaton M is defined by a tuple

M = 〈S,Σ, Γ,�, δ, s0, F 〉,where

– S is the finite set of states;
– Σ is the finite alphabet of the input tape;
– Γ is the finite alphabet of the work tape;
– ��∈ Σ is the right endmarker;
– s0 ∈ S is the initial state;
– F ⊆ S is the set of accepting states;
– δ is the transition relation:

δ ⊆ S × (Σ ∪ {ε,�}) × [S × (Γ ∗ ∪ {in,out}) ∪ S × {test} × S] .

In the deterministic case δ is the function

δ : S × (Σ ∪ {ε,�}) → [S × (Γ ∗ ∪ {in,out}) ∪ S × {test} × S] .

As usual, if δ(s, ε) is defined, then δ(s, a) is not defined for every a ∈ Σ.
A configuration of M is a tuple (s, v, z, S) consisting of the state s ∈ S, the
unprocessed part of the input tape v ∈ Σ∗, the content of the work tape z ∈ Γ ∗,
and the content of the set S ⊂ Γ ∗. The transition relation determines the action
of M on configurations. We use 
 notation for this action. It is defined as follows

(s, xv, z, S) 
 (s′, v, zz′, S) if (s, x, (s′, z′)) ∈ δ, z′ ∈ Γ ∗;
(s, xv, z, S) 
 (s′, v, ε, S ∪ {z}) if (s, x, (s′, in)) ∈ δ;
(s, xv, z, S) 
 (s′, v, ε, S \ {z}) if (s, x, (s′,out)) ∈ δ;
(s, xv, z, S) 
 (s+, v, ε, S) if (s, x, (s+, test, s−)) ∈ δ, z ∈ S;
(s, xv, z, S) 
 (s−, v, ε, S) if (s, x, (s+, test, s−)) ∈ δ, z �∈ S.

We call a configuration accepting if the state of the configuration belongs to
F and the word is processed till the endmarker. So the accepting configuration
has the form (sf , ε, z, S), where sf ∈ F .

The set automaton accepts a word w if there exists a run from the initial
configuration (q0, w �, ε, ∅) to some accepting one.

Set automata were presented by M. Kutrib, A. Malcher, M. Wendlandt in
2014 in [3,4]. The results of these conference papers are covered by the journal
paper [5], so we give references to the journal variant further.

We recall briefly results from [5] about structural and decidability properties
of DSA. They are presented in the tables, see Fig. 1. In the first table we list
decidability problems: emptiness, regularity, equality to a regular language and
finiteness. In the tables, R denotes an arbitrary regular language. The second
table describes the structural properties: L, L1 and L2 are languages from the
corresponding class; we write + in a cell if the class is closed under the operation,
otherwise we write −.
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DSA CFL DCFL

L
?
= ∅ + + +

L
?∈ REG + − +

L
?
= R + − +

|L| ?
< ∞ + + +

DSA CFL DCFL

L1 · L2 − + −
L1 ∪ L2 − + −
L1 ∩ L2 − − −
Σ∗ \ L + − +

L ∪ R + + +

L ∩ R + + +

Fig. 1. Structural and decidability properties

From Fig. 1 one can see that DSA languages look similar to DCFL. Let us
consider an example of a DSA-recognizable language that is not a DCFL (and
not even a CFL).

Example 1. Denote Σk = {0, 1, . . . k − 1}. We define Perk = {(w#)n |w ∈
Σ∗

k , n ∈ N} to be the language of repetitions of words over Σk separated by
the delimiter #. For any k there exists DSA M recognizing Perk.

Proof. Firstly M copies the letters from Σk on the work tape until meets # and
performs the operation in on #. So, after processing of the prefix w#, the set S

contains w. Then, M copies letters from Σk on the work tape and performs the
operation test on each symbol # until reaches �. DSA M accepts the input iff
all tests are positive; an accepted input looks like w#w# . . . w# ∈ Perk. ��

One can naturally assume that DSA class contains DCFL (or even CFL), but this
assumption is false. As was shown in [5], the language {w#wR | w ∈ Σ∗, |Σ| � 2}
is not recognizable by any DSA.

Theorem 2. ([5]). The classes DCFL and DSA are incomparable.

The undecidability results for NSA are based on the fact that NSA can accept
the set of invalid computations of a Turing machine.

Theorem 3. ([5]). For NSA the questions of universality, equivalence with reg-
ular sets, equivalence, inclusion, and regularity are not semi-decidable. Fur-
thermore, it is not semi-decidable whether the language accepted by some NSA
belongs to DSA.

It is worth to mention a quite similar model presented by K.-J. Lange and
K. Reinhardt in [7]. We refer to this model as L-R-SA. In this model there are
no in and out operations; in the case of test– result the tested word is added
to the set after the query; also L-R-SA have no ε-moves. The results from [7]
on computational complexity for L-R-SA are similar to ours: the membership
problem is P-complete for L-R-DSA, and NP-complete for L-R-NSA.



On Computational Complexity of Set Automata 335

1.2 Rational Transductions

Despite the classes DCFL and DSA are incomparable, their structural and decid-
ability properties are similar. In this paper we show that this similarity is natural:
we prove that the class of languages recognizable by NSA has the same structure
as context-free languages.

Both classes are principal rational cones, and to define this structural prop-
erty we need auxiliary notions.

A finite state transducer is a nondeterministic finite automaton with the
output tape. Let T be a FST. The set T (u) consists of all words v that T
outputs on runs from the initial state to a final state while processing of u. So,
FST T defines a rational transduction T (·). We also define T (L) =

⋃

u∈L

T (u).

The rational dominance relation A�rat B holds if there exists a FST T such
that A = T (B), here A and B are languages.

A rational cone is a family of languages C closed under the rational dom-
inance relation: A�rat B and B ∈ C imply A ∈ C. If there exists a language
F ∈ C such that L�rat F for any L ∈ C, then C is a principal rational cone
generated by F ; we denote it as C = T (F ).

Rational transductions for context-free languages were thoroughly investi-
gated in the 70s, particularly by the French school. The main results of this
research are published in J. Berstel’s book [2]. As described in [2], it follows
from the Chomsky-Schützenberger theorem that CFL is a principal rational cone:
CFL = T (D2), where D2 is the Dyck language on two brackets.

1.3 Our Contribution

One can consider D2 as the language of correct protocols for operations with
the stack (the push-down memory). In Sect. 3 we show that NSA languages are
generated by the language SA-PROT of correct protocols for operations with the
set. The similar result for the L-R-SA model was presented in [7].

It was shown in [5] that the emptiness problem for DSA is decidable. In fact
the proof doesn’t depend on determinism of SA. We prove the lower bounds for
the emptiness problems for NSA and DSA: the problems are PSPACE-hard.
In the case of the unary alphabet of the work tape the emptiness problem is
NP-hard. Our proof relies on the technique of rational cones, so we put it in
Sect. 3.2.

The main topic of this paper is computational complexity: we prove that the
word membership problem is P-complete for DSA without ε-loops, DSA ⊆ P,
and show that languages recognizable by NSA are in NP, and there are NP-
complete languages.

The main technical result of the paper is SA ⊆ NP. This result is based
on the fact that the class SA is a rational cone and on our improvement of the
technique of normal forms described in [5]. Due to space limitations we present
only sketches of the proofs here. The complete proofs can be found in the full-
version preprint [8].
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2 P and NP-Complete Languages

Lemma 4. There exists a P-hard language recognized by a DSA.

Sketch of the proof. We reduce the language CVP (Circuit Value Problem), which
is P-complete [6] under log-space reductions (we denote them by �log), to a lan-
guage SA-CVP recognizable by a DSA M . The variant of the language CVP which
is convenient for our purposes consists of words that are encodings of assignment
sequences. Each variable Pi is encoded by a binary string, the operation basis
is ∧,∨,¬, 1, 0. An assignment has the form Pi := Pj op Pk, where op ∈ {∧,∨},
Pi := 1, Pi := 0, Pi := ¬Pj . An assignment sequence belongs to CVP iff the last
assignment is equal to one.

The language SA-CVP consists of words that are encodings of sequences of
reversed assignments. A reversed assignment has the form Pj op Pk =: Pi, where
op ∈ {∧,∨}, 1 =: Pi, 0 =: Pi, ¬Pk =: Pi. Initially each variable is assigned to
zero. Unlike CVP, reassignments of variables are allowed. A word w belongs to
SA-CVP if the last assignment (the value of the reversed CVP-program) is equal
to one. So, a word from SA-CVP looks like

w = #〈P1〉# ∧ #〈P2〉#〈P3〉#1#〈P4〉# . . . #〈Pj〉# op #〈Pk〉#〈Pi〉#.

A reversed CVP-program is constructed from a regular one in log space. So,
CVP�log SA-CVP. DSA M verifies the correctness of a reversed CVP-program in
a natural way: it stores the description of a variable 〈Pi〉 in the set iff the current
assignment sets Pi = 1 and computes the value of an assignment Pj op Pk =: Pi

using results of the tests 〈Pj〉 ∈ S and 〈Pk〉 ∈ S. ��
Now we show that DSA ⊆ P.
As usually, ε-loops cause difficulties in analysis of deterministic models with

ε-transitions. We say that DSA M has an ε-loop if there is a chain of ε-transitions
from a state q to itself.

Proposition 5. For any DSA M there is an equivalent DSA M ′ without ε-
loops.

Proof. There are two kinds of ε-loops: during the loops of the first kind M only
writes letters on the work tape and during the loops of the second kind M
performs queries. The former are evidently useless, so we simply remove them.
The latter are significant: the behavior of M on these loops depends on the set’s
content and sometimes M goes to an infinite loop and sometimes not.

Since M is a deterministic SA, the set of words {u1, . . . , um}, that M writes
on all ε-paths, is finite. We build DSA M ′ by M as follows. Each state of M ′ is
marked by a vector a = (a1, . . . , am) of zeroes and ones. A content of the set is
compatible with a vector a if ai = 1 is equivalent to ui ∈ S. Each state of M ′

has the form 〈s,a, aux〉, where s is a state of M and aux is an auxiliary part of
finite memory that M ′ uses to maintain a correctly.

To define an ε-transition δ(〈s,a, aux〉, ε) of M ′ we follow an ε-path of M
from the state s with the set content compatible with a. If M goes to an ε-loop,



On Computational Complexity of Set Automata 337

then the ε-transition of M ′ is undefined. If the ε-path finishes at a state s′, then
δ(〈s,a, aux〉, ε) = (〈s′,a′, aux′〉, z), where a′ is the vector compatible with the
M ’s set content and z is the content of M ’s work tape at the end of the ε-path.

��

Theorem 6. DSA ⊆ P. The membership problem for DSA without ε-loops is
P-complete.

Proof. The input of the membership problem is an encoding of DSA M without
ε-loops and a word w. It is easy to emulate a DSA by a Turing machine with 3
tapes.

The first tape is for the input tape of the DSA, the second one is for the
work tape and the third one (the storage tape) is used to maintain the set.

Let M process a subword u of the input between two queries to the set.
There are no ε-loops. Therefore during this processing the automaton writes at
most c|u| symbols on the work tape, where c is a constant depending only on the
description of the set automaton. It implies that c|w| space on the storage tape
is sufficient to maintain the set content on processing of the input word w. Thus
each query to the set can be performed in polynomial time of the input size.

So, the membership problem for DSA without ε-loops belongs to P and due
to Lemma 4 it is P-complete. By excluding ε-loops due to Proposition 5 we get
that every language recognizable by DSA belongs to P. ��

Remark 7. Proposition 5 implies an exponential upper bound on the number
of M ’s steps during ε-moves. Now we describe a DSA M that performs 2c|〈M〉|

steps on the empty input. Let Γ = {0, . . . , n − 1}. For i ∈ 0..n − 1 M verifies
whether i ∈ S. If not, M puts i in the set, excludes each j < i and restarts from
i = 0. It is easy to see that M performs at least 2n moves since each subset of
Γ occurs in the set at some moment.

Now we present an NSA recognizing an NP-complete language. This result was
also proved independently by M. Kutrib, A. Malcher, M. Wendlandt (private
communication with M. Kutrib). We construct an NP-complete language that
we call SA-SAT and reduce 3-SAT to this language. The language SA-SAT is
quite similar to the language in [7] for the corresponding result for L-R-SA.

Let words xi ∈ {0, 1}∗ encode variables and words 〈ϕ〉 ∈ {0, 1}∗ encode 3-
CNFs. SA-SAT contains the words of the form x1#x2# . . . #xn##〈ϕ〉 such that
an auxiliary 3-CNF ϕ′ is satisfiable. The 3-CNF ϕ′ is derived from ϕ as follows.
For each variable xi that appears in the list x1#x2# . . . #xn## at least twice,
remove all clauses containing xi from ϕ and get the reduced 3-CNF ϕ′′. Set each
variable x of ϕ′′ that is not in the list x1#x2# . . . #xn## to zero, simplify ϕ′′

and obtain as a result the 3-CNF ϕ′.

Lemma 8. The language SA-SAT is NP-complete and it is recognized by an
NSA.
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Proof. We describe an NSA M that recognizes the language SA-SAT. Firstly, M
processes the prefix x1#x2# . . . #xn##, guesses the values bi of xi (0 or 1) and
puts the pairs (xi, bi) in the set. If a variable xi appears more than once in the
prefix, then the NSA M nondeterministically guesses this event and puts both
(xi, 0) and (xi, 1) in the set. On processing of the suffix 〈ϕ〉, for every clause
of ϕ the NSA M nondeterministically guesses a literal that satisfies the clause
and verifies whether the set contains the required value of the corresponding
variable. It is easy to see that all tests are satisfied iff 3-CNF ϕ′ is satisfiable.

The language 3-SAT is reduced to SA-SAT in a straightforward way. Also it
is easy to see that SA-SAT ∈ NP. ��

3 Structural Properties of SA-Languages

In this section we show that the class SA is a principal rational cone generated
by the language of correct protocols. We also prove the lower bounds for the
emptiness problem since they directly follow from the fact that SA is a rational
cone.

To simplify arguments, hereinafter we assume that an NSA satisfies the fol-
lowing requirements:

(i) the alphabet of the work tape is the binary alphabet, say, Γ = {a, b};
(ii) it doesn’t use the endmarker � on the input tape and the initial configura-

tion is (q0, w, ε, ∅);
(iii) it accepts a word only if the last transition was a query.

It is easy to see that any NSA can be converted to an equivalent one satisfying
these requirements.

3.1 Protocols

A protocol is a word p = #u1#op1#u2#op2# · · · #un#opn, where ui ∈ Γ ∗,
# �∈ Γ and op i ∈ {in,out, test+, test−}. Query words are the words of the
form #u#op . So a protocol is a concatenation of query words.

We say that p is a correct protocol for SA M on an input w in L(M), if
there exists a run of M on the input w such that M performs the operation op1

with the word u1 on the work tape at first, then performs op2 with u2 on the
work tape, and so on. In the case of a test, opi indicates the result of the test:
test+ or test−.

We call p a correct protocol for SA M if there exists a word w such that p
is a correct protocol for SA M on the input w. And finally, we say that p is a
correct protocol if there exists an SA M such that p is a correct protocol for M .

We define SA-PROT to be the language of all correct protocols over the
alphabet of the work tape Γ = {a, b}.

Proposition 9. The language SA-PROT is recognizable by DSA.
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The proof is straightforward. We omit it due to the space limits.
We use a notation q

u−→
v

p to express the fact that a transducer T has a run
from the state q to the state p such that T reads u on the input tape and writes v
on the output tape. The notation is also applied to a single transition. A rational
transduction T (u) mentioned in the introduction is defined with this notation
as {v | q0

u−→
v

qf , qf ∈ F}. Recall that T (L) =
⋃

u∈L

T (u).

We define T−1(y) = {x | y ∈ T (x)} and T−1(A) = {x | T (x) ∩ A �= ∅}. It is
well-known (e.g., see [2]) that for every FST T there exists a FST T ′ such that
T ′(u) = T−1(u).

We will prove that the class SA is a principal rational cone generated by the
language SA-PROT. It means that for every SA-recognizable language L there
exists a FST T such that L = T (SA-PROT).

Let us describe our plan. Firstly, we prove that for each SA M there is a FST
TM such that w ∈ L(M) iff TM (w) ∩ SA-PROT �= ∅. We call such FST TM an
extractor (of a protocol) for M . Then we show that the required FST T is T−1

M .

Lemma 10. For any SA M = 〈S,Σ, Γ,�, δM , s0, F 〉 there exists an extractor
TM = 〈S ∪ {s′

0}, Σ, Γ, δ, s′
0, F 〉.

Sketch of the proof. The behavior of the extractor is similar to the behavior of the
SA. When the SA writes something on the work tape, the FST writes the same
on the output tape. When the SA makes a query, the FST writes a word #op #.
The only difference is that the SA knows the results of the performed tests. But a
nondeterministic extractor can guess the results of the tests to produce a correct
output. ��
Theorem 11. SA is a principal rational cone generated by SA-PROT.

Proof. We shall prove that for every SA M there exists a FST T such that
T (SA-PROT) = L(M). Take T = T−1

M , where TM is the extractor for M . By the
definition of extractor w ∈ L(M) iff T (w)∩SA-PROT �= ∅. So, if w ∈ L(M), then
there is at least one correct protocol in TM (w). Therefore w ∈ T−1

M (SA-PROT).
In the other direction: if w ∈ T−1

M (SA-PROT), then TM (w)∩SA-PROT �= ∅. So,
w ∈ L(M) by the definition of extractor. ��

3.2 Lower Bounds for the Emptiness Problem

We present an application of the rational cones technique. It is a lower bound
on complexity of the emptiness problem for NSA. We show that the emptiness
problem for NSA is equivalent to the regular realizability (NRR) problem for
SA-PROT and use hardness results for NRR problems.

The problem NRR(F ) for a language F (a parameter of the problem) is to
decide on the input nondeterministic finite automaton (NFA) A whether the
intersection L(A) ∩ F is nonempty.

Lemma 12

(L(M) ?= ∅)�log NRR(SA-PROT) and NRR(SA-PROT)�log(L(M) ?= ∅).
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Proof. It is easy to see that one can construct the extractor TM by SA M in log
space. So, by the definition of extractor, we get that L(M) = ∅ iff TM (Σ∗) ∩
SA-PROT = ∅.Note that rational transductions preserve regularity [2]:TM (Σ∗) ∈
REG. It is shown in [9] that an NFA recognizing TM (Σ∗) is log-space constructible
by the description of TM . So (L(M) ?= ∅)�log NRR(SA-PROT).

It was shown in [5] that for any regular language R ⊆ Γ ∗ there exists SA MR

recognizing SA-PROT∩R. This SA is also constructible in log space by the descrip-
tionof anNFArecognizingR: theproof is almost the sameas for the aforementioned
NFA by FST construction. Thus NRR(SA-PROT)�log(L(M) ?= ∅). ��

Also we need the following relation between RR-problems and rational trans-
ductions.

Proposition 13 ([9]). If A�rat B, then NRR(A)�log NRR(B).

We use the hardness of NRR problem for languages Perk from Example 1.

Theorem 14 ([1,10]). The problem NRR(Per1) is NP-complete and the prob-
lem NRR(Per2) is PSPACE-complete.

From these facts we derive the PSPACE lower bound.

Theorem 15. The emptiness problem for NSA is PSPACE-hard. For NSA
with the unary alphabet of the work tape, the emptiness problem is NP-hard.

Proof. The language Per2 is recognizable by DSA (see Example 1). By
Theorem 11 we get that Per2 �rat SA-SAT. Thus NRR(Per2)�log NRR(SA-SAT)
by Proposition 13 and therefore the problem NRR(SA-SAT) is PSPACE-hard.
So, by Lemma 12, the emptiness problem for NSA is PSPACE-hard too. ��

Corollary 16. Theorem 15 also holds for DSA.

We describe briefly a proof idea. The emptiness problem for NSA is reduced to
the emptiness problem for DSA. For an NSA M we build a DSA M ′ such that
L(M ′) = ∅ iff L(M) = ∅. Generally, DSA M ′ acts as M . But the alphabet
M ′ includes two auxiliary symbols #, $ /∈ ΣM . Transitions of M are uniquely
encoded by words in the form #$i#. The codes of transitions form a prefix code.
Thus they can be used to simulate nondeterministic transitions of M .

4 SA ⊆ NP

We come to the main result of the paper. It is technically hard, so we provide
only a sketch of the proof here. We still assume that Requirements (i-iii) from
Sect. 3 hold for NSA.
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The general idea is to prove that for any w ∈ L(M) there exists a short
(polynomial in |w|) protocol p for w. Thus an NP-algorithm guesses the run of
M on w corresponding to p and verifies that M accepts w on that run.

We start with auxiliary notions.
Consider a protocol p = #u0#op0#u1#op1# · · · #un−1#opn−1. By a seg-

ment pi of p we mean an occurrence of a query word #ui#opi in the protocol.
Different segments may coincide as words. We say that a segment pi supports
segment pj if ui = uj and opi = in, opj = test+ or opi = out, opj = test−
and there is no segment pk such that opk ∈ {in,out}, uk = ui and i < k < j.

We say that segments v1, v2, . . . , vk form a chain C if v1 supports vi, i ∈
2..k. Standalone queries are the segments #u#in and #u#out that support
no segments and the segments #u#test− having no support. Each standalone
query forms a standalone chain. Let vi = #u#opi be the segments of a chain.
We denote the chain by C(u) and call u the pivot of C(u). Also we denote the
chain C+ if op1 = in and C− if op1 ∈ {out, test−}.

The following lemma immediately follows from the definitions.

Lemma 17. A protocol p is correct iff each segment #ui#test+ is supported
and each segment #ui#test− is either supported or standalone.

By definition, there is a correspondence between protocols and runs of SA. Seg-
ments correspond to the following parts of a run. Suppose that SA M starts from
a state s with the blank work tape, writes u on the work tape on processing of
x on the input tape and performs a query at a state q. We call this sequence of
operations a query run and denote it as s

x
↪−→
u

q. Thus an accepting run of SA M

on word w = x0x1 · · · xn−1, xi ∈ Σ∗, has the following partition into query runs:

s0
x0

↪−→
u0

s1
x1

↪−→
u1

s2
x2

↪−→
u2

· · ·
xn−1

↪−−−→
un−1

sn, sn ∈ F. (1)

We also say that a sequence of query runs si
xi

↪−→
ui

si+1

xi+1
↪−−−→
ui+1

· · ·
xj−1

↪−−−→
uj−1

sj is a

segment of a run, we denote it as si
xixi+1···xj−−−−−−−→ sj .

Note that xi = ε is possible and it is the main obstacle to prove an existence
of a short protocol: a segment si

ε−→ sj may contain a lot of queries that support
the tests on the nonempty xks. So the total number of queries may be arbitrary
large. If we had no ε-transitions in NSA, we would have had the same proof
as for the result L-R-NSA ∈ NP in [7]. But ε-transitions require more careful
consideration.

To overcome this difficulty we will use a special form of NSA that we call
Atomic Action Normal Form (AANF). AANF is a refinement of the infinite
action normal form from [5] developed for DSA.

We also use the notation s
x

↪−→
u

q for the relation that holds if there is a query
run that starts from the state s, reads the word x, writes the word u and makes
a query at the state q. We always indicate the meaning of the notation: a query

or a relation. A relation s
X

↪−→
U

q means that U = {u | ∃x ∈ X : s
x

↪−→
u

q}.
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Definition 18. We say that an NSA M is in AANF if the following conditions
hold.

– Requirements (i-iii) from Sect. 3 hold.
– S = {s0} ∪ Stest+ ∪ Stest− ∪ Sin ∪ Sout ∪ Sε-write ∪ S

�ε-write, S op ∩ S op ′ = ∅

if op �= op ′: each state q such that the relation s
x

↪−→
u

q holds is marked by
the operation of the query; states that occur while writing u are marked as
ε-write if x = ε and as �ε-write if x �= ε.

– There exists a finite family of regular languages LM such that
• for all Aα, Aβ ∈ LM : Aα ∩ Aβ = ∅ if α �= β;

• if s
Σ∗

↪−−→
U

q, s′ Σ∗
↪−−→

U ′
q′, then either U ∩ U ′ = ∅ or U = U ′ ∈ LM ;

• |Aα| = ∞ for every Aα ∈ LM .

Informally, AANF implies that each query run s
x

↪−→
u

q belongs to an equivalence
class corresponding to Aα ∈ LM , u ∈ Aα, and the number of such classes is
finite. Moreover, in the case of x = ε the relation s

ε
↪−−→
Aα

q holds, and it means

that one can replace u (in the segment) by any word uα ∈ Aα and obtain a run
for w again. But this run may be incorrect, so later we will carefully choose uα

to maintain the correctness of the run. Thus, AANF helps us to struggle with
ε-queries as well as to make non-ε-segments short.

Lemma 19. For any NSA M there exists an NSA M ′ in AANF such that
L(M) = L(M ′).

From now on we fix an NSA M in AANF. We say that pi is an ε-segment of a
protocol if the corresponding query run has the form si

ε
↪−→
ui

si+1. We say that

an ε-segment pi has type α if the relation si
ε

↪−−→
Aα

si+1 holds for Aα ∈ LM . We

call a chain C(u) of ε-segments an ε-chain. We denote ε-chain Cα if all segments
in the chain have type α. Different segments of an ε-chain can’t have different
types due to AANF definition.

Now we are ready to describe the main steps of the proof. Each step is a
transformation of an accepting run to some other accepting run of M on w. We
call such transformations valid. We call a word u short if |u| is polynomial in
|w|. We call a run short if the corresponding protocol is short.

Lemma 20. For any Aα ∈ LM there exist short words u+
α ∈ Aα and u−

α ∈ Aα

such that for any run the simultaneous replacement of the words u in all segments
of ε-chains C+

α (u) and C−
α (u) by u+

α and u−
α respectively is a valid transformation

of the run. Moreover, during the transformed run

– M never adds the words u−
α to S;

– M never removes the words u+
α from S;

– all segments of ε-chains C− become standalone;
– the length of any word u±

α is O(|w|).
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From now on we assume w.l.o.g. that all runs into consideration have the prop-
erties described in Lemma 20.

Lemma 21. If in each query run si
xi

↪−→
ui

si+1, xi �= ε, of a run the word ui is

short, then there is a valid transformation of the run to a short one.

Lemma 22. Assume that C(u) is a non-ε-chain of segments v1, . . . vk, vi =
#u#opi. Then there is a short word u′ such that the replacement of vi by
#u′#opi is a valid transformation of the run.

Theorem 23. There is an NP-algorithm verifying for an input word w whether
w ∈ L(M), where M is an NSA.

Proof. W.l.o.g. M is NSA in AANF. We will show that for any w ∈ L(M) there
exists a short accepting run. Thus, an NP-algorithm guesses a short run and
checks its correctness.

At first, we apply Lemma 20 to an accepting run on the input w to get
a run satisfying the conditions of the lemma. After that we shall transform
all non-ε-segments to short ones. Note that there is no more than |w| non-ε-
segments in any run and therefore there is no more than |w| non-ε-chains. We
apply Lemma 22 no more than |w| times to get a run in which all query runs
si

xi
↪−→
ui

si+1, xi �= ε, are short. Finally, we apply Lemma 21 and get a short run

for w. ��
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Abstract. Any finite word w of length n contains at most n+1 distinct
palindromic factors. If the bound n + 1 is reached, the word w is called
rich. The number of rich words of length n over an alphabet of cardinality
q is denoted Rq(n). For binary alphabet, Rubinchik and Shur deduced
that R2(n) ≤ c1.605n for some constant c. In addition, Guo, Shallit and
Shur conjectured that the number of rich words grows slightly slower
than n

√
n. We prove that lim

n→∞
n
√

Rq(n) = 1 for any q, i.e. Rq(n) has a

subexponential growth on any alphabet.

Keywords: Rich words · Enumeration · Palindromes · Palindromic fac-
torization

1 Introduction

The study of palindromes is a frequent topic and many diverse results may be
found. In recent years, a number of articles deal with so-called rich words, or
also words having palindromic defect 0. They are words having the maximum
number of palindromic factors. As noted by [6], a finite word w contains at most
|w| + 1 distinct palindromic factors with |w| being the length of w. The rich
words are exactly those that attain this bound. It is known that on a binary
alphabet the set of rich words contains factors of Sturmian words, factors of
complementary symmetric Rote words, factors of the period-doubling word, etc.,
see [1,4,6,13]. On a multiliteral alphabet, the set of rich words contains for
example factors of Arnoux—Rauzy words and factors of words coding symmetric
interval exchanges.

Rich words can be characterized using various properties, see for instance
[2,5,8]. The concept of rich words can also be generalized to respect so-called
pseudopalindromes, see [10]. In this paper we focus on an unsolved question of
computing the number of rich words of length n over an alphabet with q > 1
letters. This number is denoted Rq(n).

This question is investigated in [15], where J. Vesti gives a recursive lower
bound on the number of rich words of length n, and an upper bound on the
number of binary rich words. Both these estimates seem to be very rough. In [9],
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É. Charlier et al. (Eds.): DLT 2017, LNCS 10396, pp. 345–352, 2017.
DOI: 10.1007/978-3-319-62809-7 26
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C. Guo, J. Shallit and A.M. Shur construct for each n a large set of rich words of
length n. Their construction gives, currently, the best lower bound on the number
of binary rich words, namely R2(n) ≥ C

√
n

p(n) , where p(n) is a polynomial and the
constant C ≈ 37. On the other hand, the best known upper bound is exponential.
As mentioned in [9], a calculation performed recently by M. Rubinchik provides
the upper bound R2(n) ≤ c1.605n for some constant c, see [11].

Our main result stated as Theorem 10 shows that Rq(n) has a subexponential
growth on any alphabet. More precisely, we prove that

lim
n→∞

n

√
Rq(n) = 1 .

In [14], Shur calls languages with the above property small. Our result is an
argument in favor of a conjecture formulated in [9] saying that for some infinitely

growing function g(n) the following holds true R2(n) = O
(

n
g(n)

)√
n

.
To derive our result we consider a specific factorization of a rich word into dis-

tinct rich palindromes, here called UPS-factorization (Unioccurrent Palindromic
Suffix factorization), see Definition 2. Let us mention that another palindromic
factorizations have already been studied, see [3,7]: Minimal (minimal number
of palindromes), maximal (every palindrome cannot be extended on the given
position) and diverse (all palindromes are distinct). Note that only the minimal
palindromic factorization has to exist for every word.

The article is organized as follows: Sect. 2 recalls notation and known results.
In Sect. 3 we study a relevant property of UPS-factorization. The last section is
devoted to the proof of our main result.

2 Preliminaries

Let us start with a couple of definitions: Let A be an alphabet of q letters,
where q > 1 and q ∈ N (N denotes the set of nonnegative integers). A finite
sequence u1u2 · · · un with ui ∈ A is a finite word. Its length is n and is denoted
|u1u2 · · · un| = n. Let An denote the set of words of length n. We define that A0

contains just the empty word. It is clear that the size of An is equal to qn.
Given u = u1u2 · · · un ∈ An and v = v1v2 · · · vk ∈ Ak with 0 ≤ k ≤ n, we say
that v is a factor of u if there exists i such that 0 ≤ i, i + k ≤ n and ui+1 = v1,
ui+2 = v2, . . . , ui+k = vk.

A word u = u1u2 · · · un is called a palindrome if u1u2 · · · un = unun−1 · · · u1.
The empty word is considered to be a palindrome and a factor of any word.

A word u of length n is called rich if u has n+1 distinct palindromic factors.
Clearly, u = u1u2 · · · un is rich if and only if its reversal unun−1 · · · u1 is rich
as well.

Any factor of a rich word is rich as well, see [8]. In other words, the language
of rich words is factorial. In particular it means that Rq(n)Rq(m) ≤ Rq(n + m)
for any m,n, q ∈ N. Therefore, the Fekete’s lemma implies existence of the limit
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of n
√

Rq(n) and moreover

lim
n→∞

n

√
Rq(n) = inf

{
n

√
Rq(n) : n ∈ N

}
.

For a fixed n0, one can find the number of all rich words of length n0 and obtain
an upper bound on the limit. Using a computer Rubinchik counted R2(n) for
n ≤ 60, (see the sequence A216264 in OEIS). As 60

√
R2(60) < 1.605, he obtained

the upper bound given in Introduction.
As shown in [8], any rich word u over an alphabet A is richly prolongable,

i.e., there exist letters a, b ∈ A such that aub is also rich. Thus a rich word
is a factor of an arbitrarily long rich word. But the question whether two rich
words can appear simultaneously as factors of a longer rich word may have a
negative answer. It means that the language of rich words is not recurrent. This
fact makes the enumeration of rich words hard.

3 Factorization of Rich Words into Rich Palindromes

Let us recall one important property of rich words [6, Definition 4 and Proposi-
tion 3]: The longest palindromic suffix of a rich word w has exactly one occurrence
in w (we say that the longest palindromic suffix of w is unioccurrent in w). It
implies that w = w(1)w1, where w1 is a palindrome which is not a factor of w(1).
Since every factor of a rich word is a rich word as well, it follows that w(1) is
a rich word and thus w(1) = w(2)w2, where w2 is a palindrome which is not a
factor of w(2). Obviously w1 �= w2. We can repeat the process until w(p) is the
empty word for some p ∈ N, p ≥ 1. We express these ideas by the following
lemma:

Lemma 1. Let w be a rich word. There exist distinct non-empty palindromes
w1, w2, . . . , wp such that

w = wpwp−1 · · · w2w1 and wi is the longest palindromic suffix of
wpwp−1 · · · wi for i = 1, 2, . . . , p. (1)

Definition 2. We define UPS-factorization (Unioccurrent Palindromic Suffix
factorization) to be the factorization of a rich word w into the form (1).

Since the wi in the factorization (1) are non-empty, it is clear that p ≤ n =
|w|. From the fact that the palindromes wi in the factorization (1) are distinct
we can derive a better upper bound on p. The aim of this section is to prove the
following theorem:

Theorem 3. There is a constant c > 1 such that for any rich word w of length
n the number p of palindromes in the UPS-factorization of w = wpwp−1 · · · w2w1

satisfies
p ≤ c

n

ln n
. (2)
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Before proving the theorem, we show two auxiliary lemmas:

Lemma 4. Let q, n, t ∈ N such that

t∑
i=1

iq� i
2 � ≥ n. (3)

The number p of palindromes in the UPS-factorization w = wpwp−1 · · · w2w1 of
any rich word w with n = |w| satisfies

p ≤
t∑

i=1

q� i
2 �. (4)

Proof. Let f1, f2, f3, . . . be an infinite sequence of all non-empty palindromes
over an alphabet A with q = |A| letters, where the palindromes are
ordered in such a way that i < j implies that |fi| ≤ |fj |. Therefore, the
palindromes f1, . . . , fq are of length 1, the palindromes fq+1, . . . , f2q are of
length 2, etc. Since w1, . . . , wp are distinct non-empty palindromes we have∑p

i=1 |fi| ≤ ∑p
i=1 |wi| = n. The number of palindromes of length i over the

alphabet A with q letters is equal to q� i
2 � (just consider that the “first half”

of a palindrome determines its second half). The number
∑t

i=1 iq� i
2 � equals the

length of a word obtained as concatenation of all palindromes of length less than
or equal to t. Since

∑p
i=1 |fi| ≤ n ≤ ∑t

i=1 iq� i
2 �, it follows that the number of

palindromes p is less than or equal to the number of all palindromes of length
at most t; this explains the inequality (4).

Lemma 5. Let N ∈ N, x ∈ R, x > 1 such that N(x − 1) ≥ 2. We have

NxN

2(x − 1)
≤

N∑
i=1

ixi−1 ≤ NxN

(x − 1)
. (5)

Proof. The sum of the first N terms of a geometric series with the quotient x is
equal to

∑N
i=1 xi = xN+1−x

x−1 . Taking the derivative of this formula with respect

to x with x > 1 we obtain:
∑N

i=1 ixi−1 = xN (N(x−1)−1)+1
(x−1)2 = NxN

x−1 + 1−xN

(x−1)2 . It
follows that the right inequality of (5) holds for all N ∈ N and x > 1. The
condition N(x − 1) ≥ 2 implies that 1

2N(x − 1) ≤ N(x − 1) − 1, which explains
the left inequality of (5).

We can start the proof of Theorem 3:

Proof (Proof of Theorem 3). Let t ∈ N be a minimal nonnegative integer such
that the inequality (3) in Lemma 4 holds. It means that:

n >

t−1∑
i=1

iq� i
2 � ≥

t−1∑
i=1

iq
i
2 = q

1
2

t−1∑
i=1

iq
i−1
2 ≥ (t − 1)q

t
2

2(q
1
2 − 1)

, (6)
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where for the last inequality we exploited (5) with N = t − 1 and x = q
1
2 . If

q ≥ 9, then the condition N(x − 1) = (t − 1)(q
1
2 − 1) ≥ 2 is fulfilled (it is the

condition from Lemma 5) for any t ≥ 2. Hence let us suppose that q ≥ 9 and
t ≥ 2. From (6) we obtain:

q
t
2

q
1
2 − 1

≤ 2n

t − 1
≤ 4n

t
. (7)

Since t is such that the inequality (3) holds and i ≤ q
i+1
2 for any i ∈ N and

q ≥ 2, we can write:

n ≤
t∑

i=1

iq
i+1
2 ≤

t∑
i=1

qi+1 = q2
qt − 1
q − 1

≤ q2

q − 1
qt ≤ q2t. (8)

We apply the logarithm on the previous inequality:

ln n ≤ 2t ln q. (9)

An upper bound on the number of palindromes p in UPS-factorization follows
from (4), (7), and (9):

p ≤
t∑

i=1

q� i
2 � ≤

t∑
i=1

q
i+1
2 ≤ q

3
2

q
t
2

q
1
2 − 1

≤ q
3
2
4n

t
≤ q

3
2 8 ln q

n

ln n
. (10)

The previous inequality requires that q ≥ 9 and t ≥ 2. If t = 1 then we can easily
derive from (3) that n ≤ q and consequently p ≤ n ≤ q. Thus the inequality p ≤
q

3
2 8 ln q n

lnn holds as well for this case. Since every rich word over an alphabet with
the cardinality q < 9 is also a rich word over the alphabet with the cardinality 9,
the estimate (2) in Theorem 3 holds if we set the constant c as follows: c =
max{8q

3
2 ln q, 8 · 9

3
2 ln 9}.

Remark 6. Note that in [12] it is shown that most of palindromic factors of a
random word of length n are of length close to ln(n) (compare to Theorem 3).

4 Rich Words Form a Small Language

Recall the definition of a small language; the aim of this section is to show that
the set of rich words forms a small language, see Theorem 10.

We present a recurrent inequality for Rq(n). To ease our notation we omit
the specification of the cardinality of alphabet and write R(n) instead of Rq(n).

Let us define
κn =

⌈
c

n

ln n

⌉
,

where c is the constant from Theorem 3 and n ≥ 2.



350 J. Rukavicka

Theorem 7. If n ≥ 2, then

R(n) ≤
κn∑
p=1

∑
n1,n2,...,np≥1

n1+n2+···+np=n

R
(⌈n1

2

⌉)
R

(⌈n2

2

⌉)
. . . R

(⌈np

2

⌉)
. (11)

Proof. Given p, n1, n2, . . . , np, let R(n1, n2, . . . , np) denote the number of rich
words with UPS-factorization w = wpwp−1 . . . w1, where |wi| = ni for
i = 1, 2, . . . , p. Note that any palindrome wi is uniquely determined by its prefix
of length �ni

2 �; obviously this prefix is rich. Hence the number of words that
appear in the UPS-factorization as wi cannot be larger than R(�ni

2 �). It follows
that R(n1, n2, . . . , np) ≤ R(�n1

2 �)R(�n2
2 �) . . . R(�np

2 �). The sum of this result
over all possible p (see Theorem 3) and n1, n2, . . . , np completes the proof.

Proposition 8. Let h > 1, K ≥ 1 and βn = Θ
(

n
lnn

)
If Γ (n) is a sequence of

positive integers such that Γ (n) ≤ Kβnh
n+βn

2

(
en
βn

)βn

, then lim
n→∞

n
√

Γ (n) ≤ √
h.

Proof. For any constant α we have lim
n→∞ α

βn
n = 1. Moreover, lim

n→∞

(
n
βn

) βn
n

= 1.

Let us suppose that Γ (n) = Kβnh
n+βn

2

(
en
βn

)βn

. Using these two equalities

we obtain lim
n→∞ K

βn
n h

n+βn
2n

(
en
βn

) βn
n

= lim
n→∞ h

1
2 h

βn
2n =

√
h. Since n

√
Γ (n) ≤

K
βn
n h

n+βn
2n

(
en
βn

) βn
n

, we conclude that lim
n→∞

n
√

Γ (n) ≤ √
h.

Next, we show that R(n) satisfies the conditions of Proposition 8 with βn = κn.

Proposition 9. If h > 1 and K ≥ 1, then R(n) ≤ Kκnh
n+κn

2

(
en
κn

)κn

.

Proof. For any integers p, n1, . . . , np ≥ 1, the assumption implies that R(�n1
2 �)

R(�n2
2 �) · · · R(�np

2 �) ≤ Kph
n1+1

2 h
n2+1

2 · · · hnp+1
2 ≤ Kph

n+p
2 . Using (11) we

obtain:

R(n) ≤ Kκnh
n+κn

2

κn∑
p=1

∑
n1,n2,...,np≥1

n1+n2+···+np=n

1. (12)

The sum
Sn =

∑
n1+n2+···+np=n

n1,n2,...,np≥1

1

can be interpreted as the number of ways how to distribute n coins between p
people in such a way that everyone has at least one coin. That is why Sn =

(
n−1
p−1

)
.

It is known (see Appendix for a proof) that
L∑

i=0

(
N

i

)
≤

(
eN
L

)L

, for any L,N ∈ Z
+ and L ≤ N . (13)

From (12) we can write: R(n) ≤ Kκnh
n+κn

2

(
en
κn

)κn

.
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The main theorem of this article is a simple consequence of the previous
proposition.

Theorem 10. Let R(n) denote the number of rich words of length n over an
alphabet with q letters. We have lim

n→∞
n
√

R(n) = 1.

Proof. Let us suppose that limn→∞ n
√

R(n) = λ > 1. Let ε > 0 be such that
λ+ ε < λ2. The definition of a limit implies that there is n0 such that n

√
R(n) <

λ+ ε for any n > n0, i.e. R(n) < (λ+ ε)n. Let K = max{R(1), R(2), . . . , R(n0)}.
It holds for any n ∈ N that R(n) ≤ K(λ + ε)n. Using Propositions 8 and 9 we
obtain lim

n→∞
n
√

R(n) ≤ √
λ + ε < λ, and this is a contradiction to our assumption

that lim
n→∞

n
√

R(n) = λ > 1, it follows that λ = 1 (obviously λ ≥ 1 since it holds

that R(n + 1) ≥ R(n) ≥ 1 for all n > 0).
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Appendix

For the reader’s convenience, we provide a proof of the well-known inequality we
used in the proof of Proposition 9.

Lemma 11.
∑L

k=0

(
N
k

) ≤ (
eN
L

)L
, where L ≤ N and L,N ∈ Z

+ (Z+ denotes
the set of positive integers).

Proof. Consider x ∈ (0, 1]. The binomial theorem states that

(1 + x)N =
N∑

k=0

(
N

k

)
xk ≥

L∑
k=0

(
N

k

)
xk.

By dividing by the factor xL we obtain

L∑
k=0

(
N

k

)
xk−L ≤ (1 + x)N

xL
.

Since x ∈ (0, 1] and k − L ≤ 0, then xk−L ≥ 1, it follows that

L∑
k=0

(
N

k

)
≤ (1 + x)N

xL
.

Let us substitute x = L
N ∈ (0, 1] and let us use the inequality 1 + x < ex, that

holds for all x > 0:

(1 + x)N

xL
≤ exN

xL
=

e
L
N N

( L
N )L

=
(

eN
L

)L

.
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Abstract. One-way probabilistic pushdown automata (or ppda’s) are a
simple model of randomized computation with last-in first-out memory
device known as stacks and, when error probabilities are bounded away
from 1/2, ppda’s can characterize a family of bounded-error probabilis-
tic context-free languages (BPCFL). We resolve a fundamental question
raised by Hromkovič and Schnitger [Inf. Comput. 208 (2010) 982–995]
concerning the limitation of the language recognition power of bounded-
error ppda’s. More specifically, we prove that a well-known language—the
set of palindromes—cannot be recognized by any bounded-error ppda;
in other words, this language stays outside of BPCFL. Furthermore,
we show that, with bounded-error probability, no ppda can determine
whether the center bit of input string is 1 (one). For those impossi-
bility results, we utilize a complexity measure of algorithmic informa-
tion known as Kolmogorov complexity. In our proofs, we first transform
ppda’s into an ideal shape and then lead to a key lemma by employing
a Kolmogorov complexity argument.

Keywords: Probabilistic pushdown automata · Bounded error proba-
bility · BPCFL · Palindromes · Kolmogorov complexity

1 Overview: Challenges and Solutions

A pushdown automaton is a fundamental, mathematical model of computation,
equipped with a single tape and a stack—a memory device that stores a series
of symbols in the last-come fast-served (or the last-in first-out) manner. Unlike
a standard model of Turing machine, the pushdown automata are generally
allowed to make λ-moves (or λ-transitions), by which we can conduct stack
operations without reading any input symbol. In particular, one-way nondeter-
ministic pushdown automata are known to characterize context-free languages.
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A pushdown automaton that chooses the next move (or transition) by flipping a
fair coin is a probabilistic pushdown automaton. Its extraordinary computational
power was discovered in late 1970 s through early 1980s. In this paper, we wish
to continue studying the computational complexity of languages recognized by
one-way probabilistic pushdown automata with error probability bounded away
from 1/2.

1.1 One-Way Probabilistic Pushdown Automata

Concerning the language-recognition power of one-way probabilistic pushdown
automata (or ppda’s, in short), early studies unearthed ppda’s surprising power
by exploiting random selection of their moves. Freivalds (cited in [5]), for
instance, demonstrated that a ppda can recognize a non-context-free language
kEqual = {w ∈ {a1, a2, . . . , ak, b1, b2, . . . , bk}∗ | ∀i ∈ {1, 2, . . . , k} [#ai

(w) =
#bi

(w)]} for each index k ≥ 3 with arbitrarily small two-sided error proba-
bility, where #a(x) means the number of all occurrences of symbol a in x.
A much simpler language Lkeq = {an

1an
2 · · · an

k | n ≥ 0} has one-sided error
probability. In sharp contrast, as Kaņeps, Geidmanis, and Freivalds [5] claimed,
all tally languages (i.e., one-letter languages) recognized by ppda’s with two-
sided bounded-error probability are no more complex than regular languages.
Unlike polynomial-time probabilistic Turing machines, ppda’s cannot in general
amplify their success probability; as an example, Hromkovič and Schnitger [4]
presented a language that is recognized by a certain ppda with error probability
exactly 1/3 but cannot be recognized by any ppda with error probability at most
1
3 − 2−n/8+c log n for a certain absolute constant c > 0.

Conventionally, the families of languages recognized by ppda’s with bounded-
error probability and unbounded-error probability are respectively denoted by
BPCFL and PCFL, analogous to BPP and PP in the polynomial-time setting,
whereas one-way deterministic pushdown automata (or dpda’s) and one-way
nondeterministic pushdown automata (or npda’s) respectively define the lan-
guage families DCFL and CFL.

Concerning PCFL, Macarie and Ogihara [9] showed that PCFL properly
contains CFL. Moreover, any language L that is log-space many-one reducible
to languages in PCFL (notationally, LOGPCFL) is characterized as {x | f(x) >
g(x)} for two functions f, g in #SAC1; hence, the language falls into TC1.

As for BPCFL, Hromkovič and Schnitger [4] proved that BPCFL and CFL
are incomparable, namely, CFL � BPCFL and BPCFL � CFL. To show this
incomparability, they claimed that L3eq belongs to BPCFL but a context-free
language IP = {xy | x, y ∈ {0, 1}∗, |x| = |y|, xR � y ≡ 1 (mod 2)} cannot
belong to BPCFL, where � denotes the bitwise binary inner product. The latter
claim was further expanded by Yamakami (arXiv version of [14]) to the advised
context-free language family CFL/n (which was introduced in [12]) as BPCFL �

CFL/n by a simple application of the swapping lemma for context-free languages
[11] (which was re-proven in [15, Corollary 4.2]). Unlike BPP ⊆ Σp

2 , it seems
unlikely to hold that BPCFL ⊆ ΣCFL

2 , because there is an oracle A for which
BPCFLA

� ΣCFL,A
2 (arXiv version of [14]), where ΣCFL

2 is the second level of
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the CFL hierarchy [14], which is built over CFL by allowing access to oracles
using write-only query tapes.

1.2 Unsolved Questions on BPCFL

Although the language IP does not belong to BPCFL, its “marked” language
IP# = {u#w | |u| = |w|, uw ∈ IP} (with a separator # /∈ {0, 1}) is in DCFL
and thus it must belong to BPCFL. In the proof of IP /∈ BPCFL, Hromkovič
and Schnitger [4] started a contradictory assumption of the existence of a ppda
M for IP and then transformed M into a two-party protocol of two-trial ran-
domized communication. This model is quite different from a standard commu-
nication model used in communication complexity theory. At the next step, they
transformed it into a one-way communication model by fixing a part of inputs
and then applied a discrepancy method to lead to a desired contradiction. The
discrepancy methodology was occasionally used in automata theory (see, e.g.,
[13,15]). Their proof strategy, however, has a severe limitation and does not
seem to be applicable to various other languages. In particular, Hromkovič and
Schnitger left the following membership question unsolved in [4, Sects. 4.1 and
5]. (1) Does Pal = {w ∈ {0, 1}∗ | w = wR} (palindromes) belong to BPCFL?
This language is recognized by an appropriate npda, and thus it is a context-free
language. Related to the first question, we may ask one more natural question
regarding a subset of Pal. (2) Is Paleven = {wwR | w ∈ {0, 1}∗} in BPCFL?
The both languages Pal and Paleven stem from an intuition that finding the
center bit location of an input string may be difficult for ppda’s. An npda, in
stark contrast, has an ability to “guess” (i.e., nondeterministically choose) the
center point of each input string and utilize that information to check whether
the input is of the form wwR. From this observation, we ask one more ques-
tion. (3) Does Center = {u1w | u,w ∈ {0, 1}∗, |u| = |w|} belong to BPCFL?
The language Center is also context-free; in comparison, a similar language
Lcenter = {0n10n | n ≥ 0} already belongs to DCFL.

To resolve all the questions, we definitely need a new proof technique, involv-
ing new technical tools in order to analyze the behaviors of ppda’s.

1.3 Our Solutions

Here, we use a standard model of ppda’s, which are a randomized version of
deterministic pushdown automata (or dpda’s). A one-way probabilistic pushdown
automaton (or a ppda, in short) M is similar to a one-way nondeterministic push-
down automaton (or an npda) except that, instead of making nondeterministic
choices, M flips a fair coin at each step and branches out into two possible tran-
sitions. The probability of each computation path is determined by the number
of coin flips. The ppda has a read-only input tape, on which an input string is
initially placed, surrounded by blank symbols1 and the ppda is assumed to halt

1 There is another well-known model in which an input tape has two endmarkers and
a ppda halts after reading the right endmarker (see, e.g. [6]).
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after reading all non-blank symbols. Ppda’s can probabilistically choose either
λ-moves or non-λ-moves, or both at any moment. Those behaviors are quite
different from npda’s, in which we can eliminate all λ-moves and thus we can
make them halt exactly n + 1 steps just after reading off inputs of length n.

It is, however, possible to transform the original model of ppda’s in several
different ways; here, we will convert every ppda into an “ideal form” in Sect. 2.3.

Recall three open questions raised in Sect. 1.2. In this paper, we resolve neg-
atively all the questions and obtain the following main theorem.

Theorem 1 (Main Theorem). The following languages are all located outside
of BPCFL: (1) Pal and Paleven, and (2) Center.

To prove Theorem 1, we need to explore the properties of ppda’s. First of
all, ppda’s lack handy tools, such as the pumping lemma [1] and the swapping
lemma [11] (re-proven in [15]) with which npda’s can naturally provide. As noted
in Sect. 1.2, the existing tool of [4] is not useful to prove Theorem 1, either. We
thus wish to seek a different approach, known as Kolmogorov complexity. Roughly
speaking, the conditional Kolmogorov complexity C(x|y) of string x conditioned
to string y is the minimal amount of information necessary to produce x algo-
rithmically from y. The Kolmogorov complexity C(x) of x is simply C(x|λ),
where λ is the empty string. This notion of Kolmogorov complexity was used to
describe basic properties of formal languages. Notably, Li and Vitányi [7] and
Glier [2] proposed Kolmogorov-complexity versions of the pumping lemmas for
deterministic finite automata and dpda’s, respectively. Here, we will propose a
similar lemma for bounded-error ppda’s.

Since dpda’s are also bounded-error ppda’s, our lemma must supersede (the
corollary of) KC-DCFL Lemma in [2]. To describe the desired lemma of ours,
we need to introduce basic terminology. Given two languages L1 and L2, we say
that a program p decides L1 for L2 if, for any string x ∈ L2, p can determine
whether x is in L1 (for other inputs, we do not require any condition). Given
a sequence (v1, v2, . . . , vj) of j strings, we write v[j] to denote the concatenated
string v1v2 · · · vj . We also set v[0] = λ. For two strings x and y, y∞x and xy∞ are
a left-infinite string and a right-infinite string of the forms · · · yyyx and xyyy · · · ,
respectively. Moreover, Pref(x) is composed of all prefixes of string x. With
respect to a language L over alphabet Σ, Lx expresses the set {y ∈ Σ∗ | xy ∈ L}.
For each positive integer n, [n] denotes the set {1, 2, . . . , n}.

Lemma 2 (KC-BPCFL Lemma). Let L be a language in BPCFL over alpha-
bet Σ with |Σ| ≥ 2. Let xi, yi ∈ Σ+ for every i ∈ N. For every constant
c0 ≥ 1, there exist three constants c1, s, t ≥ 1 that satisfy the following: for
any u, v1, . . . , vt, w ∈ Σ∗ with u �suf y∞

0 x0 and vi �pref xiy
∞
i for all i ∈ [t], if

the following conditions (1)–(3) hold, then C(w) ≤ c1(log log |u|)s + c1 holds.

(1) Let j ∈ [t]. For any program p and any splitting vj = v′
jv

′′
j , if p decides

Luv[j−1]v
′
j

for Pref(v′′
j ), then C(v′′

j |p) ≤ c0.
(2) For any index j ∈ [t], C(vj) ≥ 2 log log |u|.
(3) For any program p, if p lists all elements in Luv[t] in the lexicographic order,

then C(w|p) ≤ c0.
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We will use this lemma to prove Theorem 1 in Sect. 3. The lemma itself will
be proven in Sect. 4.

2 Preparations for Our Exposition

2.1 Numbers, Alphabets, and Strings

Let Z denote the set of all integers, let N be the set of all natural numbers
(i.e., nonnegative integers), and set N

+ = N−{0}. Given two integers m,n with
m ≤ n, the notation [m,n]Z expresses an integer interval {m,m+1,m+2, . . . , n}
and we abbreviate [1, n]Z for n ∈ N

+ as [n] for simplicity. All logarithms are taken
to base 2 and log 0 is conveniently identified with 0.

Let Σ be any alphabet (i.e., a nonempty finite set). For two strings x, y ∈ Σ∗,
the notation y �suf x (resp., y �pref x) indicates that y is a suffix (resp., a
prefix ) of x, namely, x = wy (resp., x = yw) for a certain string w ∈ Σ∗. For a
language L and a string x, the notation Lx denotes the set {y ∈ Σ∗ | xy ∈ L}.
The empty string is always denoted by λ.

An infinite sequence of symbols in Σ is called an infinite string for conve-
nience. In particular, for two strings x, y ∈ Σ∗, the notation y∞x (resp., xy∞)
refers to a left-infinite (resp., a right-infinite) string of the form · · · yyyx (resp.,
xyyy · · · ). We can extend �pref and �suf to infinite sequences in an obvious
way.

2.2 Our Machine Model: Ppda’s

Formally, a one-way probabilistic pushdown automaton (or a ppda, in short) M
is a tuple (Q,Σ, Γ,ΘΓ , δ, q0, Z0, F ), where Q is a finite set of (inner) states, Σ
is an input alphabet, Γ is a stack alphabet, ΘΓ is a finite subset of Γ ∗ with
λ ∈ ΘΓ , δ : Q × Σ̌ × Γ × Q × ΘΓ → [0, 1] is a probabilistic transition function
(where Σ̌ = Σ ∪{λ}), q0 ∈ Q is an initial state, Z0 ∈ Γ is a bottom marker, and
F ⊆ Q is a set of accepting states (whereas Q − F is a set of rejecting states).
Purely for clarity reason, we express δ(q, σ, a, p, u) as δ(q, σ, a|p, u). This value
δ(q, σ, a|p, u) indicates the probability that, when M scans σ on the input tape
and a in the top of the stack in inner state q, M changes its internal state to p,
moves its input tape head to the right if σ ∈ Σ, and rewrites a by u. Note that
the tape head of M moves only in one direction: from the left to the right. After
reading an input x ∈ Σ∗, however, the tape head is considered to move off the
input region occupied by x. A stack content is expressed as a1a2 · · · ak, where
a1 is the topmost stack symbol and ak is the bottom symbol. For simplicity, we
always demand that M neither removes Z0 nor stores more than two Z0’s.

Define δ[q, σ, a] =
∑

(p,u)∈Q×ΘΓ
δ(q, σ, a|p, u) with σ ∈ Σ̌. When σ = λ, we

call its transition a λ-move (or a λ-transition) and the tape head must stay
still. Using the λ-moves, we can assume without loss of generality that M makes
the next move with probability exactly 1/2. Note that, at any point, M can
probabilistically select either a λ-move or a non-λ-move, or both. This is formally
stated as δ[q, σ, a] + δ[q, λ, a] = 1 for any given triplet (q, σ, a) ∈ Q × Σ × Γ .
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When we say that x is completely read, we mean that M scans and processes
all symbols in x, makes all possible λ-moves that follow the scanning of the
rightmost symbol of x, and moves its tape head to the next cell. We always
assume, for simplicity, that M reads inputs completely. Therefore, a ppda halts
when it reads input completely.

Generally, a ppda may produce an extremely long computation path or even
an infinite computation path; however, we restrict our attention to ppda’s whose
computation paths halt within O(n) steps for input size n. In what follows, we
assume that all ppda’s should satisfy this requirement. A standard definition of
dpda’s and npda’s does not require such a runtime bound, because we can easily
convert those machines to ones that halt within O(n) time (e.g., [3]).

The acceptance probability of M on input x is the sum of all probabilities
of accepting computation paths of M starting with x. We express by pM,acc(x)
the acceptance probability of M on x. Similarly, we define pM,rej(x) to be the
rejection probability of M on x. If M is clear from the context, we often omit
script “M” entirely and write, e.g., pacc(x) instead of pM,acc(x). Given a ppda
M , we simply say that M accepts x if pacc(x) > 1/2 and rejects x otherwise.
Since all computation paths are assumed to halt in linear time, for any given
string x, either M accepts it or M rejects it. In this case, we conventionally say
that M makes unbounded error.

It is useful to consider a modification of the standard notion of configura-
tion. A skew-configuration of a ppda M is a triplet (q, x, r) for which M has
already read x completely, it is now in state q, and its stack consists of r. Let
input(q, x, r) = x and stack(q, x, r) = r. Define sCONF = Q×Σ∗ × (Γ (−))∗Z0,
where Γ− = Γ − {Z0}. Given c, c′ ∈ sCONF , μ(c, c′) expresses a probabil-
ity of obtaining c′ from c by M in a single step. For a fixed c0 ∈ sCONF ,
a possibility space Ω(c0) of M starting at c0 is {(c0, c1, . . .) | ∀i ∈ N

+ (ci ∈
sCONF & μ(ci−1, ci) > 0)}. An initial segment of (c0, c1, . . .) is of the form
(c0, c1, . . . , ck) for a certain k ∈ N. All initial segments of ω in Ω(c0) form a set
Ωfin(c0). In the case of c0 = (q0, λ, Z0), we write Ω and Ωfin for Ω(c0) and
Ωfin(c0), respectively. For an ωk = (c0, c1, . . . , ck) ∈ Ωfin(c0), E(ωk) denotes an
event {ω ∈ Ω | ωk �pref ω} with probability Probμ[E(ωk)] =

∏k−1
i=0 μ(ci, ci+1).

A stack-configuration of M is a pair of the form (q, r) in Q × Γ ∗. We
consider a probability distribution D over all stack-configurations, namely, a
function D : Q × Γ ∗ → [0, 1] satisfying

∑
(q,r)∈Q×Γ ∗ D(q, r) = 1. In con-

trast, a partial probability distribution D : Q × Γ ∗ → [0, 1] requires only∑
(q,r)∈Q×Γ ∗ D(q, r) ≤ 1. For such a D, let |D| =

∑
(q,r)∈Q×Γ ∗ D(q, r). Let

Dx denote a probability distribution produced by M after reading x completely.

2.3 Ppda’s in an Ideal Shape

For every npda, it is always possible to eliminate all λ-moves and limit the set
Q of inner states to Qsimple = {q0, q, qacc} by first transforming an npda M
to its recognition-equivalent context-free grammar, converting it to Greibach
Normal Form, and then translating it back to its recognition-equivalent npda
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(see, e.g., [3]). For ppda’s, in contrast, we can neither eliminate λ-moves nor
limit Q to Qsimple. Furthermore, we cannot control the number of consecutive
λ-moves. Despite all those difficulties, we can still abridge certain behaviors of
ppda’s.

First of all, we can restrict ppda’s so that they make only the following
transitions. (1) Scanning σ ∈ Σ, preserve a topmost stack symbol (called a
stationary operation). (2) Scanning σ ∈ Σ, push a new symbol u (∈ Γ − {Z0})
without changing any other symbols in the stack. (3) Scanning σ ∈ Σ, pop a
topmost stack symbol. (4) Without scanning any input symbol (i.e., making a
λ-move), pop a topmost stack symbol. Additionally, Step (4) comes only after
Steps (3) or (4). A ppda that satisfies these conditions is said to be in an ideal
shape. We can state those conditions more formally. A ppda N is in an ideal
shape if it satisfies the following conditions. If δ(q, σ, a|p, u) �= 0, then (i) σ = λ
implies u = λ and (ii) σ �= λ implies u ∈ {λ, ba, a} for a certain b ∈ Γ − {Z0}.
Moreover, for any (q, σ, a) with σ �= λ, (iii) if δ(q, σ, a|p, ba) �= 0 with b ∈ Γ , then
δ[p, λ, b] = 0 and (iv) if δ(q, σ, a|p, a) �= 0, then δ[p, λ, a] = 0.

The next lemma will show that any ppda can be converted into its “equiva-
lent” ppda in an ideal shape.

Lemma 3 (Ideal Shape Lemma). For each ppda M , there exists another
ppda N in an ideal shape for which pM,acc(x) = pN,acc(x) for all x.

The proof of Lemma 3 is similar in nature to one in [10]. In the remaining
sections, ppda’s are implicitly assumed to be in an ideal shape.

2.4 BPCFL and Closure Properties

Let M be a ppda with input alphabet Σ. The notation L(M) stands for the set of
all strings x ∈ Σ∗ accepted by M ; that is, L(M) = {x ∈ Σ∗ | pM,acc(x) > 1/2}.
Given a language L, we say that M recognizes L if L = L(M). We write PCFL for
the family of all languages recognized by unbounded-error ppda’s. In contrast,
a ppda M is said to make bounded error if there exists a constant ε ∈ [0, 1/2)
(called an error bound) such that, for every input x, either pM,acc(x) ≥ 1 −
ε or pM,rej(x) ≥ 1 − ε. As noted in Sect. 1, BPCFL is the language family
consisting of all languages recognized by bounded-error ppda’s. We further define
BPCFLε as a variant obtained from BPCFL by fixing an error bound to be ε for
underlying ppda’s. Note that BPCFL0 = DCFL, BPCFL =

⋃
0≤ε<1/2 BPCFLε,

and DCFL � BPCFL � PCFL [4].
We briefly state several closure properties of BPCFL under natural Boolean

operations. By exchanging the roles of Qacc and Qrej , we can easily verify that
BPCFL is closed under complementation.2 Nevertheless, other Boolean closure
properties, such as union and intersection, hold for BPCFL in a limited form.

2 This argument implicitly utilizes the fact that our ppda’s have a runtime bound of
O(n) for all computation paths.
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Lemma 4. BPCFL is closed under union and intersection with regular lan-
guages; namely, {A ◦ B | A ∈ BPCFL, B ∈ REG} ⊆ BPCFL for any operator
◦ ∈ {∪,∩}.
Lemma 5. Let M1 and M2 be two ppda’s with the same input alphabet and
assume that M1 and M2 make error with probability at most ε1 and ε2, respec-
tively. If 0 ≤ ε1 + ε2 < 1/3, then L(M1) ∪ L(M2) as well as L(M1) ∩ L(M2) can
be recognized by suitable ppda’s with error probability at most 2+3ε1+3ε2

6 .

We omit the proofs of the above two lemmas. The upper bound of Lemma 5 is
tight when ε1 = ε2 = 0, because, as noted in Sect. 1.1, Hromkovič and Schnitger
[4] exhibited two languages that satisfy the premise of the lemma but their union
cannot be recognized by any ppda with error probability at most 1

3 −2−n/8+c log n

for a constant c > 0.

2.5 Kolmogorov Complexity

For simplicity, our alphabet Σ contains at least 0 and 1. For any string x over Σ,
the Kolmogorov complexity of x is roughly the size of the “minimal” program
such that, when it runs with no input, it eventually produces x and halts.

Given a number n ∈ N
+, bin(n) expresses the binary representation of n; e.g.,

bin(1) = 1, bin(2) = 10, and bin(3) = 11. Given a string x = x1x2 · · · xn of length
n in Σ∗, the self-delimiting code of x is x = 1|bin(n)|0bin(n)x. We fix a universal
Turing machine U , which can simulate the behaviors of any given program p
on any given input y. The conditional Kolmogorov complexity of x conditional
to y is C(x|y) = min{|p| | U(py) = x, p ∈ Σ∗} and the Kolmogorov complexity
of x is C(x) = C(x|λ). It is known that (1) C(x|y) ≤ C(x) ≤ |x| + O(1),
(2) for any totally recursive function f : Σ∗ → Σ∗, C(f(x)|y) ≤ C(x|y) +
O(1), and (3) C(x) ≤ C(x|y) + C(y) + O(min{log |x|, log |y|}) (see, e.g., [8]
for details). A string x is called compressible if C(x) < |x| and incompressible
otherwise. Similarly, a number n ∈ N

+ is compressible if C(bin(n)) < log n and
incompressible otherwise.

3 Proof of the Main Theorem

Using KC-BPCFL Lemma (Lemma 2), we will demonstrate how to prove the
main theorem (Theorem 1). Due to page limit, we will prove only Theorem 1(1)
for Pal and Paleven. The first goal of ours is to verify by way of contradiction
that no ppda can recognize Paleven with bounded-error probability. For this
purpose, we will start with a contradictory assumption that Paleven belongs
to BPCFL, and we will then apply KC-BPCFL Lemma to lead to the desired
contradiction.

Proof of Theorem 1(1). Here, we will first prove that Paleven /∈ BPCFL. To
lead to a contradiction, we assume that Paleven ∈ BPCFL. For convenience,
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we write L for Paleven. To apply Lemma 2, we need to show that Conditions
(1)–(3) of the lemma are satisfied. We set x = 1, x̃ = 11, and y = 0.

As the starting point, we make c0 large enough and then take constants
c1, s, t ≥ 1 given by the lemma. We also set n to be a sufficiently large incom-
pressible even number. This implies that C(n) ≥ log n. We define u = 0n1,
v1 = 10n, vj = 110n for each index j ∈ [2, t]Z, and w = 110n. Note that
u �suf y∞x, v1 �pref xy∞, and vj �pref x̃y∞ for any j ∈ [2, t]Z. It follows
from these definitions that uv1 ∈ L, uv1v2 ∈ L, uv[3] ∈ L, . . ., uv[t] ∈ L, and
uv[t]w ∈ L.

(1) We want to see that Condition (1) is met. Let j ∈ [t]. There are sev-
eral cases to consider separately. Here, we consider only the case of j ≥ 2.
Let vj = v′

jv
′′
j be any splitting. Let p be a program that decides Luv[j−1]v

′
j

for
Pref(v′′

j ). Let us examine the case where v′
j = 110r and v′′

j = 0n−r for a cer-
tain index r ∈ [0, t]Z. Note that Luv[j−1]v

′
j

= {x | 0n1(10n1)j−110rx ∈ L} and
Pref(v′′

j ) = {0i | 0 ≤ i ≤ n− r}. It is easy to see that v′′
j is lexicographically the

first element in Luv[j−1]v
′
j
. We define an algorithm that runs p consecutively on

different inputs λ, 0, 02, 03, . . . until p accepts for the first time, and then outputs
the first accepted input as v′′

j . It then follows that C(v′′
j |p) is upper-bounded by

a certain constant, which is not depending on (j, n). The other cases, such as
v′

j = 1 and v′′
j = 10n, are similarly treated.

(2) For each index j ∈ [t], since n is incompressible, we obtain C(vj) ≥
C(bin(n)) ≥ log n. Thus, Condition (2) is satisfied.

(3) Take a program p that lists all elements in Luv[t] in the lexicographic order.
Let us consider another program that, with feeding no input, runs p and outputs
lexicographically the first element in Luv[t] . Since Luv[t] = {x | 0n1(10n1)t−11x ∈
L}, w is lexicographically the first string in Luv[k] . Therefore, this new program
indeed produces w. As a consequence, C(w|p) is upper-bounded by a certain
constant. Condition (3) is therefore met.

From the above (1)–(3), L satisfies all the premises of KC-BPCFL Lemma,
and therefore we obtain C(w) ≤ c1(log log |u|)s +c1 < log n since n is sufficiently
large. On the contrary, it follows that C(w) ≥ C(bin(n)) ≥ log n because n is
incompressible. This brings us a clear contradiction. Therefore, we conclude that
Paleven is not in BPCFL.

It is easy to prove by Lemma 4 that Pal ∈ BPCFL implies Paleven ∈ BPCFL.
Since Paleven /∈ BPCFL, we immediately obtain Pal /∈ BPCFL. ��

4 Proof of the KC-BPCFL Lemma

4.1 A Technical Proposition

Finally, we are ready to show KC-BPCFL Lemma (Lemma 2). Firstly, we intend
to prove a technical assertion, Proposition 6, which describes the behaviors of
partial probability distributions of stack-configurations of a given ppda.

Let us introduce necessary terminology to describe the proposition. Take a
bounded-error ppda M = (Q,Σ, Γ,ΘΓ , δ, q0, Z0, F ) and denote its error bound
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in [0, 1/2) by ε. Suppose that a sequence k = (k1, k2, . . . , kj) on N
+ is fixed.

Given strings u, v1, v2, . . . , vj and a stack-configuration (q, r) of M , we denote by
D

(k)
u|v[j−1]|vj

(q, r) the probability of generating (q, r) by M after reading uv[j−1]vj

completely under the condition that, while reading each vi for i ∈ [j − 1], M ’s
stack height keeps above ki. Moreover, we define D

(k)
u|v[j−1]|vj ,≤(q, r) to be the

probability of generating (q, r) by M after reading uv[j−1]vj completely such
that, while reading each vi (i ∈ [j −1]), M ’s stack height is more than ki and, at
a certain point of reading vj , its stack height becomes less than or equal to kj .

Given c0 ∈ sCONF , z ∈ Σ∗, and k ∈ N, an event E>k(c0, z) consists of all
(c0, c1, . . .) ∈ Ω(c0) satisfying that there is an i ∈ N with input(ci) = z and,
for any such i and any j ∈ [i], |stack(cj)| > k. A biased transition probability
μ>k(c, c′) is set to be μ(c, c′)/μ>k[c] if |stack(c)|, |stack(c′)| > k and μ>k[c] > 0,
and 0 otherwise, where μ>k[c] = Probμ[{(c, c′) | c′ ∈ sCONF, |stack(c′)| > k}].
For any partial probability distribution D, we define a new partial probability
distribution Hz,>kD as Hz,>kD(q, r) =

∑
c0

D(c0)Probμ>k
[E>k(c0, z)]. Write

HzD for Hz,>0D. Similarly, (c0, c1, . . .) is in E≤k(c0, z) if there are indices
i ∈ N and j ∈ [i] for which input(ci) = z and |stack(cj)| ≤ k. We then define
μ≤k(c, c′) = μ(c, c′)/(1 − μ>k[c]) if |stack(c′)| ≤ k and μ>k[c] < 1, and 0 other-
wise. Finally, set Hz,≤kD(q, r) =

∑
c0

D(c0)Probμ≤k
[E≤k(c0, z)].

Let ε′ ∈ [0, 1/2) and let D and D′ be two partial probability distributions on
sCONF . We denote by pacc(D) (resp., prej(D)) the acceptance (resp., rejection)
probability of M at D; namely, the sum of probabilities D(q, r) for all q ∈ F
(resp., q ∈ Q − F ) and all r ∈ (Γ (−))∗Z0. Now, let H ′

σ ∈ {Hσ,Hσ,>k,Hσ,≤k},
where σ refers to a “symbolic” variable. We say that (D′,H ′

σ) is ε′-mimics
(D,Hσ) on x if, for all strings z ∈ Pref(x) and any sign τ ∈ {acc, rej},
pτ (H ′

zD
′) ≥ ε′ iff pτ (HzD) > 1/2.

The proposition given below is quite technical but the meaning of each con-
dition will become clear in the proof of Lemma 2 in Sect. 4.2.

Proposition 6. Let Σ be an alphabet with 0, 1 ∈ Σ. Let M be a ppda that
recognizes a language with error probability at most ε with stack alphabet Γ . Let
xi, yi ∈ Σ+ be any strings for each i ∈ N. Given each constant c0 ≥ 1, there
always exist constants c1, s, t, k1, . . . , kt ≥ 1 that satisfy the following statement.
For any strings u, v1, . . . , vt, w ∈ Σ∗ with u �suf y∞

0 x0 and vi �pref xiy
∞
i

for all i ∈ [t], if the following three conditions (1)–(3) hold, then C(w) ≤
c1(log log |u|)s + c1. Let ε be 1 − 2ε if ε > 1

3 and 2ε otherwise.

(1) Let j be any number in [t] and let H ′
σ ∈ {Hσ,Hσ,>kj

,Hσ,≤kj
}. Con-

sider any splitting vj = v′
jv

′′
j and any partial probability distribution Dj

on sCONF . Assume that (Dj ,H
′
σ) ε-mimics (Duv[j−1]v

′
j
,Hσ) on v′′

j . Let-
ting Av′

j
= {(q, r, η) | η = Dj(q, r)/|Dj | > 0}, it then follows that

C(v′′
j |〈Av′

j
, |Dj |, ε〉) ≤ c0, where 〈·, ·, ·〉 expresses an appropriate effective

encoding.
(2) For any index j ∈ [t], C(vj) ≥ 2 log log |u|.
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(3) Finally, let Dt+1 be any partial probability distribution on sCONF . Assume
that (Dt+1,Hσ) ε-mimics (Duv[t] ,Hσ) on w. Letting Bt+1 = {(q, r, η) | η =
Dt+1(q, r)/|Dt+1| > 0}, it then follows that C(w|〈Bt+1, |Dt+1|, ε〉) ≤ c0.

Since the proof of Proposition 6 is lengthy, we leave it to a journal version of
this paper.

4.2 Proof of Lemma 2

Now, we are ready to give the proof of Lemma 2 based on Proposition 6.

Proof of Lemma 2. Let L ∈ BPCFL and take an appropriate ideal-shape
ppda M that recognizes L with error probability at most ε ∈ [0, 1/2). Assuming
Conditions (1)–(3) of Lemma 2, hereafter, we want to derive the conclusion of
C(w) ≤ c1(log log |u|)s + c1. To obtain this consequence, it suffices to show that
Conditions (1)–(3) of Proposition 6 are satisfied because the proposition ensures
the same conclusion. In what follows, we will discuss each of the three conditions
in Proposition 6 separately. Let u, v1, . . . , vt, w denote arbitrary strings.

To simplify our argument below, we intend to ignore an approximation of
each partial probability distribution produced at any moment in a computation
of M .

(1) We first target Condition (1) of Proposition 6. Let j ∈ [t]. Let vj = v′
jv

′′
j be

any splitting. Let Dj = Duv[j−1]v
′
j

and Av′
j

= {(q, r, η) | η = Dj(q, r)/|Dj | > 0}.
Let us consider the following program p. Taking input x and auxiliary input

(Av′
j
, |Dj |, ε′), recover Dj from (Av′

j
, |Dj |, ε) and then run M on x starting with

Dj . Accept if M ’s acceptance probability is more than 1 − ε. Notice that we
simulate M in a deterministic fashion. Here, we claim the following.

Claim 7. The above program p decides Luv[j−1]v
′
j

for Pref(v′′
j ).

Proof. Let z ∈ Pref(v′′
j ). Note that, by L = L(M), uv[j−1]v

′
jz ∈ L iff

pacc(z|Dj) ≥ 1 − ε. By the definition of p, whenever uv[j−1]v
′
jz ∈ L, p cor-

rectly accepts z with probability at least 1−ε. Hence, we can determine whether
z ∈ Luv[j−1]v

′
j
. ��

Condition (1) of Lemma 2 then ensures that C(v′′
j |p) ≤ c0. Clearly, p depends

on (Av′
j
, |Dj |, ε′) as well as a constant amount of information on M . Hence,

C(v′′
j |〈Av′

j
, |Dj |, ε′〉) ≤ c′

0 for an appropriate constant c′
0 ≥ c0. This proves the

validity of Condition (1) of the proposition.
(2) Condition (2) of the proposition obviously holds.
(3) Finally, we want to assert the validity of Condition (3) of Proposition 6.

Let Dt+1 = Duv[t] and let Bt+1 = {(q, r, η) | η = Dt+1(q, r)/|Dt+1| > 0}.
Here, we consider the following program p. At each round, recursively gener-

ate a string x in the lexicographic order. From 〈Bt+1, |Dt+1|, ε〉, generate Dt+1

and run M on x starting with Dt+1. Whenever x is accepted with probability
at least 1 − ε, output x. Continue to the next round.

Claim 8. The above program p lists all elements in Luv[t] .
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Thus, Condition (3) of the lemma implies C(w|p) ≤ c0. Since p depends
on (Bt+1, |Dt+1|, ε) and M , we obtain C(w|〈Bt+1, |Dt+1|, ε〉) ≤ c′′

0 for a certain
constant c′′

0 ≥ c0.
Since all the premises of Proposition 6 are satisfied for max{c′

0, c
′′
0}, the propo-

sition implies C(w) ≤ c1(log log |u|)s + c1 for certain constants c1, s ≥ 1. This is
also the conclusion of Lemma 2. Therefore, the lemma is true.

In the end of this proof, we remark that, in general, we cannot deal with
arbitrary real numbers that appear in any partial probability distribution in the
above argument. Hence, if we want to handle encoding 〈Av′

j
, |Dj |, ε〉, then we

need to approximate each real value Dj(q, r) with precision of  bits, where  =
�log(1/η0)� with η0 = (12 − ε) · 1

|Q||Γ ≤k0 | . We leave to the reader the justification
of the above argument by using this approximation. ��
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Abstract. Transducers order infinite sequences into natural classes, but
permutation transducers provide a finer classification, respecting certain
changes to finite segments. We investigate this hierarchy for non-periodic
sequences over {0, 1} in which the groups of 0s and 1s grow according
to simple functions like polynomials. In this hierarchy we find infinite
strictly ascending chains of sequences, all being equivalent with respect
to ordinary transducers.

1 Introduction

Equivalence under transducers organizes infinite sequences into a hierarchy with
interesting properties, as ongoing research is revealing, see for example [3,6] and
the conference paper [5] at DLT 2016. In this setting the main definition is that
for two sequences σ, τ we have that σ ≥ τ if and only if there exists a transducer
T that produces τ when consuming σ. Here a transducer is a deterministic
automaton producing output strings on every transition. Two sequences σ, τ are
called equivalent, notation σ ∼ τ if both σ ≥ τ and τ ≥ σ. A straightforward
construction shows that σ ∼ uσ for any sequence σ and any finite string u,
so prepending or removing a finite initial word remains inside the class. The
pre-order ≥ gives rise to an order on the equivalences classes of ∼; the bottom
element in this order consists of the class of ultimately periodic sequences.

In the current paper we investigate a more fine-grained hierarchy on
sequences based on an alternative pre-order ≥p. Here prepending or removing
initial segments may change the class, but other basic properties are kept, like
σ ≥p h(σ) for any morphism h. The idea is that we add the requirement that
transducers should be permutation transducers. This means that not only for
every state and symbol there is exactly one outgoing arrow (as is required by
determinism), but also exactly one incoming arrow: it will thus be a permutation
automaton (see [1,7,8]) with output, just like a finite state transducer is a DFA
with output. Our original motivation for permutation transducers was to be able

c© Springer International Publishing AG 2017
É. Charlier et al. (Eds.): DLT 2017, LNCS 10396, pp. 365–377, 2017.
DOI: 10.1007/978-3-319-62809-7 28
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to compare and classify two-sided sequences as was elaborated in [2]. There we
already made some first investigations on ordering (one-sided) sequences by per-
mutation transducers, raising several issues that we worked out in the current
paper.

So we define σ ≥p τ if and only if a permutation transducer P exists such
that P (σ) = τ , and σ ∼p τ if and only if both σ ≥p τ and τ ≥p σ. In [2] we
already showed that 0ω �∼p 10ω, a clear illustration that initial segments matter
in this context. Again the pre-order ≥p on sequences gives rise to an order on ∼p-
equivalence classes; here the bottom element is the class of all periodic sequences.
In [2] we showed that the ultimately periodic sequences that are not periodic
form an atomic class. Here the focus is on sequences that are not ultimately
periodic. In particular, we look at sequences of the shape

〈f〉 = 10f(0)10f(1)10f(2) · · · and [[f ]] = 0f(0)1f(1)0f(2) · · · ,

for various functions f : N → N, in particular polynomials. Based on ordinary
transducers one has 〈f〉 ∼ [[f ]] if f(n) > 0 for all n ∈ N, and for all linear
f, g it holds 〈f〉 ∼ 〈g〉. A main result of [4] states that the class containing the
sequences of the shape 〈f〉 for f linear is atomic, that is, if 〈f〉 ≥ σ for f linear,
then either σ ≥ 〈f〉 or σ is ultimately periodic. In [3] it was shown that a similar
result holds for quadratic functions, while in [5,6] it was shown that for higher
degree it does not hold. Here we are interested in considering ≥p and ∼p instead.

In [2] we already showed that 〈f〉 ∼p 〈g〉 for f, g linear. Here we show that
the corresponding class is not atomic: we show that for ascending f we have
〈f〉 ≥p [[f ]] but not the other way around, and we even show that the class
containing 〈f〉 for linear f is an upper bound of infinitely many distinct classes,
in particular

[[n]] <p [[n + 2]] <p [[n + 4]] <p [[n + 8]] <p [[n + 16]] <p · · · ≤p 〈n〉.

We write σ <p τ if τ ≥p σ but not σ ≥p τ , and use [[f(n)]] as shorthand for [[n 
→
f(n)]], and similarly for 〈·〉. While all 〈f〉 for f quadratic are equivalent under
ordinary transduction, we show that this does not hold for ∼p; in particular, we
obtain the infinite ascending chain

〈(n+1)2〉 <p 〈n2〉 <p 〈(n−1)2〉 <p 〈(n−2)2〉 <p 〈(n−4)2〉 <p 〈(n−8)2〉 <p · · · .

1|ε

0|ε
1|ε

0|1

1|ε

0|0

1|ε

0|ε

Typically, for proving σ <p τ the easier part
is giving an explicit permutation transducer P
satisfying P (τ) = σ. The hard part is showing
that a permutation transducer for the other way
around does not exist. For instance, the easy part
of showing [[n]] <p [[n + 2]] can be done using
the following permutation transducer, proving
[[n + 2]] ≥p [[n]]. In presenting a transducer by
a picture an arrow labeled by a|u means that an
input symbol a is consumed and the string u is
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produced as output. The initial state is indicated by an incoming arrow not
starting in a state. When consuming [[n+2]] = 02130415 · · · by this permutation
transducer indeed [[n]] = 1021304 · · · is produced. Here the two 1-arrows between
the two top states are never used, and may also produce anything else.

An even simpler ordinary transducer doing the same job, but which is not a
permutation transducer, is easily found, as [[n]] can also be obtained from [[n+2]]
by simply putting a single symbol 1 in front.

The remaining proof obligation, that no permutation transducer exists trans-
forming [[n]] to [[n+2]], is much harder. For doing this we investigate the pattern
of any sequence that can be obtained by applying a permutation transducer to
[[n]], and then prove that [[n+2]] does not satisfy this pattern. For all other claims
in this paper containing ‘<p’ we give similar arguments all being instances of
the following three cases. The first case investigates the creation of isolated 1s,
leading to [[f ]] <p 〈f〉 for ascending f . The second one investigates transducts of
〈f〉 and [[f ]] for those f (such as f(n) = n!) for which for every m there exists N
such that f(n) ≡ 0 mod m whenever n > N . The third one investigates trans-
ducts of 〈f〉 and [[f ]] for f , such as polynomials, for which n 
→ f(n) mod m is
periodic for every m.

We consider four basic ways to transform functions f : N → N: transforming
f(n) to f(n) + k and to f(n + k) for any k ≥ 1, and to kf(n) and to f(kn)
for any k > 1. For all of them we investigate how 〈f(n)〉 and [[f(n)]] relate
to their transformed variants, both with respect to ordinary transducers and
permutation transducers.

The paper is organized as follows. We start by preliminaries in Sect. 2. In
Sect. 3 we classify permutation transducts of particular sequences σ, in order
to be able to prove σ �≥p τ for certain τ . In Sect. 4 we investigate the effect of
transforming f in the above given four ways. In Sect. 5 we investigate [[f ]] and
〈f〉 for linear functions f ; in particular, we give an infinite strictly ascending
chain of them. In Sect. 6 we investigate polynomials of higher degree; in partic-
ular, we give an infinite strictly ascending chain of sequences 〈f〉 for quadratic
polynomials f . Due to lack of space some proofs are omitted in this paper; they
can be found in the full version [9].

2 Preliminaries

In the following we assume Σ = {0, 1}.

Definition 1. A finite state transducer T = (Q, q0, δ, λ) consists of a finite set
Q, q0 ∈ Q, δ : Q × Σ → Q, λ : Q × Σ → Σ∗. For σ : N → Σ we define
T (σ) = λ(q0, σ(0))λ(q1, σ(1))λ(q2, σ(2)) · · · for qi defined by qi+1 = δ(qi, σ(i))
for i ≥ 0.

A permutation transducer over Σ is a finite state transducer T = (Q, q0, δ, λ)
with the additional requirement that for every a ∈ Σ the function q 
→ δ(q, a) is
a bijection from Q to Q.

For σ, τ : N → Σ we define ≥p, ∼p and >p by

σ ≥p τ ⇐⇒ ∃ permutation transducer T : τ = T (σ),
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σ ∼p τ ⇐⇒ σ ≥p τ ∧ τ ≥p σ, σ >p τ ⇐⇒ σ ≥p τ ∧ ¬(τ ≥p σ).

In drawing pictures for transducers we write an arrow from p to q labeled by
a|u if δ(p, a) = q and λ(p, a) = u. We use ≥,∼, > for the similar relations on
sequences based on ordinary finite state transducers, that is, without the addi-
tional bijectivity requirement. These were studied extensively in [3–6]. To see the
effect of the additional requirement of permutation transducers, throughout the
paper in presenting properties of ≥p,∼p, >p we often present the corresponding
properties of ≥,∼, >.

For a homomorphism h : Σ → Σ+ the transducer Th = ({q0}, q0, δ, λ) defined
by δ(q0, a) = q0 and λ(q0, a) = h(a) for all a ∈ Σ is a permutation transducer
satisfying Th(σ) = h(σ) for all σ, proving that σ ≥p h(σ). In particular, for
choosing h to be the identity we obtain that ≥p is reflexive. A straightforward
construction given in [2] shows that ≥p is transitive. Hence ≥p is a pre-order,
yielding a partial order on equivalence classes with respect to the equivalence
relation ∼p. By defining h(a) = 0 for all a ∈ Σ we obtain Th(σ) = 0ω for every σ.
Hence the equivalence class of 0ω is the bottom element in this order; it consists
of all (purely) periodic sequences as was shown in [2].

A partial permutation transducer T = (Q, q0, δ, λ) consists of a finite set Q
and initial state q0 ∈ Q, together with a partial function δ : Q × Σ → Q such
that for every q ∈ Q, a ∈ Σ there is at most one q′ ∈ Q such that δ(q′, a) = q,
and λ : Q×Σ → Σ∗ is a partial function that is defined on the same pairs that δ
is defined for. Thus, in a permutation transducer for every symbol a ∈ Σ there is
exactly one incoming and exactly one outgoing a-arrow for every state q ∈ Q, but
in a partial permutation transducer ‘exactly one’ is weakened to ‘at most one’.
As observed in [2], just like every partial permutation of a set can be extended
to a permutation, every partial permutation transducer can be extended to a
permutation transducer. Sometimes we will present a permutation transducer by
only giving a partial permutation transducer and leaving the extension implicit.

From the introduction recall the definitions

〈f〉 = σf = 10f(0)10f(1)10f(2) · · · and [[f ]] = 0f(0)1f(1)0f(2) · · ·

for any f : N → N. For the latter it is natural to require f(n) > 0 for all
n > 0, to avoid collapsing groups; we will say that f is positive if it satisfies
this property. Note that every sequence σ that is not eventually constant has a
natural representation [[f ]] for some (positive) function f . The same is true for
〈f〉 if σ(0) = 1, with f usually not positive.

Writing 〈f(n)〉 for 〈f〉, we obtain 〈n〉 = 11010010001 · · · , and 〈n + 1〉 =
101001000 · · · , so 〈n + 1〉 = tail(〈n〉). Using similar shorthand notation, [[n]] =
1102130415 · · · , and [[n + 1]] = 0112031405 · · · , so Th([[n]]) = [[n + 1]] and Th([[n +
1]]) = [[n]] for h(0) = 1, h(1) = 0, proving [[n]] ∼p [[n + 1]].

We continue with a fruitful lemma.

Lemma 2. Let P be a permutation transducer over a finite alphabet Σ. Then
there exists an integer N > 0 such that for every state q and every u ∈ Σ+ it
holds that δ(q, uN ) = q.
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Proof. Let n be the number of states. Then q 
→ δ(q, u) is a permutation on the
n states. Choose N to be the least common multiple of all k with k ≤ n. Then
q 
→ δ(q, uN ) = (q 
→ δ(q, u))N is the identity. ��
Proposition 3. For every positive function f : N → N holds

• 〈f〉 ∼ [[f ]], and
• 〈f〉 ≥p [[f ]].

Proof. This is proved by the following two transducers.

1|ε
0|1

1|ε
0|0

0|10
1|0

1|10

0|0

0|101|110

The left one is a permutation transducer replacing sequences of consecutive 0’s
that are demarcated by a single 1, alternatingly by the same number of 0’s or
1’s; hence transforming 〈f〉 to [[f ]], showing 〈f〉 ≥p [[f ]] and thus also 〈f〉 ≥ [[f ]].

The right one is an ordinary transducer (but not a permutation transducer)
transforming [[f ]] to 〈f〉, showing that [[f ]] ≥ 〈f〉. Together with the just observed
〈f〉 ≥ [[f ]] this proves 〈f〉 ∼ [[f ]]. ��
Now we show that [[f ]] ≥p 〈f〉 does not generally hold: for certain f no per-
mutation transducer P exists transforming [[f ]] to 〈f〉. The key idea is that the
isolated 1s in 〈f〉 can not be created when the input only contains big groups of
0s and 1s as in [[f ]]. In fact we prove the following stronger result.

Theorem 4. Let f, g : N → N satisfy limn→∞ f(n) = limn→∞ g(n) = ∞. Then
no permutation transducer P such that P ([[f ]]) = 〈g〉.
Proof. Assume such a P = (Q, q0, δ, λ) exists. Use Lemma 2 to choose p such
that δ(q, 0p) = δ(q, 1p) = q for all states q. Write u(q, 0) = λ(q, 0p) and u(q, 1) =
λ(q, 1p) for all states q. Since limn→∞ f(n) = ∞ a number N exists such that
f(n) > 2p for all n ≥ N . Hence beyond a finite initial part, the sequence [[f ]] is
composed of strings 0k and 1k for k > 2p. For each such string the permutation
transducer P produces a prefix of u(q, i)ω that starts by u(q, i)2 for some state
q and i ∈ {0, 1}. Beyond a finite initial part, the resulting output 〈g〉 is the
concatenation of such prefixes. Assume that one of the occurring strings u(q, i)2

contains a symbol 1. Then it contains at least two symbols 1 at distance at most
m, where m is the maximal size of all u(q, i). Since limn→∞ g(n) = ∞, the total
number of occurrences of u(q, i)2 in 〈g〉 that contain a symbol 1, is finite. This
contradicts the fact that 〈g〉 contains infinitely many 1s. ��
For proving more claims of the type σ �≥p τ we typically investigate the shape
of sequences P (σ), the transducts of σ: then it remains to show that τ is not of
the required shape. In the next section we give a number of results of this type.
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3 Classifying Transducts

We want to classify permutation transducts of sequences of the shape 〈f〉 and [[f ]]
for well-known functions f , like polynomials. A key property of polynomials f
that will be exploited is that the function n 
→ (f(n) mod m) is periodic for every
m > 0. We start by a class of functions for which the analysis is slightly simpler,
namely functions like f(n) = n! for which n 
→ (f(n) mod m) is ultimately 0 for
every m > 0.

Theorem 5. Let f : N → N be a positive function for which for every m > 0
there exists N ∈ N such that f(n) ≡ 0 mod m for all n > N . If [[f ]] ≥p σ then
there exist u, c, d ∈ Σ∗ and b, h ∈ N such that

σ = u
∞∏

i=0

(
cf(b+2i)/hdf(b+2i+1)/h

)
= ucf(b)/hdf(b+1)/hcf(b+2)/hdf(b+3)/h · · · .

Proof. Let P = (Q, q0, δ, λ) be a permutation transducer such that P ([[f ]]) = σ.
By Lemma 2 there exists h such that δ(q, 0h) = δ(q, 1h) = q for all q. Choose
b even such that f(i) ≡ 0 mod h for all i ≥ b. Let u be the output of P of the
initial part v = 0f(0)1f(1) · · · 1f(b−1), and let q = δ(q0, v). Let c = λ(q, 0h) and
d = λ(q, 1h). Then the next blocks 0f(b), 1f(b+1), 0f(b+2), 1f(b+3), . . . produce
output cf(b)/hdf(b+1)/hcf(b+2)/hdf(b+3)/h · · · , exactly the pattern claimed. ��
Corollary 6. [[n!]] �≥p [[n! − 1]].

Proof. Suppose that [[n!]] ≥p [[n! − 1]]. Then by Theorem 5 we obtain

[[n! − 1]] = ucb!/hd(b+1)!/hc(b+2)!/hd(b+3)!/h · · · .

Since in [[n! − 1]] only groups of 0s and 1s occur of increasing size, both c and d
either consist only of 0s or only of 1s. Since [[n! − 1]] contains infinitely many 0s
and infinitely many 1s, either c consists of 0s and d consists of 1s, or the other
way around. But then the resulting consecutive groups of 0s and 1s have sizes
|c|b!/h, |d|(b + 1)!/h, |c|(b + 2)!/h), |d|(b + 3)!/h · · · , ultimately divisible by any
number, which does not hold for the group sizes n!− 1, (n+1)!− 1, (n+2)!− 1,
(n + 3)! − 1 . . . in [[n! − 1]]. This contradiction proves [[n!]] �≥p [[n! − 1]]. ��
Corollary 7. [[n!]] �≥p [[(2n)!]].

Proof. As in the previous proof, use the form of the transducts of [[n!]] given by
Theorem 5: again c and d both consist of copies of a single symbol, different
for the two. But now it will be impossible for such transduct to equal [[(2n)!]]
because the growth of the groups in the transduct is like a multiple of n!, which
is much slower than that of the groups in [[(2n)!]]. ��
For the same class of functions we now give a characterization for transducts of
〈f〉 rather than [[f ]].
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Theorem 8. Let f : N → N be a function for which for every m > 0 there exists
N ∈ N such that f(n) ≡ 0 mod m for all n > N . If 〈f〉 ≥p σ then there exist
k > 0, a ≥ 0 and u, p0, · · · , pk−1, c0, · · · , ck−1 ∈ Σ∗ such that

σ = u

∞∏

j=0

(
k−1∏

i=0

pic
f(a+i+jk)/k
i

)
= up0c

f(a)/k
0 p1c

f(a+1)/k
1 · · · .

Proof. Assume that P (〈f〉) = σ for a permutation transducer P = (Q, q0, δ, λ).
Choose k by Lemma 2 such that δ(q, 0k) = δ(q, 1k) = q for all q ∈ Q. By
the assumption on f there exists a such that f(n) ≡ 0 mod k for all n ≥ a.
Let v = 10f(0)10f(1)1 · · · 10f(a−1), which is a prefix of 〈f〉. Let u = λ(q0, v),
and r0 = δ(q0, v). Define ri = δ(r0, 1i) for i = 1, 2, . . . , k; since δ(r0, 1k) = r0
we have rk = r0. Since f(a + i) ≡ 0 mod k we obtain ri+1 = δ(ri, 10f(a+i))
for i = 0, . . . , k − 1. Write pi = λ(ri, 1) and ci = λ(ri+1, 0k), then by using
δ(ri+1, 0k) = ri+1 for i = 0, . . . , k − 1, we obtain the desired result that σ equals

uλ(r0, 10f(a))λ(r1, 10f(a+1))λ(r2, 10f(a+2)) · · · = u
∞∏

j=0

(
k−1∏

i=0

pic
f(a+i+jk)/k
i

)
.

��
Corollary 9. 〈n!〉 �≥p 〈n! − 1〉.
Proof. Suppose that 〈n!〉 ≥p 〈n! − 1〉. Then by Theorem 8 we obtain

〈n! − 1〉 = up0c
a!/k
0 p1c

(a+1)!/k
1 p2c

(a+2)!/k
2 · · · .

Since in 〈n!−1〉 only increasing groups of 0 s occur between consecutive 1s, every
pi contains at most one 1 and every ci only consists of 0s. By possibly doubling
k, we may assume that two distinct pis contain a 1; let pg and ph be the first
two containing a 1. For i = 0, . . . , h − g − 1 define di by ci = 0di . Then for
every j ≥ 0 the string pgc

(a+g+jk)!/k
g pg+1c

(a+g+1+jk)!/k
g+1 · · · ph is a part of 〈n!−1〉

containing exactly two 1s, with exactly C +
∑h−g−1

i=0
(a+g+jk)!di

k separating 0s,
for some constant C ≥ 0. Choose N > 2C + 2. Then for j large enough all of
these groups of 0 s have size C mod N , contradicting the fact that after a finite
part 〈n! − 1〉 only contains groups of 0 s of size −1 mod N . ��
Next we switch to functions f , like polynomials, for which n 
→ (f(n) mod m) is
periodic for every m > 0. For transducts of 〈f〉 under permutation transducers
the following characterization was given in [2].

Theorem 10. Let f : N → N be a function for which n 
→ (f(n) mod m) is
periodic for every m > 0. Then 〈f〉 ≥p σ for σ : N → Σ if and only if there exist
k, h > 0 and p0, · · · , pk−1, c0, · · · , ck−1 ∈ Σ∗ such that

σ =
∞∏

j=0

(
k−1∏

i=0

pic
�f(i+jk)/h�
i

)
= p0c

�f(0)/h�
0 p1c

�f(1)/h�
1 · · · .
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We give a similar description of transducts of [[f ]].

Theorem 11. Let f : N → N be a function for which n 
→ (f(n) mod m) is
periodic for every m > 0. If [[f ]] ≥p σ for σ : N → Σ then there exist k, h > 0
and p0, · · · , pk−1, c0, · · · , ck−1 ∈ Σ∗ such that

σ =
∞∏

j=0

(
k−1∏

i=0

pi(cipi)�f(i+jk)/h�
)

= p0(c0p0)�f(0)/h�p1(c1p1)�f(1)/h� · · · ,

with the additional constraint that pi = ε if f(i) ≡ 0 mod h, and ci is non-empty.

The proof follows the same lines as that of Theorem 8, but slightly more tech-
nical; for details we refer to the full version [9] of this paper.

4 Basic Function Operations

In this section we investigate how 〈f(n)〉 relates to 〈f(n+k)〉, 〈f(n)+k〉, 〈kf(n)〉
and 〈f(kn)〉, and similarly for [[·]]. For completeness we do not only consider
∼p,≥p,≤p based on permutation transducers, but also ∼,≥,≤ based on ordinary
transducers.

Theorem 12. When linear operations on sequences of the form 〈f〉 or [[f ]] are
performed, the general relation between the original sequence and its image by
ordinary or permutation is given by an entry in the following two tables:

〈f(n)〉 ≤, ≥, �≤p, ≥p 〈f(n) + k〉
〈f(n)〉 ≤, ≥, �≤p, ? 〈f(n + k)〉
〈f(n)〉 ≤, ≥, ≤p, ≥p 〈kf(n)〉
〈f(n)〉 �≤, ≥, �≤p, ≥p 〈f(kn)〉

[[f(n)]] ≤, ≥, �≤p, �≥p [[f(n) + k]]
[[f(n)]] ≤, ≥, �≤p, �≥p [[f(n + k)]]
[[f(n)]] ≤, ≥, ≤p, ≥p [[kf(n)]]
[[f(n)]] �≤, ≥, �≤p, �≥p [[f(kn)]]

An entry of the form σ ≥ τ indicates that for every f, k a transducer exists
transforming σ to τ , while σ �≥ τ indicates that f, k exist for which such a
transducer does not exist, and similar for ≤,≤p,≥p. The question mark ‘?’ states
that this question is open for 〈f(n)〉 ≥p 〈f(n + k)〉.
The proofs of all claims can be found in the full version of this paper [9]; for all
cases either explicit transducers are given or results from Sect. 3 are applied to
show that the transduct does not satisfy the required pattern for a particular
function f .

5 Classes of Linear Functions

For linear polynomial functions fk,l(n) = kn + l, the relations between 〈fk,l〉
were already dealt with in [2].

Theorem 13. For all k, l ∈ N with k ≥ 1: 〈kn + l〉 ∼p 〈n〉; in other words: all
(non-constant) linear functions are equivalent under ∼p.
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The situation is markedly different for [[fk,l]], as we will see in the next theorem.
Note that by Proposition 3 and Theorem 4 we already know [[n]] <p 〈n〉, so 〈n〉
is not atomic. We do not yet know whether [[n]] is atomic or not.

Theorem 14. Under permutation transduction there is an infinite, strictly
ascending sequence of equivalence classes containing [[f ]] for linear polynomials
f , in between [[n]] and 〈n〉; in particular

[[n]] <p [[n + 2]] <p [[n + 4]] <p [[n + 8]] <p · · · ≤p 〈n〉.

Before we give the proof, we state a corollary that settles a question from the
previous section.

Corollary 15. No permutation transducer P exists such that P ([[n + 1]]) =
[[n + 2]].

Proof. This is the content of the first strict inequality in Theorem 14, in com-
bination with [[n]] ∼p [[n + 1]]. The latter follows from [[n + 1]] = [[n]], in which σ
denotes the complement of σ, obtained by permuting the two symbols 0, 1; it will
be clear that σ can be obtained from σ by a one-state permutation transducer. ��

1|ε

1|ε

0|ε

0|00|ε

0|1

The proof of Theorem 14 is given
in two parts. The first (existence)
part is immediate from the follow-
ing lemma.

Lemma 16. Let k ≥ 0 be an inte-
ger; then [[n + k]] ≥p [[n + �k+1

2 �]].
Proof. For k = 0, 1 the statement
is trivial; so assume that k ≥ 2.
Consider the four-state permuta-
tion transducer given above. For even k it will remove any 1’s from the input
sequence [[n + k]] and alternatingly divide by 2 or divide by 2 and complement,
any sequence of 0’s; the result is [[n + k

2 ]]. For odd k it converts [[n + k]] into
[[n + k+1

2 ]]. Taking complements is easily achieved by a permutation transducer,
and the permutation property is transitive. ��
In fact this lemma yields a stronger result than required for Theorem 14, as
stated in the following corollary.

Corollary 17. For every a > 0 we have [[n + a]] ≥p [[n]].

Proof. Starting by [[n + a]] repeat applying Lemma 16 until [[n + 1]] is obtained.
Then the corollary follows from transitivity of ≥p and [[n + 1]] ∼p [[n]]. ��
To complete the proof of Theorem 14 we have to prove that for none of the strict
steps a backward transduction is possible. This is immediate from the following
stronger result.
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Proposition 18. For a ≥ 0, b ≥ a + 2 no permutation transducer P exists
satisfying P ([[n + a]]) = [[n + b]].

Proof. The permutation transducts of [[n + a]], according to Theorem 11, are of
the form

∞∏

j=0

(
k−1∏

i=0

pi(cipi)� i+jk+a
h �

)
.

Replace the period k by a multiple (if necessary) in order for h to be a divisor
of k, and write m = k

h and ai = � i+a
k � for i = 0, . . . , k − 1. Write bi = � i+a

h � −
aim for i = 0, . . . , k − 1, note that 0 ≤ bi < m. Then the transduct is of
the shape

∏∞
j=0

(∏k−1
i=0 pi(cipi)bi+(j+ai)m

)
. Writing wi = (cipi)m and replacing

pi by pi(cipi)bi , we conclude that the transduct is of the shape P ([[n + a]]) =∏
j

∏k−1
i=0 pi(wi)j+ai .

Now suppose that this image equals [[n + b]], for some b ≥ a + 2. It is impos-
sible for wi to contain both 0 and 1, since in that case

∏
j

∏
i piw

j+ai

i contains
infinitely many pairs of the same symbol separated by a fixed number of copies
of the other symbol, which [[n + b]] = 0b1b+10b+21b+3 · · · clearly does not.

Hence each wi consist of copies of a single symbol; if wi+1 consists of the same
symbol or equals ε, we can merge piwipi+1wi+1 and reduce k. Hence without
loss of generality we may assume that wi and wi+1 consist of different symbols;
the same then holds for pi and pi+1 (but they could equal ε). By multiplying the
period k we may assume that k is even and k > b.

The linear growth of [[n + b]] implies that each wi will consist of exactly k
symbols; since piwi and pi+1wi+1 are consecutive blocks of different symbols,
#pi+1 mod k = (#pi + 1) mod k.

Since k > b > a and ai = � i+a
k � we obtain ai = 0 for i < k − a. So

p0p1 · · · pk−a−1 is an initial part of [[n + b]], in which pi alternatingly consist of
0s and 1s. If p0 = ε then p1 is the first group of 0s, being 0b, contradicting
#pi+1 mod k = (#pi +1) mod k. Hence p0 = 0b, and by #pi+1 mod k = (#pi +
1) mod k we obtain #pi = b + i for i = 0, 1, . . . , k − a − 1. But since #(cipi) = k
we obtain #pi ≤ k. But then we have b+k−a−1 = #pk−a−1 ≤ k, contradicting
b ≥ a + 2. ��

6 Higher Degree Polynomials

Theorem 19. Let f, g : N → N be two polynomials of degree n > 1 with the
same leading coefficient such that

• f − g is not constant, and
• limx→∞(f(ax) − ang(x)) = ∞ for every a > 1.

Then no permutation transducer P exists such that P (〈f〉) = 〈g〉.
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Proof. Assume that such a P exists. Then according to Theorem 10 there exist
k, h > 0 and p0, · · · , pk−1, c0, · · · , ck−1 ∈ Σ∗ such that

〈g〉 =
∞∏

j=0

(
k−1∏

i=0

pic
� f(i+jk)

h �
i

)
.

Since limn→∞ g(n) = ∞, for every i = 0, . . . , k−1 no 1 occurs in ci, and at most
one 1 occurs in pi. Since 〈g〉 contains symbols 1, at least one of the pi’s contains
a symbol 1.

If there is only one such pi, by doubling k we make it two.
Let pa and pb be the first two pi’s containing a 1. Let q be the total number

of 1’s in p0, . . . , pk−1, and ci = 0ai for i = 0, . . . , k−1. Now we count the number
of 0’s right after the qj + 1-th 1 of 〈f〉 in two ways, and obtain that there is
constant c ≥ 0 (corresponding to the number of 0’s occurring in some pi’s) such
that

c +
b−1∑

i=a

�f(i + jk)
h

�ai = g(jq)

for all j ≥ 0.
First we consider the case k = q. Then a = 0, b = 1 and we have c +

a0� f(jk)
h � = g(jk) for all j ≥ 0. This is only possible if f − g is constant, which

we assumed to be not. In the remaining case we have 0 < q < k.
Write A =

∑b−1
i=a ai.

Using that f is ascending for sufficiently large arguments, we have f(jk) ≤
f(i + jk) ≤ f((j + 1)k) for j > C for some C, and a ≤ i < b.

Using this and x − 1 ≤ �x� ≤ x for all x, we obtain

c + A(
f(jk)

h
− 1) ≤ g(jq) ≤ c + A

f((j + 1)k)
h

for all j ≥ C. Then for j → ∞ in the above inequalities we obtain Akn = hqn.
Then the left inequality yields

c − A + (
q

k
)nf(jk) = c + A(

f(jk)
h

− 1) ≤ g(jq)

for all j ≥ C. This contradicts limx→∞(f(ax) − ang(x)) = ∞ for a = k
q > 1. ��

Corollary 20. 〈(n + 1)2〉 �≥p 〈n2〉 and 〈n2〉 �≥p 〈(n − 1)2〉.
Lemma 21. For k > 0 there is no permutation transducer P such that P :
〈(n − k)2〉 
→ 〈(n − 2k)2〉.
Proof. Apply Theorem 19 directly to f = (n − k)2 and g = (n − 2k)2. ��
Corollary 22. The following provides an infinite ascending chain of quadratic
polynomial functions that are non-equivalent under permutation transducers:

〈(n+1)2〉 <p 〈n2〉 <p 〈(n−1)2〉 <p 〈(n−2)2〉 <p 〈(n−4)2〉 <p 〈(n−8)2〉 <p · · · .



376 H. Zantema and W. Bosma

Proof. Consider the three permutation transducers

04|ε
1|ε

1|1
04|0 04|ε

1|ε

1|1
04|0 04|ε

1|1

1|ε
04|0

based on the principle that the left cycle reduces 104m1 to 10m and the right
cycle 104m+11 to 1. Here 04|u means that all four arrows consume 0, while only
one has output u, the others have empty output. It is not hard to see that the
first transduces 〈(n − 2k)2〉 to 〈(n − k)2〉 for every k > 0, the second transduces
〈(n−1)2〉 
→ 〈n2〉 and the third transduces 〈n2〉 to 〈(n+1)2〉. None of the arrows
is reversible by Corollary 20 and Lemma 21. ��
Remark 23. Now consider the permutation transducers:

1|1 0|ε1|ε04|0 1|1 0|ε1|ε04|0

The one on the left (or the first of the three transducers in the previous picture)
is easily seen to provide transition from 〈(n + 2k)2〉 to 〈(n + k)2〉, for k > 0, so

〈(n + 1)2〉 ≤p 〈(n + 2)2〉 ≤p 〈(n + 4)2〉 ≤p 〈(n + 8)2〉 ≤p · · · ;

but here transductions in the opposite direction are not ruled out by Theorem
19. The other transducer shows that 〈(n+2k −1)2〉 ≥p 〈(n+k)2〉 for k > 0, and
puts 〈(n + 2k − 1)2〉 in some infinite non-descending sequence. For example:

〈(n + 1)2〉 ≤p 〈(n + 2)2〉 ≤p 〈(n + 3)2〉 ≤p 〈(n + 5)2〉 ≤p 〈(n + 9)2〉 · · · .
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