
An Improved Scheme for Protecting Medical
Data in Public Clouds

Nikos Fotiou and George Xylomenos(B)

Mobile Multimedia Laboratory, Department of Informatics,
School of Information Sciences and Technology,
Athens University of Economics and Business,

Patision 76, Athens 10434, Greece
{fotiou,xgeorge}@aueb.gr

Abstract. Public Clouds offer a convenient way for storing and shar-
ing the large amounts of medical data that are generated by, for exam-
ple, wearable health monitoring devices. Nevertheless, using a public
infrastructure raises significant security and privacy concerns. Even if
the data are stored in an encrypted form, the data owner should share
some information with the Cloud provider in order to enable the lat-
ter to perform access control; given the high sensitivity of medical data,
even such limited information may jeopardize end-user privacy. In this
paper we employ an access control delegation scheme to enable the users
themselves to perform access control on their data, even though these are
stored in a public Cloud. In our scheme access control policies are evalu-
ated by a user-controlled gateway and Cloud providers are only entrusted
with respecting the gateway’s decision. Furthermore, since medical data
must often be shared with health providers of the user’s choice, we rely
on a proxy re-encryption technique to allow such sharing to take place.
Our scheme encrypts data before storing them in the Cloud and applies
proxy re-encryption using Cloud resources to encrypt data separately
for each (authorized) user. Our proxy re-encryption scheme ensures that
misbehaving Cloud providers cannot use re-encryption keys to share con-
tent with unauthorized clients, while delegating the costly re-encryption
operations to the Cloud.

Keywords: Access control · Proxy re-encryption ·Medical data · Public
clouds

1 Introduction

Nowadays, smart devices that collect users’ vital signals have become a com-
modity. It is expected that the data collected by these devices will soon be used
for preventing and/or diagnosing various health related problems, as well as for
promoting a healthier way of living and well-being. Storing and sharing these
data using a public Cloud infrastructure appears to be an appealing option, as
public Clouds offer cost effective, reliable and always-on storage services. On the
c© Springer International Publishing AG 2017
C. Röcker et al. (Eds.): ICT4AWE 2016, CCIS 736, pp. 66–79, 2017.
DOI: 10.1007/978-3-319-62704-5 5



An Improved Scheme for Protecting Medical Data in Public Clouds 67

other hand, security and privacy concerns are raised, as medical data are highly
sensitive and they should be very well protected, even against misbehavior by
the Cloud service provider. Encryption and access control can be used as a coun-
termeasure, but privacy threats remain. For example, an access control policy of
the form “these (encrypted) data can only be accessed by psychiatrist A” reveals
to the entity that performs access control that the data owner shares some data
with a psychiatrist.

In this paper we propose a scheme that allows secure and private storage of
medical records in the Cloud. Our scheme allows data owners to define access
control policies and to enforce them by themselves. The Cloud provider is only
responsible for storing data and for respecting the access control decisions of
the data owner. Even if the Cloud provider misbehaves, the data remain pro-
tected, since they are encrypted so that only authorized users can access them;
unauthorized users – including the Cloud provider – can learn nothing about the
data. In order to achieve our goal we use the system proposed by [1] by adding
an additional layer of data confidentiality protection.

Since our proposal encrypts data before storing them in the Cloud, they
cannot be directly shared with authorized health providers, without revealing
the user’s encryption keys. To allow controlled data sharing, our scheme relies
on re-encrypting the data before sharing, so that they can only be decrypted
by users authorized by the data owner. Rather than having the user’s devices
re-encrypt data, we rely on a proxy re-encryption scheme so as to delegate this
processing to the Cloud provider, without however allowing the Cloud provider
to gain access to the encrypted data. In this manner, the user only needs to deal
with the original data encryption, delegating all further storage and processing
to the Cloud provider.

This paper extends our previously published work [2] in the following areas:
(i) we improve our proxy re-encryption based scheme so as to protect our system
against misbehaving Cloud providers, (ii) we add a client authentication proce-
dure, (iii) we provide more details about our protocol, (iv) we perform a more
thorough evaluation of our system, including its security evaluation.

The remainder of the paper is organized as follows. Section 2 briefly presents
access control delegation and proxy re-encryption. Section 3 presents our system
design in detail. In Sect. 4 we evaluate our solution and in Sect. 5 we present
related work in the area. Finally, we conclude our paper in Sect. 6

2 Background

2.1 Access Control Delegation

The access control scheme proposed in [1] separates data storage and access
control functions: the former is implemented in a public Cloud, whereas the latter
is implemented by a trusted entity named the access control provider (ACP).
These entities interact with each other as follows (Fig. 1)1: Initially, a data owner

1 The description has been modified to fit the purposes of the present paper.



68 N. Fotiou and G. Xylomenos

creates an access control policy, stores it in an ACP (step 1) and obtains a URI
for that policy (step 2). Then, he stores some data in the Cloud, indicating at the
same time the URI of the policy that protects these data (step 3). When a client
tries to access these data (step 4), the Cloud responds with the URI of the access
control policy and a unique token (step 5). Then, the client authenticates herself
to the ACP and requests authorization (step 6). If the client “satisfies” the access
control policy, the ACP generates a signed authorization and sends it back (step
7). Finally, the client repeats her request to the Cloud, this time including the
authorization (step 8). The Cloud checks the validity of the authorization and
if it is valid, it returns the desired data (step 9).

Fig. 1. Access control delegation (reproduced from [2]).

This scheme has many advantages. The Cloud provider learns nothing about
the client since all her personal data (which are required to evaluate the access
control policy) are stored in the ACP. Moreover, Cloud providers do not have to
interpret any access control policies, therefore they do not need to understand
content owner specific semantics. Each ACP can implement any conceivable
access control policy, since the Cloud provider only sees the URI identifying the
policy and the authorizations returned by the ACP. Access control policies are
reusable i.e., in order to protect a new item using an existing access control
policy the same URI can be simply re-used. Access control policies can be easily
updated; updating and access control policy does not involve any communication
with the Cloud provider. Finally, provided that many Cloud providers support
this scheme, it is trivial for a data owner to migrate from one Cloud provider to
another, as the URIs of the access control policies remain the same.



An Improved Scheme for Protecting Medical Data in Public Clouds 69

2.2 Proxy Re-encryption

A Proxy re-encryption (PRE) scheme is a scheme in which a third, semi-trusted
party, the proxy, is allowed to alter a ciphertext encrypted with the public key
of a user A (the delegator), in a way that another user B (the delegatee) can
decrypt it with her own appropriate key (in most cases, her secret private key).
During this process the proxy learns nothing about the private keys of A and
B, and does not gain access to the encrypted data.

In this paper we employ the identity-based proxy re-encryption (IB-PRE) by
Green and Ateniese [3]. In particular we use a variant of that scheme in which
the delegatee uses public key based encryption (PKE) instead of identity-based
encryption (Sect. 5 of [3]). This scheme specifies the following algorithms (the
description has been adapted to the PKE variant):

– Setup: it is executed by a Private Key Generator (PKG). It takes as input
a security parameter k and returns a master-secret key (MSK) and some
system parameters (SP ). The MSK is kept secret by the PKG, whereas
the SP are made publicly available.

– Extract: it is executed by a PKG. It takes as input the SP , the MSK, and
an identity ID, and returns a secret key SKID. An ID can be any arbitrary
string.

– Encrypt: it can be executed by anyone. It takes as input an identity ID, a
message M , and the SP , and returns a ciphertext CID. This ciphertext can
only be decrypted by the owner of SKID, i.e., the secret key that corresponds
to the identity ID.

– RKGen: it is executed by the owner of the identity ID1. It takes as input the
SP , the secret key SKID1 and the PKE public key PKA of a user A. It
outputs a re-encryption key RKID1→PKA

.
– Reencrypt: it is executed by a proxy. It takes as input the SP , a re-encryption

key RKID1→PKA
, and a ciphertext CID1 and outputs a new ciphertext CPK ,

which can be decrypted by the owner of the PKE secret key SKA.
– Decrypt: it is executed by the owner of the PKE secret key SKA. It takes as

input SP , CPK , and SKA, and returns the message M .

Figure 2 gives an example of a complete IB-PRE transaction. In this figure,
initially the PKG generates the MSK and the SP , and makes the SP publicly
available, while keeping the MSK to itself (step 1). This initializes the system.
When a user ID1 wants to use the system, it asks the PKG to thect the secret key
SKID1 and return it to user ID1 (step 2). Another user ID3 can then encrypt
a piece of text using the publicly known identity of ID1, creating a ciphertext
CID1, which is then stored in a proxy (step 3). This ciphertext can only be
decrypted by the user that owns ID1, and therefore knows the corresponding
SKID1. To allow another user ID2 to decrypt the content using a PKE private
key SKRSA2 , the owner of ID1 creates a re-encryption key RKID1→RSA2 using
the well known PKE public key PKRSA2 of user ID2 and sends it to the proxy
(step 4). The proxy re-encrypts CID1 using the re-encryption key and generates
CID2 (step 5). The owner of SKRSA2 is now able to decrypt the re-encrypted



70 N. Fotiou and G. Xylomenos

 (2) Extract SKID1

PKA

CID1

(4) RKGen RKID1→PKA

(3) Encrypt using ID1

Proxy

(5) Reencrypt using RKID1→PKA

CPKA
(6) Decrypt using SKA

ID1

SKID1

(1) Setup

PKG

MSK
SP

Fig. 2. IB-PRE example (adapted from [2]).

ciphertext (step 6). The proxy learns nothing about the contents of the ciphertext
or the secret keys of the users.

If the original version of the scheme is used (instead of the PKE variant
described above) then the secret keys of delegatees should be generated by a
PKG. This however raises security concerns, since the PKG will know the pri-
vate keys of all users. Although this is not a problem in some scenarios, in our
case a delegatee is a doctor or a hospital that has access to very sensitive informa-
tion. Therefore, this is an unacceptable security threat. Moreover, if a delegatee
interacts with many delegators (as, for example, in the case of a hospital that
interacts with its patients) then this results in a non-negligible key management
overhead. For this reason, we rely instead on the PKE keys of the delegatees for
the re-encryption procedures.

3 Design

In this section, we explain how the aforementioned access control and proxy
re-encryption schemes are adapted for our scheme. We assume the use of smart
devices that collect user related data, such as smart watches that measure cardio
activity. All collected data are stored in a public Cloud. The smart devices do
not interact directly with the Cloud; they instead communicate with a user
controlled gateway. This gateway holds the roles of both the PKG and the ACP
described in the previous section, i.e., the gateway generates the appropriate
secret keys and is responsible for enforcing access control policies. In addition,
a gateway is responsible for initially encrypting (not re-encrypting) files, storing
them in the Cloud, and for generating re-encryption keys. Clients interested in
receiving a file stored in the Cloud, initially send an unauthorized request to the
Cloud provider. The Cloud provider re-directs them to the appropriate gateway,
where they authenticate themselves and get authorized to access the protected
file. The authorization process also results in the creation of an appropriate re-
encryption key, which is securely transmitted to the Cloud provider. Then, clients



An Improved Scheme for Protecting Medical Data in Public Clouds 71

issue authorized requests and receive the (re-encrypted) file. All communications
(between the smart devices and the gateway, between the gateway and the Cloud,
between the clients and the Cloud, and between the clients and the gateway) are
secured using TLS. Figure 3 gives an overview of our system entities and their
interactions, which we explain in more detail in the following subsections.

Fig. 3. An overview of the entities of our scheme and their interactions (adapted
from [2]).

3.1 Setup

With this procedure a data owner creates access control policies and generates
the appropriate cryptographic keys. Our system uses NIST’s core Role-based
Access Control (core-RBAC) model [4]. Based on this model, data owners create
tables of clients, roles, and permissions. The table of clients contains tuples of the
form [index, identity] where index is an integer number unique for each client
and identity is the client’s public key. The table of roles contains tuples of the
form [role,<clientindex>], where role is a unique role name, and <clientindex>
is a list of indices from the clients table and represents the clients that hold that
specific role. Finally, for each file, the client maintains a table of permissions that
contain tuples of the form [operation,<role>], where operation is an operation
over the file (e.g., read, write, delete) and <role> is a list of roles that are
permitted to perform that operation. Each permission table is identified by a
unique URIpolicy. All relationships in a core-RBAC model are many-to-many,
hence, a client may have multiple roles and a role may be allowed to perform
multiple operations.



72 N. Fotiou and G. Xylomenos

Figure 4 illustrates an example of access control policy definition. In this
example, a data owner has defined three clients and three roles. It can be
observed that client 003 has multiple roles. The data owner has created a per-
missions table and has specified its URIpolicy. We can observe in this table that
the role “My Doctors” is allowed to perform multiple operations.

Table of clients Table of roles

Permission Table 
https://gw.example.com/policy32B

Fig. 4. Access control policy example.

The first time the setup procedure is executed, the gateway executes the
IB-PRE setup algorithms and generates a master secret key (MSK) and the
corresponding (public) system parameters. The MSK is securely stored in the
gateway.

3.2 Data Storage

Data storage in the Cloud is achieved using the following steps:

– For each file that arrives in the gateway a permissions table and an appropri-
ate URIpolicy is generated, or an existing one may be re-used.

– The gateway generates a symmetric encryption key K, encrypts the file using
K (we refer to the output of this encryption as EncK(file)), and encrypts K
using the IB-PRE encrypt algorithm, using URIpolicy as the input identity
(we refer to the output of this encryption as CURIpolicy (K)).

– The gateway stores EncK(file), CURIpolicy (K), and URIpolicy in the Cloud.

Gateways keep track of all files and their associated URIpolicy and Cloud
provider in a table of files. A table of files contains a set of tuples of the
form [filename, policy, PubCP ] where filename is the file name, policy is the
URIpolicy of the file’s permissions table, and PubCP is the public key of the
Cloud provider where the file is stored. Cloud providers maintain a similar table
that contains entries of the form [filename, policy, PubGW ], where PubGW is
the public key of the gateway.



An Improved Scheme for Protecting Medical Data in Public Clouds 73

3.3 Unauthorized Request

This procedure is executed by a client in order to perform an operation over some
protected data. The client sends an operation request to the Cloud provider that
contains nothing but the operation itself and the name of the file it concerns.
Upon receiving the request the Cloud provider creates a unique token (i.e., an
adequately large random number) and sends it back to the client, along with the
corresponding URIpolicy. Cloud providers keep track of all generated tokens, as
well as their associated URIpolicy.

3.4 Client Authentication and Authorization

This procedure is executed by a client upon receiving a response to an unautho-
rized request. The client generates an authorization request that is composed of
the following fields: URIpolicy, token, filename (i.e., the name of the desired
file), operation, PubCP , PubClient (i.e., the public key of the client), and dig-
itally sings this message using his private key (we refer to the outcome of the
signature operation as SignClient(msg)). Then, the client sends the authoriza-
tion request to the gateway denoted by URIpolicy. Upon receiving this request,
the gateway performs the following steps in order to authorize the client:

– It verifies SignClient(msg). If the signature verification fails, the client is not
authorized, as he has not proved his identity.

– From the files table it retrieves the policy and the PubCP of the entry that
corresponds to the filename included in the authorization request and checks
if these fields match those included in the request. If this verification fails,
the client is not authorized.

– It retrieves the file’s permissions table and examines if the client identified
by PubClient has a role authorized to perform the operation included in the
authorization request. If this verification fails, the client is not authorized.

If the client is authorized, then the gateway performs the following operations:

– It executes the IB-PRE RKGen algorithm and creates RKURIpolicy→Pubclient

and encrypts this key using PubCP . We refer to the output of the latter
encryption as CCP (RK).

– It sends to the client an authorization response which contains CCP (RK)
and a digital signature generated using the gateway’s private key that covers
CCP (RK) and all fields of the authorization request, except PubClient and
SignClient(msg). We refer to that signature as SignGW (msg).

3.5 Authorized Request

This procedure is executed by an authorized client. The client constructs an
authorized request that includes the following fields: the filename of the desired
file, the operation, the token received with the execution of the unauthorized
request procedure, and the authorization response retrieved with the execution of



74 N. Fotiou and G. Xylomenos

the client authentication and authorization procedure. Then, the client sends this
request to the Cloud provider. Upon receiving this request, the Cloud provider
performs the following steps in order to decide if the client is permitted to
perform the requested operation:

– It retrieves URIpolicy and PubGW that corresponds to the name and examines
if the retrieved URIpolicy matches the one associated with the token. If it does
not match, the client is authorized.

– It evaluates SignGW (msg). If the signature verification fails, the client is not
authorized.

If the client is permitted to perform the requested operation, the Cloud provider
performs the following operations:

– It uses RKURIpolicy→Pubclient
and the IB-PRE Reencrypt algorithm to re-

encrypt CURIpolicy (K) so as to generate CClient(K).
– It sends CClient(K) and EncK(file) back to the client.

Figure 5 illustrates a message sequence diagram of the unauthorized request,
client authentication and authorization, and authorized request procedures.

Gateway Client Cloud

filename, operation
URIpolicy, token

URIpolicy, token,filename, operation, PubCP,
PubClient, SignClient(msg)

CCP(RK), SignGW(msg)

filename, operation, token, CCP(RK),
SignGW(msg)

CClient(K), EncK(file)

RKURIpolicy->PubGW

Fig. 5. Message sequence diagram.

3.6 External Roles

When protecting medical data stored in the Cloud, it is desirable to have roles,
and create access control policies based on such roles, which are defined by exter-
nal (third) parties. For example, “doctors of hospital A” could be such a role,
defined by the entity “hospital A”. Contemporary cryptographic techniques such
as attributed-based encryption [5], or hierarchical identity-based encryption [6]
could be used to achieve this goal. However, we do not consider this option,
because, for security reasons, we want each client to be able to generate her keys



An Improved Scheme for Protecting Medical Data in Public Clouds 75

by herself, which is not possible with these cryptographic techniques. Moreover,
these cryptographic techniques have been found to be ineffective when used for
controlling access to data stored in the Cloud [7]. Instead, we follow a more
conservative approach. We assume that each role is identified by a public key,
generated by the same third party that has defined this role. This key is used by
data owners in the table of roles instead of <clientindex>. Moreover, the public
key of each client is included in a X.509 certificate which is digitally signed using
the private key of the role. For instance, in our example the public keys of the
doctors should be signed by the private key of the role “doctors of hospital A”.
If a client has multiple roles, he should have multiple X.509 certificates.

When a client requests authorization from the gateway, she includes in her
request her digital certificate. The digital signature included in the certificate is
used by the gateway in order to evaluate whether or not the client belongs to an
authorized role. If this is the case, then the gateway can use the public key of the
client (included in the certificate) to generate the appropriate re-encryption key
(as described in the previous section), and therefore to allow her to access the
protected file. Note that the gateway does not need to know or store any details
about the members of an external role; it only needs to know the public key of
that role. In our example, this allows a hospital to change the set of doctors that
it has authorized, without communicating with all the gateways of the clients
that trust the hospital.

4 Evaluation

We have implemented the IB-PRE part of our system by modifying the
Green-Ateniese IB-PRE implementation included in the Charm Crypto
library [8] to support PKE for the delegatee. In particular, we have added support
for the Cramer and Shoup elliptic curve based public key cryptosystem [9]. That
is, in our implementation a ciphertext generated using Identity-based encryption
is transformed into a ciphertext that can be decrypted using a Cramer-Shoup
secret key (combined with some pairing operations).

In order to achieve a security level equivalent to RSA with a key size of 1024
bits for the encryption of the symmetric key, the size of SP is 2048 bits, the
size of CURIpolicy (K) is 2048 bits, and the size of a re-encryption key is 2816
bits. In Table 1 we report the time required to perform various cryptographic
operations, in an Xbuntu 14.04 Desktop machine, running in a single core of
an Intel i5-4440 3.1 GHz processor with 2GB of RAM, using the Charm Crypto
library v0.43, python v2.7, the pbc library v0.5.4, and the gmp library v5.1.3.

The IB-PRE cryptographic algorithm used by our system has been proven to
be secure in [3]. Each data item is encrypted using a different symmetric encryp-
tion key, therefore the compromise of a symmetric encryption key would require
the re-encryption of only that specific item with a fresh key. This is an inevitable
overhead of all similar systems and it is due to the fact that public key encryp-
tion cannot be applied directly to the file contents, due to its computational
complexity. Nevertheless, for small data items, such as readings from wearable
devices, it may be possible to negate the need for symmetric encryption.



76 N. Fotiou and G. Xylomenos

Table 1. Computation overhead of IB-PRE cryptographic operations.

Operation time in ms

Create CURIpolicy (K) 23

Generate RKURIpolicy→Pubclient 40

Re-encrypt CURIpolicy (K) 4

Decrypt CClient(K) 25

Traditional proxy re-encryption schemes require proxies to be semi-trusted,
i.e., a proxy should (i) not share re-encryption keys, and (ii) use re-encryption
keys only for authorized users. Our system relaxes the second requirement: since
symmetric encryption keys are encrypted using URIpolicy as an input identity
a RKURIpolicy→Pubclient

would be useful for clients that abide by URIpolicy. In
other words, if a client does not abide by an access control policy, the gateway
will never generate the corresponding re-encryption key.

Client revocation is achieved by removing a client from a role, or by removing
a role from a permission. From the moment a client is disallowed to perform an
operation, a gateway will not generate a re-encryption key when that client
requests authorization for this operation. Nevertheless, if the Cloud provider
caches re-encryption keys and it is not trusted to use them properly, then the
URIpolicy of the permission table from which the client has been removed, has
to be updated. As a consequence, a new CURIpolicy (K) will have to be generated.

Our system borrows most of the properties of the access control delegation
scheme described in [1]. In particular, our system is generic enough, it can be
easily implemented by a Cloud provider, data can be easily transferred between
Cloud providers that implement this solution, it protects client privacy against
Cloud providers, and it allows easy modification of access control policies. Com-
pared to [1], our system does not hide the Client’s interests from the ACP. This
happens because we use URIpolicy for protecting content confidentiality, hence
it is not possible to use different a URIpolicy for each operation (as in [1]). If hid-
ing the Client’s interests is highly desirable, then the “level extension” (Sect. 3.5
in [1]) can be used.

Another notable difference of the present system compared to [1] is that the
present system does not rely on an external mechanism for authenticating clients
to ACPs, using instead a digital signature (i.e., SignClient(msg)). In order to
prevent malicious users from re-using an authentication message, ACPs should
keep track of already seen tokens. Nevertheless, even if this not possible, or this
check fails, the malicious user will end up receiving a file that he cannot access.

5 Related Work

Löhr et al. [10] have proposed a solution for securing e-health clouds based on
Trusted Virtual Domains (TVDs). TVD is a virtualization technique that creates
secure “sandboxes” where user data can reside. This solution is orthogonal to our



An Improved Scheme for Protecting Medical Data in Public Clouds 77

system: the solution by Löhr et al. concerns the design of secure clouds specific
to e-health services, whereas our solution assumes a generic cloud service and
builds a secure data sharing system on top of it.

Wu et al. [11] propose an access control mechanism for sharing electronic
health records in the Cloud. The main component of their mechanism is an
access broker that is responsible for enforcing access control policies. The access
broker is an entity shared among many stakeholders, therefore, privacy concerns
are raised. In our work, access control policies are enforced by data owners in
a way that reveals no information about data owners or clients to third parties
(including the Cloud provider). Son et al. [12] propose a mechanism that supports
“dynamic” access control, i.e., access control that takes into consideration the
user’s context. In their solution, access control is also implemented in the Cloud,
therefore the same privacy concerns are raised.

Fabian et al. [13] use attribute-based encryption (ABE) to protect medical
data stored in multi-Cloud environments and shared among different coopera-
tive organizations. ABE produces encrypted data in a way that only users with
specific “attributes” can decrypt. In essence, ABE incorporates access control
policies into ciphertexts. The disadvantage of using ABE for this purpose is that
the loss of a private key that corresponds to an attribute requires the generation
of a new key, the distribution of this key to all users that have this attribute, and
the appropriate encryption of all files protected by this attribute. In contrast, in
our system the loss of the data owner’s secret key only requires a new encryption
of all symmetric keys. Similarly, [14–16] use attribute-based encryption to pro-
tect personal health records stored in public cloud environments; these solution
also suffer from the same problems.

Thilakanathan et al. [17] use ElGamal public key encryption and a proxy re-
encryption like protocol to protect generic health data stored in the cloud. Their
solution relies on a centralized trusted third party that generates private keys on
behalf of users. In our system users generate their private keys by themselves,
therefore our approach offers increased security.

6 Conclusion and Future Work

In this paper we presented a scheme that allows secure and privacy preserving
storage of medical data in public Clouds. Our solution combines access control
delegation and proxy re-encryption, providing content confidentiality, client pri-
vacy enhancement, and resilience against malicious entities. This is achieved by
following a gateway-based design, where a user-controlled gateway is responsible
for encrypting user generated data, authenticating clients and enforcing access
control policies. Cloud providers learn no information about the identity of the
clients accessing the protected data and they are only trusted have to respect
the gateway’s decisions. Moreover, our proxy re-encryption based confidentiality
solution protects sensitive data against misbehaving Cloud providers, even those
that do not respect the gateway’s access control decisions. Our proof of concept
implementation shows that our solution is feasible, posing minimal overhead.



78 N. Fotiou and G. Xylomenos

Future work involves the transfer of the encryption process to the devices
that generate the data. In this manner, the device could store the data directly
to the Cloud, avoiding the gateway, therefore reducing communication overhead.
In this setup, the gateway would still hold the ACP and PKG roles. Moreover,
the ACP could also be used for authenticating end-user devices to the Cloud.

References

1. Fotiou, N., Machas, A., Polyzos, G.C., Xylomenos, G.: Access control as a service
for the cloud. J. Internet Serv. Appl. 6, 1–15 (2015)

2. Fotiou, N., Xylomenos, G.: Protecting medical data stored in public clouds. In:
Proceedings of the 2nd International Conference on Information and Communica-
tion Technologies for Ageing Well and e-Health (ICT4AWE) (2016)

3. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-72738-5 19

4. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
nist standard for role-based access control. ACM Trans. Inf. Syst. Secur. 4, 224–274
(2001)

5. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98 (2006)

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005). doi:10.1007/11426639 26

7. Garrison III., W.C., Shull, A., Myers, S., Lee, A.J.: On the practicality of crypto-
graphically enforcing dynamic access control policies in the cloud. In: Proceedings
of the IEEE Symposium on Security and Privacy (2016)

8. Akinyele, J., Garman, C., Miers, I., Pagano, M., Rushanan, M., Green, M., Rubin,
A.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryptogr. Eng.
3, 111–128 (2013)

9. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

10. Löhr, H., Sadeghi, A.R., Winandy, M.: Securing the e-health cloud. In: Proceedings
of the 1st ACM International Health Informatics Symposium, pp. 220–229 (2010)

11. Wu, R., Ahn, G.J., Hu, H.: Secure sharing of electronic health records in clouds.
In: Proceedings of the 8th International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom), pp. 711–718 (2012)

12. Son, J., Kim, J.D., Na, H.S., Baik, D.K.: Dynamic access control model for privacy
preserving personalized healthcare in cloud environment. Technol. Health Care 24,
123–129 (2015)

13. Fabian, B., Ermakova, T., Junghanns, P.: Collaborative and secure sharing of
healthcare data in multi-clouds. Inf. Syst. 48, 132–150 (2015)

14. Akinyele, J.A., Pagano, M.W., Green, M.D., Lehmann, C.U., Peterson, Z.N.,
Rubin, A.D.: Securing electronic medical records using attribute-based encryp-
tion on mobile devices. In: Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, pp. 75–86 (2011)

http://dx.doi.org/10.1007/978-3-540-72738-5_19
http://dx.doi.org/10.1007/11426639_26
http://dx.doi.org/10.1007/BFb0055717


An Improved Scheme for Protecting Medical Data in Public Clouds 79

15. Li, M., Yu, S., Zheng, Y., Ren, K., Lou, W.: Scalable and secure sharing of personal
health records in cloud computing using attribute-based encryption. IEEE Trans.
Parallel Distrib. Syst. 24, 131–143 (2013)

16. Liu, J., Huang, X., Liu, J.K.: Secure sharing of personal health records in cloud
computing: ciphertext-policy attribute-based signcryption. Future Gener. Comput.
Syst. 52, 67–76 (2015)

17. Thilakanathan, D., Chen, S., Nepal, S., Calvo, R., Alem, L.: A platform for secure
monitoring and sharing of generic health data in the cloud. Future Gener. Comput.
Syst. 35, 102–113 (2014)


	An Improved Scheme for Protecting Medical Data in Public Clouds
	1 Introduction
	2 Background
	2.1 Access Control Delegation
	2.2 Proxy Re-encryption

	3 Design
	3.1 Setup
	3.2 Data Storage
	3.3 Unauthorized Request
	3.4 Client Authentication and Authorization
	3.5 Authorized Request
	3.6 External Roles

	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References


