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Abstract In today’s highly competitive global market, winning requires near-
perfect quality. Although most mature organizations operate their processes at
very low defects per million opportunities, customers expect completely defect-
free products. Therefore, the prompt detection of rare quality events has become
an issue of paramount importance and an opportunity for manufacturing compa-
nies to move quality standards forward. This paper presents the learning process
and pattern recognition strategy for a knowledge-based intelligent supervisory
system; in which the main goal is the detection of rare quality events through
binary classification. The proposed strategy is validated using data derived from
an automotive manufacturing systems. The l1-regularized logistic regression is
used as the learning algorithm for the classification task and to select the fea-
tures that contain the most relevant information about the quality of the process.
According to experimental results, 100% of defects can be detected effectively.

Keywords l1-regularized logistic regression · Defect detection · Intelligent su-
pervisory system · Quality Control · Model selection criterion

1 Introduction

In today’s highly competitive global market, winning requires near perfect qual-
ity, since intense competition has led organizations to low profit margins. Con-
sequently, a warranty event could make the difference between profit and loss.
Moreover, customers use internet and social media tools (e.g., Google product
review) to share their experiences, leaving organizations little flexibility to re-
cover from their mistakes. A single bad customer experience can immediately
affect companies’ reputations and customers’ loyalty.

In the quality domain, most mature organizations have merged business ex-
cellence, lean production, standards conformity, six sigma, design for six sigma,
and other quality-oriented philosophies to create a more coherent approach [1].
Therefore, the manufacturing processes of these organizations only generate a
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Acronyms Definition

AI Artificial Intelligence
CM Confusion Matrix
CV Cross-Validation
FN False Negatives
FP False Positives
FS Feature Selection
ISCS Intelligent Supervisory Control Systems
KB Knowledge-Based
LASSO Least Absolute Shrinkage and Selection Operator
LR Logistic Regression
LP Learning Process
ML Machine Learning
MPCD Maximum Probability of Correct Decision
PR Pattern Recognition
TN True Negatives
TP True Positives
UMW Ultrasonically Metal Welding

Table 1: Acronyms Table

few defects per million of opportunities. The detection of these rare quality
events represents not only a research challenge, but also an opportunity to move
manufacturing quality standards forward.

Impressive progress has been made in recent years, driven by exponential
increases in computer power, database technologies, Machine Learning (ML)
algorithms, optimization methods and big data [2]. From the point of view of
manufacturing, the ability to efficiently capture and analyze big data has the
potential to enhance traditional quality and productivity systems. The primary
goal behind the generation and analysis of big data in industrial applications is
to achieve fault-free (defect-free) processes [3, 4], through Intelligent Supervisory
Control Systems (ISCS) [5].

A Learning Process (LP) and Pattern Recognition (PR) strategy for a knowledge-
based ISCS is presented, aimed at detecting rare quality events from manufac-
turing systems. The defect detection is formulated as a binary classification
problem, in which the l1-regularized logistic regression is used as the learning
algorithm. The outcome is a parsimonious predictive model that contains the
most relevant features.

The proposed strategy is validated using data derived from an automotive
manufacturing systems; (1) Ultrasonically Metal Welding (UMW) battery tabs
from a battery assembly process. The main objective is to detect low-quality
welds (bad).

The rest of this paper is organized as follows. It starts with a review of the
theoretical background of this research in section 2. Then, section 3 describes
the pattern recognition strategy, followed by an empirical study in section 4.
Finally, section 5 concludes the paper.
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2 Theoretical Background

The theoretical background of this research is briefly reviewed.

2.1 Machine Learning and Pattern Recognition

As discussed by [6], “As an intrinsic part of Artificial Intelligence (AI), ML
refers to the software research area that enables algorithms to improve through
self-learning from data without any human intervention”. ML algorithms learn
information directly from data without assuming a predetermined equation or
model. The two most basic assumptions underlying most ML analyses are that
the examples are independent and identically distributed, according to an un-
known probability distribution. On the other hand, PR is a scientific discipline
that “deals with the automatic classification of a given object into one from a
number of different categories (e.g., classes)” [7].

In ML and PR domains, generalization refers to the prediction ability of a
learning algorithm model [8]. The generalization error is a function that measures
how well a trained algorithm generalizes to unseen data.

In general, the PR problem can be widely broken down into four stages: (1)
Feature space reduction, (2) Classifier design, (3) Classifier selection, and (4)
Classifier assessment.

2.2 Feature Space Reduction

The world of big data is changing dramatically, and feature access has grown
from tens to thousands, a trend that presents enormous challenges in the Feature
Selection (FS) context. Empirical evidence from FS literature exhibits that dis-
carding irrelevant or redundant features improves generalization, helps in under-
standing the system, eases data collection, reduces running time requirements,
and reduces the effect of dimensionality [9–14]. This problem representation
highlights the importance of finding an optimal feature subset. This task can be
accomplished by FS or regularization.

Feature Selection The FS methods broadly fall into two classes: filters and
wrappers [15].

Filter methods select variables independently of the classification algorithm
or its error criteria, they assign weights to features individually and rank them
based on their relevance to the class labels. A feature is considered good and
thus selected if its associated weight is greater than the user-specified thresh-
old [9]. The advantages of feature ranking algorithms are that they do not over-fit
the data and are computationally faster than wrappers, and hence they can be
efficiently applied to big data sets containing many features [10].

is a well-know rank-based algorithm, the basic idea for numerical
features is to estimate the quality of each according to how well their values dis-
tinguish between instances of the same and different class labels. searches
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for a k of its nearest neighbors from the same class, called nearest hits, and also
a k nearest neighbors from each of the different classes, called nearest misses,
this procedure is repeated m times, which is the number of randomly selected
instances. Thus, features are weighted and ranked by the average of the distances
(Manhattan distance) of all hits and all misses [16] to select the most important
features [17], developing a significance threshold τ . Features with an estimated
weight below τ are considered irrelevant and therefore eliminated. The proposed
limits for τ are 0 < τ ≤ 1/

√
αm [16]; where α is the probability of accepting an

irrelevant feature as relevant.

Regularization Another approach for feature space reduction is l1-regularization.
This method trims the hypothesis space by constraining the magnitudes of the
parameters [18]. Regularization adds a penalty term to the least square function
to prevent over-fitting [19]. l1-norm formulations have the advantage of gen-
erating very sparse solutions while maintaining accuracy. The classifier-fitted
parameters θi are multiplied by a coefficient λ to shrink them toward zero. This
procedure effectively reduces the feature space and protects against over-fitting
with irrelevant and redundant features. The value of λ can be tuned through
validation or CV. Regularization methods may perform better than FS meth-
ods [20].

2.3 Classifier Design, Selection and Assessment

A classifier is a supervised learning algorithm that analyzes the training data
(e.g., data with a class label) and fits a model. In a typical PR analysis, the
training data set is used to train a set of candidate models using different tuning
parameters.

It is important to choose an appropriate validation or CV method to evaluate
the generalization ability of each candidate model, and select the best, according
to a relevant model selection criterion.

For information-theoretic model selection approaches in the analysis of em-
pirical data refer to [21]. Common performance metrics for model selection based
on recognition rates —correct decisions made— can be found in [22].

For a data-rich analysis, it is recommended the hold-out validation method,
an approach in which a data set is randomly divided into three parts: training
set, validation set, and test set. As a typical rule of thumb, 50 percent of the
initial data set is allocated to training, 25 percent to validation, and 25 percent
to testing [23].

Once the best candidate model has been selected, it is recommended that the
model’s generalization performance be tested on a new data set before the model
is deployed. This can also determine whether the model satisfies the learning
requirement [23]. The generalization performance can be efficiently evaluated
using a Confusion Matrix (CM).
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Confusion Matrix In predictive analytics, a CM [22] is a table with two
rows and two columns that reports the number of False Positives (FP), False
Negatives (FN), True Positives (TP), and True Negatives (TN). This allows
more detailed analysis than just the proportion of correct guesses since it is
sensitive to the recognition rate by class.

A type-I error may be compared with a FP prediction, and it is denoted by
the greek letter α. On the other hand, a type-II error may be compared with
a false FN, and it is denoted by the greek letter β [24]. Alpha, and beta are
estimated by:

α =
FP

FP + TN
, (1)

β =
FN

FN + TP
. (2)

2.4 Logistic Regression

Logistic Regression (LR), which uses a transformation of the values of a linear
combination of the features, is widely used in classification problems. It is an
unconstrained convex problem with a continuous differentiable objective function
that can be solved either by the Newton’s method or the conjugate gradient. LR
models the probability distribution of the class label y, given a feature vector
x [25].

P (y = 1|x; θ) = σ(θT x) =
1

1 + exp(−θT x)
. (3)

where θ ∈ R
N are the parameters of the LR model and σ(·) is the sigmoid func-

tion. The sigmoid curve (logistic function), maps values in (−∞,∞) to [0, 1]. The
discrimination function itself is not linear anymore, but the decision boundary
is still linear.

Under the Laplacian prior p(θ) = (λ/2)N exp(−λ||θ||1)(λ > 0), the Maximum
A Posteriori (MAP) estimate of the parameters θ is:

min
θ

M∑
i=1

− log p(y(i)|x(i); θ) + λ||θ||1. (4)

This optimization problem is referred to as l1-regularized LR. This algorithm is
widely applied in problems with small training sets or with high dimensional in-
put space. However, adding the l1-regularization makes the optimization problem
computationally more expensive to solve. For solving the l1-regularized LR [26],
the Least Absolute Shrinkage and Selection Operator (LASSO) is an efficient
method.

2.5 Intelligent Supervisory Control Systems

ISCS s are computer-based decision support systems that incorporate a variety of
AI and non-AI techniques to monitor, control, and diagnose process variables to
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assist operators with the tasks of monitoring, detecting, and diagnosing process
anomalies, or in taking appropriate actions to control processes [27]. Developing
and deploying an ISCS requires a lot of collaborative intellectual work from
different engineering disciplines.

There are three general solution approaches for supporting the tasks of mon-
itoring, control, and diagnosis: (1) data-driven, for which the most popular tech-
niques are Principal Component Analysis, Fisher discriminant analysis, and Par-
tial Least-Squares analysis; (2) analytical, an approach founded in first principles
or other mathematical models; and (3) Knowledge-Based (KB), founded in AI,
specifically Expert Systems, Fuzzy Logic, ML, and PR [27, 28].

Due to the explosion of industrial big data, KB-ISCS s have received great
attention. Since the scale of the data generated from manufacturing systems
cannot be efficiently managed by traditional process monitoring and quality
control methods, a KB scheme might be an advantageous approach.

3 Learning Process and Pattern Recognition Strategy

The proposed LP and PR strategy for a KB-ISCS considers the l1-regularized
LR as the learning algorithm. Fig. 1 displays the proposed strategy, which uses
the hold-out data partition method (framed into a 4-stage approach). The input
is a set of candidate features, the outcome is a parsimonious predictive model
that contains the most relevant features to the quality of the product. This model
is used to detect rare quality events in manufacturing systems. The candidate
features can be derived from sensor signals following typical feature construction
techniques [29] or from process physical knowledge.

Candidate 
Features

Feature Space 
Reduction

Classifier 
Design

Classifier 
Selection

Classifier 
Assessment

Predictive 
Model

Training Set Validation 
Set Test Set

Input Output

Fig. 1: Learning process and pattern recognition framework.

Two main assumptions that must be satisfied are: (1) the faulty events must
be generated during the manufacturing process and captured by the signals; (2)
since the LR learning algorithm is a linear classifier, the decision boundaries
between the two classes must be linear. Due to the dynamic nature of manufac-
turing systems, the predictive model should be updated constantly to maintain
its generalization ability.
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3.1 Feature Space Reduction

The goal of this stage is to eliminate irrelevant features from the analysis. For
manufacturing processes, massive amounts of data and the lack of a comprehen-
sive physical understanding may result in the development of many irrelevant
features. This problem representation highlights the importance of preprocessing
the data. The algorithm is used to obtain the feature ranking, and the
associated weight of each feature is compared with τ to eliminate the irrelevant
ones.

3.2 Classifier Design

The main goal of this stage is to design the classifier and to identify which
features contain the most relevant information to the quality of the product.
While the classifier is aimed to detect rare quality events, the features included
in the predictive model may provide valuable engineering information. Although
feature interpretation is out of the scope of this approach, analyzing the data-
derived predictive model from a physics perspective may support engineers in
systematically discovering hidden patterns and unknown correlations that may
guide them to identify root causes and solve quality problems.

The training set is used to fit n-candidate l1-regularized LR models by vary-
ing the penalty value λ. It is recommended to start with the largest value of
λ that gives a non-null model (i.e., a model with the intercept only), and from
that point decrease the value of λ to develop more candidate models with more
features. The rationale behind this approach is that the form of the model is
not known in advance; therefore, it can be approximated by generating a set
of candidate models. This analysis can be computationally performed using the
LASSO method in MATLAB or R.

Optimal Classification Threshold The goal of this step is to obtain the
classification threshold of each candidate model. Since faulty events rarely occur,
the data set is highly unbalanced. Therefore, the 0.5 threshold may not the
optimal classification threshold, and accuracy [22] may be a misleading indicator
of classification performance. To address this scenario, the Maximum Probability
of Correct Decision (MPCD) criterion is used [30, 31]. A model selection criterion
that tends to be very sensitive to FN s — failure to detect a quality event — in
highly unbalanced data. MPCD is estimated by:

MPCD = (1 − α)(1 − β). (5)

Since MPCD is used as a model selection criterion, gamma (γ), the opti-
mal classication threshold with respect to MPCD of each candidate model is
obtained. γ is found by enumerating all candidate classification thresholds (mid-
points between two consecutive examples), and estimating the MPCD at each
threshold. γ is the maximum value of all candidate classification thresholds, a
graphical representation of this procedure is shown in Fig. 4.
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3.3 Classifier Selection

In the context of PR, the primary purpose of this stage is to select the best
candidate model with respect to generalization (MPCD). The validation data
set is used to estimate the MPCD of each candidate model, and the model with
the highest value should be selected.

3.4 Classifier Assessment

The generalization performance of the selected model is evaluated on the testing
set. The classifier must be assessed without the bias induced in the validation
stage. This stage ensures that the model satisfies the learning target; due to the
nature of the problem, FN s are the main concern. The target can be simplified
to develop a model that produces zero or nearly zero FN s with the least possible
number of FPs.

4 Empirical study

To show the effectiveness of the proposed strategy, an automotive case study is
presented.

4.1 Ultrasonic Metal Welding

UMW is a solid state bonding process that uses high frequency ultrasonic vibra-
tion energy to generate oscillating shears between metal sheets clamped under
pressure. It is an ideal process for bonding conductive materials such as copper,
aluminum, brass, gold, and silver, and for joining dissimilar materials. Recently,
ultrasonic metal welding has been adopted for battery tab joining in the manu-
facturing of vehicle battery packs. Creating reliable joints between battery tabs
is critical because one low-quality connection may cause performance degrada-
tion or the failure of the entire battery pack. It is important to evaluate the
quality of all joints prior to connecting the modules and assembling the battery
pack [13].

The data used for this analysis is derived from an UMW of battery tabs.
A very stable process, that only generates a few defective welds per million of
opportunities. However, all the welds in the battery must be good for the unit
to function. This problem representation not only highlights the engineering
intellectual challenge but also the importance of a zero-defects policy.

The collected data set contains a binary outcome (good/bad) with 54 fea-
tures derived from signals (e.g., acoustics, power, and linear variable differential
transformers) following typical feature construction techniques [29]. The data
set is highly unbalanced since it contains only 36 bad batteries out of 40,000
examples (0.09%). The data set is partitioned following the hold-out validation
scheme (including bads in each data set): training set (20,000), validation set
(10,000), and testing set (10,000).
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Feature Space Reduction In order to eliminate irrelevant features, the data
set is initially preprocessed using the ReliefFalgorithm.ReliefF is run with k = 5
nearest neighbors and a significance threshold of τ = 0.031622, (calculated based
on 1/

√
αm — α = 0.05, and m = 20, 000). According to the algorithm, feature

26 is the most important feature, while feature 14 is the lowest quality feature.
Fig. 2 summarizes the feature ranking and which features are selected based τ .
According to , 43 features —out of 54— should be selected.
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Fig. 2: Feature ranking and selection using ReliefF.

Classifier Design The training set was used to fit 100 regularized LR models.
The LASSO method was applied to estimate the fitted least-squares regression
coefficients for a set of 100 regularization coefficients λ, starting with the largest
value of λ that gives a non-null model (i.e., a model with the intercept only).
However, the non-null model is not included in the analysis since its estimated
MPCD equals zero. Fig. 3a displays each candidate model’s associated value of
λ, Fig. 3b the number of features, and Fig. 3c the associated values of γ. As
shown by Fig. 3a and Fig. 3b, the number of features decreases as the value of
λ increases, therefore, selecting the right model is one of the main challenges.

Optimal Classification Threshold Figure 4 shows the optimal classification
threshold search of candidate model 69.

Classifier Selection The goal is to select the candidate model with the highest
MPCD. In the context of the problem that is being solved, the goal is to detect
low-quality welds. Due to the relevance of failing to detect a potential defect, the
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Fig. 3: Candidate model information.
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Fig. 4: Optimal classification threshold search of candidate model 69.
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type-II error is the main concern of this analysis; for this reason, the MPCD is
also used as a model selection criteria. The estimated MPCD, α, and β of each
model are summarized in Fig. 5.
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Fig. 5: Generalization performance of candidate models.

According to the selection criteria, model 69 is the best candidate, with an
estimated MPCD of 0.8825 (α = 0.0071, β = 0.1111) and 11-relevant features,
varying the values of λ helped to identify the most relevant features. The coef-
ficients are shown in Table 2. The value of γ for this model is 0.0073, meaning
that any value estimated by the logistic function below this threshold will be
classified as 0 (i.e., good), or 1 (i.e., bad) otherwise.

While is clear there are other models with less features and very similar
MPCD, this is accomplished at the expense of FP. Figure 5b and Fig. 3b, show
that decreasing the number of features significantly increases α.

Classifier Assessment The importance of this final step is to assess the clas-
sifier without the bias induced in the validation stage, and to ensure the model
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Coef Value Coef Value Coef Value Coef Value Coef Value Coef Value

θ0 372.24 θ4 -0.0077 θ5 29.68 θ9 3.20 θ21 0.0019 θ22 -0.0015
θ26 -0.0122 θ30 -0.0018 θ31 -0.0035 θ32 0.0536 θ36 0.0108 θ48 1.7122

Table 2: Coefficients of model 69.

satisfies the learning target; due to the nature of the problem, FN s are the main
concern. Therefore, the goal can be simplified to develop a model that produces
zero or nearly zero FN s with the least possible number of FPs.

The estimated MPCD of the final model on the testing data is 0.9956, with an
estimated β = 0 and α = 0.0044. The testing set includes approximately 10,000
records, with seven bad batteries. The classifier correctly classified the seven bad
units and only misclassified 44 good units. Recognition rates are summarized
on Table 3. According to model assessment results, LR not only shows high
prediction ability, but also did not commit any type-II error.

Declare good Declare bad

good 9949 44
bad 0 7

Table 3: Confusion Matrix

5 Conclusions and Future Work

Today’s business environment sustains mainly those companies committed to a
zero-defects policy. This quality challenge was the main driver of this research,
where a LP and PR strategy was developed for a KB-ISCS. The proposed ap-
proach was aimed at detecting rare quality events in manufacturing systems and
to identify the most relevant features to the quality of the product. The defect
detection was formulated as a binary classification problem and validated in a
data set derived from an automotive manufacturing system. The main objective
was to detect low-quality welds (bad) from the UMW of battery tabs from a
battery assembly process.

The l1-regularized LR was used as the learning algorithm for the classification
task and to identify the most important features. Since the form of the model was
not known in advance, a set of candidate models were developed —by varying the
value of λ— as an effort to approximate the true model. Chosen model exhibited
high capacity to detect rare quality events, since 100% of the defective units on
the testing set were detected.

The l1 penalty term helped to identify the features most relevant to the qual-
ity of the product. Although the identification of relevant features may support
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engineers in systematically discovering hidden patterns and unknown correla-
tions, it was beyond the scope of this research to use a physics-based perspective
to analyze the influence of these features over the manufacturing system.

The proposed strategy used MPCD, a model selection criterion very sensitive
to FN s and developed γ, an optimal classification threshold with respect to
MPCD.

The proposed approach can be adapted and widely applied to manufacturing
processes to boost the performance of traditional quality methods and poten-
tially move quality standards forward, where soon virtually no defective product
will reach the market.

Since MPCD is founded exclusively on recognition rates, future research
along this path could focus on adding a penalty term for model complexity.
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