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{stefano.ferilli, sergio.angelastro}@uniba.it

2 Centro Interdipartimentale di Logica ed Applicazioni – Università di Bari, Bari,
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Abstract. In addition to the classical exploitation of process models
for checking process enactment conformance, a very relevant but almost
neglected task concerns the prediction of which activities will be carried
out next at a given moment during process execution. The outcomes of
this task may allow to save time and money by taking suitable actions
that facilitate the execution of those activities, may support more fun-
damental and critical tasks involved in automatic process management,
and may provide indirect indications on the correctness and reliability of
a process model. This paper proposes an enhanced declarative process
model formalism and a strategy for activity prediction using the WoMan
framework for workflow management. Experimental results on different
domains show very interesting prediction performance.
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1 Introduction & Background

A process consists of actions performed by agents [1, 2]. A workflow is a formal
specification of a process. It may involve sequential, parallel, conditional, or iter-
ative execution [12]. A process execution, compliant to a given workflow, is called
a case. It can be described as a list of events (i.e., identifiable, instantaneous ac-
tions, including decisions upon the next activity to be performed), associated
to steps (time points) and collected in traces [13]. Relevant events are the start
and end of process executions, or of activities [2]. A task is a generic piece of
work, defined to be executed for many cases of the same type. An activity is the
actual execution of a task by a resource (an agent that can carry it out).

Process Management techniques are useful in domains where a production
process must be monitored (e.g. in the industry) in order to check whether the
actual behavior is compliant with a desired one. When a process model is avail-
able, new process enactments can be automatically supervised. The complexity
of some application domains requires to learn automatically the process models,
because building them manually would be very complex, costly and error-prone.
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The area of research aimed at inferring workflow models from specific examples
of process executions is known as process discovery [2] or process mining [14, 9].
Declarative process mining approaches [11] learn models expressed in terms of a
set of constraints, instead of monolithic models (usually expressed as some kind
of graph, e.g. Petri Nets). More precisely, given a set of tasks T and a set of
cases C ⊆ T ∗, the aim of process mining is discovering a workflow model that
fulfills the following requirements [2, 1, 8, 14]:

Completeness it can generate (‘explain’, ‘cover’) all event sequences in C;
Irredundancy it generates as few event sequences of T ∗ \ C as possible;
Minimality it is as simple and compact as possible.

Having to deal with real-world environments, an additional requirement may be
the ability to deal with noise [14] (i.e., the presence of wrong process executions
in the training examples).

The WoMan framework [5, 4] lies at the intersection between Declarative Pro-
cess Mining and Inductive Logic Programming (ILP) [10]. Indeed, it pervasively
uses First-Order Logic as a representation formalism, that provides a great ex-
pressiveness potential and allows one to describe contextual information using
relationships [6]. Differently from all previous approaches in the literature, it is
fully incremental : not only can it refine an existing model according to new cases
whenever they become available, it can even start learning from an empty model
and a single case, while others need a (large) number of cases to draw significant
statistics before learning starts. This allows to carry out continuous adaptation
of the learned model to the actual practice efficiently, effectively and transpar-
ently to the users [4]. Experiments proved that WoMan can handle efficiently
and effectively very complex processes, thanks to its powerful representation
formalism and process handling operators [5, 4].

While the most classical task in Process Management is supervision of a
process enactment in order to check its compliance with given model, in some
context an extremely important task may be activity prediction. It may be
stated as follows: given a process model and the current (partial) status of a
new process execution, guess which will be the next activity that will take place
in the execution. Its importance follows from the applications that it may serve.
Let us give a few examples.

– Given an intermediate status of a process execution, knowing how the execu-
tion will proceed might allow the environment, or the (human or automatic)
supervisor, to take suitable actions that facilitate the next activities. In in-
dustrial environments, this may bring significant savings in terms of time
and money. In smart environments, considering the daily routines of people
at home or at work as a process may allow the environment to provide more
comfortable support to the users, improving their quality of life.

– Also, having a reliable list of expected activities to be carried out next can
support the activity recognition task, which is one of the most critical re-
quirements for automatic process management. In fact, being able to deter-
mine which high-level process-related activities are being carried out in terms



of the low-level data obtained from the sensors placed in the environment is
a very complex and not yet fully solved issue.

– Another, very relevant and interesting, application of process-related predic-
tions is in the assessment of the quality of a model. Indeed, since models
are learned automatically exactly because the correct model is not available,
only an empirical validation can be run. In literature, this is typically done
by applying the learned model to new process enactments. Getting correct
predictions when using a model may be interpreted as an indirect indication
that the model is correct.

Despite its relevance, the task of activity prediction has received very little at-
tention so far in the literature. This is possibly due to the fact that, when using
traditional graph-based formalisms for expressing process models, determining
the next activities may be quite simple. Indeed, reporting the current status of
the process execution on the graph (e.g., as a marking of tokens in Petri Nets)
allows to determine quite straightforwardly which tasks are currently enabled.
Using declarative approaches the issue becomess less straightforward. Also, in
traditional domains the rules that determine how the process must be carried
out may be quite strict, so that predicting the process evolutions becomes a
trivial consequence of conformance checking. Other, less traditional application
domains (e.g., the cited routines of people), involve much more variability, and
obtaining reliable predictions becomes both more difficult and more useful.

In this paper, we show how the activity prediction task can be carried out
effectively using WoMan. Interesting preliminary results were obtained in [7]
on various application domains using the formalism proposed in [6]. Here we
extend the formalism in [6] and the approach in [7] by considering additional
information in the models in order to improve the prediction performance. Full
details about the extended formalism and the prediction approach are given in
this paper for the first time.

This paper is organized as follows. The next section presents the WoMan
(extended) formalism, while Section 3 describes in details its approach to activity
prediction. Then, Section 4 reports and discusses the experimental outcomes.
Finally, in Section 5, we draw some conclusions and outline future work issues.

2 The WoMan Formalism

WoMan representations [6] are based on the Logic Programming formalism, and
works in Datalog, where only constants or variables are allowed as terms. Fol-
lowing foundational literature [1, 8], trace elements in WoMan are 7-tuples, rep-
resented in WoMan as facts

entry(T,E,W,P,A,O,R).

that report information about relevant events for the case they refer to:

1. T is the event timestamp (all events in a case must have different times-
tamps),

196 S. Ferilli, D. Redavid, and S. Angelastro



2. E is the type of the event (one of begin process,end process,begin activity,
end activity, and context description),

3. W is the name of the workflow the process refers to,
4. P is a unique identifier for each process execution,
5. A is the name of the activity,
6. O is the progressive number of occurrence of that activity in that process,
7. R (optional) specifies the agent that carries out activity A.

Activity begin and end events allow to properly handle time span and to identify
concurrency in task execution, avoiding the need for inferring it by means of sta-
tistical (possibly wrong) considerations [13]. When E = context description,
A is used to describe contextual information at time T , in the form of a con-
junction of FOL atoms built on domain-specific predicates.

Given a set of training cases C, WoMan learns a model consisting of a set
of atoms built on several predicates, each expressing a different kind of con-
straint4. The core of the model, established in its very first version, is expressed
by predicates task/2 and transition/4.

– task(t,Ct) : task t occurred in training cases Ct.
– transition(I,O,t,Ct) : transition5 t, occurred in training cases Ct, is en-

abled if all input tasks in I = [i1, . . . , in] are active; if fired, after stopping
the execution of all tasks in I (in any order), the execution of all output
tasks in O = [o1, . . . , om] is started (again, in any order). If several instances
of a task can be active at the same time, I and O are multisets, and appli-
cation of a transition consists in closing as many instances of active tasks as
specified in I and in opening as many activations of new tasks as specified
in O.

task/2 atoms express the tasks that are allowed in the process. transition/4
atoms express the allowed connections between activities in a very modular way.
Transitions can be seen as ‘consumers’ of their input tasks, and ‘producers’ of
their output tasks. In this perspective, the completion of an activity during a
case can be seen as the production of a resource, that is to be consumed by some
transition.

Compared to classical representations, in which the overall topology of the
graph is fixed, this representation breaks the process models in several small
pieces, that might in principle be recombined together in many ways (when
different transitions have input multisets whose intersection is non-empty). To
enforce irredundancy, WoMan exploits a number of additional information items.
A fundamental one is the Ct parameter. First, and most important, it allows

4 In the following, the extended part of the formalism with respect to [6] is marked
by an asterisk ‘*’

5 Note that this is a different meaning than in Petri Nets. A convenient notation for
expressing transitions is

t : I ⇒ O [Ct]

where the Ct parameter can be omitted if irrelevant.



WoMan to check that all transitions involved in a new execution were all involved
in the same (at least one) training case [4]. Second, it allows WoMan to compute
the probability of a task or transition t, as the relative frequency |Ct|/n where
n = |C| is the number of training cases. This can be used for process simulation,
for activity prediction and for noise handling (ignoring all tasks/transition in
the model whose probability does not pass a specified noise threshold). Third,
it allows WoMan to bound the number of repetitions of loops. Indeed, Ct is a
multiset, because if a task or transition t was executed k times in case c, then Ct

includes k occurrences of c. So, WoMan knows the maximum number of times
that a task or transition can be executed in the same case.

Another limitation to the possible combinations of transitions is expressed
using the following predicate:

* transition provider([τ1, . . . , τn],t,q) : transition t, involving input tasks
I = [i1, . . . , in], is enabled provided that each task ik ∈ I, k = 1, . . . , n was
‘produced’ as an output of transition τk, where the τk’s are placeholders
(variables) to be interpreted according to the Object Identity assumption
(“terms (even variables) denoted with different symbols must be distinct
(i.e., they must refer to different objects)”); several combinations can be
allowed, numbered by progressive q, each encountered in cases Ctq.

that partitions the input multiset of a transition according to the producers of
the activities to be consumed6.

Additional constraints concern the agents that may run the activities:

– task agent(t,A) : an agent, matching the roles A, can carry out task t.
– transition agent([A′

1, . . . , A
′
n],[A

′′
1 , . . . , A

′′
m],t,Ctq,q) : transition t, in-

volving input tasks I = [i1, . . . , in] and output tasks O = [o1, . . . , om], may
occur provided that each task ik ∈ I, k = 1, . . . , n is carried out by an agent

6 Let us see this through an example. Consider a model that includes, among others,
the following transitions:

t1 : {x, y, z} ⇒ {a, b} ; t2 : {x, y} ⇒ {a} ; t3 : {x} ⇒ {a, d}

and suppose that the current set of activities to be ‘consumed’ is {x, y, z}. If an
activity a is started, any of the above transitions might be the ‘consumer’. Suppose
that WoMan also knows the producers of these activities: {x/p22, y/p21, z/p22}, and
that the model includes the following atoms related to transitions t1, t2 and t3:

transition provider([τ1, τ1, τ2], t1, 1).
transition provider([τ1, τ2, τ2], t1, 2).
transition provider([τ1, τ2, τ1], t1, 3).
transition provider([τ1, τ1], t2, 1).
transition provider([τ1], t3, 1).

In this case, transition t2 is not a valid consumer, since it would require that both x
and y were produced by the same transition τ1, while they were actually produced
by two different transitions (p22 and p21, respectively). Conversely, pattern #3 of
transition t1 is compliant with the available producers, which makes it an eligible
candidate. Also transition t3 is enabled.
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matching roles A′
k, and that each task oj ∈ O, j = 1, . . . ,m is carried out by

an agent matching roles A′′
j ; several combinations can be allowed, numbered

by progressive q, each encountered in cases Ctq.

WoMan can handle taxonomies of agent roles. Each A′
k or A′′

j is an expression
in disjunctive normal form:

(r11 ∧ . . . ∧ r1n1) ∨ . . . ∨ (rm1 ∧ . . . ∧ rmnm)

where each rij is an individual or a role in the taxonomy, meaning that the
agent must match all roles in at least one disjunct. The conjuncts are introduced
to handle multiple inheritance. The generalization/specialization relationship is
handled, in that a role is considered as matched by an agent if the agent matches
any of its subclasses in the taxonomy. During the mining phase, generalizing
means replacing one or more roles/instances with one of their superclasses.

The new version of the WoMan formalism added the following predicates to
deal with time constraints:

* task time(t,[b′,b′′],[e′,e′′],d) : task t must begin at a time ib ∈ [b′, b′′] and
end at a time ie ∈ [e′, e′′], and has average duration d;

* transition time(t,[b′, b′′],[e′, e′′],g,d) : transition t must begin at a time
ib ∈ [b′, b′′] and end at a time ie ∈ [e′, e′′]; it has average duration d (from
the beginning of the first activity in I to the end of the last activity in O),
and requires an average time gap g between the end of the last input task
in I and the activation of the first output task in O;

* task in transition time(t,p,[b′, b′′],[e′, e′′],d) : task t, when run in tran-
sition p, must begin at a time ib ∈ [b′, b′′] and end at a time ie ∈ [e′, e′′], and
has average duration d;

where ib, b
′, b′′, ie, e′, and e′′ are relative to the start of the process execution,

i.e. they are computed as the timestamp difference between the begin process
event and the event they refer to.

In addition to the exact timestamp of events, WoMan internally associates
each activity in a case to a unique integer identifier, called step, assigned by
progressive start timestamp. So, the above constraints may be expressed also in
terms of steps, as follows:

* task step(t,[b′, b′′],[e′, e′′],d) : task t must start at a step sb ∈ [b′, b′′] and
end at a step se ∈ [e′, e′′], along an average number of steps d;

* transition step(t,[b′, b′′],[e′, e′′],g,d) : transition t must start at a step
sb ∈ [b′, b′′] and end at a step se ∈ [e′, e′′]; it takes place along an average
number of steps d (from the step of the first activity in I to the step of the
last activity in O), and requires an average gap of g steps between the end
of the last input task in I and the beginning of the first output task in O;

* task in transition step(t,p,[b′,b′′],[e′,e′′],d) : task t, when run in tran-
sition p, must start at a step sb ∈ [b′, b′′] and end at a step se ∈ [e′, e′′], along
an average number of steps d;



Finally, WoMan can expresses pre- and post-conditions for tasks (in gen-
eral), transitions, and tasks in the context of a specific transition. Specifically,
conditions on transitions define when a transition may take place; task condi-
tions define what must be true for a given task in general, task in transition
conditions define further constraints for allowing a task to be run in the context
of a specific transition (provided that its general conditions are met). They are
defined as FOL rules of the following form:

– act T(A,S,R) :- ... meaning that “activity A, of type T , can be run by
agent R at step S of a case execution provided that . . . ”;

– trans T(S) :- ... meaning that “transition T can be run at step S of a
case execution provided that . . . ”;

– act T in trans P(A,S,R) :- ... meaning that “activity A, of type T ,
can be run by agent R in the context of transition P at step S of a case
execution provided that . . . ”;

where the premises ‘. . . ’ are conjunctions of atoms based on contextual and
control flow information. Conditions are not limited to the current status of
execution. They may involve the status at several steps using two predicates:

– activity(s,t) : at step s (unique identifier) t is executed;
– after(s′,s′′,[n′,n′′],[m′,m′′]) : step s′′ follows step s′ after a number of

steps ranging between n′ and n′′ and after a time ranging between m′ and
m′′.

Due to concurrency, predicate after/3 induces a partial ordering on the set of
steps. The difference between pre- and post- conditions is that premises in the
former refer only to steps up to S, while in the latter they may refer to any step,
both before and after S.

3 Workflow Exploitation: Supervision and Prediction

The previous section has already pointed out that different transitions may be
composed in different ways with each other, and that, as a consequence, many
transitions may be eligible for application at any moment, and when a new
activity takes place there may be some ambiguity about which one is actually
being fired. This is clear from the example in footnote 6, where each of the two
proposed options would change in a different way the status of the process, as
follows: firing t1 would consume x, y and z, leaving no activity to be consumed
and causing the system to wait for a later activation of b, ‘produced’ by t1;
firing t2 is inhibited, because the transition providers do not match the required
pattern of variables (if it were enabled, firing it would consume x and y, leaving
{z/p22} to be consumed and causing the completion of transition t2); firing t3
would consume x, leaving {y/p21, z/p22} to be consumed and causing WoMan
to wait for a later activation of d, ‘produced’ by t3. Another example, taken
from [7], is the following (for the sake of simplicity, here we will assume that the
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constraints on the producers are all fulfilled). Consider a model that includes,
among others, the following transitions:

t1 : {x} ⇒ {a, b} ; t2 : {x, y} ⇒ {a} ; t3 : {w} ⇒ {d, a}
Suppose that the current set of activities to be ‘consumed’ is {x, y, z}, and that
activity a is started. It might indicate that either transition t1 or transition
t2 have been fired. Also, if an activity d is currently being executed due to
transition t3, the current execution of a might correspond to the other output
activity of transition t3, which we are still waiting to happen to complete that
transition. Each of the these options would change in a different way the process
evolution, as follows: firing t1 would consume x, leaving {y, z} to be consumed
and causing the system to wait for a later activation of b; firing t2 would consume
x and y, causing the completion of transition t2 and leaving {z}; firing t3 would
not consume any element in the marking, but would cause the completion of
transition t3.

We call each of these alternatives a status. This ambiguity about different
statuses that are compliant with a model at a given time of process enactment
must be properly handled when supervising the process enactment. Since it can
be resolved only at a later time, all the corresponding alternate evolutions of the
status must be carried on by the system, and each new event must be handled
with respect to each alternate status. Then, in some cases, the same ambiguity
issues will arise, and more alternate evolutions will be generated; in other cases,
the new event will point out that some current alternate statuses were wrong, and
will cause them to be cancelled. So, as long as the process enactment proceeds,
the set of alternate statuses that are compliant with the activities carried out
so far can be both expanded with new branches, and pruned of all alternatives
that become incompatible with the activities carried out so far.

This procedure is carried out byWoMan’s supervision module,WEST (Work-
flow Enactment Supervisor and Trainer). As explained in [7], to handle this am-
biguity, WEST maintains the set S of alternate statuses. Given a status S ∈ S
and a new event e, the compliance check of the latter to the former checks may
yield 3 possible outcomes:

ok : e is compliant with S;
error : there is a syntactic inconsistency in e (e.g., the termination of an activity

that was never started, or the completion of a case while activities are still
running); or

warning : indicating a deviation from the model that does not violate syntactic
constraints; more specifically, the following types of warnings are available:
1. the pre-/post-conditions of a task, a transition or a task in the context

of a transition are not fulfilled;
2. unexpected agent running a certain activity, in general or in the context

of a specific transition;
3. a known task or transition, not expected at the current point of process

execution, was run;
4. a new task or transition was run;



5. a task or transition was run more times than expected;
6. a task, transition or task in the context of a specific transition started

or ended out of the expected time or step bounds.
Each warning carries a different degree of severity, expressed as a numeric
weight. E.g., an unexpected task or transition also implies that the agent
that runs it was not expected, and so has a greater severity degree than
the unexpected agent alone. The degrees of severity currently embedded in
WoMan for each type of warning were heuristically determined (a discussion
and experimentation on how to determine these weights in order to improve
performance is outside the scope of this paper).

Each status in S is represented as a 5-tuple 〈M,R,C, T,W 〉 recording the fol-
lowing information:

M the ‘Marking’, i.e., the multiset of produced (i.e., terminated) activities as-
sociated with their provider identifier, not yet consumed (i.e. used to fire a
transition);

R (for ‘Ready’) the multiset of activities that have not been started yet, but
that are expected because they are in the output of some transition that was
fired but not yet completed, each associated to the identifier of transition
that produces it;

C the set of training cases that are compliant with that status;
T the sequence of (hypothesized) transitions that have been fired to reach that

status;
W the multiset of warnings raised by the various events that led to this status

(of course, each status may have a different multiset of warnings).

Algorithm 1 shows how the set of statuses is maintained as a consequence of the
compliance check of a new event.

Given a status S ∈ S, the set of candidate activities to be expected next in
the case is made up of the activities in the ‘Ready’ component of that status
and the activities that are reported in the output component of any transition
that is enabled in that status. So, in principle, each status may expect a different
set of activities to be carried out next. This ambiguity is more than in classical,
graph-based, process model formalisms. Indeed, in those formalism, one always
knows at which point of the graph the status of the current execution is located
(e.g., based on the marking in Petri Nets), and thus which are the enabled tasks.
On one hand, this increased ambiguity makes the activity prediction task harder,
but, on the other hand, the availability of several alternate statuses, and of the
associated information, allows WoMan to compute more refined statistics and
to perform more elaborate reasoning to support activity prediction.

The module of WoMan, that is in charge of activity prediction, is SNAP
(Suggester of Next Activity in Process). It exploits S (maintained by WEST) to
determine which are the expected next activities and to rank them by some sort
of likelihood, according to Algorithm 2. Specifically, components M and R of the
statuses in S are used to determine the candidate activities, and components C
and W are used to rank them by likelihood. Indeed, each status S ∈ S may have
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Algorithm 1 Maintenance of the structure recording valid statuses in WEST

Require: M: process model
Require: S : set of currently compliant statuses compatible with the case
Require: Running : set of currently running activities
Require: Transitions: list of transitions actually carried out so far
Require: 〈T,E,W,P,A,O,R〉 : log entry

if E = begin activity then
Running ← Running ∪ {A}
for all S = 〈M,R,C, T, P 〉 ∈ S do

S ← S \ {S}
if A ∈ R then

S ← S ∪ {〈M,R \ {A}, C, T, P 〉}
for all p : I ⇒ O [Cp] ∈ M �′ A ∈ O do

if ∃transition provider(Q, p, q) ∈ M : matches(Q,M) then
P ′ ← P ∪ PA,p,S /* PA,p,S warnings raised by running A in p given S */
R′ = {t′/p | t′ ∈ O ∧ t′ �= A} ∪R
S ← S ∪ {〈M \ I,R′, C ∩ Cp, T&〈p〉, P ′〉}

if E = end activity then
if A �∈ Running then

Error
else

Running ← Running \ {A}
for all S = 〈M,R,C, T, P 〉 ∈ S do

select transition t : I ⇒ O ∈ T that produced A
S ← 〈M ∪ {A/t}, R, C, T, P 〉

if a transition t has been fully carried out then
Transitions ← Transitions &〈t〉
for all S = 〈M,R,C, T, P 〉 ∈ S do

if T �= Transitions then
S ← S \ {S}

where matches(Q,M) checks that provider constraint Q is fulfilled by marking M .

a different set of warnings and of compliant training cases, and this variability
can be exploited to rank the next activities that are expected in the process
execution by likelihood. The algorithm is organized in phases. In the first phase,
all evolutions S ′ of the current set of statuses S that are compliant with the
new event are computed. Then, the multiset N of all candidate activities to be
performed next are collected from the ‘Ready’ component of the evolved statuses.
To make the prediction more selective, only those statuses whose overall weight
of warnings does not pass a given threshold can be considered. In the third step,
each candidate activity is associated with a score that represents an estimation
of its likelihood, computed based on the following parameters:

– number of occurrences of that activity in the computed evolutions (activities
that appear more often are more likely to be carried out next);

– number of cases supporting that activity in the computed evolutions (ac-
tivities expected in the statuses supported by more training cases are more
likely to be carried out next); and



Algorithm 2 Activity Prediction in WoMan using SNAP

Require: M: process model
Require: S : set of currently compliant statuses compatible with the case
Require: E : current event of trace
Require: ε: threshold to filter only more compliant statuses

if E = end activity ∨ E = begin process then
S ′ ← ∅
for all S = 〈M,R,C, T, P 〉 ∈ S do

for all p : I ⇒ O [Cp] ∈ M do
if ∃transition provider(Q, p, q) ∈ M : matches(Q,M) then

P ′ ← P ∪ Pp,S /* Pp,S warnings raised by firing p given S */
S ′ ← S ′ ∪ {〈M \ I,R ∪O,C ∩ Cp, T&〈t〉, P ′〉}

if E = begin activity then
S ′ ← S

N = {a | ∃S = 〈M,R,C, T, P 〉 ∈ S ′ : δ(S) < ε ∧ a ∈ R} /* multiset of candidate
next activities */
Ranking ← {}
for all a ∈ N do

Sa = {〈M,R,C, T, P 〉 ∈ S ′ | a ∈ R}
δa =

∑
S∈Sa

δ(S) /* overall discrepancy of all statuses involving a */

Ca =
⋃

〈M,R,C,T,P 〉∈Sa
C /* overall set of cases supporting the execution of a in

all statuses */
score ← (|Ca| · |Sa| · |a|N ) / δa
Ranking ← Ranking ∪ {〈score, a〉}

Ensure: Ranking
where:

– matches(Q,M) checks that provider constraint Q is fulfilled by marking M .
– | · | denotes the cardinality of a set or multiset;
– | · |M denotes the number of occurrences of an element in a multiset M ;
– δ(·) is the discrepancy of a status, computed as the sum of the weights of the

warnings raised by the status.

– overall discrepancy of the statuses that expect that activity (activities ex-
pected in statuses that raised less warnings are more likely to be carried out
next).

The final prediction is obtained by ranking the candidate activities by decreasing
score (higher positions indicating more likelihood).

4 Evaluation

The performance of the proposed activity prediction approach was evaluated on
several datasets, concerning different kinds of processes associated with different
kinds and levels of complexity. The datasets related to Ambient Intelligence
concern typical user behavior. Thus, they involve much more variability and
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Table 1. Dataset statistics

cases avg events avg activities tasks transitions

Aruba 220 62.67 30.34 10 92

GPItaly 253 734.56 366.28 8 79

White 158 232.71 115.35 681 4083
Black 87 243.01 120.51 663 3006
Draw 155 209.17 103.59 658 3434

subjectivity than in industrial process, and there is no ‘correct’ underlying model,
just some kind of ‘typicality’ can be expected:

Aruba from the CASAS benchmark repository7. It includes continuous record-
ings of home activities of an elderly person, visited from time to time by
her children, in a time span of 220 days. Each day is mapped to a case of
the process representing the daily routine of the elderly person. Transitions
correspond to terminating some activities and starting new activities. The
resources (persons) that perform activities are unknown.

GPItaly from one of the Italian use cases of the GiraffPlus project8 [3]. It
concerns the movements of an elderly person (and occasionally other people)
in the various rooms of her home along 253 days. Each day is a case of the
process representing the typical movements of people in the home. Tasks
correspond to rooms; transitions correspond to leaving a room and entering
another.

The other concerns chess playing, where again the ‘correct’ model is not available:

Chess from the Italian Chess Federation website9. 400 reports of actual top-
level matches were downloaded. Each match is a case, belonging to one of 3
processes associated to the possible match outcomes: white wins, black wins,
or draw. A task is the occupation of a square by a specific kind of piece (e.g.,
“black rook in a8”). Transitions correspond to moves: each move of a player
terminates some activities (since it moves pieces away from the squares they
currently occupy) and starts new activities (that is, the occupation by pieces
of their destination squares). The involved resources are the two players:
‘white’ and ‘black’.

Table 1 reports statistics on the experimental datasets: number of cases,
average number of events and activities per case, number of tasks and transitions
in a model learned using the whole dataset as a training set. There are more cases
for the Ambient Intelligence datasets than for the chess ones. However, the chess
datasets involve many more different tasks and transitions, many of which are
rare or even unique. The datasets are different also from a qualitative viewpoint.
Aruba cases feature many short loops and some concurrency (involving up to 2

7 http://ailab.wsu.edu/casas/datasets.html
8 http://www.giraffplus.eu
9 http://scacchi.qnet.it



Table 2. Activity prediction statistics

Pred Recall Rank Tasks 1st Quality

Aruba 0.88 0.97 0.86 6.3 0.84 0.78

GPItaly 1.0 0.99 0.98 8.2 0.88 0.97

black 0.53 0.98 1.0 11.09 0.91 0.51
white 0.55 0.98 1.0 10.9 0.91 0.5
draw 0.65 0.98 1.0 10.6 0.91 0.64
chess 0.58 0.98 1.0 10.9 0.91 0.55

activities), optional and duplicated activities. The same holds for GPItaly, except
for concurrency. The chess datasets are characterized by very high concurrency:
each game starts with 32 concurrent activities (a number which is beyond the
reach of many current process mining systems [5]). This number progressively
decreases (but remains still high) as long as the game proceeds. Short and nested
loops, optional and duplicated tasks are present as well. The number of agent
and temporal constraints is not shown, since the former is at least equal, and
the latter is exactly equal, to the number of tasks and transitions.

The experimental procedure was as follows. First, each dataset was trans-
lated from its original representation to the input format of WoMan. Then, a
10-fold cross-validation procedure was run for each dataset, using the learning
functionality of WoMan (see [4]) to learn models for all training sets. Finally,
each model was used as a reference to call WEST and SNAP on each event
in the test sets: the former checked compliance of the new event and suitably
updated the set of statuses associated to the current case, while the latter used
the resulting set of statuses to make a prediction about the next activity that is
expected in that case (as described in the previous section).

Table 2 reports average performance, on the measures reported in the columns,
for the processes on the rows (‘chess’ refers to the average of the chess sub-
datasets)10. Pred is the ratio of cases in which SNAP returned a prediction.
Indeed, when unknown tasks or transitions are executed in the current enact-
ment, it assumes a new kind of process is enacted, and avoids making predictions.
Recall is the ratio of cases in which the correct activity (i.e., the activity that
is actually carried out next) is present in the ranking, among those in which a
prediction was made. Rank reports its position in the ranking, normalized into
[0, 1] (1 meaning it is the first, and 0 meaning it is the last), Tasks is the average
length of the ranking (the shorter, the better), and 1st is the lower bound of the
Rank interval associated to the first activity (Rank > 1st means that the activ-
ity is the first on average). Quality = Pred ·Recall ·Rank ∈ [0, 1] is a compound
index that provides an immediate indication of the overall activity prediction
performance. When it is 0, it means that predictions are completely unreliable;
when it is 1, it means that WoMan always makes a prediction, and that such a
prediction is correct (i.e., the correct activity is at the top of the ranking).

10 This can be considered as a baseline: fine-tuning the weights for the different kinds
of warnings might result in even better performance.
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As expected, the number of predictions is proportional to the number of tasks
and transitions in the model. Indeed, the more variability in behaviors, the more
likely it is that the test sets contain behaviors that were not present in the
training sets. WoMan is almost always able to make a prediction in the Ambient
Intelligence domain, which is extremely important in order to provide continuous
support to the users. While much lower, the percentage of predictions in the chess
domain still covers more than half of the match, the worst performance being
on ‘black’ (the one with less training cases). In all cases, when WoMan makes
a prediction, it is extremely reliable: the correct next activity is almost always
present in the ranking (97-99% of the times). For chess processes, this means that
WoMan is able to distinguish cases in which it can make an extremely reliable
prediction from cases in which it prefers not to make a prediction at all. Also,
the correct activity is always in the range associated with the top place. For the
chess processes, in particular, it is always at the very top.

In conclusion, the experimental outcomes confirm that WoMan is effective on
processes having very different degrees and kinds of complexity. In the Ambient
Intelligence domain, this means that it may be worth spending some effort to
prepare the environment in order to facilitate that activity, or to provide the
user with suitable support for that activity. In the chess domain, our figures
are better than those of other attempts purposely devised to apply Machine
Learning to make the machine able to play autonomously.

5 Conclusions

In addition to the classical exploitation of process models for checking process
enactment conformance, a very relevant but almost neglected task concerns the
prediction of which activities will be carried out next at a given moment during
process execution. The outcomes of this task may allow to save time and money
by taking suitable actions that facilitate the execution of those activities, may
support more fundamental and critical tasks involved in automatic process man-
agement, and may provide indirect indications on the correctness and reliability
of a process model. This paper proposed an extended formalism and approach
to make these kinds of predictions using the WoMan framework for workflow
management. Experimental results on different domains show very good predic-
tion performance, also on quite complex processes. This makes us confident that
it can be successfully applied to industrial domains, as well.

Given the positive results, we plan to carry out further work on this topic.
First of all, we plan to check the prediction performance on other domains, e.g.
Industry 4.0 ones. Also, we will investigate how to further improve the prediction
accuracy by means of more refined strategies. Finally, we would like to embed
the prediction module in other applications, in order to guide their behavior.
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