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Abstract. Multivariate time series (MTS) data mining has attracted
much interest in recent years due to the increasing number of fields re-
quiring the capability to manage and process large collections of MTS.
In those frameworks, carrying out pattern recognition tasks such as sim-
ilarity search, clustering or classification can be challenging due to the
high dimensionality, noise, redundancy and feature correlated character-
istics of the data. Dimensionality reduction is consequently often used
as a preprocessing step to render the data more manageable. We pro-
pose in this paper a novel MTS similarity search approach that addresses
these problems through dimensionality reduction and correlation analy-
sis. An important contribution of the proposed technique is a represen-
tation allowing to transform the MTS with large number of variables
to a univariate signal prior to seeking correlations within the set. The
technique relies on unsupervised learning through Principal Component
Analysis (PCA) to uncover and use, weights associated with the original
input variables, in the univariate derivation. We conduct numerous ex-
periments using various benchmark datasets to study the performance
of the proposed technique. Compared to major existing techniques, our
results indicate increased accuracy and efficiency. We also show that our
technique yields improved similarity search accuracy.

Keywords: Multivariate time series · Dimensionality reduction · Simi-
larity search

1 Introduction

Innovation and advances in technology have led to the growth of data at a
phenomenal rate. Paradoxically, the existing MTS data reduction, analysis and
mining techniques do not scale well to its current challenges. Among those chal-
lenges, the high dimensionality of the data both in terms of the number of
variables and the length of the time series, but also the presence of noise and
redundancies makes it difficult to uncover important patterns for many practical
applications.

Hence, most pattern recognition tasks rely on dimensionality reduction as
a crucial preprocessing step, for reasons of efficiency and interpretability, for a
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better understanding of the underlying processes that generated the data, but
also to afford a framework that allows downstream pattern recognition tasks to
perform more efficiently.

The adequacy of the chosen reduction technique is very important as it will
greatly affect the overall quality of search. In similarity search for instance,
MTS reduction techniques often follow one of three approaches. In the first
approach, each variable is considered independently as a time series [6]. While
being easier to process, this approach often requires much more computation
time. The second approach consists of concatenating all data contained within
all variables as a long univariate time series (UTS) [13]. Like the first approach,
this often overlooks the relationships that exist among the variables and cannot
efficiently process a relatively large number of variables. The third approach
transforms the MTS into a lower dimensional representation that still captures
its main characteristics while rendering the data more manageable. Although
this approach presents more complexity, it provides more accurate results for
the similarity search.

In this paper we propose a similarity search technique based on dimensional-
ity reduction and time series correlations analysis. An important aspect for this
technique is the proposed representation based on PCA that allows to transform
the MTS with large number of variables to a UTS prior to seeking correlations.
This is particularly important because, on one hand, the representation takes
into account the correlation between variables within each multivariate dataset,
in addition to decreasing redundancy and noise and, reducing the intrinsic high
dimensionality. Other proposed univariate representations are often not able to
retain the correlation between variables within each multivariate dataset [6]. On
the other hand substantial research and progress in making UTS pattern recog-
nition tasks in general, and similarity search in particular, very efficient on large
datasets has occurred in recent years [23, 26, 4, 20]. The proposed representation
will allow efficient UTS techniques to be easily extended to MTS.

In what follows, we formulate the problem in Section 2, review the related
work in Section 3, and provide preliminaries in Section 4. Our proposed tech-
nique is introduced in Section 5. Section 6 presents our experimental results.
Concluding remarks and future directions are presented in Section 7.

2 Problem Formulation

A UTS X = < x1, x2, ..., xn >, of dimension n is a sequence of real values for a
variable measured at n different timestamps. A MTS An,m of n instances for m
variables can be represented as a n×m matrix A (shown below) in which ai,j is
the value of variable X∗,j measured at time-stamp i, for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

An,m =


a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m

...
...

. . .
...

an,1 an,2 · · · an,m





We are interested in the problem of similarity search in MTS defined as
follows:

Definition 1. (MTS similarity search)
Let D = {A1

n,m, A
2
n,m..., A

q
n,m} be a set of MTS, each of which containing n

instances and m variables; and ε be a user specified threshold value. A MTS
similarity search retrieves all pairs of times series Ai and Aj in D such that
their correlation distance does not exceed ε, for 1 ≤ i, j ≤ q.

Similarity search techniques in time series can be classified in two categories:
subsequence search and whole sequence search. In this paper, our focus is on
whole sequence search and we use Pearsons product-moment coefficient [21] as
the measure to assess similarity between two time series.

3 Related Work

Transforming MTS into lower-dimensional time-series have had some interest
and many dimensionality reduction methods have been proposed. Those broadly
adopted in the literature include Independent Component Analysis (ICA) [5, 8],
Random Projection (RP) [3, 7], and Principal Component Analysis(PCA) [27,
3, 7].
The Independent Component Analysis technique allows to find a new basis in
which to represent the multivariate data. It can be considered a generalization of
the PCA technique since the latter can be used as a preprocessing step in some
ICA algorithms. However, while the goal in PCA in is to capture the maximum
variance of data or minimize reconstruction error, the goal of ICA is to mini-
mize the statistical dependence between the basis vectors. ICA however presents
limitations that include the inability to determine the order of the independent
components and the need for the input time-series data to have non-Gaussian
distribution.
The Random Projection technique relies on projecting and embedding the mul-
tivariate data onto a lower dimensional subspace, randomly. It is based on the
Johnson - Lindenstrauss lemma proposed in 1984 [10]. The lemma states that,
given a set of points in a high-dimensional space, they can be projected and
embedded into a lower dimensional subspace, such that, the distances between
the points are nearly preserved. For random projections, the lower dimensional
subspace is randomly chosen based on some distribution and, we can seek to
have a probabilistic guaranty that the distance between two time series in the
higher dimensional space will have some sort of correspondence with the dis-
tance between the same two time series in the lower dimensional space. This
data reduction technique is efficient for frameworks with a relatively small num-
ber of very long time series due to the fact that, the data size k resulting from
the reduction does not depend on the length of the time series but rather the
number of time series [31]. It is however known to be less effective than PCA for
severe dimensionality reduction [7].
The PCA technique is an orthogonal linear transformations in which one assumes
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all basis vectors to form an orthonormal matrix. It projects the original dataset
in a new coordinate system where the directions are pairwise orthonormal. A
main advantage of PCA in our work is that it guaranties the uncovering of an
optimal new embedding with minimal approximation error, and hence retains
the crucial underlying structure of the original data. In addition to reducing
dimensionality, the transformation decreases redundancy and noise, highlights
relationships between the variables and reveals patterns by compressing the data
while expressing it in such a way that highlights their similarity and dissimilar-
ity. In addition, if two MTS are similar, their PCA representations will also be
similar [15]. Many similarity search techniques [28, 27, 2, 15] have relied on PCA
for MTS processing as it is known to be one of the most efficiently computable
techniques and a powerful tool of choice in high dimensional data environments
for linear dimensionality reduction. PCA is however also limited by the fact
that, as a new set of features is generated, the reduced form of the data is still
a matrix. Retaining the first principal component in order to vectorize the data
has been explored with some level of success in the literature [27]. However,
since principal components carry in decreasing order portions of the explained
variance from the data, in order to retain enough information in the new repre-
sentation, one would need to retain at least a few principal components in most
cases. Hence the reduced form of the data would remain in a matrix form.

4 Preliminaries

In this section we review some background, definitions and notions needed in
later sections.

4.1 Notation

This section provides the notation used in this paper, if not specified otherwise.

– D denotes the set of multivariate time series( or, D’ if normalized).
– DU denotes the set of UTS resulting from the STEP1 reduction.
– An,m is the multivariate time series with n instances and m variables.
– A is such that A = [aij ] is a matrix representing the multivariate time series.
– AT is the matrix transpose of A.
– V is the right eigenvector matrix of size m×m, Vk is the right eigenvector

matrix of size m×k.
– S denotes the diagonal matrix of the singular values of A, Sk is the diagonal

matrix of the k largest singular values of A.
– [ai] is the column vector of the matrix.
– [a]i,∗ denotes the i-th row of the matrix.
– [a]∗,j denotes the j-th column of the matrix.
– [a]i,j denotes the element entry at the i-th row and j-th column of the matrix.
– θ is the cumulative explained variance in the data that are represented within

k retained principal components.
– ρ is the Pearson correlation coefficient.
– ε is the user specified correlation threshold.



4.2 Principal Component Analysis

Carrying out PCA on raw MTS data often requires some preprocessing such as
mean-centering and scaling to adjust values measured on different scales to a
relatively common scale, since PCA is a variance maximizing exercise. The tech-
nique is often explained through the original data matrix’s covariance matrix
(ATA) eigen-decomposition. It however can also be performed through the Sin-
gular Value Decomposition(SVD) of the data matrix. In this paper, we consider
the latter, framed as per below.
Let An,m be a matrix with n instances and m variables, and k be the dimension
of the space in which we wish to embed the data. Using a Singular Value De-
composition of the matrix, PCA returns the top k left and top k right singular
vectors of A. It subsequently projects the original data on the k-dimensional
subspace spanned by the chosen column singular vectors.

Definition 2. (Singular Value Decomposition) Let A be a n×m data matrix with
r as its rank. The singular value decomposition (SVD) of A is the factorization
A = USV T , where:

– U is a column-orthonormal n×r matrix whose columns are the eigenvectors
of AAT ,

– S is a diagonal r×r matrix of the singular values si for A, otherwise related
to the eigenvalues λi of the covariance matrix ATA by λi = s2

i /(n−1), where
λ1 ≥ . . . ≥ λr ≥ 0, and,

– V is a column-orthonormal r×m matrix whose columns are the eigenvectors
of ATA.

Often, a rank-k approximation of the dataset works well because many datasets
occurring in practice present a structure that leads to only the first few principal
components being non-negligible.

To identify the number of principal components to retain from each MTS,
we use the relative percentage variance criterion [11] to translate the amount of
variance we wish to retain in the data to the number of principal components.
The number k of relevant principal components may vary for different MTS,
consequently kmax, representing the largest of all identified ks, are to be retained.
Algorithm 1 summarizes the steps in uncovering kmax.

5 The Proposed Technique

Given a set of MTS D= {A1
n,m, A

2
n,m..., A

q
n,m} and a user specified correlation

threshold ε, our goal is to identify all pairs of time series whose Pearson correla-
tion value is no less than ε. The proposed technique follows a two-steps resolution
process. It first uses a novel transformation technique (M2U) to transform the
MTS to a UTS, then seeks pairwise correlations within the set of newly generate
univariate series, using the Pearson product moment correlation. An important
aspect about the proposed representation resulting from the M2U transforma-
tion is that, it allows efficient UTS pattern recognition techniques to be easily
extended to MTS.
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Algorithm 1 - Find kmax the number of PCs to retain

Input: D′ = {A1
n,m, A

2
n,m..., A

q
n,m} a set of normalized MTS, θ cumulative variance to

retain from each MTS.
Output: The number kmax of principal components to retain from each MTS s.t.
kmax = max(k1, k2, ..., kq)
begin

1: kmax ← 0
2: for i← 1 to q do
3: Uncover fraction of total explained variance
4: f(k) ← Σk

z=1λz/Σ
r
z=1λz for all z = {1, . . . , r}

5: Choose the smallest k so that f(k) > θ and retain that
number of k eigenvectors to keep explained variance θ
in the new embedding.

6: if k > kmax then kmax ← k
7: end for
8: return kmax

end

5.1 M2U : Multivariate Time Series to a Univariate Time Series
Transformation

In this section, we formally define the transformation process then describe its
underlying intuition. Algorithm 2 provides the transformation steps from line 2
to 13.

Definition 3. (M2U (Multivariate to Univariate Transformation)). Given the
matrix A ∈ Rn×m with rank r = rank(A) s.t. r 6 min{n,m} and k 6 r. Let
Vk be the matrix containing the top k right singular vectors of A, and Sk be the
matrix containing the top k singular values of A. Then, the (rank-k) univariate
representation of A is defined as
[Un,1]ki = Σm

v=1ai,vŵv , for i = 1, 2, ...,m where:

– ai,v is the element of matrix A at row i, and column v.
– ŵj = Σk

z=1wzej,z, for j = {1, 2, ...,m} is the weight of the column variable j
within the given multivariate dataset, called weighted score and below defined.

– [Un,1]ki = Σm
v=1ai,vŵv is the i-th entry of the newly generated UTS Un,1.

We assume that each MTS Ain,m of n instances for m variables within D can be
represented as a n×m normalized matrix A (shown below).

X∗,1 X∗,2 · · · X∗,m

An,m =


a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m

...
...

. . .
...

an,1 an,2 · · · an,m





Each column variable X∗,j holds a particular weight or importance ŵj with
respect to the whole data matrix An×m [14]. Let us consider ŵ the weight vector
containing all variable weights. Intuitively, if we seek to transform the MTS to a
UTS in a new framework, there will be a need to uncover and take into account
the variable’s importance or weight in the reconstruction process.

Finding the Weighted Scores(Variable Weights) We rely on unsupervised
learning through a principal component analysis of the input data to uncover
the variable weights (weighted scores) within ŵ. We use information drawn from
the diagonal of the matrix S and the rows of matrix V (from the factorization
A = USV T ) to computed statistics that reveal influence on the columns of the
original matrix A.

Let us first note that the entries in each column of V = ATUS† (where S†

denotes the Moore pseudo-inverse of S) provide the regression coefficients of a
corresponding principal component, which in turn is expressed as a linear com-
bination of all variables from the original matrix. More precisely, the coefficient
of the ith new feature component uncovered through PCA is expected to be the
ith entry of the eigenvector. The first k principal components can be expressed
as below illustrated if we consider X1, ..., Xm to be the original variables within
the data matrix A.

e1,1X1 + e1,2X2 + e1,mXm = PC1

e2,1X1 + e2,2X2 + e2,mXm = PC2

. . .
ek,1X1 + ek,2X2 + ek,mXm = PCk

Just as the principal components can be expressed as a linear combination of
all variables from the original matrix, the original variables can also be defined
as linear combinations of the principal components. The rows of V hence each
concern a specific variable and are considered rescaled data projected onto the
principal components; the data is indeed rescaled according to the singular values
to ensure that the covariance is identity.

In the multivariate to univariate transformation process, we wish to uncover
the influence of the original variables with respect to the input data, hence we
will seek to retain coefficients that are ”unscaled”. Such coefficients will need to
account for the relative portions of variance carried by the principal components.

Definition 4. (Weighted Scores) Given the matrix A ∈ Rn×m with rank r =
rank(A) s.t. r 6 min{n,m} and k 6 r. Let Vk be the matrix containing the top
k right singular vectors of A, and Sk be the matrix containing the top k singular
values of A. Then, the (rank-k) weighted score of the i-th column of A is defined

as ŵ
(k)
i = |Σk

j=1wjei,j |, for i = 1, 2, ...,m
where:

– wj = λj/Σ
r
z=1λz, the fraction of variance carried by the j-th column in [Vk],

for 1 6 j 6 k and,
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– λj = σ2
j /(n− 1) is the variance corresponding to the jth singular value(σj),

consequently to the jth column of [Vk], and λ1 ≥ . . . ≥ λr ≥ 0

Let us note that the weight w within the weighted score is reflected through the
proportion of explained variance retained by the specific principal component.
For instance if we consider the jth principal direction, its weight labeled wj is
wj = λj/Σ

r
z=1λz.

A matrix [wVk] of weighted principal directions is then constructed by mul-
tiplying each component within the retained matrix of eigenvectors Vk by its
corresponding weight wj .

E1 E2 · · · Ek

Vk =


e1,1 e1,2 · · · e1,k

e2,1 e2,2 · · · e2,k

...
...

. . .
...

em,1 em,2 · · · em,k



w1E1 w2E2 · · · wkEk

[wVk] =


w1e1,1 w2e1,2 · · · wke1,k

w1e2,1 w2e2,2 · · · wke2,k

...
...

. . .
...

w1em,1 w2em,2 · · · wkem,k



Subsequently, the row entries of the weighted matrix [wVk] are aggregated
as per line 9 of Algorithm 2 to provide the variable weights vector ŵ.

ŵ =


|w1e1,1 + w2e1,2 + · · ·+ wke1,k|
|w1e2,1 + w2e2,2 + · · ·+ wke2,k|

...
...

. . .
...

|w1em,1 + w2em,2 + · · ·+ wkem,k|

 =


ŵ1

ŵ2

...
ŵm


The variable weights vector ŵ entries expressed as ŵj = |Σk

z=1wzej,z| for j =
{1, 2, ...,m}, are the original weights for the column-variables within the given
multivariate dataset.

Deriving the Univariate Signal. Once the variable weights are uncovered,
the next step consists of building a weighted matrix [ŵA] by factoring the original
data matrix An×m and the variable weights vector ŵ. More precisely, as shown
on lines 10 and 11 of Algorithm-2, each column of An×m is factored by its
corresponding weight and the row entries of the weighted matrix are subsequently
aggregated to form the new univariate derivation.

Un,1 =


a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m

...
...

. . .
...

an,1 an,2 · · · an,m

 ∗

ŵ1

ŵ2

...
ŵm

 =


Σm
v=1a1vŵv

Σm
v=1a2vŵv

...
Σm
v=1anvŵv


An important aspect for this representation technique is that, it uses statistics
drawn from the PCA to leverage the relative importance of each variable and



uncovers a univariate derivation of the time series. The new derivation takes
into account the correlation between variables in the MTS dataset and, de-
creases redundancy and noise. The proposed representation will allow efficient
UTS pattern recognition techniques to be easily extended to MTS.

5.2 Similarity Measure

We use Pearson’s product-moment coefficient [21] as the measure to assess sim-
ilarity between two time series. The Pearson correlation measure is known to
be more robust against data that is not normalized and to respond better to
baseline and scale shifts when compared to other measures [31].

Let X, Y be two normally distributed time series of equal dimension n. The
Pearson correlation coefficient of X, Y denoted ρ(X,Y ) is a value in [-1,1] that
measures of the linear dependency between X and Y, defined as follows:

ρ(X,Y ) =

∑n
t=1 (xt − x) (yt − y)√∑n

t=1 (xt − x)
2
√∑n

t=1 (yt − y)
2

(1)

where xt is the mean of X over n and, y is the mean of Y over n. The Pearson
correlation coefficient can be approximated to the Pearson product moment,
expressed as follows:

ρ(X,Y ) =
1

n− 1

n∑
t=1

xy

SxSy
(2)

where x = (xt − x) , y = (yt − y),
Sx= [(1/n− 1)

∑n
t=1 x

2]1/2, and Sy=[(1/n− 1)
∑n
t=1 y

2]1/2.

Given a user specified correlation threshold ε, our goal is to identify all pairs
of time series whose Pearson correlation value is no less than ε. Algorithm 2
summarizes the steps for the pairwise correlation search from line 14 to 17.

6 Experimental Set Up and Results

To evaluate the effectiveness of our proposed technique, we implemented the
code in Matlab and conducted numerous experiments on benchmark datasets,
using a configured PC with Intel Quad core i7 2.00 GHz CPU, 8 GB RAM,
running Windows 7.

6.1 Benchmark Datasets

The experiments were ran on benchmark datasets drawn from several widely
used repositories [1, 16, 9] in the current literature. Experiments and results per-
taining to three of the used benchmark datasets are reviewed in this section.
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Algorithm 2 - M2U and Pairwise Correlation Search

Input: D′ = {A1
n,m, A

2
n,m..., A

q
n,m} a set of normalized MTS, θ (cumulative variance

explained), ε a user specified Pearson correlation threshold.
Output:A set C of all pairs (Ai, Aj) in D’ whose correlation is not less than ε.

begin

1: Estimate kmax using Algorithm 1.
k ← kmax

2: for i← 1 to q do
3: STEP1: Reduce MTS Ai ∈ D′ to UTS U i, add it to DU

4: A← the ithMTS of rank r, in D’, Ai
n,m

5: Compute the Singular Value Decomposition
[U, S, V T ]← SV D(A)

6: Retain a matrix of k eigenvectors
7: M ← Vk

8: Build the weighted matrix [wVk]
For z ← 1 to k
wz ← λz/Σ

r
z=1λz

[wVk]∗,z ← wz ∗ [M ]∗,z
end for

9: Compute the weighted score for each variable
ŵ

(k)
j ← |Σk

z=1wzej,z|, for all j = {1, 2, ..., m}.
10: Build the weighted matrix [ŵA]

For v ← 1 to m
ŵv ← ŵ

(k)
v

[ŵA]∗,v ← [A]∗,v ∗ ŵv

end for
11: Uncover row entries for the new univariate signal Un,1

[Un,1]i ← Σm
v=1ai,vŵv, for i = {1, 2, ..., n}

12: add [Un,1] to DU

13: end for
14: STEP2: Uncover correlated pairs
15: For all (U i, U j) ∈ DU

16: Compute their pairwise Pearson correlations
17: If ( |ρ(U i, U j)| > ε ) then add (Ai, Aj) to C

end



The Australian language sign dataset(AUSLAN) [12] was gathered through
two gloves, with 22 sensors while native AUSLAN speakers signed. The dataset
contains 95 signs having 27 examples each, hence a total of 2565 of signs gath-
ered. This dataset is well used in similarity search problems due to its complexity.
The INRIA Holidays images dataset (INRIA HID) [9] is a collection of
images that have served in testing the robustness to various transformations: ro-
tations, viewpoint and illumination changes, blurring, etc. The dataset contains
500 high resolution image groups representing a large variety of scene types to
incorporate diversity in representation.
The Transient classification benchmark dataset (Trace) [25] was gath-
ered for power plant diagnostics. The dataset has 5 variables (4 process variables
and a class label) and 16 operating states. The class label is set to 0 until the
transient occurs, at which time it is set to 1. The part of the data that is of
interest for us is the subset where the transient occurs.

6.2 Evaluation and Results

We designed experiments to assess the performance of the proposed technique. In
this section, we compare our performance against those from primarily five other
techniques: the Correlation Based Dynamical Time Warping (CBDTW) [2], the
2-D correlation measure for matrices(see section 6.2)(Corr2), the Dynamical
Time Warping(DTW), Eros [29], Euclidien Distance(ED).
The recall-precision ratios recorded for all techniques on the AUSLAN and
TRACE datasets are shown on Fig. 1 and Fig. 2 respectively. On both datasets,
we can see that the Euclidien Distance(ED), Dynamical Time Warping(DTW)
perform worst than the remaining techniques. This may be due to the fact that,
both techniques do not take into account the existing correlations between the
variables of the MTS while the remaining four techniques do. Our technique
outperforms the remaining techniques on both datasets. In another set of ex-

Fig. 1. Recall-Precision on AUSLAN Fig. 2. Recall-Precision on TRACE

periments, we further assess how using the proposed univariate representations
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compares to the case where the original matrices are used to find pairwise cor-
relations within a set of MTS. Our results confirm that our technique yields
improved similarity search accuracy. To illustrate with an example from the IN-
RIA Holidays images dataset, let us consider the six images on the left side of
Fig. 3, with three scenes taken at different points in time.

Fig. 3. Left - Six images from the INRIA HID of three scenes taken at different points
in time, identified as closest matches. Right - Univariate signals of the six images after
M2U transformation. The image name is color-coded with its corresponding univariate
signal.

For the purpose of the experiment, the images were converted to the grayscale
intensity images, then subsequently to double precision to transform the true-
color image RGB to 2-dimensional matrices. Each image was then represented
by a 2816×2112 matrix.
Using our proposed transformation technique M2U, each matrix is transformed
into a univariate signal represented on the right of Fig. 3. The color of each uni-
variate signal (Fig. 3 right) matches the color of the text on its corresponding
image to the left side (Fig. 3 left). We can see that similar images generated
similar univariate signals. Furthermore, using our technique, the Pearson corre-
lation coefficients post transformation are:

ρ(Tree1,Tree2)=0.9661,
ρ(SS1,SS2)=0.9413,
ρ(Sky1,Sky2)=0.9982.

To uncover the correlation coefficient that would result from using the original
matrices, without transformation, we use the 2-D correlation coefficient Corr2,
framed as:



Corr2(Ai, Aj) =
ΣnΣm(Ai

mn−Āi)(Aj
mn−Āj)√

(ΣnΣm(Ai
mn−Āi)2)(Aj

mn−Āj)2

where Āi = mean2(Ai) and Āj = mean2(Aj).

For this set of experiments on the full image matrices, the Pearson correlation
coefficients are such as:

Corr2(Tree1,Tree2)=0.6261,
Corr2(SS1,SS2)=0.7594,
Corr2(Sky1,Sky2)=0.8027.

Let us consider the case where we looked to retrieve all similar images, with a
correlation coefficient greater than a correlation threshold ε = 0.7, the images for
Tree1 and Tree2 would not have been retrieved as pairwise correlated if the full
matrix is used, while it would be identified if the Pearson correlation is applied
to the univariate derivation obtained from our technique (M2U).

Transforming the MTS to a univariate signal yields improved similarity search
accuracy. When the matrix goes through a PCA transformation, in addition to
reducing the dimensionality, the transformation decreases redundancy and noise,
highlights relationships between the different variables and reveals patterns by
compressing the data while expressing it in such a way that highlights their
similarity and dissimilarity. In addition, since we are not discarding any of the
relevant principal components, but rather re-combing them, we preserve much
of the relevant and needed information from the data.

7 Conclusion

We propose a novel technique for multivariate time series representation, anal-
ysis and search. The technique relies on dimensionality reduction and correla-
tion analysis to uncover similar multivariate time series. It uses statistics drawn
from the Principal Component Analysis to find a unique derivation of the MTS
into a univariate time series prior to seeking correlations. Our experiment re-
sults indicate increased accuracy and efficiency when compared to major exist-
ing techniques. The proposed representation will allow efficient techniques for
univariate time series to be easily extended to multivariate time series. We are
currently working on extending the proposed technique to application frame-
works for streaming time series.
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