
Incorporating Positional Information into Deep
Belief Networks for Sentiment Classification

Yong Jin , Harry Zhang , and Donglei Du1 1 2

1 Faculty of Computer Science, University of New Brunswick, Fredericton, NB,
Canada, E3B 5A3

{yjin1,hzhang}@unb.ca,
2 Faculty of Business Administration, University of New Brunswick, Fredericton, NB,

Canada, E3B 5A3
ddu@unb.ca

Abstract. Deep belief networks (DBNs) have proved powerful in many
domains including natural language processing (NLP). Sentiment classi-
fication has received much attention in both engineering and academic
fields. In addition to the traditional bag-of-word representation for each
sentence, the word positional information is considered in the input. We
propose a new word positional contribution form and a novel word-to-
segment matrix representation to incorporate the positional information
into DBNs for sentiment classification. Then, we evaluate the perfor-
mance via the total accuracy. Consequently, our experimental results
show that incorporating positional information performs better on ten
short text data sets, and also the matrix representation is more effec-
tive than the linear positional contribution form, which further proves
the positional information should be taken into account for sentiment
analysis or other NLP tasks.

Keywords: Deep belief networks, Sentiment classification, Positional
information, Matrix representation

1 Introduction

Sentiment classification task is a popular research issue in the NLP community,
which is to determine the sentiment polarity of a text. The fast growing amount
of online opinion resources, such as product review sites and social media web-
sites, has produced much interest on the task of sentiment classification [8,6,18].
Therefore, people in academic and engineering areas are paying attention to
develop an automatic system that can identify the polarities of the opinions.

Various techniques have been applied in sentiment analysis area, including
traditional machine learning approaches, language models [11,19], and the re-
cently developed deep learning methods, such as deep neural networks [2], deep
belief networks [15], recursive matrix-vector model [16], and recursive deep net-
work [17]. Pang et al use three traditional machine learning methods: naive
Bayes (NB), maximum entropy (ME) classification, and support vector machines

© Springer International Publishing AG 2017

DOI: 10.1007/978-3-319-62701-4_1
P. Perner (Ed.): ICDM 2017, LNAI 10357, pp. 1–15, 2017.

1

(SVMs) for movie sentiment classification [10]. Raychev and Nakov introduce a
novel language independent approach to the task of determining sentiment po-
larities of the author’s opinion regarding a specific topic in natural language
texts [12]. It intakes the positional information into NB classifier. In particular,
it introduces a method to measure the positional importance, that is, instead of
value one, the occurrences of the words at different positions contribute different
values to their frequency values in the sentence. The DBN [5] is an effective deep
learning approach consisting of multiple layers of hidden variables, which are ac-
commodated to abstract higher representations from the raw inputs. Sarikaya et
al use additional unlabeled data for DBN pre-training and combine DBN-based
learned features for text classification [15].

Some researchers consider the word order information into several different
NLP tasks. Pahikkala et al introduce a framework based on a word-position ma-
trix representation of text for natural language disambiguation tasks [9]. Specif-
ically, in disambiguation tasks, each input example is consisting of a word to
be disambiguated and its surrounding context words, then a kernel function is
applied to map the features. Johnson and Zhang propose an effective way of bag-
of-words conversion into convolutional layer to exploit the word order of text for
text categorization using convolutional neural networks (CNNs) [7]. In detail,
the region representation called seq-CNN is to embed text regions into low di-
mensional vector space. Meanwhile, considering the model becomes too complex
and the training is too expensive, they provide an alternative way bow-CNN to
perform bag-of-words conversion to make region vectors.

In this paper, we propose two ways to incorporate the positional information
into DBNs for sentiment classification. Firstly, inspired by [12], we propose a new
linear positional contribution form by scale normalization. Secondly, motivated
by the work in [9,7], we propose a new word-to-segment matrix to denote a sen-
tence, in which each sentence is divided into several segments (not convolutional).
We do not consider the word order within each segment, but the segment order
is represented using the word-to-segment matrix. Overall, this paper explores
the effect of positional information on the sentiment classification task for short
texts such as Twitter messages. Compared to the basic bag-of-word representa-
tion, the word positional information will capture some grammar information of
a text.

The rest of the paper is organized as follows. In Section 2, we introduce
three types to represent positional information; In Section 3, the experiments
and results are described in detail; In Section 4, we come to the conclusion and
discuss some future work.

2 DBN Incorporating Positional Information

2.1 Positional Contribution

Typically, a word is a grammar component in a sentence, and it has neighboring
words resulting in different combinations of words, which means each word has a

positional contribution value in the sentence. Basically, a word should be assigned
a relatively higher weight as its position occurrence increases in the sentence.
The reason is that when we read the first word, the sentence’s sentiment polarity
is not clear at all, but when we go to the last word after reading all previous
words, the sentiment polarity becomes unambiguous.

The positional information has been introduced into the NB classifier [12]
in the form of Eq. 1, in which a simple linear interpolation is used to measure
the position-dependent information in a sentence. Suppose the vocabulary has
N word attributes, Wj denotes the jth word (attribute) in the vocabulary, and
it has value of xj that is equal to zero when word Wj does not exist in the
sentence, otherwise it is calculated via Eq. 1.

xj = q0 + q · p
n
, q0 ≥ 0, q > 0, j = 1, 2, ..., N, (1)

where q0 represents some constant value from the starting position of the sen-
tence, and q is the position fractional weight, p is the position occurrence of word
Wj in the sentence, n is the length of the sentence.

In order to normalize the values from Eq. 1 within the same scale, we force
the value xj to fall in the range of [0, 1] (scale normalization). So we propose a
new positional contribution form described in Eq. 2.

xj = θ + (1− θ) · p
n
, 0 ≤ θ ≤ 1, (2)

where p and n represent the same as those in Eq. 1, θ is the ratio between the
word’s presence and its positional contribution within the range of [0, 1]. When
θ = 0, the value only represents the positional contribution, while it means the
traditional presence value if θ = 1. Actually, the form of Eq. 2 is a special form
of Eq. 1 just through the assumption of q + q0 = 1, but it has two parameters.
However, given that 0 < p ≤ n is correct for each sentence because p represents
the word’s position in a sentence while n denotes the length of the sentence, this
form offers the flexibility to adjust the ratio θ to assign the value into the interval
of [0, 1] that is fed into the DBNs. Each sentence incorporating the positional
contribution is represented by an N -dimensional vector.

2.2 Matrix Representation

To better represent a sentence with the vocabulary words and incorporate the
word order information into the model, also inspired by the linear transformation
of the word-position matrix representation in the word disambiguation task [9],
we try to use a matrix to represent a sentence. Intuitively, word-to-word matrix
representation is introduced here. Suppose that a sentence is represented by an
N*N matrix M with the following two definitions:

– Mii = 1, if the word Wi exists in the sentence, otherwise is 0, for i = 1, 2,
..., N ;

Incorporating Positional Information into Deep Belief Networks 3

– Mij = 1 ,if the word Wi occurs before Wj with only one space (the two words
are neighbors in the sentence), otherwise is 0, for i, j = 1, 2, ..., N (i is not
equal to j).

The word-to-word matrix representation can exactly describe the word order
in each sentence. However, because there is normally a large vocabulary size for
each training data set, the word-to-word matrix representation will consequently
result in an extremely large size of input for training. Specifically, if the vocab-
ulary size is N , the word-to-word matrix will be N2, then the training time will
be squarely increased, which will also cost too much memory of the computer.

In order to decrease the dimension size, we come up with an idea: each
sentence is roughly divided into three segments in grammar order of the sentence.
For example, the sentence “the cat sat on that mat” is divided into three segments
as: segment 1 of {“the cat”}, segment 2 of {“sat on”}, and segment 3 of {“that
mat”}. In this case, we do not consider the word order in a local region (within
each segment), but we take into account the order information of the three
segments in the sentence, which will not lose much information for short texts,
and meanwhile the dimensional size is not too large.

Hence, we propose a simplified form of word-to-word matrix representation
called word-to-segment matrix representation. But there is still some difference
between word-to-word and word-to-segment: word-to-word is denoted by a 0-
1 matrix, while word-to-segment would distinguish word’s impact on different
segments (detailed in the later matrix definitions). Based on the different impact
relationship values, we propose two types of matrix representations. Considering
the words in a sentence are normally organized in a logical order, and also to
simplify the problem, the number of segments is not defined from the grammar
view, but from the view that the number of words in each segment would be
approximately similar. Specifically, let nSeg denote the number of segments, n
is the sentence length for a specific sentence. Then we define nSeg as below:

– If n < nSeg, then each segment is at most one word in the sentence, for
example, the sentence “love it” to be divided into three segments, then
the first segment is {“love”}, the second segment is {“it”}, while the third
segment is empty;

– If n ≥ nSeg, the length of each segment segLen (except for the last segment)
is defined as the floor integer of n over nSeg. In detail, for the segment k
through 1 to nSeg − 1, the position of segment k in the sentence is from
1+ (k− 1) ∗ segLen to k ∗ segLen; while for the segment nSeg, the position
is from k ∗ segLen + 1 to n. For example, a sentence “it is the best” to be
divided into three segments in order is {“it”}, {“is”}, and {“the best”}.

There are two types of impact definitions introduced here. Let the word-
to-segment matrix denoted by M (each column represents each word in the
vocabulary and each row denotes each segment), its element value is defined in
the following two types accordingly. For both two types’ definitions, Mij = 1
when the word Wj occurs in the segment i for i = 1,2,3 and j = 1,2, ..., N ,

which means this word has full impact on its own segment. The word’s impact
on different segments is described below.

To clearly explain the word-to-segment matrix representations, we take the
previously mentioned sentence “the cat sat on that mat” for example, and assume
the vocabulary is {“are”, “cat”, “mat”, “on”, “sat”, “take”, “that”, “the”} with
size N = 8. The first type is illustrated in Table 1, where the word-to-segment
matrix M has size of 3*8 (same in Table 2, and also the empty cells are zeros).
In Table 1, the words existing in the first segment(S1: “the cat”) have no impact
on the latter two segments, the words in the second segment (S2: “sat on”) have
impact value of a on the first segment, and the words in the third segment (S3:
“that mat”) have impact on both the second and first segments with impact
values a and b respectively. Given that the distance between the third segment
and the first segment is larger than that between the third segment and the
second segment, the impact values should satisfy the condition of 0 < b < a < 1.

Table 1: Type one of word-to-segment matrix representation for one sentence
(matrix1)

Segment are cat mat on sat take that the words

S1 1 b a a b 1 “the cat”

S2 a 1 1 a “sat on”

S3 1 1 “that mat”

The second type is shown in Table 2. Another reasonable assumption is that
a word in the segment not only has impact on its previous segment but also
on its latter segment, but does not have impact on its remote segment (e.g.,
the first and the third segments). Furthermore, the three segments do not have
the same impact on each other because they locate in different positions of the
sentence. Specifically, the words in segment 1 (or segment 3) have impact on
segment 2 with value c (or e), and the words in segment 2 have impact on both
segment 1 and segment 3 with value d. The impact values have the restriction
of 0 < c < d < e < 1.

Table 2: Type two of word-to-segment matrix representation for one sentence
(matrix2)

Segment are cat mat on sat take that the words

S1 1 d d 1 “the cat”

S2 c e 1 1 e c “sat on”

S3 1 d d 1 “that mat”

Incorporating Positional Information into Deep Belief Networks 5

2.3 DBN settings

Through the definitions of the above two types of word-to-segment representa-
tions for each sentence, the input into the DBN model is transformed via the
average operation over each column of the matrix. That is, each sentence is
represented by an N -dimensional vector and each element value equals to the
average of corresponding column of the three segments, which not only keeps
the same size of input features as the original bag-of-words representation, but
also contains the prior segment order information of the sentence.

Therefore, compared to traditional bag-of-words representation, there are
overall four kinds of inputs: baseline bag-of-words representation, positional rep-
resentation, matrix1 representation and matrix2 representation. The inputs are
then fed into our DBNs respectively for further experimental comparison.

The DBNs introduced in our experiments are similar in [5], which includes
RBMs to train the initial weights in an unsupervised way and then transmitted
to ordinary neural networks for back propagation. In the DBNs for sentiment
classification, from the visible input to the penultimate layer, we accommodate
the widely used sigmoid function as the hidden neuron in Eq 3.

ϕ(v) = sigm(v) =
1

1 + e−v
, (3)

where v is the independent variable for sigmoid function ϕ.
Besides, there are some function options from the penultimate layer to output

layer, such as softmax, and sigmoid functions. However, the sigmoid function
proves to be more effective in both neuron models in this paper, which is written
as Eq 4.

LabelS = sigm(wout · S + bout), (4)

where wout is a weight matrix connecting the output layer and its previous hidden
layer, bout is the corresponding bias vector, and S represents the “Sentence” of
the penultimate layer, and LabelS is finally calculated as a C-vector (C is the
number of classes) in which the largest value indicates its class.

The training process of DBNs is divided into two steps [5]: unsupervised
RBM training and supervised neural network training. The first step follows
the practical guide written by Hinton [4], and the second one is actually the
traditional back propagation, a widely applied method to fine-tune the weights,
introduced by Rumelhart et al [13]. Specially, for each data set, the same size of
input is fed into the DBNs, so the running time difference lies in the computation
of different input transformations that will not cost much time compared to
DBN training. Therefore, here we focus on their classification performance on
total accuracy.

3 Experiments and Results

In this section, we design a variety of experiments to verify the power of posi-
tional information of sentences in the DBNs. Then the experimental results are

compared from different angles to analyze the effect and sensitivity of positional
information for sentiment classification.

3.1 Data Collection and Pre-processing

We mainly focus on short text sentiment classification since the positional repre-
sentation and word-to-segment matrix representation described above will lose
some important effect for long text sentiment analysis. Therefore, several short
text data sets, e.g. Twitter messages, are selected here for implementations.

(1) STS-T: Stanford Twitter Sentiment (STS) Test Set [14], a manually anno-
tated data set of STS with positive and negative labels.

(2) STS-G: a gold data set extracted from STS with positive and negative la-
bels [14].

(3) SST: Sentiment Strength Twitter data set [14], including three sentiment
labels (positive, negative and neutral). We will use the data set as two, one
is tri-class data set and the other is binary class removing neutral tweets.

(4) HCR: Health Care Reform (HCR) Twitter data set [14], including three
classes (positive, negative and neutral). Similar as (3), the data set is used
a tri-class set and a binary class set.

(5) FT: Full Twitter data [1],including three classes (positive, negative and neu-
tral). Similar as (3), the data set is used of tri-class data set and binary class
data set.

(6) GT: Game Tweets regarding the video games, are real-time collected and
labeled by us with three labels (positive, negative and neutral). Also, this
data set is used for tri-class and binary data sets.

(7) HCR2, SST2, FT2, GT2: These four data sets are respectively derived from
HCR, SST, FT and GT with neutral tweets removed for binary classification.

Each raw data set needs to be pre-processed for training the model. Firstly,
all characters are converted to lowercase since upper case and lower case have
no differences for sentiment polarities; Secondly, the URLs in the data set are
removed, because they do not make much sense for the sentiment; Thirdly, we
transform some acronyms and abbreviations to their completely expanded forms.
For example, “i’ve” is replaced by “i have”, “can’t” or “cannt” is “can not”,
“won’t” or “wont” is “will not”, “shouldn’t” or “shouldnt” is “should not”, with
details in Table 3. In this way some meaningful words especially the negation
word “not” are kept as they are essential for sentiment. Finally, some punctu-
ations, such as @, /, |, $, are deleted as well since they contribute little to the
text sentiment.

After the above pre-processing, we need to obtain initial trainable data that
can be directly used in DBNs. Since Twitter texts are all limited to 140 characters
long, each word in one Twitter text occurs only once for most of the time, so
the vocabulary of each data set is extracted as attributes, each word token is
denoted by its presence or not, and then each sentence (training example) can
be represented by a vector where the element is one if the word exists in it,

Incorporating Positional Information into Deep Belief Networks 7

Table 3: Corresponding expanded forms for abbreviations
abbrev. expanded forms abbrev. expanded forms

i’ve i have won’t/wont will not
i’m i am wouldn’t/wouldnt would not
i’ve i have shouldn’t/shouldnt should not
i’ll i will can’t/cannt can not
it’s it is couldn’t/couldnt could not
let’s let us isn’t/isnt is not
she’s she is wasn’t/wasnt was not
he’s he is aren’t/arent are not
she’ll she will weren’t/werent were not
he’ll he will don’t/dont do not
you’ve you have doesn’t/doesnt does not
there’re there are didn’t/didnt did not
there’s there is haven’t/havent have not

otherwise zero (filtered by the StringToWord in Weka 3.6.12 [3]). Besides, the
sentence’s label is denoted by a vector with value one at corresponding position
and zeros elsewhere. For example, here is an example with positive label in a
binary classification task, then its label vector (output) can be defined as (1, 0)
in which the first element denotes positive while the second element is negative.

Table 4: Summary statistics of data sets used in the experiments

Data set size N avgL maxL C class sizes mini-batch

STS-T 495 2067 14.5 32 3 179/139/177 11
STS-G 2000 1172 16.4 33 2 632/1368 50
HCR 2300 1018 18.8 32 3 541/400/1359 46
HCR2 1900 1084 19.1 32 2 541/1359 38
SST 4000 985 16.6 37 3 1251/1800/949 50
SST2 2200 1030 17.6 37 2 1251/949 44
FT 5000 1066 14.0 34 3 1664/1664/1672 50
FT2 3250 1162 15.2 34 2 1625/1625 50
GT 12000 929 13.8 33 3 3983/4013/4004 50
GT2 8000 984 14.3 33 2 3984/4016 50
*size: number of examples; N : number of words extracted as the vocabulary;
avgL: average text length; maxL: maximal text length; C: number of classes;
class sizes: number of examples for positive/neutral/negative if C = 3,
otherwise for positive/negative if C = 2; mini-batch: the size of mini-batch
for each data set in the experiments.

3.2 Results and Analysis

In this paper we implement the experiments based on the following four model
variations:

(1) DBN-presence: DBN model with the basic bag-of-words representation (pres-
ence / non-presence) as input with θ = 1 in Eq. 2.

(2) DBN-position: DBN model with the vocabulary incorporating the word’s
presence and positional contribution value as input with 0 ≤ θ < 1 in Eq. 2.

(3) DBN-matrix1: DBN model with the average of first type word-to-segment
matrix representation as input. Each word attribute has value one if existing
in its own segment of the sentence (full impact on its own segment), while it
only has impact on its all preceding segments. That is, the words existing in
the first segment have no impact on the other two segments, the words in the
second segment have some impact (value a) on the first segment, and finally
the words in the third segment have impact on both the second and first
segments with decreasing impact values of a and b respectively in Table 1,
with the restriction of 0 < b < a < 1.

(4) DBN-matrix2: DBN model with the average of second type word-to-segment
matrix representation as input. Each word attribute has value one if it ex-
ists in its own segment of the sentence, and also has impact on its nearest
segment(s) including its preceding and posterior segments with the impact
values of c, d, e with 0 < c < d < e < 1 in Table 2.

We perform the above four models on ten data sets listed in Table 4. The DBN
structure is manually set to consist of two hidden layers. Specifically, it is: input
(visible units) → 400 hidden units → 100 hidden units → output layer (class
labels). Meanwhile, the NB classifier is also performed for reference comparison.
On the other hand, to speed up the experiments in this paper, each data set is
performed using five-fold cross validation (four for training and one for testing)
to obtain an average accuracy. For some hyper-parameters in our experiments,
firstly in RBM unsupervised training, the momentum is 0.1 and learning rate
is 0.1, the number of epochs is set as 50. Secondly, for supervised BP training,
the mini-batch sizes are listed in Table 4, the sparsity penalty parameter is 0.1,
and the maximum number of epochs is 500 with 10−6 as the convergence control
based on early stopping rule.

We firstly manually set the parameters for the classification results and give
a comparison among different DBN model variations. Each accuracy value in the
following tables is average total accuracy of cross validation. Then, we perform a
range of experiments to analyze the effect of parameters with respect to θ, (a, b),
and (c, d, e), investigating whether there exist some hidden patterns for these
parameters in different data sets or whether they are robust to the classification
performance. The DBNs are performed on the platform of MATLAB 2014a and
the NB model is performed in Weka 3.6.12 in the PC of 64-bit OS, Intel Core
i5-5200U, CPU 2.20GHz, and RAM 8.0GB.

Incorporating Positional Information into Deep Belief Networks 9

Classification Results. To obtain the classification results, we set the parame-
ters for each data set listed in Table 5 for experimental results through a number
of tests.

Table 5: Positional parameters of each data set used in the experiments
Model Position (θ) Matrix1 (a, b) Matrix2 (c, d, e)

STS-T 0.3 (0.6, 0.1) (0.3, 0.4, 0.6)
STS-G 0.6 (0.8, 0.3) (0.3, 0.4, 0.8)
HCR 0.9 (0.6, 0.5) (0.2, 0.5, 0.7)
HCR2 0.6 (0.8, 0.3) (0.2, 0.5, 0.8)
SST 0.8 (0.4, 0.3) (0.2, 0.4, 0.7)
SST2 0.3 (0.8, 0.1) (0.2, 0.5, 0.7)
FT 0.4 (0.6, 0.1) (0.3, 0.5, 0.8)
FT2 0.9 (0.8, 0.3) (0.2, 0.5, 0.8)
GT 0.7 (0.6, 0.5) (0.2, 0.5, 0.8)
GT2 0.7 (0.8, 0.3) (0.2, 0.4, 0.7)

The classification results of different model variations on the ten data sets
are shown in Table 6. Note that the NB classifier is performed based on the
presence/non-presence word features of each data set. The accuracy values of
the three models (DBN-position, DBN-matrix1, DBN-matrix2) are respectively
compared with DBN-presence using a two-tailed t-test. The numbers followed
by the sign * indicate the accuracy passes the t-test at the significance level
of 95% for each data set. The results indicate that all the four DBN models
perform better than the NB model (average 63.74%). Meanwhile, DBN-matrix2
has a relatively highest average accuracy (68.26%) for all the data sets, and
DBN-presence performs worse than the other three DBN models.

In Table 7, an explicit comparison among the four model variations is sum-
marized, where w/l/t indicates that the model wins in w data sets, loses in l
data sets, and ties in t data sets. In Table 7, the three rows (DBN-position,
DBN-matrix1, and DBN-matrix2) show their comparisons with DBN-presence
respectively. Especially, because the DBN-presence only has ties or losses with
the other three models, it is omitted in Table 7. To summarize more clearly, the
models are compared in three aspects: all data sets (10), tri-class data sets (5)
(Note: five data sets with three labels: STS-T, HCR, SST, FT, and GT), and
binary data sets (5) (Note: five data sets with only two labels: STS-G, HCR2,
SST2, FT2, and GT2.).

Table 7 shows that DBN-matrix2 performs best on all the ten data sets for
one-by-one comparisons (seven wins and three ties). Besides, the DBN-matrix1
and DBN-position also have four wins and five wins respectively, while the DBN-
presence only has loses or ties. Consequently, it is obvious that the positional
information of sentences exactly provides positive effect on the sentiment classi-
fication issues, and also the second type matrix representation is more effective
than the positional contribution form. On the other hand, the positional infor-

Table 6: Experimental results on classification accuracy (%)

Model NB DBN-presence DBN-position DBN-matrix1 DBN-matrix2

STS-T 66.9 61.01 64.65 * 65.66 * 66.06 *
STS-G 79.7 83.50 84.85 82.60 83.25
HCR 63.1 64.91 66.40 * 65.61 66.33 *
HCR2 74.4 78.11 78.66 78.26 78.89
SST 51.7 53.40 54.45 54.80 55.30 *
SST2 66.5 70.00 71.59 * 71.64 * 72.77 *
FT 47.0 51.16 52.70 * 52.56 * 53.44 *
FT2 63.3 68.18 68.71 68.95 68.92
GT 54.4 57.69 59.93 * 60.73 * 60.71 *
GT2 70.4 75.39 75.83 75.46 76.94 *

average 63.74 66.34 67.78 67.61 68.26

Table 7: Summary of classification accuracy comparisons

Model all data sets (10) tri-class data sets (5) binary data sets (5)

DBN-position 5/0/5 4/0/1 1/0/4
DBN-matrix1 4/0/6 3/0/2 1/0/4
DBN-matrix2 7/0/3 5/0/0 2/0/3

mation seems more effective for tri-class data sets, as DBN-matrix2 has five wins
for all the five tri-class data sets, and DBN-position and DBN-matrix1 have four
wins and three wins out of five respectively. While the results for binary data sets
are not so good as tri-class data sets. It is probably because the word position
and the word order will account more exact information for the sentiment. So the
more positional information is integrated, the better for multi-class sentiment
classification.

In essence, the positional contribution form and word-to-segment matrix rep-
resentation are different ways to describe the word positional information of a
sentence. For positional contribution form, the contribution values are linearly
augmented as the position increases; for matrix1 representation, the words have
relatively larger weights in the latter segments, but they are the same in the
same segments; while for matrix2 representation, the words in the middle seg-
ments have largest weights since they play impact on both its previous and latter
segments. To summarize, the word positional representations improve the word
presence features for short text sentiment classification.

Effect of Parameters. In our experiments, there are some important param-
eters which need to be set manually. Whether the results are sensitive to the

Incorporating Positional Information into Deep Belief Networks 11

parameters needs further investigation. Hence, we perform a variety of experi-
ments in DBNs to examine the effect of parameters.

Firstly, we investigate the effect of position parameter θ in Eq. 2. Here the
values are set from 0.0 through 1.0 with the interval of 0.1. Each data set is
performed with five-fold cross validation for each parameter. The results are
shown in Table 8.

Table 8: Classification accuracy of four data sets vs. position parameter

θ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

STS-T 63.03 58.18 63.03 64.65 61.21 61.01 60.81 61.62 57.37 57.37 61.01
STS-G 81.65 82.30 82.75 83.00 83.50 83.50 84.85 82.85 84.25 83.75 83.50
HCR 64.30 64.96 64.74 66.00 64.83 65.91 65.78 65.00 64.61 66.43 64.91
HCR2 77.89 77.32 76.95 77.95 78.42 78.05 78.66 78.11 78.16 78.00 78.11
SST 52.05 51.80 53.85 53.33 53.78 53.73 53.80 54.33 54.45 52.50 53.40
SST2 69.95 70.82 71.00 71.59 71.41 70.82 71.05 71.09 70.45 69.91 70.00
FT 49.88 49.96 51.28 52.18 52.70 51.10 52.28 51.42 51.44 51.90 51.16
FT2 66.83 68.68 67.69 68.43 68.52 67.91 68.09 68.55 67.57 68.71 68.18
GT 56.18 58.85 57.74 58.93 59.66 59.81 59.10 59.93 59.58 59.34 57.69
GT2 74.00 74.59 75.84 74.15 74.76 75.05 75.43 75.83 75.58 74.53 75.39

Table 8 shows the effect of position parameter θ on the average classification
accuracy of the ten data sets. In this table, the last data column for each data set
with position ratio at 1.0 represents the traditional bag-of-words representation
(presence), and the bold number is the highest accuracy value in each row. It
means that different ratio values between the word’s presence and its positional
contribution have different contributions to the text’s sentiment. Normally, if
θ is relatively bigger, less positional information is integrated, while the word
contributes more information if θ is smaller. It indicates that, the parameter
value of θ needs a careful investigation for each data set. In Table 8, the θ value
corresponding with the bold number for each row is selected for the comparison
on the previous classification results (similar in Table 9 and Table 10).

Secondly, the matrix1 representation is investigated for the values of a = 0.2,
0.4, 0.6, 0.8 and b = 0.1, 0.3, 0.5, with the restriction of 0 < b < a < 1. Table 9
shows the results of accuracy on each set of (a, b). For instance, the data set
of STS-T has the highest average accuracy of 65.66% at (0.6, 0.1) among all
the nine parameter settings for matrix1 representation. It gives a picture of the
sensitivity for the values of (a, b) on the performance and provides evidence to
choose good parameters.

Finally, the matrix2 representation is performed with the parameter values
of c = 0.1, 0.2, 0.3, d = 0.4, 0.5 and e = 0.6, 0.7, 0.8. The accuracy results of
each set of (c, d, e) are given in Table 10. For example, the parameter setting
(c = 0.3, d = 0.5, e = 0.8) reaches the highest accuracy 53.44% for FT data set.

Table 9: Classification accuracy of four data sets vs. matrix1 parameters

(a, b) (2,1) (4,1) (6,1) (8,1) (4,3) (6,3) (8,3) (6,5) (8,5)

STS-T 64.44 60.00 65.66 64.85 61.21 65.45 64.65 65.25 63.84
STS-G 68.40 68.40 72.15 71.40 73.35 74.20 82.60 77.85 81.90
HCR 62.13 65.48 65.26 65.13 64.74 64.17 65.09 65.61 64.57
HCR2 72.63 73.53 77.53 77.26 77.42 76.89 78.26 78.21 77.63
SST 54.23 53.78 52.83 51.10 54.60 52.70 53.40 53.25 53.78
SST2 62.27 70.64 70.09 71.64 70.82 71.05 70.77 69.41 69.91
FT 45.82 49.84 52.56 51.48 50.42 51.72 52.12 49.78 52.36
FT2 48.92 52.55 58.49 65.02 52.00 65.26 68.95 67.45 68.28
GT 46.17 48.72 55.51 59.79 51.37 50.78 60.05 60.73 59.97
GT2 64.08 64.99 70.78 75.16 74.75 74.91 75.46 71.26 75.44

*E.g.(2,1) indicates that (a, b) is (0.2, 0.1), others are similar.

The results of different parameter settings not only show how to choose
the parameters, but also demonstrate these parameters play a significant role
in DBN models, because the performance results are not very robust to those
parameters. Furthermore, it is possible that some other better parameters are
not included in our experiments since it is difficult to perform all experiments
with exhaustive parameter searching. However, it is really necessary to point out
that the positional information (positional contribution and word-to-segment)
affects the sentiment classification positively if we set the right parameters.

4 Conclusions and Future Work

In this paper, we propose several ways to incorporate the positional information
of texts into DBNs with four model variations for sentiment classification and
perform a variety of experiments to verify the effect of positional information
towards the sentence sentiments. By choosing the good parameters, the exper-
iments reveal that the word position and word order do provide positive effect
on the classification performance. The results indicate that the traditional bag-
of-words representation can be improved by incorporating some positional infor-
mation represented by the word positional contribution form and the word-to-
segment matrix representation. Also, it can be seen that positional information
works more effective for tri-class classification compared to binary classification.
In other words, each word attribute in a sentence has different effect for sentence
sentiment.

In the future, this work can be improved from the following views: (1) For
the positional representation, the linear positional transformations implemented
in this paper seem too simple, and some more sophisticated curve functions (e.g.
logit function or symmetrical function) probably perform relatively better; (2)

Incorporating Positional Information into Deep Belief Networks 13

Table 10: Classification accuracy of four data sets vs. matrix2 parameters

(c, d, e) (1,4,6) (1,4,7) (1,4,8) (1,5,6) (1,5,7) (1,5,8) (2,4,6) (2,4,7) (2,4,8)

STS-T 61.62 65.66 65.86 64.04 60.81 62.02 65.25 65.05 59.80
STS-G 69.20 68.40 82.75 71.35 82.25 83.10 78.60 73.70 79.95
HCR 65.78 65.43 64.43 65.09 64.70 65.35 64.65 65.22 65.17
HCR2 77.00 77.95 77.95 77.00 77.11 76.68 77.68 77.16 76.68
SST 54.15 53.98 52.98 52.90 53.45 53.15 53.15 55.30 53.23
SST2 70.41 71.45 71.41 71.36 71.45 71.14 72.14 72.32 71.64
FT 49.80 51.92 52.18 50.14 50.96 53.00 52.82 50.58 52.44
FT2 67.66 68.43 68.40 63.66 68.09 68.28 66.95 65.02 64.28
GT 58.40 55.41 54.12 57.57 55.90 58.96 56.08 56.79 58.34
GT2 71.94 76.06 76.35 70.89 75.59 75.15 76.15 76.94 71.40

(c,d,e) (2,5,6) (2,5,7) (2,5,8) (3,4,6) (3,4,7) (3,4,8) (3,5,6) (3,5,7) (3,5,8)

STS-T 63.23 62.42 64.04 66.06 64.04 63.64 61.41 64.85 61.21
STS-G 81.20 83.10 83.15 82.20 79.30 83.25 83.15 83.20 77.70
HCR 63.91 66.33 65.22 65.57 64.22 65.30 65.30 64.87 65.00
HCR2 77.79 77.47 78.89 77.00 75.21 76.63 77.42 76.74 77.68
SST 54.13 53.65 53.60 54.39 53.08 53.40 54.05 53.28 53.13
SST2 72.36 72.77 71.36 71.14 68.32 70.14 72.05 72.14 71.68
FT 52.24 52.86 52.42 53.14 51.76 52.96 52.72 52.40 53.44
FT2 66.03 67.23 68.92 64.89 67.91 67.26 66.31 68.43 68.03
GT 58.40 56.28 60.71 43.08 60.21 60.31 59.19 56.75 56.06
GT2 75.54 75.99 76.29 76.15 75.80 75.74 76.20 76.30 75.26
*E.g. (1,4,6) means (c, d, e) is (0.1, 0.4, 0.6). Similar to other numbers.

Try to extend the matrix representation into a row vector for each sentence (even
though it will be an extremely large sparse matrix and cost much memory during
the training, this is an approach), letting each element value in the matrix be a
single feature into the model; (3) Only three segments are introduced here, more
segments (e.g. four or more segments) for a sentence (or long text) may be more
reasonable, which will probably account more word order information into the
model. These will be some of our future research directions.

References

1. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis
of twitter data. In: Proceedings of the workshop on languages in social media. pp.
30–38. Association for Computational Linguistics (2011)

2. Collobert, R., Weston, J.: A unified architecture for natural language processing:
Deep neural networks with multitask learning. In: Proceedings of the 25th inter-
national conference on Machine learning. pp. 160–167. ACM (2008)

3. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD explorations newsletter
11(1), 10–18 (2009)

4. Hinton, G.: A practical guide to training restricted boltzmann machines. Momen-
tum 9(1), 926 (2010)

5. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets.
Neural computation 18(7), 1527–1554 (2006)

6. Hu, X., Tang, J., Gao, H., Liu, H.: Unsupervised sentiment analysis with emotional
signals. In: WWW 2013 - Proceedings of the 22nd International Conference on
World Wide Web. pp. 607–617 (2013)

7. Johnson, R., Zhang, T.: Effective use of word order for text categorization with
convolutional neural networks. In: NAACL HLT 2015 - 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Proceedings of the Conference. pp. 103–112 (2015)

8. Liu, B.: Sentiment analysis and opinion mining. Synthesis lectures on human lan-
guage technologies 5(1), 1–167 (2012)

9. Pahikkala, T., Pyysalo, S., Boberg, J., Jrvinen, J., Salakoski, T.: Matrix represen-
tations, linear transformations, and kernels for disambiguation in natural language.
Machine Learning 74(2), 133–158 (2009)

10. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using
machine learning techniques. In: Proceedings of the ACL-02 conference on Empir-
ical methods in natural language processing-Volume 10. pp. 79–86. Association for
Computational Linguistics (2002)

11. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval.
In: Proceedings of the 21st annual international ACM SIGIR conference on Re-
search and development in information retrieval. pp. 275–281. ACM (1998)

12. Raychev, V., Nakov, P.: Language-independent sentiment analysis using subjectiv-
ity and positional information. In: RANLP. pp. 360–364 (2009)

13. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Cognitive modeling 5 (1988)

14. Saif, H., Fernandez, M., He, Y., Alani, H.: Evaluation datasets for twitter sentiment
analysis: a survey and a new dataset, the sts-gold (2013)

15. Sarikaya, R., Hinton, G.E., Deoras, A.: Application of deep belief networks for nat-
ural language understanding. IEEE Transactions on Audio, Speech and Language
Processing 22(4), 778–784 (2014)

16. Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic compositionality
through recursive matrix-vector spaces. In: Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning. pp. 1201–1211. Association for Computational Lin-
guistics (2012)

17. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts,
C.: Recursive deep models for semantic compositionality over a sentiment tree-
bank. In: Proceedings of the conference on empirical methods in natural language
processing (EMNLP). vol. 1631, p. 1642. Citeseer (2013)

18. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific
word embedding for twitter sentiment classification. In: 52nd Annual Meeting of
the Association for Computational Linguistics, ACL 2014 - Proceedings of the
Conference. vol. 1, pp. 1555–1565 (2014)

19. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to information retrieval. ACM Transactions on Information Systems (TOIS) 22(2),
179–214 (2004)

Incorporating Positional Information into Deep Belief Networks 15

	1Incorporating Positional Information into Deep Belief Networks for Sentiment Classification
	1 Introduction
	2 DBN Incorporating Positional Information
	2.1 Positional Contribution
	2.2 Matrix Representation
	2.3 DBN settings

	3 Experiments and Results
	3.1 Data Collection and Pre-processing
	3.2 Results and Analysis

	4 Conclusions and Future Work
	References

