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Abstract. Temporal logic is a very important branch of non-classical
logic, systematically studying formal reasoning over time, which actually
is a kind of modal logic with the truth-value set of {0, 1}. However, in
real life, propositions that concern with tense are not always absolutely
true or false. To this end, this paper fuzzifies the minimal temporal logic
system. Specifically, we fuzzify propositions’ truth values to six fuzzy
linguistic truth values, and thus we build a new multi-valued temporal
logic system. We also prove the completeness and soundness of our logic
system. In addition, we illustrate our system by a real life example.
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1 Introduction

Temporal logic is a kind of modal logic, studying tense propositions and formal
reasoning about tense propositions. The research on modal logic is originated
by Aristotle in his book entitled “Physics”, where he gave a rough form of first-
order two-valued temporal logic. In modern time, it is logician Arthur Prior
who started the study of temporal logic, and established the first formal axiom
system of temporal logic [20]. Since 1960s, the results of temporal logic gradually
increased considerably. For example, Pnueli [18] established a linear temporal
first order logic with two temporal operator: next and until. In 1984, Emerson
[9] established Branching Time Logic, which covers Linear Temporal Logic as
its special case. In 1986, Moszkowski [16] established Interval Temporal Logic,
which is also linear and first-order, but can only deal with finite sequence of
statements. In 1990, Emerson [8] introduced Proposition Linear Temporal Logic
and Branching Time Logic, and proved that these two kinds of temporal systems
are modal complete. In 1997, Marx and Venema [14] introduced dimensional
temporal logic, called Arrow Logic, discussing the relation theory of interval
temporal logic and modal logic. In 2007, Akama [1] had noticed the uncertainty
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of future, and thus established a new temporal logic system which is three-
valued, and proved its completeness and soundness. All in all, temporal logic
has developed into a much more mature logic branch, and has an important
impact in computer science and philosophy.

The propositions in these existing various forms of temporal logic are still
either absolutely true or absolutely false. Nonetheless, in real life it is not always
the case, but multiple truth-values are required. For example, in weather forecast,
for a prediction of future weather, it cannot be absolutely correct. So a kind of
temporal logic with multiple fuzzy truth-values is required to make temporal
logic more practical, worthy while and reliable. To this end, in this paper we try
to fuzzify the minimal temporal logic system [15] to establish a new temporal
logic system. More specifically, we will give its syntax, semantics, and axiom
system, and prove that this system is complete and sound.

There are some work on fuzzy temporal logic, but few of them deal with
multiple fuzzy truth-values of temporal proportions. For example, [10,17] focus
on fuzzy notations of time, [19] employs fuzzy logic to deal with time constraints
of incomplete information, and [12] mainly discusses fuzzy temporal events and
fuzzy temporal states defined on a linear time model. On the other hand, some
studies (e.g., [4,11]) deal with modal logic with multiple fuzzy truth-values, but
their modal logic is not a kind of temporal logic.

The rest of the paper is structured as follows. Section 2 recaps some basic
notations and methods of fuzzy set theory. Section 3 defines our fuzzy logic sys-
tem. Section 4 proves the completeness and soundness of our fuzzy temporal
logic. Section 5 gives a real life example to illustrate the usability of our logic
system. Finally, Section 6 concludes the paper and points out future work.

2 Preliminaries

This section recaps some basic concepts and notations of fuzzy set theory.
The following is Zadeh’s concept of fuzzy sets [21]:

Definition 1 (Fuzzy set). A fuzzy set is a pair (U, μ), where U is a set (called
the universe of the fuzzy set) and μ is a mapping from U to [0, 1] (called the
membership function of the fuzzy set). And ∀x ∈ U , the value of μ(x) is called
the membership degree of x in U .

Baldwin [2] defined the following fuzzy linguistic truth-value set, which is
used in some fuzzy logic systems (e.g., [11,13]):

Definition 2 (Fuzzy Linguistic Truth). A linguistic truth-value set is
defined as follows:

LTTS = {very-true, true, fairly-true, fairly-false, false, very-false} (1)

For convenience, we denote

LTTSt = {very-true, true, fairly-true}, (2)
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Table 1. The membership functions of linguistic truth (where x ∈ [0, 1])

Linguistic truth Membership function

Very-true μvery-true(x) = μtrue(x)
2

True μtrue(x) = x

Fairly-true μfairly-true(x) = μtrue(x)
1/2

Fairly-false μfairly-false(x) = μfalse(x)
1/2

False μfalse(x) = 1 − x

Very-false μvery-false(x) = μfalse(x)
2

Fig. 1. The curves of linguistic truth

LTTSf = {very-false, false, fairly-false}. (3)

The semantics of the terms in this term set are defined as shown in Table 1 and
drawn graphically in Fig. 1.

In real life, it is difficult for people to deal with continuous numbers, thus
we can assume the membership functions of the linguistic truths is on the set of
discrete points 0, 0.1, 0.2, . . . , 1.0. Thus, for example, we can represent τφ = true
and τψ = false as follows:

τφ =
0
0

+
0.1
0.1

+
0.2
0.2

+
0.3
0.3

+
0.4
0.4

+
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, (4)

τψ =
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0.2
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0.4

+
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0.5
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0.6

+
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0.7
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+
0.1
0.9

+
0

1.0
. (5)

In fuzzy logic, t-norms (�) and t-connorms (�) are used to deal with con-
junction and disjunction, respectively. The following is their definition [6,7]:

Definition 3 (t-norm and t-connorm). A binary operator ◦ on [0, 1] is a
triangular norm (t-norm), denoted as �, if it satisfies:

(1) commutativity: a ◦ b = b ◦ a,
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(2) associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c),
(3) monotonicity: a ≤ b ⇒ a ◦ c ≤ b ◦ c,
(4) unit element: a ◦ 1 = a.

A binary operator ◦ on [0, 1] is a triangular connorm (t-connorm), denoted as
�, if it satisfies: (1), (2), (3) and

(4′) unit element: a ◦ 0 = a.

A typical pair of typical t-norm � and t-conorm � is as follows:

�(x, y) = min{x, y}, (6)
�(x, y) = max{x, y}. (7)

The following definition gives the properties that a complement operator
should obey:

Definition 4 (Complement operator). A mapping C : [0, 1] → [0, 1] is a
complement operator if it satisfies the following conditions:

(1) C(0) = 1, C(1) = 0;
(2) C(C(x)) = x; and
(3) if a ≤ b then C(a) ≥ C(b).

A common complement operator is:

C(x) = 1 − x. (8)

The following method can be used to extend a function on the crisp sets to
the one on fuzzy sets.

Definition 5 (Extension Principle). Suppose f is a function with n argu-
ments x1, . . . , xn. Let Ai be the fuzzy set of xi. Then we can extend function f
to taking fuzzy arguments A1, . . . , An, which result is a fuzzy set defined by:

μB(y) = sup{μA1(x1) ∧ . . . ∧ μAn
(xn) | f(x1, . . . xn) = y},

where sup denotes the supremum operation on a set. For convenience, the oper-
ation of the extension principle is denoted as ⊗.

If the results of an operator on fuzzy linguistic true-values is not closed on the
set of fuzzy linguistic true-values, we need the following linguistic approximation
technology:

Definition 6 (Linguistic Approximation). Given τ ∈ LTTS, τ1 ∈ LTTS
being the closest to τ should satisfy:

∀τ2 ∈ LTTS,ED(τ, τ1) ≤ ED(τ, τ2),

where ED is the Euclidean Distance, which is defined as follows: for two fuzzy
linguistic terms τ1 and τ2 on U = {0.1, 0.2, · · · , 1}:

ED(τ1, τ2) =
√∑

{(μτ1(x) − μτ2(x))2 | x ∈ U}. (9)

For convenience, the operation of linguistic approximation is denoted as .
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3 Logic System

This section will present the syntax and semantics of our fuzzy temporal logic
system (denoted as FKt).

3.1 Syntax

First we present the rules that define a logic formula in our logic system.

Definition 7 (Language). Let PV be a countable set of proposition letters. A
proposition formula in FKt is defined by

φ ::= p | ¬φ | φ ∧ ψ | Pφ | Fφ,

where p ∈ PV , P is the weak past operator, meaning “happened once in past”;
and F is the weak future operator, meaning “will happen once in future”. And
strong future operator, denoted as G, which means “will happen all the time in
future”, is defined as:

Gφ =df ¬F¬φ; (10)

and strong past operator, denoted as H, which means “happened all the time in
past”, is defined as:

Hφ =df ¬P¬φ. (11)

We also need the following abbreviations:

φ ∨ ϕ =df ¬(¬φ ∧ ¬ϕ), (12)
φ → ϕ =df ¬φ ∨ ϕ. (13)

The axioms (which are used as the start points of inference in our logic
system) and proof rules (which are used for inference) are as follows:

Definition 8 (Axioms and proof rules). Suppose that ϕ1 and ϕ2 are formu-
las in FKt. The axiomatization of FKt contains:

(A1) all propositional tautologies,
(A2) G(p → q) → (Gp → Gq),
(A3) H(p → q) → (Hp → Hq),
(A4) p → GPp,
(A5) p → HFp,

with the following rules of proof:

(1) Modus ponens: if φ and φ → ϕ, then ϕ.
(2) Uniform substitution: if ϕ is obtained from φ by uniformly replacing propo-

sition letters in φ by arbitrary formulas, then φ implies ϕ.
(3) Future Generalisation: if φ, then Gφ.
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(4) Past Generalisation: if φ, then Hφ.

Once we have a set of axioms and a set of inference rules, under certain
conditions we can prove a logic formula. Formally, we have:

Definition 9 (Proof). Let Γ is a set of formulas in FKt. In FKt a formula
φ is provable from Γ , denoted as Γ � φ, if there is a sequence of formulas
< φ1, · · · , φn > in FKt such that φn = φ and for each φi (1 ≤ i < n), either φi

is one of the axioms or φi ∈ Γ or φi can be obtained from the earlier items by
applying the rules of proof. If Γ is empty, we abbreviate it as � φ.

Intuitively, if from a set of propositions we can prove a proposition not only
true but also false, then the set of proposition is inconsistent. Formally, we have:

Definition 10 (Consistent). Suppose that Γ is a set of formulas in FKt. Γ
is inconsistent if there exists a formula φ such that Γ � φ and Γ � ¬φ. Γ is
consistent if it is not inconsistent.

3.2 Semantics

Basically, the syntax of our logic is the same as that of crisp temporal logic.
However, the semantics of our fuzzy one is quite different from that of crisp one.

Informally, in each world (time point), we designate a fuzzy linguistic truth
value for each proposition in temporal logic FKt. Formally, we have:

Definition 11 (Model). A fuzzy temporal model M is a triple (T,R, V ),
where:

(1) T is a non-empty finite set of all time possible worlds;
(2) R is a binary relation on T ; and
(3) V is a mapping from Var × T → LTTS, called a fuzzy truth evaluation,

where Var = {p1, . . . , pn} is a set of countable propositional variables, and
LTTS is the linguistic truth-value set defined as formula (1).

The rules for calculate the truth-value of a logic formula are as follows:

Definition 12 (Truth evaluation of FKt). For any formula φ, let
V (φ,M, t) be the fuzzy truth value of φ in world t. Then

(1) V (¬φ,M, t) = (⊗(V (φ,M, t), C));
(2) V (φ ∧ ψ,M, t) = (⊗(V (φ,M, t), V (ψ,M, t),�));
(3) V (φ ∧ (φ → ψ),M, t), denoted as τ ′

ψ, is defined as follows:

τ ′
ψ = (τ ′′

ψ), (14)

where μτ ′′
ψ
(y) = sup{μV (φ,M,t)(x) � μV (φ→ψ,M,t)(x, y)};

(4) V (Fφ,M, t) = max{V (φ,M, t
′
) | t

′ ∈ T,R(t, t
′
))}; and

(5) V (Pφ,M, t) = max{V (φ,M, t
′
) | t

′ ∈ T,R(t
′
, t)}.
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Table 2. The conjunctive operator of fuzzy temporal logic

τφ τψ

Very-true True Fairly-true Fairly-false False Very-false

Very-true Very-true True Fairly-true Fairly-false False Very-false

True True True Fairly-true Fairly-false False Very-false

Fairly-true Fairly-true Fairly-true Fairly-true Fairly-false False very-false

Fairly-false Fairly-false Fairly-false Fairly-false Fairly-false False Very-false

False False False False False False Very-false

Very-false Very-false Very-false Very-false Very-false Very-false Very-false

Table 3. The complement operator of fuzzy temporal logic

τφ Very-true True Fairly-true Fairly-false False Very-false

τ¬φ Very-false False Fairly-false Fairly-true True Very-true

By Definition 12, from V (φ,M, t) and V (ψ,M, t), we can find the truth-
value of φ ∧ ψ as showed in Table 2, and that of ¬φ as showed in Table 3. Now
we give an example of how we calculate the truth evaluation of τφ ∧ τψ. Suppose
that τφ = true, which is defined as formula (10), and τψ = false, which is
defined as formula (11). Then by the extension principle (see Definition 5) and
the evaluation of conjunction operator (see Definition 12), we have:

μφ∧ψ(0.1)
= max{ min(μφ(0.1), μB(0.1)),min(μφ(0.1), μB(0.2)),

min(μφ(0.1), μψ(0.3)),min(μφ(0.1), μψ(0.4)),min(μφ(0.1), μψ(0.5)),
min(μφ(0.1), μψ(0.6)),min(μφ(0.1), μψ(0.7)),min(μφ(0.1), μψ(0.8)),
min(μφ(0.1), μψ(0.9))min(μφ(0.1), μψ(1.0)),
min(μφ(0.2), μψ(0.1)),min(μφ(0.3), μψ(0.1))min(μφ(0.4), μψ(0.1)),
min(μφ(0.5), μψ(0.1)),min(μφ(0.6), μψ(0.1)),min(μφ(0.7), μψ(0.1)),
min(μφ(0.8), μψ(0.1)),min(μφ(0.9), μψ(0.1)),min(μφ(1.0), μψ(0.1))}

= max{ min{0.1, 0.9},min{0.1, 0.8},

min{0.1, 0.7},min{0.1, 0.6},min{0.1, 0.5},

min{0.1, 0.4},min{0.1, 0.3},min{0.1, 0.2},

min{0.1, 0.1},min{0.1, 0},

min{0.2, 0.9},min{0.3, 0.9},min{0.4, 0.9},

min{0.5, 0.9},min{0.6, 0.9},min{0.7, 0.9},

min{0.8, 0.9},min{0.9, 0.9},min{1.0, 0.9}}
= 0.9.
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The calculation of μφ∧ψ at other points are similar to the above. Then we have

τφ∧ψ =
1.0
0

+
0.9
0.1

+
0.8
0.2

+
0.7
0.3

+
0.6
0.4

+
0.5
0.5

+
0.4
0.6

+
0.3
0.7

+
0.2
0.8

+
0.1
0.9

+
0

1.0
.

Finally, by Linguisitic Approximation (see Definition 6), τφ∧ψ is nearest to lin-
guistic truth-value false. That is, the truth evaluation of φ ∧ ψ is false.

In Definition 12, we did not give the formulas for calculating V (Gφ,M, t),
V (Hφ,M, t) and V (φ → ψ,M, t), but we can use formulas (10), (11) and (13)
to transfer them into the ones that can be calculated according to the formulas
given in Definition 12. That is:

V (Gφ,M, t) = min{V (φ,M, t
′
) | t

′ ∈ T,R(t, t
′
)}, (15)

V (Hφ,M, t) = min{V (φ,M, t′) | t
′ ∈ T,R(t

′
, t)}. (16)

Definition 13 (Satisfaction). Given a temporal model M = (T,R, V ), any
proposition p in M is satisfiable in world t, denoted as M, t � p, which can be
defined recursively as follows:

(1) M, t � ψ iff V (ψ,M, t) ∈ LTTSt or (V (φ → ψ,M, t) ∈ LTTSt and
V (φ,M, t) ∈ LTTSt).

(2) M, t � ¬φ iff V (φ,M, t) ∈ LTTSf .
(3) M, t � φ ∧ ψ iff M, t � φ and M, t � ψ.
(4) M, t � Fφ iff there exists at least one u ∈ T and R(t, u) such that M, u � φ.
(5) M, u � Pφ iff there exists at least one t ∈ T and R(t, u) such that M, t � φ.

By the above definition and formulas (10)–(13), we have:

(1) M, t � Gφ iff for all u ∈ T and R(t, u), M, u � φ.
(2) M, u � Hφ iff for all t ∈ T and R(t, u), M, t � φ.
(3) M, t � φ ∨ ψ iff M, t � φ or M, t � ψ.
(4) M, t � φ → ψ iff M, t � ¬φ or M, t � ψ.

Definition 14 (Semantic consequence). Suppose that Γ is a set of formulas
in FKt and φ is a formula in FKt. φ is the semantic consequence of Γ (denoted
by Γ � φ) if for all valuations, models and possible worlds such that every formula
in Γ is satisfiable, φ is satisfiable. If Γ is empty, then we abbreviate it as � φ
and say that φ is valid.

4 Soundness and Completeness

This section will prove the soundness and completeness of our logic system.
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4.1 Soundness

The soundness of a logic system means that if a formula in the logic can be
proved from its axioms of the logic by its inference rules, then the formula is a
semantic consequence. Formally, we have:

Theorem 1 (Soundness). Fuzzy minimal temporal logic system is sound with
respect to the class of all frames, meaning if Σ � φ then Σ � φ.

Proof. First, we will prove that the rules of proof preserve validity: (i) Suppose
modus ponens does not preserve validity, then we have � p → q, � p but � q.
Hence, there is a model M = (T,R, V ) such that M, t � p → q, M, t � p and
M, t � q. Since M, t � p → q, M, t � p or M, t � q. But we have M, t � p and
M, t � q, contradicting the result above. Thus, modus ponens preserves validity.
(ii) It is easy to verify that future generalisation preserves validity. Suppose � p,
then by Definition 14, for any model M = (T,R, V ) and any t ∈ T , M, t � p.
Then � Gp. If not, there is a model and a world in this model such that p
is not satisfiable, which contradicts to our hypothesis. So, future generalisation
preserves validity. The proof of past generalisation is similar.

Now we will prove that every axiom is valid: (i) Suppose φ is propositional
tautology, then in every possible world t, the truth value of φ is in LTTSt. (ii)
To prove � G(p → q) → (Gp → Gq), we need prove that for every possible world
t in any model M,

V (G(p → q) → (Gp → Gq),M, t) ∈ LTTSt,

which means that when V (G(p → q),M, t) ∈ LTTSt, definitely V ((Gp →
Gq),M, t) ∈ LTTSt. So, when V (G(p → q),M, t) ∈ LTTSt, in possi-
ble world t′ satisfying R(t, t′) we have V ((p → q),M, t′) ∈ LTTSt. That
is, when V (p,M, t′) ∈ LTTSt, there must be V (q,M, t′) ∈ LTTSt. When
V (Gp,M, t) ∈ LTTSt, there must be V (Gq, M, t) ∈ LTTSt, and thus V ((Gp →
Gq),M, t) ∈ LTTSt. So, V (G(p → q) → (Gp → Gq),M, t) ∈ LTTSt is proved.
(iii) � H(p → q) → (Hp → Hq) can be proved similarly to (ii). (iv) We prove
� φ → GPφ. For any φ, on the one hand, suppose V (φ,M, t) ∈ LTTSt. In
possible world t′ which is accessed by possible world t, by Definition 12,

V (Pφ,M, t′) = max{V (φ,M, t′′) | R(t′′, t′)},

and t access to t′. So since V (φ,M, t) ∈ LTTSt, V (Pφ,M, t′) must be in LTTSt.
When we look back to see possible world t, by Definition 12 we know

V (GPφ,M, t) = min{V (Pφ,M, t′) | R(t, t′)},

which means V (GPφ,M, t) ∈ LTTSt. On the other hand, if V (φ,M, t) ∈
LTTSf then V (¬φ,M, t) ∈ LTTSt. So, � φ → GPφ. (v) We prove � φ → HFφ.
For any φ, on the one hand, suppose V (φ,M, t) ∈ LTTSt. In possible world t′,
which is accessed by possible world t, by Definition 12,

V (Fφ,M, t′) = max{V (φ,M, t′′) | R(t′, t′′)}
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and t access to t′. So since V (φ,M, t) ∈ LTTSt, V (Fφ,M, t′) must be in LTTSt.
When we look back to see possible world t, by Definition 12,

V (HFφ,M, t) = min{V (Fφ,M, t′) | R(t′, t)},

which means V (HFφ,M, t) ∈ LTTSt. On the other hand, if V (φ,M, t) ∈
LTTSf , V (¬φ,M, t) ∈ LTTSt. So, � φ → HFφ. ��

4.2 Completeness

Now we are going to discuss the completeness of our logic, meaning that if a
formula is correct semantically, then it is correct syntactically.

Before giving the completeness theorem of our logic, we need more concepts.

Definition 15 (Maximal consistent set). A set of formulas Γ is maximal
consistent if and only if

(1) Γ is consistent; and
(2) Γ is maximal: there does not Γ ′ such that Γ ⊂ Γ ′ and Γ ′ is consistent.

Definition 16 (Fuzzy consistency). Let Γ be a set of formulas, we say Γ is
consistent, if for any formula φ ∈ Γ , it is impossible that V (φ,M, t) ∈ LTTSt

and V (¬φ,M, t) ∈ LTTSt.

Definition 17 (Canonical model). The canonical model Mc = (T c, Rc, V c)
is defined as follows:

(1) T c is the set of all possible worlds;
(2) Rc is a transitive, irreflexive, and asymmetrical binary relation on T c such

that (t, t′) ∈ Rc if for all formulas ψ, t � Fψ implies t′ � ψ, and t′ � Pψ
implies t � ψ; and

(3) V c : Var × T → LTTS is a fuzzy truth evaluation such as V c(p,M, t) ∈
LTTSt if and only if t � p, where p ∈ Var = {p1, . . . , pn} (i.e., a set of
countable propositional variables).

In order to prove completeness, we also need some lemmas as follows:

Lemma 1. Suppose that Γ is a maximally consistent set, then:

(1) for all formulas φ: φ ∈ Γ or ¬φ ∈ Γ ;
(2) for all formulas φ, ϕ: φ ∨ ϕ ∈ Γ iff φ ∈ Γ or ϕ ∈ Γ .

The proof of the above lemma can be found in [3].

Lemma 2 (Lindenbaum’s Lemma [5]). If Γ is consistent, then there exists
a Γl is maximal and consistent, where Γ ⊆ Γl.

Lemma 3 (Truth Lemma). Suppose that t ∈ T c. For any φ, t � φ iff
(Mc, t) � φ.



Fuzzy Minimal Temporal Logic 375

Table 4. Truth value of φ

Day City

c1 c2 c3 c4

d1 Fairly-true True Fairly-false True

d2 True Very-true False Very-true

d3 Very-true True Fairly-false Very-false

Table 5. Truth value of ψ

Day City

c1 c2 c3 c4

d1 True Fairly-true Fairly-false False

d2 Fairly-true False False Fairly-false

d3 Very-true True Undecided Very-false

Proof. We prove by induction on the length of φ. The base case follows from the
definition of V c. The boolean cases follow from Lemma 1. It remains to deal with
the modalities. Suppose that φ = Fϕ. Mc, t � Fϕ iff ∃t′ ∈ T c (tRct′ ∧ Mc � ϕ)
iff (by induction hypothesis) ∃t(tRct′ ∧ t′ � ϕ) iff t � Fϕ. The proof for the case
φ = Pϕ is similar to the proof above. ��

Now we can give our completeness theorem.

Theorem 2 (Completeness). Fuzzy minimal temporal logic system is com-
plete, i.e., Γ � φ implies Γ � φ.

Proof. To prove it, we need prove the converse-negative proposition: if Γ � φ,
then Γ � φ. If Γ � φ, we can know Γ ∪{¬φ} is a consistent set, by Lindenbaum’s
Lemma (i.e., Lemma 2), there is a maximal consistent set Γl. We will use canoni-
cal model to find this maximal consistent set Γl to make Γl ⊇ Γ ∪{¬φ}. By Truth
Lemma (i.e., Lemma 3) and fuzzy consistent, we know V c(φ,M c, t) ∈ LTTSt

iff φ ∈ Γl, then ¬φ ∈ Γl, ¬φ ∈ Γ . Thus Γ � φ is proved. ��

5 Example

Let us consider an example in real life. Suppose Mary plans to have a holiday
of three days d1, d2, and d3. During the holiday, she plans to visit two differ-
ent cities within two days, and there are four optional cities c1, c2, c3, and c4.
She likes a city which is not rainy and above 20 Celsius degree. Now suppose
we know the truth-values of that these four cities in three days are “not rain-
ing” (denoted as φ) and “above 20 Celsius degree” (denoted as ψ) as shown in
Tables 4 and 5, and the accessible relation between these four cities are:

R(c1, c2), R(c1, c4), R(c2, c3), R(c2, c4), R(c3, c4).
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We give an example to show how to calculate the fuzzy linguistic truth-value
of a modal proposition. By Definition 12 and Table 2, we have:

V (Gφd1 ,M, c1) = min{V (φd1 ,M, c1), V (φd2 ,M, c2)}
= min{fairly-true, very-true}
=fairly-true,

V (Gφd2 ,M, c1) = min{V (φd2 ,M, c1), V (φd3 ,M, c2)
= min{true, true}
=true,

V (Gψd1 ,M, c1) = min{V (ψd1 ,M, c1), V (ψd2 ,M, c2)}
= min{true, false}
=false,

V (Gψd2 ,M, c1) = min{V (ψd2 ,M, c1), V (ψd3 ,M, c2)
= min{fairly-true, true}
=fairly-true.

Then again by Definition 12 and Table 2, we have:

V (Gφd1 ∧ Gψd1),M,A) = min{V (Gφd1 ,M, c1), V (Gψd1 ,M, c1)}
= min{fairly-true, false}
=false,

V (Gφd2 ∧ Gψd2),M,A) = min{V (Gφd2 ,M, c1), V (Gψd2 ,M, c1)}
= min{true, fairly-true}
=fairly-true.

Accordingly, Mary should spend the holiday in city c1 on day 2.

6 Conclusions

On the one hand, temporal logic has proved to be an important kind of modal
logic since 1960s. On the other hand, the development of fuzzy logic lets us
see that the original two-valued logic system can have much more widespread
applications in real-life if they are extended by fuzzy logic theory. As a result,
in this paper we fuzzified the minimal temporal logic system by extending its
truth-value set of {0, 1} to the one of six linguistic truth-values. In particular,
we define the semantics of this logic system, and we also prove that this logic
system is soundness and completeness. Moreover, to show the applicability of
our new system, we discuss a real-life example with our system. However, fuzzy
temporal logic system can be more applicable not only in real life but also in
computer science. So in further work, it is worth exploring how to apply fuzzy
temporal logic into different areas, specially the area of Artificial Intelligence.
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