
Test Models for Statistical Inference:
Two-Dimensional Reaction Systems Displaying
Limit Cycle Bifurcations and Bistability

Tomislav Plesa, Tomáš Vejchodský, and Radek Erban

1 Introduction

Given noisy time-series, it may be of practical importance to infer possible bio-
logical mechanisms underlying the time-series [1]. Mathematically, such statistical
inferences correspond to an inverse problem, consisting of mapping given noisy
time-series to compatible reaction networks. One way to formulate the inverse
problem is as follows. Firstly, one obtains deterministic kinetic ordinary-differential
equations (ODEs) compatible with the stochastic time-series. And secondly, suitable
reaction networks may then be induced from the obtained kinetic ODEs [2, 3]. The
inverse problem is generally ill-posed [2, 3], as more than one suitable reaction
networks may be obtained. In order to make a progress in solving the inverse
problem, it is useful to impose further constraints on the kinetic ODEs. A particular
set of constraints on the kinetic ODEs may be obtained by determining the types
of the deterministic attractors which are ‘hidden’ in the noisy time-series [1]. This
may be a challenging task, especially when cycles (oscillations) are observed in
the time-series. The observed cycles may be present in both the deterministic
and stochastic models (also known at the stochastic level as noisy deterministic
cycles), or they may be present only in the stochastic model (also known as quasi-
cycles, or noise-induced oscillations). Noisy deterministic cycles may arise directly
from the autonomous kinetic ODEs, or via the time-periodic terms present in the
nonautonomous kinetic ODEs. Quasi-cycles may arise from the intrinsic or extrinsic
noise, and have been shown to exist near deterministic stable foci, and stable
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nodes [4]. For two-species reaction systems, quasi-cycles can be further classified
into those that are unconditionally noise-dependent (but dependent on the reaction
rate coefficients), and those that are conditionally noise-dependent [4]. Thus, a cycle
detected in a noisy time-series may at the deterministic level generally correspond
to a stable limit cycle, a stable focus, or a stable node.

In order to detect and classify cycles in noisy time-series, several statistical
methods have been suggested [1, 5]. In [1], analysis of the covariance as a
function of the time-delay, spectral analysis (the Fourier transform of the covariance
function), and analysis of the shape of the stationary probability mass function
have been suggested. Let us note that reaction systems of the Lotka-Volterra
(x-factorable [2]) type are used as test models in [1], and that conditionally noise-
dependent quasi-cycles, which can arise near a stable node, and which can induce
oscillations in only a subset of species [4], have not been discussed. In addition
to the aforementioned statistical methods developed for analyzing noisy time-
series, methods for (locally) studying the underlying stochastic processes near the
deterministic attractors/bifurcations have also been developed [4, 6–11].

Statistical and analytical methods for studying cycles in stochastic reaction
kinetics have often been focused on deterministically monostable systems which
undergo a local bifurcation near a critical (equilibrium) point, known as the
supercritical Hopf bifurcation. We suspect this is partially due to simplicity of
the bifurcation, and partially due to the fact that it is difficult to find two-species
reaction systems, which are more amenable to mathematical analysis, undergoing
more complicated bifurcations and displaying bistability involving limit cycles.
Nevertheless, kinetic ODEs arising from biological applications may exhibit more
complicated bifurcations and multistabilites [12–14]. Thus, it is of importance to test
the available methods on simpler test models that display some of the complexities
found in the applications.

In this paper, we construct two reaction systems that are two-dimensional (i.e.
they only include two chemical species) and induce cubic kinetic equations, first of
which undergoes a global bifurcation known as a convex supercritical homoclinic
bifurcation, and which displays bistability involving a critical point and a limit cycle
(which we call mixed bistability). The second system undergoes a local bifurcation
known as a multiple limit cycle bifurcation, and displays bistability involving two
limit cycles (which we call bicyclicity). Aside from finding an application as test
models for statistical inference and analysis in biology, to our knowledge, the
constructed systems are also the first examples of two-dimensional reaction systems
displaying the aforementioned types of bifurcations and bistabilities. Let us note
that reaction systems with dimensions higher than two, displaying the homoclinic
bifurcation, as well as bistabilities involving two limit cycles, have been reported in
applications [12–14].

The reaction network corresponding to the first system is given by
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r1 W ¿ k1�! s1; r7 W ¿ k7�! s2;

r2 W s1

k2�! 2s1; r8 W s2

k8�! ¿;

r3 W 2s1

k3�! 3s1; r9 W s1 C s2

k9�! s1 C 2s2;

r4 W s1 C s2

k4�! s2; r10 W 2s2

k10�! 3s2;

r5 W 2s1 C s2

k5�! s1 C s2; r11 W 3s2

k11�! 2s2;

r6 W s1 C 2s2

k6�! 2s1 C 2s2; (1)

where the two species s1 and s2 react according to the eleven reactions
r1; r2; : : : ; r11 under mass-action kinetics, with the reaction rate coefficients denoted
k1; k2; : : : ; k11, and with ¿ being the zero-species [2]. A particular choice of the
(dimensionless) reaction rate coefficients is given by

k1 D 0:01; k2 D 0:9; k3 D 1:55; k4 D 2:6; k5 D 1:2; k6 D 1:5;

k7 D 0:01; k8 D 3:6; k9 D 1; k10 D 2:4; k11 D 0:8; (2)

while more general conditions on these parameters are derived later as Eqs. (10)
and (11).

The reaction network corresponding to the second system includes two species s1

and s2 which are subject to the following fourteen chemical reactions r1; r2; : : : ; r14:

r1 W ¿ k1�! s1; r8 W ¿ k8�! s2;

r2 W s1

k2�! ¿; r9 W s2

k9�! 2s2;

r3 W 2s1

k3�! 3s1; r10 W s1 C s2

k10�! s1;

r4 W s1 C s2

k4�! 2s1 C s2; r11 W 2s2

k11�! 3s2;

r5 W 3s1

k5�! 4s1; r12 W 2s1 C s2

k12�! 2s1 C 2s2;

r6 W 2s1 C s2

k6�! s1 C s2; r13 W s1 C 2s2

k13�! s1 C s2;

r7 W s1 C 2s2

k7�! 2s2; r14 W 3s2

k14�! 2s2; (3)

where k1; k2; : : : ; k14 are the corresponding reaction rate coefficients. A particular
choice of the (dimensionless) reaction coefficients is given by1

1Let us note that the limit cycles corresponding to (3) are highly sensitive to changes in the
parameters (4). Thus, during numerical simulations, parameters (4) should not be rounded-off.
One can also design bicyclic systems which are less parameter sensitive, see Appendix 2.



6 T. Plesa et al.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Time

C
op

y−
nu

m
be

r o
f s

pe
ci

es
Bistationarity

0 10 20 30 40 50 60 70 80 90 1000

50

100

150

200

250

300

350

400

450

500

Time

C
op

y−
nu

m
be

r o
f s

pe
ci

es
 s

2

Mixed Bistability

0 10 20 30 40 50 60 70 80 90 1000
100

300

500

700

900

1100

1300

Time

C
op

y−
nu

m
be

r o
f s

pe
ci

es
 s

1

Bicyclicity

)b()a(

(c)

Fig. 1 Panels (a), (b), and (c) show representative sample paths generated using the Gillespie
stochastic simulation algorithm for the Schlögl system [15] with coefficients as in [6], reaction
network (1) with coefficients (2) and reactor volume V D 100, and reaction network (3) with
coefficients (4) and V D 0:5, respectively. At the deterministic level, the phase planes of (1)
and (3) are shown in Fig. 2. The deterministic and stochastic time-series, as well as the probability
distributions, are shown in Figs. 3 and 4. At the deterministic level, a critical point and a limit cycle
are ‘hidden’ in (b), while two limit cycles are ‘hidden’ in (c)

k1 D 2 � 10�7; k2 D 19:987880407; k3 D 0:019944378;

k4 D 0:02003132232; k5 D 2:9 � 10�8; k6 D 2:000232 � 10�5;

k7 D 1:45 � 10�8; k8 D 2 � 10�7; k9 D 8:38734; k10 D 0:038389;

k11 D 0:0215726; k12 D 2 � 10�5; k13 D 1:571 � 10�6; k14 D 10�5; (4)

while the general conditions on these parameters are given later as Eqs. (13)
and (14).

In Fig. 1, we display a representative noisy-time series generated using the
Gillespie stochastic algorithm, in Fig. 1a for the one-dimensional cubic Schlögl
system [15], which deterministically displays two stable critical points (bistation-
arity [3]), in Fig. 1b for the reaction network (1) with coefficients (2), which
deterministically displays a stable critical point and a stable limit cycle (mixed
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bistability), and in Fig. 1c for the reaction network (3) with coefficients (4), which
deterministically displays two stable limit cycles (bicyclicity). Several statistical
challenges arise. For example, is it possible to infer that the upper attractor in
Fig. 1b is a deterministic critical point, while the lower a noisy limit cycle? Is it
possible to detect one/both noisy limit cycles in Fig. 1c? The answer to the second
question is complicated by the fact that the two deterministic limit cycles in Fig. 1c
are relatively close to each other.

The rest of the paper is organized as follows. In Sect. 2, we outline properties of
the planar quadratic ODE systems, concentrating on cycles, cycle bifurcations and
multistability. There are two reasons for focusing on the planar quadratic systems:
firstly, the phase plane theory for such systems is well-developed [16, 17], with
a variety of concrete examples with interesting phase plane configurations [18–
20]. Secondly, an arbitrary planar quadratic ODE system can always be mapped
to a kinetic one using only an affine transformation—a special property not shared
with cubic (nor even linear) planar systems [21]. This, together with the available
nonlinear kinetic transformations which increase the polynomial degree of an
ODE system by one [2], implies that we may map a general planar quadratic
system to at most cubic planar kinetic system, which may still be biologically
or chemically relevant. In Sect. 3, we present the two planar cubic test models
which induce reaction networks (1) and (3), and which are constructed starting
from suitable planar quadratic ODE systems. We also compare the deterministic and
stochastic solutions of the constructed reaction networks, and highlight the observed
qualitative differences. Finally, in Sect. 4, we provide a summary of the paper.

2 Properties of Two-Dimensional Second-Degree Polynomial
ODEs: Cycles, Cycle Bifurcations and Multistability

Let us consider the two-dimensional second-degree autonomous polynomial ODEs

dx1

dt
D P1.x1; x2I k/ D k1 C k2x1 C k3x2 C k4x2

1 C k5x1x2 C k6x2
2;

dx2

dt
D P2.x1; x2I k/ D k7 C k8x1 C k9x2 C k10x2

1 C k11x1x2 C k12x2
2; (5)

where Pi. � ; � I k/ W R
2 ! R, i 2 f1; 2g; are the second-degree two-variable

polynomial functions, and k D .k1; k2; : : : ; k12/ 2 R
12 is the vector of the

corresponding coefficients. We assume that P1 and P2 are relatively prime and at
least one is of second-degree. We allow coefficients k to be parameter-dependent,
k D k.p/, with p 2 R

q, q � 0.
Let us consider two additional properties which system (5) may satisfy:

(I) Coefficients k1; k3; k6; k7; k8; k10 � 0, i.e. P1 and P2 are so-called kinetic
functions (for a rigorous definition see [2]).
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(II) The species concentrations x1 D x1.t/ and x2 D x2.t/ are uniformly bounded
in time for t � 0 in the nonnegative orthant R2�, except possibly for initial
conditions located on a finite number of one-dimensional subsets of R2�, where
infinite-time blow-ups are allowed.

The subset of Eqs. (5) satisfying properties (I)–(II) are referred to as the determinis-
tic kinetic equations bounded in R

2�, and denoted

dx1

dt
D K1

�
x1; x2I k.p/

�
;

dx2

dt
D K2

�
x1; x2I k.p/

�
: (6)

In what follows, we discuss only the biologically/chemically relevant solutions
of (6), i.e. the solutions in the nonnnegative quadrant R2�. We now summarize some
of the definitions and results regarding cycles, cycle bifurcations and multistability
(referred to as the so-called exotic phenomena in the biological context [3]) for
systems (5) and (6). Let us note that most of the results have been shown to hold
only for the more general system (5), and may not necessarily hold for the more
restricted system (6).

Critical Points A (finite) critical point .x�
1 .k/; x�

2 .k// of system (5) is a solution of
the polynomial system P1.x�

1 ; x�
2 I k/ D 0;P2.x�

1 ; x�
2 I k/ D 0. Critical points are the

time-independent solutions of (5).

Cycles Cycles of (5) are closed orbits in the phase plane which are not critical
points. They can be isolated (limit cycles, and separatrix cycles) or nonisolated (a
one-parameter continuous family of cycles). Limit cycles are the periodic solutions
of (5). A homoclinic separatrix cycle consists of a homoclinic orbit and a critical
point of saddle type, with the orbit connecting the saddle to itself. On the other
hand, a heteroclinic separatrix cycle consists of two heteroclinic orbits, and two
critical points, with the orbits connecting the two critical points [22]. Limit cycles
of (6) correspond to biological clocks, which play an important role in fundamental
biological processes, such as the cell cycle, the glycolytic cycle and circadian
rhythms [23–25].

Cycle Bifurcations Variations of coefficients k in (5) may lead to changes in the
topology of the phase plane (e.g. a change may occur in the number of invariant
sets or their stability, shape of their region of attraction or their relative position).
Variation of k.p/ in (6) may be interpreted as a variation of the reaction rate
coefficients k due to changes in the reactor (environment) parameters p, such as the
pressure or temperature. If the variation causes the system to become topologically
nonequivalent, such a parameter is called a bifurcation parameter, and at the
parameter value where the topological nonequivalence occurs, a bifurcation is said
to take place [22, 26]. Bifurcations in the deterministic kinetic equations have been
reported in applications [12, 23–25, 27, 28].
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Bifurcations of limit cycles of (5) can be classified into three categories: (i) the
Andronov-Hopf bifurcation, where a limit cycle is created from a critical point
of focus or center type, (ii) the separatrix cycle bifurcation, where a limit cycle
is created from a separatrix cycle, and (iii) the multiple limit cycle bifurcation,
where a limit cycle is created from a limit cycle of multiplicity greater than
one [16, 22]. Let us note that the maximum multiplicity of a multiple focus of (5)
is three, so that at most three local limit cycles can be created under appropriate
perturbations [29]. Bifurcations (i) and (iii) are examples of local bifurcations,
occurring in a neighborhood of a critical point or a limit cycle, while bifurcations
(ii) are examples of global bifurcations, occuring near a separatrix cycle. The
following global bifurcations may occur in (5): convex homoclinic bifurcations
(defined in, e.g., [30]), saddle–saddle (heteroclinic) bifurcations, and the saddle-
node (heteroclinic) bifurcations on an invariant cycle. However, concave homoclinic
bifurcations, double convex, and double concave homoclinic bifurcations, presented
in, e.g., [30], cannot occur in (5) as a consequence of basic properties of planar
quadratic ODEs [31, 32].

A necessary condition for the existence of a limit cycle in (6) is that k4 > 0 or
k12 > 0 [2, 3]. This implies that the induced reaction network must contain at least
one autocatalytic reaction of the form 2si ! nsi C msj, with n � 3, m � 0, and
i; j 2 f1; 2g. In the literature, system (6) has been shown to display the following
limit cycle bifurcations: Andronov-Hopf bifurcations, saddle-node on an invariant
cycle, and multiple limit cycle bifurcations [21, 33, 34]. Let us note that some of the
reaction systems constructed in [21, 33, 34] (e.g. displaying double Andronov-Hopf
bifurcation, and a saddle–saddle bifurcation) are described by ODEs of the form (6),
but with solutions which are generally not bounded in R

2�.

Multistability System (5) is said to display multistability if the total number of the
underlying stable critical points and stable limit cycles is greater than one, for a
fixed k. Multistability in (6) corresponds to biological switches, which may be
classified into reversible or irreversible [27, 35, 36]. The former switches play an
important role in reversible biological processes (e.g. metabolic pathways dynamics,
and reversible differentiation), while the latter in irreversible biological processes
(e.g. developmental transitions, and apoptosis).

Multistability can be mathematically classified into pure multistability, involving
attractors of only the same type (either only stable critical points, or only stable
limit cycles), and mixed multistability, involving at least one stable critical point,
and at least one stable limit cycle. Pure multistability involving only critical points
is called multistationarity [3], while we call pure multistability involving only limit
cycles multicyclicity. Mixed bistability, and bicyclicity, can be further classified
into concentric and nonconcentric. Concentric mixed bistability (resp. bicyclicity)
occurs when the stable limit cycle encloses the stable critical point (resp. when the
first stable limit cycle encloses the second stable limit cycle), while nonconcentric
when this is not the case. Let us note that, for a fixed kinetic ODE system (6),
multistationarity at some parameter values k, is neither necessary, nor sufficient, for
cycles at some (possibly other) parameter values k0 [37].
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We now prove that (5) can have at most three coexisting stable critical points,
i.e. (5) can be at most tristationary.

Lemma 2.1 The maximum number of coexisting stable critical points in two-
dimensional relatively prime second-degree polynomial ODE systems (5), with fixed
coefficients k, is three.

Proof Let us assume system (5) has four, the maximum number, of real finite critical
points. Then, using an appropriate centroaffine (linear) transformation [31, 32],
system (5) can be mapped to

dx1

dt
D a1x1.x1 � 1/ C b1x2.x2 � 1/ C c1x1x2;

dx2

dt
D a2x1.x1 � 1/ C b2x2.x2 � 1/ C c2x1x2; (7)

which is topologically equivalent to (5), with the critical points located at A D .0; 0/,
B D .1; 0/, C D .0; 1/ and D D .˛; ˇ/, with ˛ ¤ 0, ˇ ¤ 0, ˛ C ˇ ¤ 1, and the
coefficients c1; c2 given by

c1 D �˛ � 1

ˇ
a1 � ˇ � 1

˛
b1;

c2 D �˛ � 1

ˇ
a2 � ˇ � 1

˛
b2:

The trace and determinant of the Jacobian matrix of (7), denoted � and ı,
respectively, evaluated at the four critical points, A; B; C; D, are given by:

�A D �.a1 C b2/; ıA D a1b2 � a2b1;

�B D a1 � a2

.˛ � 1/

ˇ
� b2

.˛ C ˇ � 1/

˛
; ıB D �˛ C ˇ � 1

˛
ıA;

�C D b2 � a1

.˛ C ˇ � 1/

ˇ
� b1

.ˇ � 1/

˛
; ıC D �˛ C ˇ � 1

ˇ
ıA;

�D D ˛a1 C ˇb2 � a2

˛.˛ � 1/

ˇ
� b1

ˇ.ˇ � 1/

˛
; ıD D .˛ C ˇ � 1/ıA: (8)

System (7) may have three stable critical points if and only if the quadrilateral
ABCD, formed by the critical points, is nonconvex, and the only saddle critical
point is the one located at the interior vertex of the quadrilateral [31, 32]. This is
the case when ˛ > 0, ˇ > 0, ˛ C ˇ < 1, and ıA > 0, in which case A; B; and
C are nonsaddle critical points, while D is a saddle. Imposing also the conditions
�A < 0, �B < 0, �C < 0, ensuring that A; B; and C are stable, a solution of the
resulting system of algebraic inequalities is given by a1 D 1, b1 D �1, a2 D 1,

0 < ˛ < 1=2
�
.1 C 2ˇ/ � p

1 C 8ˇ2

�
, �1 < b2 < ˛.�˛CˇC1/=.ˇ.˛Cˇ�1//.

ut
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Let us note that if (7) is kinetic, then it cannot have three stable critical points.
More precisely, requiring b1 � 0, a2 � 0, and dA > 0 and �A < 0 in (8) implies
a1 > 0 and b2 > 0, which further implies �B > 0, so that B is unstable. More
generally, the authors have not found a tristationary system (6) in the literature (and
we conjecture it does not exist). On the other hand, bistationary systems (6) do exist
(in fact, even one-dimensional cubic bounded kinetic systems may be bistationary,
e.g. the Schlögl model [15], see the time-series shown in Fig. 1a).

The maximum number of stable limit cycles in (5) is two, i.e. (5) can be at most
bicyclic. Furthermore, system (5) may also display mixed tristability, involving one
stable critical point, and two stable limit cycles. This follows from the fact that the
maximum number of limit cycles in (5) is four, in the unique configuration .3; 1/, a
fact only recently proved in [17], solving the second part of Hilbert’s 16th problem
for the quadratic case. If the solutions of (5) are required to be bounded in the
whole R

2, system (5) was conjectured to have at most two limit cycles [22, 38],
and hence have at most one stable limit cycle. It remains an open problem if the
maximum number of limit cycles in the nonnegative orthant of (6) is four or less (we
conjecture it is less than four), and if (6) may be bicyclic. Due to the fact that (6)
is (I) kinetic (and, hence, nonnegative), and (II) appropriately bounded in R

2�,
additional restrictions are imposed on the boundary of R2�, and on the critical points
at infinity, complicating the construction of systems (6) displaying multistability
involving limit cycles. Some results regarding multistability have been obtained
in [21]: system (6) displaying concentric mixed bistability has been constructed. The
system contains two limit cycles in the nonnegative orthant, and therefore does not
exceed the conjectured bound on the number of limit cycles in the bounded quadratic
systems [22, 38]. While a kinetic system of the form (6) displaying concentric
bicyclicity has been obtained in [21], the system is not bounded in R

2�.

3 Test Models: Construction and Simulations

In this section, our aim is to construct two-dimensional kinetic ODEs bounded
in R

2�, which display a nonconcentric bistability. As highlighted in the previous
section, it may be a difficult task to obtain such systems with at most quadratic
terms, i.e. in the form (6). To make a progress, in this section, we allow the two-
dimensional kinetic ODEs to contain cubic terms, and we construct two systems.
The first system displays a convex homoclinic bifurcation, and mixed bistability,
and is obtained by modifying a system from [2] using the results from Appendix 1.
The second system displays a multiple limit cycle bifurcation, and bicyclicity. To
construct the second system, we use an existing system of the form (5), which
forms a one-parameter family of uniformly rotated vector fields [22, 39], and
which displays bicyclicity and multiple limit cycle bifurcation [40]. We use kinetic
transformations from [2] to map this system, which is of the form (5), to a kinetic
one, which is of the form (6). We then use the results from Appendix 1 to map
the system of the form (6) to a suitable cubic two-dimensional kinetic system. We
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also fine-tune the polynomial coefficients in the kinetic ODEs in such a way that
sizes of the two stable limit cycles differ by maximally one order of magnitude
(a task that can pose challenges [18]). As differences may be observed between
the deterministic and stochastic solutions for parameters at which a deterministic
bifurcation occurs [6], we investigate the constructed models for such observations.
Let us note that an alternative static (i.e. not dynamic) approach for reaction system
construction, using only the chemical reaction network theory or kinetic logic,
provides only conditions for stability of critical points, but no information about the
phase plane structures [41], and is, thus, insufficient for construction of the systems
presented in this paper.

3.1 System 1: Homoclinic Bifurcation and Mixed Bistability

Consider the following deterministic kinetic equations

dx1

dt
D k1 C x1

�
k2 C k3x1 � k4x2 � k5x1x2 C k6x2

2

�
;

dx2

dt
D k7 C x2

��k8 C k9x1 C k10x2 � k11x2
2

�
; (9)

with the coefficients k D k.a;T ; ˛; "/ given by

k1 D "; k7 D ";

k2 D 1

2

ˇ̌
ˇ̌
�

3

�
T2 � 2

3

� �
aT1 C T2

� � 2˛T1

�ˇ̌
ˇ̌ ; k8 D j � T1 C aT2.T2 � 1/j;

k3 D
ˇ̌
ˇ̌�3

2
a

�
T2 � 2

3

�
C ˛

ˇ̌
ˇ̌ ; k9 D 1;

k4 D
ˇ̌
ˇ̌1 � 3

2
.aT1 C 2T2/

ˇ̌
ˇ̌ ; k10 D

ˇ̌
ˇ̌2a

�
T2 � 1

2

�ˇ̌
ˇ̌ ;

k5 D
ˇ̌
ˇ̌3

2
a

ˇ̌
ˇ̌ ; k11 D jaj;

k6 D 3

2
; (10)

where j � j denotes the absolute value, and with parameters a, ˛, ", T1, and T2

satisfying

a 2 .�1; 0/; j˛j � 1; 1 � " � 0;

T1 >
2
p

3

9
; T2 2

�
max.1; �aT1/;

2

3
C 8

3
a�2

�
3 � a2

��
a C 4T1

��
: (11)

The canonical reaction network [2] induced by system (9) is given by (1).
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System (9) is obtained from system [2, Eq. (32)], which is known to display a
mixed bistability and a convex supercritical homoclinic bifurcation when ˛ D 0,
" D 0. We have modified [2, Eq. (32)] by adding to its right-hand side the "-term
from Definition 1 [i.e. coefficients k1 and k7 in (9)], thus preventing the long-term
dynamics to be trapped on the phase plane axes. It can be shown, using Theorem 1,
that choosing a sufficiently small " > 0 in (10) does not introduce additional positive
critical points in the phase space of (9).

In Fig. 2a, b, we show phase plane diagrams of (9) before and after the
bifurcation, respectively, where the critical points of the system are shown as the
colored dots (the stable node, saddle, and unstable focus are shown as the green, blue
and red dots, respectively), the blue curves are numerically approximated saddle
manifolds (which at ˛ D 0, " D 0 form a homoclinic loop [2]), and the purple
curve in Fig. 2b is the stable limit cycle that is created from the homoclinic separatrix
cycle. Let us note that parameter ˛, appearing in (10), controls the bifurcation, while
parameter a controls the saddle-node separation [2].

In Fig. 3a–b and d–e, we show numerical solutions of the initial value problem
for (9) in red, with one initial condition in the region of attraction of the node, while
the other near the unstable focus. The blue sample paths are generated by using
the Gillespie stochastic simulation algorithm on the induced reaction network (1),
initiated near the unstable focus. More precisely, in Fig. 3a, d we show the dynamics
before the deterministic bifurcation, when the node is the globally stable critical
point for the deterministic model, while in Fig. 3b, e we show the dynamics after
the bifurcation, when the deterministic model displays mixed bistability. On the
other hand, the stochastic model displays relatively frequent stochastic switching
in Fig. 3a, b, when the saddle-node separation is relatively small. Let us emphasize
that the stochastic switching is observed even before the deterministic bifurcation.
In Fig. 3d, e, when the saddle-node separation is relatively large, the stochastic
switching is significantly less common, and the stochastic system in the state-space
is more likely located near the stable node. Thus, in Fig. 3d, e, the stochastic system
is less affected by the bifurcation than the deterministic system, and, in fact, behaves
more like the deterministic system before the bifurcation. This is also confirmed in
Fig. 3c, f, where we display the x2-marginal stationary probability mass functions
(PMFs) for the smaller and larger saddle-node separations, respectively, which were
obtained by numerically solving the chemical master equation (CME) [42, 43]
corresponding to network (1). Let us note that, by sufficiently increasing the saddle-
node separation, the left peak in the PMF from Fig. 3f, corresponding to the
deterministic limit cycle, becomes nearly zero and difficult to detect.

In [44], we present an algorithm which structurally modifies a given reaction
network under mass-action kinetics, in such a way that the deterministic dynamics
is preserved, while the stochastic dynamics is modified in a controllable state-
dependent manner. We apply the algorithm on reaction network (1), for parameter
values similar as in Fig. 3d–f, to make the underlying PMF bimodal, so that the
underlying sample paths display stochastic switching between the two deterministic
attractors. Furthermore, we also make the PMF unimodal, and concentrated around
the deterministic limit cycle, so that the underlying sample paths remain near
the deterministic limit cycle. Meanwhile, we preserve the deterministic dynamics
induced by (9).
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Fig. 2 (a)–(b) Phase plane diagrams of system (9) before and after the homoclinic bifurcation. The
stable node, saddle, and unstable focus are represented as the green, blue and red dots, respectively,
the vector field as gray arrows, numerically approximated saddle manifolds as blue trajectories,
and the purple curve in panel (b) is the stable limit cycle. The parameters appearing in (10), and
satisfying (11), are fixed to a D �0:8, T1 D T2 D 2, " D 0:01, the reactor volume is set to
V D 100, and the bifurcation parameter ˛ is as shown in the panels. (c)–(d) Phase plane diagrams
of system (12) before and after the multiple limit cycle bifurcation. The stable limit cycles L1 and
L3 are shown in purple and red, respectively, while the unstable limit cycle L2 is shown in black.
The parameters appearing in (13), and satisfying (14), are fixed to a D 1, b D �1, c D 0:5,
d D 0:08, x�

1 D �3, T1 D T2 D 1000, " D 0:01, the reactor volume is set to V D 0:5, and the
bifurcation parameter � is as shown in the panels
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Fig. 3 Numerical solutions of system (9) are shown in red. Representative sample paths, generated
by the Gillespie stochastic simulation algorithm applied on the corresponding reaction network (1),
are shown in blue. Probability mass functions (PMFs), obtained by numerically solving the
underlying chemical master equation (CME) on the bounded domain .x1; x2/ 2 Œ0; 1000��Œ0; 600�,
are also shown in blue. (a)–(b) The cases before and after the homoclinic bifurcation, respectively,
for smaller values of a, when the limit cycle and the stable node are closer together. (d)–(e) The
cases before and after the homoclinic bifurcation, respectively, for larger values of a. (c) and
(f) Stationary x2-marginal PMFs. Parameter values in (c) and (f) are the same as in (b) and (e),
respectively. One of the deterministic solutions is initiated in the region of attraction of the node,
while the other near the focus. The parameters are fixed to T1 D T2 D 2, " D 0:01, the reactor
volume is set to V D 100, with a and ˛ as shown in the panels
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3.2 System 2: Multiple Limit Cycle Bifurcation and Bicyclicity

Consider the following deterministic kinetic equations

dx1

dt
D k1 C x1

��k2 C k3x1 C k4x2 C k5x2
1 � k6x1x2 � k7x2

2

�
;

dx2

dt
D k8 C x2

�
k9 � k10x1 C k11x2 C k12x2

1 � k13x1x2 � k14x2
2

�
; (12)

with coefficients k D k.a; b; c; d; x�
1 ;T ; �; "/ given by

k1 D k8 D ";

k2 D ˇ̌ � aT1T2 cos.�/ C �
.d.T1 C 1/ C cT2/T2 C b.T1 C 1/.T1 C x�

1 /
	

sin.�/
ˇ̌
;

k3 D ˇ̌
aT2 cos.�/ � �

dT2 C b.2T1 C x�
1 C 1/

	
sin.�/

ˇ̌
;

k4 D ˇ̌
aT1 cos.�/ � Œd.T1 C 1/ C 2cT2� sin.�/

ˇ̌
;

k5 D jb sin.�/j;
k6 D j � a cos.�/ C d sin.�/j;
k7 D jc sin.�/j; (13)

and if ki D ˇ̌
f .a; b; c; d; x�

1 ;T / cos.�/ � g.a; b; c; d; x�
1 ;T / sin.�/j, then kiC7 Dˇ̌

f .a; b; c; d; x�
1 ;T / sin.�/ C g.a; b; c; d; x�

1 ;T / cos.�/
ˇ̌
, i D 2; 3; : : : ; 7, and with

parameters a; b; c; d; x�
1 ; T1; T2; � and " satisfying

0 � " � 1; �1 � � < 0;

b < 0; d > 0; a > � d2

4b
; 0 < c < a C d2

4b
; x�

1 <
d2

4bc
;

a3c C b3.1 � x�
1 /2 ¤ 0;

T1 > �x�
1 ; 0 < T2 < � 4abx�

1

d2.x�
1 � 1/

.T1 C x�
1 /;

Œd.T1 C 1/ C cT2�T2 C b.T1 C 1/.T1 C x�
1 / < 0: (14)

The canonical reaction network induced by system (12) is given by (3). In this
section, we show that systems (12) and (15) (see below), the latter of which is
known to display bicyclicity and a multiple limit cycle bifurcation, are topologically
equivalent near the corresponding critical points, provided conditions (14) are
satisfied.

In Fig. 2c, d, we show the phase plane diagram of (12) for a particular choice
of the parameters satisfying (14), and it can be seen that the system also displays
bicyclicity and a multiple limit cycle bifurcation, with Fig. 2c, d showing the cases
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before and after the bifurcation, respectively. In Fig. 2c, the only stable invariant
set is the limit cycle shown in red, while in Fig. 2d there are two additional limit
cycles—a stable one, shown in purple, and an unstable one, shown in black. The
purple, black and red limit cycles are denoted in the rest of the paper by L1, L2 and
L3, respectively. At the bifurcation point, L1 and L2 intersect.

In order to construct (12), let us consider the planar quadratic ODE system [21,
40] given by

dx1

dt
D Q1.x1; x2/ cos.�/ � Q2.x1; x2/ sin.�/;

dx2

dt
D Q1.x1; x2/ sin.�/ C Q2.x1; x2/ cos.�/; (15)

where

Q1.x1; x2/ D �ax1x2;

Q2.x1; x2/ D �bx�
1 C b.x�

1 C 1/x1 C dx2 � bx2
1 � dx1x2 � cx2

2; (16)

with

x�
1 < 0; d2 � 4bcx�

1 < 0; d2 � 4b.c � a/ < 0;

�d
�
a � b.1 � x�

1 /
�

< 0; �bd > 0; a3c C b3.1 � x�
1 /2 ¤ 0: (17)

Lemma 3.1 Consider system (15)–(17), with the real parameter � 2 .��; ��.
Function P.x1; x2I �/ D .Q1 cos.�/ � Q2 sin.�/;Q1 sin.�/ C Q2 cos.�// forms a
one-parameter family of uniformly rotated vector fields with the rotation parameter
� , and the following results hold:

1. Finite critical points. System (15) has two critical points in the finite part of the
phase plane, located at .1; 0/ and .x�

1 ; 0/, both of which are unstable foci when
j� j � 1.

2. Number and distribution of limit cycles. System (15) has three limit cycles in
the configuration .2; 1/ when j� j � 1. The focus located at .1; 0/ is surrounded
by two positively oriented limit cycles L1 and L2, with the unstable limit cycle L2

enclosing the stable limit cycle L1, while the focus at .x�
1 ; 0/ by a single negatively

oriented stable limit cycle L3.
3. Dependence of the limit cycles on the rotation parameter � . There exists a critical

value � D �� < 0, at which the limit cycles L1 and L2 intersect in a semistable,
positively oriented limit cycle that is stable from the inside, and unstable from
the outside. As � is monotonically increased in .��; 0/, the limit cycles L2 and L3

monotonically expand, while L1 monotonically contracts.

Proof The statement of the lemma follows from [21, 40], and the theory of one-
parameter family of uniformly rotated vector fields [22, 39]. ut
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In order to map the stable limit cycles of system (15) into the first quadrant, and
then map the resulting system to a kinetic one, having no boundary critical points,
let us apply a translation transformation ‰T [2], T D .T1; T2/ 2 R

2, followed by
a perturbed x-factorable transformation, as defined in Definition 1, on system (15),
which results in system (12) with the coefficients (13).

Theorem 3.1 Consider the ODE systems (12) and (15), and assume conditions (14)
are satisfied. Then (12) and (15) are locally topologically equivalent in the
neighborhood of the corresponding critical points. Furthermore, for sufficiently
small " > 0, system (12) has exactly one additional critical point in R

2
>, which

is a saddle located in the neighbourhood of .T1; 0/.

Proof Consider the critical point .1; 0/ of system (15), which corresponds to the
critical point .T1 C1; T2/ of system (12) when " D 0. The Jacobian matrices of (15),
and (12) with " D 0, evaluated at .1; 0/, and .T1 C 1; T2/, are respectively given by

J D
� �b.x�

1 � 1/ sin.�/ �a cos.�/

b.x�
1 � 1/ cos.�/ �a sin.�/

�
;

JX ;T D
� �b.x�

1 � 1/.T1 C 1/ sin.�/ �a.T1 C 1/ cos.�/

b.x�
1 � 1/T2 cos.�/ �aT2 sin.�/

�
:

Condition (ii) of [2, Theorem 3.3] is satisfied, so that the stability of the critical point
is preserved under the x-factorable transformation, but condition (iii) is not satisfied.
In order for .T1 C 1; T2/ to remain focus under the x-factorable transformation, the
discriminant of JX ;T must be negative:

.aT2 C b.T1 C 1/.x�
1 � 1//2.sin.�//2 � 4ab.x�

1 � 1/.T1 C 1/T2 < 0: (18)

Let us set � D 0 in (18), leading to

�4ab.x�
1 � 1/.T1 C 1/T2 < 0: (19)

Conditions (18) and (19) are equivalent when j� j � 1, since the sign of the function
on the LHS of (18) is a continuous function of � . From conditions (14) it follows that
ab < 0, x�

1 < 0, and T1; T2 > 0, so that (19) is satisfied. Similar arguments show
that the second critical point of (15), located at .x�

1 ; 0/, is mapped to an unstable
focus of (12), if d > 0, and if T2 is bounded as given in (14).

Consider (12) with " D 0. The boundary critical points are located at .0; 0/,
.T1; 0/, and .0; x�

2;˙/, with

x�
2;˙ D 1

2c

�
d.T1 C 1/ C 2cT2 ˙

q
.T1 C 1/.d2.T1 C 1/ � 4bc.T1 C x�

1 //

�
:

Conditions (14) imply that the critical point .0; 0/ satisfies P1.0; 0/ D �aT1T2 < 0,
and

P2.0; 0/ D �Œd.1 C T1/ C cT2�T2 � b.1 C T1/.T1 C x�
1 / > 0;
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when � D 0. When j� j � 1, it then follows from condition (iv) of [2, Theorem 3.3]
that the critical point is a saddle, and from Theorem 1, condition (23), that it
is mapped outside of R

2� when " ¤ 0. Similar arguments show that, assuming
conditions (14) are true, .T1; 0/ is a saddle that is mapped to R

2
> when " ¤ 0, and

that critical points .0; x�
2;˙/ are real, x�

2;� < 0, and that .0; x�
2;C/ is a saddle that is

mapped outside R
2� when " ¤ 0.

Finally, if conditions (14) are satisfied, so are conditions (17). ut
We now consider the kinetic ODEs (12) and the induced reaction network (4) for

a particular set of coefficients (13). We also rescale the time according to t ! 2 �
10�5 t, i.e. we multiply all the coefficients k1; : : : k14 appearing in (12) by 2 � 10�5.
On this time-scale, we capture dynamical effects relevant for this paper. In Fig. 4a,
b we show numerically approximated solutions of the initial value problem for (12)
before and after the bifurcation, respectively. In Fig. 4a, we show a solution initiated
near the unstable focus, outside the limit cycle L3. It can be seen that the solution
spends some time in a neighborhood of the unstable focus, which is followed by
an excursion leading the solution to the stable limit cycle L3, where it then stays
forever. In Fig. 4b, the solutions tend to the limit cycle L1 or L3, depending on the
initial condition. Let us note that the critical value at which the limit cycles L1 and
L2 intersect, at the deterministic level, is numerically found to be �� � �0:00146.

In Fig. 4c, d we show representative sample paths generated by applying the
Gillespie stochastic simulation algorithm on the reaction network (3), before and
after the bifurcation, respectively. One can notice that the stochastic dynamics does
not appear to be significantly influenced by the bifurcation, as opposed to the
deterministic dynamics. In Fig. 4c, d, one can notice pulses similar as in Fig. 4a,
that are now induced by the intrinsic noise present in the system.

The stationary PMF corresponding to network (3), for parameter values as in
Fig. 4c, d, accumulates at the boundary of the state-space (see also the Keizer
paradox [45]). While the results from Appendix 1 may be used to prevent a PMF
from accumulating at the boundary, one may need a sufficiently large reactor
volume. For example, for network (1), the propensity function [43] of reactions
r1 and r7, for parameter values taken in this paper (i.e. " D 0:01 in (10), and
V D 100), takes the value "V D 1. This is sufficient for the underlying PMF to
approximately vanish at the boundary of the state-space, as demonstrated in Fig. 3c
and f. On the other hand, for network (3), we take " D 0:01 in (13), and V D 0:5,
so that the propensity function of r1 and r8 takes the value of only 0:005. As a
consequence, the underlying PMF accumulates at the boundary of the state-space.
Instead of increasing the reactor volume to prevent this, we instead focus on the
so-called quasi-stationary PMF under the condition that the species copy-numbers
are positive, p>.x; y/ 	 p.x; yjx > 0; y > 0/. The quasi-stationary PMF describes
well the stochastic dynamics of network (3) on the time-scale of interest, presented
in Fig. 4c, d. In Fig. 4e, we display an approximate x1-marginal quasi-stationary
PMF p>.x1/, for the same parameter values as in Fig. 4d. The quasi-stationary PMF
p>.x1/ was obtained by numerically solving the stationary CME corresponding to
network (3), on a truncated domain which excludes the boundary of the state-space.



20 T. Plesa et al.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

300

500

700

900

1100

1400

Time t

C
on

ce
nt

ra
tio

n 
x 1(t)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
440

450

460

470

480

490

500

510

520

Time t

C
on

ce
nt

ra
tio

n 
x 1(t)

L1
L3

0 10 20 30 40 50 60 70 80 90 100

100

300

500

700

900

1100

1300

1500

1700

1900

Time t

C
op

y−
nu

m
be

r X
1(t)

0 10 20 30 40 50 60 70 80 90 100

100

300

500

700

900

1100

1300

Time t

C
op

y−
nu

m
be

r X
1(t)

1 100 300 500 700 900 11001200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10−3

Copy−number x1

Q
ua

si
−s

ta
tio

na
ry

 m
ar

gi
na

l P
M

F 
p >(x

1)

(a) θ = −0.00147 (b) θ = −0.00145

(c) θ = −0.00147 (d) θ = −0.00145

(e)

Fig. 4 (a)–(b) Numerical solutions of the kinetic ODE system given by (12) before and after the
bifurcation, where in (b) the trajectory initiated near the stable limit cycle L1 is shown in purple,
while the one initiated near L3 in red. (c)–(d) Sample paths generated by the Gillespie stochastic
simulation algorithm applied to the induced reaction network (3) before and after the bifurcation.
(e) Approximate quasi-stationary x1-marginal PMF, obtained by numerically solving the stationary
CME, corresponding to network (3), on the bounded domain .x1; x2/ 2 Œ1; 1200� � Œ1; 1200�, for
the same parameters values as in (d). The parameters appearing in (13) are fixed to a D 1, b D �1,
c D 0:5, d D 0:08, x�

1 D �3, T1 D T2 D 1000, " D 0:01, with the reactor volume V D 0:5,
and � as indicated in the plots. Coefficients (13) are multiplied by a constant factor of 2 � 10�5

(time-rescaling)
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4 Summary

In the first part of the paper, in Sect. 2, we have presented theoretical results
regarding oscillations, oscillation-related bifurcations and multistability in the
planar quadratic kinetic ODEs (6), which are (appropriately) bounded in the
nonnegative quadrant. Such ODEs are used in applications to describe the deter-
ministic dynamics of concentrations of two biological/chemical species, with at
most quadratic interactions. While the kinetic ODEs (6) inherit many properties
from the more general planar quadratic ODEs (5), some properties, which are of
biological/chemical relevance, are not necessarily inherited. For example, we have
formulated the following open problem: while general planar quadratic ODEs (5)
may display bicyclicity (a coexistence of two stable oscillatory attractors), is the
same true for the kinetic planar quadratic ODEs (6)?

In Sect. 3, building upon the results from Sect. 2, and using the results from [2]
and Appendix 1, we have constructed two reaction networks, with the deterministic
dynamics described by planar cubic kinetic ODEs. The first network is given by (1),
and, at the deterministic level, displays a homoclinic bifurcation, and a coexistence
of a stable critical point and a stable limit cycle (mixed bistability). The second
network is given by (3), and, at the deterministic level, displays a multiple limit
cycle bifurcation, and a coexistence of two stable limit cycles (bicyclicity). The
phase planes of the kinetic ODEs induced by the first network before and after the
bifurcation are shown in Fig. 2a, b, respectively, while for the second network in
Fig. 2c, d.

In Fig. 3, we have compared the deterministic and stochastic solutions corre-
sponding to the first reaction network (1), with the rate coefficients such that the
deterministic solutions are close to the homoclinic bifurcation. Analogously, in
Fig. 4, we have done the same for reaction network (3), when the deterministic
solutions are close to the multiple limit cycle bifurcation. In both Figs. 3 and 4, we
observe qualitative differences between the deterministic and stochastic dynamics.
In particular, the stochastic dynamics in Fig. 3 may display stochastic switching
near the deterministic bifurcation. Furthermore, the dynamics of both networks are
not affected qualitatively by the deterministic bifurcation sharply at the bifurcation
point.

In Sect. 1, we have outlined the statistical inference problem, consisting of
detecting and classifying cycles (oscillations) in noisy time-series, and we have
put forward networks (1) and (3) as suitable test problems. Network (1) poses
two inference challenges: firstly, let us consider the scenario shown in Fig. 3d–f. In
this case, the relative separation between the two deterministic attractors is larger.
Consequently, at the stochastic level, the corresponding marginal probability mass
function (PMF), shown in Fig. 3f, is bimodal. However, the left peak, corresponding
to the deterministic limit cycle, is much smaller than the right peak, corresponding
to the deterministic critical point (a node). Using the shape of the marginal PMF,
as put forward in [1], one cannot conclude the presence of a noisy limit cycle.
Let us note that, by sufficiently increasing the distance between the two attractors,
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the left PMF peak from Fig. 3f approximately vanishes, making the inference
problem even harder. On the other hand, using the covariance function (and spectral
analysis), as put forward in [1], may also be limited, as the noisy time-series spends
a smaller amount of time near the deterministic limit cycle, as demonstrated in
Fig. 3e. Secondly, let us consider the scenario shown in Fig. 3a–c, when the relative
separation between the two deterministic attractors is smaller. In this case, it may be
a challenge to infer that there are two distinct attractors ‘hidden’ in the time-series
shown in Fig. 3b, and the PMF shown in Fig. 3c. The fact that the PMF in Fig. 3c is a
non-Gaussian may be used as an indication of a certain dynamical complexity. The
problem becomes more difficult for network (3), with two stable deterministic limit
cycles ‘hidden’ in the noisy time-series shown in Fig. 4d, and in the PMF shown in
Fig. 4e. Let us note that the PMF is approximately Gaussian, and this persists for a
wide range of larger reactor volumes.
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Appendix 1: Perturbed x-Factorable Transformation

Definition 1 Consider applying an x-factorable transformation, as defined in [2],
on (5), and then adding to the resulting right-hand side a zero-degree term "v, with
" � 0 and vector v D .1; 1/>, resulting in

dx
dt

D "v C X .x/P.xI k/ D "v C .‰XP/.xI k/ 	 .‰X"P/.xI k/: (20)

Then ‰X" W P2.R2I R2/ ! P3.R2I R2/, mapping P.xI k/ to .‰X"P/.xI k/, is
called a perturbed x-factorable transformation if " ¤ 0. If " D 0, the transformation
reduces to an (unperturbed) x-factorable transformation, ‰X 	 ‰X0 , defined in [2].

Lemma 1 .‰X"P/.xI k/ from Definition 1 is a kinetic function, i.e. .‰X"P/.xI k/

2 P
K
3 .R2�I R2/.

Proof .‰XP/.xI k/ is a kinetic function [2]. Since, from (20), .‰X"P/.xI k/ D
"v C .‰XP/.xI k/, with " � 0 and v D .1; 1/>, it follows that .‰X"P/.xI k/ is
kinetic as well. ut

We now provide a theorem relating location, stability and type of the positive
critical points of (5) and (20).
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Theorem 1 Consider the ODE system (5) with positive critical points x� 2 R
2
>.

Let us assume that x� 2 R
2
> is hyperbolic, and is not the degenerate case between a

node and a focus, i.e. it satisfies the condition
�
tr

�rP.x�I k/
��2 � 4det

�rP.x�I k/
� ¤ 0; (21)

as well as conditions (ii) and (iii) of Theorem 3:3 in [2]. Then positivity, stability
and type of the critical point x� 2 R

2
> are invariant under the perturbed x-

factorable transformations ‰X" , for sufficiently small " � 0. Assume (5) does not
have boundary critical points. Consider the two-dimensional ODE system (20) with
" D 0, and with boundary critical points denoted Nx0 2 R

2�, Nx0 D .Nx0
b;1; Nx0

b;2/,
Nx0

b;1 Nx0
b;2 D 0. Assume that for i 2 f1; 2g

@Pi.Nx0
bI k/

@xi
¤ 0; if Nx0

b;i ¤ 0; (22)

and that for some i 2 f1; 2g

Pi.Nx0
bI k/ > 0; if Nx0

b;i D 0: (23)

Then, the critical point Nx0
b 2 R

2� of the two-dimensional ODE system (20) with " D 0

becomes the critical point Nxb … R
2� of system (20) for sufficiently small " > 0.

Proof The critical points of (20) are solutions of the following regularly perturbed
algebraic equation

"v C X .Nx/P.NxI k/ D 0: (24)

Let us assume Nx can be written as the power series

Nx D Nx0 C "Nx1 C O."2/; (25)

where Nx0 2 R
2� are the critical points of (20) with " D 0. Substituting the power

series (25) into (24), and using the Taylor series theorem on P.NxI k/, so that P.Nx0C
"Nx1 C O."2/I k/ D P.Nx0I k/ C "rP.Nx0I k/Nx1 C O."2/, as well as that X .Nx/ D
X .Nx0/ C "X .Nx1/ C O."2/, and equating terms of equal powers in ", the following
system of polynomial equations is obtained:

O .1/ W X .Nx0/P.Nx0I k/ D 0;

O."/ W X .Nx0/rP.Nx0I k/Nx1 C X .Nx1/P.Nx0I k/ D �v: (26)

Order 1 equation. The positive critical points Nx0 2 R
2
> satisfy P.Nx0I k/ D 0.

Since P.xI k/ has no boundary critical points by assumption, critical points Nx0
b 2

R
2� with Nx0

b;i D 0, Nx0
b;j ¤ 0, Nx0

b;1 Nx0
b;2 D 0, i; j 2 f1; 2g, satisfy Pi.Nx0

bI k/ ¤ 0,
Pj.Nx0

bI k/ D 0.
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Order " equation. Vector Nx1, corresponding to a positive Nx0, satisfies

X .Nx0/rP.Nx0I k/Nx1 D �v;

which can be solved provided Nx0 is a hyperbolic critical point. Vector Nx1
b, corre-

sponding to a nonnegative Nx0
b, is given by

Nx1
b;i D

8
<

:

�.Pi.Nx0
bI k//�1; ifNx0

b;i D 0;
�

@Pi.Nx0
bI k/

@xi

��1 �
.Pj.Nx0

bI k//�1 @Pi.Nx0
bI k/

@xj
� .Nx0

b;i/
�1

�
; ifNx0

b;i ¤ 0;

from which conditions (22) and (23) follow. ut

Appendix 2: Bicyclic System with Large Attractors

Consider the following deterministic kinetic equations

dx1

dt
D k1 C x1.�k2 C k3x1 C k4x2 � k5x1x2/;

dx2

dt
D k6 C x2.k7 � k8x1 C k9x2 C k10x2

1 � k11x2
2/; (27)

with the coefficients k given by

k1 D 10�3; k2 D 10; k3 D 1; k4 D 1; k5 D 0:1; k6 D 10�3;

k7 D 3:7; k8 D 1:9; k9 D 1:01; k10 D 0:1; k11 D 0:05: (28)

The canonical reaction network induced by system (27), involving two species s1

and s2 and eleven reactions r1; r2; : : : ; r11 under mass-action kinetics, is given by

r1 W ¿ k1�! s1; r6 W ¿ k6�! s2;

r2 W s1

k2�! ¿; r7 W s2

k7�! 2s2;

r3 W 2s1

k3�! 3s1; r8 W s1 C s2

k8�! s1;

r4 W s1 C s2

k4�! 2s1 C s2; r9 W 2s2

k9�! 3s2;

r5 W 2s1 C s2

k5�! s1 C s2; r10 W 2s1 C s2

k10�! 2s1 C 2s2;

r11 W 3s2

k11�! 2s2: (29)
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Fig. 5 Panel (a) displays numerically approximated stable limit cycles L1 and L3 in the state-
space of system (27), with parameters (28) and reactor volume V D 100. Panel (b) displays in
blue a representative sample path, generated by applying the Gillespie algorithm on the underlying
reaction network (29) for the same parameters as in panel (a). Also shown are two deterministic
trajectories, one initiated near the limit cycle L1, while the other near L3. One can observe that the
stochastic sample path switches between the two deterministic attractors

In Fig. 5a, we show the two stable limit cycles obtained by numerically solving (27)
with parameters (28). In Fig. 5b, in addition to the limit cycles, we also show in blue
a representative sample path obtained by applying the Gillespie algorithm on (29).
Let us note that (27) was constructed in a similar fashion as system (12) in Sect. 3.2,
using the results from [40, 46].
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