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A little physics can make a long way in
explaining, quantifying and predicting
biological phenomena, especially when
propelled by rational, deductive and efficient
methods of mathematical analysis and
computations.



Preface

In the past 30 years, progress in molecular and cellular biology has greatly benefited
from the diversity of experimental methods. At the same time, the amount of data
generated has been plethoric, posing real challenges for mathematics, theoretical
physics, computer science and more areas. These challenges are extracting hidden
features from large and high-dimensional data sets and generating fast multiscale
simulations. To accomplish this program, various tools were further developed: fast
stochastic simulations to simulate stochastic chemical reactions have been built on
the Gillespie method. Other developments include the derivation of biophysical
modelling or reducing the complexity of high-dimensional stochastic processes
by projection into low-dimensional space, where the analysis is possible. Finally,
deriving asymptotic formula has revived asymptotic analysis of partial differential
equations, because they usually represent the new physical laws and clarify the role
of singular parameters.

The convergence of these interests and techniques has engulfed mathematical
biology into a new area at the intersection of statistical physics, applied mathemat-
ics, applied probability, computer science, biophysics and cell biology. This new
field does not simply provide new tools to extract features from data or to simulate
large amount of particles, but aims to contribute in quantifying and explaining the
function of a cell or its subcellular components from the molecular organization
(from nano- to micro- and higher scales).

Our young community has recently been challenged by producing modelling,
analysis, effective and fast methods of computing, based on coarse-graining or
analysis of the model equations. Examples of biological processes include dif-
fusion in microdomains, calcium dynamics, gene regulation, chromatin organiza-
tion and modification, signal transduction and molecular signalling, coagulation-
fragmentation of proteins and cellular transport, but also synaptic formation and
plasticity, cellular communication, neuronal network organization, early patterning
during development and many more.

Molecular and cellular biology processes are inherently stochastic, which is the
main driving force of many biological functions such as during ionic channels
or synaptic transmission. Stochastic and rare events are at the basis of signal
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transduction, but also facilitate phenotypic diversity of cellular populations and
even drive mutation during evolution. At the scale of a single cell, stochasticity
becomes relevant due to low copy numbers of biological molecules, such as mRNA
or transcription factors, that take part in biochemical reactions driving cellular
processes. When trying to describe such biological processes, the traditional mean-
field or coarse-grained deterministic models are often inadequate, exactly because
of these low copy numbers. But stochastic models are necessary to account for
small particle numbers (intrinsic noise) and extrinsic noise sources. The complexity
of these models depends crucially on whether the biochemical reactions are
diffusion-limited or reaction-limited. In the latter case, processes are described
by adopting the framework of Markov jumps and stochastic differential equations
(chemical master and Fokker-Planck equations), while in the former it is possible
to adopt the framework of stochastic reaction-diffusion models, including reaction-
diffusion master equation, partial differential equations and particle-based Brownian
dynamics simulations.

This book is divided into four mains parts. The first describes stochastic
and master chemical reactions with low copy numbers. The method involves
dimensional reduction. The second concerns the theory and method of random
simulations using stochastic processes for motion, but also chemical reactions.
The third is dedicated to asymptotic analysis used to explore the parameter space.
The fourth explores diffusion processes and stochastic modelling in cell biology.
Several examples of cell biological systems are treated here such as the model of
axonal growth and analysis of photoresponse with an emphasis in the multiscale
chemical reactions for the signal transduction inside rod photoreceptors. At a cell
population level, several stochastic models are introduced about the mitochondrial
heterogeneity across network configurations and genetic heterogeneity within cells
and between generations. Finally, using birth, death, immigration and local dispersal
of individual’s model, some empirical stochastic equations and observables are
introduced to study spatial pattern organization.

The chapters are written for a large audience of mathematicians, physicists,
computational biologists and computer scientists interested in studying stochastic
and numerical methods and physical modelling for cellular processes. This col-
lective effort originates from a 6-month programme that took place at the Newton
Institute in Cambridge in 2016, organized by R. Erban, K. Zygalakis, S. Isaacson
and myself about, “Stochastic Dynamical Systems in Biology: Numerical Methods
and Applications” (https://www.newton.ac.uk/event/sdb). We thank the Newton
Institute and its director John Tolland and the Simons Foundation for making this
programme possible that resulted in the present book.

Cambridge, UK David Holcman
July 2016
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Part I
Stochastic Chemical Reactions



Test Models for Statistical Inference:
Two-Dimensional Reaction Systems Displaying
Limit Cycle Bifurcations and Bistability

Tomislav Plesa, Tomas Vejchodsky, and Radek Erban

1 Introduction

Given noisy time-series, it may be of practical importance to infer possible bio-
logical mechanisms underlying the time-series [1]. Mathematically, such statistical
inferences correspond to an inverse problem, consisting of mapping given noisy
time-series to compatible reaction networks. One way to formulate the inverse
problem is as follows. Firstly, one obtains deterministic kinetic ordinary-differential
equations (ODEs) compatible with the stochastic time-series. And secondly, suitable
reaction networks may then be induced from the obtained kinetic ODEs [2, 3]. The
inverse problem is generally ill-posed [2, 3], as more than one suitable reaction
networks may be obtained. In order to make a progress in solving the inverse
problem, it is useful to impose further constraints on the kinetic ODEs. A particular
set of constraints on the kinetic ODEs may be obtained by determining the types
of the deterministic attractors which are ‘hidden’ in the noisy time-series [1]. This
may be a challenging task, especially when cycles (oscillations) are observed in
the time-series. The observed cycles may be present in both the deterministic
and stochastic models (also known at the stochastic level as noisy deterministic
cycles), or they may be present only in the stochastic model (also known as quasi-
cycles, or noise-induced oscillations). Noisy deterministic cycles may arise directly
from the autonomous kinetic ODEs, or via the time-periodic terms present in the
nonautonomous kinetic ODEs. Quasi-cycles may arise from the intrinsic or extrinsic
noise, and have been shown to exist near deterministic stable foci, and stable
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nodes [4]. For two-species reaction systems, quasi-cycles can be further classified
into those that are unconditionally noise-dependent (but dependent on the reaction
rate coefficients), and those that are conditionally noise-dependent [4]. Thus, a cycle
detected in a noisy time-series may at the deterministic level generally correspond
to a stable limit cycle, a stable focus, or a stable node.

In order to detect and classify cycles in noisy time-series, several statistical
methods have been suggested [1, 5]. In [1], analysis of the covariance as a
function of the time-delay, spectral analysis (the Fourier transform of the covariance
function), and analysis of the shape of the stationary probability mass function
have been suggested. Let us note that reaction systems of the Lotka-Volterra
(x-factorable [2]) type are used as test models in [1], and that conditionally noise-
dependent quasi-cycles, which can arise near a stable node, and which can induce
oscillations in only a subset of species [4], have not been discussed. In addition
to the aforementioned statistical methods developed for analyzing noisy time-
series, methods for (locally) studying the underlying stochastic processes near the
deterministic attractors/bifurcations have also been developed [4, 6-11].

Statistical and analytical methods for studying cycles in stochastic reaction
kinetics have often been focused on deterministically monostable systems which
undergo a local bifurcation near a critical (equilibrium) point, known as the
supercritical Hopf bifurcation. We suspect this is partially due to simplicity of
the bifurcation, and partially due to the fact that it is difficult to find two-species
reaction systems, which are more amenable to mathematical analysis, undergoing
more complicated bifurcations and displaying bistability involving limit cycles.
Nevertheless, kinetic ODEs arising from biological applications may exhibit more
complicated bifurcations and multistabilites [12—14]. Thus, it is of importance to test
the available methods on simpler test models that display some of the complexities
found in the applications.

In this paper, we construct two reaction systems that are two-dimensional (i.e.
they only include two chemical species) and induce cubic kinetic equations, first of
which undergoes a global bifurcation known as a convex supercritical homoclinic
bifurcation, and which displays bistability involving a critical point and a limit cycle
(which we call mixed bistability). The second system undergoes a local bifurcation
known as a multiple limit cycle bifurcation, and displays bistability involving two
limit cycles (which we call bicyclicity). Aside from finding an application as test
models for statistical inference and analysis in biology, to our knowledge, the
constructed systems are also the first examples of two-dimensional reaction systems
displaying the aforementioned types of bifurcations and bistabilities. Let us note
that reaction systems with dimensions higher than two, displaying the homoclinic
bifurcation, as well as bistabilities involving two limit cycles, have been reported in
applications [12—-14].

The reaction network corresponding to the first system is given by
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k1 k7

T g — s, r7 . g — 5,
ko kg
ry . S1—>2S], rg . S — I,
k3 ko
r3: 251 — 351, ry : S1 + S — 851 + 287,
ka k1o
rs - S|+ 52 — 82, ro - 250 —> 3589,
ks ki
s : 251 + 52 — 51 + 82, T 35y —> 259,
ke
re . S1 + 25, — 251 + 255, (D)

where the two species s; and s, react according to the eleven reactions
ri, 2, ...,y under mass-action kinetics, with the reaction rate coefficients denoted
ki, ko, ..., k11, and with & being the zero-species [2]. A particular choice of the
(dimensionless) reaction rate coefficients is given by

ki =0.01, k=09, k3=155 ki=26, ks=12, k¢=1.5,
k7 =0.01, kg =3.6, ko=1, kio=2.4, k=028, )
while more general conditions on these parameters are derived later as Egs. (10)

and (11).
The reaction network corresponding to the second system includes two species s

and s, which are subject to the following fourteen chemical reactions 7y, 15, . . ., 714:
k1 kg
r g — s, rg - T — 5,
ko kg
r . s — J, rg . Sy —> 252,
k3 k1o
r3: 2s1 — 351, ro: S1 + §p — 51,
ky k11
rs S1 + 82 — 251 + S92, T 250 —> 387,
ks k12
s 351 — 4sq, ri2 . 251 + 55 — 251 + 257,
. ke . ki3
e . 251 + 50 — 51 + 52, rs . S1 + 25, —> 51 + 52,
k7 ki
r7 . S| + 250 — 255, ri4 . 350 —> 257, 3)
where ki, ks, ..., k4 are the corresponding reaction rate coefficients. A particular

choice of the (dimensionless) reaction coefficients is given by!

'Let us note that the limit cycles corresponding to (3) are highly sensitive to changes in the
parameters (4). Thus, during numerical simulations, parameters (4) should not be rounded-off.
One can also design bicyclic systems which are less parameter sensitive, see Appendix 2.
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Fig. 1 Panels (a), (b), and (c) show representative sample paths generated using the Gillespie
stochastic simulation algorithm for the Schlogl system [15] with coefficients as in [6], reaction
network (1) with coefficients (2) and reactor volume V = 100, and reaction network (3) with
coefficients (4) and V = 0.5, respectively. At the deterministic level, the phase planes of (1)
and (3) are shown in Fig. 2. The deterministic and stochastic time-series, as well as the probability
distributions, are shown in Figs. 3 and 4. At the deterministic level, a critical point and a limit cycle
are ‘hidden’ in (b), while two limit cycles are ‘hidden’ in (c)

ki =2x 1077, ky = 19.987880407, k3 = 0.019944378,

ky = 0.02003132232, ks =2.9x 1075, ks =2.000232 x 107>,

k; =145%x 1078, ks =2x1077, ko = 8.38734, kjo = 0.038389,

kip = 0.0215726, kip =2x 107>, ki3 = 1.571x107°%, ks =107, (4)

while the general conditions on these parameters are given later as Egs.(13)
and (14).

In Fig.1, we display a representative noisy-time series generated using the
Gillespie stochastic algorithm, in Fig. la for the one-dimensional cubic Schlogl
system [15], which deterministically displays two stable critical points (bistation-
arity [3]), in Fig. 1b for the reaction network (1) with coefficients (2), which
deterministically displays a stable critical point and a stable limit cycle (mixed
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bistability), and in Fig. 1c for the reaction network (3) with coefficients (4), which
deterministically displays two stable limit cycles (bicyclicity). Several statistical
challenges arise. For example, is it possible to infer that the upper attractor in
Fig. 1b is a deterministic critical point, while the lower a noisy limit cycle? Is it
possible to detect one/both noisy limit cycles in Fig. 1c? The answer to the second
question is complicated by the fact that the two deterministic limit cycles in Fig. 1c
are relatively close to each other.

The rest of the paper is organized as follows. In Sect. 2, we outline properties of
the planar quadratic ODE systems, concentrating on cycles, cycle bifurcations and
multistability. There are two reasons for focusing on the planar quadratic systems:
firstly, the phase plane theory for such systems is well-developed [16, 17], with
a variety of concrete examples with interesting phase plane configurations [18—
20]. Secondly, an arbitrary planar quadratic ODE system can always be mapped
to a kinetic one using only an affine transformation—a special property not shared
with cubic (nor even linear) planar systems [21]. This, together with the available
nonlinear kinetic transformations which increase the polynomial degree of an
ODE system by one [2], implies that we may map a general planar quadratic
system to at most cubic planar kinetic system, which may still be biologically
or chemically relevant. In Sect.3, we present the two planar cubic test models
which induce reaction networks (1) and (3), and which are constructed starting
from suitable planar quadratic ODE systems. We also compare the deterministic and
stochastic solutions of the constructed reaction networks, and highlight the observed
qualitative differences. Finally, in Sect. 4, we provide a summary of the paper.

2 Properties of Two-Dimensional Second-Degree Polynomial
ODEs: Cycles, Cycle Bifurcations and Multistability

Let us consider the two-dimensional second-degree autonomous polynomial ODEs

dx

d_tl = Pi(x1,x2; K) = ky + koxy 4 kaxy + kaxd + ksx1x2 + kex3,

dxy 2 2

e Pr(x1,x2; K) = k7 + kgx1 + koxy + kioxy + knxixs + kipxy,  (5)
where P;(-,-; k) : R? — R, i € {l1,2}, are the second-degree two-variable
polynomial functions, and k = (k,kz,...,k12) € R'? is the vector of the

corresponding coefficients. We assume that P; and P, are relatively prime and at
least one is of second-degree. We allow coefficients k to be parameter-dependent,
k = k(p), withp e R?, ¢ > 0.

Let us consider two additional properties which system (5) may satisfy:

(I) Coefficients ki, k3, k¢, k7, ks, kio > 0, i.e. P; and P, are so-called kinetic
functions (for a rigorous definition see [2]).
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(IT) The species concentrations x; = x;(f) and x; = x,(¢) are uniformly bounded
in time for ¢+ > 0 in the nonnegative orthant R2, except possibly for initial
conditions located on a finite number of one-dimensional subsets of Ri, where
infinite-time blow-ups are allowed. -

The subset of Egs. (5) satisfying properties (I)—(II) are referred to as the determinis-
tic kinetic equations bounded in RZ , and denoted

dx

— = Kl k().

dx

d_t2 = o (x1. x2: K(p)). ©

In what follows, we discuss only the biologically/chemically relevant solutions
of (6), i.e. the solutions in the nonnnegative quadrant R2 . We now summarize some
of the definitions and results regarding cycles, cycle bifurcations and multistability
(referred to as the so-called exotic phenomena in the biological context [3]) for
systems (5) and (6). Let us note that most of the results have been shown to hold
only for the more general system (5), and may not necessarily hold for the more
restricted system (6).

Critical Points A (finite) critical point (x] (k), x5 (k)) of system (5) is a solution of
the polynomial system P (x,x3; k) = 0, P, (x], x5; k) = 0. Critical points are the
time-independent solutions of (5).

Cycles Cycles of (5) are closed orbits in the phase plane which are not critical
points. They can be isolated (limit cycles, and separatrix cycles) or nonisolated (a
one-parameter continuous family of cycles). Limit cycles are the periodic solutions
of (5). A homoclinic separatrix cycle consists of a homoclinic orbit and a critical
point of saddle type, with the orbit connecting the saddle to itself. On the other
hand, a heteroclinic separatrix cycle consists of two heteroclinic orbits, and two
critical points, with the orbits connecting the two critical points [22]. Limit cycles
of (6) correspond to biological clocks, which play an important role in fundamental
biological processes, such as the cell cycle, the glycolytic cycle and circadian
rhythms [23-25].

Cycle Bifurcations Variations of coefficients k in (5) may lead to changes in the
topology of the phase plane (e.g. a change may occur in the number of invariant
sets or their stability, shape of their region of attraction or their relative position).
Variation of k(p) in (6) may be interpreted as a variation of the reaction rate
coefficients k due to changes in the reactor (environment) parameters p, such as the
pressure or temperature. If the variation causes the system to become topologically
nonequivalent, such a parameter is called a bifurcation parameter, and at the
parameter value where the topological nonequivalence occurs, a bifurcation is said
to take place [22, 26]. Bifurcations in the deterministic kinetic equations have been
reported in applications [12, 23-25, 27, 28].
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Bifurcations of limit cycles of (5) can be classified into three categories: (i) the
Andronov-Hopf bifurcation, where a limit cycle is created from a critical point
of focus or center type, (ii) the separatrix cycle bifurcation, where a limit cycle
is created from a separatrix cycle, and (iii) the multiple limit cycle bifurcation,
where a limit cycle is created from a limit cycle of multiplicity greater than
one [16, 22]. Let us note that the maximum multiplicity of a multiple focus of (5)
is three, so that at most three local limit cycles can be created under appropriate
perturbations [29]. Bifurcations (i) and (iii) are examples of local bifurcations,
occurring in a neighborhood of a critical point or a limit cycle, while bifurcations
(ii) are examples of global bifurcations, occuring near a separatrix cycle. The
following global bifurcations may occur in (5): convex homoclinic bifurcations
(defined in, e.g., [30]), saddle—saddle (heteroclinic) bifurcations, and the saddle-
node (heteroclinic) bifurcations on an invariant cycle. However, concave homoclinic
bifurcations, double convex, and double concave homoclinic bifurcations, presented
in, e.g., [30], cannot occur in (5) as a consequence of basic properties of planar
quadratic ODEs [31, 32].

A necessary condition for the existence of a limit cycle in (6) is that k&4 > 0 or
k12 > 0 [2, 3]. This implies that the induced reaction network must contain at least
one autocatalytic reaction of the form 2s; — ns; + ms;, withn > 3, m > 0, and
i,j € {1,2}. In the literature, system (6) has been shown to display the following
limit cycle bifurcations: Andronov-Hopf bifurcations, saddle-node on an invariant
cycle, and multiple limit cycle bifurcations [21, 33, 34]. Let us note that some of the
reaction systems constructed in [21, 33, 34] (e.g. displaying double Andronov-Hopf
bifurcation, and a saddle—saddle bifurcation) are described by ODEs of the form (6),
but with solutions which are generally not bounded in R2 .

Multistability System (5) is said to display multistability if the total number of the
underlying stable critical points and stable limit cycles is greater than one, for a
fixed k. Multistability in (6) corresponds to biological switches, which may be
classified into reversible or irreversible [27, 35, 36]. The former switches play an
important role in reversible biological processes (e.g. metabolic pathways dynamics,
and reversible differentiation), while the latter in irreversible biological processes
(e.g. developmental transitions, and apoptosis).

Multistability can be mathematically classified into pure multistability, involving
attractors of only the same type (either only stable critical points, or only stable
limit cycles), and mixed multistability, involving at least one stable critical point,
and at least one stable limit cycle. Pure multistability involving only critical points
is called multistationarity [3], while we call pure multistability involving only limit
cycles multicyclicity. Mixed bistability, and bicyclicity, can be further classified
into concentric and nonconcentric. Concentric mixed bistability (resp. bicyclicity)
occurs when the stable limit cycle encloses the stable critical point (resp. when the
first stable limit cycle encloses the second stable limit cycle), while nonconcentric
when this is not the case. Let us note that, for a fixed kinetic ODE system (6),
multistationarity at some parameter values K, is neither necessary, nor sufficient, for
cycles at some (possibly other) parameter values k' [37].
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We now prove that (5) can have at most three coexisting stable critical points,
i.e. (5) can be at most tristationary.

Lemma 2.1 The maximum number of coexisting stable critical points in two-
dimensional relatively prime second-degree polynomial ODE systems (5), with fixed
coefficients Kk, is three.

Proof Let us assume system (5) has four, the maximum number, of real finite critical
points. Then, using an appropriate centroaffine (linear) transformation [31, 32],
system (5) can be mapped to

dx

d—; =ax(x; — 1) + bixa(xa — 1) + c1x1x2,

dx

d_tz = axxi(x1 — 1) + baxa(x2 — 1) + cox1x2, (N

which is topologically equivalent to (5), with the critical points located at A = (0, 0),
B =(1,0),C=(0,1)and D = (&, ), witha # 0, 8 # 0, « + 8 # 1, and the
coefficients cy, ¢, given by

The trace and determinant of the Jacobian matrix of (7), denoted T and 4,
respectively, evaluated at the four critical points, A, B, C, D, are given by:

T = —(a1 + by), 84 = a1by — arby,
B :(,ll—az(O[_l)—bz(Ol—'—IB_l)7 SB:_L’B_lgA’
B o o
Tc =b2—a1(a+'3_1)—b1('3_1), 5c=—w&,
B o B
—1 —1
o = aay + by — a2 _p PEZD G B ®)

B o

System (7) may have three stable critical points if and only if the quadrilateral
ABCD, formed by the critical points, is nonconvex, and the only saddle critical
point is the one located at the interior vertex of the quadrilateral [31, 32]. This is
the case when o > 0, 8 > 0, + 8 < 1, and §4 > 0, in which case A, B, and
C are nonsaddle critical points, while D is a saddle. Imposing also the conditions
7y < 0,15 <0, ¢ < 0, ensuring that A, B, and C are stable, a solution of the
resulting system of algebraic inequalities is given by a; = 1, by = —1,a, = 1,

O<a<l1/2 ((1 +28) - /T 8/32),—1 <by <a(—a+B+1)/(Bla+p—1)).

a
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Let us note that if (7) is kinetic, then it cannot have three stable critical points.
More precisely, requiring by > 0, a; > 0,and dy > 0 and 74 < 0 in (8) implies
a; > 0 and b, > 0, which further implies tz > 0, so that B is unstable. More
generally, the authors have not found a tristationary system (6) in the literature (and
we conjecture it does not exist). On the other hand, bistationary systems (6) do exist
(in fact, even one-dimensional cubic bounded kinetic systems may be bistationary,
e.g. the Schlogl model [15], see the time-series shown in Fig. 1a).

The maximum number of stable limit cycles in (5) is two, i.e. (5) can be at most
bicyclic. Furthermore, system (5) may also display mixed tristability, involving one
stable critical point, and two stable limit cycles. This follows from the fact that the
maximum number of limit cycles in (5) is four, in the unique configuration (3, 1), a
fact only recently proved in [17], solving the second part of Hilbert’s 16th problem
for the quadratic case. If the solutions of (5) are required to be bounded in the
whole R2, system (5) was conjectured to have at most two limit cycles [22, 38],
and hence have at most one stable limit cycle. It remains an open problem if the
maximum number of limit cycles in the nonnegative orthant of (6) is four or less (we
conjecture it is less than four), and if (6) may be bicyclic. Due to the fact that (6)
is (I) kinetic (and, hence, nonnegative), and (II) appropriately bounded in R2,
additional restrictions are imposed on the boundary of R2 , and on the critical points
at infinity, complicating the construction of systems (6) displaying multistability
involving limit cycles. Some results regarding multistability have been obtained
in [21]: system (6) displaying concentric mixed bistability has been constructed. The
system contains two limit cycles in the nonnegative orthant, and therefore does not
exceed the conjectured bound on the number of limit cycles in the bounded quadratic
systems [22, 38]. While a kinetic system of the form (6) displaying concentric
bicyclicity has been obtained in [21], the system is not bounded in R2 .

3 Test Models: Construction and Simulations

In this section, our aim is to construct two-dimensional kinetic ODEs bounded
in R2, which display a nonconcentric bistability. As highlighted in the previous
section, it may be a difficult task to obtain such systems with at most quadratic
terms, i.e. in the form (6). To make a progress, in this section, we allow the two-
dimensional kinetic ODEs to contain cubic terms, and we construct two systems.
The first system displays a convex homoclinic bifurcation, and mixed bistability,
and is obtained by modifying a system from [2] using the results from Appendix 1.
The second system displays a multiple limit cycle bifurcation, and bicyclicity. To
construct the second system, we use an existing system of the form (5), which
forms a one-parameter family of uniformly rotated vector fields [22, 39], and
which displays bicyclicity and multiple limit cycle bifurcation [40]. We use kinetic
transformations from [2] to map this system, which is of the form (5), to a kinetic
one, which is of the form (6). We then use the results from Appendix 1 to map
the system of the form (6) to a suitable cubic two-dimensional kinetic system. We
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also fine-tune the polynomial coefficients in the kinetic ODEs in such a way that
sizes of the two stable limit cycles differ by maximally one order of magnitude
(a task that can pose challenges [18]). As differences may be observed between
the deterministic and stochastic solutions for parameters at which a deterministic
bifurcation occurs [6], we investigate the constructed models for such observations.
Let us note that an alternative static (i.e. not dynamic) approach for reaction system
construction, using only the chemical reaction network theory or kinetic logic,
provides only conditions for stability of critical points, but no information about the
phase plane structures [41], and is, thus, insufficient for construction of the systems
presented in this paper.

3.1 System 1: Homoclinic Bifurcation and Mixed Bistability

Consider the following deterministic kinetic equations

dx _ +

dt] =k +x (kz + k3xi — kaxo — ksxix kéx%) ’

dx —

d: ki + 1 ( ks + kox; + kiox2 k“x%), 9)

with the coefficients k = k(a, T, @, €) given by

kil =¢, k; =&,
1 2
=1 ‘(3 (75—3) (T, +73)—2om) k= =T a1,
3 2
k3=—§a(7§—§)+a, ko =1,
3 1
ky = 1_5(37—14‘27—2)7 kio = Za(T—E)',
3
ks = 24| ki = |al,
3
ke = 3 (10)
where | - | denotes the absolute value, and with parameters a, «, &, 71, and T
satisfying
ae(—1,0), |o|lkKl1l, 1Ke=<0,
243 2 8
T > —5 T, € (max(l, —aTh), 3 + §a72(3 — az)(a + 4ﬂ)) . (11)

The canonical reaction network [2] induced by system (9) is given by (1).
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System (9) is obtained from system [2, Eq. (32)], which is known to display a
mixed bistability and a convex supercritical homoclinic bifurcation when o = 0,
& = 0. We have modified [2, Eq. (32)] by adding to its right-hand side the e-term
from Definition 1 [i.e. coefficients k; and k7 in (9)], thus preventing the long-term
dynamics to be trapped on the phase plane axes. It can be shown, using Theorem 1,
that choosing a sufficiently small ¢ > 0 in (10) does not introduce additional positive
critical points in the phase space of (9).

In Fig.2a, b, we show phase plane diagrams of (9) before and after the
bifurcation, respectively, where the critical points of the system are shown as the
colored dots (the stable node, saddle, and unstable focus are shown as the green, blue
and red dots, respectively), the blue curves are numerically approximated saddle
manifolds (which at @ = 0, ¢ = 0 form a homoclinic loop [2]), and the purple
curve in Fig. 2b is the stable limit cycle that is created from the homoclinic separatrix
cycle. Let us note that parameter ¢, appearing in (10), controls the bifurcation, while
parameter a controls the saddle-node separation [2].

In Fig. 3a-b and d—e, we show numerical solutions of the initial value problem
for (9) in red, with one initial condition in the region of attraction of the node, while
the other near the unstable focus. The blue sample paths are generated by using
the Gillespie stochastic simulation algorithm on the induced reaction network (1),
initiated near the unstable focus. More precisely, in Fig. 3a, d we show the dynamics
before the deterministic bifurcation, when the node is the globally stable critical
point for the deterministic model, while in Fig. 3b, e we show the dynamics after
the bifurcation, when the deterministic model displays mixed bistability. On the
other hand, the stochastic model displays relatively frequent stochastic switching
in Fig. 3a, b, when the saddle-node separation is relatively small. Let us emphasize
that the stochastic switching is observed even before the deterministic bifurcation.
In Fig.3d, e, when the saddle-node separation is relatively large, the stochastic
switching is significantly less common, and the stochastic system in the state-space
is more likely located near the stable node. Thus, in Fig. 3d, e, the stochastic system
is less affected by the bifurcation than the deterministic system, and, in fact, behaves
more like the deterministic system before the bifurcation. This is also confirmed in
Fig. 3c, f, where we display the x,-marginal stationary probability mass functions
(PMFs) for the smaller and larger saddle-node separations, respectively, which were
obtained by numerically solving the chemical master equation (CME) [42, 43]
corresponding to network (1). Let us note that, by sufficiently increasing the saddle-
node separation, the left peak in the PMF from Fig.3f, corresponding to the
deterministic limit cycle, becomes nearly zero and difficult to detect.

In [44], we present an algorithm which structurally modifies a given reaction
network under mass-action kinetics, in such a way that the deterministic dynamics
is preserved, while the stochastic dynamics is modified in a controllable state-
dependent manner. We apply the algorithm on reaction network (1), for parameter
values similar as in Fig.3d—f, to make the underlying PMF bimodal, so that the
underlying sample paths display stochastic switching between the two deterministic
attractors. Furthermore, we also make the PMF unimodal, and concentrated around
the deterministic limit cycle, so that the underlying sample paths remain near
the deterministic limit cycle. Meanwhile, we preserve the deterministic dynamics
induced by (9).
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Fig. 2 (a)—(b) Phase plane diagrams of system (9) before and after the homoclinic bifurcation. The
stable node, saddle, and unstable focus are represented as the green, blue and red dots, respectively,
the vector field as gray arrows, numerically approximated saddle manifolds as blue trajectories,
and the purple curve in panel (b) is the stable limit cycle. The parameters appearing in (10), and
satisfying (11), are fixed to a = —0.8, 7} = T, = 2, ¢ = 0.01, the reactor volume is set to
V = 100, and the bifurcation parameter « is as shown in the panels. (¢)—(d) Phase plane diagrams
of system (12) before and after the multiple limit cycle bifurcation. The stable limit cycles L; and
L3 are shown in purple and red, respectively, while the unstable limit cycle L, is shown in black.
The parameters appearing in (13), and satisfying (14), are fixedtoa = 1, b = —1, ¢ = 0.5,
d = 0.08, x]" = —3,71 = T, = 1000, ¢ = 0.01, the reactor volume is set to V = 0.5, and the
bifurcation parameter 6 is as shown in the panels
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Fig. 3 Numerical solutions of system (9) are shown in red. Representative sample paths, generated
by the Gillespie stochastic simulation algorithm applied on the corresponding reaction network (1),
are shown in blue. Probability mass functions (PMFs), obtained by numerically solving the
underlying chemical master equation (CME) on the bounded domain (x;, x;) € [0, 1000]x [0, 600],
are also shown in blue. (a)—(b) The cases before and after the homoclinic bifurcation, respectively,
for smaller values of a, when the limit cycle and the stable node are closer together. (d)—(e) The
cases before and after the homoclinic bifurcation, respectively, for larger values of a. (¢) and
(f) Stationary x,-marginal PMFs. Parameter values in (c¢) and (f) are the same as in (b) and (e),
respectively. One of the deterministic solutions is initiated in the region of attraction of the node,
while the other near the focus. The parameters are fixed to 77 = 7, = 2, ¢ = 0.01, the reactor
volume is set to V = 100, with a and « as shown in the panels
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3.2 System 2: Multiple Limit Cycle Bifurcation and Bicyclicity

Consider the following deterministic kinetic equations

dx

d_tl = ki +x1 (ko + ksxy + kaxo + ksxi — kex1x2 — kg3)

dJC2 D) b

Frie ks + x (ko — kiox1 + ki1xa + kioxi — kiaxix, — kiax3) (12)

with coefficients k = k(a, b, ¢, d,x, T, 0, ¢) given by

ki = kg = ¢,
ky = | —aTiT,cos(0) + [(d(Tl + D)+ )T+ b+ D)(Th + xf)] sin(6)
ks = |a’7§ cos(9) — [dTz + bQ2T; + xf + 1)] sin(@)‘,

ky = |a7'1 cos(0) — [d(Ti + 1) + 2¢T;] sin(0)

’

)

ks = |bsin(0)],
ke = | —acos(8) + dsin(0)|,
k7 = |csin(8)], (13)

and if k; = |f(a,b,c.d.xf, T)cos(6) — gla,b,c,d,x}, T)sin(6)|, then kiy7 =
V(a, b,c,d,xi, T)sin(f) + g(a,b,c,d,x]*,ﬂcos(@)L i = 2,3,...,7, and with
parameters a, b, c, d, x{, Ti, T», 0 and ¢ satisfying

0<exl, —-1x6<0,

2 2 d2
b<0, d>0, a>—E, O<c<a+ﬁ, xf<m,
de+ b1 -x)#0,
4abx*
_*’ O _—1 *!
Ti > —xi <Th< dz(xr—l)(ﬂ—i_xl)
[d(Ti + 1) + ¢ T2 + b(Ti + D(T; +x7) < 0. (14)

The canonical reaction network induced by system (12) is given by (3). In this
section, we show that systems (12) and (15) (see below), the latter of which is
known to display bicyclicity and a multiple limit cycle bifurcation, are topologically
equivalent near the corresponding critical points, provided conditions (14) are
satisfied.

In Fig. 2c, d, we show the phase plane diagram of (12) for a particular choice
of the parameters satisfying (14), and it can be seen that the system also displays
bicyclicity and a multiple limit cycle bifurcation, with Fig. 2¢, d showing the cases
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before and after the bifurcation, respectively. In Fig.2c, the only stable invariant
set is the limit cycle shown in red, while in Fig. 2d there are two additional limit
cycles—a stable one, shown in purple, and an unstable one, shown in black. The
purple, black and red limit cycles are denoted in the rest of the paper by L, L, and
Ls, respectively. At the bifurcation point, L; and L, intersect.

In order to construct (12), let us consider the planar quadratic ODE system [21,
40] given by

dx .
d_tl = Qi (x1,x2) cos(0) — Qa(xy, x2) sin(h),
dx; .
i Q1 (x1,x2) sin(0) + Qa(x1, x2) cos(0), (15)
where
Q1(x1,x2) = —axixa,
Qo(x1,x2) = —bx{ + b(x} + Dxi + dxa — bxi — dxixa — x5, (16)
with

xF <0, d® —4bext <0, d* —4b(c—a) <0,
0d(a—b(1—x})) <0, 0bd >0, a’c+b*(1—xf)* #0. 17)

Lemma 3.1 Consider system (15)-(17), with the real parameter 60 € (—mn, .
Function P (x1,x;; 0) = (Q1cos(0) — Q,sin(0), Q sin(0) + Q, cos(8)) forms a
one-parameter family of uniformly rotated vector fields with the rotation parameter
0, and the following results hold:

1. Finite critical points. System (15) has two critical points in the finite part of the
phase plane, located at (1,0) and (x},0), both of which are unstable foci when
0] <« 1.

2. Number and distribution of limit cycles. System (15) has three limit cycles in
the configuration (2, 1) when |0| < 1. The focus located at (1, 0) is surrounded
by two positively oriented limit cycles Ly and L, with the unstable limit cycle L,
enclosing the stable limit cycle Ly, while the focus at (x, 0) by a single negatively
oriented stable limit cycle Ls.

3. Dependence of the limit cycles on the rotation parameter 6. There exists a critical
value 6 = 0* < 0, at which the limit cycles Ly and L, intersect in a semistable,
positively oriented limit cycle that is stable from the inside, and unstable from
the outside. As 0 is monotonically increased in (6*,0), the limit cycles L, and L3
monotonically expand, while Ly monotonically contracts.

Proof The statement of the lemma follows from [21, 40], and the theory of one-
parameter family of uniformly rotated vector fields [22, 39]. O
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In order to map the stable limit cycles of system (15) into the first quadrant, and
then map the resulting system to a kinetic one, having no boundary critical points,
let us apply a translation transformation W [2], T = (71, T2) € R?, followed by
a perturbed x-factorable transformation, as defined in Definition 1, on system (15),
which results in system (12) with the coefficients (13).

Theorem 3.1 Consider the ODE systems (12) and (15), and assume conditions (14)
are satisfied. Then (12) and (15) are locally topologically equivalent in the
neighborhood of the corresponding critical points. Furthermore, for sufficiently
small ¢ > 0, system (12) has exactly one additional critical point in R2, which
is a saddle located in the neighbourhood of (71, 0).

Proof Consider the critical point (1,0) of system (15), which corresponds to the
critical point (77 4+ 1, 73) of system (12) when & = 0. The Jacobian matrices of (15),
and (12) with e = 0, evaluated at (1, 0), and (7; + 1, 73), are respectively given by

J = (—b(xf — 1sin(d) —acos(9)
B b(xf —1)cos(f) —asin(®) )’

S = (—b(x’l" — )(T7 + Dsin(0) —a(T; + 1) cos(@))
T b(xt — 1)T; cos() —aTsin(0) )’

Condition (ii) of [2, Theorem 3.3] is satisfied, so that the stability of the critical point
is preserved under the x-factorable transformation, but condition (iii) is not satisfied.
In order for (77 + 1, 73) to remain focus under the x-factorable transformation, the
discriminant of Jy 7 must be negative:

(aTz + b(Ti + 1)(xF — 1))(sin(9))* — dab(xf — 1)(T; + 1)T; < 0. (18)
Let us set & = 0 in (18), leading to
—4ab(x} — 1)(T1 + DT> < 0. (19)

Conditions (18) and (19) are equivalent when |8| < 1, since the sign of the function
on the LHS of (18) is a continuous function of 8. From conditions (14) it follows that
ab < 0,x7 < 0,and 71,7, > 0, so that (19) is satisfied. Similar arguments show
that the second critical point of (15), located at (x’f, 0), is mapped to an unstable
focus of (12), if d > 0, and if 75 is bounded as given in (14).

Consider (12) with ¢ = 0. The boundary critical points are located at (0, 0),
(71,0), and (O,x;i), with

G = 52 (40404 26T [T+ D@ ) = abe(T 7).

Conditions (14) imply that the critical point (0, 0) satisfies P;(0,0) = —a7T;T; <0,
and

P2(0,0) = —[d(1 + T1) + D] T2 = b(1 + T)(Th + x7) > 0,
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when 6 = 0. When |0| < 1, it then follows from condition (iv) of [2, Theorem 3.3]
that the critical point is a saddle, and from Theorem 1, condition (23), that it
is mapped outside of R2 when & # 0. Similar arguments show that, assuming
conditions (14) are true, (77, 0) is a saddle that is mapped to R2 when ¢ # 0, and
that critical points (0,x ;) are real, x; _ < 0, and that (0,3 , ) is a saddle that is
mapped outside R2 when & # 0.

Finally, if conditions (14) are satisfied, so are conditions (17). O

We now consider the kinetic ODEs (12) and the induced reaction network (4) for
a particular set of coefficients (13). We also rescale the time according to t — 2 x
10~ ¢, i.e. we multiply all the coefficients ki, . .. k14 appearing in (12) by 2 x 107>,
On this time-scale, we capture dynamical effects relevant for this paper. In Fig. 4a,
b we show numerically approximated solutions of the initial value problem for (12)
before and after the bifurcation, respectively. In Fig. 4a, we show a solution initiated
near the unstable focus, outside the limit cycle Ls. It can be seen that the solution
spends some time in a neighborhood of the unstable focus, which is followed by
an excursion leading the solution to the stable limit cycle L3, where it then stays
forever. In Fig. 4b, the solutions tend to the limit cycle L; or L3, depending on the
initial condition. Let us note that the critical value at which the limit cycles L; and
L, intersect, at the deterministic level, is numerically found to be 6* ~~ —0.00146.

In Fig.4c, d we show representative sample paths generated by applying the
Gillespie stochastic simulation algorithm on the reaction network (3), before and
after the bifurcation, respectively. One can notice that the stochastic dynamics does
not appear to be significantly influenced by the bifurcation, as opposed to the
deterministic dynamics. In Fig. 4c, d, one can notice pulses similar as in Fig. 4a,
that are now induced by the intrinsic noise present in the system.

The stationary PMF corresponding to network (3), for parameter values as in
Fig.4c, d, accumulates at the boundary of the state-space (see also the Keizer
paradox [45]). While the results from Appendix 1 may be used to prevent a PMF
from accumulating at the boundary, one may need a sufficiently large reactor
volume. For example, for network (1), the propensity function [43] of reactions
r; and r;, for parameter values taken in this paper (i.e. ¢ = 0.01 in (10), and
V = 100), takes the value ¢V = 1. This is sufficient for the underlying PMF to
approximately vanish at the boundary of the state-space, as demonstrated in Fig. 3¢
and f. On the other hand, for network (3), we take ¢ = 0.01 in (13), and V = 0.5,
so that the propensity function of r; and rg takes the value of only 0.005. As a
consequence, the underlying PMF accumulates at the boundary of the state-space.
Instead of increasing the reactor volume to prevent this, we instead focus on the
so-called quasi-stationary PMF under the condition that the species copy-numbers
are positive, p- (x,y) = p(x,y|x > 0,y > 0). The quasi-stationary PMF describes
well the stochastic dynamics of network (3) on the time-scale of interest, presented
in Fig.4c, d. In Fig. 4e, we display an approximate x;-marginal quasi-stationary
PMF p., (x1), for the same parameter values as in Fig. 4d. The quasi-stationary PMF
p>(x1) was obtained by numerically solving the stationary CME corresponding to
network (3), on a truncated domain which excludes the boundary of the state-space.
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Fig. 4 (a)—(b) Numerical solutions of the kinetic ODE system given by (12) before and after the
bifurcation, where in (b) the trajectory initiated near the stable limit cycle L, is shown in purple,
while the one initiated near L3 in red. (c)—(d) Sample paths generated by the Gillespie stochastic
simulation algorithm applied to the induced reaction network (3) before and after the bifurcation.
(e) Approximate quasi-stationary x;-marginal PMF, obtained by numerically solving the stationary
CME, corresponding to network (3), on the bounded domain (x;,x;) € [1,1200] x [1, 1200], for
the same parameters values as in (d). The parameters appearing in (13) are fixedtoa = 1,b = —1,
c = 0.5,d = 0.08, x;“ = —3,7; = T, = 1000, ¢ = 0.01, with the reactor volume V = 0.5,
and  as indicated in the plots. Coefficients (13) are multiplied by a constant factor of 2 x 107>
(time-rescaling)
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4 Summary

In the first part of the paper, in Sect.2, we have presented theoretical results
regarding oscillations, oscillation-related bifurcations and multistability in the
planar quadratic kinetic ODEs (6), which are (appropriately) bounded in the
nonnegative quadrant. Such ODEs are used in applications to describe the deter-
ministic dynamics of concentrations of two biological/chemical species, with at
most quadratic interactions. While the kinetic ODEs (6) inherit many properties
from the more general planar quadratic ODEs (5), some properties, which are of
biological/chemical relevance, are not necessarily inherited. For example, we have
formulated the following open problem: while general planar quadratic ODEs (5)
may display bicyclicity (a coexistence of two stable oscillatory attractors), is the
same true for the kinetic planar quadratic ODEs (6)?

In Sect. 3, building upon the results from Sect. 2, and using the results from [2]
and Appendix 1, we have constructed two reaction networks, with the deterministic
dynamics described by planar cubic kinetic ODEs. The first network is given by (1),
and, at the deterministic level, displays a homoclinic bifurcation, and a coexistence
of a stable critical point and a stable limit cycle (mixed bistability). The second
network is given by (3), and, at the deterministic level, displays a multiple limit
cycle bifurcation, and a coexistence of two stable limit cycles (bicyclicity). The
phase planes of the kinetic ODEs induced by the first network before and after the
bifurcation are shown in Fig.2a, b, respectively, while for the second network in
Fig. 2c, d.

In Fig.3, we have compared the deterministic and stochastic solutions corre-
sponding to the first reaction network (1), with the rate coefficients such that the
deterministic solutions are close to the homoclinic bifurcation. Analogously, in
Fig. 4, we have done the same for reaction network (3), when the deterministic
solutions are close to the multiple limit cycle bifurcation. In both Figs.3 and 4, we
observe qualitative differences between the deterministic and stochastic dynamics.
In particular, the stochastic dynamics in Fig.3 may display stochastic switching
near the deterministic bifurcation. Furthermore, the dynamics of both networks are
not affected qualitatively by the deterministic bifurcation sharply at the bifurcation
point.

In Sect. 1, we have outlined the statistical inference problem, consisting of
detecting and classifying cycles (oscillations) in noisy time-series, and we have
put forward networks (1) and (3) as suitable test problems. Network (1) poses
two inference challenges: firstly, let us consider the scenario shown in Fig. 3d—f. In
this case, the relative separation between the two deterministic attractors is larger.
Consequently, at the stochastic level, the corresponding marginal probability mass
function (PMF), shown in Fig. 3f, is bimodal. However, the left peak, corresponding
to the deterministic limit cycle, is much smaller than the right peak, corresponding
to the deterministic critical point (a node). Using the shape of the marginal PMF,
as put forward in [1], one cannot conclude the presence of a noisy limit cycle.
Let us note that, by sufficiently increasing the distance between the two attractors,
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the left PMF peak from Fig.3f approximately vanishes, making the inference
problem even harder. On the other hand, using the covariance function (and spectral
analysis), as put forward in [1], may also be limited, as the noisy time-series spends
a smaller amount of time near the deterministic limit cycle, as demonstrated in
Fig. 3e. Secondly, let us consider the scenario shown in Fig. 3a—c, when the relative
separation between the two deterministic attractors is smaller. In this case, it may be
a challenge to infer that there are two distinct attractors ‘hidden’ in the time-series
shown in Fig. 3b, and the PMF shown in Fig. 3c. The fact that the PMF in Fig. 3c is a
non-Gaussian may be used as an indication of a certain dynamical complexity. The
problem becomes more difficult for network (3), with two stable deterministic limit
cycles ‘hidden’ in the noisy time-series shown in Fig. 4d, and in the PMF shown in
Fig.4e. Let us note that the PMF is approximately Gaussian, and this persists for a
wide range of larger reactor volumes.
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Appendix 1: Perturbed x-Factorable Transformation

Definition 1 Consider applying an x-factorable transformation, as defined in [2],
on (5), and then adding to the resulting right-hand side a zero-degree term ev, with
& > 0 and vector v = (1, 1)T, resulting in

% =ev+ XX)P(x: k) = ev+ (VaP)(x: k) = (P, P)(x: k). (20)

Then Wy, : Pr(R?% R?) — P3(R?* R?), mapping P(x; k) to (¥, P)(x; k), is
called a perturbed x-factorable transformation if ¢ # 0.1f ¢ = 0, the transformation
reduces to an (unperturbed) x-factorable transformation, Wy = Wy, , defined in [2].

Lemma 1 (Vx, P)(x; k) from Definition 1 is a kinetic function, i.e. (¥ x, P)(x; k)
€ PY(RZ; R?).

Proof (WxP)(x; k) is a kinetic function [2]. Since, from (20), (W, P)(x; k) =
ev + (WxP)(x; k), with e > 0and v = (1,1)T, it follows that (¥, P)(x; k) is
kinetic as well. O

We now provide a theorem relating location, stability and type of the positive
critical points of (5) and (20).
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Theorem 1 Consider the ODE system (5) with positive critical points x* € R2.
Let us assume that x* € R2 is hyperbolic, and is not the degenerate case between a
node and a focus, i.e. it satisfies the condition

(tr (VP(x*; K)))” — 4det (VP (x*; k) # O, @1)

as well as conditions (ii) and (iii) of Theorem 3.3 in [2]. Then positivity, stability
and type of the critical point x* € R2? are invariant under the perturbed x-
factorable transformations W x,, for sufficiently small ¢ > 0. Assume (5) does not
have boundary critical points. Consider the two-dimensional ODE system (20) with
e = 0, and with boundary critical points denoted X° € R2, X = ()?2,1,)?,12),
1_62.13_62’2 = 0. Assume that for i € {1,2}

d i _0; k
M #£0, if ’_Cgi £ 0, (22)
8x,~ !
and that for some i € {1,2}
Pi(xy; k) >0, if X, = 0. (23)

Then, the critical point )’(2 € Rzz of the two-dimensional ODE system (20) withe = 0
becomes the critical point X;, ¢ RZZ of system (20) for sufficiently small ¢ > 0.

Proof The critical points of (20) are solutions of the following regularly perturbed
algebraic equation

ev+ XX)P(x; k) =0. 24)
Let us assume X can be written as the power series

x=x"+ex' + O(?), (25)
where X € RZ are the critical points of (20) with ¢ = 0. Substituting the power
series (25) into (24), and using the Taylor series theorem on P (X; k), so that P (x° +
ex! + O(e?); k) = P(X°; k) + eVPRE%; K)X' + O(£?), as well as that X(X) =
X(X°) 4+ eX(X') + O(e?), and equating terms of equal powers in &, the following
system of polynomial equations is obtained:

O(1): X@)PE: k) =0,
0@) : XX)VPE"% k)x' + X&HPE’: k) = —v. (26)
Order 1 equation. The positive critical points X° € R? satisfy P (x% k) = 0.
Since P(x; k) has no boundary critical points by assumption, critical points )_(2 S
RZZ with xgqi =0, )'cgJ # 0, )?2‘15(2’2 = 0,i,j € {1,2}, satisfy P;(x); k) # O,
Pi(x): k) = 0.
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Order & equation. Vector X!, corresponding to a positive X°, satisfies
XEOVPE’; k)x! = —v,

which can be solved provided X° is a hyperbolic critical point. Vector X}, corre-
sponding to a nonnegative XY, is given by

_1 —(P:(x%; k)71, if)'cg.i =0,
i = ) (0P k)| ! AP ,k 0 e o
(2RER) (R k)~ R — @)1, i), £ 0,
from which conditions (22) and (23) follow. O

Appendix 2: Bicyclic System with Large Attractors

Consider the following deterministic kinetic equations

dx

d_tl = ki + x1(=ky + kaxi + kaxo — ksx1x),

dxy 2 2

i ke + x2 (k7 — kgx1 + koxp + kioxi — ki1x3), 27

with the coefficients k given by

k=103, k=10, ksy=1, ks=1, ks =0.1, k= 1073,

k; =37, ks=19, ko=1.01, ki=0.1, £k =0.05. (28)
The canonical reaction network induced by system (27), involving two species s}
and s, and eleven reactions ry, 15, . . ., 1] under mass-action kinetics, is given by
k1 ke
r - g — 51, re . g — 857,
ka k7
r S| — O, ry . Sy —> 287,
k3 ks
r3: 251 — 3s1, g : 1+ 50 — 51,
ks ko
T4 : S1 + $2 — 281 + 57, Ty : 250 — 359,
. ks . k1o
rs . 251 + 50 — 51 + 52, ro - 251 + 50 — 251 + 255,

- 35, L 26, (29)
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Fig. 5 Panel (a) displays numerically approximated stable limit cycles L; and L3 in the state-
space of system (27), with parameters (28) and reactor volume V = 100. Panel (b) displays in
blue a representative sample path, generated by applying the Gillespie algorithm on the underlying
reaction network (29) for the same parameters as in panel (a). Also shown are two deterministic
trajectories, one initiated near the limit cycle L;, while the other near L3. One can observe that the
stochastic sample path switches between the two deterministic attractors

In Fig. 5a, we show the two stable limit cycles obtained by numerically solving (27)
with parameters (28). In Fig. 5b, in addition to the limit cycles, we also show in blue
a representative sample path obtained by applying the Gillespie algorithm on (29).
Let us note that (27) was constructed in a similar fashion as system (12) in Sect. 3.2,
using the results from [40, 46].
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Importance Sampling for Metastable
and Multiscale Dynamical Systems

K. Spiliopoulos

1 Introduction

In this paper, we discuss recent developments on importance sampling methods
for metastable dynamics that may also have multiple scales. Development of
accelerated Monte Carlo methods for metastable, multiple-scale processes is of
great interest. Importance sampling is a variance reduction technique in Monte Carlo
simulation, which is especially relevant when dealing with rare events. Since its
introduction, importance sampling has been one of the most popular techniques
for rare event simulation. There is a vast literature of papers investigating its
applications from a broad set of sciences including engineering, chemistry, physics,
biology, finance, insurance, e.g., [1, 10, 28, 31, 32, 36, 40, 46, 53, 54].

Consider a sequence {X¢}..o of random elements and assume that we want to
estimate the probability 0 < p¢ = P[X¢ ¢ D U dD] < 1 for a given set D, such
that the event {X¢ ¢ D U 9D} is unlikely for small €. If closed form formulas are not
available, or numerical approximations are either too crude or unavailable, then one
has to resort in simulation. It is well known that standard Monte Carlo simulation

. . . . . A 1 N
techniques (i.e., using the unbiased estimator p = § ) i Ixcigpusp) perform
rather poorly in the rare-event regime. As it is known, see, for example, [1], in order
to achieve relative error smaller than one using standard Monte Carlo, one needs
an effective sample size N &~ 1/p®. In other words, for a fixed computational cost,
relative errors grow rapidly as the event becomes more rare. Thus standard Monte
Carlo is infeasible for rare-event simulation.
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The goal of importance sampling is to simulate the system under an alternative
probability distribution P instead of the original probability P. Let’s say, for
example, that we are interested in the estimation of

E, [e7H0D ] orP, [thup < 7] (1)

where h : R > Ris a positive function, 7 > 0,€ > 0, y € D is the initial point,
T5usp 18 exit time from the set D U 9D, X¢ is a stochastic process modeling the
dynamics. Also, notice that the probability above can be considered (modulo the
important technical point of lack of continuity) as a special case of E, [eféh(X;)],
when £ is, for example, chosen such that 4(x) = 0 for x ¢ D U 9D and h(x) =
forx € DU dD.

When rare events dominate, then standard Monte Carlo methods perform poorly
in the small noise limit. Then, to estimate E,[¢~"*7)], one generates iid samples
X(Ek) from PP and uses the importance sampling estimator

1 N

— d
5 Ze h(X(k)) k))' )

The key question is the design of P such that the second moment
E,[e~ "D (dP/dP)(X)]? (and hence the variance) is minimized. E is the
expectation operator under P. The choice of the appropriate alternative measure
Pis closely related to certain Hamilton-Jacobi-Bellman (HJB) equations.

The first issue that we address is the effect of rest points (and metastability in
general) on importance sampling. It turns out that when dealing with metastability,
even seemingly reasonable schemes that are also asymptotically optimal may
perform poorly in practice. This includes also changes of measure that try to enforce
the simulated trajectories to follow large deviations most likely paths. The reason for
the degradation in performance is the role of prefactors. Prefactors can become very
important when rest points are included in the domain of interest for the simulation.
Large deviations based change of measures may not account for the prefactors,
as they rely on logarithmic asymptotics. We elaborate on these issues and discuss
potential ways on how the issue can be addressed.

The second issue that we address is the effect of multiple scales on the design
of provably efficient importance sampling methods. It turns out that when the
dynamical system has widely separated multiple scales, then one can use averaging
and homogenization techniques. However, as we shall see, it is not sufficient to base
the design of importance sampling on the effective homogenized dynamics. The
local information needs to be taken into account. Mathematically this is done using
the so-called cell problem, or macroscopic problem, in the theory of periodic and
random homogenization.

The rest of the article is summarized as follows. In Sect.2 we review the
classical large deviations theory and the setup of importance sampling for small
noise diffusions. In Sect.3 we discuss the effects of rest points, i.e. of stable and
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unstable equilibrium points, in the design of importance sampling. We argue why
asymptotic optimality may actually not mean good practical performance and we
also argue that following large deviations most likely optimal paths may lead to
poor performance. In addition, we present constructions that lead to guaranteed
good performance. We supplement the theoretical arguments by simulation studies.
We refer the interested reader to [15, 23] for more details. In Sects.4 and 5, we
address the design of importance sampling schemes in the presence of multiple
scales. We construct asymptotically optimal schemes in the presence of multiple
scales. To be more precise, in Sect. 4 we consider overdamped Langevin dynamics in
periodic multiscale environments and we review the related large deviations theory
and importance sampling theory, presenting simulation studies. The interested
reader can also consult [21, 22]. In Sect.5 we review recent developments in
large deviations and importance sampling for multiscale dynamics in random
environments, see also [49, 50]. In Sect. 6 we describe how one can combine the
results of Sect. 3 with those of Sects. 4 and 5 and also review future directions.

For the sake of concreteness and for exposition purposes we restrict the pre-
sentation of this article in the case of diffusions with gradient drift and constant
diffusivity, which also implies reversible diffusion dynamics. However, we mention
that almost all of the arguments can and have been generalized to the case with
general state dependent drift and diffusion coefficient, especially those about the
effect of multiple scales on importance sampling, see [14, 22,23, 49, 50]. For results
in the infinitely dimensional case, we refer the interested reader to [45].

2 Review of Large Deviations and Importance Sampling
Theory for Diffusions

Let us briefly review the setup for small noise diffusions in R (e. g.,[22,51]) without
the effect of multiple scales. Let W, be a standard d-dimensional Wiener process and
consider

dX¢ = —VV(X{)dt + eTdW,, X = y. 3)

Large deviations principle for the process X; is well known (e.g., [27]). In
particular, the action functional for the process X¢,7p < t < T, in C([ty, T]) as
€ | 0 has the form éS,OT(qS), where

() = { LT+ VY@ [TTT] ™ (fy + VV($))ds.  if € AC([to. T])
’ +

0, otherwise.

“4)

Here C([to, T]), AC([to, T]) are the sets of continuous and absolutely continuous
functions on [fo, T] respectively. Then, under fairly general conditions,

E, [e—émx;)] et ST @+ D b=} ase | 0.
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A simple application of Jensen’s inequality together with Varadhan’s integral
lemma (e.g., [13, 27, 52]) shows that an asymptotically optimal [P should satisfy

_ . _12
limeInE [e—%Wr)dP/dP] — —2G (10, ),

e—>0
withG(t, x) = S (@) + hidr)}

inf
€ AC([1.T]).p1=x

Turning to importance sampling, for [P that are absolutely continuous with respect
to IP, Girsanov’s formula implies

P T T
ap e—ifo los s+ fy vsdWs

i ®)

where v, is a progressively measurable process (control) such that the right-hand
side is a martingale (with respect to an appropriate filtration). Under P, X* satisfies

t

a . 1
dX; = [-VV(X;) + Tv]dt + /eTdW,, with W,=W,—— [ v,dp (6)

\/gto

So, the problem is restricted to choosing the control v, optimally (i.e., such
that the second moment is minimized) and then using the estimator based on
iid samples generated from P under (6). Under appropriate conditions, the zero-
variance (i.e., the best) change of measure is based on the control v, given by the
formula v, = u(t, X¢) where o(t,x) = —I['TVG¢(t, x) where G*(t, x), with terminal
condition G*(T, x) = h(x), is the solution to the PDE, of HIB type:

1
9,G(t,x) —VV(x)- VG (t,x)— 3 InaYes (t,x)|2 + %tr [FTTV2GE(t.x)] = 0. (7)

Since (7) is not tractable, it is standard approach to go to the viscosity limit
€ | 0. Then G(t,x) = lim, o G*(¢,x) is the viscosity solution to the HIB equation
with Hamiltonian

1
H(x.p) = (=VV(x).p) = 5 [T7p|’
i.e., to the equation
9,G(t,x) — VV(x) - DG(t, x) — % IT"DG(, x)|2 =0, G(T,x) =h(x). (8)

Notice that by control arguments, e.g., see [25], we can also write

G(t,x) = limG*(t,x) = inf S h .
(t,%) lim (t,x) ¢GAC(][:.]T]),¢,=X{ i ($) + h(¢r)}
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In fact, more is true. A smooth function U(z,x) : [0,7] x R? > R is called a
subsolution to the HIB equation (8) with € = 0 if

3,U(t,x) — VV(x) - VU(t,x) — % |Ir'vu(, x)|2 >0, U(T,x) <h(). (9)

It turns out (Theorem 4.1 in [22]) that appropriate, smooth subsolutions are
enough. If U(,x) € C L([ty, T] x RY) satisfies (9) and the feedback control to use
in (6) is v, = —I'TVU(t, X¢), then

_1

i} _ o dP7?
G(lo,y)+U(lo,}’)Slimiglf—eln]E[e e’“xﬂﬁ} <2G(t.y). (10)
€—>

Therefore, asymptotic optimality is attained if U satisfies U(ty,y) = G(ty,y) =
lim¢ o G¢(f, y) since then lower and upper bound agree. The design and analysis of
importance sampling schemes based on the systematic connection with subsolutions
to the appropriate HIB and Isaacs equations goes back to [16, 17]. See also [4-7]
for the closely related concept of Lyapunov inequalities.

The importance sampling simulation scheme in order to estimate 0¢(fy,y) =

Esy [e_%h(xeT)] goes as follows. Let XV be the solution to the SDE
dX;' = (=VV(X;") + Tv,) di + /eDdW,, X" =y. (11)

1. Consider v, = u(t, X)) = —I'TV, U(r, X{"") with U an appropriate subsolution,
i.e., it satisfies (9)
2. Consider the estimator

N

fe ) = Ilv Z [e—éh(X?v(j))Z]})] (12)

j=1
where

g0 = o o AT D) [P fi (@i G).awi)
J

and (W(j), XV(j)) is an independent sample generated from (11) with control
veo=u (X" ().

We conclude this section, with the remark that a choice of the control v, based on
a subsolution as defined by (9) only guarantees logarithmic asymptotic optimality
and does not say something about the important effect of pre-factors. As we will
see in Sect. 3, this can imply degradation in the performance of the algorithm in
problems with metastability. When dealing with metastability issues, things may
be even more problematic if one is using the exact solution to the association HIB
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equation, G(t, x). While this may not be a problem for problems that do not involve
rest points (i.e., does not involve stable or unstable equilibrium points) in the domain
of interest, it does become problematic when dealing with metastability issues.

Remark 2.1 Obtaining accurately the solution G(¢,x) to the HIB equation (8),
analytical or numerical, is challenging in high dimensions. However, even if this
were possible, the solution by itself is not always suitable for importance sampling
when one is interested in computing escape or transition probabilities. The issue
is that in these cases, the solution is a viscosity solution with a discontinuous
derivative at the rest point (stable or unstable equilibrium points) and with negative
definite generalized second derivative there. Physically, the exact solution to the
HIJB equation attempts at each point in time and space to force the simulated
trajectories to follow a most likely large deviations optimal path. However, by
standard control arguments, see [25], the discontinuity of the spatial derivative at the
rest point implies that multiple most likely optimal paths exist. As a consequence,
the noise can cause trajectories to return to a neighborhood of the origin, thereby
producing large likelihood ratios. In Sect.3.2, we will see that this is a serious
issue, leading to poor performance, even in dimension one where one can solve the
HIB equation analytically. Importance sampling, when dealing with state dependent
metastable dynamical systems, needs to be addressed from a global point of view
and not local.

3 The Effect of Rest Points on Importance Sampling

As it is shown, mathematically and numerically, in [15, 23, 48], in dynamical
systems that exhibit metastable behavior standard simulation methods do not readily
apply. Asymptotic optimality is necessary but not sufficient for good performance
due to the non-trivial effect of the pre-factors. The pre-factor computations in
[23, 48] prove that there is non-trivial interaction of parameters such as the strength
of the noise € and the terminal time 7. We remark here that this is in contrast to
escape probabilities for other well-studied problems, such as stochastic networks,
e.g., [4, 6, 17-20], because there the proximity of the rest point has little impact on
either the asymptotic rate of decay or the pre-exponential term.

These interactive effects vanish in the logarithmic limit as the noise goes to
zero, but they have a significant effect on the performance of the algorithms. The
following question immediately presents itself:

» Isitsufficient to have schemes that are only asymptotically logarithmical optimal,
in the sense that the second moment of the estimator satisfies (10)? What about
pre-factors? Are they truly negligible in practice in the rare event regime?

 Can we construct a subsolution U(z, x) that not only satisfies (9) but it also takes
care of the prefactor effects?
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3.1 Effects in the Prelimit

Let us demonstrate the effect of prefactors on the behavior of estimators in the
following classical simple setting. Let us assume that the diffusion coefficient
I' = I, and that x = O is the global minimum for V(x). In particular, let us assume
that DV(O) = 0 and that DV (x) # 0 for every x # O. Define

D={xeR:0=<V(x) <L}

and let A, = {x eRY:V(x) = c}. Then for an initial point y such that 0 < V(y) <
L, let us assume that we want to estimate

0¢(t,y) = P, {X*hitsA, beforetimeT} .

A classical quantity if interest in metastability theory is the quasipotential, see
[27]. The quasipotential with respect to the equilibrium point O is defined as follows

W(0.x) = {Sor(¢) : ¢ € C([0.7]).¢(0) = 0.¢(T) = x.T € (0. 00)}

Under the assumptions of this section, the quasipotential is computable in closed
form [27]: W(0,x) = 2V (x)forx € {y e DN dD : V(y) < infeyp V(2)}.

Now, if we define ¢ = inf{tr> 0:X{ ¢ D}, then, as it is shown in [27]
we have that lim. g€ InEt¢ = inf.cpp W(O, z). Thus, the quasipotential allows
to approximate exit times in the logarithmic large deviations regime, [27]. Many
quantities in the theory of metastability are defined via the quasipotential. The
quasipotential characterizes the leading asymptotics of exit times and exit probabili-
ties, approximates transition rates for reversible and irreversible systems, and allows
to qualitatively describe transitions between stable attractors if the system has many
of them; see also [11, 12, 24, 27, 38, 39] for more details. These conclusions hold
for both gradient and non-gradient cases, but in the gradient case the quasipotential
is computable in closed form.

Turning now to importance sampling, it is easy to verify that the quasipotential
is a stationary subsolution to the associated HIB equation (9) with ¢ = 0, by adding
an appropriate constant C in order to justify the necessary boundary and terminal
conditions. In particular, UQp(x) = 2L — W(0, x) defines a subsolution for (9). It
turns out, see [23], that the quasipotential yields a reasonable change of measure if
rest points are not part of the domain of interest. However, this is no longer true if
rest points are included in the domain of interest.

Let us denote Q¢(0,y;u) = I_E[e_%h(X;)dIP’/ dP]? to be the second moment of the
estimator constructed using the control u. Based now on the arguments of [23] one
can prove the following representation for the second moment of the estimator based
on the change of measure induced by the control u(t, x) = —V UQP (x)

i(X9)

i e 5
—elogQ°(0,y;u) = inf E |:—/ lv(s)|| ds —/ ds + ool{;e>T}] .
vEA 2 0 0

13)
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where X§ is the unique solution to the SDE
dXs = —DV(Xo)ds + [ VedW, — (%) — v(s)lds

with initial condition )A(g = y and 7€ is the first time that X€ exits from D.

It is important to note that (13) provides a non-asymptotic representation for
the second moment of the estimator. By the arguments of [23], we can choose a
particular admissible control v(s) in (13) so that the following takes place. Let T
be large and let 0 < K < T so that the time interval [0, T] is split into [0, T — K)
and [T — K, T]. Set v(s) = O for s € [0,T — K). The resulting dynamics for X¢
is stable for s € [T — K, T] and with high probability the process will stay around
the point y for s € [0, T — K). In the time interval [T — K, T], we set v(s) so that
escape happens prior to 7. Then, it can be shown that there are positive constants
Ci, Cy < 00, so that

QE(O, y; ﬁ) > e—%CH—Cz(T—K)'

This bound indicates that if 7 is large, one may need to go to considerably small
values of € in order to achieve the theoretical optimal asymptotic performance. We
also remark that if T is large (see Chap.4 of [27]), G(0,y) and U(y) get closer in
value. Thus, by (10) and for large enough 7T, the particular importance sampling
scheme is asymptotically optimal.

Hence, we have just seen an example where an importance sampling estimator is
almost asymptotically optimal, but it does not perform that well pre-asymptotically
due to the effect of the possibly long time horizon T and its interplay with €.

3.2 The Problems Arising When Following Large Deviations
Asymptotically Most Likely Paths and a Remedy to the
Problem

The connection of change of measures with HIB equations via large deviations is
well situated for a systematic treatment of dynamic importance sampling schemes
for state dependent processes like diffusions (3). For small noise diffusions the
theoretical framework of subsolutions to HIB equations and their use for Monte
Carlo methods can be found in [22]. It was a common belief for some time that if
the underlying stochastic process has a large deviations principle and if the change
of measure is consistent with the large deviations asymptotically most likely path
leading to the rare event (an open-loop control), then the resulting importance
sampling scheme would be optimal. However, such heuristics have been shown to be
unreliable in general and simple examples have been constructed showing the failure
of the corresponding importance schemes even in very simple settings [29, 30]. This
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is due to the presence of “rogue-trajectories,” i.e., unlikely trajectories, that are likely
enough to increase likelihood ratios to the point that the performance is comparable
to standard Monte Carlo. This is especially true for metastability problems (i.e.,
when transitions between fixed points occur at suitable (large) timescales) where
multiple nearly optimal paths may exist.

Use of dynamic changes of measure, i.e. based on feedback controls (time
and location dependent) becomes important, see [15, 23]. However, even changes
of measures that are based on feedback controls, that are consistent with large
deviations and lead to asymptotically optimal change of measures can also be
problematic in practice. We demonstrate this below in Table 2. Namely, as it turns
out, in the presence of rest points and metastability, the prefactors may affect
negatively the behavior of estimators even if one is using asymptotically optimal
changes of measure in the spirit of (10). Hence, it becomes important to use dynamic
change of measures that are based on subsolutions but lead to good performance
even pre-asymptotically.

To that end, novel explicit simulation schemes are then constructed in [15, 23]
that perform provably well both asymptotically and non-asymptotically, even when
the simulation time is long. These constructions are based on large deviations
asymptotics [8, 9, 27], stochastic control arguments and asymptotic expansions
[24, 25] and detailed asymptotic analysis of the subsolution to the associated HIB
in the neighborhood of the rest point where the potential can be thought of as being
approximately quadratic. Essentially, due to the fact that near the rest point, the
potential can be thought of as being approximately quadratic, one can hope to solve
or to approximate the solution to the associated variational problem there. Then
one needs to patch this solution together with the quasipotential based subsolution
(which is a good subsolution away from the rest point) in the right way. Then, the
combined subsolution, see U? (t,x) in (15), turns out to be a good approximation to
the zero variance change of measure. Such schemes lead to importance sampling
algorithms with provably good performance for all small ¢ > 0 and without
suffering from bad prefactor effects.

In order to illustrate the point, let us briefly demonstrate such a construction in
the case of dimension one, see [23]. So, let us assume that V(x) = %xz with A > 0
and let us assume that we study the problem of crossing a level set, say L, of the
potential function V(x). Here, we can compute G(t, x) in closed form and we get

(56 _ xe)t(t—T))z

1 T . 2
G(t,x) = inf — Ao “dst = inf A— 2 (14
= ¢I=X'1‘/I}¢T)=L%2/z ”¢ e ” S} 5(e5111(L) 1 — e220=T) a4

Notice that G(t, x) is also a viscosity solution to the ¢ = 0 HJB equation (8)
when supplemented with the appropriate boundary conditions. Hence, based on (10)
a change of measure based on G(¢, x), i.e., using the control u(z,x) = —0d,G(t, x),
is expected to yield an asymptotically efficient estimator. While this is true, we will
see below that this is not sufficient to yield good performance. The fact that the
function G(¢, x) is not continuously differentiable in the domain of interest implies
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that multiple optimal paths exist, which is an intuitive reason for the degradation in
performance that will be demonstrated below.

However, by appropriately mollifying G(z, x) and combining it with the quasipo-
tential subsolution (as constructed in Sect.3.1), one can construct a global sub-
solution which performs provably well even pre-asymptotically. The point is that
G(t,x) provides a good change of measure while near the rest point, whereas the
quasipotential induced subsolution Upp(x) = 2L— W(O, x) provides a good change
of measure away from the rest point. There are a few more issues to deal with
though. The first one is that G(¢, x) is discontinuous near t = 7. The second one
is that we need to put them together in a smooth way that will define a global
subsolution.

Since G(t,x) is discontinuous at t = T, we introduce two mollification
parameters ¢* and M that will be appropriately chosen as functions of €. Motivated
by the fact that G(z,x) is a good subsolution near the equilibrium point, we fix
another parameter L e (0, L]. In the one-dimensional case, it is easy to solve the

equation V(x*) = L and in particular we get that x* = +% where & = ZA—L As a
matter of fact, instead of using G(¢, x) directly, we set
(Sc _ xel(z—T))z
Fltxd) = At~ ——ep
M +1—e

In order now to pass smoothly between the UQP (x) and FM (1, x; %) or FM (¢, x; =3%)
without violating the subsolution property, we use the exponential mollification,
see [17]

U‘g(t,x) — _§log (e—gagp(x) i o~ 3 [F" e +Uop ()] n e-%[pM(z.x;—)%HDQp(—;)])

It is easy to see thatas § | O

lifn US(t,x) = min{Upp(x), FM (1, x; %), FM (1, x; —%)}
540

Clearly, if we choose L = L, then we get l_JQp(fc) = 0. Based on these
constructions, a provably efficient importance sampling scheme is constructed in
[23], based on the subsolution

Upp(x), t > T —1*

Us(t,x) =
(&, x) Us(t,x), t <T —1*

5)

It turns out that U%(z,x) is a global smooth subsolution which has provably
good performance both pre-asymptotically and asymptotically. The role of the
exponential mollification is to allow a smooth transition between the region that
is near the equilibrium point and the region that is far away from it. The precise
optimality bound and its proof guide the choice of the parameters §, t*, M, and L.
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Table 1 Parameter values for the algorithm based on a given value of € > 0
Parameter | § Le (1] M r*

Values 2¢ O(1) or ¥ withm < « max{g%. 4} with k € (0,1/2) —% log L

Table 2 Left: exit time distribution P, [fepuap < T] for different pairs (e, T), using the optimal
change of measure constructed in [23]

1S optmal as eps—>0
— 1S optimai or all eps>0

e|T |25 7 10 18 23 g
020 |2e—02 [83e—02 |1.2¢—01 |2.le—01 |2.7¢e—01 L
0.16 |7e—03 |2.7e—02 |4.0e—02 |7.4¢e—02 | 9.5¢—02 :g
0.13 2¢—03 |6.9¢e—03 |1.1e—02 |2.0e—02 |2.6e—02 &%
0.11 4e—04 | 1.8¢—03 |2.8¢—03 |54e—03 | 7.0e—03
0.09 |5e—05 |2.6e—04 |4.1e—04 |7.8¢—04 | 1.0e—03
0.07 2e—06 | 1.2e—05 |1.9e—05 |3.7¢e—05 |4.8¢—05
0.05 7e—09 |4.4¢—08 |7.0e—08 |1.4e—07 |1.8¢—07 g — 1

N — S —
5 0 15 2 5 0 15 2
oxtbytime T extby time T

300

Estimated relatve error per sar
Estimated relative error per sample for ep
200

100

Events range from very rare to not so rare. Right: Comparison of relative errors per sample for two
different changes of measure and for two values of €. Small relative error is better

For the convenience of the reader, we present in Table 1 the suggested values for
(4, I:, M, t*), given the value of the strength of the noise € > 0.

We refer the interested reader to [15, 23] for further details on the theoretical
performance of the algorithm and on the choice of parameters.

In order to illustrate in a simple setting the effect of prefactors in the presence of
metastable effects, we record in Table 2 Monte Carlo estimates based on K = 107
trajectories for the exit time distribution Py [t%UBD < T] from the basin of attraction
of the left attractor of the potential of Fig. 1 for the process X¢ given by (3) with
I' = I. We used the importance sampling (IS) methods of [23], i.e., the change
of measure based on the subsolution (15) and record estimates for different pairs
(¢,T). In the figures next to Table 2, we compare the relative errors per sample
of (a): the algorithm, which is optimal for all ¢ > 0, i.e. the one based on the
subsolution l_]g(t,x), with (b): the IS algorithm that is consistent with the large
deviations asymptotically most likely path leading to the rare event, i.e the one
based on the actual solution G(, x) of the associated HIB equation. Notice however
that the IS algorithm based on G(z, x) is only asymptotically optimal in the large
deviations logarithmic sense as € |, 0 [i.e., it satisfies (10)].

Using relative error per sample as comparison criterium, we compare the two
algorithms for two values of €, one for which the events are not so rare (¢ = 0.13)
and one for which the events are very rare (¢ = 0.05). Exact values are in the
table, and we remark for completeness that intermediate behavior is qualitatively
the same. Both algorithms perform well when T is small, but the algorithm that is
based on the solution of the associated HIB equation, which is only logarithmic
asymptotically optimal, starts deteriorating considerably as T gets large. The latter
is an effect of the pre-factors becoming important. On the other hand, the change of
measure constructed in [23] that takes into account the pre-factor information and is
pre-asymptotically optimal yields optimal performance independently of the values
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€ and T with relative errors around one, meaning that the values recorded at the
table are reliable. It is important to note that due to large deviations, exit happens in
long time scales, which implies that reliable estimates, especially when T is large,
are essential.

4 Importance Sampling for Rough Energy Landscapes

In Sect. 3, we reviewed some of the practical issues that come up when one is trying
to apply importance sampling techniques to metastable dynamics. While in Sect. 3
we ignored the effect of multiple scales, the goal of this section is to address the
role of multiple scales in the design of asymptotically optimal importance sampling
schemes.

A particular model of interest in chemical physics is the first order Langevin
equation (16). Let us consider

axe = [—%VQ (xf~5/5) —vv (xf"s)] dt + eN2Daw,, X' =y, 0<es <1,
16)
where the two-scale potential is composed by a large-scale part, V(x), and a
fluctuating part, €Q(x/§). If Q is periodic, then we have a periodic environment,
whereas if Q is random then we have a random environment. Models like (16) can be
used to model rough energy landscapes [2,21, 33, 55]. As it has been suggested (e.g.,
[37, 55]), the associated energy landscapes of certain biomolecules can be rugged
(i.e., consist of many local “small” minima within local deep minima separated by
barriers of varying heights). When one is interested in rare events, large deviations
and Monte Carlo methods are relevant.
If Q(y) is periodic, large deviations for multiscale diffusions in periodic envi-
ronments are obtained in [14, 26, 47] for all possible interactions between € and

o | o
] o]
0 | 0 |
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o | o]
o [aV)
| 9 |
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> Q| > o]
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o o
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91 S
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Fig. 1 A smooth and a rough potential function (energy landscape) with two wells
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8, setting the ground for the mathematical formulation of the related importance
sampling theory, [21, 22, 47]. The novel feature is that the optimal change of mea-
sure for importance sampling is not based only on the gradient of the homogenized
HIJB equation (as in Sect. 2). The effect of fluctuations, which is quantified via the
solution to the “cell problem” in homogenization [3, 43], is equally important. The
cell problem is the solution to a Poisson type PDE. It is used to define the so called
“corrector,” which characterizes the first order correction in the approximation of
the multiscale HIB by its homogenized limit. Therefore, when compared to the case
without multiple scales, one needs more detailed information in order to guarantee,
at least, asymptotic optimality.

For example, consider model (16) in the case % 1 o0. Define the Gibbs measure

1 o) ()
w(dy) = —e_QTdy, L= / e_QTdy.
L ']I‘d

Then denote by y(y) the smooth solution to the “cell problem”

V00) - V1) + D [V21()] = VOW). / YOl =0.  (17)

The following large deviations result holds which is a special case of the results
of [14]. In particular, [14] covers the case of general state dependent drift (not
necessarily of gradient form) and state dependent diffusion coefficient.

Theorem 4.1 (Theorem 5.3 of [14] for the Case of (16)) Assume that the functions
VO (y) and VV (x) are continuous and globally bounded, as are their partial
derivatives up to order 1 in y and order 2 in x, respectively. Let {X<%,¢,§ > 0}
be the unique strong solution to (16). Let

0
0 == [ (14 %2) v,

dy
9 9 T
g [ (14252) (52

where I denotes the identity matrix. If € /§ — oo, then {X<% €,8 > 0} converges in
probability as €,5 — 0 to the solution of the ODE

dX, = r(X,)dt
and satisfies a large deviations principle with rate function

s ,
Sp(d) =12 / (B — r(@0) a7 (B — r(9y) ds ifp € AC(T)). ¢ = x

+00 otherwise.

In addition, it turns out that an asymptotically efficient change of simulation
measure can be constructed analogously to Sect. 3, but based on the feedback control
(see Theorem 4.1 in [22])
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v = i(t, X5, X /), with a(t,x,y) = —v2D (I + dx(y)/dy)" V. U(t.x). (18)

U(t, x) satisfies the inequalities in (9) with the homogenized (averaged) coeffi-
cients r(x) and ¢ in place of the original ones —VV(x) and I' = +/2DI (compare
with (9)). In particular, the second moment of an estimator with change of measure
based on the control v, by (18) will satisfy (10); this is Theorem 4.1 in [22].

Thus, compared to the case without multiscale features, one needs to consider the
extra factor (I + dy(y)/dy), that can be thought as the appropriate weight function,
to achieve asymptotic optimality. In the absence of multiple scales, i.e., when Q = 0,
we have y = 0 and we recover the case studied in Sect. 3. The numerical simulation
studies of [21, 22] verify the need for accounting for the local environment via the
weights (I + dy(y)/dy) in the change of simulation measure.

Before illustrating the performance of this importance sampling scheme in
a simulation study, let us demonstrate theoretically the necessity to include the
cell problem information in the design of the change of measure. For simplicity
purposes, let us restrict attention to dimension one. As we have seen before, the
effective diffusion coefficient is given by

9\ 2
q=2D/;T(l+a—;() u(dy)

In this case, the optimal change of measure is based on the control
i(t,x,y) = —~/2D (1 + 1 (y)/3y) 9. U (1, x).

So, let us assume that one is using instead the change of measure, based on the
control dictated by the averaged dynamics. Namely, let us assume that the control
in question is u(z, x) = —ﬁaxﬁ(t,x).

A verification theorem, see [22] for details, shows that one would need a
statement of the form

T €8
“E/ [J_ (1 + g—)y( (XS )) - \/a} ds — 07 (19)

By averaging principle, this is true if

V= [ V2D (1 + X—(y)) 1(dy). (20)
T dy

However, this is impossible, since

(] 1+ 28 o) 1+ 22 s

This last property explains mathematically why, the local information, as quanti-
fied via the cell problem, needs to be taken into account in the design of importance
sampling. In Sect. 4.1, we will also see numerical evidence of this issue.
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4.1 A Simulation Study

Let us demonstrate the performance of the importance sampling scheme in a simple
simulation study. Consider the one well potential function with diffusion coefficient
D=1,

V=37 00) = cost) + sinky) @1

€8
Assume that we want to estimate f(¢,8) = E [e‘éh(xl )], where h(x) =

2
(X[ =1~

It is easy to see that we are dealing with a rare event here, as the function /(x) is
minimized at |x| = 1. Let us compare the following three different estimators

K
A l B l/’l €.8 /+
_ —chXO) |
Bo(e,8) = X 21: € ! ] standardMonteCarlo
J=
1 & 8
A 1 €U ;v -
bie.8) = 2 Z e hh Wz;] — — _optimal
j=1
1 Ko 1 8.
) N —ehET D i | ; ;
0,(€,8) = e Zl e ! Zl] ignoreslocalinformation
=

where we have defined the controls

o d(t,x,y) = —v/2 (1 + 3x(y)/dy) G.(t, x)—asymptotically optimal.
* u(t,x) = —,/qG,(t,x)—based only on the homogenized system.

and the likelihood ratio is Z' = %()_(f”s'”(j)). Notice that in this case, we can
compute

14 20 _ o / 20 gy,
dy T

which justifies the interpretation of the term 1 + a)g—(y” as the proper weight term
needed that takes into account the local information.

In Table 3, we see simulation studies based on N = 107 simulation trajectories
each, for the estimation of 6(e, §) using the three different estimators. The measure
of comparison is chosen to be the relative error per sample, defined to be

Var(0:(e, 8))

pi(e,8) = vVNI—
pi(€, 8) 5e.9)
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Table 3 Comparing different importance sampling estimators

No. |e § /5 |i(e.9) po(e.8) | pi(e.8) | pa(e.d)
1 0.25 0.1 2.5 2.25¢ — 01 1 6 20

2 0.125 0.04 3.125 3.65¢ — 02 3 6 5

3 0.0625 0.015625 4 8.75¢ — 04 34 4 13

4 0.03125 0.007 4.46 6.87¢ — 07 141 3 105

5 0.025 0.004 6.25 1.61e — 08 217 2 97

6 0.02 0.002 10 1.99¢ — 10 1294 1 157

7 0.015 0.0013 11.54 1.37¢ — 13 800 1 588

It is clear that the importance sampling scheme based on the asymptotically opti-
mal change of measure u(t, x, y) outperforms the standard Monte Carlo estimator
in which no change of measure is being done. It also outperforms, the estimator
based solely on the homogenized system, which ignores the local information
characterized by solution to the cell problem y(y).

5 Importance Sampling for Multiscale Diffusions in Random
Environments

>0t

Let 0 < €,8 < 1 and consider the process (X, Y) = {(X¢,Y¢) .t € [0, T]} taking
values in the space R” x R that satisfies the system of SDEs

€

% =5

b(YE.y) + e (X0, Ve y) | de + Veo (X0, YE y) aw.,

1re €
vy = < [gf(yf»V) +8(Xf,Yf,V)]df+ % [ (Y7, y)dW, + w2 (Y. y) dB.].

X5 = x0. Y5 =0

(22)

We assume non-degeneracy of the diffusion coefficients as well C! smoothness
and boundedness of the drift and diffusion coefficients. Moreover, we assume
that § = 8(¢) | O such that €¢/§ 1 oo as € | 0. (W,B,) is a 2«-
dimensional standard Wiener process. We assume that for each fixed x € R”,

b(-,y),clx,,y),0(x,y).f(,y). g, -, ¥), ti(-, ¥) and 12(-, y) are stationary and
ergodic random fields in an appropriate probability space (I', G, v) with y € T".

Example 5.1 Notice that if we choose b(y,y) = f(y,y) = —V,0(y,y) for a

periodic function Q(:), c(x,y,y) = —V,V(x), o(x,y,y) = 11(y,y) = +/2D and
©(y,y) = 0, and set ygo = xy/38, we then get the Langevin equation (16). In
particular, if we make these choices, then we simply have Y = X /§ and the model
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can be interpreted as diffusion in the rough potential €Q(x/§,y) + V(x), where
the roughness is dictated by Q. In general, Q may not be modelled as a periodic
function. One may model Q as a random field; see the simulation study in Sect. 5.3.

5.1 Description of the Random Environment

The large deviations and importance sampling results for (22), see [49, 50], are
true under certain assumptions on the random medium that we recall here for
convenience. We assume that there is a group of measure preserving transformations
{7,,y € RY™™} acting ergodically on I' that is defined as follows.

Definition 5.2

i. 7, preserves the measure, namely Vy € RY™™ and VA € G we have v(t,A) =
v(A).
ii. The action of {7, : y € R*™} is ergodic, that is if A = 7,A for every y € R?
then v(A) = Oor 1.
iii. For every measurable function f on (I', G, v), the function (y, y) — f(7,y) is
measurable on (R4 x T, B(R*™) ® G).

Let gi; be a square integrable function in I" and define the operator Tygi;()/) =
gi;(ty)/). The operator Ty- is a strongly continuous group of unitary maps in L*(T"),
see [41]. Denote by D; the infinitesimal generator of 7), in the direction i, which is a
closed and densely defined generator, see [41].

In order to guarantee that the involved functions are ergodic and stationary
random fields on R4~ for ¢ € L2(T"), let us define the operator ¢ (y, y) = qg(ry)/).
Similarly, for a measurable function 43 :R” x I' = R™ we consider the (locally)
stationary random field (x,y) — (x, 7,¥) = ¢(x,y,y). Then, it is guaranteed
that ¢ (y, y) (respectively, ¢ (x, y, y)) is a stationary (respectively, locally stationary)
ergodic random field.

The coefficients, b, c, 0, f, g, 71, T2 of (22) are defined through this procedure and
therefore are guaranteed to be ergodic and stationary random fields. For example, in
the case of the ¢ drift term, we start with an L?(T") function ¢(x, y) and we define
the corresponding coefficients via the relation c(x, y, y) = ¢(x, 7yy).

For every y € I, let us the operator

L' =fo. )V + () 0.9) + 2095 009) ViV

which is the infinitesimal generator of a Markov process, say Y; , . Using the Markov
process Y, ,,, we can define the so-called environment process, see [35, 41, 42, 44],
denoted by y;. The environment process y; has continuous transition probability
densities with respect to the d-dimensional Lebesgue measure, see [41], and is
defined by the equations
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yt = TYz,y J/
Yo = TyV
The infinitesimal generator of the Markov process y; is given by

L=J0D-+t[(:0H ) + 20)EH () D]

In order to simplify the presentation, let us assume that the operator L is in
divergence form. In particular, let us set f(y) = —DQ(y) and 7,(y) = /2D =
constant and %,(y) = ~/2D+/1 — 62 = constant.

Then, we can write the unique ergodic invariant measure for the environment
process {y:};>0 in closed form; see [41, 50] for more general case which is not
necessarily restricted to the gradient case. Denote by EV the expectation operator
with respect to the measure v. Then , the measure 7 (dy) defined on (T, G) by

m(y)
Evm()

m(dy) = v(dy), within(y) = exp[-0(y)/D].

is the unique ergodic invariant measure for the environment process {y;}>o.

Next, we need to define the equivalent to the cell problem in the case of periodic
coefficients, also known as the macroscopic problem in the homogenization theory.
To do so, we first define H! = #H!(v) to be the Hilbert space equipped with the
inner product

d
F.21 = Y (DF. Did).

i=1

Let us consider p > 0 and consider the following problem on I"
pip—Lip=b. (23)

Under the condition b € L*(v) with ||l~7||H_1 < 00, Lax-Milgram lemma, see
[34, 41], guarantees that Eq. (23) has a unique weak solution in the abstract Sobolev
space H! or equivalently in ! (;r). At this point, we note that in the periodic case
one also considers (23), but one can then take p = 0 given that b averages to
zero when is integrated against the invariant measure 7. However, in the random
case, (23) with p = 0 does not necessarily have a well-defined solution (even if
b averages to zero when is integrated against the invariant measure ), see, for
example, [34].

In the general random case, we consider the equation with p > 0 and in the end,
the homogenization theorem is proven by taking appropriate sequences p = p(€)
such that p(e) | 0as e | 0. Taking p | 0 is allowed by the following well-known
properties of the solution to (23), (see [41, 42, 44]),



Importance Sampling for Metastable and Multiscale Dynamical Systems 47

1. There is a constant K that is independent of p such that

PE™ [7,0)]* + E* [D7,()]’ <K

2. j, has an H! strong limit, i.e., there exists a o € H'(7r) such that

lim | 7,() = o)}, =0 and 1im pB" [7,()] = 0.

5.2 Large Deviations and Importance Sampling Theory
Jor Diffusion in Random Environments

Now that we have defined the random environment and explained its properties, let
us review the related large deviations and importance sampling theory from [49, 50].
Set for notational convenience & = D .

Theorem 5.3 (Theorem 3.5 in [49]) Let {(X7V,Y?),e > 0} be, for fixed y €
T', the unique strong solution to (22). Assume non-degeneracy of the diffusion
coefficients as well as C' smoothness and boundedness of the drift and diffusion
coefficients. Consider the regime where €,6 | 0 such that €/6 1 oo. Then,
{X¢Y, e > 0} converges in probability, almost surely with respect to the random
environment y € T, as €,8 | 0 to the solution of the ODE

dX, = r(X,)dt

and satisfies, almost surely with respect to y € T, the large deviations principle
with rate function

Ser(d) = 5 Jo @ = @) a7 ()@ —r(¢))ds ifp € AC((to, Thandgy, = xo
0 +OO

otherwise.

where
() = HmE” [2(x.") + DE,()3(x. )] = E"[e(x.) + EOZCx )
4(x) = imE" [G(x.) + DZ,OBONE () + DB ()
+(D7,(0B0) (P7,00)]
~ ~ ~ ~ T
=E" [(&(x, ) +EOTNG) +E0RO) + (E0B0) (F0no) ]

2
and p = p(e) = 5?
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Notice that the coefficients r(x) and g(x) are obtained by homogenizing (22) by
taking § | O with € fixed. The form of the action functional can be recognized as
the one that would come up when considering large deviations for the homogenized
system. This is also implied by the fact that § goes to zero faster than €, since €/§
1 oo.

We also remark here that if 5 = 0, then y, = 0. In this case r(x), g(x) take the
simplified forms r(x) = E™[¢(x, -)] and g(x) = E” [6 (x, )0 (x, -)T].

Turning now to importance sampling, given controls #; and u, one considers the
controlled dynamics under the importance sampling measure P

d; = [5b(Fry) +e (K. 70y) 4o (K Fy) m(9)] di 4 Veo (5. 77 y) s,
_ 1 - - - _ -
d¥; = 3 [%f (V€. ) + g (X 75 p) + 1 (V6. ) wi(s) + o2 (7. y) ”2(8)] dt
+§ [r1 (V<. 7) dW, + = (V. ) dB,]. 24)

X = X0, Y = Yo

fo fo

where (v (s), v2(s)) denote the first and second component of the control

u(s,)_(se, I_/f) = (u](s,)_(f,,f(f),zn(s,)_(E Y9)).

§27s

Then, for a given cost function A(x), under P
| dP _ -
AT (1o, x0, =exp!——h(X5)} — (X5, Y°),
(0.30.30) = exp |25} G2 %7

is an unbiased estimator for E [exp {—1h(X5)}].
Consider next the Hamiltonian

Hwp) = @) = 5 |4 Cop |

with r(x), g(x) the coefficients defined in Theorem 5.3 and consider the HJB
equation associated to this Hamiltonian, letting U (¢, x) be a smooth subsolution to it
(analogously to Sect. 2 with r(x) and ¢(x) in place of —VV(x) and T, respectively).
Then, the following theorem guarantees at least logarithmic asymptotically good
performance.

Theorem 5.4 (Theorem 4.1 in [50]) Ler {(X¢,Y¢) € > 0} be the solution 1o (22)
for s € [ty, T| with initial point (xo, yo) at time ty. Consider a non-negative, bounded
and continuous function h : R™ +— R. Let U(s, x) be a subsolution to the associated
HJB equation that has continuous derivatives up to order 1 in t and order 2 in x, and
the first and second derivatives in x are uniformly bounded. Assume non-degeneracy
of the diffusion coefficients as well C' smoothness and boundedness of the drift and
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diffusion coefficients. In the general case where b # 0, consider p > 0 and define
the (random) feedback control up(s,x,y, y) = (ul,p(s,X,y, Y), Mz,p(S,X,y, 7/)) by

up(5.2.3.7) = (= (0 + Do)’ (3 VU5, = (Do) (0.7 VaU(5,))

Then for p = p(€) = % 1 0 we have that almost surely iny € I’

limiélf—f In Q7 (0. X0, Yo: p(+)) = Glto, o) + U(to. xo). (25)
e—

If b = 0, then set u(s,x,y,y) = (—GT(x,y, V)V U(s, x), O) and (25) holds with
up(-) = u().

5.3 A Simulation Study

Consider, for instance, the case of Example 5.1

Xe,é’
dX = —VV* (Xf*‘s, ’T> dt + V2edW,, (26)

where the potential function V¢ (x,x/8) = €Q(x/8) + V(x). Q(y) is a stationary
ergodic random field on a probability space (X,G,v). We may consider, for
instance, V(x) = %xz and

Q(y)meanzeroGaussianwithE” [Q(x)Q(y)] = exp [— |x — y|2]

Making the connection with (22), the fast ¥ motion essentially is ¥ = X/§.
Referring to Theorems 5.3 and 5.4 we have r(x) = —V'(x)/(KK) and g = 2/(KK)
where K = E'[e2@],K = E'[¢2@)]. Given a classical subsolution U, one
expects that the corresponding change of simulation measure that guarantees at
least asymptotic optimality is based on the control i(s,x,y,y) = (—v/2(1 +
dx(v,y)/3y)U.(s,x),0) where one can compute that the weight function is 1 +
dx(y,y)/dy = €20") /K. Note that in contrast to the periodic case, the control u is
random in that it implicitly depends on y € T, via the random field Q(y, y).

Assume that we want to estimate

< — P [x€~“hits1before0|xg*5 - 0.1] 27)

As in Sect. 4.1, we compare the asymptotical optimal change of measure with
standard Monte Carlo, which corresponds to no change of measure, and with the
importance sampling that corresponds to the change of measure based only on
the homogenized problem, which ignores the macroscopic problem. Based on 107
trajectories, we have the following simulation data
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Table 4 Comparing different importance sampling estimators with x~ = 0 (equilibrium), xo =
0.1 (initial point), xt =1 (target)

No. e 8 e/s | bi(e.s) Po(e.8) | pi(e.d) | pa(e.d)

1 0.25 0.1 2.5 1.38¢ — 1 3 0.5 3

2 0.125 0.04 3.125 1.3le—2 7 16 8

3 0.0625 0.018 3.472 6.13¢ — 4 36 18 42

4 0.05 0.01 5 2.30e — 5 212 28 316

5 0.04 0.007 5.72 5.93¢—6 396 75 332

6 0.025 0.004 6.25 7.82¢ — 10 — 22 1856

It is clear that the importance sampling scheme based on the asymptotically
optimal change of measure u(t,x,y,y) outperforms the standard Monte Carlo
estimator in which no change of measure is being done. It also outperforms,
the estimator based solely on the homogenized system, which ignores the local
information characterized by solution to the macroscopic problem. Of course, this
behavior is parallel to the behavior observed in the periodic case of Sect.4.1.
Additional simulation studies can be found in [50].

In [50], the interested reader can find further simulation studies in the case of
the general model (22) where one does not necessarily have the ¥ motion to be
X /8. However, we do point out that the theoretical results of [50] are valid for the
system (22) where the process (X¢, Y¢) has initial point (xg, yo) and both xo and yq
are of order one as § | 0. This is not exactly the same to the case where ¥ = X/6,
as then yy = x(/8, which is no longer of order one as § | 0. But, simulation studies,
as the one presented in Table 4, indicate that the theoretical results should be also
valid for the ¥ = X/§ case.

6 Importance Sampling for Metastable Multiscale Processes
and Further Challenges

In Sect.3 we elaborated on the effects of rest points and metastable dynamics on
importance sampling schemes. The end conclusion was that extra care is needed
when stable or unstable equilibrium points are in the domain of interest. In this case,
asymptotic optimality is not enough in that asymptotically optimal schemes may not
perform well in practice unless one goes to really small values of €, in which case
the events may be too rare to be of any practical interest. Then, in Sects.4 and 5
we summarized the issues that come up in the design of asymptotically efficient
importance sampling schemes when the dynamics have multiple scales.

In [15, 23] we have systematically addressed the effects of rest points onto the
design of importance sampling schemes and have identified what the main issues
are. In [23], we have suggested a potential provably appropriate remedy to the
issue, by constructions as the ones mentioned in Sect. 3. The subsolution constructed
there effectively yields a very good approximation to the zero variance change
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of measure. Even though the constructions in [15, 23] work provably well pre-
asymptotically and asymptotically and do not degrade as parameters such as the
time horizon T getting large, the performance in higher dimensions can be worse
than the corresponding performance in the lower-dimensional cases. While this is
expected to be the case as the dimension gets larger, due to further approximations
and simplifications that need to be made, there is a clear room for improvement
here. This is part of ongoing work of the author and we refer the interested reader
to [45] for some results in the infinitely dimensional small noise SPDE case.

Moreover, it is clear that the constructions of Sects.4 and 5 guarantee only
asymptotic optimality. If in addition to multiscale dynamics one has to also face
metastability, then, as it was seen in Sect. 3, theoretical asymptotic optimality is not
sufficient for good numerical performance. One can of course combine the results
of Sect.3 with those of Sects.4 and 5. To be more precise, one can combine the
results of [15, 23] with those of [22, 50]. In practice, one can just use the changes of
measure as indicated in [22, 50] that guarantee asymptotic optimality, but construct
the subsolution U (t,x) as indicated in [15, 23]. We plan to address this issue in more
detail in a future work.
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1 Introduction

A defining theme in molecular systems biology has been the realization that
stochastic effects on biochemical networks are important factors to consider when
studying the function of molecular control systems. As a consequence, discrete
stochastic models are more adequate than deterministic models because of the
inherent discreteness in chemical systems when the copy numbers of the molecular
species are small [11, 31, 66, 91, 105, 108, 110, 115, 119, 121, 138, 146].

Biochemical network model simulation offers many challenges due to their
inherent complexity, randomness, and the presence of time scale separation. While
to date, most models are relatively small in the number of molecular components
due to the formidable challenge to parametrize models, a milestone whole cell
simulation was recently conducted including all biochemical subsystems of a simple
bacterium, Mycoplasma genitalium [88]. Such a simulation has been characterized
as the grand challenge of the twenty-first century in [141]. Despite the vast
parameter space and many subsystems, a cell cycle is simulated in [88] and
conclusions can be drawn from genotype to phenotype. Good agreement with
experiments is obtained and predictions are made that can be validated against
experiments.
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A great challenge for simulations of increasingly complex models is the large
separation in kinetics rate constants, diffusion constants, and molecular copy
numbers typically observed in network models. If realistic cellular geometries are
considered with molecules moving in 3D and binding to 2D and 1D structures,
the situation becomes even more complicated. All these reasons call for multiscale
methods where the most efficient simulation methodology that is able to resolve
the local model features with sufficient accuracy is used to arrive at a feasible
simulation. We here review the most commonly employed models on a microscopic,
mesoscopic, and macroscopic scale, as well as the state of the art of methods and
algorithms for computer simulation of deterministic and stochastic biochemical
systems with chemical reactions and a spatial variation of the molecules.

Stochastic models for chemical reactions are found in [54, 106, 142]. In a well-
stirred system with strong diffusive mixing, the space dependence can be ignored.
This is not always the case and examples in [42, 97] show that diffusion is important
for the dynamics of the system. Other recent review articles on this subject are
[14, 22, 40, 62, 63, 103, 118, 130].

The different levels of description can be viewed as models on different levels
of fidelity, ascending from a detailed, stochastic, and low level, to an intermediate
stochastic level, and to a deterministic high level of modeling. A short description
of the modeling levels is as follows.

Microscopic Level A molecule is assumed to be spherical and moves by Brownian
motion in an off-lattice model. Molecules react with a certain probability when they
are in the neighborhood of each other. Since a molecule occupies a part of space,
effects of volume exclusion or crowding can be simulated. The trajectories of all
molecules in the system are followed separately in a Monte Carlo simulation in an
accurate but computationally expensive model. Many realizations of the system are
necessary to obtain accurate statistics of the behavior. An overview of this model is
found in Sect. 2.

Mesoscopic Level The volume €2 is partitioned into voxels V;,j = 1,...,N,
covering 2 without overlap in this on-lattice model. The copy numbers of the
species in each voxel define the state of the system. The state is changed by reactions
between the molecules in a voxel and by jump events where a molecule in one
voxel moves to a neighboring voxel in a continuous time Markov process. There is
a master equation for the probability distribution of the time dependent state of the
system which can be solved analytically and numerically for a few simple models.
Otherwise, sample paths of the system are generated via Monte Carlo simulations.
This model is described in more detail in Sect. 3.

Macroscopic Level The concentrations of the chemical species satisfy partial
differential equations (PDEs) in the macroscopic model. The PDEs are equations for
the time evolution of the concentrations with a diffusion term and source terms given
by the chemical reactions. If the diffusion is so efficient that the spatial variation
is negligible, then the equations for the concentrations are simplified to a system
of ordinary differential equations (ODEs). Compared to the other two models, this
model is computationally inexpensive but less accurate. The model is applicable in
systems with many molecules and a large €2 and is treated in Sect. 4.
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The notation is as follows. The biochemical system in a volume 2 has M
molecular species S = {S1, S, ..., Sy} reacting with each other in R chemical
reactions defined by v,,, and v;m forr=1,...,.R,m =1,...,M. Inreaction r, a
sum of v,,,, molecules of species m react and form a sum of v/, molecules of species

n. A reaction can be written

M M
> VnSw—> Y VS r=1....R. (1)
m=1 n=1

The set of all reaction channels is R = {v, — v/, r = 1,...,R}. The propensity

for the reaction to occur per time unit is a, and depends on the concentrations of the
species and may depend on the position r € 2. The molecules are here assumed to
be transported in €2 by diffusion, but molecules can also move by active transport in
certain directions, for example, along actin filaments and microtubules. A vector u
has the components u; and the elements of a matrix A are A;;. The norm || - || is the
Euclidean vector norm and its subordinate spectral matrix norm.

2 The Microscopic Scale

On the microscopic level, individual molecules are tracked as they diffuse and
react in a given domain. Two formalisms have received particular attention in the
molecular systems biology area: the Doi-model [23, 82] and the Smoluchowski
diffusion-limited reaction (SDLR) model [144]. In both cases, the change in the
positions due to diffusion is governed by simple Brownian motion.

In the Doi-type model, two molecules react with a uniform rate whenever their
separation is less than a stipulated reaction radius, while in the SDLR model,
reactions occur with a fixed rate whenever the molecule are separated by precisely
the reaction radius. Hence, in the former reactions are treated as a reaction potential,
whereas in the latter they are treated as a boundary condition at the contact point
between molecules. The relationship between the models is discussed in greater
detail in [1] with rigorous convergence results for some important special cases. In
what follows we will mostly be concerned with the SDLR model.

2.1 Smoluchowski Diffusion-Limited Kinetics

Assume that a spherical molecule of species X is at position ry at time #y. The
probability p(r, t) = p(r, t|ry, t) to find a molecule at position r in free space after
time ¢ > £, is the solution to the diffusion equation

ap(r, 1)
ot
p(r’ [0) = 8(1' - r())’ ”rhmoop(rv t) = 0. (2)

-

= yXArp(r’ t)a
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The initial condition at ¢t = 7, is the Dirac delta and yy is a diffusion constant. The
solution to (2) is the Green’s function for the diffusion equation.

When the X-molecule is involved in a bimolecular reaction with species Y in free
space then the probability distribution for the distance r between the two molecules
satisfies

op(r,1)
ot

= DArp(r’ t)v

ap
470 D—|jr|=0 = kp(|[r]| = 0,1),
ar

p(l', tO) = 8(1’ - 1'0), I 1||1m P(n t) =0. 3

Here o is the sum of the reaction radii of the hard-sphere species X and Y with
radius oy and oy, respectively, and D is the sum of the diffusion constants yy
and yy. The derivative in the boundary condition is taken in the radial direction
at ||r|| = o. The probability density for the common center of the two molecules
obeys a diffusion equation as in (2), see [143]. The bimolecular chemical reaction
is modeled by the Robin boundary condition, where the rate of change of the
probability of reaction at the contact point between molecules is proportional to
the intrinsic, or microscopic, reaction rate constant k,.. This parameter is in practical
modeling normally considered to be a given parameter, but it can also be related
to other fundamental constants and the probability of reaction given a molecular
encounter [61, Chap. 4.8].

2.2 Software for Microscale Simulation

Software packages for particle-based simulation can roughly be divided into two
categories: approximate Brownian Dynamics where the microscopic model is
approximated in some formal sense, relying on discretized time or space, and those
relying on a mathematically systematic approximation to (2) and (3). The former
category includes Smoldyn [4, 5] and MCell [90]. Smoldyn relies on continuous
space with discretized time, while the latter uses a number of discrete spatial
directions in which the molecule can move. Spatiocyte [147] uses a microscopic
molecule-sized hexagonal lattice and updates the system in a rule-based manner.
For a recent and more comprehensive review of particle-based simulation tools, see
[130]. Brownian Dynamics becomes expensive due to the need to take small time
steps to resolve molecule collisions with discretized time but naturally accommo-
date volume exclusion effects at high molecular densities. At low to intermediary
densities, Green’s function reaction dynamics can be a more efficient alternative.
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2.3 Green’s Function Reaction Dynamics

Simulation of the SDLR model by solving (2) and (3) and using the solution to
sample particle positions and reaction events is relatively straightforward for a single
molecule pair, but quickly becomes intractable for multiple molecules and reactions.
In Green’s function reaction dynamics (GFRD) [143] this problem is addressed
by grouping molecules and restricting the time step such that it is unlikely that
a molecule react with a molecule other than its closest neighbor. In this way, the
many-body problem is simplified to solving many two-body problems over a shorter
time window. The method is implemented using analytical solutions to (2) and (3),
tabulated values or for increased flexibility with operator splitting and numerical
solutions [71]. For relatively dilute systems, the GFRD methodology can result in
much faster simulations for the same accuracy level compared to more traditional
reactive Brownian dynamics codes [143], especially if the first-passage time Kinetic
Monte Carlo (fpKMC) [24, 117] algorithm is employed, such as in the eGFRD
software [136].

In many situations, especially if reactions are not too diffusion limited or if there
are higher copy number counts of most species, a mesoscopic model in which space
is discretized and the number of particles at each location in space is only tracked
up to the chosen spatial resolution can offer far more efficient simulations than the
microscopic methods.

3 The Mesoscopic Scale

Below we summarize the physical and mathematical background for mesoscopic
stochastic modeling of chemical reactions. The very term “mesoscopic” suggests the
level somewhere between the microscopic and the macroscopic levels of description.
The state variable is the same as in the latter (number of molecules or concentration),
but randomness has been introduced in order to better capture the microscopic
conditions.

A traditional derivation of the chemical master equation (CME) from micro-
physical assumptions is given in Sect. 3.1. Direct solution of the CME is chiefly
discussed in Sect. 3.2 and in Sect. 3.3. The spatially inhomogeneous case is
introduced in the form of a general modeling formalism. Different types of sampling
algorithms are summarized in Sect. 3.4 and consistency relations with microscopic
models in the diffusion-limited context are discussed in Sect. 3.5.

3.1 Derivation of the CME

Derivations from first principles of mesoscopic models of well-stirred chemical
reactions are found in [32, 57, 58]. The typical assumption is that of an ideal gas and
this is essentially the path we take here, adapted from [34]. See also the monographs
[53, 142] which treat general Markovian systems in physics.
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To be concrete we shall consider a reactive system of X- and Y-molecules moving
around in a vessel Q of total volume [€2|. We assume that a single bimolecular
reaction occurs

X+Y—0. 4)

In a probabilistic description of the system, let x(¢) and y(f) count the two kinds of
molecules at time ¢. Let C be the event that a randomly sampled pair of molecules
collides in the interval of time [t,¢ + df) and let V(v) be the event that this pair
of molecules has relative velocity v = vy — vy. P(C) may now be expanded as a
conditional probability,

va=/waw»wax 5)

with P(C|V(v)) the probability that two randomly selected molecules collide given
that they have relative velocity v.

1. Assuming that the system of molecules is homogeneous, the probability of find-
ing any randomly selected molecule inside some volume A is just |AQ2|/|€2].
Hence we deduce

p(v, dr)
Q] -

P(CIV(v)) = (6)

where p(v, dt) is the volume of the region in which an X-molecule with speed
v = ||v|| relative to a Y-molecule lies, given that the pair is to collide in [z, t 4+ dt).
This region is an extruded shape of length v df and obeys the scaling law

plav, Bdr) = afp(v, dr). (M
It follows from (7) that the conditional collision probability in fact simplifies into

pv dt

P(CIV(V)) = ol

®)

where the constant p depends on the precise shapes of the molecules.

2. In addition to the homogeneity of the solvent, we assume also that the system
is in thermal equilibrium. This means that the probability distribution over the
velocity is time-independent,

P(V(v)) = Pyp(v)d’v, )

where the Maxwell-Boltzmann distribution is the usually assumed stationary
distribution.
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Combining (5), (8), and (9) we find that

pvd pE[|vI]
d’v =
12 12|

P(C) = / Pyp(V) dr. (10)
v

The main importance of this finding is the linear scaling with dt as this implies the

existence of a describing Markov chain.

We now wish to determine the probability that exactly one pair of molecules
collides in [t, t + df). The total possible number of colliding pairs is just x(7)y(z). By
homogeneity, the event that only one of these pairs collides is formed from a total
of xy independent events and the probability for this is

k/|1Q|di(1 — k/|Q]dy®" = k/|Q| dt + o(dr), (11)

where k = pE[|v||] from (10). These events are mutually exclusive and the
probability for a single collision is therefore obtained directly by summation.
Moreover, the probability that n > 1 reactions take place is O(dt") = o(dt). Hence
we have the probability that in [, 7 + dt),

* exactly one reaction takes place is kx(¢)y(z)/|2| dt + o(dt);
e more than one reaction takes place is o(dt);
e no reaction occurs is 1 — kx(2)y(¢)/|2| dt + o(dr).

To fully characterize the system, we use the state vector z(f) = [x(r) y(®)]”,
counting the two kinds of molecules at time z. Define also the bimolecular reaction
propensity

a(z) = kazuza = kx(1)y (1) /|€2]. (12)

Let z(0) be a given number of molecules at time + = 0 and let P(z,]z(0)) be
the conditional probability for a certain state z at time ¢ given this initial state.
We claim that

P(z,t + dt|z(0)) = P(z + [1; 1], £|z(0)) X [a(z + [1; 1]) dt + o(d?)]
~+o(drt) + P(z,t]z(0)) x [1 — a(z) dt + o(dr)] . (13)
The first term is the probability of the state being at z + [1; 1] multiplied by the
probability that the reaction occurs. The second term is the vanishing probability
of more than one reaction occurring and the third term is the probability of already

being in state z and remaining there.
Taking limits in (13) and suppressing the dependence on the initial state we find

P = ate + [ 1DPG + [1:1.0) — aPG. 1), (14)

This, finally, is the master equation for the well-stirred interpretation of the chemical
system (4).
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For the general system governed by (1), we have a state x € Zﬂ_ﬁ and we use the
notation

xﬂ)x—i—v;—v,, r=1,...,R, (15)

to mean that the probability that the state x at time ¢ turns into the new state x+ v/ —v,
at time ¢ + dt is a,(x) dt + o(dt).

Recall that the Markov, or memoryless property, means that the conditional
probability for the state (x,, t,,) given the system’s full history satisfies

P(xmtn|xn—l’tn—l; N xlvtl) = P(xnytn|xn—lvtn—l) 5 (16)

that is, previous states (x,—p,f,—2,...,X1,1) are remembered only via the last
state (x,—1,?,—1). A direct consequence of the Markov property is the Chapman—
Kolmogorov equation,

P(x3, t3]x1, 1) = ZP(Xs,I3|y, 1)P(y, t|xi, ). (17)

y

Given an initial state x(0), the time derivative of the conditional probability is
given by, using (17),

2, Pl t+ At y, )P (y,1]x(0)) — P(y, 1 + Atlx, ))P(x, 1[x(0))
At '

0 .
P O = i,
(18)

Taking limits and using the transition model (15) we obtain in analogy with the
reasoning that leads to (14)

R
(%P(x, )= a(x— v+ v)Px— v+ v.1) — a,(x)P(x.1), (19)

r=1

again after suppressing the dependency on the initial state. In conclusion, the master
equation (19) is a differential form of the Chapman—Kolmogorov equation (17),
in turn a direct consequence of the fundamental Markov property (16) under the
specific choice of transition model (15).

3.2 Solution of the CME

There are only a few analytical solutions to the CME [51, 85], typically when the
propensity a, is linear in x. The difficulty with straightforward numerical solution of
the CME in (19) is the exponential growth in the number of differential equations for
P when the number of species M grows (“the curse of dimensionality””). Based on
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the premise that “smooth” solutions to the CME can be effectively approximated, a
number of attempts have been made at solving the CME using an appropriate basis.
Examples include spectral methods [21, 35], a wavelet method [84], sparse grids
[69], projection-type methods [114], and sums of low dimensional tensors [89]. For
sufficiently high accuracy demands and not too high dimensionality, this is more
efficient than repeated Monte Carlo simulations as in Sect. 3.4.

All the moments of the distribution P(x, ) in the CME satisfy equations involving
one moment higher thus resulting in a moment closure problem. Assuming that the
third moments are negligible, a closed system of ODE:s is obtained for the first and
second moments [33, 45, 50, 64, 129, 142]. The size of the system is then M +
M (M + 1) /2 for the mean and the covariances avoiding the exponential dependence
of M in the CME. A special case is the linear noise approximation [29, 45, 65, 142]
for the first two moments where the mean values satisfy the reaction rate equations,
see Sect. 4.

3.3 The Reaction-Diffusion Master Equation

The CME fundamentally assumes that the solvent of molecules is homogeneous in
space and in thermodynamic equilibrium. There are several interesting situations
when those assumptions are broken. For example, when the molecular transport
is slow compared to the reaction intensity such that concentration gradients may
build up. Also, inside biological cells many reactive processes are localized and the
assumption of being well mixed no longer holds. A reasonable idea is to subdivide
the domain |€2| into smaller computational voxels V; such that their individual
volume size |V}| is sufficiently small to make them behave as approximately well-
stirred by the presence of diffusion.

As before we assume that there are M chemically active species X;; for i =
1,...,M, but now counted separately in the N introduced voxels, j = 1,...,N.
It follows that the state of the system can be represented by an array x with M x N
elements. The jth column of x is denoted by x.; and the ith row by x;.. The state x
is now changed by chemical reactions occurring between the molecules in the same
voxel and by diffusion where molecules move to adjacent voxels. Reactions take
place vertically in x and diffusion is horizontal.

Assuming each voxel to be approximately well-stirred the master equation (19)
is valid as a description of the reactions,

ap(x,t
PED — Mpix.
t
N R
ZZa,(x.j — V4V )p(Xps . X — VLV Xy, D)
j=1 r=1
N R
=3 ax)p(x.1), (20)
j=1 r=1

where, for brevity, p(x, t) = P(x, t|x(0)).
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A natural type of transition for modeling diffusion from one voxel V to another
voxel V) is the linear rate law

Xjp —> X,'j. (21)

It is understood in (21) that g;; is non-zero only for those voxels that are connected.
The rate g; should ideally be taken as the inverse of the mean first exit time for
a single molecule of species i from voxel V; to V;. By the properties of Brownian
motion, gy < y/ h,%j, where y is the diffusion constant, 4; is a measure of the length
scale of the voxels, and where the constant of proportionality depends on the precise
shape of V; [102].

The diffusion master equation can now be written in the same way as (20),

Ip(x. 1) M N N
= Z Z Zij(Xik + Dy pXie, ..o X+ Dy oo X, 1)
i=1 k=1 j=1
—qiXip (X, 1) =: Dp(X,1). (22)
The transition vector IDy;. is zero except for two components: Dy = 1 and

By combining (20) and (22), we finally arrive at the reaction-diffusion master
equation (RDME),

p(x,1)
ot

= (M +D)p(x,1). (23)

The numerical methods for solving the CME in the beginning of Sect. 3.2 are hardly
applicable to the RDME since the dimension of x in (23) is MN. An exception is
the finite state projection method in [25]. In general, we have to resort to the Monte
Carlo methods reviewed in the next section.

3.4 Simulation Algorithms

Due to the exponential growth in computing time and memory for direct numerical
solution of the CME in (19), Monte Carlo methods of less computational complexity
are a more efficient alternative to determine the statistical moments of the copy
numbers of the species and for simulation of the chemical networks. The first
presentation of simulation algorithms with applications in chemical kinetics is due
to Gillespie [56], although the algorithm of simulating continuous time Markov
chains actually dates back to much earlier work by Doob in the 1950s.

The most straightforward algorithm, the direct method, or usually just “the”
Stochastic Simulation Algorithm (SSA), continuously determines what is the next
event and when does it happen. The time for the next reaction is first sampled from
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an exponential distribution. Which reaction channel to fire is sampled based on the
reaction propensities. The state of the chemical system is then updated according
to (15) or (21). An SSA with improved efficiency is found, e.g., in [55]. SSA can be
recognized as a kind of a signature for explicit time-stepping methods and therefore
suffers drawbacks when stiff problems are considered with a large span of inherent
time scales; here a slow dynamics (of interest) is masked by rapid fluctuations and
transients (of less interest). Methods specifically designed for this situation with two
separate time scales are found in [15, 28].

Monte Carlo simulation with SSA using many trajectories for accurate estimates
of the moments is also time consuming. Let X be the (stochastic) state variable for
the system. Then it is shown in [96] that X(7) can be written

R t
X(1) =X(0) + Y _ ¥, ( / a,(X(s)) ds) 0. —v,), t>0. (24)
r=1 0

The state is updated with the stoichiometric vector v/ — v, multiplied by indepen-
dent, unit rate Poisson processes Y, depending on the integral of the propensity a,
of the reaction r. By choosing ¢ as a small time step Af, approximations of the
integral in (24) are possible. These approximations are then applied iteratively in
a time-stepping process. Time discretization methods, most importantly variants
of the Euler forward method, or the so-called tau leaping methods, were devised
early on for (24) [16, 59, 122, 140]. Such methods gain efficiency by offering a
less detailed simulation over longer times, but also suffers from stiffness issues and
the risk of having negative copy numbers. Recent further algorithmic improvements
and analysis with a switch between tau leaping and SSA are found in [112] and
convergence acceleration for expected values is obtained by the Multilevel Monte
Carlo method in [2].

Early approaches to handling spatial problems are found in [83, 133, 135],
and an effective spatial simulation method, the Next Subvolume Method (NSM)
was invented in [30] for Cartesian meshes. For general geometries, the work
in [38] connected traditional numerical discretization methods with the required
diffusion rates such that a consistent modeling framework was possible. Adaptive
Cartesian meshes are considered in [10] for simulation of systems with strong spatial
gradients.

Freely available spatial simulation software has since been released [26, 68, 77,
101]. Parallel algorithms for spatial problems are found in [6, 9], and is also ongoing
research.

3.5 Relationship Between the Microscopic and Mesoscopic
Models

The mesoscopic RDME (23) is not formally an approximation of any microscopic
model, but rather a model in its own right. It is more efficient than corresponding
microscopic simulations when the system permits a coarser approximation and
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hence a reasonably coarse mesh (relative to the molecule sizes). However, it is of
practical interest to ask to what extent it approximates certain microscopic models
as the mesh is refined. The key to defining the relationship between the RDME and
the SDLR model is the mesoscopic bimolecular reaction rate k, in (12), which in
most mesoscopic models to date is treated as a given modeling parameter. Given the
microscale parameters defined in Sect. 2.1, seminal work by Collins and Kimball
defines the classic relationship between the microscopic reaction rate &, in (3) and
the mesoscopic rate k, = k/|€2| in (12), where k is given by

4o Dk,

= (25)
4rwoD + k,

This relation is valid in 3D and only if the reaction volume |€2| is much larger than
the molecules, which for the RDME translates to the guidelines 4 >> o for the mesh
size h. This relationship was also derived more recently from a different perspective
in [60].

However, simply using the diffusional propensity function (25) does not guaran-
tee convergence to, or even a good approximation of, the SDLR model as 7 — 0.
Indeed, it was shown by Isaacson that if we let & tend to zero with a fixed reaction
radius o of the molecules, the rate of bimolecular reactions will successively
diminish to completely disappear in the limit [81]. Physically this makes sense as
a result of the point particle assumption in the RDME becoming invalid on small
spatial scales. In fact, there are fundamental limits to the smallest resolution 2*
in RDME at which any choice of mesoscale k, lets even the mean binding time
between two molecules match [74]. Expressed in terms of the reaction radii of the
involved molecules, these critical limits are given by

h* ~ 5.10 (2D), 3.26 (3D) (26)

provided that reaction rates are chosen according to [74]. For a proof that covers also
reversible reactions, see [75]. Then the result is independent of the reaction rate k,
if in addition microscopic reversibility and a physically consistent dissociation rate
are required. Above this limit, by treating the problem as a multiscale problem,
it is possible to arrive at alternative reaction rates by accounting for the level
of spatial resolution and by matching certain statistics of the microscopic model
[39, 43, 74, 75]. These reaction rates become scale-dependent and hence a function
of the mesh resolution 4, in addition to the microscopic parameters, gives superior
agreement with the SDLR compared to the classical constant (25). With a non-
local extension of the RDME, agreement with the SDLR model can be obtained
also below h* [43, 72] with good accuracy on fine spatial scales, but at a steeply
increasing computational cost as we approach a microscopic lattice method. In
[82] a convergent non-local RDME-type model is constructed as a consistent
discretization of the Doi model.
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In summary, special care has to be taken to ensure that a lattice-based RDME
model approaches one of the microscopic alternatives, and the expression (25) is
not the best choice for strongly diffusion-limited processes. Fortunately, there are
scale dependent alternatives that provide better results, but unfortunately there is to
date no simple a priori way of determining what mesh resolution will be needed
given some simulation accuracy tolerance and given a specific domain and set of
reactions.

4 Macroscopic Models

When the copy numbers x; are large in Sect. 3, a very good approximation of the

concentrations of the chemical species c;(r,7) = x;/|2|, i = 1,...,M, satisfies a
reaction-diffusion equation in the domain € with boundary 92

dc

E:V'(ch)—l—f(c,r),reQ,tiO. 27)

The diffusion tensor y is a diagonal matrix here which may depend on r. In the
simplest case, y = yI and the diffusion is the same for all species everywhere in €2.
On 92 with the normal n, the molecules are reflected back into €2 with a Neumann
condition

n-Ve =0, (28)
and absorbed with a Dirichlet condition
c=0. 29)

Combinations of these conditions are possible on d€2. The reaction term f in (27)
depends on the propensities and the stoichiometry

R
fe.r) = > a(e.r)(v, —v,). (30)

r=1

The concentration ¢ is independent of r in a well-stirred system with a space
independent f. The resulting system of ODEs is then the reaction rate equations

dc

— =f(c), t > 0. 31
o (¢), 1> (31
If f in (30) is an affine function of ¢, then the mean values of the mesoscopic
concentrations satisfy (27). With a nonlinear f due to, e.g., a bimolecular reaction,
the solution of (27) is only an approximation of the mesoscopic mean values
[33, 142].
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The system (31) obeys mass-action kinetics if the propensities are

M

a,(¢) =k, ]_[ clm (32)

m=1

with a constant k,- > 0 that in the case of diffusion-limited kinetics and a bimolecular
reaction corresponds to the macroscopic rate constant k in (25). The mesoscopic
coefficient is «,/ |Q|Zm vim=l " ¢f. k, in (12) where > wVm = 2. The steady state
solution €¢s, = lim,—o €(f) of (31) with propensities as in (32) has interesting
properties independent of «, if sufficient conditions on the reactions R in [3, 44]
are satisfied. The graph of the reaction network must have a certain structure and a
weak form of reversibility of the reactions is required. The steady state is then, e.g.,
unique and it is asymptotically stable for any choice of k.

The mean square displacement (MSD) (||r||?(¢)) of a molecule starting at r = 0
at t = 0 and diffusing by Brownian dynamics is proportional to ¢. In observations
of, e.g., crowded environments with fixed or mobile obstacles [8, 79, 104, 109, 116,
128], the MSD behaves anomalously like

(lIrl*@) ~ =, (33)

at least in a time window in a transient phase with o € (0, 1). We have subdiffusion
for @ < 1 with a lower MSD for large ¢ than in ordinary diffusion with o« = 1. The
corresponding macroscopic equation for subdiffusion is then a fractional PDE [109]

%ec=V-(yVe), Te 2, t>0. (34)

The fractional time derivative is defined according to Caputo (C) or Riemann—
Liouville (R-L)

®u Te—1)™ u Tt—1)™
W = /0 matu(f) dt (C), W = at\/o F(l —(X) M(T) dr (R_ L)
(35)

Reactions with linear propensities can be introduced in this framework in different
ways, see, e.g., [76]. A mesoscopic model with internal states is proposed in [111]
and is extended to reactions in [12]. It does not seem to be clear how to include
general reactions involving many species with nonlinear propensities.

The reaction-diffusion equation (27) is discretized in space by numerical solution
with a finite element method (FEM) with linear elements [139], a finite volume
method (FVM), or a finite difference method (FDM). The diffusion operator can be
approximated by all three methods on a Cartesian mesh but if €2 is covered by a
more flexible unstructured mesh, then FEM or FVM is the preferred choice.

Assume that the N components of ¢,,(¢) are the nodal values of the concentrations
of the chemical species m in the mesh. After spatial discretization, (27) will be

3¢ =De,, +fu(er), 1>0, m=1,....M, (36)



Multiscale Simulation of Stochastic Networks 69

where f,, consists of the discretized reaction terms for species m. The elements of
the diffusion matrix D are such that D;; # 0, i # j, only if voxels V; and V; share
a common edge (2D) or facet (3D) in the mesh, cf. g in (21). If the boundary
condition is (28), then the diagonal elements satisfy D;; = —Z?’ZlD,-j < 0.
Discretization by FDM on a Cartesian mesh with constant step size s yields the
coefficients D = y/h* when i # j and D; = —2dy/h* where d is the dimension.
Using FEM and FVM, D can be written as

D=A"'S, 37

where A is a diagonal matrix with A; = |V;|, the area or volume of V;. If FEM is
used, A is a lumped mass matrix [139]. The stiffness matrix S depends on y and the
geometry of the discretization.

Based on the macroscopic discretization in (37), the mesoscopic jump coeffi-
cients between V; and V) in Sect. 3 are in [38] chosen to be

Wil _ Sy

G T G
To be interpreted as jump probabilities, g;; has to be non-negative. This is not
always the case in a FEM discretization on a general unstructured mesh of poor
quality where S; may be negative. The requirement that off-diagonal elements in
S are non-negative is a sufficient condition for ¢,, in (36) with f'm = 0 to satisfy
the discrete maximum principle [139]. Then with a non-negative initial solution
cni(0) > 0,m = 1,...,M,i = 1,...,N, the solution will stay non-negative
cmi(t) > 0 for all m and i when r > 0 and maxima in € will not increase and
minima will not decrease. The same maximum principle is satisfied by the analytical
solution of the corresponding parabolic PDE. How to modify the FEM discretization
to achieve §; > 0 and to improve the mesh generation are discussed in, e.g.,
[13, 41, 94]. An alternative to deriving g;; from (37) is to use the first exit time
as in [102] resulting in non-negative gj;. In [107] a slightly different problem with a
modified diffusion tensor p is solved, guaranteeing that g;; > 0. Jump coefficients in
a Cartesian mesh with a boundary cutting irregularly through the mesh are derived
in [83] with the immersed boundary method.

The time scale of some of the reactions in (36) is sometimes much faster than
the time scale of the other reactions and the diffusion. The ODE system in (36)
is then stiff calling for dedicated numerical methods suitable for such problems.
Another numerical difficulty is the nonlinearity in f,. By splitting the operator on
the right-hand side and alternately solve for the diffusion and then solve for the
reactions in a time step of length At the discretization error is proportional to Az
in Strang splitting [132]. Each separate step is then computationally much simpler
than a direct solution of the full set of time discretized equations. This procedure
works well for moderately stiff problems but may cause a loss of accuracy for very
stiff equations [131].

The relation between the solution of the ODE system in (36) and the mesoscopic
model in Sect. 3 is investigated in [7, 95]. It is proved that if the mesoscopic system
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approaches the thermodynamic limit and the system size grows, then its concentra-
tions converge to the concentrations solving the reaction rate equations (31). In our
case, the system is the ODE system in (36) for a given space discretization with
voxels V;, i=1,...,N.

S Hybrid and Multiscale Models

As a consequence of the inherent complexity of biochemical pathways in a cellular
setting and the very disparate scales in reaction rates, diffusion constants, and
molecule copy numbers, simulation of cellular control systems is a multiscale
problem. Simplifications are possible in such systems, reducing the computational
complexity. For example, two levels of modeling can be combined in a hybrid model
incorporating two different scales of the mathematical representation of the system.
In some cases, it may be necessary to include an accurate description of only a few
molecular species at the microscopic level while most of the species can be well
represented at the mesoscopic level, suggesting a micro-meso hybrid model. Large
numbers of molecules of certain species are well modeled deterministically and
should be simulated on the macroscale, but in the same model it might be necessary
to resolve a few species where the randomness is important to capture. Then a hybrid
model between the meso level and the macro level is recommended.

5.1 Microscopic—Mesoscopic Methods

By blending the microscopic and mesoscopic level, simulations can be constructed
that attain high level of detail in critical areas of space or that treat strongly
diffusion-limited kinetics accurately without resorting to a full Brownian Dynamics
simulation or a very fine space discretization.

In [39, 43, 73], simulations are conducted on lattices, but with reaction propen-
sities chosen systematically to match properties of the microscopic model. With
appropriately chosen reaction rates, the mesoscopic model is transformed into a
microscopic lattice model. These approaches have been discussed in Sect. 3.5.

In [73], an adaptive hybrid method is proposed that uses a background discretiza-
tion of the domain with an unstructured mesh, and then partitions the system into
either microscopic or mesoscopic degrees of freedom in each voxel of the mesh. The
mesoscopic part is simulation with the RDME as implemented in URDME [26] and
the microscopic part with GFRD [143] as implemented in [71]. The system can
be split such that the domain is partitioned with interfaces between the microscopic
and mesoscopic regimes, but also based on species so that strongly diffusion-limited
reactions are captured on the microscopic level, avoiding the problems discussed in
Sect. 3.5.In [92] the RDME is combined with Brownian Dynamics with bimolecular
reactions implemented according to [100].
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In [47, 48], the focus is on the diffusive interface, providing accurate transitions
between the microscopic and the mesoscopic regimes. The method is extended
to moving interfaces in [123]. The off-lattice software Smoldyn in Sect. 2.2 is
enhanced in [124] by the hybrid method in [47, 123] for simulation of coupled
microscopic and mesoscopic models.

5.2 Mesoscopic—Macroscopic Models

Mesoscopic simulation of a chemical reaction network with SSA may be very
expensive if the copy numbers are large and if there is a considerable variation in the
time scales. The different time scales in SSA simulations are due to the differences
in reaction propensities. They depend on the reaction rate constants «, and the copy
numbers of the species involved in (32).

In [67], ODE:s are solved for the fast reactions and the slow reactions are modeled
by a Markov process. There are fast numerical methods for stiff ODEs avoiding all
the small time steps in the original SSA, thus saving computer time.

Another way of splitting the system is by treating species with large copy
numbers as concentrations while species with small copy numbers such as genes
as discrete variables. The motivation for this is the law of large numbers in [95].

A scaling parameter Q in the split system is introduced in [7, 87]. When Q — oo
convergence is proved to a limit system. The time scale of a species is determined
by Q and the time scale of a reaction is derived from the scaling of the reaction
rate and the copy numbers of the species involved in the reaction. The analysis in
[87] is the basis for an algorithm in [78]. The reactions are split into continuously
advanced reactions and a set of reactions firing at discrete events. The ODE system
is integrated with discontinuous jumps in the right-hand side caused by the discrete
events in a piecewise deterministic Markov process (PDMP) [20]. The species are
measured either as continuous concentrations or as discrete copy numbers. The
algorithm adaptively changes the scaling when the copy numbers change in the
time interval of interest. A different but related idea is analyzed in [36], where the
macroscopic model is employed in the form of a preconditioner to the mesoscopic
one, thus bringing parallelism to an otherwise fully serial stochastic description.

The partitioning of the reactions into a fast set and a slow set is proposed
also in a similar algorithm in [52, 113]. The error in the partitioning is estimated
and determines when a reaction switches between the two sets. Another PDMP
algorithm reducing the computing time is found in [18] where it is applied to gene
networks. In [86], the rate of convergence is determined of marginal distributions
computed by a PDMP. The rate is inversely proportional to a size parameter.

An alternative is to approximate the reaction network by a stochastic differential
equation using Langevin dynamics for the fast reactions and SSA for the other
reactions as in [127]. This approach is further developed with a blending region
and is analyzed in [27].
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Space dependence and diffusion introduce a special structure in the discretized
mesoscopic model. Using operator splitting, reaction events are simulated with SSA
and diffusion is treated with SSA, tau leaping, or macroscopic equations depending
on estimates of the error in the approximations in [38, 46]. A path-wise stochastic
analysis of similar split-step and multiscale approximations has very recently been
developed [17, 37].

An analysis of a coupling scheme between the microscopic and the macroscopic
levels of approximation is found in [49].

6 Discussion

We have reviewed computational methods for stochastic and deterministic models
for biochemical reaction networks in cells. These models have different levels
of accuracy, from the microscopic or off-lattice level, via the mesoscopic or on-
lattice level to the macroscopic or PDE level of modeling. The focus is on systems
with a spatial variation where molecules are transported by diffusion. Then Monte
Carlo simulation is the only viable alternative for the forward problem to study the
stochastic systems. A few areas of research related to the issues in this review are
briefly mentioned below.

The models have parameters and initial conditions assumed to be known
from experiments. The inverse problem of inferring the parameters given often
noisy measurements has been addressed for the well-stirred problem, see, e.g.,
[19, 50, 93, 98, 99, 125, 126, 129, 148, 149], and for diffusion [120]. Parameter
inference requires multiple solutions of the forward problem and comparison with
data thus increasing the computational burden substantially.

If the diffusion parameter of a species is measured in vitro, then the observed
diffusion in vivo is usually much slower. The reason is the excluded volume effect
caused by other large molecules in the cell not included in the model [8, 79, 104].
Such molecular obstacles occupy up to 40% of the cellular volume. Crowding is
introduced in the microscopic model in a natural way by including chemically
inert molecules. At the mesoscopic level, the molecules are point particles and
the diffusion rate has to be lowered somehow to account for the crowding. In
[137] a volume-excluding compartment-based method that uses lattices on multiple
resolutions is proposed. An open modeling question is how the reaction rates change
at the mesoscopic and macroscopic levels.

The majority of studies and methods developed to date focus on diffusive
transport, with some exceptions considering also active transport. In a spatial model
based on PDEs, the role of active transport was discussed for the Hesl and p53-
MdM2 networks in [134]. Since most intracellular processes in eukaryotes involve
a combination of diffusion and active motor-driven transport, more methodological
research is needed to provide simulation methods capable of capturing also these
effects. In [70] the RDME was extended to include active transport on fibers
modeled through a mesoscopic velocity field and an advection term at the macro-
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scopic level. A GPU implementation based on diffusion-drift stochastic differential
equations was proposed in [145].

Another grand challenge for spatial stochastic simulations will be to couple the
intracellular kinetics to biomechanics in order to model, e.g., growing domains
or phenomena such as mechanosensing in which mechanical stimuli from the
environment or touching cells provide input to the intracellular pathways [80].
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Numerical Methods for Stochastic Simulation:
When Stochastic Integration Meets Geometric
Numerical Integration

Assyr Abdulle

1 Introduction

In this paper we review a recently developed framework to construct and analyze
efficient numerical methods to approximate expectation of a functional of stochastic
processes. This is a basic problem for many applications in biology, chemistry or
physics [15]. For example, in molecular dynamics where a fundamental issue is
the computation of macroscopic quantities, typically functionals of some variables
of the system with respect to a given probability measure often given by the
Boltzmann-Gibbs density. The associated numerical problem consists in solving
high-dimensional integrals that are most often approximated through ergodic
averages of stochastic dynamics obtained from solutions of stochastic differential
equations (SDEs), e.g., Langevin SDEs [24]. The approximation of functionals of
a stochastic process also arise in multiscale stochastic systems. In the SDE context,
one would like to solve, for example, systems of the type'

dX = f(X,Y)dt,

1 1
dY = —g(X,Y)dt + —=0o (X, Y)dW(¢),
& ﬁ

where W(r) is a Wiener process and ¢ is a parameter ¢ < 1. Classical stochastic
solvers will need a time-step that resolves the fast dynamics resulting in a large

ISee Sect. 1.1 for a precise definition.
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computational cost. For classes of such multi-scale problems, averaging or homog-
enization techniques [33] can lead to more efficient numerical integrators. This is the
case, for example, when an effective macro dynamics exists, i.e., when the existence
of an equation of the form dX = lim,_ [r X,Y )dui-((dY)dt = F(X)dt, where J7es
is an invariant measure for the fast dynamics of the above system with X = X
fixed can be established. In this situation, one can implement a multiscale scheme
that consists in sampling the fast variable while the slow variable X, is fixed at
time 7,, perform an averaging to recover an approximation F(X,,) of the force F(X,,)
and use a macroscopic solver to advance the effective dynamics to time #,4, e.g.,
Xor1 = X, + hF (X,) (see [3, 13, 39]). Such multiscale methods have also been
developed for stochastic partial differential equations [1, 8]. One of the main issues
for such fast—slow numerical techniques is the computational cost of the repeated
computation of the effective forces, relying on the approximation of the invariant
measure of the fast process. Accurate approximation of invariant measures is a
central issue in such stochastic computations [13, 26]. We note that an algorithm
based on the solution of a Poisson problem obtained from the generator of the
fast system is also promising for classes of SDEs (or SPDEs) with multiple scales
[6]. For the numerical approximation of ergodic SDEs, one faces several important
questions:

1. does the numerical method have an invariant measure ?
2. how close is the numerical invariant measure to the true one ?
3. how close is the time-averaging method to the invariant measure ?

In this paper we will mainly discuss the second question. We note that many authors
have discussed the first question (see [27, 31, 32, 35, 38] and the references in these
papers), for the third question there are also a large body of contributions and we
refer to the textbook [17, 20, 30] for references.

Fast—slow processes are also ubiquitous in biology when simulating N chemical
species {S;}_, interacting through M reaction channels {R;}!.,. The state of the
system is specified by the vector X; = (Xy,, ... , Xn:)T that can be shown to evolve
according to a Markov process. Sampling trajectories can be computed according
to the stochastic simulation algorithm by updating the waiting time to the next
reaction and selecting the next reaction that occurs. This numerical algorithm is
called the stochastic simulation algorithm (or Gillespie algorithm, see [16] for a
review). In a multiscale context, when some reaction channels occur frequently on
a timescale for which others will only rarely take place, a large computational effort
will be needed to see the dynamics of some slower reaction channels. In this context,
multiscale algorithms that share similarities with the above SDE situation have been
developed. We mention the nested SSA [14], the slow-scale SSA [10] that are both
based on quasi-steady approximation (the time scale separation between fast and
slow processes allows for the fast process to equilibrate before significant change in
the slow process occur). Here again, part of the computational effort is devoted to
compute the equilibrium of fast process.
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The framework presented below for constructing and analyzing stochastic
integrators for the computation of expectation of functionals of stochastic processes
for both finite time or long-time dynamics has been introduced in [2, 4, 5]. While this
framework has been applied to SDEs, applications to discrete stochastic processes
might be an interesting topic to explore in the future.

1.1 Setting and Definitions

We consider a d-dimensional SDE
dX = f(X)dt + g(X)dW (D), X(0) = X, (1)

where X, € E is the initial condition assumed deterministic for simplicity, and W(r)
is a standard m-dimensional Wiener process. The maps f : E — E, g : E — E"
are assumed to be smooth and the space E denotes either E = R? or the torus
E = T9 and is specified when needed. We will sometimes use the vector notation
g =(g',..., g™ for the matrix g(x), where g'(x) € E.

We consider a discrete numerical approximation of (1) given by

Xn+1 = \IJ(X”, h’ En)v (2)

for X, € E forn > 0, where W(-, h,§,) : E — E is the discrete numerical flow, &
denotes the time-step size, and &, denotes a random vector.

Several concepts of convergence can be used to measure how well the numerical
method (2) approximates the solution of (1). We briefly review here strong and weak
convergence, as well as convergence with respect to an invariant measure of (1)
provided such invariant measures exist.

1.2 Strong and Weak Convergence

We note by Cf)(Rd , R) the space of 1 < £ < oo times continuously differentiable
functions R? — R with all partial derivatives with polynomial growth. Likewise
ct (Td , R) will denote the space of 1 < { < oo times continuously differentiable
functions TY — R. To simplify the notation, we will define Pt (E, R) to denote either
Cf;(Rd, R) or CY(T?,R) and V*(E, E) to denote either Cf,(Rd, R9) or C*(T?, T9).
When needed the specific situation will be mentioned.

The numerical approximation (2), starting from the exact initial condition Xj
of (1) is said to have weak order p if for all functions ¢ € V>?TD(E R)

[E(¢ (X)) — E(@(X (1)) = CA”, 3)
and to have strong order p if

E(lxn - X(tn)|) = Chp’ (4)
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for any t, = nh € [0, T] with T > 0 fixed, for all & small enough, with constants C
independent of A.

Remark 1 'We will sometimes use the result [29] (see [30, Chap. 2.2]) of Milstein
that allows to deduce global weak order from the local weak error, i.e., the
weak error after one step. The results are as follows: assuming that f,g" €
V20+D(E,E),r = 1,...,m are Lipschitz continuous, that for all » € N, the
moments E(|X,|?") are bounded for all n, i with 0 < nh < T uniformly with respect
to all i sufficiently small (this condition only applies for the case E = R9), and
that for all ¢ € V>?+D(E,R) and all initial values X(0) = X, the local weak error
satisfies

IE(¢(X1)) — E(p(X(11)))] < ChT! )

for all & sufficiently small, then the global error bound (3) holds. For the strong
error, conditions on local weak and strong errors are needed to infer global strong
convergence (see [30] for details).

1.3 Long-Time Behavior: Approximation of the Invariant
Measure

The above strong and weak convergence measure finite time approximation proper-
ties of the numerical solver (2) when applied to (1). Of interest in many applications
is the long-time approximation of ergodic SDEs (1), i.e., SDEs that have a unique
invariant measure p satisfying for each smooth integrable function ¢ and for any
deterministic initial condition X,

T
lim 1 / o (X(s))ds = / d()du(y), almost surely. (6)
T—oo T J, E

In this paper we will assume that the numerical method (2) is ergodic, i.e., that it
has a unique invariant probability law w” with finite moments of any order and

Z(]b(X )= /(b(y)d,u ), almost surely, @)

lim
N=>e0 N+1110

for all deterministic initial condition Xy and all smooth test functions ¢. To quantify
the second question we will say that the numerical method (2) has order p > 1 with
respect to the invariant measure if

elg.1)| < CH with e(g.h) := lim —qu( 0= [ #0an0. ®
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where £ is small enough and C is independent of /# and X, and the above limit holds
with probability one.

2 Tools Inspired from Geometric Numerical Integration

In this section we recall some classical tools of geometric numerical integration
for ODEs, developed in particular for the analysis of the long-time dynamics of
symplectic integrators. We refer to [18] for a comprehensive presentation and
detailed proofs of the claims made below. Consider an ordinary differential equation
written in autonomous form for simplicity

ax
i fX) )

X(0) = Xo,

where t > 0, f : E —> E. We denote by ¢;(x) the exact flow of this differential
equation. We consider a one-step numerical method with constant time-step &

Xo+1 = Yn(Xn: f), (10)

where ¥, (+;f) : E —> E is the discrete numerical flow and the second argument of
V¥, just emphasizes the differential equation the numerical integrator is applied to.
We recall that the numerical method (10) is said to have order p if

Ui f) — on(x) = O+, (11)

for all sufficiently smooth differential equations (9).

2.1 Backward Error Analysis

We assume that the numerical method can be expanded as
Y (6 f) = x + b (x) + KPdi (x) + Ky (x) + - - (12)

We note that the form of the two first terms in the above expansion is required
for a consistent method. The idea of backward error analysis is to find a modified
differential equation

X . ~
= _ X),
dt h,s( )
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X(0) = Xo, (13)
where?

Fus () = FQ) + i (x) + WH () + -+ + B (), (14)

and to construct f;(x) such that ’)\(’(h) Vn(x:f) = O(W*?) for h — 0. It then follows
that X (tn) =X, + O(h”l) for &~ — 0 and bounded times ¢, = nh < T. We denote
by @;(x) the flow of the differential equation (13). To compute the function f2 f3, e
one expands the solution of (13) into a Taylor series and compare the power of &
with (12). In this respect, we have the following lemma

Lemma 1 If the numerical method (10) is of order p with Y, (x;f) — on(x) =
WP, 41 (x)+O(RPF?), then (assuming s > p) the function fy,; given by (14) satisfies

Frs() = f(x) + Wfp(x) + -+ A (), (15)

where f,(x) = 8,11(x).

We next rewrite the exact and modified flows in terms of differential operators.
If we define the Lie derivative by Lp = f - V then, provided that f is M + 1 times
continuously differentiable, the flow of (9) satisfies

M

Plon(0) =~ —(z $)(x) + O+, (16)

k= o
for all smooth test functions ¢. Likewise for the modified Eq. (13) we have

M

P@n00) =D~ —(.c $)(x) + O+, (17)

k= 0

where ZD = fh,s - V. We note that if f is analytic in a complex neighborhood of
x and the one-step integrator (10) is a Runge-Kutta method, then the coefficients
dj(x) of (12) and the functions fj(x) of the modified Eq.(13) are also analytic
[18, Chap. 9]. The expressions (16) and (17) then read ¢(¢:(x)) = e'“P¢(x) and

& (@,(x)) = e“P¢p(x), respectively. If a numerical method has order p, then it holds

PP (x) — p(Yn(x:f) = OHTY)

and by definition of the modified Eq. (13) we have

2Formally in backward error analysis one considers an infinite series ﬁ,(x) = f(x) + hfi(x) +
h2f(x) 4+ -+ such that X (tn) = X, atf, = nh. But the infinite series for f, is usually not convergent
and one needs therefore to consider an appropriate truncation.
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0B (x) — PP (if) = Oh).

2.2 Integrator Based on Modified Equations

The approach of modifying integrators that first appeared in [11] consists in
using a modified differential equation in order to construct higher order numerical
integrators while preserving geometric properties like symplecticity. Consider an
integrator (10) of order p for the problem (9). The idea to derive a more precise
numerical integrator [still for the problem (9)] is to construct a modified differential
equation for s > p

dX . .
7}5 —jn®) (18)
X(0) = Xo,
where
Jus@) = () + HFp(x) + - + Hfy(x) (19)

such that when applying the integrator (10)—(18) it has order s + 1 for the original
Eq. (9) that is,

Ui fis) — en(x) = O(H*2),
or in terms of Lie derivatives
P Wn(x:finy)) — PP (x) = OKF?).
The functions ﬁ(x) can be uniquely defined by the condition that X(h) =

V(e frs) + OR+2) for h — 0 and it then follows that X(1,) = ¥4 (Xu—1:fis) +
Om*) for h — 0 and bounded times t, = nh < T.

3 A Framework for Constructing and Analyzing Stochastic
Integrators

We recall that associated to the SDE (1), there exists a differential operator £, called
the generator of the SDE, defined by
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1
ﬁ::f-v+§ggT:v2, (20)

where V2¢ denotes the Hessian of a function ¢ [scalar product on matrices are
denoted A : B = trace(A”B)]. Then the function u(z,x) = E (¢(X(£))|Xo = x) is
the solution of the partial differential equation, called the backward Kolmogorov
equation, given by

ad

a—”: =Lu,  u(x0) = ¢, @)
where ¢ € V*°(E, R). Using a Taylor expansion together with Eq. (21) gives a series
for u(t, x) in terms of the generator of the SDE [12, 41]

E'w(x) + T n(f. 8. ¢) (). (22)

l
ue.h) =9 =) 5

J=1

where under appropriate smoothness on f, g, ¢ the remainder r;(f, g, ¢) has poly-
nomial growths (E = RY) or can be bounded (E = T¢). We next consider for the
numerical method (2) the function

U(x, h) = E(¢(X1)[Xo = x), (23)
and assume that it can be expanded as

U(x, h) = ¢(x) + hAo(f. 8)p (x) + WAL (f. ) (x) + -+ (24)

where A;(f,g), i = 0,1,2,... are linear differential operators that depend on the
choice of the integrator with coefficients depending on f, g, and their derivatives.
Assume also that forall i =0,1,2,...

Aif +1f, g +n8) = Af. ) + nAi(f.f.8.8) + O, (25)

where A;(f.f. g.8) + O(?) is again a differential operator. As [see (5)] we have
IE(¢(X1)) —E(p(X(t1)))| = |U(x, h) — u(x, h)| for all methods of weak order p > 1
we must have Ay = L (consistency condition). Furthermore, a method of weak local
order p > 1 satisfies

p+1

IE@ (X)) — E@X(1))| = w*! (A,, ~ G T

) d(x) + OWT?).  (26)

A global weak order result can also be expressed in terms of the above differential
operators [30, Chap. 2.2, 2.3]. Indeed we have

Theorem 1 Assume that f, g in (1) are C*° with bounded derivatives up to any
order and consider a numerical integrator (2) on [0, T| with an expansion of the
form (24) with bounded moments E|X,|*, k € N sufficiently large. Assume that
the numerical integrator has weak local order p with a constant C = C(x) with
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polynomial growth. Then, we have the following expansion of the global error, for
all p € VX (E,R),

T
E(p(X(T))) — E(p(Xn)) = H° /O E(e(X(s),9))ds + O™, (27

where Nh = T and ¥, (x, t) satisfies

Velx, 1) = (Ap /:1’“) u(x, 1), (28)

S+

and u(x, t) is the solution of (21).

3.1 High Weak Order Method Based on Modified Equations

We observe that an expansion of the type (24) holds for many numerical integrators
and hence (24) is not a restrictive assumption.

Example 1 We start with an example and consider the SDE (1) withd = m = 1
and define for Xy = x the (semi-implicit) 6-Milstein method by

Xoy1 = Xo + (1 = O)1f (X)) + Ohf (Xop1) + 8(Xa) AW,

438 ()80 (AW, 1), 29)

where the Wiener increment AW, are given by independent A(0, ) random
variables. Taylor expansion of (23) reveals that U(x, h) = ¢ (x) + hAo(f, )P (x) +
WAL, g)¢ (x) + O(h®) with

M0 = B[ W70 + 500 |00
43 [0+ 207 020 + S 0?40 G0

1 1
+3 [¢ (08 (x) + g ()] ¢ (x) + §g4(x)¢(4’ ®. (3D

An easy computation then shows that
1 1 1
(30 -a0.08) 0 = (5-0) (Forw + 3rwew) o'

1 1 1
+ ((5 - 9) S @8 + 3¢ @f @) + Zgz(X)g”(x)) 89" (x).
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In view of Theorem 1 we can deduce that this integrator has weak order one and
applying the integrator to a simple particular SDE (e.g. linear) reveals that it will
not be second order in general. Note that for 6 = 0 we recover the Euler-Maruyama
(EM) method X,,+1 = X, + Af(X,) + g(X,,) AW, that has also weak order one.
However, the more involved 6-Milstein method has better strong and mean-square
stability behavior for 6 > 0 [19].

Construction of higher order weak methods based on a basic classical integrator
for example (29) can be achieved by using the framework of modified equations
summarized in Sect. 2. Consider the following modified SDE based on (1)

dX = fi, (X)dt + gp(X)dW (1), X(0) = Xo, (32)

where
Jus() = f(x) + hfi(x) + -+ + (), (33)
8ns(x) = g(x) + hg1(x) + -+ + I’ gs(x). (34)

Inserting the expansion for f;, 5, g5 into the generator of the SDE (32) given by
o 1
Lo :=fis- Vib + 3 (@nsgi,) : Vig, (35)
yields
L=L+hLi+ 1Ly + -+ hL+ O, (36)

where for j = 1,2, ... s the operators £; is given by

1 Jj
Li=f; Vet 5 ) (&gl 1V, 37)
k=0
using the notations f, := f and gy := g. We will sometimes write £;(fj, 8, 81, ... &j)

to emphasize on which functions the coefficients of the operator depend. Going back
to the Example 1, we set p = s = 1 in the modified Eq. (33) and we obtain using
Assumption (25) for the 6-Milstein method applied to (32) the expansion

U, h) = ¢(x) + hLp(x) + B2A; (for, gr)P(x) + -+,
= ¢(x) + hL + K (L) + A (f. 9)p(x) + OU).

Hence to obtain a second order weak integrator for the SDE (1) we must in view of
Theorem 1 define f;, g; in the modified equations such that

1
L= (—Ez—Al),
2
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and in view of (30) we easily find that
A0 = (5-0) 7w+ 3 (5-0) 700,
1 1 1
@) = (5= 0)7 W + 3¢ W + 3w .
hence the integrator

Xn+l = Xn + (1 - Q)hfhl(Xn) + thh,l(xn-i-l) + gh,l(Xn)A‘/Vn

28 ()86 (AW, ). (8)

has weak order two when applied to a one-dimensional SDE (1). A priori the last
term of the above integrator should read % 8n1 (X gn1 (X)) ((AW,)? — h) but it can
be shown (direct calculation) that

E (g5 (X)gn1 () (AW,)? — h)) = E(g' (X,)8(X) (AW,)> — b)) + O(), (39)

and hence we can substitute g, ; with g in the last term of the modified integrator
without altering the weak order two of the method.

The scheme (39) can easily be generalized to multidimensional SDEs (see [2]).
We note that in general, constructing second order weak methods require to solve
many order conditions (system of equations) if relying on It6-Taylor expansion [36].
The integrator (38) derived in [2] belongs to a class of general weak second order
integrators derived originally by Milstein [29]. For § = 0 Talay proved second order
convergence in [37] and for & = 1/2, the scheme was shown to have favorable
stability properties for scalar SDEs with additive noise [19]. For 6 = 1, the method
seems to have first appeared in [2] where it is also shown that it possesses good
mean-square stability properties for scalar SDEs with multiplicative noise.

A general result for high order weak integrator based on modified equations can
be obtained recursively as follows: consider a numerical integrator (2) of order p
for the SDE (1) and assume that a modified Eq. (33) with s = p 4+ r — 2 has been
obtained so that (2) applied to (32) is an integrator of weak order p + r — 1 for the
original SDE (1), i.e.,

Ux,h) = ¢(x) + hAo(frptr—2: 8hp+r—2) + -+

+hp+r_1Ap+r—2 (fh,17+r—2 ) gh,p+r—2) + O(hp+r+ ! )

pptr—1
=¢x)+hL+ -+ m£p+r_l + WTR(f, g).

Consider now the SDE (1) and a modified equation withs =p 4+ r — 1
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Jrptr=1) = frpra (@) + BT (),

hp+r—1

Zhpt+r—1(X) = gnp+r—2(x) + gp+r—1(x),

then in view of the above expansion for U(x, h) we obtain

U(X, h) = ¢(x) + hAOVh,p+r—1» gh,p+r—1) + et hp+rAp+r—1(fh,p+r—1, gh,p+r—1)

_|_O(hp+r+l)

c hp+r—1 Ep+ .
= h e — =
¢ (x) + hL + LT—

Lyt (it ro1. 80811 8prt) + R(F.8)) + O,

where we used the assumption (25), the equality Ao(fip+r—1,8hptr1) =
ﬁ(fh,ﬁ,_l, 8hp+r—1), the expansion (36) and the fact that integrator is of order
p + r — 1 for the original SDE (1). We see that if we can find f,+,—1, gy+r—1 such
that the differential operator £, 1, satisfies

Lptr—1Uptr—1-8: 81>+ -+ &ptr—1) = LPY —R(f,g)

p+n)!
then according to Theorem 1, the integrator (2) will be of order p + r for the original
SDE (1).

The framework presented above and introduced in [2] has been further used to
construct new high weak order methods that are mean square stable and new high
weak order invariant preserving stochastic methods. In Sects. 3.2, 4.1, and 4.2 we
will further explain how this framework can be used to construct new high order
methods for the approximation of invariant measure of ergodic SDEs following
[4,5].

3.2 High Order Numerical Approximation of the Invariant
Measure of Ergodic SDEs

We now explain how ideas from backward error analysis and modified equations
can lead to efficient approximations of the invariant measure of ergodic SDEs. We
assume that the SDE (1) is ergodic (see Assumption 3.1 or 3.2) and that its unique
invariant measure p has a density function ps,. We recall that p is then the unique
solution of the Fokker-Planck equation

L*pso = 0, (40)
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where L*¢ = —V - (¢f) + %ggT : V2¢ is the L>-adjoint of the generator £ defined
in (20). We consider a numerical integrator (2) that we assume to be ergodic and
to have an expansion of the form (24) satisfying (25). To motivate our approach,
consider a numerical integrator of weak order p. Passing to the limit 7 — oo in (27)
we obtain for all ¢ € V*°(E,R) and h — 0,

e(p,h) = A0 + O, (41)

where e(¢, h) is defined in (8), for any deterministic initial condition, with A,
defined as

+o00
P = / /H;" ( p o+ 1)'£P+1) u(y, 1) poo (y)dydt, (42)

where u(x, t) is the solution of (21). Hence an ergodic numerical integrator of weak
order p is also of order p with respect to the invariant measure of (1). Next using the

L?*-adjoint of the differential operator 5 +1), —L= P — A reveals

+o00
* —+1
— [ [u0n (4 = ey ) pra

Now from (40), (£*)?*!ps = 0, hence if in addition to have weak order p the
numerical integrator also satisfies A; Poo = O then it will have order p + 1 with
respect to the invariant measure. Of course if it happens that the integrator is of weak
order p + 1, then necessarily A¥poo = 0, since in that case L/ /(p + 1)! = A,
It turns out that that there exist integrators of weak order p but not p + 1 that still
fulfill A} poo = 0.

We now discuss a generalization of the above result and derive order conditions
for constructing numerical integrators that approximate the invariant measure of
ergodic SDEs with high order. The starting point is again the expansion (24) for the
numerical method. We also derive a modified generator

L=L+) KL, (43)

i>1

but we now require, following the framework of backward error analysis, that its
expansion match (formally) the expansion of the numerical method, i.e.,

Ux.h) — p(x) = Z cf¢(x)

J>1

Using the above equality and matching equal power of & one obtains using (24)
[12,41]

1
Ln:An_E(ﬁLn—l+Ln—1£+'--)—..._. E'H_l. (44)
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Compared to the framework for ODEs recalled in Sect. (2) we face an additional
difficulty when trying to apply the ideas of backward error analysis in the SDE
context. Indeed, in view of (13), one would be tempted to truncate the formal
expansion for Z, say Ly = L+ va hWL;, and to consider the backward
Kolmogorov equation

aﬂ = ,CNIZN.

ot

However, the existence of a solution to the above PDE is not clear as ZN is no longer
a second order operator in general. The proper definition of the Eq. (43) is based on
the following result. Under appropriate assumptions on f, g, assume further there
exists a constant A and for all integer k > 0 constants Cy, ky such that for all > 0

lutt.) = [ 9OpmOIdler < Gl + e M Ipler G

where ||v(t,-)||c« denotes the sup norm of the function v(x,t) and its derivatives
with respect to x up to order k. Then it has been shown in [12] (E = T) and in [22]
(E = R) that for all £ € N, there exist smooth functions i, (¢, x) defined for all > 0
that satisfies for all N € N

ot
—N—LMN = ZLUN 1.

This result is used in the following lemma that is central in our numerical
framework. We will consider two distinct situations either

Assumption 3.1 E = T¢ and

 f,gare C™ functions on the torus T¢;

* the generator L is elliptic or hypo-elliptic;

e in the case where L is hypo-elliptic, we further assume the uniqueness of the
invariant measure of (1).

or
Assumption 3.2 E = R? and

e f, g are of class C*, with bounded derivatives of any order, and g is bounded;

* the generator L in (20) is a uniformly elliptic operator, i.e. there exists & > 0
such that for all x, £ € R?, x"g(£)g(§)"x > axTx;

s there exist C, B > 0 such that for all x € R?, x"f(x) < —Bx"x + C.

We note that under either of the above assumptions, the SDE (1) has a unique
invariant measure. For the case E = R?, (3.2) also implies that the density function
of pso of the invariant measure has bounded moments of any order, i.e., foralln > 0
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/ |x]" poo (X)dx < o0. (46)
Rd

The following lemma is valid either for the torus £ = T¢ [12] under Assump-
tion 3.1 or for E = R? under Assumption 3.2 [22].

Lemma 2 Consider L, the operators defined in (44). Then there exists a sequence
of functions (p,(x))n>0 such that py = peo and for alln > 1, fE Pn(x)dx = 0 and

Ly ==Y (L)*oumr. (47)
=1

For any positive integer N, setting

N
PNE) = poo(®) + ) ' pa(), (48)

n=1

then there exists a constant C(N, ¢) such that for all ¢ € V*°(E,R)

‘ / " () — / 6ol (¥)dx| < CN, )i, 49)
E4 Ed

where C(N, ¢) is independent of h.

We have seen in the beginning of this section if in addition to have weak order p
the numerical integrator also satisfies A; Poo = 0 then it can achieve weak order p+1
with respect to the invariant measure. We now assume that a numerical integrator
has an expansion (24) with differential operators A; satisfying

Ajfkpoozo, for j=1,...r—1. (50)

If (50) holds, then using Lemma 2 we can show that the numerical method has order
r with respect to the invariant measure. For example, assume A} poc = 0 then by
Lemma 2 L£*p; = —L} poo = (A} — 1(L£*)?)poo = 0 and using (48) with N = 1 we
obtain p"(x) = peo(x) + O(h?) and using (49) we see that we obtain a numerical
method of order 2 for the invariant measure. By induction, we have the following
theorem [4].

Theorem 2 Suppose that the SDE (1) satisfies Assumptions 3.1 or 3.2. Consider an
ergodic numerical method satisfying assumptions (24) and (25). Assume that (50)
holds. Then the numerical integrator has (at least) order r in (8) for the invariant
measure, i.e., for all ¢ € V*°(E,R)

e(p,h) =h" /0 - /T ) Avut(x, 1) poo (X)dxdt + O(h+1)
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o0
= —h’/ / u(x, )A* poo (X)dxdt + O(h™t1),
o Jm

where u(x, t) solves the backward Kolmogorov equation (21).

3.2.1 Construction of High Order Numerical Approximation of Invariant
Measure

Following Theorem 2, the task is now to construct a numerical method (24) such
that (50) holds. Of course a sufficient condition to fulfill (50) is by choosing a
method of weak order r. But this is not necessary as we will show here for a class
of SDEs with invariant measures of the form

Poo(x) = Ze™ VW (51

where Z = ( f d eV dx)_‘ is a normalization constant, and V is a smooth function
of class C*°. The construction is based on modified equations.

Theorem 3 Consider an ergodic system of SDEs (1) with an invariant measure
of the form (51) satisfying Assumption 3.1 or (3.2). Consider a numerical method
satisfying Assumptions (24) and (25) of order p for the invariant measure. Then, for
all fixed m > 1, there exists a modified SDE of the form

dX = (f + Wfy + -+ W) dt + gdW (52)
such that the numerical method applied to this modified SDE satisfies
A (W4 W o 1.8) poo =0 j=p.....p+m—1. (53)

Furthermore, if the numerical method applied to the modified SDE is ergodic, then
it yields a method of order (at least) r = p + m in (8) for the invariant measure
of ().

We observe in the above theorem that a modified Eq. (32) involving only the drift
term (33) is used. This theorem can be proved by induction. We sketch the ideas
of the construction of the modified equation and refer to [5] for details. Assume
that f;,j < k < p + m have been constructed and consider the scheme obtained by
applying the numerical method to the modified SDE

dX = (f + -+ h""fir) dt + gaW
so that the numerical integrator (24) applied to this modified SDE satisfies (53) for

J < k. Using integration by part and the form of the differential operator A; it can be
shown that
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/ (Ax) poodx = / (Axp)poodx, forall ¢ € VX (E,R), (54)
Ed Ed

where Ay = (f + -+~ + i fi_1. 9), Ay is of the form A, = —F - V, for a certain F.
From (54), we deduce

AF(F+ -+ K fio1. 8) poo = div(Fpoo). (55)
We set f;, := F. Since Ay = L we have
AS(F+ -+ K i + 1 g) ¢ = AL (F + -+ K i1, g) ¢ — Kidiv(fi).
using (24), (25), and (55) we obtain

AL+ + K s + 1 g) oo
=Af (f+ -+ 17 fic1. 8) poo — div(fipoo) = 0.

Together with an induction argument, this shows (53) and using Theorem 2, we
conclude that the scheme applied to the modified SDE (52) has order p + m for the
invariant measure.

4 Construction of High Order Numerical Methods
for Ergodic Dynamical Systems

In this section we discuss the actual construction of high order numerical methods
for ergodic dynamical systems. We will focus on special yet important classes
of SDEs, namely Brownian dynamics that describe the motion of a particle in a
potential subject to thermal noise and Langevin dynamics that models the motion
of a particle in a potential subject to linear friction and molecular diffusion [34]. In
both cases, we will use E = RY. We mention the recent work [40] that introduces
post-processing techniques for SDEs combined with ideas of modified equations [4]
that also allows to construct higher order methods for ergodic SDEs (see [9] for an
extension to SPDEz5).

4.1 Brownian Dynamics

The Brownian dynamics is described by the following SDE

dX(t) = —VV(X(1))dt + ocdW(f), (56)
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where V : RY — R is a smooth potential, 0 > 0 is a constant, and W =
(W1, ..., W7 is a standard d-dimensional Wiener process. The invariant measure
of this SDE, assuming ergodicity, is given by the Gibbs density function

Poo(x) = Ze 2VW/o7 (57)

where Z is a normalization constant. To illustrate the above theory, we first consider
the special case d = m = 1 and will mention the generalization later. As a basic
integrator, we consider the 8-method

Xot1 = X, + (1 = O)HfF(X,) + Ohf (X)) + VhoE,, (58)

where £, ~ N (0, 1) are independent dimensional Gaussian random variables. This
methods as weak order 1 when 6 # 1/2 and weak order two for 6 = 1/2. In
particular for & = 0 it collapse has to the well-known Euler-Maruyama (EM)
method. Note that for the SDE (56), f = —V’(x). We now construct a method or
order two for the invariant measure that is only of weak order one in general. For
the method (58), a direct calculation reveals that Ao = £ (due to the weak order
one) and

l2 " 02 " 04 4) v 02 /1 4! 200 411
Mo ="+ ST+ ¢ +9(ff¢ +7f¢+0f¢)~

Integration by part in (54) shows that
Y 1 / 02 1/ 4
A = —-(1-20) Eff + Tf ¢

hence according to Theorem 3 defining fi = —(1 — 29)(%f’f + %f”) and
applying (58) to the modified equation dX = (f + hfi)dt + odW will produce a
second order method for the approximation of the invariant measure of (56). We
note that for linear one-dimensional problems (56) the method (58) with 6 = 1/2
samples exactly the invariant measure (see [26]), hence it is not surprising that
fi = 0in that case.

For the multi-dimensional case (56), we can go through the same derivation by
setting this time f = —VV/(x). One obtains fj = —(1 — 29)(%}"]‘ + %Af) and the
scheme

Xot1 = Xo + (1 = OK(f + hf)(X,) + Oh(f + b)) Xos1) + VhoEr,  (59)

with §,; ~ N(0,1),i = 1,2,...,d will be of second order for the invariant measure
of (56).
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4.1.1 Removing Derivatives in Integrators Based on Modified Equations:
Runge-Kutta Formulation

In general numerical integrator based on modified equations need to evaluate
derivatives of drift or diffusion functions. Sometimes such derivatives are cheap
to compute [11]. When such a computation is not convenient, the derivatives
appearing in these integrator can also be aproximated by “finite differences”
introducing internal stages. For example, consider the modified Euler-Maruyama
scheme obtained from the above modified # method with & = 0 (multi-dimensional
case)

2
Xn+1 = Xn + h (f(Xn) - h%f/f(Xn) + %Af(xn)) + \/EO'&'”. (60)

One can check that the derivative free version

Y = X, + V20 VhE,

Yy =X, — %hf(yl) + ?ox/ﬁ&

1 4
Xp1 = Xo = Shf(1) + S (Y2) + ohé,, (61)

£.0 =~ N(0,1),i = 1,2,...,d is also of weak order 1, while approximating with
second order the invariant measure of (56). This can be seen by checking that the
same operators Ay, A; appear in the expansion (24) of both schemes.

We close this section by a numerical experiment with the above derivative
free second order method for the invariant measure. We consider a Brownian
dynamics (56) with a two-dimensional quartic potential V(x) = (1 —x%)? + (1 —
)c%)2 + 2 4 2. We emphasize that doing so we depart from the case of Lipschitz
vector fields for which our theory apply. We will see numerically that we still
get the right order of the invariant measure under these weaker assumptions. The
Gibbs invariant density function is depicted in Fig. 1 (left picture). We consider the
Euler-Maruyama method [(58) with & = 0] and the second order modified Euler
Maruyama method (61). We see in Fig. 1 (right picture) that the modified method
captures the invariant measure with the rate predicted by Theorem 3.

4.2 Langevin Dynamics

We consider here the Langevin equation given by a second order stochastic
differential equation of the form

dg(t) = M~ p(1)dt, (62a)
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dp(t) = (=VV(q(0) — yp()) di + 2B~ yM'>aW (1), (62b)

where p(1), q(t) € RY, W(t) denotes a standard d-dimensional Wiener process, V :
R? — R is a potential, M is a symmetric positive definite mass matrix (taken as the
identity in what follows for simplicity), and the positive scalar parameter y, 8 are
related, respectively, to friction and temperature. The dynamics generated by (62) is
ergodic provided suitable smoothness and growth assumptions on the Hamiltonian
energy (see, e.g., [21, 28]),

1
H(p.q) = 5p"p+ V(a), (63)
with invariant measure given by the Gibbs density function [see e.g., (57)]
Poo(p.q) = Ze*ﬂH(p.q)7 (64)

where Z is the normalization constant. Efficient numerical integrators for Langevin
equations are based on the Lie-Trotter splitting [5, 7, 23, 25]

Xp1 = Dy 0 0,(X,), (65)

where X, = (,.g,)". The integrator @, approximates the exact flow of the
deterministic Hamiltonian part

dq(t) = p(1)dt, dp(t) = —=VV(q(0))dt, (66)
107
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Fig. 1 Figures adapted from [4]. Left picture: Brownian dynamics with quartic potential. Gibbs
density function. Right picture: Error e(¢, h) defined in (8) for ¢ (x) = x? + x2 for the EM method
(blue line with star symbol) and the modified EM method (red line with circle symbol). Standard
deviation is depicted by the vertical line obtained from the Monte Carlo error originating from ten
trajectories. The straight lines without symbols represent first and second order slopes
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while ®;,, is an integrator for the stochastic part given by

Gn+1 = qn, Dot = €V p, + VBTH(1 — e,

where &, ~ N(0,I) are independent d-dimensional Gaussian random variables.
This integrator has the same law of probability as the exact solution of the stochastic
part that is given by the variation of constants formula,

In+1
qtur1) = q(ta),  pltat1) = e ""p(t,) + V2B~ 1y f eI aAW (s).
h

For simplicity we assume that the potential V is a C*° function where VV
has bounded derivatives of any order and satisfies standard growth condition
q"VV(q) > Ciq"q — C,, forall ¢ € R? for C,, C, > 0, which guarantee that (62)
is ergodic and we assume that the numerical flow ®, is globally Lipschitz in R??. In
the non-globally Lipschitz case, one could resort to implicit deterministic integrator
to avoid exploding trajectories as studied in [21] or apply the theory presented below
for explicit integrators while rejecting exploding trajectories. This latter procedure
that has been rigorously analyzed in [31] and applied to ergodic Langevin problems
in [32].

Consider the numerical integrator X,+; = &, o 0,,(X,) with an expan-
sion (24). According to Theorem 2, if (50) holds, then the numerical integrator
will approximate the invariant measure of (62) with order r. To construct accurate
integrators with respect to the invariant measure we will as in Sect. 3.2 consider a
modified equation. As here the only integrator to be considered is a deterministic
integrator ®;,, we consider the modified deterministic ODE (13) s = r, where
f(@©) = (p(),—VV(q()))". The question now is how the condition A;‘,ooo =0

of Theorem 2 translates into a condition on the fj in (19) ?
The connection can be revealed by using the semi-group property of the Markov
process

E(p(X1)[Xo = x) = E(¢(P), 0 ©,,)(Xo)|Xo = x) = e"“S(p o D) (x),  (67)

for a smooth test function ¢ and x € R??, where ¢"“s¢ denotes the exact flow of the
Kolmogorov backward equation corresponding to the stochastic part of (62) with
generator Lg given by

Ls:=—yp-V,+ B yA,.
We then have in view of (16) with M = r

"\ Hhck "y
E(¢(X1)|Xo = x) = (Z TS) (Z k,D) $(x) + O™

k=0 k=0
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= ¢() +hLP(0) + Y KT Ap(x) + O,

k=1

where we recall thatZD :fh,r Vi=Fy+hFi+---+F,, where F; =f;-V, j=
1,2,...r and fy = f. Developing the sums in the above equality and identifying
power of % allows to find an expression for A, in terms of power of L and product
of operators Fj. It is then deduced that if

div(fpeo) =0,  j=1,....r—1, (68)

then Afpoo = 0, j = 1,...,r — 1 and A¥ peo = div(f,poo). Using Theorem 2 we
find

Theorem 4 Assume that @), is a consistent method for (66) with Lipschitz continu-
ous flow. If the vector fields in (13) (s = r) satisfy (68) with r > 1, then assuming
ergodicity, the Lie-Trotter splitting (65) has order r of accuracy for the invariant
measure of (62), i.e.,

o) = —I [O fR 100DV (. oo (p. ) + OG), (69

forall g € C°(RY,R) and h — 0, where e(¢, h) is defined in (8) and u(x, 1) is the
solution of the Backward Kolmogorov equation (21) for (62).
The condition (68) can be rewritten

div(fipeo) = (div(ﬁ) - Bfi: VH)poo.

Observe that div(f)) = 0 for all 1 < j < r — 1 is equivalent to the fact
that the deterministic integrator ®;, is volume preservation up to order r, i.e.,
det(d®,(y)/dy) = 1+ O, Also f;- VH = O forall 1 <j < r—1isequivalent
to the fact that the deterministic integrator @, is energy preserving up to order r,
ie., H(®,(y)) = H(y) + O(W""). Notice that any deterministic method of order r
will fulfill both conditions and hence will produce a Lie-Trotter splitting method of
order r for the invariant measure of (62) according to Theorem 4. In [7] it was shown
that sufficient conditions to preserve the invariant measure of (62) up to order r is
to consider a symplectic integrator in the Lie-Trotter splitting preserving the energy
with order r. The condition (68), first given in [5], is thus a weaker characterization
of high order Lie-Trotter splitting for Langevin dynamics. We also mention the work
[23, 25] where efficient non-Markovian schemes with second order accuracy for the
invariant measure of (62) have been constructed.

As an illustration of the above theory we consider three different deterministic
numerical integrators, namely the explicit Euler method,

Pnt1 = Pn—hVV(q,), Gn+1 = Gn + hpn,
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Fig. 2 Figures adapted from [5]. Langevin dynamics with quartic potential : error e(¢, h) defined
in (8) for ¢(p,q) = p* + ¢* and with deterministic flow in the Lie-Trotter splitting given by the
EM method (blue line with cross symbol), the symplectic Euler method (blue line with square
symbol), and the Heun method (red line with circle symbol). Standard deviation is depicted by the
vertical line obtained from the Monte Carlo error originating from ten trajectories. The straight
lines without symbols represent first and second order slopes

the symplectic Euler method,

Pnt1 = Pn —hVV(qn), Gn+1 = qn + hpu+1,

and the Heun method, a second order explicit method given by

h h
Pn+1 = DPn — IAA% (Qn + Epn) s qdn+1 = Yqn +h (pn - EVV(%)) .

Departing from the situation of globally Lipschitz vector fields (for which the theory
has been derived) we consider the Langevin dynamics (62) with a quartic potential
V(g) = (1 — ¢*)* — 1q. As for the previous case of Brownian dynamics we
observe numerically that the theory still apply and Fig.2 corroborate the results
of Theorem 4.

5 Conclusion

We have discussed the use of techniques originating from geometric integration such
as backward error analysis and modified equations for the construction of stochastic
integrators. We have focused in particular on algorithms for the computation of
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expectation of functionals and invariant measures of stochastic processes. This
approach for the construction and analysis of stochastic integrators sheds new light
on the interplay between weak approximation of stochastic differential equations
and accurate computation of their invariant measures. In particular, new sufficient
conditions to approximate the invariant measure of an ergodic system independently
of the underlying weak order of the method have been described. A better
understanding of the numerical approximation of ergodic SDEs is also important
for applications in biology, chemistry, or physics, where efficient computation of
expectation of functionals of a stochastic process is used for sampling or free energy
calculations.
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1 Introduction

Since complete microscopic descriptions of biochemical processes inside a living
cell is a nearly hopeless task, stochastic mesoscopic models have emerged as
important tools in Systems Biology and Neuroscience. Formulated in a way
which resembles the familiar macroscopic ODE/PDE-based viewpoint, but with
randomness accounting for microscopic effects such as thermal movements and
molecular noise, mesoscopic stochastic models attempt to strike a balance between
computational feasibility and accuracy. Similar models have been used also in
Epidemiology and Population studies, where instead randomness is included to
make up for the missing details in irregular or unknown contact patterns and in
the varying environment of individual agents.

Assuming that the possible presence of stochastic effects is motivating the choice
of modeling framework, analyzing model stability is a crucial issue that is often
overlooked. In particular, when designing numerical or approximate models of
some kind, it is extremely important that the resulting model somehow inherits the
stability of the original mathematical model. Without such bridging results, the use
of in silico support for phenomena observed under stochastic nonlinear effects and
operating under model uncertainty can rightly be questioned.
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Quite often the discussion of stability issues and well-posedness tend to take
either a more mathematical standpoint or be of a more, say, intuitive character. I like
to argue here that a fair dose of mathematical rigor is needed and that it can actually
help in building an intuitive grasp of the modeling process itself. However, I would
also like to express the perhaps provocative thought that the most general situation
in a mathematical framework, while complete and concentrated in content, can also
be difficult to connect with actual applications.

Monographs containing general mathematical treatments of SDEs include [33,
Chap. V], [20, Chap. 11], [5, Chap. 6], and [35, Chaps. 3-5], where various types
of jump-diffusion SDEs are discussed in a non-spatial context. A study of the
stochastic flow of scalar jump SDEs in continuous state is found in [32] and the
existence of solutions to SPDEs driven by Poisson processes is treated in [25].

In applied contexts, well-posedness is often thought to automatically follow from
the physical situation at hand. Consequently solutions to stochastic models are
simply assumed to remain inside some bounded region of state-space [36, Chap. V].
Mathematically, the problem is that for non-trivial stochastic models operating
under open conditions, any state will be reached with a non-zero probability.
Oftentimes a preliminary analysis of such open models under the assumption of
a priori bounded solutions can be cast into a rigorous stopping time argument. But
as we shall see, usually the associated error estimates are lost and only convergence
properties remain. Examples of this kind of numerical analysis for various time
discretization methods are found in [2-4, 15, 26, 27, 30].

In the current review we will summarize some of the ideas for well-posedness
and stability of stochastic reaction networks found in [17], later put to use in the
context of numerical analysis [12, 18]. Similar ideas also emerged around the same
time in [11, 34], and all of these are in fact related to the earlier theory in [31]. A
contribution with the present study is to re-cast those results in a spatial context.

So far the main body of numerical and multiscale analysis has been done
in the traditional well-stirred setting (with some notable exceptions [6, 37]). In
[19] a general method for bringing the mesoscopic stochastic description into a
spatially extended model on arbitrary geometries was described, resulting also in
a highly general software [14]. The computational complexity of spatial models
is considerably much higher compared to the well-stirred case, and effective
computational methods are therefore desirable. The requirement for a consistent
numerical analysis in this setting is the starting point for the present discussion.

This review is structured as follows. In Sect.2 we investigate more closely the
purpose with understanding and analyzing stability in modeling in general, and in
particular within the present context of numerical analysis of stochastic models. In
Sect. 3 we summarize the mathematical machinery required for spatially extended
continuous-time Markov chains. The stability analysis is presented in Sect.4 and
consists of, firstly, a brief discussion of some technical tools together with a suitable
set of modeling assumptions, and secondly, an existence and uniqueness result
together with a basic exemplifying perturbation result. A concluding discussion is
found in Sect. 5.
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2 Meaning and Use of Stability

The concept of stability in computational modeling has a somewhat context-
dependent meaning, but typically involves the development of a priori regularity
bounds for the solution of the mathematical model considered and some kind of
continuity estimate over the input data. For stochastic models, bounds in the absolute
mean, or mean square sense have become popular choices in the numerical analysis
community. For a time-dependent stochastic process X(¢) in some state space this
means bounds of the kind

E[IX (0" or E [sup,ero g IX0IP] < B(t.Xo), p € {1.2}, (1

where B(t, Xy) depends on time and on the regularity of the initial data X,. With Y (¢)
a solution of a perturbed version of the model, a similar bound on the difference
process (Y — X)(¢) is also desirable. For if the model is perturbed slightly, we expect
that also the solution changes in relation to the magnitude of the perturbation. Note
that this concept requires the randomness of the two processes X and Y to be suitably
coupled according to some prescription. Depending on the context, this coupling can
in fact be rather involved and require some effort [1, 7]. Finally, we mention also a
somewhat different kind of stability property which we will not discuss further here,
namely ergodicity, which handles the limit t — oo, e.g. in (1).

When deciding to use a stochastic model, there are usually some reasons
beforehand to believe that randomness has a potentially important impact on the
system studied. In fact, the very purpose of the modeling could well be to study
the effects of the presence of the aleatory uncertainty, that is, the process’ inherent
physical randomness.

This implies that, on the computational side, we are faced with a mathematical
model thought to operate under conditions where stochasticity has non-trivial
effects, and the computational analysis is therefore often concerned with the behav-
ior around particularly intriguing parameter combinations. This clearly motivates
a careful afterthought when designing computational methods. When the original
model itself is sensitive to perturbations of various kinds, hastily constructed
approximations may easily lead to incorrect results.

2.1 The Lax Principle

The celebrated Lax principle, first formulated in the context of difference approxi-
mations for PDEs in the mid-50s [29], states that consistent schemes for well-posed
problems converge if and only if they are stable. The astonishing generality of this
principle can be appreciated as follows [16].
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Consider metric spaces (X,dx) and (Y,dy), and an operator 7 : X — Y.
The mathematical problem Tx = y for some given y € Y is well-posed if T~" is
continuous in some neighborhood of the data y. Similarly, a sequence of numerical
approximations T,x, = y is stable if (T, '), all exist and are continuous in a
neighborhood of y. Consistency, finally, says that T,x —> Tx for x in a sufficiently
large subset of X. Such an approximation is convergent.

For any § > 0, there is an N > 1 such that by consistency, dy(T,x, Tx) =
dy(T,x, T,x,) < & whenever n > N. Puty, = T,x. Given an ¢ > 0 we can find a §
such that by stability, dx(x, x,) = dx (T, 'y, T, 'y) < & whenever dy(y,,y) < §, as
implied by n > N. This is the same thing as convergence x,, —> x as n —> 0.

The overall recipe can be summarized as follows: first show that both the original
and the approximating model share similar stability characteristics. Then show
that the approximation is uniformly consistent in residual space. Finally conclude
convergence and, if possible, develop a bound for the error.

We now proceed to show how to implement these abstract steps in the concrete
setting when T represents a spatially extended continuous-time Markov chain and
when y is the data of the model.

3 Discrete-in-Space Markovian Kinetics

3.1 Master Equations

Through the pioneering work of Gillespie [24] stochastic simulation techniques
became a popular tool when studying the kinetics of reaction networks at the
discrete single molecule level. The actual model is a continuous-time Markov chain
(CTMC), commonly described via the chemical master equation (CME) [23]. Let
the state x € Zg = {0,1,2,...}” count the number of molecules of each of D
species and let R reactions be prescribed as transitions of the state, x — x — N,,
where each N, € ZP is a transition step. Then the CME can be written as

ap(x, 1)

R
5 = 2w+ Nop(x+ Neyt) = wi(p(, 1) =2 Mp(x. 1),

r=1

that is, an equation of state for the D-dimensional probability density of the system
conditioned upon some initial state. Here each reaction propensity, w, : ZQ — Ry,
governs the probability per unit of time for reaction r to occur.

The CME is derived under the condition of a homogeneous molecular distri-
bution in the domain considered. This assumption is violated when the transport
of molecules through the solvent is slow or more generally, when concentration
gradients may build up [13, 21]. As a viable modeling approach, the diffusion
at a molecular level can be treated as a special set of reactions yielding the
reaction-diffusion master equation (RDME) [23]. Specifically, let the state-vector
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x € ZQXN , where N is the number of compartments required to discretize the
considered volume. Then for two neighboring compartments i and j, the transition
(x4,i» x47) = (xa; — 1,xq4; + 1) corresponds to a transport event of species d from
compartment i to j. The RDME can formally be written as

ap(x,1)

5 = (M + D)p(x, 1),

where M is the reaction-, and D the transport (e.g. diffusion) operator, respectively.
The dimensionality of the state-space is now much higher and sampling even single
trajectories is a computationally intensive problem.

3.2 Pathwise Representations

Consider first a space-independent state variable X(¢) € Z’i counting at time ¢ the
number of entities among D species. The state transitions X — X—N,. are prescribed
probabilistically by

P[X(t + df) = x — N,| X(1) = 2] = w,(x) dt + o(ds), )

forr = 1,..., R. Assuming a probability space (€2, F, P) supporting R-dimensional
Poisson processes, the state is evolved according to [20]

R t
X0 =X = S ma, ([ Cwoxonas). ®

r=1

for species i = 1,...,D and with standard unit-rate and independent Poisson
processes II,. For brevity, in the present contribution we will exclusively remain
in the operational time framework (3). A corresponding jump SDE representation
may also be developed, see [1, 15, 17, 30] for examples.

When (3) takes place on the nodes of a spatial network, a notation for the
connecting transport process needs to enter. A given volume V,,, may be discretized
into J smaller voxels such that the state X € Z?_Xl , where in this context X;; is the
number of molecules of the ith species in the jth voxel. The dynamics (3) is used
anew, but on a per-voxel basis. Adding a general transport process we get

R t
X;(t) = X5(0) = > " NyIl, (/0 wii (X.j(5)) ds) )

r=1

J ' J t
- Z I}, (/0 i Xij(s) ds) + Z IT; (/(; GitiXik (5) dS) ,
k=1 k=1
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where g;j is the rate per unit of time for species i to move from the jth voxel to the
kth. This type of linear transport rate covers many traditional physical processes, like
diffusion and convection [19], but can also be augmented to handle sub-diffusion
[9] and general models of active transport [23]. Importantly, the network implied
by (4) need not depend on a discretized form of a transport operator, but can also be
obtained by incorporating observed transport patterns [8].

Equation (4) consists of two parts: a model for the local physics expressed with
a set of general nonlinear laws, and a connecting global transport process, which is
conservative due to the two opposing terms. The model relates to stochastic partial
differential equations (SPDEs) in that they both govern a stochastic and spatially
extended process. However, an SPDE is formulated in continuous space and time,
with time typically discretized first in a numerical scheme. In (4) the model is rather
directly formulated in an already discretized space. What makes (4) attractive as a
framework for computational modeling is the great expressivity as well as the fact
that effective numerical algorithms may be devised.

4 Stability and Convergence

4.1 Tools and Assumptions

An important technique in stochastic analysis is the stopping time. Define 1p :=
inf;>o{||X(¢)|| > P} in some suitable norm and for P > 0. The stopped process is
X(7) = X(tAtp) and the idea is that analytic results developed for X () may be lifted
to the “untamed” original process X(¢). The technique most often used is based on
Fatou’s lemma, which states that

E[liminf X,] < liminf E[X,]. (5)
n—>oo n—>o0

Specifically, suppose one can show the stopped bound E[||X(7)||] < B(¢) and that
the goal is to transfer this bound to the original process.

Firstly, for any o € Q, X(s, ®) either explodes for some 0 < s < ¢, or is bounded
by some value Py. In the former case we have that || X (s, w)|| is unbounded as P —

oo. In the latter case, limp_, o, || X(5, w)|| = | X(s, )| for0 <s < t.
Since E[||X(?)|] is bounded from above independently of P (this is the assumed
bound) we must have that limp_, o | X(?)|| = ||X(¢)|| almost surely; in other words,

|X(7)|| cannot diverge to oo at a non-zero probability.
Now for a convergent sequence, the limit and limit inferior are equal, and hence
limp_oo |X(?)|| = liminfp_, o || X(7)|| almost surely, and so we have

E[lim |X()[] = Ellim inf | X)) ©)

where Fatou’s lemma finally applies.
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The integral representation (4) and the stopping time imply another important
tool in analysis, namely Dynkin’s formula [10, Chap.9.2.2]. For f : Z) — Ra
suitable function,

E[f(X®) - f(XO)] =

3 J R
E[ fo 33w () [ () — N, IT) — £(X(s))] ds}
j 1

j=1 r=

3 J D
+ E[ /0 3> aXip(s) [F(X(s) — L] + 1,1]) — f(X(5))] ds:|

jhk=1i=1

3 J D
+E[ [0 YN quXals) [F(X(s) + L1 — 1Y) — F(X(9))] ds},

jk=1 i=1

(M

where 1; is an all-zero vector with a single 1 at position j. Below we frequently
generalize a bound derived from Dynkin’s formula in stopped time by using Fatou’s
lemma.

In spatial modeling the transition intensities in (4) are generally density depen-
dent, meaning that w,,;(x) = Vju,(Vj_lx) for some dimensionless function u, [20,
Chap. 11]. Further, since we are dealing with counting processes, stability bounds
are naturally expressed in a weighted norm. We thus assume the existence of a
suitable vector [ with min; l; = 1 and define

Ixll, :=1"x, xeRY. (8)

Following [12, 17] closely we formulate our assumptions as follows:

Assumption 4.1 (Running Assumptions) For a mesh M consisting of voxel vol-
umes (V;)7_, we assume that

wii(x) = V_,~u,(Vj_1x), where u is independent of the mesh, )
—1"Nu(x) <A+« lxll; (10)
(I"Nu(@)/2 < B+ Bi |xll, + B2 [1xll7 (11)

lur(x) —u, ()| < L (P)|lx =yl forr =1...R,and |||, v [yl =P, (12)
myVy < Vi < MyVy, for average voxel volume Vs, (13)

Vi [{k; gy # 0} < Mp. (14)
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Equations (10) and (11) put bounds on the process in the direction measured by [,
while (13) and (14) assure that the mesh is not too far from uniform and with a
bounded connectivity.

We now proceed to combine Dynkin’s formula (7) and Assumption 4.1 to
develop stability results for the process governed by (4).

4.2 Existence and Uniqueness

For spatially varying solutions we consider the following generalization of (8),
J
el =D s, =11, xe RV, (15)
=1

with 1 an all-unit vector. From Dynkin’s formula (7) we find

E [“X(i) jl] —E[IXO)},] +E [/ F(X(s)) ds:| (16)
0
where
J R
FX) =y wyX ) [(1X, —I'N,)” = 11X17,] - (17)
j=1r=1

This shows a feature with the norm (15); the transport process is conservative and
therefore does not affect the norm.

The following two inequalities will come in handy [17, Lemma 4.6]: let f(x) =
(x + y)? —»” with x € R4 and y € R. Then for integer p > 1,

@) < pyx™" + Coy? [ + |y (18)
F@)| < Colyl [~ + ylP~']. (19)

where C, > 0 only depends on p and may be different on each occasion of use.
Using (18), assumptions (13) and (9)—(11) we obtain

F(X) < p(AVig + 000X 4 Cp(BViot + Brix + YD) 2 4+ C570),  (20)



Stability and Convergence for Spatial Stochastic Kinetics 117

where for brevity x = | X||;; and where By = Bam;'Vy,!, and Cy = [[I'N||co.
Combining (16) and (20) we readily obtain a bound of the form

E[nx@nil]sE[||X(0>||7,1]+E[ fo C(1+||x<§)||;’,1)ds}, @1

for some C > 0. By Gronwall’s inequality we arrive at a P-independent bound for
E [HX @ ||f 1] . Letting P — oo and invoking Fatou’s lemma we deduce the following

Theorem 4.2 (Moment Bound, [12, Theorem 2.2]) Let X(t) obey (4) under
Assumption 4.1. Then for any integer p > 1,

E[IX®I7,] = (E[IXOIF,] + 1) exp(Cr) — 1, (22)

where the constant C > 0 depends on p and on the constants in the assumptions.

Note that when the mesh contains small voxels V; and when 8, > 0in (11), then
C for p > 2 in (21) contains the term S, Vj_l, indicating a possibly rapid growth of
moments.

While the moment bound in Theorem 4.2 implies a certain degree of regularity,
an even stronger result is required to achieve path-wise control in the form of
strong continuity with respect to perturbations or to numerical parameters. This can
be achieved via Burkholder’s inequality (see (26) below) provided the quadratic
variation of the process is controlled. This is defined by

n—1

[¥], = plim Y (¥,,, — %)’ (23)
IPI1—0 =0

for Y(#);>0 a real-valued process and a time partition P = {0 = < #t; < --- <
t, = t} where ||P|| := max |[tr+1 — /.

Lemma 4.3 (Quadratic Variation, [12, Lemma 2.3]) Ler X(¢) satisfy (4) under
Assumption 4.1. Then the quadratic variation of || X () ||;7 | is bounded by

B[] <[ [ oo+ ol + L Ixoa]. e

where C > 0 depends on p and on the constants in Assumption 4.1, but not on the
mesh resolution, but where By := Bamy, 'V,
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Proof By writing Y(¢) = || X(¢)|| in (23) as a Lebesgue-Stieltjes integral and using
the inequality ||- ||, < ||-||: one arrives at the bound (see [12, Lemma 2.3] for details)

E 0117, <JE[ / ZZWU(XJ@)\ 1X )l = 1N)" = ||X(s)||é’,1!ds}-

j=1 r=1

Using this time the inequality (19) and assumptions (9) and (11),

7
<] [ N b0 (X + i ds
Jjr

<E /0 Cp(BVior + B1 IX)lp1 + B IX@IEDUX @Il + Cﬁy_l)dS} :

After expanding and using some simple bounds we may, in view of Theorem 4.2,
let P — oo to arrive at (24). O

As a straightforward generalization of the construction used in [17] we shall
consider the following class of path-wise locally bounded processes:

X(1) € ZU is F-adapted such that

Sp Jloc ZDXJ) _
E[suptE[O.T] IX:1I7 ] < oo for VT < oo

Xt w):

} . (25)

Theorem 4.4 (Existence, [12, Theorem 2.4]) Let X(t) be a solution to (4) under
Assumptions 4.1 with B> = 0. Then if E[|X(0)[?,] < 00, {X(1)}iz0 € S5 (Z2X).
If Bo > O then the conclusion remains under the additional requirement that
E[1X(0)7; '] < .

As mentioned the proof relies on Burkholder’s inequality [33, Chap.IV.4]: let
M (¢) be a martingale with cadlag paths. Then for integer p > 1,

E [supy,, [M(s)I"]"" < ¢, E[[MP/*]'". (26)

Controlling the quadratic variation of the martingale part therefore indirectly bounds
the supremum path in any finite interval [0, f].

Proof We find that

X0, = IXO)I, / F(X(s)) ds + M),



Stability and Convergence for Spatial Stochastic Kinetics 119

with F defined in (17) and where the local martingale M (f) can be defined as in (4),
but via integration with compensated Poisson processes instead. The quadratic
variation can be bounded via Lemma 4.3,

7
E[M)”]<E [ /0 CA1+ IXO) 17+ 83 IXOI ds} @)
Assume first that 8, = 0. Using the bound in (20) and (21) for the drift part we get

X1, = XOI, + [+ IXO ) ds +

We thus find from Burkholder’s inequality and (27) that
[

E [supepos IX($II7, ] < ElIXO)]7,] +f0 C (1 +E[supyeoq IX$HI7,]) ds.

Upon defining [|X||}, (1) := supep 4 |1X(s) |7, this becomes

E[IX7; O] < E[IX(0)]7,] +/0 C(1 + E[IX]l7, ($)]ds.

Gronwall’s inequality shows that E[||X|7, (7)] can be bounded in terms of the initial
data and time 7. The statement of the theorem follows by letting P — oo and Fatou’s
lemma.

Assume finally that 8, > 0. We still have the bound (27) which yields

E[M)"] < /0 CL+E[IX@) 7 D ds < (" = DENXO)I7 ]+ D).

i

by Theorem 4.2. This leaves us with a bound of E[||X]|}, (?)] in terms of initial data
E[)|X(0) ||§7 Tl], and where the previous argument carries through. O

4.3 Continuity

So far we did not discuss the issue of uniqueness of solutions. The reason is that for
an integer-valued process, up until an explosion time, each trajectory is uniquely
defined by a series of Poisson-distributed events. In this sense uniqueness is an
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immediate property in the current setting. However, it is meaningful to prove a much
stronger result in the form of a continuity relation over parameter variations. This
also serves as a kind of template for doing numerical analysis investigations. We
shall follow [17, 18] quite closely (but see also [1, 28]) and we begin by citing the
following technical lemma.

Lemma 4.5 ([18, Lemma 2.4], See Also [22, Lemma 2.2]) Let I1 be a unit-rate
Poisson process and Ty, T, bounded stopping times, all adapted to F;. Then

E[IT(T>) — (T[] = E[|T> — T1 ], (28)
E[(TI(T>) — TI(T1))*] = 2E[TI(T2) — T(T)|(Ty V T2)] (29)
—E[73 — T}|] + E[IT> — Th]}.
The lemma is interesting in many different types of perturbation bounds. To
exemplify we will make a specific investigation as follows. Let Y (¢) be defined as

in (4) but with all propensities u, replaced with a perturbed version uﬁs). Given a
bound

/ tur(X(s))ds v f tugf”(Y(s)) ds < B(1), (30)
0 0

as typically achieved under a stopping time, we find from (28) to (29) that

t t 2
E [(n ( / u®(Y(s)) a’s) —1I, ( [ u(X(s)) ds)) ]
0 0

<@2B@t)+ HE H / t u® (Y (5)) ds — / tu,(X(s)) ds
0 0

] €29

typically amenable to further bounds. Let us make the formal requirement that the
perturbation satisfies

7 (1) = up ()| = 8l ()] (32)
The transport rates obey a simpler linear scaling, and so we similarly let
8
s, — gl < 84 (33)

We further assume for simplicity that the entire statement of Assumption 4.1 is valid
for the perturbed model, and with the same constants. Define the joint stopping time

Tp = in‘f{||X(s)||2 vV |[Y(s)|* > P}, and put?:= tp A L. (34)
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To avoid a forest of constants we shall use the notation A < B, meaning A < CB
for C > 0 some unspecified constant. For example, ||x|| <¢ ||x||;, and also, by (13),
in (12), we have L.(V;"'P) <¢ L,(P).
We get from (12)
() = ()] < Ly (P)llx = Il + 8luy ()]

< L(P)|lx =yl + $(LAP)Iyll + u-(0)) = C:(P)(E + lx—ylD),  (35)
with C,(P) a P-dependent expression. We can now bound the dynamics of the
difference process (Y — X) ().

Lemma 4.6 Define X(t) and Y(t) by (4) with X(0) = Y(0) almost surely, and with
Y(t) a perturbed trajectory obeying (32)—(33). Then under the joint stopping time 1
in (34),

E[|Y() — X@)|*] <c SA(P) + B(P)/0 E[IlY () — X(5)[1ds. (36)

where bounds for the P-dependent constants A and B can be found in (37) below.

Proof Let us first bound the difference process for a single species i in a single voxel
j. From (4),

R

(Yl/(?) (t) < Z N;; Hrj () Hrl ( ))

r=1
J J 2
- Z (Hijk () - Huk + Z lkj H;kj ()) )
k=1

k=1

where, for brevity, the local time arguments can be found in (4).
Using the bound on the mesh connectivity (14) and Jensen’s inequality we find

(v — XijG))2 < (R+2Mp) (A1 + Ay + A3),

where in terms of

R 3 ; 5
A= ;Nfi(nrj (/0 \{ju£8)(‘(i—lY.J(s)) ds) - I0, (/(; Vjur(Vj_lX._j(s)) ds)) 7
J 2 ; 2
Ay = ; (H;k (/(; ql(ji) Yii(s) ds) - I, (/0 qijXii () ds)) ,
3 2
Z (H:k’ (/ q’kl Yi(s) ds) ([ qiiXir () ds)) .

k=1
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Note that A, and A3 are connected via a simple permutation of the dimensions j < k.
By the Lipschitz assumption (12),

/t Viur(V; ' X.j(5)) ds < V(L (V' P)P + u(0)) <c L,(P)P + 1,
A _

as well as the identical bound for the perturbed process Y (). Using this in (30), by
Lemma 4.5 (31) we get from (35)

Bl <e S RL@EP+ 06 (5+ [ BIYG) - Xl ).
- 0
Using similar arguments we readily find
B[] <c 3P+ )P (8 + [E1ve -xo ds) ,
k

and the identical bound for E[A3].
Summing over i and j we finally arrive at

E[IIY(1) - X(0)[*] < (R+2Mp) D E[A; + Ay + A3

<c SA(P) + B(P) /0 E[|Y6) — X@)[] ds. 37)

a

Theorem 4.7 (Continuity) Let the two trajectories X(t) and Y (t) obey the assump-
tions of Lemma 4.6. Then

Jim E[IY(0) —x()]] = 0. (38)

Proof We wish to apply the Gronwall inequality to the inequality of Lemma 4.6.
Unfortunately, the exponents on the different sides of (36) differ. One way out is
to develop a similar bound as in Lemma 4.6 but for the norm || - ||; instead, and
then combine the two by using the norm equivalence || - || < || - ||1- A faster way
which applies here is to use the “integer inequality”: since both processes are integer
valued, the difference process is as well, and hence || Y (¢) — X(¢)|| < |Y(t) — X(1)||*.
Using this trick and Gronwall’s inequality we thus arrive at

E[|Y(?) — X(©)||*] <c SA(P) exp(tB(P)). (39)
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Write
E[IY®)—=XOIP] = E[IIYQ) = XOI’] +E[1Y(1) = X0)|*1,57]
To bound the remainder, note that by the Cauchy-Schwartz and Markov inequalities,

E[Y(0) - X()|*1,27] < (E[IY@) — X®)[*])"* @[ > o))"/

<Bi()P"'*E [ sup [[X(s)]1* v IIY(S)IIZ]
]

s€[0,1

<Bi() P"? By (1),

say, where the existence of the two bounds B; and B; is guaranteed by Theorems 4.2
and 4.4. To conclude,

E[Y(®) — X(®)]*] <c SA(P) exp(tB(P)) + By(1) P~"/? By (1).

Given an ¢ > 0 we may first select P large enough that the remainder is <eg/2.
Subsequently we may pick a & such that also the stopped part is < &/2 for all
8 < 8. This then proves convergence as § — 0+. O

It sometimes provides with some insight to look at the bounded case as well. In
case we can select P large enough that the remainder vanish altogether, we arrive at
the following

Corollary 4.8 (Perturbation Estimate, Bounded Version) [fin Theorem 4.7, the
processes X(t) and Y (t) are bounded, then

E[IX(1) — YOI’ = 0(8). (40)

5 Discussion

In this review we have shown how to develop a few basic stability results
for stochastic compartment-based reaction-transport models. Selected analytical
techniques have been highlighted and care has been taken in clearly formulating
our working assumptions. A strong well-posedness result for a large and relevant
class of problems was proved and a continuous dependence on input data was also
achieved within the same framework. The latter development is an example of the
use of the different parts of the theory in a setting which relates to that of numerical
analysis and method’s development.
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In the bounded setting, not unusually can explicit error bounds be proven.
However, a strength of the theory is that it applies in the limit sense also for open
systems under the effects of nonlinear feedback terms. One can argue that numerical
analysis helps asking the difficult question here: what are the practical boundaries
of modeling?
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The T Cells in an Ageing Virtual Mouse

Mario Castro, Grant Lythe, and Carmen Molina-Paris

1 Introduction

The multiscale problem that a modeller in biology is presented with, trying to
provide a systematic description of many agents, their properties, their internal
dynamics and interactions, is daunting. On the other hand, biology provides a
natural scale, with individual cells as agents. In agent-based computation, variables
representing cell population sizes may be evaluated by counting cells of various
types, but the governing dynamical rules are laid down one event at a time [1, 2].
Every cell is an individual, with its own set of attributes (state of activation, surface
molecule profile, spatial location, for example). Populations of cells decrease or
increase because individual cells die or divide. Here, by way of a tutorial on agent-
based immune system modelling, we implement a model of the behaviour of the set
of T cells in a body—numbering more than 10'! in an adult human, and more than
107 in an adult mouse [3].

Each T cell is characterised by the T-cell receptors (TCRs) found on its surface;
it either began life in the thymus, or is descended from a cell, with the same TCR,
that began life in the thymus and exited to circulate through the rest of the body (the
periphery). The number of T cells in the periphery increases when new T cells exit
the thymus or when an existing cell divides into two daughter cells, and decreases
when an existing cell dies. Our adaptive immune system relies on the enormous
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diversity of the TCR repertoire [4], which can be thought of as an ecological system,
the set of cells with the same TCR being a species, or clonotype, that competes with
many others. The response to an infection is the average of that of a small number of
clonotypes that expand greatly and many clonotypes that do not [5, 6]; even T cells
bearing identical TCRs undergo heterogeneous proliferation and development [7, §].

Every T cell in our model is either a CD4™" or a CD8" T cell. This classification
is based on the observed predominance of one of the two co-receptor surface
molecules, CD4 or CD8, on any one T cell. In the immune system’s response to
infection, the primary role of CD4™" T cells is to produce chemical signals that
“help” other cells of the immune system, while that of CD8™ T cells is to produce
perforin and granzymes that are toxic to cancerous, infected or damaged cells [9].
Models that distinguish “naive” T cells from regulatory T cells and from different
types of memory T cells, based on surface markers such as CCR7 [10], and track
population subsets in different organs of the body [11], are not considered here.

Construction of a mathematical model of the in-host kinetics of an infection
usually begins by enumerating the relevant cell populations. Each population may
be represented as one real variable in a set of ordinary differential equations whose
steady states can be found and that can be solved numerically. For example, influen-
tial mathematical models of HIV infection consider four populations: uninfected
T cells, latently infected T cells, actively infected T cells, and free virus [12].
Experimental research on infectious disease and the immune system, in recent
decades, has revealed more and more cell types. Models that have one variable for
the average size of each relevant population can be devised and solved numerically,
but are often difficult to interpret. Somewhat more realistic are stochastic models,
which can describe fluctuating populations and experimental variability [13]. An
important advantage of stochastic models in which population sizes are integers is
that the phenomenon of extinction of populations is included in a natural way [14].
However, whether a model is deterministic or stochastic, treating all cells within
a population as identical or statistically identical comes at the cost of ignoring
cell-to-cell heterogeneity and the receptor-ligand interactions at particular cell-
cell interfaces [15—17]. All these features of biological systems are characteristic
of agent-based models, in which the fundamental objects are not populations of
cells, based on an a priori classification, but individual cells.

Despite the increasing popularity of agent-based modelling in many fields,
there is no standard implementation. Some de-facto standards, like Netlogo [18],
Repast [19] or SPARK [20], appear in the Systems Biology literature [21]. We
find that open-source language python provides a simple yet powerful tool to
implement, distribute and maintain computational models. In this chapter, we
will build, step by step, object-oriented codes exhibiting the main procedures and
strategies.



The T Cells in an Ageing Virtual Mouse 129

2  Writing a Cell-Based Code

2.1 A Cellis Born

Our agent-based model is implemented in an object-oriented code, that begins by
defining the class of objects. In python, providing such a template is straightfor-
ward. The code shown in Fig. 1 defines the T-cell class, the attribute a representing
activation, and a method for activating a cell (changing the attribute from False to
True).

2.2 Create a List of Cells

Of course, we are typically interested in a population of more than one cell. In the
code shown in Fig. 2, multiple cells are created as instances of the class T and
stored as elements of the array Celllist. In this simple example, where each
cell has only one attribute that takes the value True or False, a population-based
model can be constructed, with one population for each value of the attribute, that
gives a concise description of the time evolution. However, because each cell is
stored separately in the computer’s memory, it is easy to envisage the heterogeneous
population that is created when there are more cell attributes and some attributes are
real numbers.

1|# Tecell.py GDL and MC 2017
2| class Cell(object):

3 ’?’generic.cell _class
1 def __str__(self): # This method formats the output of ’'print’ calls
5 infostring="Cell”

390

return infostring

6
s| class T(Cell): # Inherit from Cell class

9 "??T.cell .class .

10| oo Attribute: a, activation_state.(initially  False)”””

1 def __init__(self):

12 Cell.__init__(self) # Call to parent constructor
13 self.a = False # Is activated? (not initially)
14 def activate(self):

15 self.a = True # Activate the cell

17| myfirstcell = T()
s print myfirstcell _is.a’ ,myfirstcell

| print "myfirstcell _is _activated:’ ,myfirstcell.a
20/myfirstcell.activate() # Call to method activate
21 print "myfirstcell _is_activated:’ ,myfirstcell.a # now self.a is True

Fig. 1 Define a T-cell class. Create a T cell and activate it
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1|# Tcells.py GDL and MC 2017

2| import random

3| class Cell (object ):

4 ’’generic ocell Lclass’’’

5 def __str__ (self ):

6 infostring ="Cell”

7 return infostring

8

9| class T(Cell ): # Inherit from class Cell

10 "??T _cell ~class.

11| oo Attributes: .a, wactivation ostate .(initially _False)”””

12 def __init__ (self ):

13 Cell . __init__ (self ) # Call to parent constructor

14 self .a = False # Initially, the cell is not activated

15 def activate (self ):

16 self .a = True

17

18| ncells = 10

19| Celllist = [T() for i in range (mncells )] # Create T for every i in 0,...,ncells -1
20| print ’a.before:’,[ tcell .a for tcell in Celllist | # Print ’a’ for every tcell in Celllist
21

22| firstcell = Celllist [0] # Alias for the first T cell

23| anothercell = random .choice (Celllist ) # Pick a random T cell from Celllist

24| firstcell .activate () # Activate the first cell

25| anothercell .activate () # Activate a random cell

26

27| print ’a.after:’,[ tcell .a for tcell in Celllist | # Print ’a’ for every tcell in Celllist

Fig. 2 Create ten T cells. Activate the first of them, and one other

2.3 The Scheduler: Birth and Death of Cells

Now let us introduce the fundamental events of cell death and cell division. In the
code shown in Fig. 3, each of the cells in our population, independently, may die or
divide with probability 0.5.

In Fig. 4 we summarise the steps undertaken in the modelling process.

2.4 The Scheduler: A Gillespie Algorithm Code

In the thymus, developing cells produce new TCRs by a process of gene rearrange-
ment and express, for a time, both the CD4 and CDS8 co-receptor molecules. A
cell that survives “positive” and “negative” selection” [22, 23] emerges expressing,
predominantly, only one of the molecules. It remains so for the rest of its life and
passes on these characteristics to its progeny, both in the thymus, when it is classified
as an SP4 or an SP8 thymocyte [24-26], and in the rest of the body, when it is
classified as a CD4™" or a CD8™ T cell.

In the following code, two subclasses are defined: CD47 and CD8™ T cells. The
dynamics of a cell population are simulated, one event at a time, using the Gillespie
algorithm [27, 28]. There are only two types of events, death and division. Thus,
there are twice as many candidates for the next event at any time as there are cells
at that time (Fig. 5).
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1‘# bdTcells.py GDL and MC 2017
2 from random import randrange,random
3 import copy

4
5 class Cell(object):
6 ’’_setup.soothat_cell _types.inherit_a_.counter.’’’
7 number = 0
8 def __init__(self):
9 type(self).number += 1 # Add 1 to the class counter
10 def __del__(self):
11 type (self).number —= 1 # Decrease the class counter
12
13 def celldivision(self):
14 ’?’create_two_identical_cells._.from.one’’’
15 newcell = copy.deepcopy(self) # Make a ’clone’ of the cell bit by bit
16 type(self).number += 1 # Increase the counter
17 return newcell
18
19 class T(Cell):
20 29 eall o @loE w7 77
21 def __init__(self):
22 Cell.__init__(self)
23 self.a = False
24 def activate(self):
25 self .a = True
26
27 ncells = 10
28 Celllist = [T() for i in range(ncells)] # Create T for every i in 0...ncells—1
29 print ’Start.with:’,T.number, 'T.cells’
30
31 for cell in Celllist:
32 urv=randon () # Uniform random number
33 if urv < 0.5: # ’Coin flip ’. Heads: kill Tails: clone
34 Celllist.remove(cell) # Remove element cell from Celllist
35 del cell
36 else:
37 newcell = Cell.celldivision(cell)
38 Celllist.append(newcell)
39
40 assert len(Celllist)==T.number , 'How.many.cells?’ # Check if we are counting properly
41
42 print ’Now.there_are:’ T.number, 'T_cells’
L

Fig. 3 Flip a coin to decide whether each cell dies or divides

3 Case Study: The T Cells in a Mouse from Infancy to Old
Age

The total number of T cells in a mouse is in the range 10’—108. Over the lifetime of
a mouse, new cells are produced by the thymus, cells may divide in the periphery,
and cells die. Is it feasible to recreate this on a computer?

We construct our code based on the measurements of Hogan et al. [26]. In the
thymii of mice of different ages, they counted SP4 and SP8 cells. Because they
are in the last stage of thymic development, ready for export to the periphery, their
numbers serve as a proxy for the rate of thymic production and the ratio of CD4™
to CD8™ cells among thymic emigrants. With considerable variation from mouse to
mouse, an overall exponential decline in rate with half life of about 150 days, and
SP4:SP8 ratio of about 4, are estimated from the data in Fig. 6.

Hogan et al. estimate the mean rate of division of cells in the periphery by
taking a sample of cells and measuring the fraction of CD4™ and CD8™ T cells,
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denoted Ki677 cells, that display sufficient quantities of the surface molecule Ki67.
Suppose that each daughter T cell is Ki67" for a total of 4 days during and after
the time spent cycling before division and that a T cell has a probability A per day
of dividing (into two Ki67" daughter cells). Then the fraction of Ki67" cells at
any time is twice the number of cells that have divided in the 4 days up to that
time: 2 x 4 daysxA. Based on the observation that 4% of naive cells are Ki67™" [26],
A = 0.04/8 = 1/200day™!, so the mean time between divisions of peripheral

naive CD4% or CD8™ T cells is 200 days.

M. Castro et al.

[ Step 1: create a list of cells ]
birth/death
[ Step 2: update the state ] [ Loop step: scheduler ]
rates re-calculation

[ Output/data visualisation

]<_

| Agent-based modelling life cycle

Fig. 4 An illustration of the structure of the code

# Gillespie.py GDL and MC 2017

from random import randrange,random,choice

from numpy import cumsum,log,searchsorted,cumsum
import pylab,copy

class Cell(object):
’?’ _setup.so_that_cell .types.inherit_a_.counter.’’’
number = 0
def __init__(self):
type(self ).number += 1
def __del__(self):
type(self).number —= 1

class T(Cell):
PETE cellificlassine i
def __init__(self):
Cell.__init__(self)
self.a = False

class CD4(T):
777 .CD4.T.cell .class.’’’
def __init__(self):
T.__init__(self)

class CD8(T):
’’ 7 .CD8.T.cell.class.’’’

Fig. 5 Two populations of T cells
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27 def __init__(self):

28 T.__init__(self)

29

30| def death(thistype):

31 SR A c el d ilels R

32 thislist = celllists|[thistype]

33 thiscell = thislist.pop(randrange(len(thislist)))
34 del thiscell

36| def birth(thistype):

37 '7accell odivides.’’

38 thislist = celllists|[thistype]

39 thislist.append(celltypes[thistype]())

40

41| def makerates():

42 '’ _construct._a.list cof.rates_of_.the_Gillespie_step.’’’
43 rates = |[]

44 ntotal = CD4.number +{ CD8.number

45 for celltype in celltypes:

46 rates.append(muxcelltypes[celltype|.number)

47 rates.append(gammaxcelltypes [celltype|.number/ntotal)
48 return rates,sum(rates)

49

50| mu, gamma ,ncells = 0.1,100.0,10 # Model parameters
51| CD4list = [CD4() for i in range(ncells)| # List of CDjs

52| CD8list = [CD8() for i in range(ncells)| # List of CD8s

54| cellnames=[’CD4’, 'CD8’]

55| celllists={'CD4’:CD4list, ’CD8’:CD8list} # Dictionary of cell lists
56| celltypes={ 'CD4’:CD4, 'CD8’:CD8} # Dictionary of cell types

58| events={0:death,1:birth,2:death,3:birth} # Possible Gillespie events

60|t,tmax = 0.0,100.0 # Initial and final simulation time

61

62| tforplot ,cd4forplot ,cd8forplot = [t],[CD4.number] ,[CD8.number| # Auziliary lists
63| while t < tmax:

64 rates,sumrates — makerates() # Create rates from current state

65 i = searchsorted(cumsum(rates),random()*sumrates) # Pick one event randomly
66 events.get(i)(cellnames[i/2]) # Use dictionaries to call the right event

67 t — log(random())/sumrates # Increment time

68 tforplot.append(t) # Add current time for plotting

69 cd4forplot.append (CD4.number)

70 cd8forplot.append (CD8.number)

71| print ’At.t.=’,t, there.are’,CD4.number, 'CD4.cells .and’,CD8.number, 'CD8.cells’ # Output

73|# The following 6 lines create the plot

74| pylab.step(tforplot,cd4forplot ,label="CD4.cells )
75| pylab.step(tforplot,cd8forplot ,label="CD8.cells ’)
76| pylab.xlabel(’$t$ ")

77| pylab.ylabel ( ‘number_of.cells’)

78| pylab.legend(loc=’best ')

79| pylab.show ()

Fig. 5 (continued)

Based on the rates estimated in Hogan et al. [26] and den Braber et al. [29], we
take the daily production of the thymus of a #-day-old mouse to be

6(t) = 10° exp(—v(r — 56)) (1)

cells, where v = 0.004 day™!. The fraction of these cells that are CD4™" is 80%.
Based on the same sources, we take the death rates to be 0.030 day_l for CD47+
cells and 0.015day™" for CD8™ cells. As can be seen in Fig. 7, even if the number
of CD4* cells exiting the thymus is four times larger than the number of CD8™
cells exiting the thymus, it is possible that the number of peripheral CD8* T cells
approaches or even overtakes that of CD4™ T cells in late adulthood.
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Fig. 6 Cell counts from mice thymii (left) and periphery (lymph nodes plus spleen, right). Data,
from 82 mice, kindly provided by Thea Hogan

3.1 Heterogeneous Populations: Every Cell is Different

How can the Ki67 marker be incorporated into the computational model? The
simplest idea would be to give the T cell class a suitable attribute, for example:

class T(Cell) :
rrr T cell class ''!

def  init  (self):
Cell. init  (self)
self.ki67 = ’'lo’

def upk (self) :
self.ki67 = "hi’

def downk (self) :
self.ki67 = ’"lo’

If the method upk is called on cell division, k167 attribute is set to hi on
division. It will remain so for an exponentially distributed time with an average
of four days if an extra type of event, calling the method downk with rate 0.25
day™! per cell, is defined. More realistic models of cell dynamics can be defined by
using non-exponential distributions, which is achieved by giving a new attribute,
the down-regulation time, to each daughter cell. Models that better reproduce
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— CD4 cells
— CD8 cells
----- weekly thymic
weekly division
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millions of cells
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t | weeks

Fig. 7 The number of CD41 cells and CD8™ cells as a function of the age of the mouse, based
on the assumptions described in Sect. 3. The dotted lines are the total numbers of cells, per week,
exiting the thymus, given by (1), and the total number of cell divisions per week. The graph was
produced by the code in Appendix

cellular heterogeneity and mimic the experimental methodology of classification
are produced if each cell’s ki67 attribute is a real number, corresponding to the
fluorescence intensity used in flow cytometry as a cell-by-cell measure of Ki67.
Then, in silico as in the laboratory, whether a cell is deemed to be Ki671 or not
depends on a user-defined threshold value.

In the version of the code given in Appendix, each T cell is given an attribute tcx
which is an integer label of its TCR. New cells emerging from the thymus are given
a new value at random, cells that divide in the periphery pass on their tcr value to
their daughters. The code reproduced in Appendix, and available at https://github.
com/mariocastro73/CellCulture/blob/master/MouseChapter.py, runs on a desktop
machine in a few hours. The run time and maximum memory requirements depend
on the value chosen for the scaling factor sfac. In Fig. 7, we used sfac= 0.4.

4 Discussion

The agent-based code provided in Appendix is able to follow all the birth and death
events that happen in a number of cells similar to the number of T cells in a mouse
(about 107 in adulthood) over the lifetime of a mouse. The main obstacle, on our


https://github.com/mariocastro73/CellCulture/blob/master/MouseChapter.py
https://github.com/mariocastro73/CellCulture/blob/master/MouseChapter.py
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Interaction with environment

Fig. 8 Agent-based model scheme

desks, to scaling up to numbers of T cells in humans [30-32], and a set of attributes
that will capture the complexities of memory and regulatory T cells, is memory
storage rather than computation time.

From a practical perspective, agent-based modelling has two benefits. On the
one hand, it accommodates cell-level heterogeneity that cannot be implemented in
population-based descriptions. On the other hand, we can easily track the fate of
individual cells and classify them into subpopulations according to a prescribed
criterion, opening the door to coarse-grained descriptions, that are, in some cases,
amenable to analytical treatments.

We close with the definition of agent-based modelling provided by Nigel
Gilbert [33]:

Agent-based modelling is a computational method that enables a researcher to create,
analyse, and experiment with models composed of agents that interact within an environ-
ment.

This idea is illustrated in Fig. 8.
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Appendix: Mouse T Cell Repertoire Lifetime Code

# Mouse T-cell repertoire model. GL and MC 2017

# Thymic production plus death and division in the periphery.

# Age—dependence of thymus and body mass from Hogan et al. PNAS (2015)
# Time is measured in days. Gillespie algorithm

from __future__ import print_function # use python8 notation print()
¢/ from random import randrange,random,choice

7| from numpy import log,searchsorted, array

s| from math import exp

o] import matplotlib

10| matplotlib.use( Agg’)

11| import pylab,copy,datetime

13| 777 _Model _of .the . T—cells .in _a.mouse.’ "’

15| class Cell(object):

16 777 setup.soothatocell types_inherit._.a_.counter.’’’

17 number = 0

18 def __init__(self):

19 type(self).number += 1 # Increase class counter for every new cell
20 def __del__(self):

21 type(self).number —= 1 # Decrease class counter for every death

23| class T(Cell):

21 2 Tocell class.’’’

25 def __init__(self,tcr=None):

26 Cell.__init__(self)

27 if tcr = None:

28 self .tcr = randrange(0,lel2) # Possible different clonotypes
20 else:

30 self .tcr = tcr # If passed in the constructor, it’s inherited

32| class CD4(T):

33 772 .CD4.Tocellclass.’’’
34 def __init__(self,tcr=None):
35 T.__init__(self, tcr)

ar| class CD8(T):

38 777 .CD8.T.cell .class.’’’
30 def __init__(self,tcr=None):
10 T.__init__(self, tcr)

42| class CellPopulation(object):

43 >’’’ _Collection._of.cells_and _methods_.to_manipulate_them.’’’

a1 def __init__(self ,ncells):

a5 self.cellnames=['CD4’, 'CD8’]

16 self.celltypes={’CD4’:CD4, 'CD8’ :CD8}

a7 A Initial list of cells in the population ###H4#

a8 self.CD4list = [CD4() for i in range(ncells//2)]

49 self .CD8list = [CD8() for i in range(ncells//2)]

50 self.celllists={’CD4’:self.CD4list, 'CD8 :self.CD8list}

51 A Methods to manipulate cells #H#HH#

52 self .events={0:self.death, l:self.division, 2:self.thymus}

53

En def death(self,thistype):

55 >? 7 a.cell. dies.’’’

56 index = randrange (0,self.celltypes|[thistype].number) # Randomly chosen cell
57 thiscell = self.celllists[thistype|[index]

£ del self.celllists|[thistype][index]

50

60 def division(self,thistype):

61 ’’’laccell odivides.’ '’

62 index = randrange (0,self.celltypes[thistype].number) # Randomly chosen cell
63 tcr = self.celllists[thistype|[index].tcr

64 newcell = self.celltypes|[thistype]|(tcr)

65 self.celllists [thistype].append(newcell)

66

o7 def thymus(self,thistype):

o8 ’?’ _creation.of._cells_of_a.new._clonotype ,_with.nthy_cells.’’’
60 thislist = self.celllists[thistype]

70 extendlist = [self.celltypes|[thistype]() for i in range(nthy)]
71 thislist.extend(extendlist)

(continued)
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72
73| class simulation(object):

4 777 _Simulation.class.’’’

s def __init__(self, tmax):

76 self.tmax = tmax # Mazimum simulation time

77 self.t = 0 # Age of the mouse. Starting at 0

78 self .tforplot = [self.t] # Auziliary variables for output

79 self .cd4forplot = [CD4.number| # Auziliary variables for output

50 self.cd8forplot = [CD8.number]| # Auziliary wvariables for output

s1 self .ratioforplot = [£8] # Auziliary variables for output

52 self .cellpop = CellPopulation(ncells) # Create ncells

53

54 def scheduler (self):

5 >77.Scheduler.’’”’

86 while self.t < self.tmax: # While not at tmaz

7 self .gamma = gmax#*(l—exp(—10xnuxself.t)) # peripheral division

58 self.thyout = thymaxxexp(—nux*(self.t—56))# thymic production

50 self .theta = {’CD4’:self.thyout*(1—£8)/nthy, 'CD8 :self.thyout*f8/nthy}
90 rates,sumrates = self.makerates() # Create gillespie rates

01 i = searchsorted(rates,random()*sumrates) # Find the chosen event

02 self.cellpop.events.get(i%3)(self.cellpop.cellnames[i//3]) # Ezecute one event
03 self.t —= log(random())/sumrates # Gillespie time update

91

95 if int(self.t%24) != int(self.tforplot[—1]x24): # Store for output

96 self.tforplot.append(self.t)

97 self.cd4forplot.append(CD4.number/sfac)

98 self.cd8forplot.append(CD8.number/sfac)

9 self.ratioforplot.append (1.+CD4.number/CD8.number)

100 if int(self.tforplot[—1]/7) != int(self.tforplot[—2]/7):

101 print (’At’ ,int(self.t/7), weeks, _.there.are’,CD4.number ,

102 ’CD4.-cells _and’,CD8 . number , 'CD8.cells . )

103 print (’~Daily -thymic.production.is’,int(self.thyout),

104 ’and_peripheral_division’,int(self.gamma))

105

106 def makerates(self):

107 ’?’_construct.aclist cof rates.of.the.Gillespie_step.’’’

108 rates = []

109 ntotal = CD4.number + CD8.number

110 aux=0

1 for celltype in self.cellpop.celltypes:

112 aux = aux + mu[celltype|+self.cellpop.celltypes|[celltype].number # Death
13 rates.append(aux)

114 aux = aux + self.gammaxself.cellpop.celltypes[celltype].number/ntotal # Division
15 rates.append(aux)

116 aux = aux + self.theta[celltype] # Create new clonotypes in the thymus
17 rates.append (aux)

118 return rates,aux

119

120 def visualization(self):

121 ’’ 7 _create.a.plot_with_the_.time.course.of_.CD4’s and CD8’s. "'’

122 pylab.clf () # Clear the previous plot

123 pylab.step(self.tforplot,self.cd4forplot,hblabel="CD4.cells’)

124 pylab.step(self.tforplot,self.cd8forplot,blabel="CD8.cells’)

125 pylab.plot(self.tforplot,[7*thymax*exp(—nux(t—56))/sfac for t in self.tforplot],
126 7:k’,label="weekly . thymic’)

127 pylab.plot(self.tforplot,[7*gmax*(l—exp(—10%nuxt))/sfac for t in self.tforplot],
128 7:r’,label="weekly_division )

120 pylab.xlabel(’$t$./ weeks’)

130 pylab.xticks ([28i for i in range(int(tmax/28)+1)],

131 [4xi for i in range(int(tmax/14)+1)])

132 pylab.ylabel( ' millions._of_cells’)

133 pylab.yticks ([le7,2e7],[10,20])

134 pylab.legend(loc="upper.right’)

135 mydate = datetime.datetime.today ().strftime ("%d%b7dLA )

136 pylab.savefig( 'Mouse—'+str(int (100xsfac))+str(mydate)+’ .png’)

137 pylab.clf () # Clear the previous plot

138 pylab.step(self.tforplot,self.ratioforplot,label="CD4/CD8.ratio )

139 pylab.plot(self.tforplot,[l for t in self.tforplot])

140 pylab.xlabel(’$t$./ weeks’)

141 pylab.xlim ([0 ,max(self.tforplot)])

142 pylab.xticks ([28%i for i in range(int(tmax/28)+1)],

(continued)
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143 [4«i for i in range(int(tmax/14)+1)])

144 pylab.ylim ([0 ,max(self.ratioforplot)*1.1])

145 pylab.ylabel( 'ratio.CD4.to.CD8")

146 pylab.legend(loc="upper.right )

147 mydate = datetime.datetime.today ().strftime ("%d%b7HIAL )

148 pylab.savefig(’'Mouse—ratio +str(int(100xsfac))+str(mydate)+ .png’)

150 | AAAHHAHAAAAAAAAAAAAH  global parameter values
51| # scaling factor

152| sfac = 0.10 # fraction of the whole mouse (use sfac = 1 for whole mouse)

153| # thymic production :

154 nthy ,£8 = 4,1.0/5 # cells per new clone, fraction CD8

155| thymax ,nu = 1000000%sfac,0.004 # daily thymic rate at 8 weeks, decay rate

56| # periphery:

157 gmax ,mu = 200000xsfac,{ 'CD4’:0.030,°'CD8°:0.015} # peripheral division and death
15| ncells = int (10xthymax) # initial cell number

150| tmax = 63%7 # Total number of days of the mouse’s life

162 sim = simulation(tmax) # Create a new simulation
163| sim. scheduler () # Start the scheduler
164| sim.visualization() # At the end of the simulation, produce the output

w67|# python2.7 is recommended
ws|# use // for integer division, works in python2 and python3
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Part I11
Analysis of Stochastic Dynamical Systems
for Modeling Cell Biology



Model Reduction for Stochastic Reaction
Systems

Stephen Smith and Ramon Grima

1 Introduction

Master equations constitute the standard description of stochastic reaction dynamics
in well-mixed conditions [1]. For linear systems, the moments can be found exactly
in closed-form and sometimes even the probability distribution can be obtained [2].
However, most systems are nonlinear, specifically those involving the interaction
of two or more entities. For such systems the master equation can be rarely solved
and a different solution strategy becomes necessary. A common approach involves
performing stochastic simulations using the stochastic simulation algorithm (SSA)
[3]. However, the computational expense involved in gathering accurate statistics
can be considerable for many systems of interest, particularly those which involve
a high number of reaction events per unit time, a feature of systems with one or
more abundant species. One means to circumvent this problem involves deriving a
reduced master equation for only the non-abundant species and then obtaining the
statistics of the number fluctuations using the SSA. Various methods exist which
lead to such a reduction [4-7]. Here we choose to focus on what is perhaps the
simplest of such methods, one which is easy to derive for all cases of interest and
which leads to accurate and fast stochastic simulations. An additional bonus is that
in quite a number of cases, the reduced master equation can be solved exactly.
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2 The Method

In this section we introduce the rationale behind the model reduction method, by
means of a simple chemical reaction system. For a more technical presentation the
reader is referred to the original paper which derives the method [8]. This section
is self-contained, assuming no knowledge of rate equations or of master equations,
and builds the latter mathematical descriptions and the reduction method from the
ground up.

Consider the following chemical reaction system:

0% A a+a2B BE 0 (1)

This system consists of two proteins, A and B, and three reactions. The first reaction
is the creation of a molecule of A out of nothingness (4). This process is, of course,
thermodynamically implausible, but this notation is used when A is created at a
more-or-less constant rate by a reaction between chemical species which we are not
interested in modelling. The second reaction is between two molecules of A to form
amolecule B. We call B a dimer and the reaction a dimerisation. The third reaction is
the destruction of B into nothingness. Again, this is shorthand for the conversion of
B into products which we do not want to explicitly model. The quantities k;, k, k3
are the rates of the reactions, i.e. a measure of how frequently they occur.

The most common method of modelling systems like (1) is to treat the concen-
trations of A and B (number of molecules per unit volume) as continuous functions
of time, [A] and [B], respectively. These functions are defined as the solution to a set
of differential equations called rate equations (RE):

% = ky — 2ky[A], 2)
% = ky[A]” — ks[B].

The equation for % states that the rate of change of [A] is equal to the rate

of creation of A molecules, k;, minus the rate of destruction of A molecules,
2k, [A]%. The factor of 2 in the latter term refers to the fact that two molecules of
A are destroyed whenever the reaction occurs; the factor of [A]? relates to the fact
the reaction happens with a frequency proportional to the number of pairs of A
molecules, which scales as [A]?. The equation for @ states that the rate of change
of [B] is equal to the rate of creation of B molecules, k;[A]*, minus the rate of
destruction of B molecules, k3[B]. The term k3[B] corresponds to the fact that the
third reaction happens with a frequency proportional to the number of B molecules,

which scales as [B]. For more details, a standard reference book can be consulted [1].
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The RE system (2) can be solved for [A] and [B] as functions of time, but
for simplicity we will consider the equilibrium (steady-state) case, i.e. when
diA] _ diB] _

=4 0. Setting the equations in system (2) equal to zero leads to the

following simple expressions:

R
W=\ 50 Bl= 5 )

We therefore know how the concentrations of A and B scale with the various reaction
rates. However, our entire line of thinking so far has relied on the assumption that
the concentrations of A and B are continuous (even differentiable) functions of time,
an assumption which is clearly untrue since the number of molecules of A and B
must be integer-valued. Following this line of thinking leads us to consider not the
concentrations [A] and [B] but the molecule number n, and ng. We furthermore
observe that chemical kinetics is not deterministic but rather probabilistic. The
reason is that the timing of reaction events is random; for example, the precise time
at which two molecules of A will meet is unknown because the process which brings
the molecules together, Brownian motion, is a stochastic process. We are therefore
concerned with the quantity P(ng4, ng; t), the probability that our system (1) consists
of exactly n4 molecules of A and ng molecules of B at time ¢.

Just as with the deterministic RE system (2), the probability P(ng4,ng;t) is
described by a differential equation of the form:

d
EP(nA,nB; t) =ki1V(P(ng — 1,np;t) — P(na,ng; 1)) (@)

k
+ 72 (4 + 2)(na + DP(ns + 2,15 — 131) — na(na — 1)P(na, ng: 1))
+ ks ((np + 1)P(na,ng + 1;t) — ngP(na, np; 1)) .

This equation is a master equation, specifically a chemical master equation (CME).
It describes the rate of change of the probability of the system having ny, np
molecules of A and B, respectively, or in the language of statistical physics, the
rate of change of the probability that the system is in the state (na, ng).

The first term of Eq. (4) concerns how the system could enter or leave the state
(na, np) due to the first reaction. The system could enter the state (n4, ng) due to
the production of a molecule of A, if the system was previously in the state (ns —
1,np) [hence the probability P(ny — 1,np;t)] or else the system could leave the
state (n4, np) if it was already in that state [hence the probability P(ng4, ng; t)]. Note
that the first reaction happens with a rate k; V, for reaction volume V, because the
production reaction can occur anywhere throughout the reaction volume.
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The second term of Eq. (4) concerns how the system could enter or leave the
state (n4, ng) due to the second (dimerisation) reaction. The system could enter the
state (n4, np) if it was previously in the state (ny + 2,n5 — 1), or else the system
could leave the state (n4, ng) if it was already in that state. If the system was in state
(n4 4+ 2, ng— 1), then the second reaction would occur with rate % (na+2)(ng + 1),
since the number of distinct pairs of A molecules scales as (14 4+ 2)(n4 + 1), and the
factor V corresponds to the fact that dimerisation reactions are less likely to occur
in large volumes (since molecules are less likely to collide). Similarly, if the system
was in state (n4, np), then the second reaction would occur with rate ’%nA (ng — 1),
since the number of distinct pairs of A molecules scales as ng(ng — 1).

The third term of Eq. (4) concerns how the system could enter or leave the state
(na, np) due to the third reaction. The system could enter the state (n4, ng) if it was
previously in state (n4, ng + 1), or else the system could leave the state (14, np) if it
was already in that state. If the system was in state (n4, np + 1) the reaction would
occur with a rate k3 (ng + 1), since there are (ng + 1) molecules of B, but there is no
volume dependence for this reaction. Similarly, if the system was in state (n4, ng),
the third reaction would occur with a rate kzng. For more details, see a standard
reference book on stochastic methods [1].

While it can be seen that Eq. (4) corresponds to a physically accurate description
of the chemical system (1), it is by no means clear how to solve it, even at
steady-state. In fact, Eq. (4) cannot be easily solved analytically. Only a small
number of CMEs can be solved, and these generally have special properties such
as conservation laws [9], detailed balance [10] or no bimolecular reactions [11].
Instead, the most common stochastic approach to systems like (1) is to simulate
them using the stochastic simulation algorithm (SSA) [3]. Performing a large
number of independent simulations can generate a histogram which is known to
agree with the solution of the CME, within sampling error. However, this technique
does not tell us how the average number of molecules of A and B (other moments)
depend on the various parameters, analogously to Eqs. (3) for the rate equations.
If we want this kind of information we must use methods which analytically
approximate P(n4, ng;t), and we will describe one such method here.

This method [8] makes the assumption that some of the chemical species have a
high concentration. For instance, in system (1), suppose that there are a large number
of A molecules. By the definition of concentration, we can approximate the number
of A molecules as:

where [A] is the concentration given in Eq. (3). In fact, this approximation becomes
more accurate for larger concentrations of [A]. As shown in Fig. 1, the stochastic
behaviour of n4 (as simulated with the SSA) becomes less distinguishable from the
constant solution Eq. (3) as n4 increases. It follows that the stochastic behaviour
of n4 becomes less relevant as [A] grows, and it also follows that, if [A] is large,
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Fig. 1 Stochastic simulations (yellow, pink, green) and deterministic rate-equation solutions
(purple, blue, red) for ny is the system (1). Parameter values are k; = 20, ks = 1, V = 1
and k; = 1,1073,107 for [A] = 3, 107, 10%, respectively. Note that the noise about the mean
decreases with increasing mean number of molecules

we can replace every instance of n4 in Eq. (4) with V[A]. Also, since ny is large,
(na + i) ~ V[A] for small values of i. Hence we have

d
EP(V[A], ng:t) = ki\V(P(V[A], ng: 1) — P(V[A], np; 1)) (6)
k
+ 72 ((VIAD?P(V[A], ng — 1;1) — (V[A]*P(V[A], ng; 1))
+ k3 ((np + DP(V[A], np + 1;1) — ngP(V[A], np; 1)) .
Several simplifications can be made to this equation. The first term, for instance, is
now identically zero. Also, notice that since [A] is simply the constant defined in

Eq. (3), there is no need to include it as an argument in the probability P, hence we
can define a new, simplified probability P(np;t), leading to a simplified CME:

d - ki o= N
P =5‘v (P(ng — 1;1) — P(ng: 1)) )

+ ks ((np + DP(np + 1;1) — npP(ng; 1)) .
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This equation is relatively straightforward, and is known to have the steady-state
solution:

kv ng
H (3
fod 3
Png) = ———2

I’lB!

®)

In other words, the number of B molecules approximately satisfies a Poisson
distribution with mean k; V /2k3.

This approximation can also be made in a simpler (albeit less rigorous) manner
immediately from the reaction system (1). As a rule, wherever we see A to the right
of an arrow, we simply delete it (replace it with #). Wherever we see A to the left of
an arrow, we absorb it as [A] into the reaction rate. This replaces system (1) with the
system:

2
0% 0 02 g g5y )

The first reaction here is clearly pointless, and [A] can be replaced by its value given
in Eq. (3) to give:

ki

2 k3

9 =B, B> 0. (10)

It can be shown that the CME for system (10) is identically Eq. (7). We therefore
have a very quick way to reduce complex chemical reaction systems to simpler
subsystems which we know how to solve.

Yet, although this technique has been derived a priori, a question remains as to
the accuracy of the simplified system. How large does [A] have to be before the
simplified system is a good approximation to the true system? In fact, for most
cases, the simplified system is reasonable even when [A] is not large. For example, in
Fig. 2 we show how the Poisson distribution in Eq. (8) agrees very well with the true
solution of the CME when [A] is large, but also shows reasonable agreement when
[A] is much smaller than [B]. In general, however, the error scales as the inverse
ratio of the two concentrations, so that the larger [A] is compared to [B], the better
the approximation.

The example shown above is illustrative but of limited biological relevance or
interest. Next we will therefore demonstrate the power of the analytical approxima-
tion method by applying it to a variety of biological systems.
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Fig. 2 Probability distributions of np obtained from the SSA (histograms) and the analytical
approximation assuming abundance of A as given by Eq. (8) (solid line). Parameter values are as in
Fig. 1 and k, = 10,1072 for [A] = 1, 10°, respectively. Note that the approximation is particularly
good when [A] > [B] = 10

3 Application to Various Biological Systems

3.1 Michaelis—Menten Reaction

Consider the set of chemical reactions:
ki ka k3 ky
0—-S, E+S—-C,C—>E+S,C—E+P. (11

The system describes how a protein S is created (with rate k;) and reacts with an
enzyme E to form a complex C (with rate k). C can subsequently unbind, either
back to E + S (with rate k3) or else to E and new protein P (with rate k4). This
system has been studied extensively with and without protein production, using rate
equations and master equations [12, 13]. The first reaction could, for example, model
the effective translation of a protein in the cytoplasm while the rest of the reactions
model the enzyme-aided catalysis of the protein into another type of protein.
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The RE:s for this system are given by:

% = ki — ko[E][S] + k3[C],
% = —ky[E][S] + (k3 + k4)[C]. (12)
% — G[E]S] — (ks + ko)[C]-

In steady-state, the solutions of this system are

5] = ki (ks + ka)

ki
ko(Erks — ki) '

k_4 13)

[E] = Er — % [C] =

where Er = [E] + [C] is the total enzyme concentration which remains constant
over time. In order to apply the approximation method, we make the assumption
that [S] is large compared to [E] and [C]. Then, we can reduce the reaction network
to give:

ky[S
e o okt g (14)

The steady-state solution of the chemical master equation for this effective system

k3+ky c e .
Tt Tl +k2[s]> distribution for

ng. In Fig.3 we compare this Binomial distribution with SSA histograms for
three different values of [S]. As [S] increases, it is clear that the approximation
improves, though the Binomial distribution seems to be a reasonable estimate of
the distribution even when [S] is comparable to E.

of reactions is easily found to be a Binomial (ETV

3.2 Genetic Network with Feedback

Next we study a simple model of a genetic network with negative feedback:
ki k2 k3 ka ks
DON _)DON +M, M—>M+P1, P1 —)Pz, Pz —>P3, P3 — @,
ke k7 kg
DoN + P3 — DOFF, DOFF — DON + P3, M — Q. (15)

The system describes how a molecule of mRNA M is produced by an active gene
Don with rate k; (transcription), which in turn creates a protein P; with rate k, via
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Fig. 3 Probability distribution of ng is the Michaelis—Menten reaction system (11) obtained from
the SSA of the full system (histograms) and the analytical approximation corresponding to the
reduced system (14) assuming abundance of S compared to enzyme (red solid line). Parameter
values are k; = 1, k3 = 9.9, ky = 0.1, Ey = 20, V = 1. k; is varied to give different values of
[S]. Note that the approximation is excellent when the concentration of S is much greater than that
of enzyme

the process of translation. P; isomerises to P, with rate k3 which isomerises to P
with rate k4. P3 can decay with rate ks or it can bind to the active gene Doy with rate
ke to convert it to the inactive gene Dopp, and the deactivation can be reversed with
rate k7. Finally, the mRNA can decay with rate kg. The system possesses negative
feedback since the protein produced by the gene in the on state can turn the gene off
at high enough concentrations; it has previously been studied as a simple model of
a circadian oscillator [14, 15].
The RE:s for this system are given by:

@ = —k¢[Don][P3] + k7[Doks],
@ = kg¢[Don][P3] — k7[Dorg].
d[M]

o ki[Don] — ks[M],
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% = k[M] — ks [P1],
d[LZZ] = k3[P1] - k4[P2]’
d[dP;] = k4[P2] — ks[P3] — k¢[Don][P3] + k7[Dorr]. (16)

This system of equations can be solved in steady-state, but the expressions are
cumbersome and we will not state them here except for [P3]:

/ Akekikr kN
—ky + k% + %
[P3] = >3 (17)

2ke '

where N = [Don] + [Dogr] is the total gene concentration which remains constant
over time. In order to apply the approximation method, we make the reasonable
assumption that the protein concentrations [P], [P2], [P3] are large compared to
[Don], [Dorr] and [M]. For example, it has been shown that the mean number of
proteins per E. coli cell is roughly a thousand times that of the mean number of
mRNA molecules per cell while the gene copy number is often one [16]. Then, we
can reduce the reaction network to give:

ki ke[P3] k7 kg
Dox — Do~ + M, Dox — Dorg, Dorr — Don, M — 0. (18)

The chemical master equation for this system can be solved exactly in steady-state
using the generating function method [9] . The solution is complex so we will not
state it here, but in Fig.4 we compare the analytical approximation with the SSA
distribution, and observe that they agree well. In the inset we show trajectories of the
SSA for M (red) and Py, P,, P3 (yellow, blue, purple), which highlight the bimodal
nature of this system. The parameter set chosen here highlights two remarkable
properties of the approximation method. First, the approximate distribution captures
the bimodality of the true distribution. This is surprising because approximation
methods are rarely able to deal with bimodality. Second, the distribution is accurate
even though for a significant portion of time the system is in the lower state where
[P1] = [P2] = [P3] = 0, which can hardly be described as a high concentration. It
can be shown that the accuracy of the approximation depends only on whether the
RE solution is large, irrespective of the stochastic behaviour.
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Fig. 4 Probability distribution of the genetic feedback system (15), as obtained from the SSA
of the full system (histogram) and the approximation corresponding to the reduced system (18)
assuming protein abundance (red solid line). Inset: time courses of M (red) and Py, P,, P; (blue,
yellow, purple) as obtained from SSA, showing bimodality in both mRNA and protein values

and abundance of protein compared to mRNA for most of the time. Parameter values are k; =
100, ky =5, k3 =20, ks =1, ks=1, ke =1, ks =107 ks =01, N=1, V=1

3.3 Biochemical Switch

Next we consider a simple model of a biochemical switch [17], which could be used
to construct synthetic logic gates:

ky ko k3 ks k7
C—>C+X,XI—>0,Xi+B=A X, +A=2B, 0=2X,. (19)
ka ke ks

The system describes how three enzymes A, B, C catalyse the production and
degradation of two proteins X; and X,. The engineering application of this system
is that the output, A, is an amplification of the input, C, since a small change in [C]



154 S. Smith and R. Grima

corresponds to a large change in [A], thus functioning as a switch. The REs for this
system are given by:

% = k3[X1][B] — k4[A] — ks[X>][A] + ke[B].

% = —ks[X1][B] + kalA] + ks[X-][A] — kq[B],

WL — k0101~ o] — k1018 + kala),

‘”;2] = —ks[Xa][A] + ko[B] + k7 — ks[Xa). (20)

This system can be solved in steady-state, but the expressions are cumbersome
and we will not state them here. In order to apply the approximation method, we
make the reasonable assumption that the protein concentrations [X;], [X;] are large
compared to the enzyme concentrations [A] and [B] (similar to the assumption made
for the Michaelis—Menten system). Then, we can reduce the reaction network to the
effective one:

ka+ks[X2] @1
k3[X1]+ke

Analogously to system (14), the chemical master equation for this system has
a steady-state solution given by a Binomial distribution, specifically a Binomial

(ETV, %) distribution for ns, where Er = [A] 4 [B] is the total
concentrations of enzyme, which remains constant over time.

In Fig. 5 we plot the distribution of n4 for a variety of values of [C], for both the
analytical approximation corresponding to the effective system (21) and stochastic
simulations using the SSA of the master equation of the full system (19). The
switch-like behaviour is clear to see, as the mean of ny moves swiftly from about
10 to near 100 molecules (almost a ninefold change) as [C]V (the input number
of C molecules) is changed from 500 to 1500 molecules (a twofold change).
The approximation method here provides a very quick means of modelling a
bioengineering component, which would otherwise be time-consuming to simulate.

3.4 Predator-Prey System

Lastly we consider an example from ecology, a Lotka—Volterra-like predator—prey
system [18] given by the reactions:

k k k k k
R->R+R R+F>F+F, F>0,0—>R, 0—F. (22)
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Fig. 5 Probability distributions of n, in the biochemical switch (19) for different values of [C],
obtained from the SSA of the full system (crosses) and the analytical approximation corresponding
to the reduced system (21) under the assumption of protein abundance (solid lines). Parameter
values are k; = 0.05, k, = 0.001, k3 = 0.001, kg = 1, ks = 0.001, k¢ = 1, k5 = 0.001, kg =
50, V = 1. Note that a twofold change in the input [C] leads to an almost ninefold change in the
mean of the output A

The system describes (in a simplistic way) how a population of foxes F predates on
a population of rabbits R. A single rabbit can reproduce with rate k; and a fox can
eat a rabbit, giving it enough energy to reproduce with rate k,. Foxes can die with
rate k3, and rabbits and foxes can both immigrate into the environment with rates k4
and ks, respectively. The REs for this system are

% — 1 [R] — ko [RI[F] + ks,
M — atRiA 71 45 @3)

This system of equations can exhibit oscillatory behaviour for some parameter
values and stable behaviour for others.

B ksks
koky — kiks + koks + v/(kaka + kiks + koks)? — 4k koksks

[R]

Pl koky + kiks + kaks + /(kaka + kiks + koks)? — dkikaksks

[F] Yoks (24)
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Fig. 6 Probability distribution of the number of foxes, np, in the predator—prey model (22)
as obtained from the SSA of the full system (histogram) and the analytical approximation
corresponding to the reduced system (25) which assumes an abundance of rabbits (solid line).
Inset: time course data of rabbit (blue) and fox (red) populations from the SSA of the full system.
Parameter values are k; = 1, k, = 0.01, ks =5, ks =5, ks =10, V=1

In order to apply the approximation method, we make the reasonable assumption
that the concentration of rabbits [R] is large compared to the concentration of foxes
[F]. Then, we can reduce the reaction network to give:

k
FE r i F PR 05 R (25)

The master equation for this effective system of reactions can be solved analytically

in steady-state [19] and its solution is a Negative Binomial (]Qk—["'m kzk—[:ﬂ) . InFig. 6 we

compare this analytical approximation with the distribution obtained using the SSA
of the full system (22), and note that they agree well. In the inset we show a time
course of the SSA of the full system for rabbits (blue) and foxes (red). Note that
the oscillations are here induced by noise and are not predicted by the deterministic
rate equations. It can be shown that the reduced system does not possess noise-
induced oscillations; this is because for a one variable system the power spectrum of
noise fluctuations cannot exhibit a peak at a non-zero frequency [20]. Hence while
the approximation method leads to an excellent approximation for the probability
distribution of the full system it cannot always capture other relevant stochastic
properties.
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4 Conclusion

In this chapter, we have introduced a simple technique of approximating the master
equation. This involves reducing the model to one with a smaller number of species
interacting via a set of effective reactions. If the number of species in the reduced
model is small, then there is a good chance of finding an analytical solution in
steady-state, as we have seen for many examples. Even if such an explicit closed-
form solution is not possible, stochastic simulation using the SSA of the reduced
master equation yields an accurate solution in a time which is typically much shorter
than that possible with the SSA of the full master equation.
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Z1-Closure Scheme: A Method to Solve
and Study Stochastic Reaction Networks

M. Vlysidis, P.H. Constantino, and Y.N. Kaznessis

1 Introduction

We use an example to present in exhaustive detail the algorithmic steps of the zero-
information (ZI) closure scheme [1]. ZI-closure is a method for solving the chemical
master equation (CME) of stochastic chemical reaction networks.

The objective of this chapter is twofold: first to present the algorithm with
sufficient didactic value for a non-expert, yet patient and self-motivated reader
to confidently reconstruct the algorithm with any available programming tools,
including the ubiquitous paper and pencil. Second, this chapter lays bare the
theoretical and numerical underpinnings of ZI-closure for the expert audience to
confidently criticize and propose new, improved implementation solutions.

An avalanche of text, some of it wonderful and inspiring, has been written in the
last two decades on the importance of stochasticity in chemical reaction networks
[2-12]. We assume that the reader is familiar with this literature. The historical
difficulties in solving the CME are well documented in the literature. The CME is
not a single equation but a set of infinite number of coupled equations. As a result
the CME is analytically unsolvable. One of the most popular methods to numerically
solve the CME is Gillespie’s stochastic simulation algorithm [9]. However, the
method is a kinetic Monte Carlo algorithm and hence computationally expensive.
Zl-closure scheme is able to solve the CME as accurate as Gillespie’s algorithm
with significantly less computational time needed.

The starting point of ZI-closure scheme is to rewrite the CME in terms of
moments describing the master probability distribution. Instead of a master equation
that governs the probability distribution in time, one can then write a set of
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differential equations evolving the expected values of the distribution [13]. Efficient
algorithms have been developed to generate these moment equations for arbitrary
networks [14]. Yet, because the dynamics of lower-order moments depends on the
higher ones for nonlinear reaction networks, the system of ODEs needs to be closed
or somehow truncated in order to be solved [15].

At this point, ZI-closure relies on the maximum entropy principle, which states
that if some features of a probability distribution are known a priori, then in order to
estimate the full distribution we can look for the one with maximum uncertainty that
also satisfies the given knowledge (unbiased estimate) [12, 16]. Therefore, using the
definition of information entropy by Shannon [17], the system of moment equations
is closed by obtaining the higher moments from the maximum information entropy
distribution.

Herein we unpack in full mathematical detail the ZI-closure scheme for the
system of moment equations. We apply it to a specific reaction network, the Schlogl
model, as an illustrative study case. The Schlogl model is a single-component the-
oretical system that can exhibit bistability. The simplicity of the state space (single-
component) alongside with the complexity of the probability distribution (bistabil-
ity) makes the model a compelling studying example for the ZI-closure scheme.

We start with the analytical derivation of the chemical master equation of the
Schlogl model. We then present the derivation of the associated moment equations.
Next, we move on to explicitly discuss the theoretical framework supporting the
zero-information closure scheme. After presenting a numerical procedure for the
implementation of the method, we show some results comparing its accuracy to
kinetic Monte Carlo simulations.

2 Theoretical Background

2.1 Derivation of Chemical Master Equation for the Schlogl
Model

This section presents the derivation of the chemical master equation for the Schlogl
model. The CME models the probability P(X;¢) that the system is in state X at
time ¢. Here X represents the number of molecules of the sole reactant X.

The Schlogl model consists of the following reactions [18]:

3x Xox, (1)
ko

2X 53X, 2)

x50 3)

g x. 4)
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The probability of reaction (1) occurring during an infinitesimal time interval
(t,t + dt) is P1(X) = ki X(X — 1)(X — 2) dt. For reaction (2) this probability is
Py(X) = ky X(X — 1) dt, for reaction (3) we obtain P3(X) = k3 X dt and for
reaction (4) the probability is P4(X) = ky dt [19], with P;, i = 1,2, 3, 4, being the
probability of reaction i firing in isolation. In order for the process to be considered
Markovian, at most one reaction is allowed per time interval dt [19].

In the Schlogl model, the only ways for the system to be at X number of
molecules at time ¢ + df are:

(a) The system was at X number of molecules at time ¢ and no reaction occurred
within (¢, ¢ + dt),

(b) the system had X — 1 number of molecules at time 7 and either reaction (2) or
reaction (4) occurred within (¢, t + dr),

(c) the system had X + 1 number of molecules at time ¢ and either reaction (1) or
reaction (3) occurred within (z, ¢ + dr).

The probability of event (a) is:

P(a) = P(no reaction occurs) - P(system has X molecules at time ¢)

= [1 — P(all reactions occur)] P(X; 1).
Since all reactions are considered independent, this results in:
P(a) = [1 — Pi(X) — P2(X) — P3(X) — P4+(X)] P(X;1)

= [1 —kXX-DX-=-2)dt—ky X(X—1)dt — k3 X dt — ky dti| P(X;1).

®)
Similarly, the probability of event (b) is:
P(b) = [P2(X — 1) + P4(X — D] P(X — 1;1)
= [k2 X—1D(X—2)dt + k4 dti| PX —1;1). (6)

And for event (c) we have:

Plc)= [PIX+ 1D +PsX+D]PX+1;1)

[kl X+ DX(X = 1) dr + ks (X + 1) dz} P(X + 1;1). %)
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Thus, the probability that the system is at state X at time ¢ + dr is:
PX;t+dt) = P(a) + P(b) + P(c)

= +[1 — kXX = 1)(X =2)dt — ko X(X — 1)dt — k3 Xdt — ky dt]P(X; t)
+ [kz X-DX—-2)dt+ k4 dt] P(X —1;1)
+ [kl X+DXX-1D)dt+ks (X+1) dt] PX + 1;1).
Rearranging the last expression:
P(X:t+df) — P(X;1) = % - [kl XX—1DX=-2) + ko XX—-1) +k X +k4}
xP(X;1) + [kz X-—DX=-2) +k } P(X —1;1)

+ [kl X+ DXX—1) +ks (X + 1)] P(X + 1;t)} dt

P(X;t+dt) — P(X;1)
dt

- —[kl XX = 1)(X —2) 4k X(X — 1) + ks X +k4] P(X:1)
+ [kz (X - DX —-2) +k4]P(X—1;r)

+ [kl X+DXX—=1) +ks (X + 1)} PX + 1;1).

And then by taking the limit dt — 0 we have:

. PX;t+dn—P(X;1)
lim
dt—0 dt

_ 31’(;") _ —|:k1 XX—DX—-2) +kX(X—1) +k X +k4} P(X: 1)

+ [kz X-1H(X-2) +k4:|P(X—1;l)
+ [k] X+ DXX=1) +ks (X + 1)} P(X + 1:9). (8)

This is the CME for the Schlogl reaction model.
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2.2 Derivation of Moment Equations from Chemical Master
Equation

A proposed technique to solve the CME relies on calculating the probability
moments. The approach is based on the idea that any probability distribution can
be completely described by its moments. Moments are expected values of functions
of an independent random variable, here the number of molecules, e.g., the mean,
the variance, the skewness, and the kurtosis of a probability distribution.

There exist numerous different types of moments, all valid for describing a
probability distribution, e.g., the central, factorial, and polynomial probability
distribution moments [7, 14, 15, 20].

Herein we use factorial moments given by the expression:

o !
xm =Y ﬁmx, 1. ©

x=0

where x represents the possible values of X and m is the integer order of the moment.
A main reason for using factorial moments is that they are simple derivatives of
a Z-transform of the probability distribution, which has the following form:

GS.1) = S'P(x.0). (10)

x=0

where S is the continuous transformation of X. Z-transform is also known as the
probability-generating function.
Differentiating Eq. (10) with respect to S, at S = 1, yields:

dG(S,t 9*°G(S, 1
S0 g, D00 ey,
s=1 s=1
3G(S,1) ; 0*G(S, 1) .
TS e, X'} st e, {X*}. (11)

Similar equations hold for the rest of the moments (fifth-order, sixth-order, etc.).
Note that it is also true that G(S,#)|¢_; = 1. Thus, it is easy to generate factorial
moments through the Z-transform of the probability distribution.

Differentiating the function G(S, ¢) with respect to time, we get:

oo

0G(S,1) o . OP(x, 1)
o ZS At

. (12)

x=0
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Applying this to the CME for the Schlogl model (8), we obtain the Z-transformed
chemical master equation (Z-CME)

GG _ o705ty PO
5 =k (S 5)853+k2(s S)as2

+k3(1—S)aa—§+k4(S—1)G
13)

Through Z-CME one can generate moment equations. Taking the first derivative
of Eq. (13) with respect to S yields

d (0G d [(0G G G
i (%) - %(_) =k (28-38%) o5 + ki (8= 8) =7

ot ot 983 AN
*G PG G
ky (357 —28) — + ko (S* = %) — + k3 (1) —
+heo ( ) 57tk ) 5 Tl oS
0°G G
ks(1—8) — +k(1)G+ks(S—1) —. 14
+ks ( )352+4() + ka ( )E)S (14)
Setting S = 1 we get
d (4G ’G 0°G G
A | I ko S| —ky = ks Gl -
or (as) A T M o R T R
(15)
Or from Eq. (11)
X
% = ki {X?} + ko {X?) — k3 {X} + kq. (16)

Equation (16) is the equation for the first-order factorial moment of P(X, t).
In order to generate the moment equation for the second moment one needs to
take the second derivative of Eq. (13) with respect to S [or the derivative of Eq. (14)]

d (3G ¥ (090G PG G
( ) ( ):k1(2—6S)§+k1(2S—352)—

a\aw) e\ as*
th (25 -35%) (2)47? +ki (82— 57) %ST? + ks (65 —2) a;Tf
+e (557 -29) 00 440 557 -29) 00 ke (- 7) T2 - S
+k3(_1)%(2;+k3(1—5)%;+k4g—g+k4(1)%—g+k4(5—1)g%f

an
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Again, by setting S = 1, we get

3 (G _ . Y6 G 3G
r\as? Jlo, A g, ast e, aSt e,
G G G G
4y — ky — kb —| —k —
i 08? |5 T 983 5= T 98% |5 } 982 s=1
0’G G G
—ky —— ky — ky —| . 18
Yo |, T as |, T s, (1%

Or from Eq. (11)

(X2}
ot

= 2k {X*} + (—4ki + 2ko) {X°} + (4ka — 2k3) (X} + 2ka{X}. (19)

This is the second-order factorial moment equation. All higher order moments
can be constructed with this recursive algorithm.

For nonlinear reactions this set of equations must, in principle, be extended
to infinite order. The reason becomes evident by looking at Eq.(16), where the
first moment depends on the second and the third. In Eq.(19) it is evident that
{X?} depends on {X3} and {X*!. Similarly, in the equation for {X™}, where M
is an arbitrarily large, yet finite, moment, we would find terms like {XM*+D},
{(XMFD) e,

We can concisely write the moment equations as follows:

9
8—’: — Ap + A, (20)

where pu is the vector of lower-order moments

po= 13 X% 00 X (x5 M 1)

and p’ is the vector of higher-order moments
=[xy ey " (22)

A and A’ are matrices constructed with coefficients from moment equations.

The major challenge with solving the moment Eq. (20) is the result of non-zero
elements present in matrix A’. The set never closes for nonlinear reactions, requiring
an infinite number of moment equations. Elsewhere, we explored numerous,
previously proposed closure schemes [12].

One insight to move past this impasse is that for reaction networks with finite
state space we may anticipate a probability distribution that can be adequately
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described by a finite number of moments. Note this argument is void of mathe-
matical rigor. The insight is purely based on physical intuition. Let us accept it for
now with the understanding that it may or may not serve us well, depending on the
reaction network.

Empirically, we find that the probability distribution of the Schlégl model can
indeed be described within reasonable numerical accuracy with up to 12 lower-order
moments. For the sake of brevity, we will present the algorithm assuming that six
moments suffice. We also focus only on steady state probability distributions. We
have discussed non-steady state solutions of moment equations in [1].

At steady state, moment equations become

0=Au +A'n, (23)
where w and p’ include the stationary probability distribution moments.

For the Schlégl model with up to six lower order moments (excluding the zero
order moment) we have

=[G ) 00} X7 (X0} (x0)]
W=7 24)
The zero order moment is always 1, since {X°} = Y2 —2_P(x,1) =

x=0 (x—0)!
Y2 P =1.
Matrices A and A’ are presented in Eqgs. (25) and (26), respectively:

A =
0 0 0 0 0 0 0
ky —k3 153 —ky 0 0 0
0 2k4 4ky — 2k3 2k, — 4k —2k; 0 0
0 0 6ky + 3ky 12k — 6k — 3ks3 3k, — 12k —3k 0 (25)
0 0 0 24k, + 4ky 24k, — 24k; — 4k; 4ky — 24k, —4k,
0 0 0 0 60k, + 5k 40k, — 60k, — 5k3 5ky — 40k,
0 0 0 0 0 120k, + 6ky 60k, — 120k, — 6k3
S 0
0 0
0 0
A= 0 0 (26)
0 0
5k 0
| 6k, — 60k, —6k; |
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In principle, any CME can be transformed into moment equations, through
Z-transform. At this point instead of the CME we have a finite set of ordinary
differential equations, albeit one that is not solvable because of the non-zero
elements in A’

3 ZI-Closure Scheme

3.1 Solving Moment Equations by Maximizing the Information
Entropy

In order to resolve the numerical closure issues of solving moment equations, we
proposed the zero-information closure scheme [1]. We assume that all information
necessary to build the probability distribution described by the CME is contained
within a finite number of lower-order moments. In that case, higher-order moments
add no information to the reconstruction of the probability distribution and may be
obtained from the maximization of information entropy.

Using Shannon’s definition [21], information entropy is given by

H=-)"P(x)nP). 27

x=0

Again, x can take all possible values of the state variable X.

Assuming that the first M lower-order moments (not including the zero-order
one) are known, the entropy defined in Eq. (27) must be maximized with respect
to these constraints. This can be accomplished with the method of Lagrange
multipliers:

M o0 X! .
A=H-) 1% [; (x_i)!P(x)—{X}:|, (28)

i=0

where A is the Lagrangian and A; is the Lagrange multiplier associated with the
lower-order moment {X'}.
Since the entropy is maximum, for every value x =y

N

or from Eq. (28)

o]

OH 3 (& x! ,.
F()})_F(y) {;Ai [Z—(x—i)!P(x)_{X}]

x=0

=0. (30)
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From Eq. (27), we obtain

OH d > 9
P0) = P0) [—;P(x) 1nP(x)j| = T9P0) [P(y)InP(y)] = —InP(y) — 1.
(31)
Additionally,
B Iy o X! p X
7 | 2 | 2 G ~

v\N

B AR E= X'}

— LA § P0) [; TEDTA )} P0)
M M

_ yt 9P(y) R

_ZA 5=D13P0) ;x,—(y_i)!. (32)

Combining Egs. (30)—(32) we conclude

PH(y)zexp|: 1—21 _l)'} 33)

Equation (33) gives the stationary probability distribution for the maximum
entropy solely in terms of the Lagrange multipliers. The subscript H emphasizes
that the distribution is given for the maximum information entropy distribution.

Through the expression of the probability distribution for maximum entropy,
both the lower-order and higher-order moments can now be related to a set of
M + 1 Lagrange multipliers. The following holds for every moment of the stationary
probability distribution

" > x! > x! l x!

For example, the third moment of the Schlégl model example for up to M = 6
lower-order moments is given by

o0

{X3}H:Z( 3)'exp|: I—Zk :| Zx(x—l)(x—Z)

x=0

xexp[-l—Ao—Aix—Axx(x—1)—Azx(x—1) (x —2)
“Apxx—1D)(x—=2)(x=3)—Asx(x—1)(x—2)(x—3) (x—4)
—Aex(x—1)(x—=2)(x=3) (x—4) (x—59)]. (35)
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Based on Eq. (34), vectors g and p’ of the Schlogl model for up to six lower-
order moments can now be written only in terms of the seven Lagrange multipliers:

B 1
x! 6 x!

Z;io x—1)! exp [_1 - Z,‘:o /\i_(x_,')u]

X0 o oXp _1 — Yo iy (x—z)'

By = | 220 (xi_'3)' €Xp _1 - Zz o MiG=gi (x—,)l (36)

o] ! 1
2 =0 (xf_4)g 289 __1 - Zi=0 A"(XXTI')!_

o I 6 !
D=0 G5 €XP 1= 2imo A (xii)!_

00 6 )
—Z* 0 (x—6)' exp _1 — im0 Aiﬁ_

6 x!
Z:i() G— 7)| GXp —-1- Zi=0 Ai()c—‘i)!
Ry = . 6 ] 11 ©7
Zx—o G— g)| exp -1 - Zi=0 Ai()c—‘i)!_

Matrices A and A’ still have the same form [Egs. (25) and (26)]. The difference
is that now Eq. (23) depends only on a set of seven Lagrange multipliers. Given
that there is a set of six coupled equation as well as one normalization constraint
with seven unknown parameters, then the Lagrange multipliers, and hence the
probability distribution, can be computed using a root-finding numerical method
such as Newton—Raphson.

3.2 Newton—-Raphson Algorithm for Finding the Lagrange
Multipliers

The steady state moment equation [Eq. (23)] depends only on Lagrange multipliers
[Egs. (36) and (37)] and the kinetic constants of the system [Eqgs. (25) and (26)].
Since, the system is closed, i.e. it has the same number of unknowns and equations,
a root-finding method can be equipped in order to find the steady state Lagrange
multipliers.

A proposed algorithm based on the Newton—Raphson method can be

1. Set the necessary number of lower-order moments (M). The value of M can
affect the accuracy of the solution since by setting a specific number of lower-
order moments, we assume that the rest of them have little to offer in the
solution. For the Schlogl model example M = 12 is sufficient [1].
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Calculate matrices A and A’ through Egs.(25) and (26). These matrices
depend only on the kinetic constants of the system.

Introduce an initial guess for the Lagrange multipliers of the system A =
[Ao, A1, ..., Ap]. Usually this guess is either a vector of zeros (which means
that a uniform distribution is the initial guess) or the Lagrange multipliers
generated from a system close to the one we are trying to solve.

Calculate the moment vectors u, and pu’, based on Egs. (36), (37) and the
current value of the Lagrange multipliers A. The subscript A is employed to
emphasize that the vectors have values based on the current guess of Lagrange
multipliers.

. Calculate the value of the moment equations for the current guess of moments

Calculate the Euclidean norm of vector Ay,

€=\ AuiAR;. (39)

If € is less than the wanted accuracy threshold proceed to (8). Otherwise:

¢ Calculate the Jacobian of the system:

8AM’A a”’k /
= =A—F— +A —=. 40
=5 a T4 (40)

* Based on Newton—Raphson method, calculate a first order Taylor expan-
sion:

Ap, = JAX. @1)
¢ Create an approximate step AA for the Lagrange multipliers vector A:
Ar =J"Ap,. (42)
where J~! is the inverse of the Jacobian matrix J.

 Calculate the new set of Lagrange multipliers: A = A + AA.
¢ Return to (4).

. The final solution is A and the probability distribution is calculated based on

A and Eq. (33).
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3.3 Some Results for the Schlogl Model

Using this algorithm we may solve stochastic reaction networks, including the
Schlogl model as previously reported [1]. For a specific set of kinetic constants,
the stationary probability distribution calculated with ZI -closure scheme, for a
12th order closure (M = 12), is presented in Fig. 1. As the figure shows, ZI-
closure accurately computes the steady state distribution compared to results from
Gillespie’s stochastic simulation algorithm (SSA) [15] computed using our SSA
solver [22].

Table 1 also presents the first eight moments calculated with ZI-closure scheme
and SSA, as well as the corresponding Lagrange multipliers calculated for ZI-
closure. The moment values calculated of the ZI-closure scheme are close to the
ones of SSA (forth column of Table 1).

Finally, Fig.2 shows how the solution of ZI-closure scheme is affected by the
chosen order of the lower-order moments M. The figure demonstrated that at least
ten moments are needed to accurately reconstruct the probability distribution. After
a specific value of lower-order moments (M = 10), the method converges to the
same probability distribution.

0.05
0.04
> —SSA
i |
=0.03 - -Zl-closure scheme
o
©
o
2
o

0 20 40 60 80 100 120
X (molecules)

Fig. 1 The figure compares the solution of ZI-closure scheme for 12th order closure and the
solution of SSA for at least 500,000 trajectories. The solution of ZIl-closure schemes matches
the one of SSA. For this figure, Table 1 and Fig.2 the kinetic constants are (ki,kp, k3, ks) =
(0.0015,0.15, 3.5, 20)
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Table 1 The second and third columns of the table present the values of the moments of the
stationary probability distribution of SSA and ZI-closure scheme, respectively

SSA Zl-closure scheme | Difference (%) | Lagrange multiplier
First moment 40 40 6.0x 107° —1.1
Second moment |2.4 X 10° 2.4 x 103 4.5x107° 1.5x 107!
Third moment 1.6 x10° | 1.6 x 10° 1.0x 1073 —8.5x 1073
Fourth moment | 1.1 x 107 | 1.1 x 107 1.2x 1073 29x 1074
Fifth moment 7.9x 108 |7.9x 10® 1.3x 10773 —6.2x 107
Sixth moment 5.7x10'° |57 x 10" 1.3x 1073 9.1 x 1078
Seventh moment |4.2 X 10'> | 4.2 x 102 1.3x1073 —8.9x 1010
Eighth moment | 3.1 x 10'* | 3.1 x 10" 1.2x10773 5.5%x 10712

The rows of the table indicate the order of the moment. The percentage difference between
the moments calculated with the two methods relative to SSA results is located at the fourth
column. The fifth column presents the corresponding Lagrange multipliers calculated with ZI-
closure

0.06

Probability

e e o ©
o o (=] o
B &

o
o
ury

0 20 40 60 80 100 120
X (molecules)

Fig. 2 The stationary probability distribution of ZI-closure scheme for different closure orders, M

4 Concluding Remarks

In this chapter we explored in detail the use of factorial moments and the
zero-information closure scheme for solving CMEs. Numerous chemical reaction
networks with diverse dynamics have been numerically explored (e.g., Michaelis—
Menten system, closed dimerization reaction, cyclic chains, etc.) and can be found
in [1, 12]. Here we have presented the Schlogl model, a simple, single-component
system.

There are numerous challenges we face when using ZI-closure. An important
one is that ZI-closure is currently limited to one- or two-dimensional systems; that
is, networks with only up to two chemical degrees of freedom. This is a practical,
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numerical implementation challenge, a result of the exploding phase space size for
multidimensional problems.

Furthermore, for more than two reacting species, the number of moment equa-
tions quickly increases to impractical sizes. This is because even for low moment
order closure scheme, the moments include cross variable terms, e.g., X2, Y2 and
also XY, or X3, Y3, X2Y and XY2.

Another important limitation is that there is currently no way to know a priori
how many moments suffice for a numerically accurate reconstruction of the prob-
ability distribution. Furthermore, the reconstruction itself becomes a progressively
more challenging task as the number of moments increases.

Zl-closure is certainly not an efficient method to compute the dynamics of
probability distribution in non-steady state systems. This is because, at each time
step an entropy maximization step must be implemented. Although Lagrange
multiplier values from the previous time step can be used as an initial condition,
the numerical implementation is slow.

Nevertheless, with Zl-closure there is now a tool to compute steady state
probability distributions, without having to resort to stochastic simulations in
time. This is an important advantage of the method compared to other stochastic
simulation methods.

Furthermore, with ZI-closure the tools become available to explore the stability
of reaction network steady states and the sensitivity of the behavior to changes
in system parameters [12, 23], paving another avenue for investigating stochastic
reaction networks.

The entropy of a chemical reaction network at non-equilibrium steady state
(NESS) is at the heart of Zl-closure. We are wondering whether NESS are
established when the entropy is maximum. We are currently pursuing a research
program to clarify the physico-chemical implications of the postulate of maximum
entropy imposed by ZI-closure.

There is much work left on developing Zl-closure. We hope to engage the
community in a dialogue on what is important in stochastic dynamics simulations
and on how to improve CME solvers.
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Deterministic and Stochastic Becker-Doring
Equations: Past and Recent Mathematical
Developments

E. Hingant and R. Yvinec

1 Introduction

The Becker—Doring (BD) equations go back to the seminal work “Kinetic treatment
of nucleation in supersaturated vapors” by Becker and Déring (1935), which gave
rise to the name of the model. Later on, Burton (1977) popularized the use of
such equations to study condensations phenomena at different pressures. Since then,
applications of this model range from physics, chemistry to biology. Recently, the
book edited by Schmelzer (2005) makes an inventory of several applications of
nucleation and phase transition theory. Let us also point out recent applications of
Becker-Doring or related coagulation-fragmentation models in biology, specifically
to protein aggregation in neurodegenerative diseases, e.g. the works by Linse and
Linse (2011), Prigent et al. (2012), Alvarez-Martinez et al. (2011), Budrikis et al.
(2014), Eden et al. (2015), Davis and Sindi (2016), Eugene et al. (2016) and
Doumic et al. (2016). Also Hu and Othmer (2011) worked on polymerization of
actin filaments, Hoze and Holcman (2014; 2015) on assembly of virus capsids,
Bressloff (2016) on vesicular transport, and Hoze and Holcman (2012) for telomere
clustering.

In its survey, Slemrod (2000) said the BD equations “provide perhaps the
simplest kinetic model to describe a number of issues in the dynamics of phase
transitions.” This is maybe one of the reasons these equations received lots of
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attention from many mathematicians. But despite their simplicity, these equations
are rich and difficult. Our intention here is: on one hand, to complete the review
by Slemrod with new results; and on the other hand, to give a parallel with
the stochastic version of these equations, which reveals a lot of new interesting
problems. We also mention the review by Wattis (2006) which contains many
qualitative and exact properties of the solutions in the deterministic context, and the
pedagogical notes by Penrose (1995). But, few stochastic reviews of the BD model
are available, we can only mention the seminal work by Aldous (1999) which treats
the so-called Smoluchowsky coagulation equations.

The model consists in describing the repartition of clusters by their size i > 1, i.e.
the number of particles that composed them. Clusters belong to a “solvent” in much
smaller proportion and are assumed to be spatially homogeneously distributed.
Along their motion, clusters give rise to two types of reactions, namely the Becker—
Doring rules:

1. A cluster of size 1, commonly called monomer or elementary particle, may
encounter a cluster of size i > 1 to coalesce and give rise to a cluster of size
i+ 1.

2. A cluster of size i > 2 may release spontaneously a monomer resulting in a
cluster of size i — 1 and a cluster of size 1.

These can be summarized by the set of kinetic reactions, for eachi > 1,

Ci +Ci\:\ici+ly (D
bit1

where C; denotes clusters consisting of i particles. Coefficients a; and b,y stand,
respectively, for the rate of aggregation and fragmentation. These may depend on
the size of clusters involved in the reactions and typical coefficients are derived by
Penrose (1997) and Niethammer (2003):

ai =1, biy1=ai+ (Zs"' it l)V) , i>1. ()

for0 <o <1,z > 0,9 > 0and 0 < y < 1. This choice is in agreement with
original derivation where a; ~ i*/3, b; ~ a;exp(Gi~'/3). In particular, the diffusion-
limited case of monomers clustering into sphere correspondstoa = 1/3,y = 1/3
in 3D and to @ = 0, y = 1/2 in 2D, while the interface-reaction-limited case
corresponds too = 2/3,y = 1/3in3Dand @ = 1/2, y = 1/2 in 2D. We refer
also to Penrose and Buhagiar (1983) for a method on deriving coefficients. Note that
all along the survey we assume the natural hypothesis a; and ;4 are non-negative
for all i > 1, without referring to this again.

In its mean-field version, or deterministic, the BD model is an infinite set
of ordinary differential equations for the time evolution of each concentrations
(numbers per unit of volume) of clusters made of i particles. In its stochastic version,
the BD model is a continuous time Markov chain, on a finite state space. We divide
the remainder of this survey into two parts for the respective versions.
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2 Deterministic Mean-Field Theory

The general formulation of the deterministic Becker—Doring equations, as studied
today, seems to go back to Burton (1977) and was popularized among mathemati-
cians by Penrose and Lebowitz (1979) (indeed, the equations studied in the original
work by Becker and Doring (1935) slightly differ, see comment later on). It assumes
the system behaves homogeneously in space with a high number of clusters, and
considers concentrations ¢;(¢) (unit per volume) of clusters with size i > 1 at time
t > 0. It deals with classical law of chemistry (Law of Mass Action), the coagulation
is considered as a second order reaction while the fragmentation is a first-order
(linear) reaction. The flux associated with the kinetic scheme (1) is thus given, for
eachi > 1, by

Ji = ajcici — biyiciyr - 3
Considering all the fluxes involved in the variations of the concentration of each

c; entails the infinite system of differential equations, namely the Becker—Doring
equations:

d
Lev=-n-Y 1, 4
yra 1 2 “4)
d
—ci=Ji_—J; 5
s 1 (@)

for every i > 2. The system considered here has no source nor sink. Consequently,
for the total amount of monomers, we should have, for all r > 0,

> ici() =p. (©)

i>1

where p is a constant, called through the survey: mass of the system. Formal
computations on the solution of the system (4)—(5), interverting infinite sum, lead to
this statement. Remark, the constant p is entirely determined by the initial condition
given at time = 0. In this section we try to expound the main theory around these
equations. In particular, we exclude many variants such as the original constant
monomer formulation, which is then an infinite linear system (e.g., Penrose 1989,
Kreer 1993, or King and Wattis 2002), the finite-dimensional truncated system
(e.g., Duncan and Soheili 2001 or Duncan and Dunwell 2002), generalization such
as micelles formation (e.g., Coveney and Wattis 1996) or including space with
cluster diffusion (e.g., Laurengot and Wrzosek 1998) or lattice models (e.g., Penrose
and Buhagiar 1983).

We separated this section between well-posedness, long-time behavior, scaling
limit, and some time-dependent properties.
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2.1 Well-Posedness

The first general result on existence and uniqueness on Becker—Ddring equations
is due to Ball et al. (1986) which really starts the mathematical analysis of BD
equations. The authors state many of the fundamental properties of the solutions
belonging to the Banach space

Xt .= xCRﬁ:Zixi<+oo ,

i>1

which arises naturally in view of the balance of mass Eq.(6). We recall first the
notion of solutions to BD equations.

Definition 1 Let T € (0, +-00] and ¢ € XT. A solution to the Becker-Déring
equations (4)—(5) on [0, T') with initial data ¢™™ is a function ¢ : [0, T) — Xt which
writes ¢ 1= (¢;)i>1 and such that: sup,epo 1) [c()[|x < +oo; for all 7 € [0,T), we
have >, aic; € L'(0,7) and }_,., bc; € L'(0,1); Eqs. (4)~(5) hold almost every
t €[0,T) and c(0) = ¢™. B

One of the fundamental facts, proved by Ball et al. (1986), is that any solution
to the BD equations satisfies the balance of mass Eq. (6) at all finite time (Corol-
lary 2.6). In particular, any solution to the BD equations avoids the so-called gelation
phenomenon (in finite time) which can occur in general coagulation-fragmentation
equations (e.g., Escobedo et al. 2003). Ball et al. (1986) also proved propagation of
moments (Theorem 2.2) and regularity properties of the solutions (Theorem 3.2).
Finally, they state a general existence result for sublinear coagulation rate and
uniqueness with an extra-moment on the initial condition (see below Theorem 1).
In short, the work by Ball et al. (1986) covered the essential properties of BD
equations, build the foundations for the analysis of BD equations, and should be
a companion for whom want to work with.

We go back to well-posedness, for which Laurencot and Mischler (2002)
complement the result in Ball et al. (1986), proving the uniqueness without extra
condition on the initial data but assuming a growth condition on the fragmentation
rate, viz. there exists a constant K > 0 such that, for every i > 2,

ai—ai1 <K, bi—by1 =K. (7

We summarize these results in the following theorem.

Theqrem 1 (Well-Posedness, Ball et al. 1986, Laurencot and Mischler 2002)
Let ¢™ € X™T. Assume alternatively either (a) a; = O(i) and Zizl izc}n < 400, or
(b) the growth condition (7). The Becker—Doring equaﬁons (4)—(5) have a unique
solution ¢ on [0, +00) associated with the initial data c™. Moreover, for all t > 0,

Z ici(t) = Z icin .

i>1 i1
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In fact the uniqueness in Ball et al. (1986) is slightly more subtle, see their
Theorem 3.6. Also, they proved that a; = O(i) is almost optimal. Indeed, their
Theorem 2.7 states: if lim;— oo a;/i = +o0 and lim;— o bit+1/a; < 400, then
for some initial condition (with relatively fat tail) still belonging to X the BD
system has no-solution. This suggests that, for super-linear coagulation rate, we
cannot hope existence for a large class of initial data without a sufficient control
on the fragmentation rate. Since mass is preserved, fragmentation should balance
the formation of “big” clusters. It seems very few results exist for such class of
coefficients, except Wattis et al. (2004) who considered exponential coefficients.

Finally, we mention that a proof of existence to the BD equations is self-
contained in the nice proof by Laurengot (2002) for a more general model (discrete
coagulation with multiple fragmentation). It relies, as for the proof given by Ball
et al. (1986), on a truncated system up to a size N and compactness arguments
to obtain the limit N — 4-o00. But here Laurencot (2002) took advantage of the
propagation of super-linear moments and a De La Vallé Poussin lemma to prove
compactness.

2.2 Long-Time Behavior

The long-time behavior of the BD system brings some of its most interesting
properties, and we will see this is still under active research. Through this section
we will always assume that both a; and b;y; are positive for each i > 1. This
avoids many pathological cases, in some sense, if one of them cancels it “breaks the
communication” between clusters in one side or another. Nonetheless, we mention
the interesting cases (not detailed here) where either a; = 0 or b;+; = 0, for every
i > 1, which have been treated again by Ball et al. (1986)! We start with a subsection
which deals with convergence to equilibrium. Then, we will see the most recent
results on the exponential stability of the equilibrium.

2.2.1 Convergence to Equilibrium

The equilibrium candidates, at plural, of the BD equations are obtained by canceling
the fluxes J;, for each i > 1, as defined in Eq. (3). After straightforward manipulation
of the fluxes, the candidates form a one-parameter family, indexed by a variable
z > 0, and are given by the expressions

@@ =0, where Q= (®)
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for every i > 1, with the convention Q; = 1. For example, the case related to Eq. (2)
gives e.g., Niethammer (2003), for large i,

C q 1- —
Qi & — =35 eXp (——i "A+o00 y))) :
g (1 =9z
To find the right equilibrium, which reduces to find the value of ¢, = z, one

should use the balance of mass Eq. (6) which we know to be satisfied at any finite
time. Hence, this leads us to consider the power series, given by the mass of the
equilibrium candidates,

Z i0;7

i>1

which radius of convergence is denoted by z,. Such radius is obtained from the rates
functions since the Cauchy—Hadamard theorem says 1/z, := lim sup;_, Ql.l/ " [note
that this definition is consistent with the z, that was used in the example given by
Eq. (2)]. This becomes the heart of the existence of a critical mass in BD equations
since the values taken by the series may not define a bijection from [0, z;) into
[0, +00). Indeed, set p, be the upper value taken by the series on {7z < z}. It can
occur that p; is finite, in which case we already know that there is no equilibrium
candidate with mass p > p,. Hence, this leads to a dichotomy in the long-time
behavior of the BD equations whether or not the mass of the solution considered is
less than p;, named the critical mass. We may refer to sub-critical solution when the
mass p < pj, critical solution when p = p, and super-critical solution when p > p;.

The Becker—Doring equations are part of the kinetic equations. The latter have
a long story, led by the celebrated Boltzmann equations, which are of course
completely out of the scope of this paper, maybe the reader could refer to Cercignani
(1990). The key concept in these equations is the entropy (sometimes called energy)
which, in mathematical words, is a Lyapunov functional and governs the trend to
equilibrium. Namely, the entropy arising in BD equations is given by the expression

H(c) = ;Ci (ln (%) — 1) .

This is because, formally, the H decreases along the solutions ¢ (and is bounded
from below), as

CH(w) = D) ©)
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where the dissipation is

D(c) := Z (aicici — biyicit1) (In(aicic;) — In(biycitr)) .

i>1

Remark, since In is increasing, the dissipation D is nonnegative. Depending on
the properties you are looking for, this is possible to define the relative entropy
functional, with same dissipation term, and given by the expression

H(c|c?) = Zci (ln (C—;) - 1) + Zcf,

i>1 Ci i~1

where c” is the equilibrium candidate, with mass p, i.e. the components are given
by Eq. (8) for which z is chosen such that ) ., iQi7 = p. The second term in the
right-hand side, ensuring non-negativity, is sometimes omitted. Hence, in the case
initially H(c|cP) < +o00, we should have D(c(t)) — 0 as t — oo as we can see in

0 < H(c(n)|c?) + [ [D(c(s)) ds < H(c™|cP). (10
0

And remarking that D = 0 corresponds, see its definition, to J; = O for all i > 1,
we have a good reason to go ahead with the functional H. The hard work is to
prove rigorous properties on the entropy and relative entropy, along the solutions.
Again Ball et al. (1986) set the basic. The authors give many results, among others,
continuity properties of the entropy functional (Proposition 4.5) and minimizing
sequence properties (Theorem 4.4). Also, they proved the key ingredient that
Eq. (10) holds for a large class of rate (Theorem 4.8). Finally, in their Theorem 4.7,
they proved the so-called H-theorem (by analogy with the celebrating Boltzmann
H-theorem), which is a rigorous justification of (9).

Theorem 2 (H-Theorem, Ball et al. 1986) Assume z;, > 0, liminf;_, Qi1 s 0,
a; = O(i/Ini) and b; = O(i/1Ini). If c is a solution to the Becker—Ddring
equations (4)—(5) on [0, T), for some T € (0, +-00], with initial condition ¢™ # 0
belonging to X, then dissipation of entropy Eq. (9) holds almost every t € [0, T).
Note that linear growth a;, b; ~ i is not allowed. Fewer assumptions on the rate
of fragmentation is possible, adapting the results obtained for general coagulation-
fragmentation equation by Carr and da Costa (1994) and later by Caiiizo (2007).
Now we state the main asymptotic results. A very general result in the case z; =
+o00 is available from Theorem 5.4 by Ball et al. (1986). But the more interesting
case is 0 < z; < 400 for which a dichotomy occurs. This is treated for particular
initial conditions and rates in Ball et al. (1986), and then extended to general initial
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conditions by Ball and Carr (1988). Finally, it was refined by Slemrod (1989) for a
class of rates allowing linear growth, see its Theorem 5.11, which we state below.

Theorem 3 (Convergence to Equilibrium, Slemrod 1989) Ler ¢ € X* with
mass p and such that H(c™) < +oo. Assume a; = O(i), by = O(i) and
lim;—s 4 oo Q;/ "= 1/z, exists (z; > 0). Assume moreover there exists z € [0, z]
such that a;z < b; for sufficiently large i. Finally, let ¢ be the unique solution to
the Becker—Ddéring equations (4)—(5) on [0, +00) with initial data ¢™. We have:

; No(f) P —
@) If0 < p < p, then lim _lezlc,(r) | =0.
>

(b) If p > py, then, foreveryi > 1, lim c;(1) = /.
t——+00

In both case we recall that c” is the equilibrium given by Eq. (8) with mass p.

Surprisingly, in point (b), while the solution has mass p for all times, as the
time goes to infinity, it converges in a weak sense (component by component) to
a solution having a strictly inferior mass. In this theory, the difference p — p; is
interpreted as the formation of particles with infinite size and of different nature,
phenomenon called phase transition. In Sect.2.3.1 we will describe in more detail
this phenomenon.

The proof consists first in proving that the w(c™) —limit set consist of equilibrium
candidate ¢’ with mass p less than min(p, ps). This is achieved by compactness of
the orbit, analyzing the time-translation, and by regularity of the ¢; which requires
in particular b; = O(i) (see Theorem 3.2 in Ball et al. 1986), contrary to the known
existence result stated above in Theorem 1. Then, the limit is selected thanks to
the dissipation (10). A key ingredient is the continuity property of ¢ + H(c|cP)
which holds if and only if lim;— 4+ Q}/ " exists and p = ps, see Proposition 4.5 by
Ball et al. (1986). Note, the condition a;z < b; comes from the Theorem 2 by Ball
and Carr (1988), and re-used by Slemrod (1989), which ensures the tail of the ¢;’s
decays sufficiently fast (fragmentation dominates). We point out that these two last
conditions are needed to select the right equilibrium, while convergence to some
equilibrium is “always” satisfied, see Theorem 5.10 in Slemrod (1989).

We finish by a comment on the case where z; = 0, corresponding to a strong
coagulation rate, relatively to the fragmentation. Carr and Dunwell (1999) proved
under reasonable assumptions that for all i > 1, ¢;(r) — 0 as t - +oo.

2.2.2 Rate of Convergence

The natural question that arises after the convergence to equilibrium is the rate of
convergence. When the H-Theorem 2 holds, with the relative-entropy for instance,
we could hope that convergence holds in this sense. The best situation would be
the dissipation bounded from below by the entropy itself, i.e. along the solutions:
D(c(t)) = CH(c(?)|cP) for some constant C > 0. This leads immediately to an
exponential decay of the entropy. Unfortunately this does not hold in all cases.
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A recent proof for a; ~ i is given by Caiiizo et al. (2015). Another way is to bound
from below the dissipation by a non-negative function ¥ depending on H, leading to

LH(ew ) =~y (HEO|e). an

And the problem resumes to find sub-solutions to this ordinary differential equation.
This method is named entropy entropy-dissipation, because dissipation is created by
entropy itself. But this method does not in general lead to exponential decay of the
entropy. The first result in this direction is due to Jabin and Niethammer (2003). Let
us show their result.

Theorem 4 (Rate of Convergence, Jabin and Niethammer 2003) Assume 1
a; = 0(i), 1 < b; = 0(i), limj— 4 Q[l/’ = 1/z, exists (z;, > 0) and that a;z,
min(b;, biy 1) for every i > 1. Suppose moreover that ¢ € X with mass p <
s (sub-critical case), with H(c™|c?) < 400 and there exists v > 0 such that
D s exp(vi)ci-“ < +o00. The solution c to the Becker—Doring equations (4)—(5) on
[0, +00) with initial data ¢™ satisfies, for some constant k depending on ¢™ and for
allt >0

=
=

H(c(t)|cP) < H(c™|c?) exp(—kt'/3) .

This theorem is obtained thanks to the possibility to choose ¥ (H) = H/In(H)? in
Eq. (11). And the authors were able to go back from this estimate to the convergence
in exp(—kt'/3) in the strong norm of X+ . Similar results are obtained by Caiiizo et al.
(2015) in various cases allowing fewer hypotheses. But these results still not provide
satisfactory rate of decay, with pure exponential decay. A well-know theory is the
stability of linear operator. If the linearized system is locally exponentially stable,
we could hope that so is the full non-linear system, in a small neighborhood of the
equilibrium. And we could imagine that this small neighborhood is an absorbing
set, since we have Theorem 4. In fact these steps were followed by Caiiizo and Lods
(2013) to obtain their nice proof of the full exponential convergence stated below.

Theorem 5 (Exponential Stability, Caiiizo and Lods 2013) Under the hypothesis
of Theorem 4 and in addition lim;_ 4 o0 aj+1/a; = Zs - liMj—soo Qi+1/Q; = 1. The
solution c to the Becker-Diring equations (4)—(5) on [0, +00) with initial data c™
satisfies, for all t > 0,

lle(®) — eIl < Aexp(=A1).,

for some constant A > 0.

The constant A is completely calculable from the constant of the problem,
important fact for applicability. We refer to their article (Caiiizo and Lods 2013) for
a very well-detailed introduction and presentation to the result. We mention that the
linear Becker—Doring system (with constant monomer c) also exhibits exponential
decay (Kreer 1993), and a quantitative comparison of the convergent rates will be
of interest.
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We finish this section pointing out that whether exponential convergence towards
the steady state holds true for either the critical case or the super-critical case
still remains open. We will detail in the Sect. 2.4 that metastability phenomena are
present in the super-critical case.

2.3 Coarsening and Relation to Transport Equation

From the Becker-Doring equations (4)—(5), the reader familiar with numerical
analysis may recognize that equations on c;, for every i > 2, has the flavor of a
discretization of a transport equation. To make the link more apparent, it is useful
to write down the weak form of Eqs. (4)—(5), which is also a very useful tool for the
study of the BD system it-self. Take (¢;);>» a sufficiently regular sequence, we then
obtain

d
= Zci(f)%' = @J1 + Z (@ir1 — @) Ji. (12)

i>2 i=2

where we recall the fluxes J; are defined by Eq. (3). Clearly, (¢;+1 — ¢;) can be seen
as a discrete “spatial” derivative. Moreover, assuming some “spatial continuity,” it is
tempting to rewrite J; as J; & (a;c; — b;) ¢;. With such ansatz, the last equation (12)
then motivates the introduction of the following continuous transport equation (in a
weak form)

d o0 oo
G| ewrend=oomo+ [ ywieorana. ad
where the flux now reads

J(t.x) = a(Xu(t) — b(x) ,

for some appropriate functions a and b, and a function u that plays the role of c;.
We will see later what should be N and what becomes the mass conservation stating
u in the subsequent sections. Both are the main difficulties of the problem in linking
the discrete Eq. (12) to the continuous Eq. (13).

As a matter of fact, they depend crucially on the scaling hypothesis (a small
parameter which allows passing from discrete size i to continuous size x) and on the
kinetic coefficients a and b. We note that Eq. (13) is the weak form of a nonlinear
transport equation known as the Lifshitz—Slyozov (LS) equation, after the work by
Lifshitz and Slyozov (1961),

9 9, _
a_tf + g(;(t, x0)f(t.x)) =0, (14)
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together with (if appropriate) the boundary condition at x = 0,
lim+j(t, x)f(t,x)=N(@), (15)
x—>0

and an equation for u. Rigorous results making connection from the Becker—-Doring
Egs. (4)-(5) to the Lifshitz—Slyozov Eq. (14) are of two kinds. First, in the works
initiated by Laurencot and Mischler (2002) and Collet et al. (2002), and pursued in
Deschamps et al. (2017), the authors proved that a suitable rescaling of the solution
to BD equations (with the essential assumption of large excess of monomers c;)
converges to a solution of LS, on any finite time period and either in density or
measure functional spaces. Second, in the works initiated by Penrose et al. (1978)
and pursued by Penrose (1997), Niethammer (2003; 2004), the authors show that
long-time behavior of super-critical solutions to BD equations are closed to the
solution of LS.

2.3.1 Evolution of Large Clusters in the Super-Critical Case

We saw in Theorem 3, in the case p > p;, that the solution behaves particularly,
as infinitely large clusters are created as time goes to infinity. The idea by Penrose
(1997) is to perform a time/space scaling to approach the cluster distribution, both
in a very long time and for very large sizes, in order to explain the loss of mass
p — ps > 0 in the super-critical case. The formal arguments for coefficients given
by Eq.(2) with y = o = 1/3 are derived in Penrose (1997), we refer also to
the review by Slemrod (2000). We present here the rigorous result obtained by
Niethammer (2003), for any coefficients given by Eq. (2) where the author proved
that large clusters obey a variant of LS, named the Lifshitz—Slyozov—Wagner (LSW)
equations, see below. For a review on LSW and Ostwald Ripening (out of the scope
of this paper), see Niethammer et al. (2006) and Niethammer (2008).

We sketch the formal arguments following Penrose (1997) and Niethammer
(2003). To consider the behavior of large clusters at large time, we introduce an
ad hoc small parameter 0 < & < 1 such that 1/¢ will be a measure of a typical large
cluster. Within the particular choice of coefficients given by Eq. (2), it turns that a
new time scale given by T = &!7**7¢, where o and y are the exponents arising
in the coefficients, is an appropriate time scaling to obtain a nontrivial dynamics.
Indeed, we obtain by the BD equations (4)—(5) the reformulation

d 1 7 7
Eci—gl_—aﬂ,(z’—l— i)

and the fluxes J; in Eq. (3) become

q
Ji=a; (Cl — 25— 1_7> ¢i — (biv1cit1 — bicy)
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for every i > 1. Since large clusters are formed as time goes to infinity, it is possible
to consider the system after a (possibly long) time 7, for which the relative entropy
H(c|cPs) is small enough, namely of order €. This suggests that the small clusters,
up to some cut-off i, are close to their equilibrium value, for r > ¢, and i < i, given
by

ci(r) = Qizy(1 + o(1)).

On the other hand, large cluster may be described by a continuous variable x = &i
for i > i,. Thus, we define a density f (stepwise) according to the variable x > ¢i;

by
) 1
[z 8i) = ei(n).
&

Respectively, we let u®(t) = (c1(t) — z;)/&”. This yields, after some manipulations,

afs(‘[’x) + jE(T’x B 8)f8(1—’x B 8) _js(tv x)fg(t’ .X) —

Jat £

o(l),

with j°(z, x) = x* (us(t) - )%) Formal arguments lead, as ¢ — 0, to a solution f of
Eq. (14). In turn, the mass conservation (6) becomes

p=Y i)=Y i+ Y ici=pot+ [ bt o),
0

i=1 i=1 i=ig

At the limit, we obtain f0°° xf(t,x)dx = p — p; which measures large clusters
formation. Such condition, complemented with the LS equation (14), allows
determining u by the following expression

q " XV f(r,x) , dx
Jo x@f(r,x)yde

u(t) =

We now state the result obtained by Niethammer (2003).

Theorem 6 (Lifschitz—Slyozov—Wagner Limit, Niethammer 2003) Assume
kinetic coefficient are given by Eq.(2), that the initial condition c®(0) satisfies
H(c?(0)|c?) = &Y and that ZiZM/s icf(0) — 0 as M goes to infinity uniformly in
e>0.

There is a subsequence {&,} converging to 0, a measure-valued function t +— v,
solution of LS equation (14) in D' (R4 x (0, +00)) such that

/ ww@nwefwwmw,
0 0
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locally uniformly in't € R, for all ¢ € C)(0, 00) and for all t > 0, and

o0
/ x0i(dx) = p— py.
0

We also mention the case of vanishing small excess of density, p—p; — Oas e — 0,
by Niethammer (2004), where the authors recovered the LS equation, in a similar
framework.

2.3.2 Rescaled Solution of BD for Large Monomer Density

Another point of view is to consider fast reaction rates a;cic; ~ b;t+ci+1 of order
1/e, where 0 < ¢ < 1, together with a large excess of monomers. Namely, the
characteristic number of free particles c; is two orders of magnitude greater than
the characteristic number of clusters with size i > 2. Following Collet et al. (2002),
alternatively Deschamps et al. (2017), this leads to a rescaled version of the BD
equations (4)—(5) given, for ¢ > 0, by

d

d_tus =—el]—¢ E Ji, (16)
i>1

d, 1

L= [y —J?], 17

dtcz 8[ i—1 i ( )

for every i > 1, where ©° is the dimensionless version of ¢; (not to be confused with
the previous section) and the scaled fluxes are
& __ E(,€)2 £ £ € __ €6 € £ &
Ji =" (u')” —bie;, Ji = ajute; = by Ciyy s
for every i > 1. Theorem 1 provides existence and uniqueness of solution at fixed

e > 0. Collet et al. (2002) constructed a sequence of “density” approximations in
the Lebesgue space L'(Ry) by, forallt > 0and x > 0

[0 =) E0x k),

i>2

where A7 = [(i—1/2)e, (i4+1/2)e) for each i > 2. Note the first cluster is excluded
from the density, it is like assuming a solute with density f* belonging to the solvent
u® (in large excess). Then, macroscopic aggregation and fragmentation rates are
constructed as functions on R (similarly to f*), for each ¢ > 0 and x > 0,

a(@) =) dlax), b®=) b,

i>2 i>2
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This scaling supposes the first coagulation rate o® is faster (order 1/&%) than the
other rates a; for i > 2, which justifies the use of another notation «® and a special
treatment outside the function a®. Theoretical justifications can be found in Collet
et al. (2002). Finally, the balance of mass reads in this case, for all r > 0

u®(r) + /Ooxf'g(t,x) dx = p°, (18)
0

for some p® > 0. The value of p° is entirely determined by the initial condition at
time t = 0.

Again we deal with the limit ¢ — 0, and we hope the limit of /* satisfies in some
sense the LS equation (14). Let us introduce few hypotheses for the limit theorem,
namely we assume, there exists a constant K > 0, independent on ¢ > 0, such that,
forall x > 0,

a(x) +b°(x) <K( +x). (19)

Also, we assume there exists a measure ©™™ on R such that

lim /0 (0 (0.) dx = /0 (" (). 20)
for all ¢ € Cy((0, +00)) and

o0
lim sup/ x%(0,x)dx = 0. (21)
R

R—>+o00 .o

This estimate on the tail of the initial distribution is a classical argument which
increases the compactness and will allow then to pass to the limit in the balance of
mass (18).

Finally, we resume in the following the results obtained by Collet et al. (2002) in
their Theorem 2.3, by Laurencot and Mischler (2002) in Theorem 2.2 for a different
framework, and also modified by Deschamps et al. (2017), in Lemma 5.

Theorem 7 (Lifschitz—Slyozov Limit, Collet et al. 2002, Laurencot and Mis-
chler 2002) Assume that «f is uniformly bounded, and that a® and b® satisfy
Eq. (19). Suppose moreover that there exists p > 0 and two non-negative real
functions a and b defined on R, such that, when & converges to 0, p° converges
to p, a® and b°® converge locally uniformly on RY toward, respectively, a and b.

If the family {f¢(0,-)} satisfies Egs. (20) and (21), then from all sequences {¢,}
converging to 0 we can extract a subsequence still denoted {¢,} such that

lim /00 @) (t,x) dx = /00 Q@) u(t, dx) , (22)
n—>oo 0 0
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locally uniformly int € Ry, and for all ¢ € Cy(0, 4+00), where i 1= (u(t,+))>0
is a measure-valued function satisfying the LS equation (14) in D'(R+ x (0, +00))
where u € C(Ry) is non-negative and satisfies, for all t > 0,

u(t) + / xu(t,dx) =p. (23)
0

The proof relies, mainly, on moment estimates and equicontinuity arguments. This
theorem does not conclude on the full convergence of the family as ¢ — 0. To that
it requires a uniqueness argument of the limit problem Eq.(14) in measure with
the balance of mass (23). Looking Eq. (14) against functions in D(R x (0, +00))
allows uniqueness with the necessary condition that the flux j(¢, x) points outward
the domain at x = 0 (for instance, if a(0)p — b(0) < 0). We refer to the works by
Niethammer and Pego (2000), Collet and Goudon (2000) and by Laurencot (2001)
for the well-posedness theory on the Lifshitz—Slyozov equation. Also, we mention
that the convergence in Eq. (22) has also been shown to hold in a functional density
space, in L! (xdx), by Laurencot (2002).

We are now concerned with the case the flux j(¢, x) points inward the domain at
x = 0, for instance if a(0)u(0) — »(0) > 0, or more generally if the characteristics,
backward solution of

d

dtx = j(t,x)

goes back to x = 0 in finite time. In this case, it is hopeless to obtain a well-
defined limit to the LS equation (14) without a boundary condition, of type (15). A
rigorous identification of the boundary condition has been performed by Deschamps
et al. (2017). It was obtained through the limit of the rescaled BD equations (16)—
(17) in the spirit of Theorem 7. More precisely, we assumed, a(x) ~¢ ax™ and
b(x) ~o bx' with r, < r, and r, < 1. These assumptions allow a fine control of
the pointwise value of the solution at x = 0 to obtain the boundary value. The limit
obtained is a measure-valued solution to LS on [0, 7], identifiable if sup,e[ 7y u(t) >
lim,—,0 b(x)/a(x) which corresponds to time interval on which characteristic goes
back to x = 0. Let us present an informal version of a result we obtained.

Theorem 8 (Boundary Value, Deschamps et al. 2017) A “good” boundary
condition at x = 0 for the Lifschitz-Slyozov equation, when a(x) = ax'* and
b(x) = bx™ withr, < 1l andr, < rp, is

au(t)?, ifr, <ry, u(t) >0;

lim j(z,x)f (¢t,x) = _
=0t Zu (Eu —a , ifr,=r,, ut) > b/a,
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where « is the limit of a as € goes to 0. In both cases, this also reads
o, o
lim x"f(¢t,x) = —u(t).
x—>0Tt a

Note the conditions on r,, rp, and u are well related to incoming characteristic.
Theorems 1 and 2 by Deschamps et al. (2017) also assumed a technical growth
condition (in €) on the “relatively small” sizes, through the condition

sup E gecd™fe™ < +oo,

e>0

Cc

i>2

for all z € (0,1). This is the key estimates which is proved to propagate in time
(see Proposition 2). This allows a quasi-steady-state limit of the small cluster
concentrations, that behave as fast variables in Eq. (17). Note in the case of exact
power law, Deschamps et al. (2017) also proved with extra reasonable assumptions
on initial conditions, that the limit measure solution has a density with respect
to x"«dx. Finally, other scalings of the first fragmentation rate are investigated in
Deschamps et al. (2017). Also, these results do not provide a complete answer.
Indeed, uniqueness for the inward case is not achieved and we are not aware if u
can cross the threshold lim,_,¢ b(x)/a(x).

Remark 1 Second-order approximations (Fokker—Planck like) of BD equations are
still under intense active research, and a full satisfactory answer is still an open
problem, see proposed equations by Veldzquez (1998; 2000), Hariz and Collet
(1999), Collet et al. (2002), Collet (2004), Conlon et al. (2016). Arbitrary higher
order terms are formally derived by Niethammer (2003).

2.4 Time-Dependent Properties, Metastability and Classical
Nucleation Theory

The following properties are of the most important ones in application of the BD
equations to phase transition. Yet, as for the convergence rate to equilibrium, coars-
ening and evolution of large sized clusters, available results are still incomplete. The
main result we are aware of on metastability for BD equations (4)—(5) is given by
Penrose (1989). The ideas of classical nucleation theory goes back to Becker and
Doring (1935), and is built on the remark that there exist steady-state solutions of
Eq. (5) (with ¢; constant) with non-zero steady-state flux, which can be arbitrarily
small in some sense. This very small steady-state flux is interpreted as the rate of
formation of larger and larger cluster, leading to a phase transition phenomena in
long time. The term metastability in such theory refers to the fact that the rate
is arbitrary small. Penrose (1989) goes much beyond by extending this notion
of metastability to a time-dependent phenomenon (instead of a steady-state one).
Indeed, he could exhibit a solution of the full system (4)—(5) that enters a state that
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lived for exponentially long time, yet can be distinguished from the equilibrium
state. This solution is a super-critical solution, with p > ps, and is required to have
a well prepared initial condition. This solution is also related in some sense to an
extremely small common flux value. It remains an important open question to know
whether the metastable state can be reached from a larger class of initial data.
Penrose (1989) considered technical conditions on coefficients which are essen-
tially satisfied by the ones given by Eq.(2). The crucial initial condition is then
constructed as follows. For any z > z;, let f;(z) be the unique solution of

ai—17fi-1(2) — (bi + aid)fi(2) + biyifi+1(2) =0, =2,

with end conditions fi(z) = z and sup,fi(z) < oo. Actually, f; can be solved
explicitly by (for z > z, the reader can check that the infinite series are convergent)

oo oo

-1
‘ 1 1
[0 =107 ) 0T J(2) = [Z W] -

r=i r=1

Let i* be the critical cluster size defined as the (unique) size that minimizes
the quantity @;Q;z". The metastable state exhibited by Penrose (1989) has to
be understood in the limit of small excess of density, z \  z,. The following
terminology is used

* g(z) is exponentially small if for each m > 0, g(z) = O ((z — z,)™).
* g(z) is at most algebraically large if for some m > 0, g(z) = O ((z — z;)™™).

The main theorem by Penrose (1989) reads

Theorem 9 (Metastability, Penrose 1989) Let ¢ be the solution of the BD
Egs. (4)—(5) with initial condition

filz), if i<i*,
ci(0) =" .
Qiz,, if i>i*.
Then ¢ has an exponentially long lifetime as 7 | Zy, in the sense that for each fixed
i (note that i* — o0):

e iftis at most algebraically large, then c;(t) — ¢;(0) is exponentially small
o limisoofci(t) — ¢i(0)] is not exponentially small

Thus, cluster with size i < i* remain exponentially close to their initial values, until
an exponentially long time has elapsed. But eventually they do change. Note that the
initial values for the small clusters, f;(z), correspond to the steady-state values of the
classical nucleation theory, for which J;_1(0) = J;(0) for all 2 < i < i*, and the
common flux value is J(z), which is also exponentially small as z N\ z,. We refer
the reader to Penrose (1989, Theorems 1 and 2) for orders of magnitude of i*, J(z)
and quantification of the (small) growth rate of large clusters of size greater than i*.
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Remark 2 The numerical illustration of the metastability is a problem per se, we
refer the reader to the two nice papers by Carr et al. (1995) and by Duncan and
Soheili (2001), where numerical schemes are derived and are shown to consistently
represent the metastable states. The reader may also look at the Sect.3.4 where
numerical simulations of the stochastic Becker—Doring are shown. Finally, let
us mention that analogous metastability properties have been investigated in the
classical linear version of BD by Penrose (1989) and Kreer (1993), in a finite-
dimensional truncated version by Dunwell (1997) and Duncan and Dunwell (2002),
and in a thermodynamically consistent version of the BD system by Ssemaganda
and Warnecke (2013).

3 Stochastic Becker—Doring Model

Due to space considerations, we will not detail historical facts on the study of
stochastic coagulation-fragmentation models. Let us just mention that the first
study of a stochastic coagulation models is widely attributed to Marcus (1968)
and Lushnikov (1978) which give the name to the Marcus—Lushnikov process,
stochastic analog of the pure coagulation Smoluchowski’s equations. Up to our
knowledge, Whittle (1965) and Kelly (1979) are pioneers in the study of more
general stochastic coagulation-fragmentation models (including the Becker—-Doring
model). See Aldous (1999) and the discussion by Freiman and Granovsky (2005)
for more details.

3.1 Definition and State-Space

A stochastic version of the Becker-Doring model may be defined as a continuous
time Markov chain analog of the set of ordinary differential equations (4)—(5), for
which transitions are given by the same set of kinetic reactions (1), but modeling
discrete numbers of clusters instead of continuous concentrations. Precisely, given
a positive integer M, we define the state space

M
Xy :=3C=(Cizi eN" : Y iCi=M
i=1

On X,, we introduced the following operators defined by, for any configuration C
on X, M>

RIC=(C;-2,C+1,...,G,...)
R,C=(C,+2,C—1,....,Ci,...)
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and, for any i > 2,

RTC=(C;—1,Cp,...,Ci—1,Ciy1 +1,..))
R,,C=(Ci+1,Coy...,Ci+1,Cip1—1,...)

Given non-negative kinetic rates (a;)i>1, (bi)i>2, the stochastic Becker—Doring
model (SBD) is defined as the continous time Markov chain on X, with transition
rates

q(C,RFC) = a;C(C; - 1),
q(C.RC) = a;C,C;, i>2,

Given an initial configuration C" € X, (deterministic or random), the configuration
C(t) defined by the SBD may alternatively be represented as the solution of the
following system of stochastic equations

Ci(H) = C =210 — ) _Ji(1),
Al 2 4)
) = C" + Jia() = Si0), P22,

with
Jit) = yl,+( /0 ' 4iC1($)(C5) —81.,»)ds) — Y,;l( /0 tb[HC,-H(s)ds), i>1,

where §;;, = 1ifi = 1and §;; = 0ifi > 1 and Yi+, Y;,, fori > 1 are independent
standard Poisson processes. Analogy between Eq. (24) and Egs. (4)—(5) is clear. The
number of clusters of size i > 2 evolves according to the differences between two
(stochastic) cumulative counts J;,—; and J;. Finally, we may also identify the SBD
with the help of its infinitesimal generator L,;, defined by, for any bounded functions
fon Xy,

M—1

Luf(C) = Y _ [f(RF C) = (O)] a:C1(Ci = 81.) + [F(Ri7,©) — F(O)] i1 Cisr -

i=1

Thanks to the Markov processes theory, we deduce in particular that, for any
bounded functions f on Xj,,

FCW) —F(C™ - [0 Luf (C(5))ds



194 E. Hingant and R. Yvinec

is a centered martingale, and, taking fc(C') = 1ic'=¢y, we deduce the following
Backward Kolmogorov equation on the probability P(t,-) on X, (Master equation)

d M—1
—P(C) = D ai(Cr + 1D)(Ci + 1+ 81.)P(1: Ri3. ©) — a;Ci(Ci — 8.,)P(t: ©)

i=1

M
+ Y " bi(Ci + VPR C) — BiCP(1: C) . (25)

i=2

Although the well-posedness of the SBD model is of course standard (as a
pure-jump Markov process on a finite state-space), a first nontrivial question arises
with respect to the precise description of the state space, and in particular to its
cardinality. In fact, the state space X), is given by all possible partitions of the
integer M, a well-known problem in combinatorics. In particular, one can show
the recurrence formula and the asymptotic as M — oo, Flajolet and Sedgewick
(2009, Chap. 1.3)!

u 1 2M
M| Xy |= o(d) | Xy—i |, Xy | X ——=exp |7/ — |,
|M|;<>|M| | X | 4M¢§p(\/3)

where o (i) is the sum of the divisors of i (e.g.,0(6) =1+2+ 3+ 6 = 12).

Remark 3 'We mention that some terminology in the literature may be confusing.
Indeed, some authors (see Bhakta and Ruckenstein (1995)) have named the
deterministic Becker—Doring system (4)—(5) a stochastic version of the Lifshitz—
Slyozov(—Wagner) equations. Such terminology seems to be motivated by the fact
that the size of clusters is modeled as discrete variable in Egs. (4)—(5), and that such
system has the “flavor” of a master equation for a random walk in N,

Remark 4 As for the BD system (4)—(5), some variants have been considered for the
SBD. Let us mention, for instance, the constant monomer system studied by Yvinec
et al. (2016) (which leads to a Poissonian equilibrium distribution), the exchange-
driven growth model studied by Ben-Naim and Krapivsky (2003) (where clusters
exchange monomer in one single step), some reduced version for specific kinetic
rates (a; = i,b; = 0) see Eugene et al. (2016) and Doumic et al. (2016) or for
fixed number of clusters (only one or two clusters can be present) Yvinec et al.
(2016), Penrose (2008) and Rotstein (2015). Of course, the SBD can be seen as a
particular case of more general coagulation-fragmentation processes see (Bertoin
2006). However, due to its specificity, it seems that some of the results available on
general coagulation-fragmentation processes are not straightforwardly applicable
(or do not bring interesting conclusions). Finally, although out of the scope of this
survey, let us mention the interesting links between the (stochastic) BD system with

IR. Yvinec thanks Bence Melykuti for pointing out this fact.
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some lattice models (Chau et al. 2015; Dehghanpour and Schonmann 1997; den
Hollander et al. 2000; Bovier et al. 2010; Ercolani et al. 2014), in particular for
nucleation and phase transition.

3.2 Long-Time Behavior

Although Eq. (25) is linear with respect to P(z, -), the size of the state space being
exponentially large as M — oo, it is illusory to obtain a full exact solution of
Eq. (25). Yet, perhaps surprisingly, the stationary solution of Eq. (25) has a relatively
simple form, namely a product-form (see Anderson et al. 2010). Indeed, the (unique)
stationary probability IT on Xj, of Eq. (25) is given by Kelly (1979, Theorem 8.1)

Q)€
c!

M
() =Bu ]| (26)
i=1

where By, is a normalizing constant and Q; is defined by Eq. (8). One may verify
simply that the following detailed balance condition holds (Kelly 1979, Theo-
rem 1.2)

T(C)q(C, R C) = TI(R{ O)q(R;"C, O)

Note also that, for all z > 0, with B, = BM/ZM , the expression (26) may

be rewritten I1(C) = B, ]_[f‘il (Qg:)q, which has a clearer analogy with the
deterministic equilibrium of the BD equation. Finally, the distribution IT has the
following probabilistic meaning: let Z;, i = 1,...,M, be independent Poisson

random variables with respective means Q;, then it is easily seen that, for all C € Xy,

M(C)=PlZ =Ci,....Zu = Cy

iiZi=M§ :

i=1
For the stationary distribution IT, the expected number of clusters of size i is
EnC; = QiBu/Bu-i,

and the probability that a randomly chosen particle lies in a cluster of size i is
iQ;By/MBy;—;, from which we deduce that the normalizing constant By, satisfies
the recursive formula (with By = 1)

M
MB;! = iQiBy" . 27)

i=1
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Moreover, B}, is the coefficient of z in the power series expansion of

G(z) = exp (Z Q,z")

Remark 5 In some examples, the recursive formula (27) may be solved exactly. For
instance, if a; = ai, b; = bi, then the equilibrium probability is given by the closed-
form formula

-1 M

bla+M—1 1 (b\©
no-(") e (@)

i=1

Besides the analytical form of the equilibrium distribution IT, it is a natural question
to ask what is its limiting behavior as M — oo. Under the assumption that

lim -2 — 7 >0, (28)
i=00 bty

(which is slightly stronger than the hypothesis on Q} /" used in Theorems 2 and 3),
one can show (see Freiman and Granovsky 2002; Bell and Burris 2003) that G has
also for radius of convergence z,, and in such case, the expected number of clusters
of size i has a limit as M — oo, given by

lim EnC; = Qi7" (29)
M—o00

Other functionals of the stationary distribution IT have been derived by Durrett
et al. (1999). In particular, let us mention that the variance of C;, under IT and
with hypothesis (28), satisfies the same asymptotic relation (29), and that C;, C;,
i # J, becomes asymptotically uncorrelated as M — oo. It is also interesting to
note the link of the limit (29) with the supersaturation case in the deterministic
BD theory, see Theorem 3. Study of the limit shape of the stationary distribution
IT (and quantities like the size of the largest or lowest component) is a well-known
problem in statistical physics or in combinatorics (study of random integer partitions
and Young diagrams) and goes back to Khinchin’s probabilistic method (Khinchin
1960). Detailed description of such field is out of the scope of this survey, and we
refer the reader to Erlihson and Granovsky (2008), Freiman and Granovsky (2005),
Granovsky (2013), Han et al. (2008) and Ercolani et al. (2014) for recent results.

In contrast to the deterministic theory, we are not aware of any work quantifying
the speed of convergence toward the equilibrium distribution (26) (which has to be
exponential). In particular, it would be interesting to study how this rate behaves as
M — oo.

Remark 6 Strong binding limit for constant coefficients has been considered by
D’Orsogna et al. (2012) (linked to the almost pure-coagulation deterministic
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dynamics in King and Wattis (2002)) and illustrates how mass incommensurability
arises for finite mass M, when a fixed maximal cluster size N < M is further
imposed.

3.3 Large Number and Relation to Deterministic
Becker-Doring

A first natural question when comparing the SBD and the BD system is that can
we recover the deterministic equations in the limit M — +00? The main tool
to answer such question is the tightness of stochastic processes, which provides
an appropriate compactness property for a sequence of rescaled solutions of the
SBD. As a particular case, Jeon (1998) has considered the sequence of stochastic
processes {C"(1)} inX;F := {1C : Ce NV Y iC; =n} C Xt C P, defined by
the generator

L'f(C)=n Z [fR.C) — f(O)] aiC1(Ci — 81,) + [f (R, ,,C) —f(C)] big1Cigr
i=1 (30)
where, forall i > 1,

R C=(Ci—1/n.Cy.....Ci=1/n,Cip1 + 1/n,...)
R11,C=(C+1/n,C,...,Ci+1/n,Ciyy—1/n,...)

Under such classical scaling (which satisfies the system size expansion), one can
prove

Theorem 10 (Law of Large Numbers, Jeon 1998) If a;, b; are such that

sup E a;,C; < 00, sup E b,C; < 00, 31
C6X+:Zic,»§1 i>1 CEX+ZZiC,'§1 i>1

then the laws of the stochastic process {C"(t)} defined by Eq.(30) form a tight
sequence as a cadlag process in I2.

Note that hypothesis (31) is trivially satisfied for sublinear function of i. Also,
it is clear that any weak limit of {C"(¢)} is a solution of the BD system (4)—(5),
which is an alternative proof of existence of solution of the BD system. Finally,
convergence of the whole sequence may be obtained with the uniqueness result
stated in Theorem 1.

We are not aware of any rigorous derivation of a second-order approximation of
such limit, which should reasonably be a Langevin stochastic differential equation
version of the BD system (4)—(5).
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3.4 Time-Dependent Properties, Metastability and Stochastic
Nucleation Theory

Up to our knowledge, the early work by (Schweitzler et al. 1988) paves the way
to study fluctuations of the time-dependent cluster distributions and first passage
time in stochastic finite system nucleation models. Using physical arguments, they
investigated reaction rates of the form a; ~ 2/3 and b; ~ i?/ 3yoeq’_l/g, which are
asymptotically similar to Eq. (2) (which « = 2/3, y = 1/3). One can notice that
for such coefficients, a (time-dependent) critical cluster size i.(f) exists, defined by

Clicl([)—bi<0,Vi<iC, aiCl(t)—bizO,ViZiC.

This observation has led (Schweitzler et al. 1988) to analyze the SBD with
the Ostwald ripening theory in mind. Specifically, with the help of numerical
simulations, and heuristically derived moment closure approximation of the master
equation (25) governing the clusters’ distribution evolution (which resembles
second-order approximation of the deterministic BD system, see Remark 1), the
authors put in evidence the existence of a (stochastic) metastable state which is
reached before the equilibrium distribution. Indeed, starting from an initial pure-
monomer condition, one can observe a rapid transient that leads to a relatively small
cluster distribution (with support contained among the size below the critical size),
which has a long-lived state. Only after a first critical cluster is formed, the cluster
size distribution is bimodal, given by a mixture of undercritical and overcritical
clusters, until a single large cluster emerges from a competition between overcritical
clusters, and its further growth is at the expense of the other clusters which now
shrink. We have reproduced similar numerical simulations, with kinetic coefficients
given by Eq. (2), in Figs. 1 and 2.

A key event in exiting the metastable state is thus the formation of an overcritical
cluster. Such event may be analyzed with the help of the first passage time theory. It
is important to note that, in agreement with classical metastability theory, the authors
of this previous work noticed that the first time needed to form an overcritical
cluster was subjected to large fluctuations. We are not aware of any theoretical work
on the metastability for the SBD system, but we may mention that several groups
have recently investigated numerically the behavior of first passage time (or related
quantities) in the SBD system (or related models) Bhatt and Ford (2003), Johansson
(2016), Penrose (2008), Yvinec et al. (2012; 2016). In particular, it is tempting to
use first passage time theory to define a stochastic analog of the so-called nucleation
rate in the classical nucleation theory (see Sect.2.4). However, we notice that the
analytical form of such nucleation rate is unclear. In particular, what should be the
quasi-stationary distribution, stochastic analogous to the metastable state derived in
Sect.2.4?

Finally, let us mention the link with the study of the stochastic gelation time in
Smoluchowsky’s coagulation model, which has recently been the subject of active
research. Let us define, fora < 1,
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Fig. 1 Time trajectories of the SBD system (24) with kinetic coefficient given by (2), with M =
500, ¢ = 2/3,y = 1/3,z;, = 500/11, g = 10/11. On the left, we plot a stochastic realization of
the number of Monomers, Dimers, Tri-mers, and 4-mers, together with the sampled average over
100 realizations for the number of Monomers. On the middle, we plot the total mass in clusters and
their numbers, and on the right, the maximal cluster size
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Fig. 2 Cluster size distribution at distinct times ¢, corresponding to Fig. 1. The sizes are rescaled
by M, thatis x = 2/M, ..., 1. In blue we plot the distribution of a stochastic realization, in black
we represent the sampled averaged distribution over 1000 realizations, and in red we plot the
(rescaled) critical size x, = I./M

7y = inf{r > 0 : C}(¢) > 0, forsomek > an}, (32)

where {C" (1)} is the rescaled stochastic process defined its generator in Eq. (30). It is
known that for the stochastic Smoluchowsky’s coagulation model (see Jeon 1998;
Eibeck and Wagner 2001; Fournier and Giet 2004; Fournier and Laurencot 2009;
Rezakhanlou 2013; Wagner 2005), and for specific coagulation kernel, the sequence
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of first passage time (32) has a finite (zero or positive) limit as n — 0o, and that the
limit is linked to the gelation (loss of mass) in the deterministic Smoluchowsky’s
coagulation model. According to the longtime behavior theory for the deterministic
Becker—Doring model, it is to be expected that for the SBD, such first passage
time (32) can only have infinite limit. However, rate of divergence and summary
statistics (mean, variance) as n — o0 are important open questions.
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Coagulation-Fragmentation with a Finite
Number of Particles: Models, Stochastic
Analysis, and Applications to Telomere
Clustering and Viral Capsid Assembly

Nathanael Hoze and David Holcman

1 Introduction

Clustering processes are generic in statistical physics and biology. For example,
in astrophysics, masses can form aggregate under the gravitation force, while in
biochemistry, molecules interact to form colloids that aggregate in solution [7]. In
cell biology, aggregation underlies beta-amyloid structure formation involved in
Alzheimer’s disease or chromosomal organization in the cell nucleus. However, a
new class of mathematical problems appears with the need to analyze clustering
with a finite number of random particles such as the organization of the chromosome
ends [14] or viral capsid assembly in cells. These processes are modeled as
coagulation-fragmentation.

Irreversible aggregation of many particles in clusters was already described
by Von Smoluchowski in 1916 [34] to model an infinite number of interacting
molecules. When a cluster can lose or gain only one particle at a time, the
Smoluchowski equations become the Becker-Doring model which consists in
an ensemble of coagulation-fragmentation equations [4, 7, 23, 35]. Nowadays,
determinist, stochastic, asymptotic, and numerical methods are developed to study
steady-state and transient properties of clustering based on molecular components
[2, 8,9, 26, 33]. Another class of problem concerns the clustering with an infinite
number of particles (Marcus-Lushnikov process) [21, 24, 25], but much less is
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known about coagulation-fragmentation with a finite number of particles [11]. When
the cluster size cannot exceed a given threshold, new difficulties arise in the analysis
of the coagulation-fragmentation equations [14, 36]. These models are relevant in
molecular genetics for characterizing the organization of the chromosome ends [14]
or to model viral capsid assembly in cell biology [16, 17, 37].

We review here several models, asymptotic and combinatorial results as well as
a generalization of the Gillespie’s algorithm [15] to study aggregation in spatially
inhomogeneous environment. In the first section, we describe the Smoluchowski
equations for coagulation-fragmentation. In the second, we present a general
analysis and result about clustering with a finite number of particle. Section 3 is
dedicated to Gillespie’s algorithm in spatially inhomogeneous environment, applied
to telomere organization in yeast. In Sects. 4 and 5, we present asymptotic methods
for capsid viral assembly and the analysis of single particle trajectories.

2 Primer in Smoluchowski Equations for
Coagulation-Fragmentation

2.1 Coagulation-Fragmentation with an Infinite Number
of Particles

This section summarizes the Smoluchowski equations for coagulation-fragmentation
that consist of an infinite system of differential equations for the number n(j, r) of
clusters of size j at time ¢ in a population of infinite size [34]. The coagulation
process is characterized by the rate C(i,j) by which two clusters of size i and
J coalesce to form a cluster of size i + j, while fragmentation with rate F(i,j)
describes that a cluster of size i 4 j dissociates into a cluster of size i and a cluster
of size j. The conservation of mass equation is given by

) 1 . X
o= 3" Clk.j — nk, OnG — k.1) = nG.0) Y CG.kyntk. 1)
k=0 k=1
j—1 0o
—n(i.0) Y F(k.j—k) + Y _ FG.onk+j.1). (1)
k=1 k=1

where the index j can take values between 1 and oo and the first line in the left-hand
side corresponds to the coagulation and the second accounts for the fragmentation.
This system of equations is a mean-field deterministic model of the coagulation-
fragmentation process that do not describe intrinsic cluster interactions.

Coagulation-fragmentation processes (CFP) satisfies the balance condition [10],
for which there exists a function a(i) = a; such that Vi,j € N

C@i.)) _ ali+))

Fip)  at)ag) ?
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When the total number of clusters is fixed, the probability distribution function of
the number of clusters can be computed, as well as the probability distribution that
the number of cluster of size i is m; so that the distribution of sizes of clusters is
(my,...,m,). When there are exactly N particles and the total number of clusters is
fixed to K, the following identity for number conservation is satisfied [22]:

N
S m =k 3

i=1

When the total number of clusters is K, the conditional probability distribution
function is given by

1 a()y™...a(N)y™
p(my,....my|K) = ,
Cnk my!...my!

where the normalization constant Cy g will be described below (see formula (53)).
These formulas are used to compute the statistical moments for the cluster distribu-
tions.

2.2 Continuous-Time Markov Chain Equations for a Finite
Number of Particles

The steady-state distribution for a CFP stochastic model with a finite number
of N particles is described by a continuous-time Markov chain equations in the
cluster configuration space. We start with N particles distributed in clusters of
size (ny,...,ng) that can undergo coagulation or fragmentation events under the
constraint that

K
> m=N. 4)
k=1

To study the distribution of particles in clusters, we use the decomposition of the
integer N in a sum of positive integers (integer partition) [3]. The partitions of the
integer N are described in dimension N by the ensemble

N
Py = (nl,...,nN)ENN;ZnizNandnlZ---anzo . 5)

i=1

The probability P(n, ..., ny,t) of the configuration (n,...,ny) at time ¢ satisfies
an ensemble of close equations obtained by considering all possible coagulations or
fragmentations between time ¢ and ¢ 4+ At :
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» Two clusters of size n; and n; coagulate with a probability C(n;, n;) At to form a
cluster of size n; + n;.

¢ A cluster of size n; dissociates into two clusters of size k and n; — k with a
probability F(k, n; — k) At.

* Nothing happens with the probability 1 — Zf\]:_ll ZN=l 41 C(ni,nj) At —

SN ) Fkng — k) At
Thus, the probability P(ny, ..., ny,t) satisfies

N—1 N N ni—1

d 1

EP(I’!],...,FIN,Z‘):— E E C(ni,nj)+ E E F(k,l’li—k) P(I’l],...,l’lN,l)
i=1 j=i+1 i=1 k=1

N
+Z Z C(n;,nj{)P(nl,...,nl{,...,nj{,...,nN,t)

k=1 n,{>0,nj/»>0
n,{+n;:nk
N—1 N
+Z Z F(nj,n)P(ny,...,nj +nj,...,ny,t). 6)
i=1 j=i+1
Moreover, C(n;,n;) = 0 if either n; or n; is equal to 0. The partitions of the

integer N are described by the set

Py =

N
(nl,...,nN)ENN;Zni:Nandnl2---2nN20§ @)
i=1
and the ensemble of decompositions

P, =

i=1

N
(ml,...,mN)GNN;Zim,-=Nandn1,...,nN20}. ®)

In the ensemble P}, m; is the number of occurrence of integer i in the partition of
the integer N. The two ensembles Py and P}, correspond to different representations
of the clusters distributions.

For example, N = O particles are distributed in two clusters of one
particle, two clusters of two, and one cluster of three and the distribution is
(3,2,2,1,1,0,0,0,0) € Py, and (2,2,1,0,0,0,0,0,0) € P;.

When the coefficient C and F satisfies relation (2), there exists an invariant mea-
sure [10] for the steady-state probability of a given configuration (m,...,my) €
P}, given by

1 di"...ay" ©

P(m,...,my) = ———""—,
( ) Cle!...mN!
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where Cy is a normalization constant. Computing the normalization constant
explicitly is difficult [32]. In the next subsection, we estimate the probability of
occurrence of a certain cluster configuration (my, ..., my).

2.3 Description of the Cluster Partitions with a Finite Number
of Particles

To determine the cluster distribution at equilibrium, we compute here the probability
of a configuration when the number of clusters K is fixed. We also find the
probability of having K clusters. The number of distributions of N particles into
K clusters is the cardinal of the ensemble

K
Pykx = {(nl»---,nk)e (N)N;ZnizNandnl Z"'EHNEO} ,

i=1

10)

which is also the ensemble of the partitions of the integer N as a sum of K integers.
This ensemble is in bijection with

N N
P;V’Kz§(m1,...,mN)GNN;ZimizNand Zm,:K , (11)

i=1 i=1

where the application Py x — P), x defined by

K K
(ny,...,ng) = (my,...,my) = (Z Ly=13, .-, Z 1{n,-=N}) (12)
i=1 i=1

maps the partition (ny, ..., ny) where N is written as a sum of K positive integers to
the number of occurrence of each integer into the image partition. The partitions of
N are written as

Py =|JPvxand P\ = ) Py x- (13)
K K

In Sects. 3.1-3.3, we derive explicitly expressions for the probabilities of configura-
tions in Py 4.
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2.4 Statistical Moments for the Cluster Configurations When
the Number of Clusters Is Fixed

The probability of a configuration (my, ..., my), when the total number of clusters
is equal to K, is

al'...ay’
my!. . .my!
p(my,... .mylK) = ——=TN" (14)
Cnk
where
al'...ay’
Cykx = 1 TN 15
NK Z ml'mN' ( )

(m;)EP]’VK

The normalization factor of Eq. (14) is computed using the partial sums
N
Sy(x) = Z aix'. (16)
i=1

The functions SX and S{@ have the same Nth order coefficient and this coefficient
determines Cy . We recall [18] the

Theorem 2.1 When the number of clusters is equal to K for a total of N particles,
the mean number of clusters of size i is

Cn—ik—1
(Mi)nx = ai——, 17
Cnk
where a; and Cy g are defined in (2) and (15), respectively.
Furthermore, (M;)yx = 0ifi > N — K + 1. Interestingly,
Theorem 2.2 The second moment of the number of clusters of size i is
1 al...ayy
My = 271 N 18
< l)N’K CN,K Zml m1!...mN' ( )
PN.K
» Cn—2ik—2 Cn—ik-1
" Cyk " Cyx
and the covariance is
Cy—imjk—2 Cn—ix—1Cn—jk—1
2 2 _ i~ i, J,
(Mi)n g — (MW k(M) x = aia ( Cvk c ) :
(19)

The proofs can be found in [18].
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fn i1 fn.2 fn-3
SN-1 Sn-2 Sn-3 Sn-4

Fig. 1 Markov chain representation for the number of clusters. sx (respectively, fx) is the
separation (respectively, formation) rate of a cluster when there are K clusters

2.5 Distribution of the Number of Clusters

In the previous section, we introduce the probability distribution of a cluster
configuration and the statistical moments for a fixed number of clusters. In this
section, we describe the statistics of the entire cluster configurations using the
probability distribution of the number of clusters. Our goal is to study the time
dependent probability density function

Pk (1) = P{K clusters at time ¢}, (20)

which is associated with a birth-and-death process: the probability of having K
clusters at time ¢ + At is the sum of the probability of starting at time ¢ with K — 1
clusters and one of them dissociates into two smaller ones plus the probability of
starting with K+ 1 clusters and two of them associate plus the probability of starting
with K and nothing happens (Fig. 1).

The first probability is the product of Px_; by the transition rate sx_; At to go
from state with K — 1 clusters to K, while the second is the transition from K + 1 to
K, which is the product of Pk by the transition rate fx At of going from K + 1
clusters to K. The master equations are given by

1:01 (1) = —s1P1(t) + foP2(1)
Py (1) = =(fk + s)Px () + fx+1Pk+1(t) + sk—1Pg-1(2) 21
Pn(t) = —fnPn(t) + sy—1Pn—1(2).

The steady probability is defined by

Mg = lim Pg(?) (22)
—>00

where there are K clusters at steady state. The steady-state probabilities of the
number of clusters are solutions of the system

0= —siI1; + 211,
0= —(fx +sx) g + fx+r1g+1 + sg—1Mg— (23)
0 = —fvIly + sy—1 n—1,
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with the normalization condition

N
> Mg =1. 24)
K=1
The probabilities [Tg are given by the ratio
I _
K= Bl fork > 2 25)
g1 Jx

and the coefficients sy and fx are the mean-field separation and formation rates,
respectively. Whereas the cluster configurations when the number of clusters is fixed
depend only on the kernel a;, the statistics of the number of clusters depends on the
cluster fragmentation and coagulation rates F and C.
In the following, we will focus on the coagulation condition C(i,j) = 1 and the
a,

fragmentation F(i,j) = ﬁ to state the
T

Theorem 2.3 When C(i,j) = 1 and F(i,j) = % the separation rate when there
i+j
are K clusters is given by

XL Y @@ Cy-ik—1

e (26)
Cnk
and the formation rate when there are K clusters is
K(K—-1)
fxk=—F5—. 27
2
Using these results, we can now describe the statistics of the entire cluster con-
figurations. Using Bayes rule, the probability of a configuration (my, ..., my) that
contains K clusters is the product of the conditional probability p’(my, ..., my|K)
by the probability of having K clusters
p(my,....my,K) =p'(my, ..., my|K)g. (28)
The mean number of clusters of size i is thus
N
(Mi)n = Z Mg (M)n k- (29)
K=1

2.6 The Probability to Find Two Particles in the Same Cluster

When the mean number of clusters has reached its equilibrium, particles can still
be exchanged between clusters. This exchange is characterized by the probability to
find two particles in the same cluster.
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When the distribution of the clusters is (n,...,ng), the probability
P;y(ny, ..., ng) to find two given particles in the same cluster is obtained by using
the probability to choose the first particle in the cluster n;, which is equal to the
number of particles in the cluster divided by the total number of particles %, The

possibilities, we get

K K
n,n,—l 1
Py(ni.....ng) =) NN 1:N(N—l)(2 n,-z—N). (30)
i=1

i=1

We note that

K N
=Y m @
j=1 i=1

thus we get

K N
S 0= Y ) Y m,
(n1,....ng)EPN K Jj=1 (mi)EPz/v,K j=1
N
=Y 7 D mpm) (32)
J=1 (mi)EP;\/_[(

N
E NKa

where (M;)y k is the mean number of clusters of size j, when there are N particles
distributed in K clusters Eq.(17). Taking into account all possible distributions
of clusters, we obtain that the probability (P,) to find two particles in the same
cluster is

N
Py=Y"" > Pam.....n)p(n)Tg, (33)

K=1 (ni,...ng)EPN K

which can be written, using expressions (30) and (33) as

(P,) = N(N_l) ZHKZJ Ik = T (34)

This approach can be generalized to the probability of having n > 2 particles
together.
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3 Examples of Coagulation-Fragmentation with a Finite
Number of Particles

We shall now summarize several results in the three examples:
l.a,=a

2.a,=afori<Mandag; =0ifi > M

3. We finally consider the case a; = ai.

3.1 Example 1: The Case a; = a

When a; = a, the separation and formation rates sx and fx are computed with
F(i,j) = aand C(i,j) = 1. A cluster of size n dissociates at a rate Z:’;ll F(i,n—i) =
(n — 1)a and the sizes of the resulting clusters are uniformly distributed between 1
and n — 1. The total transition rate from a configuration of K to K + 1 clusters is the
sum over all possible dissociation rates

K
sk =Y _(ni—Da= (N —Ka. (35)

i=1
The formation rate is proportional to the number of pairs

KK —1)

3 (36)

fx

The steady-state probability ITx for the number of clusters of size K satisfies the
time independent master equation

5111 = f10,,
w1 (fx + sp) g = frr1 g1 + sg—1 Mg—1, 37
Sy = sy_1 Ty,

which leads to the relation

(N —1)!

Mgy = (Za)KK!(K + DI(N-K—1)!

;. (38)

With the normalization condition >, ITx = 1, the probability IT; is expressed with
a hypergeometric series

1

I, = .
1Fi1(—=N + 1;2; —2a)

(39)
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where

- (@), "

1Fi(a;b;z) = —,
= (D) n!

is Kummer’s confluent hypergeometric function ([1, pp. 503-535]) and

)y =x(x+1...x+n-1)

is the Pochhammer symbol. The average number of clusters at steady state is

N
i(a) = Y KTk
K=1

d
=IIi—(aFi(—=N+ 1;2;2)

dz

|z=—2a

The derivative of the Kummer’s function is

d a
— 1Fi(a;b;2) = - 1Fi(a+ 1;0+ 1;2).
dz b

The mean number of clusters is expressed as
1F1(=N + 2;3;-2a)
1F| (—N + 1; 2, —2a)
=14 alN - 1)Gy,

’

pi@ =1+aN-1)

where we note G the function defined by

_ 1F1(—N—|—2;3;—2a)
" Fi(=N +1:2:=2a)

1

More generally, we introduce the functions G; defined by

\Fi(=N+1+i;2+1i;—2a)
1F1 (—N + 1,2, —2(1)

Gi =

215

(40)

(41)

(42)

(43)

(44)

(45)

(46)

All moments of the probability distribution ITx can be computed and the nth-order

moment [, is expressed using the operator H defined by

d
H(f)(z) = d—ZZf(z),

(47)
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H™(F (=N + 1:2:2)).—_a,
1F1(—N+1;2;—2a) '

N
pn =y K'Tg = (48)
n=1

Using the differentiation formula for the hypergeometric function (43), the moments
are

SR § P
n = E of Gy, 49
1% e k I, k (49)

where
k2, yk+H1I=)"+G+D"

(k—1)/2 (k+1=)"—=G+ D"
Kz (1Y U—))!

if k is even,

if k is odd,

and o = o = 1. The variance of the number of clusters is given by

(Voo(@)) = po — uf = a(N — 1)G(a,N) + %az(N— 1)(N —2)G»(a,N)

—a*(N — 1)*Gi(a, N). (50)

3.1.1 Number of Clusters of a Given Size

The statistical moments for the size of clusters are computed from relation (17) and
the mean number of clusters of size n when there are K clusters is

C —n,K—1
(Mn>N,K = Z mnp/(mi|K) = a&

(m,-)EP;VK

51
Crx (5D

The normalizing constant Cy x given in Eq. (15) is the Nth order coefficient of SX,
where S is the generating function

X

S(x) = Zaixi =aq (52)
i=1

1—x
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The coefficient Cy g is thus equal to the N — Kth order coefficient of % ﬁ By

differentiating N — K times ﬁ and estimating the derivative at x = 0. We obtain
that

. ak (N-=1)!
K= K= DIV - R &9
Thus, by combining (51) and (53),
N —n—1)!K!(N — K)!
(Mo k W —n— DRI — K) (54)

TWN-DIEK-2N—-n—K+ 1!’
The mean number of clusters of size n is obtained by summing over all possibilities

configuration with K clusters,

N

(M,) = Z<M11>N.KHK =

K=1

(N—n—1)! 5 KK - DN =K
K

-1 N—n—K+1)!
Using expression (38) for g, we obtain

Fi(—N +1 :2:—2a) .
M) = 2g IENH 1 Fm2=20) b (55)
1F1(—N+ 1;2;—261)

and
1
lFl(_N + ];2; —2a) ’

(My) = (56)

The mean number of clusters of size N is exactly equal to the probability IT;(N) of
having one cluster when there is N particles [see Eq. (39)].
3.1.2 Probability to Find Two Particles in the Same Cluster

The probability to find two particles in the same cluster for a constant kernel a; = a,
when there are N particles, is

(P2) = Gy, (57

where G is defined in (45). Indeed the probability that two particles are in the same
cluster is

N N
1 1
P)=—— S TS AM) g — ——
(P2) NN K§=1 KjE=1]< iINK = N
- ! ZN e (nv+ oY =Ky _ ! (58)
TNN-D) &= K+1) N-1
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where the average number of clusters of size j when there is a total of K clusters is
given by relation (54). Thus,

N
2 N+1 1
- 2 M. (59
Z KK+1 N_1 ' N—1K2=:1K+1 K 59

which is the definition of G| Eq. (45). For large N, we thus obtain that the probability
that two particles are in the same cluster is

2
(P2) ~ N (60)

The results presented in this section were used to study the distribution of clusters
in biological systems such as telomere organization in yeast [14].

3.2 Example 2: The Case a; = afori <Manda; =0ifi > M

When N particles can associate or dissociate with a constant rate, but cannot form
clusters of more than M particles, the configuration space for the distribution of N
particles in K clusters of size less than M is now

M M
Py = m)i<izas y_imi =N, > m =Ky . (61)

i=1

First, the minimal number of clusters is necessarily bounded by K > N/M, since
the opposite would imply a cluster of at least M 4 1 particles. The probability of a
configuration (my, ..., my) € Py x ,, is equal to

1 1

Cuvxr mil !’ 62
Cnv.xm mil.. .myy! (62)

P{(mi,....my) € Py gyt =

where the normalization constant Cy gy is the Nth order coefficient of

K
(aX+aX2 4. +GXM)K — aK(l_;X)KZ <I;) (_1)anM+K. (63)
n=0

Then the Nth order coefficient of the polynomial is obtained by finding the (N —
nM — K)th order coefficient of (1 — X)X

oo XK: K (_l)n;D(N—(nM-HO) (;)
NKM 2\ (N — (nM + K))! 1 =X)K) oy

(64)
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where we write D™ the nth order derivative. Thus, setting Ko = | %X |, where |.]
is the floor function, we have

(N —nM—1)! "
Cru =2 KZn'(K—n)'(N TR SN ©

For M = N we find K, = 0 and the normalization constant

x (N1

(K—-DIN-=K)!’ (66)

Cyvikn=a
is equal to the normalization constant Cy x obtained for the constant kernel in
Sect. 3.1. The mean number of clusters of size i < M conditioned on the number of
clusters K is

/ CN—ik—1.M
(M,')K = Z m;p (ml, .. .mM) = ad—

/
mi€Py x y

67
Cnx.m 67

Two clusters of size i and j can form a new cluster only if i +j < M. The formation
rate when there are K clusters is thus

M/2

m; (m
Jx = Z p'(ml, Cee mN) Z s + Z m;m;
(m) <Py k1 = i gM:lz;é/
(63)
The formation rate can be written as a function of the coefficients Cy 3 as
fr=Cnoms (69)
and for K > 2
KK—1 "
fk = T — Z Cn—2ik—2M
i=1
in(M—1N—K+1)
K(K _ 1) min
+ — Z CN—i—jk—2M- (70)
ij=1
i+j<M

The separation rate remains unchanged sx = (N — K)a, and the probabilities at
steady state are given by

e = 550, 1)

SK
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We illustrate the limit case a — 0 for N = 9, M = 4 (Fig.2). When a > 0, all
partitions are accessible, but as a — 0, the steady-state configurations are dominated
by the configurations with the largest possible cluster size (4,4, 1), (4,3,2), and
(3,3, 3). Applying formulas (65) and (67), we obtain the limit cluster configuration
probabilities

3
P41 = -
p(4,3,2) = o (72)
10
p3,3,3) = Io°
These steady-state probabilities do not depend on the initial particles configura-
tions as long as a # 0. For a = 0, there are three possible configurations

(4,4,1), (4,3,2),and (3, 3, 3): once equilibrium is attained, the clusters will remain
unchanged. The probability to get to equilibrium depends on the configuration and
the order of clustering events. When there is no limitation in the cluster formation
(M = N = 9), a single cluster containing all particles is formed (Fig. 2, left panel).
For large values of a, most clusters are very small, and the distributions are similar
for M = 4 and M = 9 (Fig. 2, right panel).

The probability for two particles to be in the same cluster provides a good
estimation for the cluster distribution for various values of the parameter a (Fig. 3).
When a is large, most particles are contained in very small clusters and the
probability (P,) is similar for the cases M = 4 and M = 9. When a — 0, particles
tend to form larger clusters. A single cluster containing all particles is formed and
(P) — 1 when M = 9, but the maximal value of (P,) is less than 1 when the
maximal cluster size is limited. We can explicitly compute (P;) in the limit case
a — 0. For example, for M = 4, using Eq. (30), and summing over all possible
configurations (72), we obtain

(Py) = p(4,4,1)Pr(4,4,1) + p(4,3,2)P>(4,3,2) + p(3,3,3)P2(3,3,3)
3 24 6 20 118

072 T1072 T 1072

7

o

3.3 Example 3: Application to the Case a; = ai

We consider the case a; = ai. The number of clusters of size i is asymptotically [10]

(M;) = aie™V?IN, (73)
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Fig. 3 Probability (P,) that two particles are in the same cluster. The parameters are N = 9 and
M = 4 (black), M = 9 (red). For large values of a > 1, only small clusters are present and the
steady-state distributions are similar for the cases M = 4 and M = 9. When a — 0 the clusters
organize in three different cluster configurations, while for M = N a single cluster containing N
particles is formed

Similarly to the previous examples, the number of clusters of size i, for a given
distribution of K clusters, is
(N—H—K—Z)
N—K—i+1
(N+K—]) :
N-K

Miynk =i (74)
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The number of clusters of a given size is determined by the probability of a
distribution of K clusters I1k. It is given in the induction relation

Mg = — k41, (75)

where f and s are the formation and separation rates. The coagulation kernel is
C(i,j) = 1 and the fragmentation kernel F(i,j) = a#’i, and we obtain that

n—1 . . 2
i(n—i a(n~—1
ﬂmzzy( ) _ (6). (76)
i=1 n
The separation rates are
N2 —1
5] = M (77)
6
and for K > 2
a 1 1 NE%*mﬂ—lxN—i+K—2n %)
sg = — .
BT 6 (VEET) 2K - 3)! £ (N—i—K+1)!

In addition,

a (2K —1)(N +K —2)
6 N+K—1

(N+K—-2)?2+5)

Sk =

LK —2)2K — 1)
) 2K

—a(2N + 2K —3)(2K - 2) + g(N +K

a (2K — 1)(2K —2)
W F BN+ K+ 1) (79)

The formation rates are obtained from the number of cluster pairs that can coagulate,
and are given by

_K(K—1)

Tk 5

(80)
To conclude this section, model of discrete coagulation-fragmentation processes
with a finite number of particles is used to determine the steady-state probability
distribution when the number of clusters is fixed. Using the partitions of the total
number of particles with a given number of clusters, various statistical quantities
and moments such as the cluster distributions can be computed, including also the
mean number of clusters of a given size conditioned on the total number of clusters.
We use two time constants to characterize the cluster dynamics: the first one is the
time that two particles spend together and the second one is the time they spend
separated. In the next section, we will describe specific applications in cell biology.
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4 Modeling and Simulations of Telomere
Coagulation-Fragmentation Process

Telomere aggregate and dissociate according to the coagulation-fragmentation
process presented in Sect.3.1. To obtain numerically any quantity of interest, we
use the master equations that describe the coagulation-fragmentation process. The

equation that describes the probability P(n, ..., ny,t) of having a distribution of N
clusters distributed in clusters of size n; , ..., ny, given in Eq. (6), is ¢
d N-1 N N mi—1
EP(I’[],...,HN,Z‘) = — Z Z C(n;, nj) + Z Z F(k,nj—k) | P(ny,...,nN,t)
i=1 j=i+1 i=1 k=1

N
+ Z Z C(n:nj’)P(nln;nj'nNt)
k=1nx{>0,nj{>0

/7 S —
n; +n,- =ny

N-1 N
+> 0 Fun)P(u.....ni+nj.....ny.0). 1)
i=1 j=i+l

where C(i,j) = ky is the formation rate of a cluster of size i + j from two clusters of
sizes i and j, and F(i,j) = k; is the rate of dissociation of a cluster of size i + j into
two clusters of size i and j.

Because the time distribution of the telomere to a small target is exponential,
the encounter rate of telomeres at the nuclear periphery can be characterized by a
single parameter (the arrival rate or equivalently by an effective diffusion constant).
Even though telomere motion involves complex polymer chains accounting for the
physical chromosomal chain, any encounter is a rare event, and its rate is Poissonian.
Consequently, to model clustering, we use this property to approximate the arrival
time of a chromosome to a small cluster by the Poissonian dynamics, as long as
the chromosome length does not restrict the motion of the telomere on the nuclear
surface. Two telomeres encounter at a Poissonian rate k.

Polymer simulations (Fig. 4b) confirm that the arrival time of a telomere to a
cluster can be simulated using a Poissonian distribution approach. In that case, it
is enough to study the dynamics of 32 stochastic particles (Fig.4c). Thus, using
a molecular dynamics simulation of two Brownian particles on the surface of
a sphere [6], Brownian simulations of particle located on the two-dimensional
sphere except for a region of the size of the nucleolus (see earlier discussion)
lead to an approximation for the forward rate of ks ~ 1.9 x 1073 s™!, where the
encounter disk is of radius 6 = 0.015wm and the effective diffusion constant is
D = 0.005 um?/s [5].

When a telomere aggregates to a cluster, it only slightly varies in size. Indeed, in
the complex environment of the nuclear surface, the diffusion constant varies with
the log of the radius of the effective diffusing particle. Thus any changes in the radius
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Fig. 4 Computational model of telomere cluster formation. (a) Snapshot from a Brownian
dynamics simulation of a polymer with one end anchored on the nuclear surface. The polymer
is composed of 100 monomers with average distance between monomers of [y = 50 nm, and
the nucleus is a reflecting sphere of size R = 250 nm. (b) Histogram of the arrival times for a
polymer of 100 monomers freely diffusing in the nucleus and one end constrained to diffusion
on the surface. A fit of the form f(r) = aexp(—bt) gives a = 1.014 and b = 0.76. (c) The
diffusion-aggregation-dissociation model of telomere organization. Telomeres are simplified as
Brownian particles diffusing on the nuclear surface that can meet and form clusters, and clusters of
n telomeres split at a rate (n — 1)k,. The coarse-grained association rate ks is taken as the average
of the cluster meeting times. (d) Influence of long and short chromosome arms on clustering.
Decomposition of the nucleus in subdomains with telomeres from short and long chromosome
arms. Both types of telomere can interact in a common region

will result only in a small change in the diffusion coefficient. We neglected any
possible changes in the scattering cross section and motility, which could modify
the forward binding rate [14]. Thus the encounter rate between clusters or telomeres
will be approximated by a constant independent of the size.

In the Gillespie’s algorithm, the transition rate constants between different cluster
configurations are given as follows: for a distribution (ny, ..., nk) of clusters, the
transition probabilities to the neighboring states depend on two events: either two
clusters (n;,n;) associate to form a new cluster of size n; = n; + n; with an
association rate ks or a cluster of size n dissociates into two, with a rate (n — 1)k,
that depends on the number of bonds. The size of the resulting dissociated clusters

is uniformly distributed in the interval [1,n — 1]. Since there are @ pairs,
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the association rate equals @kf, and the total fragmentation rate is the sum

over all dissociation rates Zj(”j — 1)k, = (N — K)ky. The total transition rate
from the state (n;,...,ng) to any of the possible association and dissociation
events is ap(ny,...,ng) = Y. a; = @kf + (N — K)k,. Each iteration step
of the algorithm uses the classical Poissonian random transition time 7 = —IOET”,
where r; is a uniform random variable in [0, 1] and each reaction event i has a

probability Z—(‘] to occur, and the chosen reaction i is sorted out using the criteria

Z;;ll Z—(’J <u< ZJ': . % where u is uniformly distributed in [0, 1].

4.1 Influence of the Chromosome Arm Length
on the Clustering Dynamics

Because chromosome arms with a length below 300 kb are mainly located in a
small region near the spindle pole body (SPB) [31], while telomeres of longer
chromosome arms exhibit motion near the nucleolus, we decided to integrate these
constraints into the telomere dynamics (Fig. 4d). We distribute telomeres into two
classes based on the length of the chromosome arm [31] and restricted 12 telomeres
to a small region account for short—short interactions (SS) around the SPB (1/3 of
the surface) and the other 20 are free to diffuse in a larger region where only long
telomeres can interact (LL), which excludes both the nucleolus and a small cap
around the SPB (SL is 2/3 of the nucleus surface).

In the common region SL, both types of telomeres can meet to form mixed
clusters. There are three possible classes of telomere clusters: clusters containing
telomeres from long chromosome arms only (long), from short chromosome arms
only (short), or from long and short chromosome arms (mixed), leading to six
forward rates, accounting for the long—long, short—short, long—short, long—mixed,
short-mixed, and mixed—mixed interactions.

In addition, for two telomeres from the pool of long chromosome arms, the
recurrence time is Tg = 442 s (n =1000), shorter than the forward time k- YL,L) ~
500s. Thus, the interaction of telomeres from short chromosome arms with a
cluster made of long ones will contribute to the confinement of the cluster to
a smaller region of the nuclear periphery, which will consequently decrease the
mean time for two telomeres to meet again. The mean time to separation Ts was
similar for telomeres from short—short, short-long, and long—long chromosome
arms (&21s, versus 31s for the dissociation time between two telomeres, n =
1000), reflecting that clusters contain the same number of telomeres independently
of their composition.

Finally, the equilibrium probability to find a given telomere in a visible cluster
(containing more than 2) was Pr(S,S) = 0.06, Pr(L,L) = 0.045, and Pr(L,S) =
0.04 (for short—short, long-long, and long—short arm interactions), confirming
that the encounter rate for small telomeres is higher than for long ones, due to
the smaller space they can explore. Our results are mainly consistent with [31],
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Fig. 5 Comparison of experimental and simulation results of telomeres clustering in yeast. (a,
e) Live cell imaging of telomere clusters. Representative fluorescence image of the telomere-
associated protein Rapl tagged with GFP (scale bar, 2 um) in haploid (a) and diploid cells (b).
(b, f) Histogram of the number of clusters per cell. (¢, g) Mean =% s.d. of the intensity distributions
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the cluster number. (d, h) Fluorescence intensity (experiments) and sizes defined as the number of
telomeres per cluster (simulations) for the three brightest clusters. The frequency of occurrence (y-
axis) of a given cluster size is plotted as a function of the intensity of a cluster (x-axis), proportional
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where the probabilities for two telomeres belong to the same focus are determined
experimentally to be mostly in the range 0.04-0.09. The differences between these
experimental data and our simulations might be due to specific interactions between
telomere pairs, which we did not take into account. Indeed, contacts between
telomeres on opposite chromatid arms of equal length are favored [27].

The aggregation-dissociation model for telomere organization was used to extract
in vivo parameters by comparing stochastic simulations with live cell imaging
data (Fig. 5a). The dissociation rate kj is estimated by comparing the experimental
and simulation histograms for the number of clusters containing more than two
telomeres (Fig. 5b). Histograms similarity was evaluated using the Kolmogorov—
Smirnov (KS) score, here defined as the maximum of the absolute difference of
the experimental and simulated cumulative distribution function for the number of
clusters. The optimal value of the KS score was 0.11 obtained for k, = 2.4 x
1072571,

However, a higher variance in the histogram of the experimental number of
clusters. To account for this variation, we introduced fluctuations in the value of
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the dissociation rate k;, of each cell. We generated random values of k; following a
Gaussian distribution and we found that for k, = 2.31072 4 1.3 x 1072s~!, which
corresponds to a = k,/k; = 12 & 7, we obtain an optimal fit for the distribution of
the number of clusters. Simulations show an excellent adequacy to the experimental
cluster distribution (Fig. 5b), size (Fig. 5¢), and size distribution (Fig. 5d), with a KS
score of 0.07.

We observed an average of three detectable clusters per cell, and very few cells
with more than eight clusters. Interestingly, in the simulations, 9.9 (8.2) telomeres
are isolated (in pairs). In addition, the number of telomeres per cluster obtained in
our simulations reflects very well the cluster intensity obtained experimentally: in
both simulated and experimental data, we found that the average cluster intensity
does not vary with the number of clusters per cell (Fig. 5c). Because there are 32
telomeres and that the intensity is an increasing function of the number of telomeres,
we conclude that there are in average no more than four telomeres per cluster. A
better precision about the cluster distribution is obtained by plotting the distribution
of the first three brightest clusters for both experimental and simulated data (Fig. 5d):
in both cases the three brightest clusters contain four telomeres.

The robustness of the aggregation-dissociation model is tested for the organi-
zation of telomeres in diploid cells where the nuclear volume (nucleus radius =
1.25wm) and the number of telomeres are doubled. These changes in the cell
geometry affect the forward rate, which we recomputed from Brownian simulations,
and we now found for the association rate kr = 1.1 x 107> s™!. Considering that
the backward rate is unchanged and taking the value found in the normal case, we
obtained for the new equilibrium constant the value a = 21 £+ 12 (compared to
12 £ 7 for the haploid).

Telomere foci in diploid cells are shown in Fig. Se, and the number of telomere
foci obtained by simulation is similar to the number measured in live cells. They
have in average six clusters containing three to six telomeres per cell (Fig. 5f, g). The
light intensity and the telomeres distribution of measured and simulated telomeres
per cluster were very similar (Fig. 5f-h). Interestingly the median cluster size is 4 in
both haploid and diploid cells, i.e., there are four telomeres per cluster, suggesting
that the number of telomeres per cell does not influence the number of telomeres per
cluster. Furthermore, according to the simulations, in diploid cells, telomeres cluster
in 5-9 foci containing 3—6 telomeres, while 18.7 telomeres are single and 16.4 are in
pairs. The matching between experimental data and numerical simulations confirms
the robustness of the model to parameter changes, while the physical properties of
the telomeres and the cluster dissociation rate were maintained fixed.

S Modeling Capsid Formation as an Aggregation Process

In this second part, we study here the kinetics of cluster formation starting with
the arrival and fusion of elementary particles at a nucleation site. Particles involved
in the cluster formation are organized in aggregates. The aggregates increase the
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Fig. 6 Schematics of clustering for a finite number of particles. (a) Model used for telomere
clusters coagulation-fragmentation. (b, ¢) Model used for capsid formation

cluster size by fusion to the particles. This is an elementary model of capsid viral
assembly, where the density distribution of aggregates is at steady state. To maintain
this distribution, the protein production must be much larger than the aggregates
needed to form a single capsid.

In that model, a cluster can accept a maximum of Ny particles, and is complete
when exactly Ny particles have arrived. The cluster is formed upon the arrival of
aggregates of various size. When a cluster has reached a size n, it can accept
aggregates of size less than Ny — n (Fig. 6¢). Each aggregate binds to a cluster
with a Poissonian arrival rates A, independent of the aggregate size. Aggregates
participating in the cluster formation are already formed and are at steady state.
Therefore the number n; of aggregates containing k particles is constant. The total
number of particles Ny is distributed among the aggregates, therefore

No
Ny =l (82)

We assume that the number of aggregates of size k is distributed exponentially and
given by

M1 = pg, k>0 (83)

where the parameter 0 < p < 1.We present here the models of nucleation using a
mean-field approximation and a stochastic jump process.

5.1 Mean-Field Approximation

We now derive an equation for the cluster size n(f) at time r. The cluster growth
rate depends on the arrival of an aggregate of size k and on the probability g of
finding a free site at the cluster. We neglected here the geometrical organization
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of an aggregate and consider that upon fusion, it fills empty slots in the cluster.
We do account here for the geometrical organization in facet of aggregates which
participate to the structure of viral capsids. Thus, the probability ¢ does not depend
on the geometry or positions of the aggregates already present in the cluster but only
on their number. We chose the linear relation

_ "0
qn() = 1= . (84)

In addition, we neglected any changes of the arrival rate due to the size of the
aggregate that can affect the diffusion coefficient. To conclude, a nucleation site
is formed when it is entirely filled by aggregates. The cluster growth is due to the
arrival of aggregate of size k and the rate is Akny. The cluster total growth rate is the
product of the probability to find an available site times the sum of the arrival rate
of any aggregate. The average size n(t) satisfies the equation

i) = A (1 - %)) > k. (85)

which reduces to

(1) = AWNo — n(0) [1 = p" ™" (1 + (No — n()) (1 = p))]. (86)
with initial condition n(0) = 0 and

A ANy
© No[1=pM(1 4+ No(1—p))]’

87)

For 0 < p < 1, although Eq. (86) cannot be integrated analytically, we obtain the
short and long time asymptotic in the limit of Ny large. For short time, the size for
the growing cluster is

n(t) &~ ANrt, fort < 1, (88)
which is independent of p. For large ¢ and small p, the first order expansion is

No 1
1) ~ Ny — — fortr> 1. 89
n(o) 0 ANT(p—1—logp) t ort > (89)

In the limit case p = 1, Eq. (86) changes its nature and for large Ny, it reduces to

No

N;
1/1+2)kN—gt

n(t) = Ny — fort > 1. (90)
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Fig. 7 (a) Kinetics of the cluster growth in the mean-field approximation. Various kinetics
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(b) Comparison of the kinetics of formation with the deterministic and the stochastic models.
Parameters are Ny = 1000, p = 0.96, A = 0.001s~!. (¢) Mean time to form a function as a
function of N, for various values of p, with A = 0.001s~! and Ny = 1000. (d) Cumulative
distribution of the maximal jump size Py, k, for No = 1000 and p = 0.95,0.97,0.99, 1. The
probability Py, x for p = 1 is compared with the approximation Eqs. (104) (green) and (105) (red)

When there are single monomers only (p = 0) Eq.(85) describes the classical
kinetics of arrival and the solution to Eq. (86), which reduces to a single exponential

Ny
n(t) = No(1 — eiANTl)t). We plotted in Fig. 7a the kinetics of the cluster formation.
Interestingly, the cluster is formed more quickly for lower values of the parameter p.

5.2 A Stochastic Dynamics for the Cluster Formation

Due to the discrete arrival of aggregates to the nucleation site, the cluster size
increases by random jumps that we shall describe now using a stochastic jump
process. When an aggregate arrives in the time interval (z,7 + Af), the cluster of
size n(t) at time ¢ increases with a probability p(n(f))dt that depends on its size at
time ¢, thus
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n(t) wp. 1 — pu(n(r)At
n(t+ Ar) =
n(t) + J(n(r)) w.p. p(n(r)) At,

where J(n(f)) is the size of a random jump, characterized by its conditional
transition distribution

Pr{iJ(n(t)) = m —n|n(t) = n} = w(m — n|n)

_ d=pp"™
p(1 —phom)

and w(m — n|n) is transition probability from n to m, which we normalized by
summing over all aggregate sizes that can fuse with the cluster. To determine the
arrival rate of an aggregate, we start with a cluster containing n particles. The arrival
rate of an aggregate is given by the jump rate p(n), which is equal to the arrival
rate A of an aggregate of particles (or a single particle), multiplied by the number of
aggregates smaller than Ny — n, so they can enter in the nucleation site, multiplied
by the probability of finding a free site (proportional to 1 — NLO). The jump rate is
thus

No—n
n
(n) :A(l‘ﬁo) >
= a(No — n)(1 — p"™), 1)

— N I=p
where a = /\NO 1—pNo (1+No(1—p))

master equation

The probability density function satisfies the

p(m,t+ At) = (1 — p(m)Anp(m, 1)
m—1

+ Z w(m — njn)p(n, t)u(n) At,

n=1

which tends in the limit At — 0, to the discrete forward Fokker—Planck equation

dp(m, 1)
ot

= Lup(m. 1) = —p(m)p(m. 1)
m—1

+ D umw(m — nlwp(n. 1), (92)
n=1

where L, is the forward Kolmogorov operator.
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5.3 The Mean Time to Cluster Formation

The time to form the cluster is the mean first passage time (z(n)) of the cluster size
to its maximum Ny. By definition,

t(n) = inf{t > 0;n(t) > No|n(0) = n} (93)

and the MFPT is solution of the backward equation [29] with absorbing boundary
condition at N

L {e(n) = —1
{ (t (Vo)) = 0, O

where the operator L} is the adjoint of L,,. The MFPT is obtained by solving the
system of equations for 0 <n < Ny — 1,

No

=1 =—um(m)+ Y (cm)umwim—nln). (95)

m=n+1
The mean time of a cluster formation is then

No(1 = p™(1 + No(1 —p)))
ANT

(z(0)) =

1 A 1
. |:N0(1 P —p) 2 i(1-p*H( —pi)]’

i=1

(96)

which depends on the total number of particles Ny, the maximal size Ny, the
parameter p that describes the size distribution of aggregates, and A the arrival rate
of an aggregate to the nucleation site.

For small p and large Ny, we obtain the approximation

(£(O)) = 73 (logNo + 1) + olp). o)

For a large nucleation site Ny, in the limit p — 1, the mean time remains finite and
Eq. (96) becomes

N2 2
(2 O)Mo.p.2.N7) = 13 (’% _ 1) forp = 1. 98)

The mean formation time does increase drastically as p tends to 1 (Fig. 7c). Indeed,
a cluster starts growing very rapidly when large aggregates arrive, however, the
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growth is reduced later on because the number of admissible aggregates (smaller
than the number of available sites) is small. Admissible aggregates represent only a
small fraction of the total number of aggregates.

5.4 Composition of a Cluster

We now characterize the cluster assembly by studying the size distribution of
aggregates that have arrived to the nucleation site. We shall derive also the size
of the largest aggregate that contributes to the cluster formation. To evaluate the
various sizes of aggregates that bind to the cluster, we consider the ensemble of
aggregates. During the sequential steps of aggregation, the number of particles C,
at the nth-step, with Cy = 0, follows the equation:

Ciy1 =Ci + zit1, 99)

when z;4 is the size of the aggregate that binds at step i 4+ 1. The cluster contains
a maximum of N, particles. The size of aggregate z; 1 that binds to the cluster can
take values in (1,..., Ny — C;) and thus the probability that the i + 1th aggregate is
of size k when there are Ny — C; free sites is

(1=pyp*!

Prny—c:(zig1 = k) = I (100)

_ pNO_Ci :

Thus, the joint probability that the cluster assembles with the following order of
arrival (ky, ..., k,) is the product of the conditional probabilities (100)

Plzi=ki, ...z =ky) = HPNO_Z;;Iij(Zi = ki),
i=1 '

with the condition ), k; = No.

5.5 The Largest Aggregate Merging to the Cluster

The probability that the largest aggregate zm.x is less than K during the cluster
assembly is

Prnok = > P =ki,... zp = k). (101)
{(k1,..kn); 3 ki=No}
and k;....kn <Kk

To obtain an approximation of Py, x for large Ny, we sum over the first jump size,
which leads to the induction formula

K

Prok = ) Prno(z1 = k1) Pyo—sy i (102)
k=1
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where P, ; = 1 for n < k. When the parameter p = 1, formula (102) reduces to

K
1
Pnyx = E IVOPNo—kl,K~ (103)
k=1

The induction formula (103) can be solved by Pygx = f(IKV)’ where [ satisfies

fx) = @ with x = ]% The function f is solution of a nth order linear
X

differential equation on each interval [,
intervals (%, %) and (%, 1). However, there is no simple formula on other intervals.
Finally, the probability for the size of the largest aggregate to be less than K after

the cluster is filled is given for large Ny by

1 %] for n > 1, which we solved on the

K
PNO,K =1+ logﬁ forN0/2 <K <Ny (104)
0
and
P T+tog & iy (K} 4 Lo X
No.K Evo TP\ ) T2 N,
K
+ log (17) + 1 for No/3 < K < Ny/2 (105)
0

where Lir(x) = Y 2, i—i The probability Py, x is well approximated by the
function f that we constructed inductively on intervals (% %) and (%, 1) (Fig.7d).
The construction of the function f reflects that the number of possible jumps of
maximal size is limited: indeed, once an aggregate of size larger than Ny/2 has
arrived, the size of all other aggregates can only be smaller than Ny/2, leading to
the initial interval (% 1). Similarly, after an aggregate of size between Ny/3 and
Ny/2 has arrived, other possible aggregates have a size smaller than Ny/3. This
constraint leads to the second interval (% %) We obtain by induction the division in
intervals (#, ’11).

5.6 Gag Protein Aggregation in Potential Wells

Recent super-resolution data have revealed that GAG proteins of the HIV virus
can aggregate in specific microdomains [12]. Interestingly, the proteins aggregate
in small regions characterized by a physical potential well (Fig. 8), discovered in
[14]. Indeed the motion of aggregates on the membrane surface is influenced by
a diffusion coefficient D and a field of force F(X,t), following the overdamped
Langevin model equation
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Fig. 8 (a) Area of aggregation (right) correspond to potential wells, characterized by converging
arrows. (b) Four examples are shown (left) with associated parameters of the ellipses: long a
and short b abscise. (¢) Three other potential wells represented with the high density of GAG
trajectories, scale bar 500 nm (data given by the courtesy of S. Manley)

X = @JM/EW, (106)

where W is a Gaussian white noise and y is the dynamical viscosity [28]. The
source of the noise is the thermal agitation of the ambient lipid and membrane
molecules. However, at low resolution, the motion is described by an effective
stochastic equation [15, 19]

X = a(X)dt + V2B(X)W, (107)

where a(X) is the drift field and B(X) the diffusion matrix. The effective diffusion
tensor is given by D(X) = %B(X)BT(X) (. denotes the transposition) [28, 30].
The observed effective diffusion tensor is not necessarily isotropic and can be state-
dependent, whereas the friction coefficient y in (106) remains constant and the
microscopic diffusion coefficient (or tensor) may remain isotropic.

The drift field a(x) in Eq.(107) represents a force that acts on the diffusing
particle, regardless of the existence or not of a potential well [13]. In the case where
D(x) is locally constant and the coarse-grained drift field b(x) is a gradient of a
potential

alx) = —-VU(x), (108)

then the density of particles represents locally the Boltzmann density e~V®)/? [13].
The force field can form potential wells, generically approximated locally as a
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paraboloid with an elliptic base. It remains a difficult question to extract the axis, the
center, and the boundary of the elliptic base of the well. Once they are known, within
the analytical representation U(x) = A ((i)2 + (%)2) + O(x,y)?, the constants
A, 1y, 1y are three parameters to be determined.

GAG proteins show free and confined motions. The density of particles is
quite heterogeneous, with many small dense regions and a few very dense regions
(Fig. 8). The stochastic analysis and diffusion map (Fig. 8) reveals a mean diffusion
coefficient is D = 0.7 um?/s almost uniform. Several potential wells could be
detected with an elliptical base with radius 170200 nm. One with depth A =
0.78 pm? /s with a score of 0.20, confirming that these wells are robust [19]. The
energy of the potential well is in the range 1.7-4 kT.

Interestingly, the wells evolve in time (Fig.9) and can disappear rapidly (in less
than 5 min) and the energy decreases gradually in time. This analysis used a moving

15105 --->1690s 15205 -—>1700s 15305 -—->1710s 15405 —->1720s 15505 -—>1730s 15605 -—> 17405 Timg (s)

e = e - "
Y A R Y] e
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Fig. 9 (Upper) Time dependent aggregation, separated in time windows. Lower (a, b) transient
potential wells corresponding to panel (a). For the last panel, some GAG trajectories are not
attracted by potential wells (data given by the courtesy of S. Manley)
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Fig. 9 (continued)

window, which smooths out fluctuations. To observe the evolution of the trajectories
in a small region in the proximity of the potential well, we plotted windows of
180 s of recording (Fig. 9). For each panel, the trajectories were recorded in the time
interval (z,¢ + 180s). The next panel represents trajectories taken 10 s afterwards,
in the time interval (f + 10s, 7 4+ 1905s). To represent the evolution of trajectories
through time, in each window, the trajectories are colored during the first seconds in
blue, and trajectories near 180 s in red. The most recent trajectories are overlaid on
the first trajectories.

In the first seconds, trajectories appear unorganized (Fig. 9, top row). Confined
trajectories appear in only 10s at 1750s (Panel 1570-17505s). This confinement
lasts for 140 s: after time 1890 s (Panel 1710-1890 s), the new trajectories (red) that
pass over the former confinement region are diffusive and not attracted to any point.
To conclude, the potential well lasted for 140s between 1750 and 180s. Moreover
the confinement region is expanding through time. The radius of the potential well
changed from approximately 200 nm at the beginning at 1750 s (Panel 1570-17505)
to a radius of 250nm at 1890s. To measure the changes in energy of the well
through time, the energy of the well in each window of 180 s is shown in Fig. 9 lower
panel. During the time interval (1750-1890 s), which corresponds to the period of
confinement, the proximity of the measured drift map with a parabolic expression is
in very good agreement in the confinement in the time period (1750-1890s). This
agreement confirms the presence of interaction forces acting on the Gag proteins.
Finally, the present analysis confirms that aggregate formation occurs in geometrical
confined structures that are transient in time.
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5.7 Conclusion

We presented here several analytical formula based on aggregation-fragmentation
with a finite number of particles. These formulas can be used to extract parameters
such as rate constants from experimental data. The general framework is also used
to derive the extreme statistics about the time formation of a cluster or the time two
particles spend in the same cluster.

We also discussed here two important applications about telomere clustering
in yeast [14, 20] and capsid formation [17]. The geometrical organization of
a cluster formation from small aggregates remains difficult to account for into
modeling. Future directions should be concerned with accounting for the random
geometry of aggregates and their insertion in a cluster. In the last subsection, we
reviewed experimental evidences that capsid assembly might use the membrane
local curvature, but the exact mechanism remains open.
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A Review of Stochastic and Delay Simulation
Approaches in Both Time and Space
in Computational Cell Biology

Kevin Burrage, Pamela Burrage, Andre Leier, and Tatiana Marquez-Lago

1 Introduction

Heterogeneity is a key property of biological systems at all scales: from the
molecular level to the population level [1-3]. Many systems have evolved ways of
either minimising or exploiting this noise [4, 5]. In particular, some critical cellular
systems have evolved to minimise or take advantage of noise [6, 7], for example,
persistence in bacteria [8, 9]. We can classify heterogeneity as arising from three
main sources: genetic (nature), environmental (nurture) and stochastic (chance). In
this chapter we focus on the latter. We make the distinction between Environmental
heterogeneity often called extrinsic noise and intrinsic noise, which arises from
random thermal fluctuations [1, 9].

Intrinsic noise was perhaps first observed in a cell biology setting by Spudich and
Koshland [10]. They noticed that individual bacteria from an isogenic population
maintained different swimming patterns throughout their entire lives. Although
they called this ‘non-genetic individuality’, they believed it arose from random
fluctuations of low copy-number molecule or intrinsic noise. This affects the
microscopic DNA, RNA and protein molecules in many ways, most notably via the
Brownian motion of molecules and the randomness associated with their reactions.
It ensures that the process of gene expression, one of the most fundamental
processes of a cell, proceeds differently each time, even in the absence of the
previous two sources of heterogeneity [9, 11].
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Some biological systems have evolved to make use of intrinsic noise: a good
example is persister-type bacteria, which can withstand antibiotic treatments even
though they do not have genetic mutations for resistance [12]. These effects can arise
through the phenomenon of stochastic switching, where cells randomly transition
from one state to another [13, 14]. Another well-known example of exploiting
stochasticity is the bacteriophage Lambda decision circuit [15]. Stochasticity also
plays a crucial role in causing genetic mutations [16, 17]; these are essential for
creating the heritable heterogeneity upon which natural selection can act, thus
allowing evolution to occur [18].

On the other hand, intrinsic noise can interfere with the precise regulation
of molecular numbers [19], and cells have to compensate for this by adopting
mechanisms that enable robustness of certain key properties [4, 5], such as feedback
loops [9, 11]. Furthermore, mutations may also have negative effects, as certain
mutations in, for example, stem and somatic cells are thought to be the cause of
cancer [20-22].

2 Temporal Modelling in Computational Cell Biology

There has been a long and successful history in computational cell biology of
using rate kinetic ordinary differential equations to model chemical kinetics within
a living cell. For instance, these techniques have been applied on the plasma
membrane, in the cytosol and in the nucleus of eukaryotic cells to understand cell
processes ranging from gene regulation to transport between cellular compartments.
Modifications via delay differential equations were first considered as early as [23],
in order to represent the fact that the complex regulatory processes of transcription
and translation were not immediate but were in fact examples of delayed processes.

Thus in a purely temporal homogeneous setting and when there are large numbers
of molecules present, chemical reactions are modelled by ordinary differential
equations that are based on the Law of Mass Action and that estimate reaction
rates on the basis of average values of the reactant density. Any set of m chem-
ical reactions can be characterised by two sets of quantities: the stoichiometric
vectors (update rules for each reaction) vy, ... ,v, and the propensity functions
ai(X(@®), ... ,a,(X(r)). The propensity functions represent the relative probabili-
ties of each of the m reactions occurring. These are formed by multiplying the rate
constant and the product of the reactants on the left-hand side of each reaction.
Here X () is the vector of concentrations at time ¢ of the N species involved in the
reactions. The ODE that describes this chemical system is

X'(6) = via (X(0)).

J=1
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This formulation may have many different timescales (stiffness) but there are a
wide variety of numerical methods that can deal effectively with such systems.

It was the pioneering work of Gillespie [24] and Kurtz [25] who challenged
this deterministic view of cellular kinetics. They argued that when the cellular
environment contained small to moderate numbers of proteins, then the Law of Mass
Action is not an adequate description of the underlying chemical kinetics as it only
describes the average behaviour. In this regard, the fundamental underlying principle
is that of intrinsic noise. Intrinsic noise is associated with the inherent uncertainty in
knowing when a reaction occurs and what that reaction is. The variance associated
with this uncertainty increases as the number of proteins in the cellular environment
becomes small. [24, 25] showed how to model intrinsic noise through the concept
of nonlinear discrete Markov processes and Poisson processes, respectively. These
two approaches both model the same processes and are now lumped together under
the title the Stochastic Simulation Algorithm (SSA), although their formulations
are different. The essential observation underlying the SSA is that the waiting time
between reactions is exponentially distributed and that the most likely reaction to
occur in this time interval is based on the relative sizes of the propensity functions.

More formally, the SSA is an exact procedure that describes the evolution of a
discrete nonlinear Markov process. It accounts for the inherent stochasticity of the
m reactions within a system and only assigns integer numbers of molecules to the
state vector. At each step, the SSA samples two random numbers from the uniform
distribution U[0,1] to evaluate an exponential waiting time, t, for the next reaction
to occur and an integer j between 1 and m that indicates which reaction occurs. The
state vector is updated at the new time point by the addition of the j stoichiometric
vector to the previous value of the state vector, that is,

X(t+1) =X+,

Several more efficient, but more complex, variants of the SSA have been
developed [26-27]. However, despite these increases in computational speed, the
SSA has an inherent limitation: it must simulate every single reaction, and in cases
where there are many reactions or molecular populations become too large, it is
computationally intensive.

In a slightly different vein, the SSA describes the evolution of a nonlinear
discrete Markov process and as such this stochastic process has a probability density
function whose solution is described by the Chemical Master Equation (CME).
The CME is a discrete parabolic partial differential equation in which there is
one equation for each configuration of the ‘state space’. When the state space is
enumerated, the CME becomes a linear ODE and the probability density function
takes the form

p(t) = ¢p(0).

Here A is the state-space matrix. Thus the solution of the CME can be reduced
to the computation of the evolution of the exponential of a matrix times an initial
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probability vector. As there is one equation for each possible configuration of
the state space this can be very computationally challenging, although recently
developed methods can cope with some of these computational costs [28-32] to
make this a very feasible technique.

The main limiting feature of SSA is that the time step can become very small,
especially if there are large numbers of molecules or widely varying rate constants.
Thus tau-leap methods have been proposed in which the sampling of likely reactions
is taken from either Poisson [33] or Binomial [34] distributions. In these approaches
a much larger time step can be used at the loss of a relatively small amount of
accuracy. The tau-leap method [33] allows steps that are much larger than the SSA
by estimating the total number of occurrences of each type of reaction over that step.
Thus if there are m reactions, we take m Poisson random number samples based on
the sizes of the propensity functions evaluated at the beginning of the step. The
algorithm can thus be written as

X(t+71) =X+ ) uP(ra; (X(1)).

j=1

Note that now we have complete flexibility in choosing t and it can be done
adaptively in such a way as to control the local error at each step. This approach
has the key advantage that individual reactions need not be simulated. However, the
main drawback is a loss of accuracy compared to the SSA as a function of the step
size. Several schemes have been devised to optimise the time step [35, 36], while
some implementations combine the SSA with tau-leaping via a threshold on the
number of molecules in the system at any given time. However, it is possible that
molecular species that are depleted in any reaction can go negative if the time step
is too large and schemes have been developed that allow the choice of larger time
steps whilst avoiding negative populations [34, 36—40]. One important way in which
this can be done is to sample from the Binomial distribution rather than the Poisson
distribution [34]. Another approach is to consider the order of accuracy as a function
of the step size. In this regard the (weak) order of accuracy of the tau-leap method
can be shown to be one [41-43], meaning that error decreases proportionally to the
time step. Higher-order methods allow larger time steps to achieve the same error,
thus decreasing computational time [43—47].

Although it is not uncommon for chemical systems to be rather complicated, a
difficult situation arises when a system has reactions that operate at very different
timescales, for instance, slow and fast. Although standard tau-leap and higher-
order tau-leap methods are able to simulate these systems, their time steps must
be reduced, which can dramatically slow down simulation time when the separation
of the scales is significant and the fast reactions occur frequently.

In such cases, there are two options: either to use special methods for these ‘stiff’
systems or to use multiscale methods. The former are often based on deterministic
methods for stiff ordinary differential equation systems and allow the use of normal
time steps by expanding the range of time steps where the method is stable, thus
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opening the door for stiff systems to be simulated in similar time periods as non-stiff
ones [48-50]. Multiscale methods, on the other hand, partition the reactions into fast
and slow types, and simulate the fast reactions using an approximate method and
the slow reactions using an accurate stochastic method. The partitioning implies
that the slow reactions are constant over the timescale of the fast reactions and that
the fast reactions have relaxed to asymptotic values between each slow reaction.
Thus, the two sets of reactions are simulated iteratively to take into account the
coupling. This can also be generalised to three regimes: fast, medium and slow
[51]. This approach allows for very significant reductions in computational time
as the fast reactions, which would take up the most computational effort, can be
simulated very quickly with continuous methods. However, it also introduces errors
associated with coupling between two scales, as well as the possibility of errors from
the simulation of the fast reactions. An interesting approach runs short bursts of a
single SSA for the fast reactions, which is used to infer parameters for a differential
equation approximation of the slow reactions [52, 53].

There is in fact an intermediate regime that can still capture the inherent
stochastic effects but reduce the computational complexity associated with the SSA.
This intermediate framework is called the Chemical Langevin Equation (CLE). It is
described by an It6 stochastic differential equation (SDE) driven by a set of Wiener
processes that describes the fluctuations in concentrations of the molecular species.
Various numerical methods can then be applied to this equation—the simplest
method being the Euler—Maruyama method [54].

The CLE attempts to preserve the correct dynamics for the first two moments of
the SSA and takes the form

dX =y via; (X(1)) dt + B (X (1)) dW ().

J=1

Here W(t) = (Wi(#), ..., Wy(t))" is a vector of N independent Wiener processes
whose increments AW; = Wj(t + h) — W;(t) are N(0, h) and where

B(x) = /C. C=(vy,...,v,)Diag (@ (X).....an(X)) v1.....vm)".

Here h is the time discretisation step. Effective methods designed for the
numerical solution of SDEs [54-56] can be used to simulate the chemical kinetics
in this intermediate regime. [57] have shown how to construct the CLE so that
it minimises the number of Wiener processes. Furthermore, adaptive multiscale
methods have been developed that attempt to move back and forth between the
deterministic and stochastic regimes as the numbers of molecules change [51].

These temporal approaches are applied under the hypothesis of homogeneous
and well-mixed systems. It is well known, for example that diffusion on the cell
membrane is not only highly anomalous but the diffusion rate of proteins on live
cell membranes is also between one and two orders of magnitude slower than in
reconstituted artificial membranes with the same composition [58]. Furthermore,
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diffusion is dependent on the dimensions of the medium so that diffusion on the
highly disordered cell membrane is not a perfectly mixed process and therefore
the assumptions underlying the classical theory of chemical kinetics fail, requiring
either new approaches to modelling chemistry on a spatially crowded membrane
[59] or methods based on detailed spatial simulations.

However, rather than abandoning temporal models entirely, it is possible to
capture important spatial aspects and incorporate them into temporal models. This
can be done in a number of ways. For example, compartmental models have been
developed that couple together the plasma membrane, cytosol and nucleus—see,
for example [60], in which an SSA implementation of Ras nanoclusters on the
plasma membrane is coupled with an ODE model for the MAPK pathway in the
cytosol. Diffusion and translocation can be captured through the use of distributed
delays that can then be incorporated into mathematical frameworks through the
use of delay differential equations or delay variants of the Stochastic Simulation
Algorithm (see [61], for example). [62] have explored a number of spatial scenarios,
run detailed spatial simulations to capture diffusion and translocation processes and
then incorporated this information into purely temporal models through distributed
delays—see Sect. 5 for more details. Another way in which spatial information
can be captured and then incorporated into purely temporal models is the area
of anomalous diffusion, where spatial crowding and molecular binding can affect
chemical kinetics. In this setting the mean square deviation of a diffusing molecule
is no longer linear but sublinear in time ¢ and of the form

E[X*(n] =2D*, «€(0.1].

Here, « is called the anomalous diffusion parameter. If the value of o can be
estimated, either experimentally or from detailed Monte Carlo simulations, then
the SSA can be modified so that the waiting time between reactions is no longer
exponentially distributed but has a heavy tail [59].

3 Spatial Models in Computational Cell Biology

One of the fundamental goals of integrative Computational Biology is to understand
complex spatio-temporal processes within cells. However, such a task may become
exceedingly difficult, due to the intrinsic multiscale nature of these processes. For
example, in order to fully understand cell signal transduction, a careful description
of membrane-bound receptor activation processes must be accounted for. However,
the plasma membrane is a highly complex structure, compartmentalised on multiple
length and timescales stemming from lipid-lipid, lipid—protein interactions with the
cytoskeleton. As a result, detailed simulations accounting for all processes may be
computationally prohibitively expensive, or simply infeasible.
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Of the class of spatial methods, the approach with the lowest computational cost
consists of solving reaction-diffusion partial differential equations, representing the
concentration of a given molecular species in the system. However, this approach is
only valid if and when: (1) all molecular species in the system have large molecular
concentrations, and (2) noise is not amplified throughout the system. If at least one
of these conditions fails to hold, we must rely on spatial stochastic simulation that
can be discrete or continuous in form. In the discrete spatial setting either lattice or
off-lattice particle based methods are appropriate.

As a particular example of lattice based methods, we consider the plasma mem-
brane. The plasma membrane is a complex and crowded environment that has many
roles including signalling, cell-cell communication, cell feeding and excretion and
protection of the interior of a cell. It is heterogeneous—the cytoskeletal structure just
inside the plasma membrane can corral and compartmentalise membrane proteins.
Chemically inert objects can form barriers to protein diffusion on the plasma
membrane. Trying to capture such complexity using higher-level mathematical
frameworks such as partial differential equations is extremely challenging, so
instead a stochastic spatial model using Monte-Carlo simulation is appropriate. In
such an approach the plasma membrane can be mapped to a two dimensional lattice,
usually regular but not necessarily so. The size of each computational cell ‘voxel’
depends on the biological questions that are being addressed, but taking into account
volume-exclusion effects, usually the voxel is such that at most one protein per
voxel is allowed. A protein undergoes a random walk, so that at each time step
a protein is selected at random, and a movement direction (north, south, east or
west, in the case of a rectangular lattice arrangement) is randomly determined. The
distance moved depends on the diffusion rates for each species. Chemical reactions
can be simulated by checking the chemical reaction rules and then replacing that
protein and/or creating a new protein at that location whenever a collision (volume
exclusion event) occurs [63, 64]. Although only relatively small sections of the
membrane on short timescales can be simulated with this approach due to the very
slow computational performance, we note that diffusion can be considered as a
unimolecular reaction. Thus if we order the voxel elements within the lattice into
a vector, we can consider this method in the SSA framework and apply the same
tools that have been developed in the purely temporal setting. This can allow us
to make use of vectorisation to speed up the performance. Furthermore, there is
a spatial CME associated with this approach [65] and again techniques used in the
purely temporal case can be used, although at the cost of very significantly increased
computational complexity.

In off-lattice methods, all particles in the system have explicit spatial coordinates
at all times. At each time step, molecules are able to move, in a random walk fashion,
to new positions. In many cases, reaction zones whose size depends on the particular
diffusion rates are drawn around each particle. If one or more molecules happen to
be inside such a zone, appropriate chemical reactions can take place with a certain
probability; if a reaction is readily performed, the reactant particles are flagged, to
avoid repetition of chemical events. Noticeably, in off-lattice methods, the domains
and/or compartments can still be discretised, to aid the localisation of particles
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within the simulation domain. In this vein, [66] have considered how to combine
tau-leaping and compartmentalisation in a spatial setting.

A less computationally intensive alternative, albeit still costly in many sce-
narios, is to consider molecular interactions in the mesoscopic realm. Here, the
discretisation of the Reaction-Diffusion Master Equation (RDME) results in reactive
neighbouring subvolumes within which several particles can coexist, with well-
mixedness assumed in each subvolume. There are a number of algorithms extending
discrete stochastic simulators to approximate solutions of the RDME by introducing
diffusion steps as first-order reactions, with a reaction rate constant proportional
to the diffusion coefficient. In [67, 68] the authors provide the specific outline for
extending discrete stochastic simulators to the RDME regime, while the algorithms
in [69, 70] provide clever extensions of the ‘next reaction method’ [26], commonly
known as the ‘next subvolume method’. A review on the construction of such
methods is given in [71].

The Next Subvolume Method [69, 70, 72, 73] is a generalisation of the SSA
[24], where the simulation domain is divided into uniform separate subvolumes that
are small enough to be considered homogeneous by diffusion over the timescale
of the reaction. At each step, the state of the system is updated by performing an
appropriate reaction within a single subvolume or by allowing a molecule to jump
to a randomly selected neighbouring subvolume. Diffusion is then modelled as a
unary reaction. In a two dimensional setting the rate is proportional to the diffusion
coefficient divided by the length of a side of the subvolume. In this way, diffusion
inside the algorithm becomes another possible event with a regular propensity
function, and follows the same update procedure as any chemical reaction. The
expected time for the next event in a subvolume is calculated in a similar way to the
SSA algorithm, including the reaction and diffusion propensities of all molecules
contained in that subvolume, at that particular time. However, times for subsequent
events will only be recalculated for those subvolumes that were involved in the
current time step, and they are subsequently re-ordered in an event queue. Similar
to accelerated approaches to simulate exact trajectories from the CME, there exist
methods to coarse-grain, and therefore accelerate, computations for the RDME
[66]. Separately, [74] split the time integration of the RDME into a macroscopic
diffusion (for species with large numbers of molecules) and a stochastic mesoscopic
reaction/diffusion part (for species with small numbers) obtaining the mesoscopic
diffusion coefficients from appropriate Finite Element discretisations.

In addressing these spatial issues, we are led to consider the role of anoma-
lous diffusion. Anomalous diffusion refers to processes where the mean squared
displacement (MSD) of a particle is no longer linear in time [75]. Anomalous
diffusion can be viewed in two ways: as a mechanism to localise molecules and
control signalling [76], or a macroscopic result of underlying microscopic events.
From the experimental perspective, various techniques have been used to study such
processes, including Single Particle Tracking [77], Fluorescence Recovery after
Photo bleaching [78] and Fluorescence Correlation Spectroscopy [79]. However,
the quantification of the degree and nature of the anomalous diffusion has shown to
be more difficult than anticipated, due to experimental limitations [76, 80]. In spite
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of these discussions and recent technical developments, the nature of anomalous
subdiffusion is still not well understood, either from experimental or simulation
perspectives.

There are many reasons for these discrepancies including the fact that often
only short tracks are recorded and the MSD relationship is not necessarily a robust
metric for inferring complex spatial information. A more robust metric would be to
construct a probability density function evolving in space and time, but this would
require a very time-consuming experimental study. From the simulation perspective,
a number of simulation studies have reported crowding-dependent values of o [64,
81]. But a prediction of percolation theory is that for immobile obstacles o depends
only on the embedding space dimension and not on the obstacle density [82]. From
theoretical perspectives, in the case of immobile objects, we can expect to observe
Brownian diffusion for initial small time periods (when no obstacles have yet been
encountered), an anomalous regime at intermediate times and Brownian diffusion
in the asymptotic regime [83, 84]. It is these crossovers that can create confusion
when trying to interpret diffusive characteristics.

It remains to be seen whether anomalous diffusion scenarios can only be captured
by explicit spatial models, or whether equivalent dynamics could be obtained
using off-lattice simulations with single molecules devoid of explicit obstacles, thus
capturing essential dynamics while significantly reducing computational time. Other
possibilities would include deriving an SSA and its associated CME that would work
in an anomalous diffusion temporal setting only. We could then attempt to replicate
the deterministic and stochastic regimes in the time anomalous setting. This would
lead to time fractional or space fractional representations. For example, molecular
concentration dynamics C(x, t) in a typical subdiffusive setting could be represented
by the time-fractional differential equation

%C(x, 1) = KuD} 7 V> C (x,1) + f (x,1),

where x and ¢ are the space and time variables, respectively, and the anomalous
exponent « is the fractional order of the time derivative operator. Here D!~ g(7)
is the fractional Riemann—Liouville derivative operator that reduces to the identity
operator when o = 1 while K, is the fractional equivalent to the classical diffusion
coefficient and has dimension [K, ] = [1]*[f]~*.

4 Modelling and Simulating Stochastic ion Channel
Dynamics

Ion channels are multiconformational proteins that form a pore in the membrane
of excitable cells. They open and close due to conformational changes in the
proteins as a result of variations in membrane potential, and thus regulate the
movement of ions across the lipid bilayer [85]. The dynamics of these proteins
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are fundamental to the generation of an action potential (AP) in excitable cells
[86]. Single-channel recordings have demonstrated that the conformational changes
the protein undergoes as it opens and closes occur at random [87]. This internal
stochasticity causes fluctuations in individual ionic conductances, [86], and has
important effects on the electrical dynamics of the cell [§8-91].

In neuronal cells, stochastic ion channel behaviour can modify a number of
electrical properties of the cell including the firing threshold [92] and spike timings
[93]. In cardiac myocytes this intrinsic randomness leads to variability in the
duration of successive APs [89, 90], termed beat-to-beat variability, which is
thought to be an indicator of arrhythmias [94]. It can even cause alterations to the
AP morphology under pathological conditions, resulting early-after-depolarisations
(EADs) [89].

While a discrete-state modelling and simulation approach is often seen as the
‘gold-standard’, it becomes increasingly computationally costly as the number of
channels increases beyond a few hundred [95]. This has led to the increasing pop-
ularity of using stochastic differential equations to describe ion channel dynamics
[89, 96, 97]. Fox and Lu [98] were the first to take such an approach, which they
applied to the Hodgkin—Huxley model, and their method has since been extensively
used to model neuronal cells [96, 97], cardiac myocytes [89, 90] and pancreatic
beta cells [91]. Their approach reduces the dynamics of the whole channel to the
collective dynamics of a series of gating variables that can be either open or closed.
The proportion of each gating variable in the open state is described by a Stochastic
Differential Equation (SDE) and the proportion of open channels is given by the
product of the number of open gates.

However, a number of studies have demonstrated discrepancies between the SDE
and discrete-state Markov chain model [95, 99, 100] [101]. Goldwyn et al. [101]
demonstrate that constructing the SDE model in terms of the kinetic dynamics of
the channel, rather than the individual gating variables, preserves the stochastic
behaviour of the discrete-state Markov chain model, see the recent review [104]
for a further discussion.

In order to illustrate these ideas we give more details on the form of the Chemical
Langevin equation for ion channel dynamics. We first consider an ion channel
transitioning just between the closed and open states. Let the proportion of channels
in the open state be y, let N be the total number of ion channels and W be a Wiener
process. Then the form of the CLE is

dy=(a—(a+b)y)dt+ ﬁ\/a+(b—a)ydw.

However, the complicating factor is that the parameters a and b are themselves
functions of the trans-membrane voltage. In the more general setting when there are
a number of transitions between the various ion channel states then the formulation
is given by

dj2

Y (y(1)) dW, + k,.
=1

dy(t) = vD (y(t)) dt + Tn ;
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For the moment take k = 0. Here the columns of v are state changes resulting
from a transition. D is a diagonal matrix whose entries are chance of transition
occurring (namely the propensity functions), b”(y(f)) are columns of matrix B,
where BBT = vD(y(t))vT. In the case of, say p, unimolecular transitions, which
is the setting for ion channels, then this simplifies to B = ES, where E is a p x d/2
matrix and S is a d/2 x d/2 diagonal matrix. In particular, E is a matrix with 1s
on the diagonal, —1s in certain lower triangular positions and Os elsewhere. Here
S is a diagonal matrix with square roots of linear combinations of certain pairs of
components of y [57].

For example, in the case of Sodium and Potassium ion channels, that form
key elements of the Hodgkin-Huxley ion channel model [103], the transitions are
given by

4ay, 3ay, 2ay ap
no = ny = ny = n3 = N4
by 2b, 3b, 4b,
3a,, 2ay, am
mohy =  mhy =  mhy =  mshy
b’n 2bm 3h1n
by T ay by T an by t an by T an
3a,, 2a,, am
mohy = mihy = mohy = msh;.
b 2by, 3bm

In the case of Sodium, for example, then E and S are given by

1 0 0 O
anyng, + 4bnyn4
1100 o, & 2
E= 0-11 0 diag(S) = AnYny nYn3
361;1)’”] + 2bnyn2
0 0-11 Y
0 0 O —1 a”y”O nym

In passing, we note that due to the structure of the ion channels there is an explicit
formulation to the underlying probability density function in terms of multinomials
[104] but as the transition rates are nonlinear functions of the voltage this does not
really help in simulating the ion channel dynamics.

Although this approach gives the correct dynamics, the solution to the SDE
must remain non-negative for the path to have any biological relevance. Yet it has
been shown that the solution can become negative [105]. Furthermore, since the
noise term in the SDE model involves the square root of some function of the
state variable, this can result in numerical solutions becoming imaginary [105].
Alterations to the numerical scheme can be made to force the solution to remain
positive, for example, the Wiener increment can be continually resampled [89].
However, such alterations can bias the results [105-107]. Another approach is to
replace the variable in the noise term with its equilibrium value, [96, 101] so that
the square root term is independent of the state of the system. However, such an
approach can still result in the proportion of channels becoming negative [101]. In
[105] a hybrid simulation method for the Hodgkin—Huxley model is developed that
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attempts to improve the computational efficiency of the discrete-state Markov chain
model whilst ensuring individual simulations remain non-negative by switching
between regimes.

Example of the reflection process on a three dimensional bounded domain

We argue that the boundary conditions are not naturally incorporated into the
standard CLE and that they can do so by the use of reflected SDEs [108] in which
k; in the general formulation is a reflected process that only comes into play at the
boundaries of the domain. The basic idea is to evaluate the non-reflected process
at the next time step using the Euler—Maruyama method. If the simulation is in the
desired region, set Y at the next time step to be this value. Otherwise orthogonally
project onto the boundary of the domain D. We assume that the process will reflect
y(¢) into the interior of the domain in the direction of the inward pointing unit
normal. It can be shown that this approach will converge with strong order ¥2-h for
all 2 > 0. This can be visualised for the three state models—see figure. Thus in our
general formulation we can interpret &, as a reflecting process and this determines
the behaviour at the boundary.

Finally, very recently Schnoerr et al. [109] show in a very nice paper that, by
extending the domain of the CLE to the Complex space, the CLE’s accuracy for
unimolecular systems is restored. This is at the cost of having to perform simulations
in complex arithmetic and taking care with the use of pre-defined functions.

S The Role of Delays in Modelling Biochemical Reaction
Systems and Model Reduction

The origins of delay differential equations (DDEs) date, most likely, back to the
second half of the eighteenth century. According to Schmidt [110], some of the early
work on DDEs (and, more generally, the so-called functional differential equations)
originates from famous mathematicians such as Laplace, Poisson and Lacroix (see
references in [110]). Two of the earliest examples of DDEs from the early twentieth
century found in the mathematical medicine and mathematical biology literature
are by Lotka, who studied a model of malaria epidemics with incubation delays (in
particular in [111]), and by Volterra, who investigated delayed predator—prey models
[112]. Ever since, DDEs have become an integral part of mathematical modelling of
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biological, biomedical and physiological processes. Examples of delay models can
be found in areas such as population dynamics and epidemiology [113, 114], gene
regulation [115], cell signalling [116], viral dynamics [117], tumour growth [118],
drug therapy [118, 119], immune response [120] and respiratory systems [121].

The use of delays and systems’ histories was driven by the desire for more
realistic and, consequently, more accurate mathematical models. Indeed, introduc-
ing delays is many times essential for reconciling models with observations and
experimental data. Moreover, delays provide a way for a more intuitive modelling
approach, i.e. phenomenological rather than mechanistic. In this case, complex
processes are lumped while underlying mechanisms and inherent intermediate steps
are not explicitly accounted for. Yet, the time that such processes require is included
in the form of a constant delay or delay distribution.

With growing interest in the stochastic dynamics of chemical reaction networks,
delays have also been introduced into stochastic simulation algorithms (SSAs).
Several so-called delay SSAs (DSSAs) have been proposed [61, 122—-125], and
the Delay Chemical Master Equation (DCME) was introduced as a generalisation
to the Chemical Master Equation for reactions with associated constant delays
[61, 126] or delay distributions [126]. However, contrary to CMEs, for which
either closed solutions have been presented or a large number of numerical and
computational strategies have been suggested [104, 127-132], DCMESs have been
largely disregarded. This is because DCMEs do no longer represent Markovian
processes, since transitions between states depend on the current state and the
process history. This leads to terms in a DCME that, for a delay reaction with
stoichiometric vector v and constant delay t, look like

Y @) Px—v.tixit—1) —a(x) P(xtx.1— 1)),

xi€l(x)

where the sum is taken over all previous states x; prior to the current state x. The
joint probabilities are usually unknown and these terms can only be simplified if
(a) the coupling of the system states at times ¢ and t — 7 is weak, in which case
we obtain a reasonably good approximation; or (b) the triggering of the delayed
reaction is fully independent of the occurrences of other reactions and of the state
x; at the time of triggering. The latter implies in particular that none of the reactions
in the system, including the delayed reaction, change the number of reactants of the
delayed reaction, nor its kinetic function [126]. In this case, the propensity function
of the delayed reaction is constant, i.e. a(x;) = ¢ for all x;, and the above sum
simplifies to

CinEI(x) (P (x—v,t|x,t—1) P(x[, t—1)=P(x,t|x;, t —T)P(x;, 1 — ‘L’))
= c(P(x— v, 1) —P(x,t)).

If the delay is given in the form of a distribution instead of a constant delay, then
its cumulative density function appears as just another factor. The DCME remains a
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homogeneous system of linear first-order ODEs, except that it now includes a time-
dependent coefficient, and can then be solved numerically using the available tools
for CMEs.

Moreover, the analytic solution for CMEs of monomolecular reaction systems
was shown to be the convolution of multinomial and product Poisson distributions
[104]. For a simple delayed, unidirectional reaction scheme, a multinomial distribu-
tion was recently derived as its solution using purely probabilistic arguments [126].
This suggests that such a distribution may also be the solution to a more general
class of monomolecular, delayed reaction systems.

As already mentioned above, delays can also be used for model reduction. A
number of reduction techniques have been proposed in the past, including the
classical equilibrium approximation by Michaelis and Menten, the quasi-steady
state approximation (QSSA) by Briggs and Haldane, several variations of the
QSSA [133, 134], methods based on the linear noise approximation [135, 136],
and the finite-state projection method [130]. However, they all approximate the
true solution and/or make certain assumptions, for instance, a timescale separation,
which, if not met, can lead to inaccurate results. The method presented in [137,
138] uses delayed reactions between species of interest that replace a number of
intermediate species and reactions between these. The individual delays are obtained
as first-passage time distributions in analytic form. These can then be placed into
DSSA implementations for generating sample trajectories of the abridged system’s
dynamics. This method is fully accurate for all bidirectional, unimolecular reaction
chains, including degradations, synthesis and bypass reactions, and allows for large
computational savings. This holds true in particular if, over the same simulation
time span, the number of reactions in the unabridged system is considerably larger
than the number of DSSA steps in the abridged system.

Lastly, it has become evident that spatial aspects play a crucial role in biological
and biomedical processes. Even in relatively simple biochemical systems, the
observed behaviour can vary considerably from the often assumed, well-mixed
scenario, where spatial dependencies, geometries and structures are not taken
into account. Thus, it is important to consider these spatial aspects in modelling
approaches, both for our understanding and for accurate predictions of such
processes. While detailed spatial models are more realistic they are also much more
computationally demanding—if not prohibitively expensive. Alternatively, we can
try to incorporate the effects of such spatial features into temporal models, without
any explicit spatial representation. As has been shown recently, delay distributions
may provide an appropriate tool [62]. The proposed methodology is similar to the
model reduction with delays described above: the first step consists of obtaining
proper delay distributions. These can stem from diffusion profiles and can be
directly obtained from particle simulations, in vitro experiments or corresponding
PDE solutions. Such tailored distributions are then used along with their associated
reactions in a modified version of the DSSA. When applied to a variety of simple
scenarios of molecular translocation processes large computational savings were
achieved.
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6 Conclusions

There is still considerable ongoing research to refine both the SSA and approximate
methods. However, there are four areas where significant improvements can be
made easily. Firstly, graphical processing units on graphics cards are now very
powerful for some applications. Parallelised stochastic methods allow us to harness
this power in order to run many thousands of simulations simultaneously. Secondly,
multiscale problems are common in many real applications and they are often large
in nature. The use of adaptive multiscale approaches where processes on many
different scales are integrated into one model could, for example, play an important
role in personalised medicine. Thirdly, we can attempt to reduce the number of
simulations needed in order to gain a certain accuracy using ideas from multi-level
theory developed by Mike Giles—this is a form of variance reduction. Fourthly,
the limitation of non-spatial methods is that they can only be accurately applied
to macroscopically homogeneous systems, but this assumption does not hold in
many (or even most) cases of interest. Therefore it is important to develop methods
that can take appropriate account of such heterogeneous environments. Finally, we
note that one area that we have not covered in this chapter is parameter inference
and model selection. This area involves using statistical methods to find model
parameters from experimental data, and to discriminate between those models best
fit this data [139—141]. This is typically not an easy task, as the data may be noisy,
missing or sparse; Bayesian approaches offer a way of addressing these issues [142].
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Recent Mathematical Models of Axonal
Transport

Chuan Xue and Gregory Jameson

1 Introduction

A neuron is a highly polarized cell that typically consists of a cell body, multiple
dendrites, and a single axon (Fig. 1). Both dendrites and axons are thin structures
that extend away from the cell body. Dendrites usually branch multiple times,
forming a dendritic tree. Axons are often much longer than dendrites and have a
more-or-less regular shape. A neuron receives electrical signals from other cells
through dendrites and propagates the signals to other cells through its axon. The
electrical properties of a neuron are critically dependent on its shape.

An axon in the peripheral nervous system has a cross-sectional diameter of 1—
10 wm but can be as long as 1 m in humans. The ability for an axon to survive and
maintain its shape largely depends on a dynamic system of intracellular polymers,
called the axonal cytoskeleton, and the active movement of various organelles and
macromolecular proteins along the cytoskeleton, known as axonal transport.

The axonal cytoskeleton includes microtubules, microfilaments, and neurofila-
ments. Microtubules are long, hollow, polarized polymers with diameter 25 nm and
persistence length 80 £20 wm [1]. They align axially along the axon, with plus ends
pointing away from the cell body. They do not extend over the whole length of an
axon but rather form an overlapping array from the cell body to the axon terminal
[2, 3]. One of their primary purposes is to serve as tracks for the long-range transport
of membranous organelles and macromolecular proteins [4, 5]. The transport is
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Fig. 1 Schematic drawing of a typical unmyelinated neuron to show its overall shape

powered by the molecular motors kinesin and dynein, which move cargoes towards
the plus and minus ends of microtubules, respectively [6].

Microfilaments (actin) are much shorter polarized filaments with diameter
5-7nm and persistence length about 18 um [7, 8]. They are particularly abundant
beneath the axon membrane, forming evenly spaced ring-like structures that wrap
around the circumference of the axon along axonal shafts [9]. Microfilaments are
also present near microtubules and enriched in growth cones and axon terminals
[10]. They are involved in the short-range, lateral transport of organelles and
proteins, powered by the molecular motor myosin [11].

Neurofilaments are the intermediate filaments of neurons. They are long, flexible,
non-polarized polymers with diameter about 10 nm and persistence length about
200-450nm [12, 13]. They are brush-like polymers with densely packed sidearms
extending away from the polymer backbone. In contrast to microtubules and
microfilaments, they do not serve as tracks for the transport of cargoes. Rather, they
function as space-filling structures to increase the axonal caliber [14] and occupy
most of the axonal volume in large axons [15]. Their sidearms help maximize their
space-filling properties.

Axonal transport has been classified into two categories, fast axonal transport
and slow axonal transport, depending on the average movement rate of the cargoes
[5]. Fast axonal transport is the transport of membranous organelles such as
mitochondria and lysosomes, either unidirectionally or bidirectionally, at rates of
up to hundreds of millimeters per day. Slow axonal transport is the transport of
cytoskeletal polymers and cytosolic proteins, including neurofilaments, with much
slower rates of a few millimeters per day. The fundamental difference between fast
and slow axonal transport is not the instantaneous velocity of the cargoes, but the
frequency and persistency of the movement. For example, neurofilaments undergo
infrequent bidirectional transport along microtubules with short bouts of movements
interrupted by prolonged pauses and spend more than 90% of their time pausing
[16, 17].

Axonal transport is disrupted in many neurodegenerative diseases including
Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis (also known
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as Lou Gehrig’s disease), Huntington’s disease, hereditary spastic paraplegia, and
Charcot-Marie-Tooth disease [18-20]. In these diseases, aberrant accumulations of
certain cellular components and excessive focal swelling of the axon were observed,
which eventually lead to axon degeneration. While some of these diseases are
caused by direct mutations of the molecular motors or adaptor proteins that interact
with motors [7, 21-25], the underlying mechanisms of many others are not clear.
Intriguingly, some of these disorders are associated with cross-sectional segregation
of the axonal microtubules and neurofilaments, which is never observed in normal
axons [26-31].

Some basic questions that arise in studying axonal transport, either from
experimental or mathematical standpoints, are as follows:

* How do organelles and proteins move to their destination in normal situations?
What perturbations of axonal transport can give rise to local cargo pileups and
axonal swellings as observed in diseases?

* How is the mixed distribution of microtubules and neurofilaments established
and maintained in normal axons? What lead to their cross-sectional separation
in toxic neuropathies? How is the cytoskeleton segregation related to subsequent
axonal swelling?

* Large myelinated axons demonstrate a spatially periodic structure with naturally
occurring narrowing points called nodes of Ranvier, with roughly the same
number of microtubules but much fewer neurofilaments and higher organelle
density [32]. How is axonal transport regulated at the nodal regions? How
is the differential distribution of microtubules, neurofilaments, and organelles
established near and away from nodes of Ranvier?

Due to the complicated biology of axonal transport, mathematical modeling is an
essential tool to address the above questions. In this chapter, we summarize recent
mathematical models that have advanced our understanding of these questions. In
Sect. 2, we review earlier models that describe cargo movement in normal axons
as a 1D process. In Sect. 3, we reviewed and extended recent modeling effort that
describes the cross-sectional dynamics of microtubules and associated cargoes,
in particular, the microtubule-neurofilament segregation phenomena observed in
neuropathies. In Sect.4, we describe a few open problems in modeling axonal
transport.

The molecular basis of axonal transport is not fundamentally different from
intracellular transport in other cellular systems. Our knowledge of molecular motors
and intracellular transport in the general setting has been expanding consistently
over the last few decades, especially regarding how a single motor or a group of
motors coordinate with each other to transport a cargo in in vitro experiments. This
has resulted in a large number of mathematical models on these topics, and we refer
interested readers to [33, 34] for reviews.
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2 Models of Axonal Transport in Healthy Axons

Pulse-labeling methods have been used to study axonal transport since the 1950s
[5, 35]. In these experiments, radio-labeled amino acids are injected into the vicinity
of nerve cell bodies, which will then be taken up by the cell bodies, incorporated into
proteins, and transported to axons in association with various cargoes. The labeled
amino acids are usually injected for a few hours or continuously, and their intensities
are measured at different locations of the axon at later times. If the injection occurs
only for a few hours, the radioactivity forms a Gaussian wave that moves towards
the axon terminal and spreads out over time. If the injection occurs continuously, the
radioactivity forms a wave front that propagates into the axon at a constant speed.

Motivated by these experiments, different hypotheses on the molecular mech-
anisms of fast and slow axonal transport have been formulated in the 1980s, and
mathematical models have been used to test these hypotheses [36-40]. A PDE
model for fast axonal transport was constructed in [38], which accounted for the
reversible binding of organelles, kinesins, and microtubules, as well as the move-
ment of organelles along microtubules engaged through motor proteins. The model
qualitatively matches the moving waves observed in the pulse-labeling experiments.
A PDE model for the less-understood slow axonal transport of neurofilaments was
developed in [40], based on a hypothetical unidirectional transport engine with a
constant velocity that slow cargoes either bind directly or piggy-back through other
structures in a reversible manner.

A common assumption of these models is that the movement of cargoes is
independent and homogeneous in 1D. The governing equations are of reaction-
hyperbolic type with the following general form:

pi(x, 1) + v;0ypi(x, 1) = fi(p1.....,pn), t>0, 1=<i=<N. 9]

Here p;(x, t) is the density of the i-th species, which is either a cargo with velocity
v; or other proteins involved in the transport process with velocity v; = 0. The
functions f;(p1,...,pn) enclose chemical reactions among cargoes, motors, and
auxiliary proteins. Simulations suggest that this class of models, with either linear or
nonlinear reaction terms, admit the so-called approximate traveling wave solutions,
meaning the actively moving species have wave-like profiles that propagate along
the x-axis with slowly diminishing magnitudes [41]. This corresponds to the wave-
like propagation of radioactivity observed in pulse-labeling experiments.

Considerable progress has been made in the past 15 years in uncovering
the molecular mechanisms of slow axonal transport due to the advancement
of fluorescence microscopy. It is now understood that slow axonal transport of
neurofilaments also depends on the molecular motors kinesin and dynein, and move
bidirectionally in a rapid and intermittent manner [16, 42]. Mathematical models
have been developed accordingly for the bidirectional movement of neurofilaments
and their transitions among several different velocity states [43—46]. The governing
equations, essentially a linearized version of (1), are
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N
1
Api(x, 1) + vidpi(x, 1) = . Z kyjpi(x,1), t>0, N<2. Q)
ij=1

Here p;(x, t) is the (probability) density of neurofilaments with velocity v;, k;; are
the transition rates between different velocity states, and the small parameter &
illustrates that the state transitions occur on a much shorter time scale than the
relocation of the cargo population. The transition rates kj; in these models have
also been extracted from experimental data [47, 48]. We note that these models
distinguish neurofilaments by the phenomenological velocity states instead of their
association with motors and microtubules.

Using formal perturbation methods, Reed et al. [41] demonstrated the existence
of approximate traveling wave solutions of (1) with only one moving species and
linear reaction terms, which essentially is the same as (2) with one nonzero v;.
Friedman and Craciun [49] proved this result rigorously for the general model (2)
with arbitrary N. Such analyses have also been extended to account for cargo
diffusion in [50-52].

Motivated by PDE models of axonal transport, probabilistic methods have
been developed for linear reaction-hyperbolic models of axonal transport and their
spatially discretized forms [53, 54]. Stochastic models have also been developed for
intracellular transport in dendrites, mainly focusing on the delivery of cargoes to
synapses in the dendritic tree [55-58].

3 Models of Axonal Transport in Neurological Diseases

In healthy axons, microtubules and neurofilaments align along the axon and
are interspersed in axonal cross-sections [2, 59, 60]. However, in many toxic
neuropathies these two populations of polymers separate radially, with microtubules
and organelles located near the long axis of the axon and neurofilaments displaced
to the periphery near the axonal membrane (Fig. 2). This striking cytoskeletal reor-
ganization proceeds to axonal swelling and has been reported in neurodegenerative
disorders including giant axonal neuropathy and Charcot-Marie-Tooth disease, in
neurotoxic neuropathies induced by exposure to a range of neurotoxins, and in a
transgenic mouse expressing a mutant neurofilament protein [26-31, 61-75].

The microtubule-neurofilament segregation phenomenon has been studied
most extensively in axons treated by the toxin 3,3’-iminodiproprionitrile (IDPN)
and 2,5-hexanedione (Fig.2). IDPN is closely related to the food poison 3-
aminopropionitrile that causes the neurological disorder lathyrism [76-79], and
2,5-hexanedione is a metabolite of the industrial solvent hexane. Systematic
administration of IDPN to rats causes microtubules and neurofilaments to segregate
within a few hours, and leads to excessive focal accumulations of neurofilaments and
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Fig. 2 Radial separation of microtubules and neurofilaments in experiments. (a) Schematic
drawing that illustrates the normal distribution of microtubules (large black dots), neurofilaments
(small grey dots), and organelles (cyan disks) in untreated axons. (b) Schematic drawing that
illustrates the segregated components in IDPN-treated axons. (¢) Electron micrograph of a normal
axonal cross-section, with microtubules, neurofilaments, and organelles mixed together. Big dots:
microtubules; small dots: neurofilaments; objects: organelles. (d) Electron micrograph of an IDPN-
treated axon, with microtubules and organelles located in the center and neurofilaments migrated
to the periphery. The black region outside of the axon is the myelin sheath. Scale bars: 1 pum.
Reproduced from [61]

axonal swelling in a few days [61, 80, 81]. If IDPN is washed out, the organization
of microtubules and neurofilaments reverses to normal [61]. These phenomena
have been observed for over 30 years now, but the underlying mechanisms are still
largely unexplored.

Pulse-labeling experiments showed that IDPN selectively impairs the longitudi-
nal transport of neurofilaments but does not affect the transport of organelles [82].
How impairment of neurofilament transport in the longitudinal direction relates
to the radial segregation of neurofilaments from microtubules is unclear. It is
attractive to postulate extra mechanisms to explain the polymer separation, because
it is clear that if neurofilaments are separated from microtubules they cannot be
transported along microtubules. However, recent mathematical modeling suggested
that the polymer separation can be explained as a consequence of the impairment of
neurofilament transport instead and extra mechanisms are not necessary [83].
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3.1 Radial Cytoskeleton Separation Explained
by a Stochastic Model

In [83], a stochastic model was developed to track the distribution of microtubules,
neurofilaments, and organelles in a cross-section of an axon. The model describes
microtubules, neurofilaments, and organelles as nondeformable particles with center
positions xf in a 2D circular domain. Here k = M, N, or O is the index for particle
type: M for microtubule, N for neurofilament, O for organelle; and i with 0 < i < nk
is the index for the k-type particle where r* is the total number of k-type particles.

These particles interact with each other through three key mechanisms. The
first is the slow axonal transport of neurofilaments. This is included in the model
by allowing random binding and unbinding of a neurofilament and a microtubule
within a binding radius, random arrival of a neurofilament near a microtubule, and
random departure of a neurofilament that is bound to a microtubule. The binding
radius reflects the length of the molecular motors, kinesin or dynein, that bridge
a neurofilament and a microtubule. The directionality of neurofilament transport,
either anterograde or retrograde, is not distinguished. The force between an engaged
neurofilament—microtubule pair is assumed to be a linear elastic spring force, with
magnitude S = MV d, where d is the surface distance and k™" is the spring constant
of the molecular motor complex connecting a microtubule and a neurofilament.

The second mechanism is the fast axonal transport of organelles. This is included
in a similar way as neurofilament transport. The difference is that when an organelle
enters the domain, it moves persistently without stopping and as a result its cross-
sectional radius first increases from O to maximum and then decreases to 0. This
relaxation process mimics the change of radius of the organelle inside an axonal
cross-section and prevents overlapping particles in computation.

The third mechanism is volume exclusion. This is incorporated through pairwise
volume exclusive forces that take into account the biophysical properties of the
particles. The magnitude of the repulsion forces is assumed to be

R = er(Lr/d_ ])+7 3)

where ¢, is a force prefactor, L, is the maximum repulsion distance, d is the surface
distance between the particle pair, and the subscript + means taking the positive
part of the function.

By neglecting inertia, the particle positions are governed by a system of SDEs

dxf = F¥/ukdt + 0, WX, 1 <i<n*, k=M,N, 0. 4)

The force F¥ is the total force acting on the i-th particle of type k by all other
particles specified in the three mechanisms. Because particle binding and unbinding
are treated as first-order stochastic processes, Ff is a stochastic force. Denote the
pairwise repulsion acting on the i-th particle of type k by the j-th particle of type /
by Rf;.l , and similarly the spring force by Sg.l . Denote the binding state of two particles
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by sf;l, which jumps between 0 and 1 if one of the particles is a microtubule and the

other is a cargo. With these notations we have
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The constant ¥ in (4) denotes the drag coefficient of the k-type particle, Wf‘ are
independent 2D Wiener processes modeling the random motion of these particles,
and oy, gives the amplitude of the Brownian motion. Because the number of particles
in the domain is stochastic due to cargo arrival and departure, the number of
equations in the model is stochastic as well. All model parameters are physically
meaningful and have been estimated using extensive experimental data.

The model provided the first mechanistic explanation for the cytoskeleton
segregation phenomena shown in Fig.2. Simulations of the model demonstrate
that organelles can randomly bind with multiple microtubules simultaneously as
they move along the axon. This provides a means of indirect interaction among
microtubules and gradually cause microtubules to move closer to each other. We call
this the “clustering effect” of organelle transport. On the contrary, neurofilaments
mainly bind with a single microtubule, frequently unbind, and disperse microtubules
apart from each other. We call this the “dispersing effect” of neurofilament transport.
In the absence of neurofilament transport, organelles pull microtubules together to
the center of the domain within hours, in a similar way as observed in the IDPN
experiments.

If neurofilament transport is restored, microtubules remix with the neurofila-
ments (Fig. 3).

The clustering effect of moving organelles was further investigated by varying
the maximum number of microtubules (M) that an organelle can bind to simul-
taneously. Initially, microtubules and neurofilaments are uniformly distributed in
cross-section, and neurofilament transport is blocked but organelle transport is
normal. Figure 4 plots the mean pairwise distance of microtubules averaged over
five realizations, which provides a measure of how separated microtubules and
neurofilaments are over time. The error bars indicate the standard deviation over
all realizations for each situation. As M increases, the clustering effect becomes
stronger and the average microtubule distance decreases faster. If an organelle is
only allowed to bind to one or two microtubules concurrently, then organelles cannot
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Fig. 3 A realization of the model in [83] shows reversible segregation in IDPN-treated axons.
Neurofilament transport is blocked starting at # = 1 h and restored at t = 13 h. All panels are from
a single realization. Large black dots are microtubules; small grey dots are free neurofilaments;
small purple dots are neurofilaments engaged with microtubules; large cyan circles are organelles.
Reproduced from [83] with permission. (a) Normal axon. (b) 2 h after IDPN. (c¢) 5 h after IDPN.
(d) 11h after IDPN. (e) 1 h after washout. (f) 7 h after washout
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Fig. 4 The clustering effect of moving organelles. The mean of pairwise distance of microtubules
is plotted over time. The maximum number of microtubules that an organelle can bind with
simultaneously is set to be 1, 2, 4, 8, 16 for the blue, green, red, cyan, purple, and yellow curves,
respectively. Each curve represents the average over five realizations with error bars indicating
standard deviations. Reproduced from [83] with permission
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effectively cluster microtubules even after 18h (blue, green curves). This further
confirms that the microtubule—neurofilament segregation does not occur naturally
but is caused by the active zippering of passing organelles.

Moreover, the model makes several testable predictions. One of the predictions
is that the extent and rate of microtubule—neurofilament segregation depends on the
flux rate and size of the moving organelles: the more and the larger the organelles
are, the faster the segregation occurs. This prediction could be tested by perturbing
organelle transport inside an IDPN-treated axon. The model also suggests that the
segregation occurs through the merging of small microtubule clusters, which has
been previously observed in experiments [84].

Fast axonal transport and slow axonal transport have usually been studied as
independent processes in previous experiments and mathematical models. However,
the model in [83] highlights that fast and slow axonal transport are competing
processes: different cargoes compete for microtubule tracks, and different balances
of fast and slow axonal transport can lead to different cargo distributions.

3.2 Further Investigation of Microtubule Zippering
by Moving Organelles

In [83], microtubule-microtubule interaction through moving organelles was incor-
porated in a highly simplified manner: microtubules and organelles were represented
by disks that interact through elastic forces in the axonal cross-section. Microtubules
are long polymers in axons—when an organelle moves along multiple microtubules
simultaneously, it pulls them together, similar to a zipper. In this section, we develop
a more detailed model to simulate this zippering mechanism, treating microtubules
as rigid rods and organelles as spherical nondeformable particles. We restrict the
movement of microtubules and organelles in 2D.

We consider the situation with one organelle moving along two microtubules
(Fig.5). We assume that the organelle has N kinesin motors bound on its surface
at fixed, equidistant locations. Each motor can bind to and unbind from each
microtubule with constant rates ko, and ko, respectively. Binding can only occur
if the motor head is within a capturing distance that is the natural length of the
spring /o, the binding location is randomly chosen so that the length of the motor is
smaller than /y. The motors are not allowed to intersect the organelle. Once bound,
the motor head moves towards the plus end of the microtubule in § = 8 nm steps
with rates kpnoy = v/8, where v = 1 pum/s is the average speed of a motor. If
the motor spring force is greater than Fy,; = 8 pN, then the motor is not allowed
to move forward [85, 86]. We model microtubule-motor-organelle cross-bridges as
extensional springs along the motor with magnitude x (/—1Iy) 4+, where k is the spring
constant, [ is the length of the motor spring in the stretched configuration, and the
subscript “+” means taking the positive part. Microtubules and organelles interact
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Spring forces Repulsions

Fig. 5 Model schematics. Left: illustration of the model variables and the spring forces. Right: the
repulsive forces. The black arrows indicate the direction of movement of the motor heads

through volume exclusion, modeled by repulsive forces acting at the nearest points
of the particle pairs with magnitude given by (3).

Denote the center position of the organelle and the microtubules by x° and xM,
i = 1,2, respectively, and their angles to the x-axis by #¢ and 6M. The governing
equations are

( S F-Y P -F° —FfO)/pL,Odt-l- o0 dWO,
0= (=D XF = Y12 X B 17 < B0~ 17 < F) [0 dr 4 0 WY,
(ZF’ + Fi9 4 F?)-(e’“®e’“/u£"—l—el®e’i/u?”)dt

+ (oMe) @ € +ofel @e' ) AW, ij=12. i#].

dx

oM = (Zlf;o x F! 4+ 10 x FiO 4 17 x F'f) JuMdr+oMawM, =12, i)
5)

Here the forces are defined in Fig. 5; 19 and 19/ are the vectors pointing from x? to
the positions of the forces acting on the organelle; I, 119, and 17 are the vectors from

xl. to the positions of the forces acting on the microtubules; the sums are taken over
all the molecular motors; e’” and €', are unit vectors in the parallel and perpendicular

directions of Microtubule 7, respectively; WX and W* with k = O, M are independent

Wiener processes; /4, are drag coefficients and o] = /2kpT/ul where kg is the
Boltzmann constant and 7 is the temperature assumed to be room temperature.
The spring forces are stochastic due to the random binding and unbinding between
motors and microtubules.

The model parameters are summarized in Table 1. The natural length of the motor
spring o is estimated to be the length of a kinesin motor [87]. The parameter ¢, is
calculated using the following way. We assume that when an organelle is transported
along a single microtubule, the repulsion acting on the organelle balances the spring
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Table 1 Model parameter values

C. Xue and G. Jameson

Parameter | Description Values Notes and references
N Natural length of the motor spring 80nm [87]
v Motor speed 1 wm/s [5]
L, Characteristic repulsion distance 0.1212 pm [83]
& Repulsion prefactor 0.268 pN Estimated
K Spring constant 300 pN/pm [88, 89]
,u,o Translational drag coefficient for 11.3pNs/um Calculated
organelles
u? Rotational drag coefficient for 0.339pN's um Calculated
organelles
uM Translational drag coefficient for 168 pN's/pum [90, 91]
microtubules parallel with its axis
uM Translational drag coefficient for 296 pN's/pum [90, 91]
microtubules perpendicular to its
axis
uM Rotational drag coefficient for 6.17 X 10*pNsum | Calculated
microtubules perpendicular to its
axis
8 Kinesin step size 8 nm [92, 93]
kon Motor-microtubule binding rate 8/s Estimated
kot Motor-microtubule unbinding rate 2/s [86, 94]
Kmov Motor stepping rate 125/s =v/d
N Number of motors on the organelle |8 Estimated
force and its viscous drag, which leads to 5’“"/,:"71) = "(I;IO) — _u =, where

2—d
dy = 17nm is the observed average surface distance between a microtuobule and
a cargo engaged on it [95]. Solving &, and [ gives the parameter ¢,. The drag
coefficient u? and p© are calculated using the formulas u? = 6nrg and uf =
8 r/rg [96], where we took = 4pN's/pum? [97]. The translational drag coefficients
uM and uM are calculated using the formulas derived in [90] and reviewed in [91,
p. 347]. The rotational drag coefficient u is calculated using the following method.
Let a uniform rod of length L be placed horizontally, with the center of mass at the
origin. Let the rod rotate around the origin with angular velocity w. The torque

of the drag on the rod is T = | Lﬁz uM/L - wx?dx = puMwl?/12. Thus we have

uM = t/w = pML?/12. The rate ko, was estimated so that the average number of
motors on each microtubule that bear force equals 1.

3.2.1 Persistent Motor-Microtubule Binding and Motor Movement
We first considered the deterministic version of the model with a single motor

persistently bound to each microtubule that moves at a constant speed v and no
Brownian motion of all objects (Fig.6). We assumed that the organelle radius is
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Fig. 6 Microtubule zippering predicted by the deterministic version of the stochastic model (5).
The relative positions of the microtubules and the organelle at + = 0s (a), 2.5s (b), 30s (c),
49.875s (d). The line inside the organelle is included to illustrate the rotation of the organelle

ro = 150nm and the microtubule length is 50 pm. We set the initial conditions
to mimic the situation that the organelle had been moving along the bottom
microtubule and started to interact with the top microtubule (Fig. 6a). At t = 0,
the organelle has center position x° = (—25 jum, 0) and the two microtubules are
placed in parallel to the x-axis with x}/ = xf = 0, Y/ = ry + Iy = 230nm,
and y’y = —r9p —dyp = —167nm. The organelle is attached to both microtubules
near their left ends, with the bottom microtubule bearing the full load and the
corresponding motor oblique. The model was simulated using Forward Euler’s
Method with At = 5 ms. As the organelle moves to the right, both motors bear
forces, and the microtubules move closer and become tilted due to the spring forces
acting on them (Fig. 6b, c¢). The simulation was stopped once the right end passes
the right end of a microtubule (Fig. 6d).

Figure 7 demonstrates the vertical motion of the center of each microtubule as
well as their left and right ends. Both microtubule centers move significantly closer
to the x-axis. The left ends move closer to each other before + = 30 s and space
apart slightly afterwards as the organelle gets closer to their right ends. By the end
of the simulation, the vertical distance between the left ends is smaller than the
diameter of the organelle. The right ends move apart initially due to the rotation of
the microtubules caused by the motors’ pulling but move closer to each other as the
organelle proceeds to the right.

3.2.2 Random Motor-Microtubule Binding and Motor Movement
We next simulated the full model (5) with the random binding, unbinding, and

stepping of the molecular motors on microtubules, as well as Brownian motion
of the microtubules and the organelle (Fig. 8). The initial setup of the simulation
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Fig. 8 Microtubule zippering predicted by the stochastic model (5) with random motor binding.
(a) Microtubule center positions over time in ten realizations. (b) Mean and standard deviation of
the microtubule center positions calculated using 500 realizations. The dashed lines are predictions
from the deterministic version of the model. (¢) Mean and standard deviation of the vertical
separation of the microtubule centers. (d) Histogram of the final vertical separation of 500
realizations. The error bars indicate the statistical error in fractional occurrence

was the same as in Fig.6, and the parameters used are included in Table 1.
The model was simulated using the same algorithm as in [83] in MATLAB with
random seed and At = 1 ms for 500 realizations. Figure 6 shows the evolution
of the microtubule centers in the first ten realizations. Notable decrease in vertical
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separation between the microtubules was observed in 484 realizations, and the
average decrease rate agreed with the deterministic limit of the model quantitatively
(Fig. 8b—d). These results confirm the zippering effect of moving organelles in the
presence of stochastic noise. The model can be further refined by incorporating
microtubules as flexible rods instead of stiff rods.

4 Open Problems

Axonal transport has been modeled using both continuous PDE approaches and
stochastic individual-based approaches in 1D (see Sect.2). These models assume
that the axonal cargoes move independently as a homogeneous random walk.
However, cargoes live in a crowded environment, and all cargoes and cytoskeletal
polymers interact with each other stochastically via active motor-based transport and
passive volume exclusion. Disruptions of particle interactions can lead to compli-
cated phenomena such as axonal swelling and cytoskeleton segregation as observed
in neurodegenerative diseases. To understand these phenomena, new mathematical
models and methods must be developed to include particle interactions.

Recently progress has been made in integrating particle interactions to help
understand cytoskeleton segregation in IDPN-treated axons (see Sect.3.1). The
stochastic particle-based model developed in Xue et al. [83] describes microtubules,
neurofilaments, and organelles as a system of stochastically interacting particles in
an axonal cross-section. It builds upon particle binding, unbinding, addition, and
removal that occur on a time scale of seconds or fractions of a second and addresses
polymer segregation that occurs on a time scale of hours. Simulations of the model
suggest that microtubule zippering by organelles is the main mechanism for the
cytoskeleton segregation. The zipping mechanism was further investigated using a
more detailed model in Sect. 3.2.

The model in Xue et al. [83] brought up several open problems for mathematical
modeling and analysis. Due to the vast span of time scales, the model in [83] has
to be simulated on a time scale of milliseconds to ensure accuracy and thus is
computationally expensive when the particle number becomes large. To overcome
this difficulty, coarse-grained models need to be derived by averaging out the fast
events. This requires the development of new asymptotic analysis for stochastically
interacting particle systems. To achieve this goal, one could start with a simplified
stochastic model which replaces the indirect interaction of microtubules through
the motor-organelle complexes by direct, long-range stochastic forces between
microtubule pairs. A different route is to develop fast stochastic simulation methods
for stochastically interacting particle systems that have several intrinsic time scales.

It has been observed that if treated by IDPN, the axonal cytoskeleton separates
along the whole length of the axon, and if IDPN is washed out before visible axonal
swelling, microtubule-neurofilament remixing occurs as a wave that propagates
from the cell body to the axon terminal at a speed of 1-2mm per day [61].
Microtubules are long polymers that can span tens of microns in axons. In the
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absence of neurofilament transport, how do organelles zip microtubules together
as they move along multiple microtubules? With regard to the remixing stage,
is the proximo-distal remixing a result of the transport of newly synthesized
neurofilaments from the cell body? What determines the wave speed? How does
axonal swelling occur? One approach to address these questions is to construct
a 3D stochastic model that extends [83] and Sect. 3.2. The model could describe
microtubules as semi-flexible polymers, each of which modeled as a bead-spring
system, and neurofilaments and organelles as cargoes with a fixed volume that bind,
unbind, and move along microtubules randomly. This approach is computationally
expensive but allows us to tightly integrate the biophysical properties of the
cytoskeleton. Simplified stochastic models that are computationally more affordable
can also be constructed to gain insights into the problem.

PDE models in 3D can be constructed to describe the distribution and movement
of microtubules, neurofilaments, and organelles inside the cytosol. These PDEs can
be derived either using heuristic arguments or, if possible, from the aforementioned
stochastic models. This is a challenging task because the underlying problem
involves fluid—structure interaction and active bidirectional cargo transport, in
addition to the particle volume exclusion. The PDE models can be used to address
a variety of phenomena related to axonal transport both in healthy axons and in
diseased axons.

S Summary

New experimental methods have advanced our understanding of the molecular
mechanisms of intracellular transport in vitro, and new imaging techniques have
allowed us to observe single cargo movement in living cells. This has significantly
advanced our understanding regarding how various cargoes are transported to their
destinations inside an axon. The integration of experimental data is required to
address questions at the system level, e.g., how intracellular traffic is regulated inside
the crowded axon, how axonal transport affects the development and maintenance
of the shape of an axon, and how phenomena observed at different space and time
scales are related. To achieve this goal, quantitative models and multiscale methods
for axonal transport and traffic problems must be developed.

In this chapter, we have summarized recent progress on mathematical modeling
of axonal transport. In Sect.2, we reviewed mathematical models and analyses
that describe the distribution of a single type of cargo, either organelles or
macromolecular proteins, along the length of a normal axon. These models were
motivated by 1D experimental data on the population density of cargoes collected
using pulse-labeling method. In Sect.3, we reviewed a recent stochastic model
that advanced our understanding of the underlying mechanisms of axonal swelling
and cytoskeleton reorganization observed in neurological disorders. We further
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investigated the causal mechanism of the segregation phenomena, microtubule
zippering by moving organelles, using a more detail model. In Sect. 4, we discussed
several open problems in this exciting area, which require advances in stochastic
and PDE methods.
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Stochastic Models for Evolving Cellular
Populations of Mitochondria: Disease,
Development, and Ageing

Hanne Hoitzing, Iain G. Johnston, and Nick S. Jones

1 Introduction

About 2 billion years ago, a bacterium was engulfed by another cell as an
endosymbiont [1]. The relationship between bacterium and cell turned out to be
a beneficial one, perhaps as the bacterium provided a new source of energy for
the cell, which in turn provided protection from the environment. Over millions of
years of evolution, the bacterium lost its independence and became an organelle
of the cell: the mitochondrion. Currently most cells in our body cannot survive
without mitochondria which, besides being the main energy producers in the cell,
are involved in various other processes including intracellular calcium signalling,
iron—sulphur cluster biogenesis, and cell death [2-5]. Mitochondria can be highly
dynamic organelles, continuously undergoing fusion and fission events which leads
to a diverse range of mitochondrial morphologies, from fragmented states to
continuous networks [6, 7]. Correctly balancing mitochondrial fusion and fission is
important for cellular functionality [8, 9], and dysfunctions in mitochondrial fusion—
fission dynamics have been observed in numerous diseases [7, 10—14]. Models of
mitochondrial fusion—fission and implications on cellular health are discussed in
Sect. 3.2.

Due to their rich evolutionary history [15], mitochondria retain their own genetic
material: mitochondrial DNA (mtDNA). MtDNA is tiny compared to nuclear DNA
and in humans comprises only 16,569 base pairs, encoding only 37 genes. The
number of mtDNA molecules in a cell depends on the type of cell, and can vary over
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time. Replication of mtDNA can occur independent of the cell cycle [16] (though
it is linked to certain stages of the cell cycle, see, e.g., [17]), ensuring continuous
turnover of the mtDNA population in most dividing as well as non-dividing cells.
Errors can occur during replication of mtDNA molecules. Mitochondria do contain
machinery to repair mtDNA [18, 19], but this machinery is possibly less efficient
than nuclear DNA repair. When mutations occur, they often coexist with wildtype
mtDNA molecules, a situation which is called heteroplasmy. Denoting the number
of wildtype and mutant mtDNA molecules in a cell by w and m, respectively, the
level of heteroplasmy is defined as

h=_"

w+m M)
and can vary between cells in the same tissue, between different tissues, and between
individuals.

Mutations in mtDNA can have detrimental consequences, and mitochondrial
diseases (including mutations of both mtDNA and nuclear DNA) affect ~1 in 4300
of the adult human population [20]. Because of the large number of mtDNAs in a
cell, the presence of a few mutants does not immediately cause major problems.
The heteroplasmy value has to exceed a critical threshold, typically 60-90%, before
biochemical defects are observed [21-24]. Interestingly, the same pathogenic muta-
tions that cause mtDNA diseases are also found in healthy individuals but at much
lower levels [25, 26]. Can these low frequency mutants suddenly expand? Are there
ways in which we can prevent them from doing so? Understanding the dynamics of
mtDNA molecules inside cells and the way in which mutants can accumulate over
time, or even take over the whole mtDNA population (homoplasmy), is a crucial step
in understanding the progression of mtDNA diseases [66, 115, 120] and diseases
which might be linked to mitochondria (e.g. cancer [11], Parkinson’s [10], diabetes
[7], and Alzheimer’s [12]).

Because the severity of mitochondrial diseases is partly related to the proportion
of cells that have heteroplasmy values above the critical threshold, it is important to
have knowledge of how the heteroplasmy distribution changes over time. Stochastic
modelling allows us to investigate these important distributions and analyse the
cell-to-cell variability in heteroplasmy, as opposed to deterministic models which
typically only describe mean behaviour.

Mutations (pathological and non-pathological) accumulate with age in any
healthy individual. Mutations associated with ageing are typically seen in post-
mitotic tissues (e.g. myocardium and brain) and often a cell contains very high
fractions of a single mutation, which is said to have clonally expanded [27].
Different cells usually contain distinct mutations though some types of mutations
occur more often (like the ‘common deletion’, e.g. [28]). It is not yet clear how
clonal expansion arises, and there exist several hypotheses on this topic.

Many of the hypotheses on mutant clonal expansion involve a selection
advantage for the mutant species such as: a shorter replication time for deletion
mutants because of their smaller genomes [29-31]; the survival-of-the-slowest
(SOS) hypothesis which assumes that certain mutations reduce the release of
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damaging superoxide molecules, with the result that these mutant mitochondria
are less often degraded than wildtype mitochondria [32, 33]; the ‘crippled
mitochondrion’ hypothesis which states that mitochondrial biogenesis is partly
controlled by the mitochondrion itself, and that mutant mtDNA molecules create a
microenvironment that stimulates their own replication [34, 35]. Even though all of
these hypotheses have some attractive features, none of them are fully supported by
experimental data (a critical review is given in [42]). A recently proposed selection
mechanism involves a faster replication rate for mutants caused by differences in
transcription rates [36] and is discussed in more detail in Sect. 4.

One of the hypotheses that does not involve a direct selection advantage for
mutants is the vicious cycle hypothesis. Unlike the SOS hypothesis, it states that
mutants create more damaging radicals and thereby create more mutants which
then create more radicals, forming a vicious cycle [37-39]. The vicious cycle
hypothesis predicts a whole range of different mutations to occur, which is not
seen experimentally and evidence points towards replication as the major source
of errors [40]. Another hypothesis is that stochastic drift of mtDNA molecules over
time can account for the observed clonal expansion. In theory, mutants can take over
entire mtDNA populations purely by chance because of the stochasticity of mtDNA
replication and degradation, and cell divisions. This idea is also not fully supported
by data, as versions of it cannot explain clonal expansion in short-lived animals
[41]. Currently a debate exists in the literature as to whether selective differences
exist between types of mtDNA in mixed populations [41-44].

Studying the dynamics of mtDNA molecules and mutant accumulation (with or
without additional selection advantages for mutants), and the effects of cell divisions
and possible nuclear feedback mechanisms is an important step in understanding the
ageing process and the progression of mtDNA diseases. There have been numerous
models describing mtDNA dynamics in individual non-dividing cells, in dividing
cells, on a tissue level, or across generations (reviewed below). Both the physical
(fusion—fission) and the genetic (mtDNA dynamics) properties of mitochondria
are linked and stochastic, meaning that physical and genetic stochastic models are
valuable. We will discuss the different type of models that are considered and some
of their main results.

2 Experimental Observations

In healthy cells, mtDNA levels are controlled and remain fairly constant over time
as we age [45]. The number of mtDNA molecules per cell ranges from about 100
to 10° and depends heavily on the type of cell (e.g. mtDNA levels per cell have
been measured to be 3650 + 620 in skeletal muscle, 6970 £ 920 in heart [45], and
mature human oocytes have around 10° mtDNA copies). In heteroplasmic cells, i.e.
cells with both wildtype and mutant mtDNA, total mtDNA copy number can be
5- to 17-fold higher than in cells with only wildtype mtDNA [35, 46—48], and this
proliferation is one of the hallmarks of certain heteroplasmic mtDNA mutations.
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As we age, heteroplasmy levels can start to vary dramatically between tissues
[49, 50], being particularly high in the putamen, cerebral cortex and substantia
nigra [51, 52]. Mammalian aged tissues show a mosaic pattern of healthy cells and
severely dysfunctional cells, meaning that a patch of healthy cells can occur directly
adjacent to cells with high mutant loads (reviewed in [53]). A small number of very
dysfunctional cells can sometimes have large effects on tissue performance, and
this non-linearity provides another reason why studying distributions rather than
mean behaviours is important. By the eighth decade of life, <5% of postmitotic
cells develop COX deficiency [54-56]. By the eighth decade of life, ~(0.1 —5)% of
postmitotic cells develop mitochondrial deficiencies due to high mutant levels [54—
56]. Perhaps surprisingly, rodents show similar levels of deficiency at only 3 years
[57, 58].

Experimental measurements of parameters that are often used in stochastic
models of mtDNA dynamics are summarized in Table 1. Note that interpreting
experimental data can be challenging because sources of uncertainty are introduced
through experimental measurement [59]. A Bayesian model was constructed to
partially address this problem [60], inferring posterior parameter distributions for
the substantia nigra region of the human brain (Table 1).

Table 1 Measured values (or values often used in models) of parameters relevant for mathemati-
cal models of mitochondria

Quantity of interest Measured value(s)

Critical threshold that mtDNA mutations | — >60% for single large mtDNA deletions [61]
have to pass in order for the cell to show | —>90% for certain point mutations in tRNA
biochemical defects genes [62]

—a mean of 96.2% with a 95% confidence
interval of (86.8%, 99.9%) for mtDNA deletions
in substantia nigra neurons [60]

Probability of a mutation event during — 1073 — 107°, used in model [43]

mtDNA replication — likely to be between 10~ and 10> based on
data from substantia nigra neurons [60]

Half-life of mtDNA molecules On the order of 1-3 weeks [63-65], but highly
tissue dependent [66]

The percentage of dysfunctional cells in — A type of focal respiratory chain deficiency is

a tissue with high mutant loads at the found in >15% of all colonic crypts of humans

end of an organism’s lifespan older than 80 years [67]

— About 10% is often used in models [36, 68]
Time required for mtDNA replication —1-2h [69, 70]
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3 Stochastic Modelling of Mitochondria

Our coverage of stochastic models of mitochondria starts by introducing a well-
known and often-used model of mtDNA dynamics, the ‘relaxed replication model’.
This model is discussed in some detail because it gives an intuitive possible expla-
nation for the observed threshold effect and it is referred to by many subsequent
models. Afterwards, a brief discussion of other in silico models of mtDNA dynamics
and mitochondrial fusion—fission dynamics is given. Finally, an analytical model
of mtDNA dynamics is discussed, which generalizes the relaxed replication model
by allowing for arbitrary nuclear control of the replication and degradation rates
of mtDNA. The specific role of mtDNA dynamics in ageing and development is
discussed in the next section. We note briefly the types of stochastic mitochondrial
phenomena that we do not consider: variability in mitochondrial network structure
independent of genetics, e.g. [8, 71, 72], organ-to-organ variability, e.g. [66], how
variability in mitochondrial content and function might link to gene expression
variability, e.g. [73], and how individual membrane potentials might fluctuate,
e.g. [74].

3.1 Relaxed Replication and Its Implications

In 1999, a stochastic model was developed to study how populations of mtDNA
molecules vary over time [75]. This model of mtDNA dynamics is known as
‘relaxed replication’ because it assumes mtDNA turnover occurs continuously over
time, independent of cell division. It has been subsequently used in a variety of
other models, e.g. [41, 43, 76] and has obtained experimental support, e.g. [77].
Two situations were investigated, both of which concerned simulations of cells with
two different types of mtDNA molecules. In the first case both types were neutral
and in the second case one of the types was pathological. The aim was to see how
the presence of mutant molecules affects the overall dynamics, and how the fraction
of mutants varies over time. The population of mtDNA molecules is assumed to be
well-mixed and cells are assumed to be non-dividing.

In the case of two neutral types of mtDNA molecules, the cell tries to meet a
certain copy number, and the main dynamics are described by the following ODE:

dN_C N
dr H

= U(Nopt —N) (@)

where N is the total number of mtDNA molecules, C is the copy rate at which
new mtDNA molecules are generated, and u is their degradation rate. The constant
C is chosen such that the total population is controlled towards a desired value
Nop. When embedded in a stochastic framework, the above equation describes an
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Immigration-Death model with constant immigration (C) and death (u) rates. The
corresponding master equation for two neutral alleles A and B (with N = A + B) is
given by:

BPAB(Z‘)
ot

= tNopt (PA—LB(I) + PA.B—l(f)) +uA+B+ 1)(PA+1.B(f) + PA,B+1(1‘)>
—2u(Nopt + A + B)Pap(t) 3

Master equation descriptions of mtDNA populations can sometimes be solved
explicitly [102, 107], but this is often not the case and approximation methods must
be made, such as the system size expansion (discussed in Sect.3.3). The original
implementation of this model combines deterministic immigration events with
stochastic death events, which is arguably less natural than a full stochastic model
(see supplement of [78]). The initial conditions were taken such that A(0) + B(0) =
Nopt» 1.€. the system started in steady state. Simulations showed that, on average, the
proportions of alleles A and B remain constant. The probability that a certain allele
takes over the entire population was found to be equal to the initial allele frequency,
consonant with a random drift model. The relaxed replication model is often referred
to as ‘the random drift model’ (though the dynamics are non-trivial), and this term
has now come to refer to models with an absence of selective differences between
mutant and wildtype species.

To include the presence of mutant mtDNA, the dynamics in Eq. (2) were slightly
changed to dN /dt = C(N)— N, i.e. the replication rate now depends on the state of
the system. It was argued that a severely pathological mutant should not contribute
to the replication feedback, meaning that C(N) = C(w), i.e. the control is only
dependent on the wildtype species. The replication rate was then multiplied by the
fraction of the species (proportional selection) which leads to:

dw Cw) w

—_— = w — uUw

dt w+m #

dm m

“_c _

dt (W)w+m pm
w

COm = il (4 + (1 )2 @

opt

The parameter o« > 1 describes the response of the system. The idea is that the cell
still tries to maintain the same number of wildtype mtDNAs as it would when no
mutants are present, i.e. when w = Nyp, C(W) = Ny as it was in Eq. (2).

Using Eq. (4), the deterministic steady states of the system [denoted by (wy, m;)]
can easily be found, and they form a line defined by

1
Wy + —my = Nopl (@)
o
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Fig. 1 Steady state lines of the relaxed replication model. (a) The number of wildtype mtDNA
(relative to the desired value N, ) as a function of «. For high o, w remains close to Ny, for a wide
range of heteroplasmies until it suddenly drops at high &, creating an effective threshold effect. The
functions that are plotted are described by wy/Noy = (1 — h)/(1 — (1 — 1/c)h). This behaviour
has been observed in skeletal muscle fibres [77]. (b) The line of steady states, showing that a large
value for « results in a large number of mutants if 4 is high

Stochastic events will cause trajectories to fluctuate around the deterministic steady
state line until one of the absorbing boundaries (A = 0 or & = 1) is reached. The
survivor species will continue to fluctuate around its own steady state value.

Like before, the proportion of cells that become fixed on a certain allele is
observed to be the same as the initial allele frequency. However, when w becomes
fixed its steady state value is Nyp, whereas a fully mutant cell will have copy
numbers fluctuating around aNoy. If the simulation starts in steady state with the

initial frequencies both 0.5 (meaning wy = my = Al]fﬁi[ ), then eventually 50% of
cells will be (on average) in state (Nop, 0) and 50% in state (0, «Nop ). This means
that for long times (w) = Nyp/2 and (m) = aNop/2, i.e. (w) and (m) decrease
and increase over time, respectively. Therefore, the heteroplasmy of the tissue as a

whole (% where i denotes the ith cell) increases. Note, however, that it does
Zi mi +Zi Wi

not follow that the mean heteroplasmy per cell, % >, h;, increases with time.

A larger value of @ means that (m) approaches a larger value, which seems to
be disadvantageous. The benefit is, however, that w will deviate from its desired
value Ny more slowly as & increases. More precisely, w,/Nopy = (1 — h)/(1 —
(1 = 1/a)h), and a high o can therefore be interpreted as an attempt of the cell
to keep the wildtype population near its optimal value. The consequence of a
high « is an effective heteroplasmy threshold (Fig. 1) and this simple model could
therefore be an explanation of the experimentally observed threshold effect [21-
24]. A generalization of the model described in Eq. (4), in which the mutants were
allowed to contribute to the feedback as well [i.e. C = C(w, m)], was described
deterministically [76]. The more the mutants contribute to the feedback, the less
pronounced the threshold effect seen in Fig. 1.
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3.2 In Silico Models of mtDNA Dynamics and Mitochondrial
Dynamics

In many models, mtDNA molecules are assumed to be well-mixed and each
mtDNA has a given probability per unit time of being replicated and degraded.
The occurrence of mitophagy events, events involving the degradation of a whole
mitochondrion, means that all the mtDNA molecules within are simultaneously
degraded. In this case, it becomes important to know which mtDNA resides in which
mitochondrion. Moreover, mitochondria can only fuse with others when they are
sufficiently close, meaning that spatial positions start to play a role. The possible
roles of fission and fusion and the networks of mitochondria that are produced are
unclear [8]. Various models describe fusion and fission dynamics [79-82], some of
which include spatial effects [80, 82]. A brief overview of their results is given here.

The model in [82] incorporates random mtDNA turnover, fusion and fission of
mitochondria, and spatial effects. MtDNA turnover was assumed to consist of (1)
replication events of individual mtDNAs (with possible state feedback), and (2)
degradation of whole mitochondria. The cell was divided into 16 compartments,
and fusion only occurred between mitochondrial pairs in the same or in adjacent
compartments. Upon fission, mtDNAs were binomially partitioned into daughter
mitochondria which were themselves placed in their own compartment or an
adjacent one. Some of these dynamics are described by the following Poisson
processes:

ag(w,m)

w,m) —— w+1,m)
agr(w,m)

w,m) —— (w,m+1)

Nmito

(w, m) SEALIN @

Afus
(wi,my) + (w2, my) —> (w1, my|wa, my)
agis(w,m) ’o ’o
(w1, my|wo, my|ws, m3) ———> (W, my) + (wy, mh|ws, ms)

. / /
with W] +w, = wi +wy

and m| +m) = my + my (6)

where (w,m) represents a single mitochondrion with w wildtype and m mutant
mtDNA molecules, Ny, is the total number of mitochondria in the cell, ag(w, m)
represents the replication rate with feedback ensuring upregulation of mtDNA
copy number as heteroplasmy increases, and (wy,m|w,, m;) represents a fused
mitochondrion. The third equation represents a mitophagy event in which an entire
mitochondrion is being degraded, the last two equations give examples of fusion
and fission events (any number of mitochondria can be fused together). The fission
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propensity ags(w, m) was assumed to increase with the size of the mitochondrion,
i.e. its total mtDNA copy number. Stochastic Gillespie simulations [83] were used
to model the system. Among the conclusions were the following: (1) faster fusion—
fission dynamics results in a better mixing of mtDNAs, (2) slower mtDNA mixing
increases the heteroplasmy variance between cells and speeds up the process of
clonal expansion, (3) including replication feedback [similar to Eq. (4)] can lower
the fraction of cells with clonally expanded mutants, but this effect is lessened with
low fusion—fission rates.

The model described above was extended in [84] to account for the experimen-
tally observed selectivity of mitochondrial fusion and mitophagy. Briefly, the higher
the fraction of mutants inside a mitochondrion, the less likely it is to fuse and the
more likely it is to be degraded. As in [82], higher rates of fusion and fission led to
an increased heteroplasmy variance, but this was only beneficial when mitophagy
and fusion were sufficiently selective, allowing for mitochondria with high % to be
efficiently removed from the population. A decline of the selectivity of fusion and
mitophagy with age can be a reason why mutants expand, and in this case a lower
fusion—fission rate is actually beneficial [84].

In some other models the focus is not on mtDNA dynamics, but on the fusion and
fission events themselves and how they affect the health of the overall mitochondrial
population. It was assumed that mitochondria contain a discrete set of units
(referred to as health units, hereditary units, or quality units) that can be exchanged
during fusion—fission events and undergo damage over time [79-81]. Less healthy
mitochondria (mitochondria with a low membrane potential) are less likely to fuse
[85], and usually they are assumed to have a higher degradation rate. Because of
this, higher rates of fusion and fission tend to lead to more healthy mitochondria
[79-81]. When damaged mitochondria are able to spread their dysfunctions in an
infection-like manner, lower fusion—fission rates were found to be beneficial [81].

Various other stochastic models of mitochondria were constructed, which are
briefly summarized here: (1) the effect of a shorter mutant replication time was
modelled using both DDEs (delayed differential equations) and stochastic simula-
tions [68]. The authors concluded that faster mutant replication is highly unlikely
to be the cause of clonal expansion; (2) the role of transcription rates in providing
a replication advantage for mutants was investigated [36]. This model is discussed
in more detail in Sect.4; (3) Random drift was found to be sufficient to explain
mutant loads in human tumors [44]; (4) a model simulating mtDNA segregation in
hematopoietic stem cells found evidence for selection against pathogenic mutations
[86]; and (5) a model was developed to investigate the dynamics of the network
arising from fusion—fission events, the investigation of its equilibrium configurations
in both deterministic and stochastic settings leading to the finding of the existence
of percolation phase transition in the mitochondrial reticulum [72].
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3.3 A General Approach to Investigating the Nuclear Control
of mtDNA Dynamics

Recently, a general bottom-up theory has been produced to describe mtDNA
dynamics in single cells [78]. The full model includes mtDNA turnover with (1)
arbitrary copy number feedback control on replication and degradation rates, (2) cell
divisions, (3) de novo mutations and replication errors, and (4) a possible selective
advantage for mutant mtDNA molecules. Denoting a state with w wildtype and m
mutant molecules by (w, m), the dynamics are described by the following set of
Poisson processes:

e1+(1+e)wA(w,m)=f (w,m)

(v.m) w+1,m)
(. €3+ (1+eq)mA(w.m)=f> (w.m) (w,m+1)
. €5+ (1+e6)wv (wam)=f3 (w,m) w—1,m)
(. €7+ (1+eg)mv (w,m)=f1 (w,m) (w,m—1)
(w, m) LI w—1lm+1)

(o, m) 2R, (w,m+1)

(w, m) 2=, (w—1,m+?2) %

where A(w, m) and v(w, m) are the replication and degradation rates, respectively, ¢;
indicate any possible selective advantage in replication and/or degradation for w or
m; this advantage can be multiplicative (even-indexed ¢;) or additive (odd-indexed
€;), and w; indicate possible mutation processes; spontaneous mutations (ip),
replication errors with the original molecule remaining intact (u;), and replication
errors in which both the original and replicated molecule become mutated (w3). The
rates of the reactions are given by f; with j = 1,...,R where R = 7 is the total
number of reactions.
The stoichiometry matrix of this system is given by

10-1 0 —10-1
= 8
Si (010—1112) ®

with the index j representing the different reactions given in (7),and i = 1,...,N
denoting the different species (here, i = 1 corresponds to w and i = 2 to m, but the
method can be readily extended to deal with more than 2 mtDNA species). Denoting
P, (¢) as the probability of observing the system in state (w, m) at time ¢, the system
is described by the following master equation:
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9p R N
a;;.m _ Z ( E=Si — 1>ﬁ(w, m)Py,

j=1 \i=1
— (E—SII]E_SZI _ l)fl (W, m)Pw.m 4ot (E—S17E—S27 _ 1)f7(W, m)Pw,m
=f1(W— lvm)Pw—l,m _fl(wv m)Pw,m + .-

+ W+ 1Lm—=2)Pyy1m— —fr(w,m)Py ©)
where 575 is a raising and lowering operator.! For non-linear fi(w, m) this master
equation is generally analytically intractable, but can be approximated by a van
Kampen system size expansion [87]. The system size expansion treats w and m as
the sum of a deterministic component (¢) and a fluctuating stochastic component
(&), scaled by powers of the system size (£2):

w= ¢, + £,Q'?
m=¢uQ + £,2'2 (10)

All quantities in Eq. (9) are then written in terms of €2, ¢;, and &;, and equal powers
of Q are collected. The largest terms, proportional to $2!/2, form the macroscopic
rate equations, i.e. they describe the deterministic behaviour of the mean quantities
in the system. Next, terms of order °, known as the linear noise approximaton
(LNA), give a linear Fokker—Plank equation

N N
GD |, DEN) | 1gh, o -

it 9E; 2 Vg, 0¢;

ij=1 ij=1

with Ay, By given by Ay = Y0 Sugh and By = Y, SuSufk. Evolution
equations for the moments of &,,(¢), §,(t) [and, correspondingly, the moments of
w(t) and m(¢)] can be extracted from this Fokker—Planck equation, forming a set of
coupled ODE:s.

For non-linear functions A(w, m) and v(w, m) these coupled moment equations
cannot be solved analytically, though they can be solved numerically. To make
analytical progress, the replication and degradation rates can be linearized around
their steady state values (wy,, my,) [78], i.e.

A(Wv m) ~ A'(WSS, mm) + ,Bw(w - Wm) + ,Bm(m - mss)
v(iw,m) = v(Wg, M) + 8,(W — W) + 8,0 (m — myy) (12)

'E™5% removes S; from every occurrence of species i to its right, for example,
E=SUfi(w,m)Py, = filw — L,m)Py—1,, and [[_, E7S7 = E-STE™f(w,m)P,,, =
f7(W + l,m - 2)Pw+l<m—2-
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where 8; = 9;A(w, m) and §; = d;v(w, m) withj = w, m.

Using this linearized system, full solutions for the means and variances of w and
m over time were provided by the authors for a simplified version of Eq. (7). The
existence of steady state values depends on the eigenvalues of the system’s Jacobian
matrix. One of the eigenvalues of the simplified system is zero, and imposing the
conditions A(wg,, my) = V(W M), By, P < 0 and 6,6, > 0 ensures that the
other eigenvalue is negative. This gives rise to a line of steady state values for w and
m, and for timescales on which the LNA is valid the wildtype and mutant steady
states are roughly constant.

Starting in steady state with noiseless initial conditions, the solutions can be
written in the simple form:

(w)
(m)
W) = FY(1) + 0,1 + ¢

Wes

Mgy

<Wm) = F(ziecay(t) —+ ta —+ ¢2
(m?) = S (1) + 63t + ¢

(R 20wy, my)t

2\/ __
Y= = e e

13)

where F“ are transient functions that die out exponentially with time, (h?)’ is the
normalized heteroplasmy variance (the quantity typically reported in experimental

studies), (h) = () is the expected heteroplasmy value (which was approximated

by %), and the constants 6; and ¢; are functions only of (1) the difference
between replication and degradation rates, (2) steady state copy numbers wy, and
mg, and (3) the turnover rate in steady state A(wg, mg) (= v(wg, my)). The
structure of the above solutions is such that at nonzero w and m, at most one of
the 6; can be zero, and 0, and 63 are non-negative [78].

Several conclusions can be drawn from this linearized system when the assump-
tions underlying this derivation hold (see below): (1) the variance of at least one
species (w or m) increases linearly with time, (2) heteroplasmy variance increases
linearly with time with a rate depending only on steady state copy numbers and the
timescale of random turnover. This last observation means that the rate of increase
of (h?) does not depend on the specifics of the control mechanism applied (i.e. the
specific forms of A(w, m) and v(w, m)), meaning that different control mechanisms
lead to similar trends in heteroplasmy variance.

For arbitrary functions A (w, m), v(w, m) and nonzero ¢;, i; in Eq. (7), the coupled
ODEs provided by the system size expansion can be solved numerically, which
allows one to study behaviours away from steady state. Various specific control
mechanisms are investigated in [78], including the relaxed replication control given
in Eq. (4). Numerical solutions generally agree well with stochastic simulations,
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meaning that, when the LNA is valid (see below), variability arising from selection
and mutation under any control mechanism can be characterized without requiring
stochastic simulations.

It is further shown that with nonzero €g and p, (i.e. replication errors can occur
and mutants are selectively degraded), mutants are only successfully cleared over
time when (1 + €g) > u, i.e. when selection is sufficiently strong to overcome
the increase in m through mutations. Depending on the specific control mechanism
used, the wildtype variance can significantly increase as the mutants are cleared.

All the above conclusions are based on the validity of the LNA. Behaviours of
w and m start to deviate from the LNA at long times, or if extinction of one of
the species (or both) becomes non-negligible. The values of wy, and my,, which are
roughly constant for short times, will start to change at longer times. The steady
state of either species can increase or decrease over time and, depending on the
details of the feedback functions, will either reach zero, settle down to a constant
value, or increase unboundedly. When fixation occurs, the means and variances
obtained through the LNA are underestimations of the actual means and variances,
while heteroplasmy variance is overestimated by the LNA. Also, for general A (w, m)
and v(w, m), the transition rates between different states may be highly non-linear,
making the LNA less accurate. Higher order correction terms in the system size
expansion can be included to improve solutions, and a discussion on the accuracy
of the LNA and its higher order terms is given in [88].

4 mtDNA and Ageing

As mentioned in the introduction, mtDNA mutations accumulate with age in any
healthy individual. Recent reviews on the relationship between mtDNA mutations
and ageing can be found in [89-91]. The mitochondrial theory of ageing proposes
that accumulation of mitochondrial damage is the cause of ageing in humans and
animals, but whether this causal relationship actually exists is still debated [92].
Here, various models are discussed which describe the accumulation of mutations
through the process of random replication, degradation, and/or segregation of
mtDNA molecules in cells.

Because of the random fluctuations in both wildtype and mutant mtDNA
molecules in a cell, a mutant species can become homoplasmic purely by chance,
without experiencing any selective advantage. This idea was modelled in non-
dividing cells [43]. Cells were simulated over a human lifetime using the model
described in Eq.(2), with the addition that every time an mtDNA replicates a
mutation can occur with probability Pp,,. Every mutation event is assumed to result
in a new mutation, meaning that cells will acquire a variety of different mutations
over time. It was shown that P, = 5 x 107 is sufficient to obtain 5-10% of
cells with 2 > 0.6 after 100 years. Moreover, the majority (>80%) of mutated
mtDNAs in the cell were the same, agreeing with the experimental observations of
a single clonally expanded mutant (as opposed to many different mutations). The
model that includes proliferation of pathological mutants [Eq. (4)] was also used,
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but changing proliferation (i.e. changing the parameter «) had no significant effect
on the accumulation of high heteroplasmy cells. The results they obtained suggest
that random drift alone can indeed lead to clonal expansion on the scale of a human
lifetime. It has further been hypothesized that random drift can also account for the
accumulation of mutations seen in cancer and mitochondrial diseases [44, 93].

However, it has been argued that this model of mutant accumulation purely
by chance, without any selective advantage for mutants, cannot explain clonal
expansion in short-lived animals [41] such as rats and mice which have an average
lifespan of only 3 years. For mutants to have expanded in 5-15% of all cells in such
a short time, a much higher Py, is required (7.6 x 1073 vs 5 x 107> on a human
lifetime). The problem with requiring such a high mutation rate is that the number
of different mutations that are found in the cells at the end of the simulations is
very high. On average, more than 30 types of mutants were present in each cell with
h > 0.6 after 3 years. Moreover, the most frequent mutant in these cells represented
less than 20% of all mtDNAs, meaning that experimentally several different mutants
should be observed in these high heteroplasmy cells, which is not the case. This
suggests that other mechanisms need to be evoked to explain clonal expansion in
these short-lived animals.

Because some kind of replicative advantage seems to be required, several models
were constructed to incorporate these advantages. In [68] a shorter replication time
for mutants was used, but as mentioned in the previous section this particular
mechanism is unlikely to explain clonal expansion. In [36], another mechanism was
proposed. In order for mtDNA to be able to replicate, it needs to be transcribed
as well, which results in the production of proteins. A negative feedback loop
is assumed to exist, i.e. transcription rates of mtDNA drop if protein levels are
high enough. Deletion mutants miss large parts of their DNA, so some proteins
are not produced at all, meaning that the negative feedback on transcription rate
never occurs, resulting in higher replication levels. An ODE model was constructed
describing the dynamics of w, m and the level of ATP. The presence of mtDNA
molecules is assumed to consume some ATP due to the requirements of producing
and maintaining mitochondrial machinery (likewise for other cellular processes),
and w is assumed to produce ATP. If ATP levels are high, replication of w and m
is low. The higher replication rate of m (assumed to be 50% higher than that of w)
makes them increase exponentially, eventually leading to system collapse through
ATP exhaustion. The ODE model manages to explain the accumulation of mutants
for short-lived animals, and levels of w and m after collapse agree with experimental
observations. Next a stochastic model based on the ODE reactions was developed.
The values for Py, were adjusted such that at the end of the simulations (the final
simulation time ranging from 3 to 80 years to model different organisms) 10+ 0.5%
of cells have 7 > 0.6. The model does not require very high mutation rates in
short-lived animals, and also predicts that the average number of different mtDNAs
present at the end of the simulations is around 1 [36]. To obtain the desired 104+0.5%
of cells with 2 > 0.6 in humans, very low mutation probabilities (P, ~ 1077) are
required. This seems at odds with the finding that P, is highly likely to lie between
10~* and 107 in substantia nigra neurons [60], though mtDNA mutation rates may
depend on cell type.
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5 mtDNA and Development

Unfertilized human eggs contain on the order of 10° copies of mtDNA, some of
which may be mutated. After fertilization, the egg starts dividing, and with each
division the mtDNAs are stochastically partitioned between the daughter cells. By
chance, some daughter cells will inherit more mutants than others, introducing
a variance in heteroplasmy across the population of cells (see, e.g., [94]). This
allows for the elimination of cells with high mutant loads (as they can become
dysfunctional and initiate cell death), while purely wildtype cells and cells with low
h survive. An increased heteroplasmy variance therefore provides a mechanism of
filtering out mutant mtDNA molecules to reduce mutant load (and thus increase the
health) of the offspring. Even though the starting mtDNA copy number of the egg
is very high, the copy number per cell falls drastically in early development because
of rapid cell divisions with little replication of mtDNA. This fall in copy number per
cell further increases the stochasticity and thus the heteroplasmy variance between
cells, and is termed the mitochondrial bottleneck.

The exact mechanism by which heteroplasmy variance increases, however, is
highly debated. It might be that random drift in copy numbers between cell
divisions, stochastic partitioning at cell divisions, or both, is sufficient to explain
the observed heteroplasmy variance [59, 78, 95-99]. However, other studies show
a less pronounced decrease in mtDNA copy number per cell [100]. Additional
bottlenecking mechanisms were suggested, such as the clustering of mtDNAs during
cell division (increasing the stochasticity upon division) [100], or restricting the
ability to replicate to only a subpopulation of mtDNAs [101]. Recently, a general
model was developed which was able to reproduce all of these mechanisms and,
importantly, provides a statistical framework to compare them given experimental
observations [102]. Approximate Bayesian Computation (ABC) [103, 104] was
used to infer the statistical support for each of the three mentioned mechanisms.
Overall, the most support is found for mechanism involving a combination of
random mtDNA turnover and binomial partitioning at cell division.

Several models have been developed to describe the behaviour of mtDNA
heteroplasmy through development. Some of these are summarized here, in order of
increasing complexity. The first model, originating from population dynamics and
termed the Wright formula [105], describes the heteroplasmy mean and variance
of a population over any number of cell divisions with binomial partitioning rules.
A more detailed model was developed using the Kimura distribution [106] (also
originally used in population genetics). The Kimura distribution allows a description
of the entire heteroplasmy probability distribution after any number of cell divisions.
Recently, a model was developed that includes mtDNA dynamics in between
cell divisions [102, 107], providing analytical expressions of the heteroplasmy
probability generating function after any number of cell divisions with birth-
immigration-death dynamics in between divisions.
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5.1 The Wright Formula of Partitioning Variance

Population genetics studies the frequency and interaction of alleles and genes in
populations. Genetic drift in allele frequencies arises because the alleles of the
offspring are randomly sampled from those of the parents. If random genetic drift
is the only force acting on an allele then, after n generations, the variance in allele
frequency across a population is given by the Wright formula:

] n
Vo=p(—-p(1-(1- 14
p1=p) ( ( Neff) ) (1

where p and (1 — p) are the initial allele frequencies, and N is an effective
population size [105]. The mean allele frequency is assumed to be equal to the
initial allele frequency.

To apply this theory to an mtDNA population, the Wright formula can be inter-
preted as describing the variance in mutant allele frequency, i.e. heteroplasmy, over
n cell divisions. At cell division, each daughter cell obtains Nei mtDNA molecules
which are randomly sampled with replacement from the mother cell. This approach
has been used in various studies of mtDNA heteroplasmy [96, 97, 99, 108, 109].
Some of the conclusions drawn from these studies must be taken with care, as it
was shown that including a principled description of the uncertainty arising from
sampling small populations might change the interpretation of the data [110].

Applied to mtDNA dynamics, the formula has several limitations. Firstly, the
parameter Neg is hard to interpret and does not correspond to any biological entity
in the cell [111]. Secondly, knowing only the mean and variance of the heteroplasmy
distribution may not be very informative. Finally, the Wright formula ignores
stochastic effects resulting from random turnover of mtDNA between cell divisions.
As is shown in the next section, including mtDNA turnover leads to a correction of
the formula.

5.1.1 The Inclusion of mtDNA Turnover Between Cell Divisions

The model described earlier in Sect. 3.3 was used to adjust the Wright formula to
include turnover of mtDNA molecules in between cell divisions [78]. The expected
heteroplasmy variance given in Eq.(13) describes the approximate steady state
variance in £ arising from random mtDNA turnover through birth—death dynamics.
This formula does not include cell divisions, and the denominator of the equation,
Wy + My, thus gives the expected population size without the inclusion of cell
divisions. If n is the population size immediately after a cell divides, then in order
to maintain a constant average population size n has to increase to 2n before the
next cell division. The expected population size is then roughly given by %n. Here,
no reference to a particular feedback mechanism was made, but if more knowledge
about the feedback mechanism is present, then the expected population size can
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be tailored more appropriately. In the general case, the approximate expected
heteroplasmy variance through random mtDNA turnover and cellular turnover is
then given by:

2At

Neff

M (15)
" 3nt

(h2>/ —

where 7 is the number of mtDNA molecules immediately after cell division, and
is the timescale of mtDNA degradation (assuming that A = v = 1/, i.e. constant
birth and death rates that are balanced to keep a constant average population size).
This leads to the ‘turnover adjusted Wright formula’ proposed in Ref. [78]:

8
(h? =1- (1 - i) + i (16)

2n 3nt

where g is the number of generations (cell divisions) that have occurred, ¢ is the
amount of time that has expired since an initial state with (k) = 0, and 7 is
the timescale of mtDNA degradation. This adjusted Wright formula now includes
random turnover of mtDNA and is written in terms of observable quantities, namely
n (the number of mtDNA immediately after cell division), g (the number of cell
divisions), and 7 (the timescale of mtDNA turnover). While these models are
useful in some circumstances, a more detailed approach has benefits as well and
was developed by Kimura [106] as described in the next section. Equation (16)
was tested against stochastic simulations and shown to be an improvement on the
original formula [78].

5.2 The Kimura Distribution

To predict the entire heteroplasmy distribution after any number of cell divisions,
the theory developed by Motoo Kimura [106] was applied to mtDNA segregation
[112]. The Kimura distribution describes gene frequency distributions under random
genetic drift. It is assumed that there is no selection and that there are no de novo
mutations. A lack of de novo mutations means that for long times, the heteroplasmy
in cells will settle down on either fully wildtype or fully mutant, as these are the
only two absorbing states. According to the Kimura model, the total probability
distribution for a particular allele (e.g. mutant mtDNAs) consists of three probability
distributions: (1) the probability f(0, ) for having lost the allele in generation ¢,
(2) the probability f(1,¢) for having fixed on that allele, and (3) the probability
distribution ¢ (x, t) giving the probability of observing the allele at frequency x in
generation t:
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where F(a,b,c,d) is the hypergeometric function and py is the initial allele
frequency [106]. The variance of the Kimura distribution is the same as the variance
described by the Wright formula in Eq. (14). Interpreting the Kimura model for
mtDNA segregation means that py is the initial heteroplasmy, and f(0, ?), f(1,¢),
and ¢(x, ) are the probabilities of observing h = 0, h = 1, and & = x (with
x # 0, 1) after ¢ cell divisions, respectively. These equations were used to describe
heteroplasmy data from human, mouse, and Drosophila [112]. Overall, the Kimura
distribution provides a good description of experimental data [112]. In [112] only
the heteroplasmy mean and variance were matched to data, but more detailed fits
are possible using an explicit likelihood function. Some experimentally reported
increases in heteroplasmy variance become hard to defend if standard errors of the
variances are taken into account, assuming that the heteroplasmy variance data is
sampled from a Kimura distribution [110].

An alternative way to obtain the full heteroplasmy distribution is by using
stochastic simulations. The advantage of simulations is that de novo mutations and
selection mechanisms can be easily included, though they do not provide an explicit
analytical distribution as is given in Eqgs. (17)—(19).

5.3 Analytical Descriptions of Random Turnover Combined
with Cell Divisions

To describe the dynamics of mtDNA molecules over time through cycles of cell
divisions, both the turnover within a cell cycle and the partitioning at cell divisions
have to be taken into account. An analytical description of these dynamics are
described in a recent model which follows the probability distribution of an agent
(e.g. an mtDNA molecule) over time. The dynamics of the agents is assumed to
arise from a combination of: (1) random turnover of agents between cell divisions
according to a birth—death-immigration (BID) model, and (2) stochastic partitioning
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at cell division [107]. Several possible partitioning schemes are considered and
analytic results are demonstrated for two important examples: binomial partitioning
and subtractive partitioning. In subtractive partitioning a small number of agents
are transferred to a small bud and the larger cell that is left over is tracked in the
next generation, a model which is appropriate in various organisms such as budding
yeast. A similar approach is taken in [102], with birth—death dynamics in between
cell divisions. Here, a summary of the approach taken in [102] is given and some
conclusions of the models in both [102] and [107] are discussed.

5.3.1 Within Cell Cycle Dynamics

Within a cell cycle, the time evolution of the probability distribution P,,(¢) of
observing m agents at time ¢, according to a birth death model is given by the
following master equation:

0P, (1)
ot

= v (14 D)Poii (1) + A — DPo_i () — (v + MmPu(t)  (20)

where A and v are the birth and death rates, respectively. The initial condition
is assumed to be P,(0) = &um,- A solution can be obtained by solving for
the probability generating function G(z,7) = Y oo Z"Pu(t) [113]. Knowing the
generating function G(z,t) is equivalent to knowing the probability distribution
because all the moments from the distribution can be derived from its derivatives.
The generating function of the birth—death model satisfies

e ¢]

dG(z,1) n 0P ()
o mg;z ot
0G(z, t
_ (v(l —2) +)L(zz—z)) @1 @1)
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with G(z,0) = z, which can be solved [102, 107] to give
I I PR
G(z, tlmg) = ((Z— DAeC—" — Az + v
_ (Az+B\"
“\Cz+D
=gz, ™ (22)

where A =vli—A,B=v—vl,C=Al—X,and D = v — Al with [ = ¢®V),
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When birth and death are balanced (A = v) Eq. (22) can be rewritten to give

G (2. tlmo) = (w) 23)

viz—1—vt

which is obtained by writing A = v + € in Eq. (22) and taking the limit € — 0.

5.3.2 Agent Partitioning at Cell Division

The overall generating function of the process containing both cell divisions and
birth—death dynamics between these divisions can be written [102, 107] in a similar
form to Eq. (22), i.e.

Adivz + Baiy
w(z t,n) = — 24
(& t.m) (Cdin + Ddiv) )
with

Agy = 241 +T —2) = "I (A + v(l —2))
Baw = 'L (. + vl —2)) — 2" + v(i—2))
Cay = —APT(I—1) + 2A(+ 1 —2)
Day = AT (= 1) = 2"(A + v(l —2)) (25)

where n is the number of cell divisions, A and v are the birth and death rates of the
mtDNA dynamics in between each of these divisions, I/ = ¢*™") and [ = ¢*~V)*
with t the length of the cell cycle (which is here assumed to be equal for all cell
cycles) [102, 107]. Equation (22) is a special case of Eq.(24) with n — 0 and
T — 0.

5.3.3 Combined Overall Solution

To construct a generating function of the overall process with n, phases, the
generating functions of each phase have to be linked together in an appropriate way.
Denoting the parameters describing the ith phase with index 7 (e.g. A; corresponds
to A in Eq. (25) with A, v, n replaced by A;, v;, n;), the overall generating function is
given by [102, 107]:

Az+B
Cz+D
Goverall = g:)n\?erall (26)

8overall =
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with
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From this overall generating function, means and variances (and, if necessary,
the full probability distribution) of m at any time ¢ throughout development can
be calculated. By performing a similar analysis for the wildtype population w,
heteroplasmy statistics can also be obtained. This allows for the evaluation of
important quantities such as the mean and variance of A(¢) and the probability of
crossing a certain heteroplasmy threshold (i.e. P(h > h*) for some A*) throughout
development, and the mutant fixation probability P(m = 0, 1).

One of the conclusions drawn from the model is that an increase in mitochondrial
degradation increases heteroplasmy variance, and therefore increases the strength of
selection to remove high heteroplasmy cells. This means that clinically increasing
mitochondrial degradation may represent a way to reduce heteroplasmy levels in
offspring. The more general model considered in [107] provides full, closed-form
generating functions for several types of mtDNA dynamics, making it possible to
extract all details of copy number distributions at any given time. The approach
provides a way to explore the statistics of systems of mtDNA dynamics, with or
without cell divisions, with arbitrarily changing population size. This formalism
could also be applied to, for example, mtDNA dynamics in tumour cells.

6 Discussion

Mitochondrial dysfunctions and mutations are linked to many different diseases
and it is important to understand how these dysfunctions arise, how they develop
over time, and how they can be treated. Mathematical models are valuable tools to
explore these questions from both the perspective of fundamental biology and of
clinical strategies. In this review, the focus is on models of mtDNA dynamics and
mitochondrial fusion—fission dynamics, the accumulation of mutant mtDNAs over
time, and the role of mtDNA in ageing and development. Of particular importance
is the time evolution of heteroplasmy values, since the proportion of cells exceeding
a critical heteroplasmy threshold is related to disease severity. Numerous models,
deterministic and stochastic, have been constructed describing mtDNA dynamics in
different cells and over various timescales. Deterministic models typically describe
mean behaviours of heteroplasmy alone; stochastic approaches are vital to describe
the biomedically central structure of mtDNA distributions [78, 102, 107].

Existing models cover different mitochondrial aspects and use various
approaches. At high copy numbers, mtDNA dynamics are well described by
deterministic models (e.g. [33, 38, 39, 76]). The modelling of low copy numbers,
fixation probabilities, and population variances requires the construction of
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stochastic models. Both simulation-based models (e.g. [43, 44, 68, 80, 82, 84]),
analytical models (e.g. [78, 102, 105-107]) and numerical approximations to
analytical models (e.g. [78]) have been made, some of which include spatial effects
(e.g. [80, 82, 84]) or mitochondrial fusion—fission dynamics (e.g. [79-82, 84]). The
nuclear control of mtDNA copy number has been modelled in several ways, e.g. (1)
a simple total copy number control [75]; (2) negative feedback control of replication
rates dependent on the wildtype [75] or both wildtype and mutant species [76] using
proportional selection; and (3) a more general negative feedback control for both
random replication and degradation rates.

These mathematical approaches have led to many new discoveries and progress.
Predictions made by the relaxed replication model have found experimental support
[77, 114]. A recent model [115] increased the power of analysis of large-scale
experiments to identify a potential issue with cutting-edge medical therapies:
namely, that proliferative differences between different mtDNA types, as may
arise in therapeutic contexts, can lead to amplification of potentially harmful
mutant mtDNA. The evidence from this joint mathematical and experimental
study influenced the UK HFEA’s policy decisions on the implementation of these
therapies [116]; the ‘haplotype matching’ approach that it advocated is now gaining
support [117]. A model of the mitochondrial bottleneck [102] suggested approaches
by which drugs can be used to modulate mtDNA during development and ameliorate
disease inheritance, which is now being tested experimentally [118]. Additionally,
this model provided clinically motivated strategies for optimally sampling embryos
in preimplantation genetic diagnoses to address the inheritance of mtDNA diseases
[102]. The many hypotheses existing on how exactly mutant mtDNA molecules
expand over time can be tested with simulations and results indicate that (1) random
mutant accumulation without any selection advantage has so far failed to explain
clonal expansion in short-lived animals, (2) it is unlikely that a shorter mutant
replication time causes clonal expansion [68], and (3) a higher mutant replication
rate produces outcomes that are roughly consistent with various experimental data
[36]. The ability of stochastic mathematical models to test, falsify, or confirm
these hypotheses is extremely valuable because knowing how and why mutants
accumulate allows us to clinically intervene in this process and potentially create
a treatment for mitochondrial diseases.

Despite large amounts of progress, there are still open problems. Is there a
causal relationship between mitochondrial damage and ageing? Mice accumulating
mutations on a faster timescale (‘mutator mice’) show accelerated ageing-like
phenotypes and shortened lifespan. However, this is only true for homozygous mice;
heterozygous mice do not show ageing phenotypes despite having high mutation
burdens [119]. How does the cell regulate its mitochondrial copy number? As
noted in [78] it is experimentally hard to distinguish between different nuclear
feedback mechanisms as distinct mechanisms can lead to very similar dynamics.
The mechanisms by which mutant mtDNA molecules expand is still not fully
understood, which is reflected by the large amount of hypotheses put forward. The
recently developed model in [36] requires a very low mutation probability in human
cells, which is not true for all cell types [60]. Moreover, it may not be able to
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explain clonal expansion of certain point mutations. It is likely that preferential
replication of mutants is the result of a combination of multiple mechanisms which

are
des
for

different for distinct mutations and cell types, making a general theoretical
cription very challenging. We anticipate the development of stochastic models
mtDNA populations to continue to produce scientific insights as the amount of

experimental data characterizing this rich and medically important system increases

int

he future.
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Modeling and Stochastic Analysis of the Single
Photon Response

Jiirgen Reingruber and David Holcman

1 Introduction

Signal transduction at a single molecular level is based on stochastic biochemical
events occurring in constrained cellular microdomains. Molecular fluctuations in
the transduction pathway generate a cellular background noise, which sets the limit
of cell detection. This limit is generic to most of transduction mechanisms that
consist of converting a molecular signal into a cellular response. For photoreceptors,
light (photons) is transformed into a cellular change of the voltage potential
called a hyperpolarization (decrease of the voltage) due to the exit of ions. For
olfactory cells, a single odorant molecule can activate a flow of ions through voltage
gated channels. During synaptic transmission, neurotransmitters generate a local
depolarization. Finally, a transcription factor in the cell nucleus activates or regulates
genes, leading to protein expression. In all of these examples a molecular signal
leads to a cellular response, but how such a signal overcome the noise and what is
the nature of the molecular and cellular noise. We explore these questions based on
modeling and analysis of the single photon response in photoreceptors.

A key step in the cellular response to a small molecular event is the amplification
of the signal, which occurs by a protein (G-protein) cascades. Of all the G-protein
cascades in nature, the best-understood are those initiated by the absorption of a
photon in Drosophila microvilli [1, 2] and in the outer segment (OS) of vertebrate
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Fig. 1 Geometrical organization of rod and cone photoreceptors. (a) Electron microcopy (EM)
image of rods and cones located in the retina. (b) Schematic modeling of a rod and a cone showing
their polarized structure: light sensitive outer segment, inner segment with nucleus and synaptic
terminal. (c) Cross section of a rod outer segment: internal disks divide the outer segment into
almost independent cylindrical compartments

rod photoreceptors (Fig. 1) [1, 3, 4]. The rods of amphibians and mammals have
been shown to have the remarkable ability to detect single photons of light
above background noise [5, 6]. But amphibian and mammalian rods differ in
concentrations and biochemical properties of proteins involved in the light response,
and by as much as an order of magnitude in the diameter of their disk membranes,
where the reactions of the cascade take place. It remains largely unknown how the
biochemistry and the geometry adapt to guarantee a reliable macroscopic response
initiated by a single molecular event.

We summarize in this review recent progress in mathematical modeling of single
photon response in rod photoreceptors. The modeling, analysis, and simulations
combine several methods. First, because it is not yet possible to model millions
of interacting molecules, the three-dimensional geometry of the rod geometry is
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reduced to a one dimension. This is possible because diffusion in a thin cylinder is
well approximated by a one dimension process. In that context, reaction—diffusion
equations can be written for the subcellular molecular interactions occurring inside
the rod structure. Second, there is a geometrical separation between chemical reac-
tions occurring on the membrane and others inside the three-dimensional cytoplasm.
This geometrical separation allows studying separately two- and three-dimensional
chemical reactions. The two-dimensional chemical reactions do not suffer from
geometrical confinement and are can be studied using Markov chains. However,
connecting the output of two-dimensional reactions with the three-dimensional ones
uses the one-dimensional diffusion reduction approximation. The overall reduced
modeling allows to perform stochastic simulations that explain the variability in the
biochemistry and allows to study the major sources of noise during a single photon
response.

We recall briefly that noise in the photoreceptor is generated by the fluctuations
in the activity of a critical enzyme called phosphodiesterase (PDE). This enzyme
fulfills two essential functions. First, the phosphodiesterase that becomes activated
through the transduction cascade after a photon absorption (light-activated PDE)
increases the hydrolysis of ¢cGMP, a diffusible second messenger controlling
the opening of ionic membrane channels, leading to channel closure and cell
hyperpolarization; second, spontaneously activated PDE is necessary to maintain
in darkness a steady-state cGMP concentration and to set the cGMP turnover rate,
an important determinant of the time scale of the photon response [7, 8] (Fig.2).
Fluctuations in the number of spontaneously activated PDEs generate a background
noise that is commonly referred to as the dark noise [7, 9, 10]. The main source of
variability in the amplitude of the single photon response is due to variability in the
number of light-activated PDEs [6, 11-13].

Photon response curve and noise generated within the transduction cascade
are evaluated using spatially resolved reaction—diffusion equations and stochastic
simulations of PDE activations at the level of single molecules. We present here
a summary of multiscale simulations that account for the molecular details (PDE
activations and ¢cGMP hydrolysis) and the intrinsic molecular noise called dark
noise. The result of the simulations can be directly compared to experimental
recordings and the analytical expressions for the dark noise power spectrum are
used to extract the values of key parameters from the analysis of measured current
recorded not only in wild type (WT) but also in genetically modified cells such as
Caps—/~ knockout mice.

This review is organized as follows: in the first part, we present the homoge-
nization procedure to reduce the three-dimensional rod outer-segment geometry to
a one dimensional with an effective diffusion coefficient. In the second part, Markov
chains are used for modeling the stochastic activation of PDE molecules following a
photon absorption. We also present the modeling of the spontaneous PDE activation.
In the third, we analyze the Laplace equation for computing the cGMP hydrolysis
rate, based on the narrow escape theory in narrow band [14]. In Sect. 4, we introduce
the coupled system of equations for cGMP and calcium currents. In Sect.5, we
present the stochastic simulations of a single photon response. Finally, in Sect. 7,
we explain how numerical simulations are used to extract biophysical parameters
from dark noise recordings and single photon response.
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Fig. 2 Signal transduction and PDE activation. (a) Signal transduction cascade of a vertebrate
photoreceptor. (b) Schematic representation of deactivation of an activated rhodopsin following
multiple phosphorylations and arrestin binding [18]. (¢) Stochastic simulations (black) of the
number of activated PDEs after a single photon absorption in a mouse rod, average (red) and
the analytic result for the mean (green). (d) Stochastic simulation of the number of spontaneously
activated PDEs in a mouse compartment with a mean P:;),comp = 0.9 and pg, = 12.4571. (e)
Probability of activated rhodopsin lifetime depending on the number of phosphorylation sites.
(f) Mean to standard-deviation ratio for activated PDEs plotted as a function of the mean PDE
normalized by its maximum value [15]

2 Modeling Phosphodiesterase (PDE) Activation After
a Photon Absorption Using Markov Chain

To simulate the time course of the stochastic number of activated PDE P* following
a single photon absorption, we use Markov chain [15] (see also [16]): after photon
absorption, a rhodopsin molecule undergoes a conformational modification and
changes from an inactive R into an active Rj; state, where N is the total number of
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Table 1 Parameters for PDE activation

Parameter | Definition

}_’jp.comp Mean number of spontaneous activated PDE molecules per compartment
}_’fi*,max Mean of the peak number of light-activated PDE

Ppde PDE surface density

Vsp Spontaneous PDE activation rate

Msp Spontaneous PDE deactivation rate

i Deactivation rate for light-activated PDE

TRh Activated rhodopsin lifetime

N, Number of rhodopsin phosphorylation steps

Yrt.max Maximal transducin activation rate

0} Decay rate of transducin activation with the number of phosphorylation steps
Yo Rate by which activated transducin activates PDE

available phosphorylation sites. The R}, phosphorylation is catalyzed by a rhodopsin
kinase (RK) that gradually reduces the activity of rhodopsin (Fig. 2a, b). Through
phosphorylation, rhodopsin in the state R undergoes a transition to state R},
modeled by the state dependent Poissonian phosphorylation rate A,,. R activates the
G-protein transducin 7* with rate k,, which constitutes an amplification process. A
T* transducin binds to a single PDE with a rate u, and forms a complex denoted
by P* (see Fig. 2a—c), which subsequently deactivates with rate 1,. Eventually, the
rhodopsin R} becomes deactivated through another molecule arrestin binding with

arate u,. The kinetic reactions are summarized as follows (see Table 1):

Ry > Ry
J ey
kn
R, +T—R,+T" (1)

" + P L pr
- p

The state of the signalling process is described by three stochastic variables integer
values (n, [, k), which are the phosphorylation state 0 < n < N of R* (n corresponds
to the number of remaining unphosphorylated sites), the number 0 < [ < oo of T
and 0 < k < oo for P*. The joint probability P, ([, k, t) satisfies the Master equation

0
EP"(Z’ k,t) = App1Pupi (Lk, t) + K, Py(l— 1,k 1)

+(+ DP(L+ 1k —1,0) + ppk + DPu(Lk+ 1,1)
— (An + tn + kn + gl + ppk) Po(Lk, 1), )
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In state n = 0, all sites are phosphorylated and Ao = 0. After a photon absorption,
R* is in state n = N and the number of T* and P* is zero. The initial condition is
given by P, (1, k,0) = 8, y61,08k0, Where (§;; is the Kronecker symbol).

2.1 First and Second Moment (Mean and Variance)
of Rhodopsin Lifetime Distribution

The mean and variance of R* lifetime can be computed from the probabilities P, (z)
to find R in state n at time ¢. By summing Eq. (2) over [ and £, the probability vector
P(t) = (Py(1),...,Py(1)) T satisfies the equation

—Bv

. ) Av —By_
%P(t):SP(t) with s=| ™ P _ 3)

)

and B, = A, + 1,,. To compute the mean R* lifetime, we integrate Eq. (3) using the
initial condition P(0) = (1,...,0)" and we use that P(¢) vanishes for r — co. We
obtain for the mean time

N [ele) . N 1 N
7= ;/0 P,(t)dt = —Tr (S—IP(O)) = ;ﬂ_ [T ». @)

" k=n+1

with p, = g—" Equation (4) has an intuitive interpretation: it is the sum of mean

lifetimes - in each state n multiplied by the probability to reach this state before

being deactivated via arrestin binding (see also Fig. 2e).
The variance is computed by integration by parts in the relation

N N
e=-3 “edp a—7 = 3 2Py (0t — 2 = 2Tr (s—zﬁ(O)) _ 72
T — 0 dt n - 0 n -
n=0 n=0

n

11

)
== [[ -7 )
5nﬂjk=j+l

n=0 j=0

The coefficient of variation (CV) of Rx* lifetime (Fano factor) has a lower bound that
depends only on the number of phosphorylation sites N [15]. Indeed using Egs. (4)
and (5), we have

Ve

Cv, =

z

(6)

A
-
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1

The minimum CV, = o is achieved for 8,, = constand p,, = 1. The first condition

reduces the lifetime variability of the various deactivation states. The latter condition
requires that arrestin binds only when R* is fully phosphorylated, which maximizes
the effective number of deactivation steps.

2.2 Stochastic Analysis of the Number of Activated PDE

As shown in the previous paragraph, multiple phosphorylations of the rhodopsin
molecule reduce the CV, and lead to a more reliable R* deactivation process. Is
a reliable R* deactivation process leads to a minimal variance in the number of
P*? How multiple phosphorylations affect the mean and variance of the number
of activated PDE? In particular, does a low CV, entail a low CV of the number of
activated PDE? The answer to these questions is based on a system of differential
equations to compute numerically the time dependent mean and variance of P* and
the mean and variance of the total number of P* that are activated during a single
photon response. We now present such equations.

2.2.1 System of Differential Equations for Mean and Variance

The mean and variance that depend only on the phosphorylation state n of R* can
be computed by decomposing the matrix S into a sum of left eigenvectors. By
decomposing the activation rate vector k = (ky, ..., ko) " into N eigenvectors k
of the matrix S, we get

N
F=3 % with KTS=-gk, ™
i=0

we obtain for the individual mean values the relation

d- d N N ~
d_tki(t) = E Zki.npn(t) = Z ki.nsn,mpm(t) = _ﬂiki(t) . (8)

n=0 n,m=0

Together with the initial condition i’(O) =(1,...,0)T, we get

N N
ko)=Y k(t) =) kive P )
i=0 i=0

Similarly, the variance X (f) = Zi\;o k2P, (1) — k(z)? is calculated by decomposing
the vector X = (k3, ..., k3).
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We now present the time dependent mean and variance of PDE defined by

N oo N oo
P() =" "kPy(Lk.t) and X,(1) =Y Y KPy(Lk.1)—P(t)>. (10)
n=0 k=0 n=0 k=0

Using Eq. (2), it is possible to obtain a closed system of differential equations for
the mean and cross-correlations,

diT(r) = —uT(t) + k(t)
—tl_’(t) = —ppP(0) + T (1)
_tzt(t) = =20, Z(1) + T () + 254 (1) + k(1) (11)
—Zp(t) = =211 T (1) + 2, T (1) + T (1) + i, P(1)
= Zo(0) = =+ 1) Tip(0) + e Z(0) = T (1) + Ty (1)
The mean activation rate k(f) can be computed independently and therefore is an
input function.

To close this system we need additional equations for Xy, (¢) and X(7). Using
the decomposition in Eq. (7), we write

() =) () and D) =) i,(0). (12)
Finally, the missing equations that close the system are

C500 = ~(Bi+ 1) D) + Y S 0
J

p 13)

7 () = —(Bi + 1p) Zp (1) + g (1) -

The correlation functions Xy (1) = Y, kinkjnPn(t) — I_ci(t)l_cj (7) and k(¢) are known
functions.

2.3 Stochastic Dynamics of the Number of Activated PDE

To further investigate how the variability of Rx deactivation can influence the
production of P*, it is useful to compute the mean Py and variance X, of the
total number of P* produced during a SPR. This computation is obtained by setting
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the P* deactivation rate to zero, Hp = 0, in which case all P* are conserved. We
obtain

) ~ N oo N
Py = / k(t)dt = Z - 1_[ Pk (14)
0 n=0 P k=n+1

o0
Ypo = Prot + 2/ Su(t)dt = Py + Z Z B /g l_[ pi— Py (15)
0 nFJ

n=0 j=0 =j+1

The lower bound for the CV of the total number of P* is

CcvV \Y Pmt > V Plol (16)

Pt T —
PtOt

Although the coefficient of variations CV),, and CV, share the same lower bound
1/+/N, in general, minimal values for both cannot be achieved simultaneously.
Indeed, whereas a minimal CV,,, requires k,/f8, = const and p, = 1, a minimal
CV, is achieved for 1/8, = const and p, = 1. Thus, by adjusting the activation
rates k, one can have a minimal CV,  even when CV, is far from being minimal.
Thus, a reliable Rx lifetime is neither necessary nor sufficient for a reliable PDE
activation. For constant transducin activation rates (k, = k) we have almost linear
relations Py = k7, X, and X, = Pt + k*Z; (see also [15]).

2.4 Modeling the Spontaneous PDE Activation

In addition to PDE activation after a photon absorption, PDE molecules activate
and deactivate spontaneously with Poisson rates vy, and jg according to the
biochemical reaction

A7)

Spontaneous PDE activation is an inconvenient mechanism, generating a back-
ground noise (dark noise) that obscures the signal from a single photon absorption:
the signal generated by a photon has to overcome the dark noise amplitude [7].
However, spontaneous PDE activations are crucial because they hydrolyze cGMP
in the dark and are essential to guarantee a steady-state concentration of cGMP in
the transduction current in the dark.

Using Eq. (17), the average steady-state number of spontaneously activated PDE
in a compartment is given by

— % V.
Pspﬁcomp = ZdeCJTRZ s ’ (18)
Hsp
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where ppq. is the PDE surface density and R is the compartment radius. For example,
for toad rods, assuming vy, = 4 x 107*s7 ! and py, = 1.8s7' [7], R = 3pum
and ppge = 100 um~2 (see Table 3), we find P;‘p,comp = 1.25. Figure 2d shows
a simulation of the stochastic number of spontaneously activated PDE in a mouse
compartment with P;‘p_comp = 0.9 and g, = 12.457! (see Table 3).

We use Eq.(17) together with the SSA Gillespie algorithm [17] to simulate
the time course of the stochastic number of spontaneously activated PDE in a

compartment (Fig. 2d).

2.5 Homogenization of the Three-Dimensional ROS Geometry
and Reduction of Diffusion in a Long Cylinder

The outer segment (OS) is the sensory unit of the photoreceptor. The rod OS
is divided by internal parallel disks into compartments connected to each other
through narrow gaps between the disk rim and the OS membrane and through
incisures (Fig.3). A photon is absorbed by a rhodopsin photopigment attached
to the surface of a single internal disk. As discussed in the previous paragraphs,
rhodopsin activation after a photon absorption triggers the activation of many PDE
enzymes via a G-protein (transducin) coupled amplification cascade. Because PDE
and transducin molecules are also attached to the disk surface, the activation process
occurs on the internal disk surface, where the photon has been absorbed (Fig. 2a). An
activated PDE hydrolyzes (kill) the cytosolic second messenger cGMP that controls
the opening of CNG ion channels in the OS membrane.

The compartmentalization of the OS restricts the diffusion of cGMP between
neighboring compartments, whereas diffusion within a compartment is not affected
and leads to rapid transversal equilibration. We therefore adopt the approximation of
a transversally well stirred OS where the three-dimensional geometry is reduced to
an effective one-dimension model with an effective longitudinal diffusion constant
[19, 20]. We now describe this geometrical reduction as shown in Fig.3 and the
estimation of the cGMP hydrolysis rate using a general Narrow Escape Theory [21]
in a flat cylinder that involves two- and three-dimensional asymptotic estimates [14].

2.6 Computing the Effective Longitudinal Diffusion Constant

The model of diffusion reduction starts with considering Brownian particles in the
OS, that are driven by thermal noise and a trajectory in the cytoplasmic fluid is well
described by the overdamped approximation (Smoluchowski limit) of the Langevin
equation. For a molecule located at position X(¢), the velocity satisfies the stochastic
equation

yX + F(X) = /2yew (19)
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A B Cone Rod

N @ ____,..-/JI a R-oF -

S

Fig. 3 PDE hydrolysis rate and homogenization. (a) Schematic representation of a cylindrical
compartment with an activated PDE on the surface. A diffusing cGMP trajectory in the cytosol
is terminated (hydrolyzed) when reaching the activated PDE site for the first time. (b) Schematic
representation of cone and rod outer segment structure used to compute an effective longitudinal
diffusion constant

. . - . . . _ kT
where F(x) are forces applied onto the particle, y is the viscosity coefficient, & = 7

is the thermal noise, and w is the white noise produced by thermal collisions [20, 22].

To study Eq. (19), we make three assumptions: (1) particles do not bind; (2) in
the time scale of seconds, short range electrostatic interactions that arise from the
charged disc membrane surfaces [23] and/or charged particles in solution average
and cancel out. As a consequence all electrostatic terms are neglected and the
force term F(x) in Eq. (19) is set to zero; (3) particles do not permeate across OS
membranes.

From the general theory of diffusion, it is well known that the probability density
function (pdf) of one molecule associated with Eq. (1) satisfies the standard three-
dimensional diffusion equation inside the cytoplasmic fluid. Under the assumption
of independent molecules, the concentration is simply the product of the pdf by the
number of molecule and satisfies the diffusion equation within the OS:

% — DAc (20)
c(x,0) = co(x) (21)

where c((x) is some initial concentration, and D is the diffusion constant.

2.7 Longitudinal Diffusion in Rod Outer Segments

ROS consists of repeating spatial compartments, Uy (Fig. 3b). Each compartment
comprises the distance from one disc surface to the comparable surface in the
next disc. The repeat distance is /, and it consists in two parts: the cytoplasmic
space separating two adjacent discs (interdisc space, dimension=1[/2) and the disc
itself (dimension = //2). Diffusion between adjacent interdisc spaces occurs through
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either disc incisures or the perimeter gap that separates disc edges from the plasma
membrane. The compartments’ radius is constant and denoted by r. We adopt
the following notation: Ny is the number of free Brownian particles in the Uy
compartment of volume Vj. The present analysis originates from [20].

The objective of the following derivation is to compute the ROS longitudinal
diffusion constant, D;, in terms of the OS’s structure. Variation in the number of
particles in unit Uy, equals the difference of flux into compartments k — 1 and k + 1,
that is

dNy (1)

e —D[Jk — Ji+1] (22)

By definition, Jy4 is the flux between unit Uy and Uy through ¥;4, the open
surface that joins them,

Jer = / dee1) g 23)
Zi+1 n(x)

where n(x) is the normal derivative pointing outside Uy and 0U;, = ;41 U Zy. In
the time scale of seconds, the concentration is assumed to be uniform within each Uy
compartment. This assumption is valid because: (1) diffusion within a compartment
(transverse diffusion) is the standard two-dimensional diffusion process where the
diffusion constant equals to the aqueous diffusion constant; (2) the ratio of the
absorbing boundary surface divided by the reflective boundary surface of a given
compartment is small.

As a consequence, the diffusion along the longitudinal axis is much slower than
along the transverse axis. Finally since the concentration inside a compartment
equilibrates quickly at the time scale of seconds, the concentration can be considered
to be uniform. Thus the flux through disk incisures and the perimeter gap is the same
and does not depend on the transverse spatial variable.

Combining Eqgs. (22) and (23) yields,

1 dN(r) D dc(Xp41,1)  dc(xg, 1)
5 = Z‘incs b - s
Vi dt Vi (n + 2 ( ox 0x

(24)

where X, is the surface area of a single disk incisures, 7 is the number of incisures,
and X, is the surface of the perimeter gap between the disk’s edge and plasma
membrane. ¥, = 2nrg,, where r is the ROS radius and g, is the size of the
perimeter gap. The concentration at points x;+; = x; + [ and x; is evaluated by
a Taylor expansion. At the first order, since c(xi, ) = N‘k/—il), then

9 t 1 dNi(t D 92 t
cta, ) _ 1 dNu(@®) _ D s+ 3 et 0)
ot Vi dt Vi 8)6]%

(25)
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The translation invariance of the rod outer-segment geometry implies that the
volume V, of the compartment Uy, is constant with respect to k and equals to the free
interspace volume (free volume of the unit plus the free volume of the incisures)

Vi = wrgl/2 + nVines + Vg = 7771/2 + (nZ, + 2718,,)1/2, (26)
where Vi, is the volume of the incisure and V, is the volume of the perimeter

gap. Finally, Eq. (25), can be reduced to the form of the standard one-dimensional
diffusion equation, for x € [0, L]

dc(x, 1) 0%c(x, 1)
=D , 27
or G @7
where the longitudinal diffusion constant is defined to be:
D(n%; N 1
D) = . (n nes + g) — 2D2— (28)
wr2l)2 + (nZines + £g)l/2 ST+ 1
N 2Zincs g

2.8 Longitudinal Diffusion in Cone QOuter Segments (COS)

COS consists of repeating Uy compartments, each comprising the distance from the
intracellular surface of one membrane fold to the intracellular surface of the next
one (Fig. 3b). The repeat distance is / and it consists of two segments: the membrane
fold (size=1/2) and the distance separating one fold from the next (size=1/2). The
volume connecting adjacent folds can be very complicated, however in average, we
can assume that the geometrical shape is fixed and well approximated by a cylinder
of length=1/2 and diameter §.

To remember that § is the diameter of a disk of area equal to the area of the real
surface, we will refer to § as the “equivalent diameter.” The diameter of a fold at
position x; is denoted by d; and it increases linearly with the longitudinal coordinate
as given by diy+1 = di + dp, where dpis the incremental distance.

Derivation of the longitudinal diffusion equation in COS proceeds through the
same steps as the derivation for ROS, but differs due to the difference in the
geometry. This difference is due to variation of the spatial compartment Uy. In COS,
the time variation in the particle number in the Uy compartment is given by Eq. (22)
and the flux through the X, surface is given by Eq. (23). From these equations,
the variation in time of the concentration in a COS compartment is given by:

dc(Xpy1,1) _px de(xy, t))

1 dN(¢) . 1
Vi - an(x) T on(x)

— [ DX
Vi dt Vi ( kot

(29)



328 J. Reingruber and D. Holcman

Since X4+ = X, using a Taylor expansion of the concentration c(x,t), we have

Bc(xk,t) _ ide(l‘) _ D2k+1l32c(xk,t)

= 30
ot Vi dt Vi 82xk (30)

The area of the surface ;. is given by I;4; = m(8/2)? and the volume is
Vi = m(8/2)%1/2 + n(d/2)*1/2 (31)

For dp, the smallest COS diameter (at its tip), dimax is the maximal COS diameter
(at its base), L is the COS length

dmax dmin
0= — 32

Because of the cone geometry, at position x; the cone diameter is dy = oxy + dmin,
the longitudinal diffusion equation can now be expressed as:

de(xe, 1) D (8/2)?1 02c(xy, 1) 33)
at  w(8/2)21/2 + 1/8n(axp + dmin)? X7
for x € [0, L], the equation simplifies
de(x,1) 2D§? 0%c(x, 1) (34)

824 (xt + dimin)?>  Ox2

The longitudinal diffusion coefficient (which is now in one dimension a function of
x) is explicitly given by

2D§?

D = .
O = S+ Ga + do)?

(35)

2.9 Determination of the Diameter Function §(x)
Jfrom the COS Structure

Using the COS structure, Eq. (33) can be modified to include a spatial dependency in
the § variable. Recall that the COS geometry is characterized by the following global
parameters. L is the Length, rpa is the radius at the base, ryp, is the radius at the tip,
and o/ = M The surface X,(x) at the longitudinal position x, connecting
adjacent folds is not circular, rather it is a semicircular disk that surrounds half the
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perimeter of the membrane folds over the entire COS length (Fig. 3b). Although by
analyzing the electron Microscopy picture, X,(x) fluctuates along the OS, we will
neglect such fluctuations compared to the mean.

If r,,(x) is the radius up to the plasma membrane and r¢(x) is the radius of the
membrane fold at position x, the surface X, (x) (Fig. 3b) then the area of X,(x) is

Ze) = Z(u@)? = 11(?) (36)

For rip < rp(x) < rpase, rr(x) = rgp + @’x and r,,(x) = r¢(x) + d, the gap between
the closed loop of a fold and the plasma membrane is about 100 A, that is d =
rm — 1 =0.01 p is small compared to r,,,. We can approximate X, (x) by

S0 = rdry(x) = d (i + (%) x) (37)

Let us define the diameter function §(x) of a disk along the COS of the same area as
Eg(x) by

T (x) = w(8(x)/2)? (38)

then

8(x) = 2,/d(rgp + a'x) (39)

Using the result of the previous section, we can now incorporate the small changes
in the diameter function §(x) into the cone diffusion equation and Eq. (33) becomes

de(x, 1) 2D8(x)? 0%c(x, 1)
802+ (xa + dmin)?>  0x2

(40)

with

8(x) = 24/d(rip + orx) 41)

An other derivation of this result using homogenization method can be found
in [24].

3 Computing cGMP Hydrolysis Rates

Key parameters that control the CNG channel opening and the current response are
the rates of cGMP hydrolysis by spontaneously and light-activated PDE, denoted by
ksp and kj; that we shall compute now.
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3.1 Rate of Hydrolysis by Spontaneously Activated PDE

The rate of cGMP hydrolysis by a spontaneously activated PDE kg, is computed
from formula [19, 25]

IBd = kspP:p.comp . (42)
For example, for a toad rod with the experimental value 8, = 1s~! [11, 16] and
PY comp = 1.25[7] we find kg, ~ 0.8 s~!. For a mouse rod with 8; = 4.1s7! [26]
and f’:p,comp = 0.9 (see further down) we get kg, = 4.5s! (Fig. 3). The different

values of kg, in toad and mouse might be due to the temperature, due to the different
encounter rates between PDE and cGMP, or due to differences in the PDE enzyme
between amphibians and mammals.

3.2 Computing the Rate of Hydrolysis by Light-Activated PDE
Jrom the Narrow Escape Theory

Light-activated PDE is one of the most efficient enzymes [27]. As a consequence,
c¢GMP hydrolysis by light-activated PDE is limited by the encounter rate kepc
between an activated PDE molecule diffusing on the disk surface and a cGMP
molecule diffusing in the cytoplasms. Because cGMP diffusion in the cytoplasm is
much faster than PDE diffusion in the membrane (~100 um?/s~! vs 0.8 pm?/s™!
[28], we can neglect PDE diffusion and assume that PDE is immobile. In that case,
the mean rate hydrolysis rate is inversely proportional to the mean first passage time
(MFPT) a cGMP molecule takes to find an activated PDE located on the surface of
the compartment.

To estimate the encounter rate in a cylindrical compartment of radius R and
height 7, we compute the first passage time of a diffusing cGMP molecule to hit
a circular spot of radius a located on the surface (Fig. 3a). The radius a equals the
reaction radius between activated PDE and ¢cGMP. To derive analytic expressions,
we place the activated PDE molecule at the disk center. This assumption will not
much affect the leading order term, because in a two or three-dimensional space,
the leading order term of the mean first passage time to a small surface target does
not depend on the position of target [29]. The first passage time 7(r, z) (cylindrical
coordinates with rotational symmetry) of a cGMP molecule initially at position (7, z)
satisfies the mixed boundary value problem [30]

D,At(r,z) =—1, 0<z<h,0<r<R
t(r,z) =0, z=0,r<a

0
B—T(F,Z)ZO, z=0,r>aandz=nh (43)
z

3r(r,z) =0 r=R
ar
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D, is the cGMP diffusion coefficient. To obtain the MFPT 7, we average the solution
7(r, z) over a uniform initial distribution. The result is [25]

Qo=

(44)

kenc =

_ Dy (_hay(h/a) 4In(R/a)—3\""
_F(”Z N 8 ) ’

where the functlon ao (4)/~/2 € [0.07,0.25] is shown in Fig.2a of [14]. When
h ~ R, ao(a) ~ Z' We note that the log-contribution in expression originates from
the degenerated geometry (flat cylinder). An analytic closed representation of the
function ayq is unknown.

We recall that general expression of the MFPT 7 depends on the initial position
in the dimensionless variables

r R h V| )
= — =nfa,

is

Zb o), 6) 4wy, x=1

To(l)
o Folkx, kyat) Inx 2—1
Z " Folkn, knor) Folkn Fnt) " ()1)4—%_ T l<x=<a,
where
uy = 1 . up(y) =cos(kyy) (m=1), wv,(y) =sin(ly) (n>0),
" ; (46)
k’l = ﬂ ’ n = M
p B

and the modified Bessel functions are /o(x) and Ky (x) and the relations [31] (Ij(x) =
I (%), Ky(x) = —K, (x), we obtain

F(] (knx» kna)
W (x) = —— 47
P (X) FO(kns kna) ( )

with

Fo(x.y) = I(x0) K1 (y) + Ko (y) .
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We recall that

COSh(Zn(IB B y)) _ x2 -1

1 oo
wi(x,y) = 1] ZCnJO(an)
n=1

cosh(z,f) 4)Q2| 48)
_ 13 cosh(z, (B —))
- @ Z CnJO(Zn-x) ( COSh(Zn,B) - 1) )

n=1

where z,, are the positive zeros of the Bessel function Jy(x), and the coefficients ¢,
are given by

2 /' -1
cn=———= [ Jo(znx)——xdx. 49)
6(Zn)2 0 0 4
With the relation
Fl (kn, kna) Il (ln)
:0, n=—Kn——"T"TT 21, n:ln 50
w=0 = ke " P =gy OO
we obtain a closed matrix equations for the coefficient a, and b,
o0 o0
Z(ﬁn + am)énmam = Z ‘i:nmym
m;() m=0 (51)
Z(,Bm + an)émnbm = VYn-
m=0
where
2 2 (n+13)
— — , m>1
FE—K (it b
Enm = (52)

is an orthogonal matrix. It is possible to solve these matrix equations by truncating
the system at a certain n leading to an approximated solution for a, resp. b,. This
will lead to an approximation for the NET 7 (x, y) [14].

The encounter rate is given by relation (44) and clarifies how it depends on the
underlying geometrical and diffusion properties. For example, for a toad rod with
R = 3um we compute kepe ~ 2.957!, and for a mouse with R = 0.7 pm we find
kene ~ 617! (with @ = 3nm, h = 15nm, and ay(h/a) ~ 0.7). As it turn out, the
dependency of k.. on the OS geometry is crucial to understand how many activated
PDE is necessary to generate a signal that overcomes the noise. For mouse, the
calculated rate ke,c = 61s™! for mouse is close to the value 43 s™! extracted from
experimental data [26].
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4 Modeling the Dynamics of cGMP and Calcium Ions

4.1 Coarse-Grained Model for cGMP Dynamics

This part of the model consists in first considering separately the dynamics occurring
in each compartment: synthesis and hydrolysis of cGMP and second to couple
c¢GMP to neighboring compartments through the reduced diffusion derived in
Sect. 2.6.

The biochemistry can be described as follows: cGMP synthesis is catalyzed by
guanylyl cyclase (GC) that are uniformly distributed on the surface of the disks.
The synthesis rate depends on calcium through Ca?T-sensitive guanylyl cyclase
activating proteins (GCAPs) that inhibit GC at high Ca®>" concentration [32-35].
The calcium dependent cGMP synthesis rate in compartment » is described by the
function

(n.1) TR P — (53)
(N, 1) = Omax | Ta — Vo) ] >
) Ky + c(n, t)r=

where c¢(n, t) is the free Ca?>* concentration in compartment 7, 0,y i the maximal
synthesis rate for low free calcium, r, = fﬁ is the ratio between minimal and
maximal synthesis rate, K, is the calcium concentration for which the synthesis rate
is (@max + ®min)/2, and n, is the Hill coefficient.

The rate of cGMP hydrolysis depends on the number of spontaneously activated
PDE P, (n, 1) and the number of light-activated PDE P (n, 1),

ah(l’l, t) = kSpP:p(n’ t) + kliP]):(IL t) . (54)

kp is the rate constant for a single spontaneously activated PDE, and k;; the diffusion
limited rate constant for light-activated PDE, for which we use the encounter rate
computed in Eq. (44).

The longitudinal cGMP diffusion between compartments occurs through the
effective longitudinal diffusion constant D,; < D,, where D, is the fast cytosolic
diffusion constant [20]. By applying Fick’s law to model the longitudinal flux
between neighboring compartments separated by the distance # + w (compartment
height plus disk width) we get the discrete flux

D
Jag(n.1) = h(h—ilw)(g(n + L0 +gn—1.1—-2¢(n1), (55)

where g(n, ) is the cGMP concentration in compartment n. Finally, the dynamics of
c¢GMP across the ROS satisfies the equation

d
Z800.0) = jag(n.1) + (1) - (kspP:p(n, ) + kP (n, z)) g, (56)
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4.2 Reduced Model for Calcium Dynamics

To model Ca%t dynamic, we take into account the effective longitudinal diffusion
between compartments, the exchange between the OS and the extracellular medium
through cGMP gated channels and Ca>*Na™K™ exchangers, and the buffering
activity. The model is presented now.

4.3 Modeling Calcium Buffers

In darkness, there a steady-state concentration of free calcium c¢; ~ 0.3 uM [36] that
corresponds on average to ~3.3 ions in a compartment. This number is surprisingly
small, given that many feedback process is regulated by Ca>". However, there are
many Ca®>* binding proteins in the OS that contribute to buffer calcium and increase
the amount of CaZ™ present in the OS, e.g., recoverin, GCAPs, and calmodulin.
For example, the concentration of recoverin in a mammalian rod is ~600 uM
[36], around 2000 times larger than the free calcium concentration; and the GC
membrane concentration ~50 wm™2 [36] corresponds to ~150 enzymes in a mouse
compartment, around 40 times more than the number of free calcium ions.

In that model, we use the simplest buffering scenario: the buffering activity is
much faster than the time scale where the free Ca2t concentration fluctuates, and
we use a linear relation between buffered and free Ca2t, valid if the amount of
buffered Ca®* is small compared to the total buffer capacity. Hence, we consider
that the number of bound calcium is

cp(n,t) = Beac(n, t) 57

with the buffering capacity is Bc,.

4.4 Dynamics of Calcium Exchange via Channels
and Exchangers

Free internal Ca®>* ions are exchanged between the OS and the extracellular medium
through ¢cGMP gated channels and Ca?"NatK™ exchangers. The Ca’" influx
through the CNG channels depends on the probability pe,(n,t) that a channel is
open, which is a function of the local cGMP concentration:

g(n, 1)

_ 58
g(n,t)”ch +K:ﬁh ( )

pch(nv t) =
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The Ca®>*-efflux through exchangers depends on the free concentration c(n, f) and
the exchanger saturation level, leading to the relation

c(n,t)

c(n, 1) + Ko (59

Pex(n, 1) =

The net local Ca?>" membrane flux is
JCa(nv t) = Jch,Ca(nv l) + Jex,Ca(nv t) = JchA,Ca.maxpch (n, l) + Jex,Ca,maxpex (l’l, t) . (60)

The inward current through the CNG channels is carried by both ions Na* and
Calt

Iehca(n, 1) _ _ 2FJenca(n, 1)
fCa fCa

]ch(nv t) = Ich.na(nv t) + Ich,Ca(nv t) = , (61)

where F is the Faraday constant. There is only a fraction fc, ~ 0.1-0.15 of the
channel current carried by Ca?>* ions [36]. The extrusion of a single Ca’>* ion by
the exchanger is accompanied by the influx of four Na* ions and the efflux of one
K™ [37]. Thus, the extrusion of one Ca’>* leads to the influx of a single positive
charge, producing the net exchanger current

Iex(n, 1) = Flexca(n, 1) . (62)

Using Eqgs. (61) and (62), we obtain for the local current

I(I’l, t) = Ich(nv t) + Iex(na t) =F (_fi ch.Ca(nv t) + Jex,Ca(ns t)) (63)
Ca

(see below for the analytical expressions). At steady-state in darkness, the calcium
influx and efflux are balanced thus

Jenca(n) + Jexca(n) = 0. (64)

From Eq. (63), we obtain the expression for the dark current associated with a single
compartment

2 2
Icomp,d =-F (_ + 1) Jch.Ca,comp,d =F (_ + 1) Jex,Ca,comp,d~ (65)
fCa fCa

We can use this result to express the calcium fluxes as a function of Ieomp,d»
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Jch,Ca(n,t) _ _Icomp.d Jea pch(nvt)

Jch,Ca,comp,d -F fCa + 2 Pch,d (66)
Jex.ca(n, 1) _ Leompa  fea Pex(n, 1)

Jex,Ca,comp,d B F fCa +2 Pex.d

Jch,Ca(nv t) = Jch,Ca,comp,d

Jex,Ca(nv H = Jex,Ca.comp.d

where g4 and ¢, are the mean concentrations in darkness and

Nch

84 Ca

= —% d = —. 67
Pch.d gZ“h +Kgﬁh an Dex.d 4 +Kex ( )
Using Eq. (66) in Eq. (60) we obtain
Peh(t)  pex(t
JCa(l’l, t) = Vcomp¢ ( ( - _)) P (68)
Pch.d Pex.d

where we use the notation to connect to each compartment: Ios¢ = Ncompleomp.d>
Vos = Ncompvcomp and

Icom I

¢ _ fCa | p,dl — fCa | os,d| ) (69)
fCa +2 Vcomp-/r fCa +2 Vosf

For example, in a mouse rod with a dark current I, = 16pA and a cytosolic

volume Vo & 18, um? = 18 x 1077 [36] we find ¢ ~ 5001 = 0.54M

4.5 Mass-Action Equation for the Free Ca** Concentration

The longitudinal calcium diffusion proceeds with an effective diffusion constant
D, ;. By considering buffering and the diffusion exchanges, we obtain for the free
calcium concentration the equation

¢ (pch(t) 3 pex(t)) . (70)

d
—c(n,1) = jac(nt) +
dt Bc, + 1 Pch,d Dex.d

with the exchange rate

1 Dc.l

Beat Lh(hi+w) (cn+1,0)+c(n—1,0—2c(n, 1), (71)

jd,c(nv t) =
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4.6 Coupled System of Equations for cGMP and Calcium
Currents

We scale the various quantities using the mean dark concentrations g4 and ¢,

, 1 —~ , 1
s =800 G = SD
c
K N K. Iz 72)
ke = =% k=2 k=
Cq Cd 8d
The equations for the scaled cGMP and Ca?>* concentrations are
klle
. to + (1 —1o) 2 ——
dg(n,t “ o e
ggt ) =jugn—1l.n,n+1,1) + Ba ha +ki§n’t)
d ro + (1 = re) ey
— (kP2 1.0 + kP (1.1)) 81, 1) (73)
de(n,t ) x(n, 1
¢(n,1) = jueni— Lnn+1,0) + 4 Pen(n )_pe (n,1) )
dt ' Pchd Pex,d
with
'Bd = kSPP;kp,comp
Pen(n, 1) 1+ kg A ne
= 3 (n, )"
Peh.d g(n, t)ren + kg
pex(n?t) = - 1 +kCX E‘(n,t),
Pex.d C(n, [) + kex (74)
Va = 1 g — 1 fCa |Ios.d|
T Bat+ler Beat lfeat+2caVoF
. Dgy . . .
Jagn—1Lnn+1,1) = h(h—frw) @+ 1,0+ 8 —1,1) = 28(n, 1)
ac(n—1,n,n+1,1) 1 Del  an+1.0) + 20— 1.0) — 28(n. 1))
cm—Inn+1,t)= —————(Cn+1, c(n—1,1) —2¢(n,
Ja, Bea + Lh(h+ w)
By inserting Eq. (66) into Eq. (63), we obtain the normalized current
3 I m| -1 N 2 C ot a ex \/ty !
I(}’l, Z) _ comp,d (n ) -1 Ph(’l ) fC P (}’l ) (75)

Icomp,d T fCa +2 Pchd fCa +2 Pex,d
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Table 2 Parameters for the photocurrent simulation

Parameter Definition

Neomp Number of compartments

R OS radius

h Compartment height

w Disk width

a Reaction radius for cGMP hydrolysis by an activated PDE molecule

kenc Encounter rate between a cGMP and an activated PDE molecule

ki Rate constant for cGMP hydrolysis by a light-activated PDE

kgp Rate constant for cGMP hydrolysis by a spontaneous activated PDE
Determined from the equation §,; = kspl_’;;mmp

Ba c¢GMP hydrolysis rate in the dark

8d c¢GMP concentration in the dark

cq Free calcium concentration in the dark

Losa OS current in the dark

feca Fraction of current carried by calcium

Bc, Buffering capacity for calcium

Ky Michaelis constant for cGMP synthesis

K Michaelis constant for channel opening

Kex Michaelis constant for calcium exchanger

Ny Hill coefficient for cGMP synthesis

To Ratio of minimal to maximal cGMP synthesis rate

Neh Hill coefficient for channel opening

D, Radial cGMP diffusion constant

Dc, Radial calcium diffusion constant

D, Effective longitudinal cGMP diffusion constant

Dca Effective longitudinal calcium diffusion constant

Vd Rate for calcium exchange

The overall normalized current from Neoyp compartments is

fny = lpa = 1@ _ 1 A%ljl( h=1— Mf:pi( f. (76)
S = — = el — n, = — n,t).
’ Ios,d Ios,d =1 Ncomp =1

The parameter of the simulations are summarized in Table 2:

S Stochastic Simulations of the Dark Noise and the Single
Photon Response (SPR)

We now describe the simulation method of the SPR with dark noise[38]. For each
compartment, we use the SSA algorithm [17] to generate spontaneously activated
PDE P;"p (n,t) from Poisson activation and deactivation rates vy, and fs,. To model
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Fig. 4 Single photon responses of mouse and toad rods. (a) Electrophysiological recordings of
single photon responses (black) from a mouse rod together with the mean response (blue). Mean
(red) and the deterministic simulation (green) from b are superimposed for comparison. Currents
have been normalized to the circulating current in darkness. (b) Single photon response simulations
for a mouse rod (black) with mean (red) and a simulation of the mean response from a deterministic
model without noise (green). (¢) Rods from frog (toad) and mouse showing the large size difference
[38]. (d) Single photon response simulations for a toad rod (8; = 1s~!). Note the much larger
duration compared to b

the single photon response, we simulated the number of light-activated PDE P;; (1)
in the compartment where a photon is absorbed. For simplicity, we assume that a
photon is absorbed at the center of the outer segment. However, a different location
would not have a significant effect on the results. Finally, the functions P;“p (n,t) and

() are input to the system of equations for calcium and cGMP Egq. (73), from
which we can compute the normalized currents 1 (n, t) and Tos .

Combining all previous results into an integrated model, we can simulate a
single photon response with intrinsic noise. We present 20 single photon responses
(Fig. 4a) obtained from suction-electrode recordings in a WT mouse rod that we
used to validate the model. Suction-electrode recording is used because cells could
be held for longer times with this method, making it possible to obtain sufficient
data from single cells over a period of several minutes. The data in Fig.4a are
representative of recordings from 8 rods, which all gave similar results. To generate
the calculated single photon response curves shown in Fig. 4b, we used simulations
of light-activated PDE from Fig. 2c.
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Under the experimental recording conditions, the decay time of light-activated
PDE is about 200 ms [39, 40], and the mean lifetime of excited rhodopsin is of the
order of 40 ms [39, 41]. Furthermore, to reconcile the experimental and simulated
response amplitude, we increased the transducin activation rates by a factor 1.75
compared to the toad simulations shown in Fig. 4b, which could be a result of the
higher body temperature [42]. In addition, following this procedure, the average
number of light-activated PDE increases from a value around 6 to around 8.2.
The simulated responses in Fig.4b show good agreement with the experimental
recordings in Fig. 4a; however, the simulated dark noise (X4, = 2.3%) is higher
compared to the recorded dark noise (Xg4,x = 1.6%). A strong calcium feedback
with no buffering (B¢, = 1) and no saturation in cGMP synthesis at high calcium
concentrations (r, = 0) reduces both the noise level and the peak amplitude by
around 50% [38].

6 Statistical Analysis and Parameter Estimations

The current fluctuations in darkness (absence of photon) generate a noise called dark
noise, the parameters of which can be extracted from the analytical expression of the
power spectrum. We derive here such expression by considering that the dark noise
is generated by the spontaneous activations and deactivations of PDE. From the
expression of the dark noise, we estimate the spontaneous PDE activation process
from electrophysiological recordings in the absence of photon response.

Using the model presented in the previous section, in darkness there is not light-
activated PDE thus P;}; (n, r) = 0. The average value of the scaled quantities CGMP
and calcium g(n, t), ¢(n, t), and 1 (n, 1) is one. Using a linear noise expansion of the
Fourier transform of Eq. (73), we obtain

Ncomp

8e(w) = j{j 8e(n. ) = g ———Eadk(®), (77)

Neomp Neomp

83(0) = ) 82(n.w) = i 2 Pne). ()
n=1

ﬂd_lw ,Bdga Vabex—iw n=1

with

] (1 - rOl)k”Ot +1 knCh kex

ol a0 Eh: Ex:
k +1r+(1 roz) ko ¢ e;

, 79
kgt S 1 + kex 7
ko +1

Ea:

The overall current fluctuation (Eq. 76) is
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7 1 2 fCa J/dgex ) ~
S8lys(w) = + : n82(w
( ) Ncomp (fCa+2 fCa+2ydEex_lw éh g( )
1 Ncomp
= @)y ) 8P5(n.0) (80)
comp

where the transfer function is defined by

XI(C!)) = (1 +f fc_ld_ ) gla) . ) Z;g- Eenk, EChIBd Bavabak
C VdSex — 10 _ Yababenbex | _ - aYVaboch
! * Pa (1 V§S§x+w2> 1w (1 + V§S§x+w2>
EnBa
~ — . 81)
36 bchfex . dbube
(1= Tigsin) o (14 i)

Because PDE activations in different compartments are independent, the spectrum
of the overall scaled current Iy5(f) is computed from the Lorentzian of a Poisson
process (see Sect. 2.4):

J QR L x(@)* 4u lxi(@))? 4
8;,, @) = [xi(@)? Spy, = Xi ) 2 - 2= Xli ) 2 - 5. (82)
NC"mP ’ Ncomp Psp<c0mp Msp to Pspx)s Msp + o
The current variance is defined by
1 o0
Y, = — S5 (w)dw . 83
los 2]-[ /0‘ Ios( ) ( )

6.1 Power Spectrum and Variance for the Mutant
GCAPs~/~ Rod

In the mutant mice GCAPs™/~, the Ca2t -feedback on cGMP synthesis is abolished,
which can be modeled by setting n, = 0 in Eq. (73). With £, = 0, the expression
for y;(w) in Eq. (81) simplifies to

EcnPa
xi(w) = — — . (84
Ba — iw
In that case, the power spectrum and variance of the scaled current reduce to
483 s
S () = —>¢h P (85)
Ios,gecap P:{p'osl’LSp (ﬁﬁ + a)z)(/’bgp + a)2)
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Table 3 Parameters used to
simulate PDE activation

Parameter | Toad | Mouse

P 125 109

sp,comp
Py s 150 |82

Hep(s™H) 1.8 12.4
Uy (s™H 10.625 |5

TRn (S) 3 0.04
N 6 6

ky 71 | 200 350
1) 0.1 0.1

we(s™hH 1300 300

2h 1 2h 1
pIP = =° = < . (86)
Ios, M, s
gep P;kp,os 1 + ﬂ; NcompP;kp.comp 1 + ﬂ;
With the parameter values for mouse given in Table 4, we obtain Eios,gcap ~ 0.055,

which agrees with the value 0.056 extracted from the GCAPs™/~ simulations [38].
Various parameters are given in Table 3.

6.2 Power Spectrum and Variance with Fast Calcium Dynamics

The role of calcium feedback on cGMP synthesis is to reduce the current fluctua-
tions. This feedback is efficient when the calcium dynamics is fast compared to the
underlying PDE fluctuations, such that calcium changes can be used to monitor the
PDE changes.

To estimate how much feedback reduces the current variance, we derive analytic
expressions for the fast calcium dynamics that we compare to the ones for
GCAPs ™/~ rods with no calcium feedback. For example, in a mouse rod, the rate
constant y,; governing the calcium dynamics in Eq. (73) has a value y; ~ 1670s™!
(Eq. 74 with no buffering, Bc, = 1). Adding buffers (Bc, > 1) slows down the
dynamics and reduces the feedback.

For y; > g% and y; > Ba&ysEcn Eq. (81) simplifies to

X,(w)m—lM with czl—@ and By = Bac. (87)
; d — @ ECX

The spectrum and variance of the dark noise with fast calcium dynamics is the
product of two Lorenzians:
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Ios.fastCa é-z P;(p,osﬂsp (135 + 6()2)(Mgp + wZ)
1 £ 1
D > ank (89)
i S

Compared to GCAPs ™/~ rods, calcium feedback reduces the amplitude of the dark
noise by a factor

2705 ,gcap

(90)

Ei(,sfast Ca

With mouse parameters from Table 4 we obtain p ~ 2.5 with B¢, = 80 and r, =
0.066, and p ~ 4.4 with strong feedback achieved for Bc, = 0 and r, = 0. From
experimental recordings and dark noise simulations shown in Figs. 4 and 5, we find
p = 0.056/0.023 =~ 2.4, in agreement with the theoretical value.

Table 4 Parameter values

Parameter Toad | Mouse

used to simulate the

photocurrent Neomp 2000 | 810
R (um) 3 0.7
h (nm) 15 15
w (nm) 15 15
a (nm) 3 3
kene(s™1) 2.9 61
kis™h) 2.9 61
Ba s~ 14l
8a (WM) 3 3
cq (LWM) 0.3 0.3
Ios.a (PA) 40 17.9
Jea 0.12 |0.12
ya 57 92 234
Bca 1 80
K, (M) 0.15 |0.1
Ko (WM) 20 20
Kex (WM) 1.6 1.6
Ny 2 2
o 0 0.066
Nch 3 3

D, (um?s™1) 150 | 150
Dy, (um?s™h |20 40
Dcay (pm?s™h) |20 20
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Fig. 5 Dark noise recordings and simulations for a GCAPs ™/~ mouse rod. (a) Electrophysiologi-
cal current recordings in complete darkness (black) and in bright light (red). Bright light recordings
are used to extract the instrumental noise. (b) Simulations of the current fluctuations in darkness
(dark noise). (c) Probability distribution of the amplitudes from panels (a) and (b) together with
Gaussian fits. (d) Comparison of the dark-light power spectrum from a with the power spectrum
from b and analytic result

7 Parameter Extraction from Dark Noise Recordings

Experimental recordings of dark noise in wild type (WT) and GCAPs~/~ knockout
mice together can be used with expressions for the power spectrum and variance to
evaluate unknown parameters in vivo.

7.1 Estimation of p, and P, Jrom Dark Noise

sp,comp

Recordings in GCAPs~/~ Mice

For GCAPs™/~ rods, the power spectrum divided by the variance [Egs. (85) and
(86)] reduces to a double Lorentzian that depends only on the parameters fiy, and B4:
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(Ba + 1tsp) Battsp
(B7 + @) (U2, + w?)

§ (@) =4 1)

Because B8 = 4.1s~! [26] is known for a mouse rod, we used Eq. (91) to extract the
unknown spontaneous PDE deactivation rate igp.

To extract g, we used the current recordings from GCAPs™/~ mouse rods
recorded in darkness and bright light conditions (Fig.4a). The latter is needed to
estimate the instrumental noise, since in bright light all channels are closed and the
recorded noise is only instrumental noise [7]. Because instrumental and biological
noise are independent, the dark noise power spectrum and variance can be computed
by subtracting the instrumental values. Using Eq. (91) to fit the dark-light power
spectrum scaled by the dark-light variance, it is possible to obtain an averaged value
Mo = 12.4 s Subsequently, with the values of 1y, and B4, we used Eq. (86) and
fitted the unknown mean number of spontaneously activated PDE per compartment

Py, comp Using the measured dark-light variance (with Neomp = 810). We obtained
an average value P:p.comp =0.9.

7.2 Estimation of the Parameters ry and B¢, from Dark Noise
Recordings in WT Mice

The single photon response and the dark noise amplitude strongly depend on the
calcium feedback. Equation (90) shows that the dark noise amplitude can be reduced
by a factor 4.4 due to calcium feedback. By analyzing experimental data from WT
and GCAPs~/~ mice, we found a factor around 2.4 (Figs.4 and 5). The strength
of the calcium feedback depends on r, and B¢, (feedback on cGMP synthesis
and buffering capacity). Unfortunately, both values are not precisely known. Most
models assume r, = 0 [36, 43, 44], in [45] a value r, = 0.072 is used. In [36, 43]
a buffering capacity Bc, = 50 is assumed, B¢, = 20 is used in [45] and B¢, = 100
in [44].

To estimate r, and Bc,, we computed the dark-light power spectrum from dark
noise recordings in WT rods (Fig. 5a). We fitted r, and y, using Eq. (82) and then
used Eq. (74) to compute B¢, from y,. By fitting the spectrum we obtained r, =
0.066 and y, = 23.4s~'. With the experimental mean dark current of 17.9pA,
we then computed Bc, = 80, which is in agreement with experimental recordings
[34, 46].

We used these values to simulate the dark noise in a WT rod (Fig.4b). We
quantified the agreement between data and simulations by comparing the probability
distributions of the recorded and simulated current amplitudes (Fig.4c), and by
comparing the experimental dark-light spectrum with the spectrum extracted from
the simulations and with the analytical expression in Eq. (82) (Fig. 5d). Although
we find very good agreement for the power spectra (Fig. 5d), the standard deviation
of the simulated current amplitude (X, = 2.3%) is about 15% smaller than the
experimental value (Xg,x = 2.7%). This difference may result from instrumental
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noise that increases the recorded noise in darkness, which is not accounted for in
the simulation. This effect is much larger for WT than GCAPs ™/~ rods because WT
rods have less intrinsic dark noise.

8 Conclusion

Thirty years of modeling of single photon response connected to the statistical
analysis of electrophysiological recordings led recently to the conclusion that the
biochemistry and geometry of the rod may have evolved and adapted together to
insure single photon detection across species [18, 38], but it is unclear whether
these adaptations occurred independently or were coupled together by some other
mechanism. This adaptation reveals that smaller rods are not a scaling copy larger
one.

To conclude, the remarkable sensitivity of rods to single photons reveals a selec-
tion principle of evolution: an increase in the expression level of PDE compensate
for the reduction in outer-segment geometry. Mouse rod can respond to a single
photon by closing approximately the same percentage of outer segment channels as
in a toad, but it can use many fewer G proteins and effector molecules and achieves
higher temporal resolution. How the biochemistry of transduction and the geometry
of the outer segment may have evolved together to ensure the detection of single
photons is certainly a new question to address. The surprise of these researches is
that the conclusion about the co-evolution of the cell geometry and the biochemistry
came from the development of stochastic modeling of the underlying molecular
processes. Similar modeling is expected in many other transduction processes such
as heat sensing, olfaction, auditory transduction. The diversity of the cell geometries
involved in transduction, that have evolved for billions of years, remains an open
question for modern geometry, but the physiology needs to be taken into account.
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A Phenomenological Spatial Model for
Macro-Ecological Patterns in Species-Rich
Ecosystems

Fabio Peruzzo and Sandro Azaele

1 Introduction

In recent years important contributions to our understanding of community assem-
bly and spatial ecology have come from the study of ecological patterns across
scales [6, 16, 22, 28, 32]. Macroecology has been prolific at suggesting a wealth
of interesting patterns and mechanisms [8].

For instance, considerable effort has been spent in understanding patterns such
as the Relative Species Abundance (RSA)—which gives the probability of finding
a species with n individuals living on a specific area. The RSA has a pivotal
role in identifying the drivers of commonness and rarity in species-rich ecosys-
tems, including tropical forests and coral reefs [5, 34-36], and has multi-faceted
implications, including conservation strategies. This has stimulated a number of
approaches attempting to explain the mechanisms underpinning the RSA curve,
and there is an ongoing debate over the relative superiority of the proposed models
without producing, however, a conclusive answer [21, 22]. So far, one of the main
issues has been that many reasonable models are able to match empirical data
fairly well, thereby hampering the possibility to support a particular theory. This
suggests that we should prefer a model over another one, depending on its ability
to produce multiple predictions—in addition to the original pattern—in agreement
with empirical data and without any further parameter fitting. In many cases, authors
have tried to explain empirical RSAs by means of stochastic, mean-field models
which assume well-mixed populations [3, 7, 13], which usually are not.

In contrast, spatial aspects of biodiversity have been described by the so-called S-
diversity, which overtakes the assumption of individuals placed uniformly at random
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in space by capturing key aspects of the spatial distribution of species, such as their
characteristic spatial turnover. Indeed, classical approaches to population ecology
have commonly overlooked the empirical finding that real populations are spatially
clustered across a wide range of scales. However, spatial aggregation is important
because it increases the turnover of species in space and therefore decreases the
similarity of communities that are farther apart [4, 27]. One of the simplest ways
to capture this similarity decay with spatial separation is to introduce the Pair
Correlation Function (PCF) [5, 23], which can be defined—as we will do in the
following—as the correlation in species’ abundances of a pair of samples at a given
distance.

Finally, another empirical pattern that has received a remarkable attention and has
a long history of research is the Species—Area Relationship (SAR) [2, 5, 16, 32]—
which describes how the average number of species increases with the size of the
sampled area. This is considered one of the most important and, probably, universal
ecological patterns, although the understanding of the underlying mechanistic
causes of the SAR curve have progressed slowly and only recently.

The macro-ecological patterns that we have described so far are not independent
from one another. Theoretical ecologists have been developing an understanding of
the relationships among these patterns, and there is a growing appreciation that such
macro-ecological measures of biodiversity are inter-related in a deep way. Since
Harte and colleagues [18] first suggested that it should be possible to estimate the
SAR for a region by examining scattered point survey data, several models have
emerged. Some of them are purely geometrical [31] or based on the application of
the maximum entropy to ecology [17]; other studies have also reported the effects of
particular biological traits on the shape of SAR [11]. Here, for the sake of simplicity
and to make analytical progress, we will assume neutral population dynamics [1, 6,
19, 29, 30].

The neutral theory of biodiversity is a theoretical framework for ecological
communities with one trophic level, i.e., for species which compete for the same
pool of limited resources. Examples are plant species in a forest, breeding birds
in a large geographical region, hoverflies living in certain landscapes or coral
colonies thriving in warm and shallow waters reachable by sunlight. In the neutral
approximation all individuals have the same chances to die or survive and their
competition does not depend on the species they belong to. Besides, the population
dynamics is assumed to be fundamentally stochastic. Therefore, from the neutral
standpoint, individuals’ stochastic dynamics is more important than species identity,
when it comes to explaining empirical community patterns. However crude and
unrealistic these assumptions may look like, they are at the core of models that
are in good agreement with empirical measurements at stationarity. Despite such
agreements do not necessarily imply that the population dynamics is neutral at the
individual level, neutral theory is useful to unveil universal community patterns and
it is, probably, more valuable when it fails than when it matches the data. Falsifying
one or more of its assumptions, in fact, may inform key aspects of community
dynamics.
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In the following we will focus on a phenomenological neutral model, whose
dynamics is spatially explicit and stochastic. Because it cannot be solved explicitly
in full generality, we will introduce a method for calculating analytically approxi-
mate formula for the three patterns which we have alluded to above. We will then
compare the analytical expressions with the numerical integration and, finally, we
will show that the model is able to describe the empirical RSA, SAR and PCF of two
tropical forests which harbour hundreds of plant species. With this model one can
translate information from one pattern to another and extrapolate patterns outside
the region of parametrization.

1.1 The RSA in the Mean-Field Approximation

Before introducing the spatial stochastic model, in order to make it clear how the
neutral assumption enters the definition of a model, let us first focus on a simple
form of RSA that can be deduced at the mean-field level. If we assume that the
dynamics is Markovian and described by a birth and death (one-step) process,
then in general the birth and death rates of species o can be written down as
by(ny,ny, . ..,ng) and dy(ny,ny, ..., ns), respectively, where n; is the population
size of species i and S is the total number of species in a given region. If interactions
are neutral, then those rates should be symmetric functions of species’ population
sizes and should not depend on the species label « (strictly speaking, this defines
a symmetric model [6]—not a neutral one—but in the following we will not make
such a distinction). Also, if we further assume that species are independent, then
the birth and death rates factorize and we can focus on the dynamics of just one
species, because any species is not affected by the presence of the others. In this way,
the neutral and the independence assumptions allow us to think of the population
sizes of species as independent realizations of a stochastic process. In our case, the
birth and death rates are b, and d,,, respectively, with n the number of individuals
of a species in a given region. Therefore, the time evolution of the probability
distribution of n is described by the following master equation:

apn(t)
ot

= pn+1(t) dn+1 +pn—1(t) by—1 _pn(t) (bn + dn)’ (D

where p,(7) is the probability that a species has n individuals at time ¢. Of course,
this equation needs to be equipped with boundary conditions that prevent n from
becoming negative. Common choices are either reflecting or absorbing boundaries,
depending on the nature of the problem. When n = 0 is reflecting, the equilibrium
solution can be easily calculated [33] and is, for n > 0,

n—1
b;
P,=Py| | —. 2
11 dit
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where Py is a normalization constant. If individuals belonging to abundant and rare
species have the same chances to die, or survive and give birth to an offspring, then
the per capita birth and death rates cannot depend on n and therefore, for n > 0, we
have to set

b, = gn+ 8,0V d, =,

where g and r are positive constants, and v is the speciation rate. In this framework
there is no explicit biological mechanism for speciation: v is a parameter that
ensures that the system is always populated by one individual whenever species
go extinct (reflecting boundaries). Let’s denote by ®,, the number of species with n
of individuals. If § is the empirical number of species in our ecosystem, from Eq. (2)
we get

n—1
b; boby ...by—1 X"
®,) = SP [ | — = sPp——2= — g 3
( ) Ogd,q_[ 0 d]dz...dn n ()
where x = g/r < 1, n > 0 and § = SPyv/g is known as the biodiversity

parameter. Equation (3) is known amongst ecologists as ‘Fisher log-series’, and was
first discovered experimentally in 1943 [14]. This distribution has no internal mode
and therefore it predicts that singleton species (i.e., those with one individual only)
are always the most frequent. This is not always the case, as many communities
have species’ abundances that are more frequent than singletons. These RSAs can
be more adequately explained with an alternative choice of rates, i.e.,

b,=gn+b d, = m, 4)

where the parameter » > 0 incorporates immigration. Ultimately, in this setting
rare species have a mild reproductive advantage over the more common ones. The
equilibrium solution is the following negative binomial distribution:

(®,) = S(1 —x)¢ (l—’) a 5)
8 /n

Ev

where (a), = a(a+1)...(a+n—1)with (@) = 1,n=0,1,... and x = g/r with
0 < x < 1. This distribution can produce an internal mode in species’ abundances
and predicts that communities should harbour only a few species that are common
and many species that are rare. This RSA is more flexible than the Fisher log-series
and is in good agreement with empirical data [3, 36].
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1.2 A Mean-Field Langevin Equation for the RSA

Larger areas of species-rich communities often sustain larger populations and
support more species because, typically, they encompass greater habitat diversity
and richer pool of resources. This simple observation shows that community patterns
at relatively large spatial scales might be described by models which treat population
size as a continuous random variable. Also, it suggests to include the principal
effects driving the macro-ecological patterns in a simplified, phenomenological
fashion. Within the neutral approach and assuming that the effects we outlined in
the previous section are the most important driving factors, we get the following
Fokker—Planck (FP) equation for the diffusive approximation of the master equation
(Eq. (1)) with rates defined in Eq. (4)

0P(n,1)

d
ot on

[0 = um Py + ozaa—;[m +aPmn).  ©

where f = r—g > 0,02 = (r +g)/2and € = b/(r + g) > 0. The equilibrium
solution of this equation provides the continuous RSA, i.e.,

bpe | _pn
o2

P(n) = Po(n +¢€) e o, (N
where Py is a normalization constant. A given large region is usually affected by a
small immigration rate, which hence suggests that € is typically a small parameter.
If we treat it as such, then Eq. (7) can be approximated (at zeroth order) by a
(normalized) gamma distribution of the form:

b —]

(M L no? e o2
Plm) = (02) T(b/o?) ®

where I'(x) is the gamma function. The (non-uniform) correction to this equation
is of order € Ine for b/o2 > 1 and €”/°° for 0 < b/o> < 1. In real species-rich
ecological communities one typically finds r >~ g (usually, 1 — g/r < 0.02, hence
W is positive and small [35]), which therefore allows the existence of a few species
with a large number of individuals (population sizes larger than 62/ = r/(r — g)
when 0 < b/0? < 1 and € < 1). Rare species, instead, have population sizes
typically smaller than b/ = b/(r — g) (for 0 < b/o? < 1 and € <K 1). As
expected, Eq. (8) is the equilibrium solution of the simpler FP equation

aP(n,1) _i
o  On

32

[(b — un) P(n, z)] +olas [nP(n, t)], ©)
n

which corresponds to the Langevin equation (in the Ito prescription)

i="b—un+ o), (10
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where £(f) is a zero mean white noise with (& ()é(¢')) = 258(t — ). Equation (10)
has a nice interpretation: in the limit of a small immigration rate, the dynamics of
the RSA results from the trade-off between net immigration and net death rates (i.e.,
b — pun), and the fluctuations about these deterministic terms are simply driven by
the central limit theorem (i.e., fluctuations & +/n). The agreement of Eq. (8) with
the data [3], therefore, suggests that demographic stochasticity may play a major
role in sculpting macro-ecological patterns, including the RSA. In the following
section these considerations will form the backbone of the spatial version of the
model, thus extending the importance of the effects of immigration, birth, death and
demographic stochasticity to spatial patterns as well.

2 A Phenomenological Spatial Stochastic Model: Linking
Macro-Ecological Patterns

The assumption of well-mixed populations, of course, cannot account for the spatial
turnover of species and the increase of species richness with sampled area. These
two patterns are captured by the PCF and SAR, respectively, as explained in the
introduction. A region with a high rate of spatial turnover of species, in which
the PCF decays steeply, has also a steep increase in the SAR, because a given
area contains relatively more species compared to other regions where the PCF
decays more gradually. Also, empirical data highlight that the PCF is, typically,
a monotonically decreasing function of distance. This underlines the important role
of spatial clumping of individuals, because if individuals were found somewhere, it
would be more likely to find other ones close-by.

These observations lead naturally to a simple spatial extension of the continuous
model of the RSA. Since we are interested in spatial patterns at relatively large
scales, we consider a phenomenological generalization in which space is coarse
grained. We assume space is partitioned by a mesh into a collection of voxels—
or, more precisely, a regular graph (or lattice) in which each vertex has 2d nearest
neighbours, being d space dimension. Within each voxel (or, equivalently, vertex or
site, which hereinafter will be used as synonyms), individuals are considered well-
mixed, diluted and treated as point-like particles which undergo the demographic
dynamics defined by Eq. (10), which incorporates birth, death and immigration (in
the language of chemical reaction kinetics, these are first-order reactions known as
autocatalytic production, degradation and production from source, respectively).

As the customary approach in the reaction-diffusion master equation (RDME),
we will assume that, within a hypercubic voxel of width a (a is the lattice spacing
as well), individuals are uniformly placed at random in space (i.e., voxels have no
internal spatial structure). Therefore, a should be much smaller than all the other
macroscopic length scales of interest, including the characteristic spatial correlation
length of the system. In the following numerical integration and empirical analysis,
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this will always be the case. The set of coupled stochastic differential equations
defining the model are

() = DV2ni(t) + b — pni(t) + o /ni(t) £(2), (11)

where #;(f) is the density of individuals in the i-th site at time ¢, &(¢) is a zero mean
white noise (depending on site i) with correlation (£;(1)&;(¢)) = 26(t — ')8;;. D is
the “diffusion” coefficient and

Vi) = 5 Y0 — o) (12)

Jjed()

where d(i) indicates the set of nearest neighbours of i. There is nothing special
about our choice of local movement, more general connectivities could have been
chosen to study the effects of different topologies on macroscopic patterns [24].
More importantly—and unlike the RDME approach—here individuals move locally
on the mesh in a deterministic fashion, as governed by the discrete Laplacian. This
is tantamount to neglect contributions to stochasticity due to the random hopping
of individuals, which is expected to be a good approximation for large diffusion
constants [9]. Therefore, linear reactions taking place inside voxels—independent
of diffusion—are supposed to be the main source of stochasticity in the system. In
this framework, individuals do not undergo a continuous time random walk on the
mesh, as can be seen from Eq. (11) when the internal demographic dynamics is
switched off. This is one of the main reasons why this spatial stochastic model,
at least in the current formulation, cannot be considered an appropriate coarse-
grained approximation of an underlying microscopic, spatially continuous model.
However, these approximations are not expected to have large effects on the first two
moments, which we will study in the following sections and are at the core of our
analysis. This is only a phenomenological framework which provides an analytical
way to calculate macro-ecological patterns, starting from simple yet important
demographic and spatial factors. Yet, microscopic models which are continuous in
space, such as independent branching Brownian processes (or superprocesses [12]),
might probably have a discrete approximation close to the current formulation. This
will be investigated in a future work.

If we indicate with {n} a given configuration of population sizes on the lattice,
i.e., {n} = {ny, s, ...}, the probability density function of {n}, P({n}), satisfies the
following FP equation (sensu Itd):

8 P(ny) == K [(szznz(t)-i-b—me)P({n}, t)]+02 Z aa_; [nZP({n}, t)],

on,

(13)
where the sums are over all sites of the lattice. It is easy to see that the average
density per site is (n;) = b/u. It is interesting to notice that this model has a non-
trivial stationary distribution only for » > 0 and when the per capita death rate
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is strictly larger than the per capita birth rate (i.e., & > 0), because of the lack
of a carrying capacity. In this sense, it is a minimal model for calculating large
scale patterns: if one sets to zero one or more parameters, then the predicted macro
patterns—if they exist—are trivial.

2.1 Calculating the Pair Correlation Function

The PCF describes the correlation in species’ population abundances between
different spatial locations. As we mentioned before, it plays a crucial role in linking
some of the most important macro-ecological patterns.

Let’s consider two sites i and j in a (d-dim) lattice and calculate (n;n;).
Multiplying Eq. (13) by n;n; and integrating all n’s from zero to infinity (or using
the usual Itd formula with Eq. (11)), one finds the equation for the time evolution of
(ninj), ie.,

d
% (ninj) = D(Vf (ninj) + ij (ninj)) +2b(n) —2u (n,-nj) + 202 (n) 8, (14)
where (n) = b/p and §; is the Kronecker delta. Because we are interested in
stationary patterns, we drop the time derivative and simplify the equation by looking
at the correlation G;; = (ninj) — (n;) (nj) = (n,-nj) — (n)*. G;; actually satisfies

D(V;Gij+ ViGij) —2uGij+ 207 (n) §; =0 . (15)

In order to solve this equation, let us introduce a system of Cartesian coordinates and
indicate with x the d-dim position vector of a site. Basically, in the previous equation
we make the substitution i — x and j — y, with the agreement that changes in any
direction in the coordinates have to be made in multiples of a, the lattice spacing.
In this way, we can use Fourier series to find an expression for Gy in an infinite
lattice. After some algebraic manipulations, we finally get

P (x=y)

(16)

a4 a?b
Gx. = ) /dp 5
=) S 1+ 25 Y (1 —cos(pia)

where p; is the i-th Cartesian component of p and C is the hypercubic (d-dim)
primitive unit cell with size 277/a. As expected, Gy y is translational invariant and in
d = 1 reduces to a simple exponential:

Gyy = Ckha, (17)

where x,y = 0,a,2a,...; k < 1 and C are positive constants which can be either
calculated from Eq. (16) or by direct substitution into Eq. (15). For k one gets
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2 2,4 2
na JIRY na
k=14 —— —_, 18
+ 2D 4D? + D (18)
from which one deduces the correlation length £ = —a/ In(k). Notice that £ —

D/ when a — 0.

Instead of trying to calculate explicitly the integral in Eq. (16), we can obtain a
good deal of simplification and insight by taking its continuum spatial limit (i.e.,
a — 0 and the parameters are appropriately re-defined). Such a limit leads to

1 o2b P x=y)
Gix.y) = /R e

@n)? u? 1+ Dp2
A 12 (2—d)/2
n X — X —
B () () g
(271)&2>

where K,(x) is the modified Bessel function of the second kind of order v or
Macdonald’s function [20], x and y are now continuous vector coordinates and

. D 2
i= 2 =%
7 b

are constants with length dimension when d = 2. As expected, G(x,y) is also the
solution of the continuum spatial limit of Eq. (15) in Cartesian coordinates (and
dimension d), i.e.,

DV,;G(z) — uG(z) + 0* (n) 8(z) =0, (20)

where Z = x —y, §(z) is a Dirac delta and we took advantage of the translational
symmetry of the system.

Of course, G obtained in Eq. (19) may be a good approximation of the discrete
correlation only for |x — y| > a. As a first approximation, however, one may
introduce a lower cut-off to G by stipulating that G(z) = Gxx for all |z] < a.
Because K, (x) decays exponentially fast for large x [20], Eq. (19) also suggests
that A is the spatial correlation length of the system. Therefore, this continuous
framework works under the condition that A > a, which is always satisfied in the
following analysis.

In the next sections we look into the stationary Pair Correlation Function (PCF)
defined as

8xy = —;>, (21)
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because—in a first approximation—it allows one to study the empirical properties
of gxy independently of a, the spatial resolution introduced to calculate the PCF
from the data. As an analytic expression, we will use its continuous version, i.e.,
gx,y) =1+ Gx,y)/ (n)z, where G(x,y) is given in Eq. (19) with d = 2. Hence,
the PCF reduces to

g =1+ %(f)zm(f) 22)

where r = |x — y|. We will always assume that r is much larger than a.

3 A Method for Calculating Macro-ecological Patterns

The model defined in Eq. (11) is linear and therefore all the stationary n-point
correlation functions can be calculated explicitly. However, having all correlation
functions is not sufficient, in general, to build up a closed-form solution of the
model, from which one derives all interesting patterns.

The spatial Relative Species Abundance (sRSA) is defined as the probability
that a species has n individuals within a certain area A, if there are S, species in
total in the larger area Ay where A is contained. Therefore, the SRSA is given by
the conditional probability p(n|A, {Sp,Ao}), and all correlation functions contribute
to such distribution in a non-trivial way. So, instead of trying to calculate the
sRSA from the correlation functions or the generating functional, we introduce an
approximation which allows to make some analytical progress. Afterwards, we will
check with the numerical integration of the model that such approximations are
good, at least in the region of the parameter space which is relevant to the empirical
patterns.

Because the calculations turn out to be easier in the continuum space, in what
follows we will essentially work with Eqs. (19-20), bearing in mind that the results
in such limit have to be used cum grano salis. For simplicity then, let us focus on a
circular region, C, of radius R and define the random variable

N(R) = /Cn(x)dx, (23)

which gives the number of individuals of a species living on C at stationarity. Of
course, (N(R)) = (n) mR?, but we can also calculate the variance, Var(N(R)). From
Eq. (19) we get

/C /C G(x. y)dxdy = [N(R?) — (N(R))? = Var(N(R)) (24)

and the final expression ind = 2 is
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25 Ki(R/ML(R/ L) )

_ 2 _ -
Var (V) = ()N (1= KoR/AD (R/A) + K\ (R/DIo(R/A)

25)

where I,(x), K, (x) are modified Bessel functions of the first and second kind of
order v, respectively [20]. Of course, this formula is reliable only when R > a,
but it is interesting to notice that for R > A the variance to mean ratio tends to a
constant, i.e.,

aw®) ot
W@Ry = (26)

which is exactly the ratio one obtains from the mean-field model, i.e., Eq. (8).
Therefore, at stationarity the system reaches non-Poissonian fluctuations and on
large spatial scales it is homogenized by diffusion. This is an example of a result
that can be proved under quite general conditions [15].

As we have alluded to above, a lot of species-rich ecological communities have
per capita birth and death rates that are very close (1 — g/r < 0.02, hence pu is
positive and small [35]). So, we can roughly estimate the variance to mean ratio as

Var(N(R)) = r
(N(R) — r—g

> 1, 27)

forR > A Moreover, when r =~ g both the correlation length, /A\, and the correlation
time, ™!, of the system are very large. This depicts such empirical communities as
they were posed close to a critical point, where large fluctuations have a long-time
behaviour and are correlated across many spatial scales.

Along the lines we have outlined before, one could in principle write down the
expressions for the higher moments of N(R). However, a deeper insight and more
analytical progress can be achieved by introducing the following crucial approx-
imation: we assume that, at stationarity, the random variable N(R) is distributed
according to the probability density function defined in Eq. (8)—the equilibrium
solution of the mean-field model—with appropriate scale-dependent functions, o (R)
and B(R), which we are going to introduce. This is tantamount to assume that the
functional form of the sRSA is the same across all spatial scales and hence the
dependence on the spatial scale of the SRSA comes only through such functions. We
have borrowed this hypothesis from the phenomenological renormalization group
[26].

In order for the gamma distribution in Eq. (8) to match the first two moments
of N(R) that we have calculated, we then introduce a shape function, «(R), and a
scale function, B(R), both depending on R. The final approximate sRSA, g(N|R),
has therefore the form

1 (N/BR)“R! e NIB®).

1N = 3R T@®)

(28)
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where I'(x) is a gamma function. From the properties of the gamma distribution, it
is not difficult to show that, if we choose

(N(R))\2 o(R)?
a(R) = ( o®) ) BR) = NR))

then we match exactly the first two moments, (N(R)) and Var(N(R)). We will
show that the approximate expression for the SRSA is in good agreement with the
numerical integration of the model. With the formula for g(N|R) one can directly
link the sRSA to the PCF. In fact, when fitting the PCF and obtaining (n) from the
data, we can predict the distribution of species’ population sizes across all spatial
scales by using Eq. (28).

Also, since a species can be observed only when it has at least one individual,
the probability that a species is present within an area of radius R is l°° q(N|R)dN,
from which one can calculate the SAR, an important pattern in many applications.

(29)

4 Numerical Scheme for the Integration of the Model

Naive numerical schemes for integrating Eq. (11) are affected by severe drawbacks.
For instance, if we apply a first-order explicit Euler method to the simpler Eq. (10)
(sensu It0), we get

n(t + At) = n(t) + Atlb — un(t)] + o/ At n(#)N(0, 1), (30)

where N(0,1) is a zero mean normal random variable with variance 1. It is well
known that, starting from n(0) > 0, this method inevitably leads to produce negative
values for n(r + At), especially when n(7) is small. Such unphysical densities
are even more harmful when integrating stochastic partial differential equations,
strongly biasing spatial correlations.

Building on previous methods [10, 25], we introduce a numerical integration
scheme which generates (in the weak sense) the field n;(¢) at stationarity in 2-dim—
the d-dim case is straightforward—and ensures, by construction, that the density is
always non-negative.

We first write down the discrete Laplacian on a 2-dim lattice of mesh size a,
where every site has four nearest neighbours. Secondly, we re-write Eq. (11) as

g (1) = Yx(1) — Qnx(1) + 0 /nx(1) § (1), (31)
where
D < 4D
V() = — ;nme,-(r) +b oand Q= —+p (32)

and € = (1,0), € = (—1,0), €3 = (O, 1) and €4 = (0,—1).
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The stationary solutions of the FP equations associated with each local Langevin
equation for ng(f), i.e., Eq. (31), are gamma distributions given by Eq. (8) in which,
locally, b — Yy and u — . Yy is then a new immigration parameter which
accounts for the global as well as the local influx of individuals from the 4 nearest
neighbours into the site with x coordinates; €2 is a new death rate which includes the
possibility that individuals leave the site at x because of diffusion, in addition to the
demographic death rate. If we initialize the lattice with n,((o) > 0, we can then update
each and every site by sampling from the local gamma distribution, conditioning
on the nearest neighbours. Hence, at the m + 1 sampling step the local density is
given by

(m) 2
Y,
n}((m+l) = Gamma |:%, %:| , (33)
where m € N,
D&
W= 2D e+ (34)

i=1

and Gamma[w, ] is a gamma variate with shape parameter v and scale parameter j.
One keeps updating the system until all the stationary summary statistics of interest
do not change significantly in different generations (or they match a stationary
summary statistics calculated analytically from the model).

Because n,(KO) > 0 and also Yx and 2 are strictly positive at all steps (D, b, u and
o are all strictly positive), by construction ry is always non-negative and finite at all
steps.

4.1 Comparisons with Analytical Solutions

We implemented the numerical scheme on a 200 x 200 lattice with periodic bound-
ary conditions. Each site was initialized by drawing from a gamma distribution with
shape parameter « = b/c? and scale parameter B = o2/u. The comparisons
between the analytical formule obtained in the continuum approximation and
the numerical integrations were carried out by considering 1000 independent
realizations at stationarity on the square lattice. The results for the numerical and
analytical PCF are shown in Fig. 1 for the correlation length A = 10.

For a given realization at stationarity, we decided that a species is observable—
that is, it has at least one individual—within a given area C of radius R, if N(R) =
erc ny > 1. This, of course, resembles what happens in empirical observations
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Fig. 1 Comparison between the analytical (see Eq. (22)) and numerical PCF calculated from the
stationary densities generated by implementing the numerical scheme outlined in Sect. 4. Here the
parameters are D = 1, b = 0.005, © = 0.01, 0 = 2.1 and the distance is in lattice spacing units

and here we modify the previous definitions of SRSA and SAR by stipulating that
a species can be observed only if it occurs with at least one individual. So, when
an area of radius Ry harbours S(Ry) species in total, at smaller radii we define the
sRSA as

q(N|R)

f1oo Q(M|R0)dM’

SRSA(R) = (35)

where g(N|R) is the distribution that we have obtained in Eq. (28). From this
expression we can derive the SAR, which accounts for the number of species that
are found within a certain area as a function of its radius. This is defined as

[ q(NIR)AN

(36)

We have benchmarked the results for the sRSA and SAR obtained from the
numerical scheme against the analytical formule in Figs. 2 and 3.
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Fig. 2 Comparison between the analytical (see Eqs. (35), (28) and (29)) and numerical sRSA
calculated from the stationary densities generated by implementing the numerical scheme outlined
in Sect. 4. Here the parameters are D = 100, b = 0.005, u = 1, 0 = 2.1 for the left column and
D = 1,b = 0.005, 0 = 0.1, 0 = 0.5 for the right column. The two upper panels depict two
snapshots of the stationary densities on the corresponding lattices. The radius is in lattice spacing

units
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SAR distribution
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Fig. 3 Comparison between the analytical (see Eqs.(36), (28) and (29)) and numerical SAR
calculated from the stationary densities generated by implementing the numerical scheme outlined
in Sect. 4. Here the parameters are D = 100, b = 0.005, © = 1, 0 = 2.1 and the radius is in
lattice spacing units

5 Macro-ecological Patterns of Pasoh and Barro Colorado
Island Forests

We considered two datasets from well-known forest stands: one set is from the Barro
Colorado Island (BCI) in Panama and the other one from the Pasoh Forest Reserve
in Malaysia. Both cover an area of 50ha and were comprehensively surveyed,
containing high but greatly different numbers of vascular plant species. Species
identity, geographical location and diameter at breast height (DBH) were recorded
for each tree living within the plot. We used such datasets of plant species to test
model predictions against empirical patterns.

We first coarse grained the two systems by superimposing a grid mesh of 10m
size and counted the number of individuals of each species within every sub-area.
Then we looked at each pair of sites located at X, y and calculated the empirical PCF
with the following formula:

SZ 17’lx (M)
( Z - (,U-))( Z _ln(ﬂ)

8xy = 37
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where n,((“ ) is the number of individuals of species u within the site located at x and S

is the total number of species in the whole region. Then we calculated the parameters
A and p by best-fitting the data to the analytical formula in Eq. (22). Finally, from
the empirical data we estimated (n) = Ny/(SoAp) in both forests, where Ny is the
total number of individuals, Sy is the total number of species in the whole area, Ay,
of the forest plot. We found the ratio i/ﬁ ~ 0.33 for Pasoh, and ;\//3 ~ 0.35 for
BCI. These parameters are sufficient to predict the behaviour of the analytical SAR
and sRSA with no further best-fit, and such predictions can therefore be compared
to the empirical distributions for the two datasets. The agreement with empirical
data is good as shown in Fig. 4.

6 Conclusions

We have introduced a phenomenological stochastic model, defined on a d-dim
lattice, from which one can derive analytical approximations of important macro-
ecological patterns, such as the PCF, the SAR and the sSRSA. We devised an efficient
numerical integration scheme, which confirms the goodness of the analytical
derivations. Also, all the empirical patterns obtained from two canopy forests, the
BCI and Pasoh plots, show a good agreement with the formule derived from the
model, using three free parameters only. The framework is able to explain and link
empirical macro-ecological patterns in a theoretically consistent way. Intriguingly,
it suggests that many species-rich ecosystems may possibly be close to a critical
point, in which slow and large fluctuations are correlated on large spatial scales. The
theoretical setting calls for more refined spatial formulations and better articulated
ecological mechanisms, which can provide more realism to the predictions as well
as bridge the gap between individual behaviour and emergent macroscale patterns.
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Fig. 4 The PCF, SAR and Species Abundance Distribution (SAD) for Pasoh (left column) and
BCI (right column) tropical forests for trees that are larger than 10 cm in stem diameter at breast
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1 and p (empirical data showed with blue dots). We found the ratio A /p ~ 0.33 for Pasoh, and
A /p ~ 0.35 for BCL The second panel depicts the SAR: blue dots are empirical data, green line
is the predicted distribution by using the best-fitted parameters from the previous PCF, (n) and
formul@ in Egs. (36), (28) and (29). The third panel shows the SAD (this is defined as the sSRSA
times the total number of species in the region) for the whole area. The blue dots are empirical
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is described in Volkov et al. (2003)
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