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Abstract. Distributed applications that span mobile devices, comput-
ing clusters, and cloud services, require robust and flexible mechanisms
for dynamically loading code. This paper describes lady: a system that
augments the .net platform with a highly reliable mechanism for resolv-
ing and loading assemblies, and arranges for safe execution of partially
trusted code. Key benefits of lady are the low latency and high avail-
ability achieved through its novel integration with dns.
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1 Introduction

Distributed applications require their executable code to be available in local
memory of each participating CPU. Traditionally, application code has been
distributed and installed in advance with the underlying Operating System (OS),
and fully loaded into local memory when a member process starts executing.
Code can be distributed and installed manually by the machine administrators,
or on a shared file system trusted by all member processes. More recently, code
is commonly distributed over the Internet using some OS specific application
distribution service like Ubuntu’s apt-get system [8], the Google Play Store, the
Apple iTunes Store, or the Windows Store.

Unlike application distribution services that require processes or even the
entire OS to be restarted, run-time code injection enables long-lived distributed
systems to be updated on-the-fly, minimizing service interruption. This allows
systems to evolve over time as requirements change and bugs are fixed. Run-
time code injection is also a foundation for extensibility in component systems
like Sapphire [23] and Kevoree [3], and enable popular end-user applications like
Firefox and Eclipse to be extended with third-party plugins on demand. In big-
data systems like MapReduce [4], Pig [16], DryadLINQ [22], and Cogset [21],
the underlying code for user-defined functions, which play a central role in dis-
tributed data processing, are typically distributed and loaded dynamically at
run-time. Transferring code between processes is also a recurring requirement for
actor-based distributed computing and mobile agent computing [10,11]. When-
ever an object is serialized and transferred over the wire, the code required for
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de-serialization must be somehow available at the recipient. If object schemas
are allowed to evolve over time, so must the serialization code.

Dynamic run-time code injection in distributed applications demands a
robust system for distributing code, managing dependencies, and resolving ver-
sion conflicts. If security related updates are to be distributed, the mechanism
must also be resilient to attacks [13].

This paper presents lady , a .net library for loading assemblies dynamically
and an associated cloud service for maintaining and looking up meta-information
about assemblies.1 lady provides a robust and generic infrastructure for code
distribution, allowing applications to locate, obtain, and dynamically load code—
in the form of .net assemblies—from remote repositories. lady aims to do just
a few things, but do them well:

– Provide a reliable and highly available service for finding up-to-date infor-
mation about assemblies, including available versions and ways of obtaining
them.

– Implement the required mechanisms for obtaining assemblies, for example
through direct downloads or through a package installation system.

– Discover dependencies between assemblies, resolve the versioning conflicts
that may result, and hide latency by caching and prefetching assembly data.

– Arrange for safe execution of partially trusted code, while retaining the ability
to load new assemblies into sandboxed environments.

lady offers a simple and unobtrusive interface focused on the central task
of loading assemblies. lady does not impose any particular architecture on the
application, and can be combined and coexist comfortably with dependency
injection frameworks like Microsoft’s Managed Extensions Framework or Ninject,
for systems that focus on extensibility. It can also be used as an auto-updater to
check for bugfixed versions of libraries, a deserializer that automatically resolves
references to missing assemblies, or as a utility to load and safely execute user-
defined functions.

2 System Overview

lady targets the .net platform, and therefore revolves around assemblies: con-
tainers for compiled code, and the unit of deployment in .net. A .net applica-
tion is compiled into one or more assemblies. Each application has exactly one
main assembly, which contains that application’s entry point, and is stored as
an executable .exe file. Non executable assemblies are stored as .dll files.2

Assemblies can include functionality from other assemblies by referencing
them. Assemblies can be cryptographically signed by their creators, which lets
the .net runtime verify that they are authentic before loading them. When an
assembly is signed, the public key of the signer is combined with the assembly’s

1 lady is an acronym for Loading Assemblies Dynamically.
2 Both .exe and .dll files have the same Portable Executable file format.
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short name, its localization culture, and its version number to produce a so-called
strong name. Strong names are globally unique and therefore allow assemblies
to reference each other by name without ambiguity.

2.1 The Assembly Lookup Service

A central feature of lady is its globally available and resilient Assembly Lookup
Service (ALS), which resolves assembly names to URIs. lady can also deter-
mine if an assembly has been superseded by a more recent version, and provides
the functionality for obtaining assemblies in a number of ways, for example by
downloading them via HTTP. Additional features include caching of assemblies,
automatic resolution of assembly references (for example during deserialization),
prefetching of assemblies based on dependencies, and creation of sandboxed envi-
ronments to execute partially trusted code.

lady stores meta-information about assemblies in a cloud database. To load
an assembly and proceed with execution, an application may have to wait for
a database lookup to complete. We therefore value predictable and low-latency
lookup performance. Currently, we use Amazon’s DynamoDB [5] as our database
backend as it has an official api for C#, boasts scalability, and offers predictable
performance. lady does not rely on other advanced database features and can
therefore easily be adapted for other database systems.

lady manages a database D containing information on all known assemblies.
Each assembly m has a name, a culture, a public-key token, and a version num-
ber. The Strong Name (SN) of m uniquely identifies m in the universe Ψ of all
assemblies, and is defined by the tuple:

SN(m) = (m.name,m.culture,m.publicKeyToken,m.version)

We define the Packet Name (PN) of m similarly to the strong name tuple, but
without the version number:

PN(m) = (m.name,m.culture,m.publicKeyToken)

Any two assemblies m,n ∈ Ψ,SN(m) �= SN(n) are members of an implicitly
related sequence of assemblies if they have the same packet name PN(m) =
PN(n). Because version numbers are assumed to be monotonically increasing,
packet names define ordered set of assemblies that relate in name, culture, and
public key tokens; typically used for different version of the same code-base as
it evolves over time.

Let D ⊆ Ψ be the set of all assemblies known to lady. For each assembly
m ∈ D, lady maintains two types of information: base records and assembly
records. Base records maps the packet name PN(m) to the strong names of
all assemblies m′ ∈ D with PN(m) = PN(m′). This enables lady to support
wildcard queries for specific version on an assembly, like for the most recent one
in D. Assembly records maps SN(m) to the network location and protocol for
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downloading the assembly code for m. For instance, the record may contain a
download url, or a NuGet3 package identifier and version.

2.2 Security

The public-key token of assembly m is defined by the .net framework as an
8-byte hash of the public key matching the private key used to sign m; com-
monly displayed as a 16-digit hexadecimal number. Since the public-key token
is determined by the signer of m, and also incorporated into SN(m), it is not
possible to modify m without knowing the private key (or breaking cryptog-
raphy building blocks). With access to the source code for m, the code can be
recompiled and signed it with a different key. However, the resulting assembly m′

would have a different packet name PN(m′) �= PN(m), and thus also a different
strong name. As such, an attacker cannot successfully trick correct processes to
execute m′ instead of m.

While the assembly naming scheme protects against malicious tampering
with the code, we would also like to guarantee that lady can provide genuine and
valid download locations. Even if an attacker cannot manufacture fake assem-
blies, he could potentially register an assembly with invalid meta-information,
rendering it unobtainable through lady. To guard against such attacks, we
require registrations of assemblies to be in the form of signed messages, where
the message signer’s public key must correspond to the public key token of the
assembly in question. This ensures that the person or program registering the
assembly is the same as the signer of the assembly, and third parties cannot
register invalid information about assemblies.

2.3 Assembly Registration

To add new assemblies to lady, we provide the register command-line utility.
The register utility does not directly update lady’s cloud database D, but
instead constructs a registration message {REG, m}k, signed with key k, pro-
vided by the software vendor. The signed message can then be sent to lady.
Upon receiving {REG, m}k, lady verifies that k matches m.publicKeyToken,
before adding m to D. For instance, to register the MyLib assembly, the vendor
will run:

$ lady register -a MyLib.dll -p MyLib -v 1.2 -k mykey.pfx

Here, the assembly file is specified with the -a option. The utility uses reflection
to extract the strong name SN(MyLib.dll). The -p and -v options specify a
NuGet package identifier and version, respectively, so the assembly will be reg-
istered as obtainable by using NuGet to install version 1.2 of the MyLibrary
package. Finally, the mykey.pfx file, specified with the -k option, contains the

3 NuGet is a package management system, closely integrated with Microsoft Visual
Studio.
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key pair for signing the registration message. If the public key does not match
the public key token of the assembly, registration will fail. The register utility
is implemented to be suitable for scripting and integration into existing build
systems.

We have settled initially on this model where assemblies must be explic-
itly added to lady by their vendors. It would be possible to create automated
tools for registering assemblies that have been created by others. For example,
we could integrate with existing package management systems like NuGet and
scan all newly uploaded packages for strong-named assemblies, automatically
registering them with lady. This could improve the coverage of our lookup ser-
vice, and possibly be more convenient for developers, but we have deferred that
investigation to future work.

2.4 Loading Assemblies Explicitly

lady provides the LoadAssembly method to applications for explicit loading of
assemblies at runtime. For example usage, consider the configuration parser in
Code Listing 1. Here, the code calls LoadAssembly at an early point in the pro-
gram execution4 to load the YamlDotNet library, identified by its assembly name
and public key token. The culture is left unspecified and defaults to “neutral”.
The latest release with major version 3 is requested by specifying “3.*” as the
version number.

YamlDotNet provides functionality for parsing of yaml—a human-friendly
serialization language commonly used in configuration files. Bugs in configuration
parsing can be unpleasant and can potentially render the application exploitable.
By loading the code dynamically with lady, the application can ensure that it
always has the latest available version of YamlDotNet library, thereby picking
up any bugfix releases promptly and automatically. It will not be necessary to
deploy a new version of the application just because a bug has been discovered
and fixed in one of the libraries that it depends on.

Once an assembly is loaded, its functionality can be accessed programmati-
cally in two ways. The first approach is to use reflection to instantiate objects
and invoke methods. This is exemplified in the method AccessUsingReflection,
which parses a yaml string into a Config object. The implementation instan-
tiates a Serializer object using reflection, before invoking its Deserialize
method. This approach certainly works, but there are some factors that make it
cumbersome:

1. Types must be specified as strings with fully-qualified type names: a
verbose and error-prone task. The verbosity stacks up when multiple
types are involved; in the example, the Serializer constructor requires a
CamelCaseNamingConvention object, which must be instantiated first.

4 In this example, the call happens in the static constructor of the ConfigParser class.
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Code Listing 1. Example to illustrate dynamic loading of an assembly, and how to
access its functionality.

using YamlDotNet.Serialization;

using YamlDotNet.Serialization.NamingConventions;

class ConfigParser

{
static readonly ILady lady = LadyFactory.Init();

static readonly Assembly yaml = lady.LoadAssembly(

name: ”YamlDotNet”, publicKeyToken: ”ec19458f3c15af5e”, version: ”3.∗”);

public class Config

{
public string ConferenceName { get; set; }
public DateTime Deadline { get; set; }

}

public static Config AccessUsingReflection(string data)

{
var namingConvention = yaml.NewInstance(

”YamlDotNet.Serialization.NamingConventions.CamelCaseNamingConvention”);

dynamic d = yaml.NewInstance(”YamlDotNet.Serialization.Deserializer”,

null , namingConvention, false);

return d.Deserialize<Config>(new StringReader(data));

}

public static Config StaticallyTypedAccess(string data)

{
var d = new Deserializer(namingConvention: new CamelCaseNamingConvention());

return d.Deserialize<Config>(new StringReader(data));

}
}

2. Constructor arguments are specified as object instances, without static
type checking. Method calls have similar constraints. The invocation of
Deserialize looks superficially as if it might be type-checked by the com-
piler, but in fact the code relies on dynamic variables, which are assumed to
support any and all operations, and defer actual type checking until run-time.

3. Named and default arguments cannot be used. Combined with the lack of
static type checking, this often leads to long lists of null arguments where
any non-default arguments must be positioned with great care.

4. Finally, reflective invocations add overhead, which may be an issue if they
end up sitting on the critical path.

Also note that the NewInstance method used in this example is itself an
extension method that we have implemented as a convenience in a utility library.
NewInstance fills in default values for various optional hooks and packs the
constructor arguments into an array. Without relying on such helpers, the object
instantiation code would have to be even more verbose.
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The drawbacks of reflection might call into question the practical utility of
loading assemblies dynamically. Fortunately, there is a way to get the best of
both worlds, and benefits from static type checking and related ide features like
code completion while still using lady under the hood. This second approach
is to compile the application with the most recent assembly versions that are
available at build time, and override the assembly resolution mechanism at run-
time so that lady gets a chance to load any newer versions that may have been
released since then.

The StaticallyTypedAccess in Code Listing 1 demonstrates this approach.
The method is similar to AccessUsingReflection, but with the clarity and
safety of normal syntax, with type checking, and without the overhead of reflec-
tive calls. This works because the compiler has access to the YamlDotNet assem-
bly at compile time, but also means that a reference to that specific version of
YamlDotNet is included in the application’s assembly. However, assembly refer-
ences are not resolved immediately when an application starts. The .net runtime
resolves assemblies on demand, when a method that references the assembly is
first entered. On startup, lady hooks into the assembly loading mechanism by
overriding certain event handlers, and therefore gets to decide how exactly to
resolve an assembly reference. By the time StaticallyTypedAccess is invoked,
lady has already been instructed to load the latest version of the YamlDotNet
assembly, so that is the version that will be used.

2.5 Loading Referenced Assemblies

In additional to explicitly loaded assemblies, as described in Sect. 2.4, lady sup-
ports loading assemblies by references in the code. For example, an application
might load a plug-in assembly through lady, and the plug-in might contain refer-
ences to other assemblies that have not been loaded, or even installed. Another
scenario that may trigger assembly resolution is during object deserialization
when data contain references to types defined in unresolved assemblies. A prime
advantage of lady is that any blob of serialized data can be deserialized at
any node and at any time, so long as all of the referenced assemblies have been
registered with lady.

Resolving assemblies on demand raises the question of how to deal with con-
flicting versions. If plug-ins A and B both reference assembly C, but demand
different versions of C, or if two blobs of data were serialized with different ver-
sions of an assembly, a potential conflict will result. One technical possibility is
to load multiple versions of the same assembly. However, this is not a recom-
mended practice, due to the confusion that may arise when types have the same
name but different identities [15].

In some cases, the right thing to do is simply to load the most recent assem-
bly version that exists. Of course, this only works for versions that are backwards-
compatible. There is a standard called semantic versioning [1] that would resolve
this issue if it was adopted universally. With semantic versioning, the major
version number is bumped whenever a backwards-incompatible change is intro-
duced. However, a 2014 survey indicates that this standard remains to be widely



Dynamically Loading Mobile/Cloud Assemblies 177

adopted [19]. Therefore, lady takes a more conservative approach and does not
attempt to infer automatically if two versions of an assembly are compatible.
Instead, we rely on hints from the client, in the form of a compatibility policy,
which is a simple boolean-valued function that may be specified programmatically.
Whenever lady must determine if a given pair of assembly versions should be con-
sidered compatible, it consults the compatibility policy by invoking this function.
The default compatibility policy is a slightly stricter version of semantic version-
ing: if both the major and the minor version numbers are equal, the assemblies are
considered compatible. (Build and revision numbers may still differ.)

Armed with this concept of compatibility policies, lady takes the following
approach to assembly resolution: the assembly lookup service is first queried
to retrieve all known versions of the assembly in question, and the most recent
version that is compatible with the requested version is then selected. lady then
proceeds to obtain and load this specific version of the assembly. For example, if
an assembly is registered with versions 1.0.1, 1.0.2, and 1.0.3, and three plug-ins
each reference one of these versions, then the actual version that will be loaded
(under the default compatibility policy) is 1.0.3, regardless of the order in which
the plug-ins are loaded.

2.6 Loading Partially Trusted Code

While plug-ins might be considered trusted code by some applications, there
are many cases where applications wish to load and execute partially trusted
code with a limited set of permissions. For example, distributed data processing
models like MapReduce rely on user-defined functions for flexibility and expres-
siveness. When invoking these functions, it is prudent to do so from a sandboxed
environment with restricted capabilities for hazardous actions like network and
file i/o. On the surface, this appears to preclude the use of lady from user-
defined functions, since network and file i/o are needed to locate and obtain an
assembly, and a full, unrestricted permission set is required in order to override
the assembly resolution mechanism.

lady resolves this problem by offering a sandbox abstraction based on .net
application domains [14]. Application domains provide an isolation boundary
for security, reliability and versioning, and for loading assemblies. They are typ-
ically created by runtime hosts—which are responsible for bootstrapping the
common language runtime before an application is run—but a process can cre-
ate any number of additional application domains to further separate and isolate
execution of code.

lady must be initialized (using the LadyFactory class) exactly once per
process, and from a fully trusted application domain—typically the initial appli-
cation domain that is created on startup. This singular instance of lady thus
executes with unrestricted permissions, as required. However, users may create
additional sandboxes using the MakeSandbox method, as exemplified in Code
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Code Listing 2. Example code using lady to load partially trusted user-defined
functions inside a sandbox.

using Microsoft.Hadoop.MapReduce;

class MapReduceSandbox : LadySandbox

{
public MapReduceSandbox(object x) : base(x) { }

public override void Play()

{
// Load an assembly with partially trusted UDFs

Assembly myUDFs = lady.LoadAssembly(name: ”MyUDFs”,

publicKeyToken: ”8c11fe16618d1673”, version: ”∗”);
var mapper = myUDFs.NewInstance(”WordCountMapper”) as MapperBase;

var reducer = myUDFs.NewInstance(”WordCountReducer”) as ReducerCombinerBase;

// The mapper and reducer may now be invoked in relative safety; they

// cannot access the file system, network, environment, etc.

}
}

class MapReduceProgram

{
static void Main(string[] args)

{
LadyFactory.Init().MakeSandbox(typeof(MapReduceSandbox)).Play();

}
}

Listing 2, where the user-defined functions required for a MapReduce job are
loaded inside a sandbox. The sandbox is a partially trusted application domain
that is initialized with a figurative umbilical cord that leads back to the fully
trusted application domain. Concretely, the application must implement a sub-
class of LadySandbox with a single-argument constructor that passes on a special
proxy object to its base class. The proxy object is named x in the example, and
constitutes the umbilical cord.

Inside a sandbox, execution starts in the Play method. Any LoadAssembly
calls made inside the sandbox get routed back to lady using cross-domain
remote method calls on the proxy object. lady will determine which version
to load, as described in the previous section, and retrieve the assembly data,
either directly from its cache, or by first obtaining the assembly. The assembly
data is then passed back to the sandbox, where it is loaded into the partially
trusted application domain. Assemblies that must be loaded due to code refer-
ences or during deserialization are handled similarly. This approach effectively
grants sandboxes full capabilities with regards to loading of assemblies, so long
as this happens through lady. The implementation details of how to communi-
cate across application domains are hidden. All sandboxes also share the benefit
of a common cache.
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3 DNS Integration

With the assembly lookup service, lady adds a level of indirection to load-
ing assemblies. This relieves applications of various responsibilities, and enables
several useful applications. It also raises some important concerns:

Availability. If the assembly lookup service becomes unavailable, applications
may also experience various forms of unavailability. For example, it might not be
possible to start a scheduled MapReduce job because the assembly that contains
the required user-defined map function cannot be located. (lady does maintain
a client-side cache, but it could also be missing there.)

Scalability. lady is designed to serve numerous application instances running
in many different locations all over the globe. The aggregated number of queries
for assembly information is expected to be large. While cloud databases like
DynamoDB generally provide great scalability, this does come with a monetary
cost. As the volume of requests grows, the financial cost of operating the assembly
lookup service could become prohibitive.

Latency. Applications may have a tendency to load assemblies sequentially,
either as a result of logical dependencies or due to the sequential nature of their
execution. Any extra latency incurred when an assembly is loaded may thus
stack up and result in unwanted user-perceptible delays, for example on appli-
cation startup. We should therefore strive to minimize the latency of individual
assembly lookups.

To address these three concerns, we have integrated the assembly lookup
service with the Domain Name System (dns). Given that registration of new
assemblies is expected to be a relatively rare event, the assembly lookup ser-
vice’s workload is almost read-only. This implies that caching can be an effective
way to reduce both load and latency, and dns is a globally distributed cache
readily available and with extremely high availability. While the most com-
mon use of dns is to associate globally unique host names with IP addresses,
we use it to associate assemblies strong name with their meta-data, such that
∀m ∈ D,Resolve (SN(m)) =⇒ m. This approach addresses all three concerns
above, since dns is globally available, will significantly alleviate the load on the
cloud database, and can generally be accessed with low latency.

For the dns integration we rely on our previous work with the Jovaku sys-
tem [17]. Jovaku mirrors database keys as labels in the dns namespace. Database
lookups can then be translated into dns request on the client side. A relay-node
is set up close to the cloud database that performs the opposite translation.
Figure 1 shows how this works in (a) the baseline case where we have no dns
integration, (b) the case where we miss the dns cache, and (c) the common case
where we hit the dns cache. This approach is very effective at reducing latency
for read-mostly workloads like the one exhibited in lady [17].
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Fig. 1. Assembly lookups with and without dns integration.

4 Evaluation

Many of the reasons to adopt lady are anecdotal as it is hard to quantify ben-
efits like flexibility and extensibility. However, there are concrete performance
benefits, as we will demonstrate in this section. As a case study we rely on
our previous work on satellite execution [18]: a technique to reduce latency for
applications that interact repeatedly with cloud services by temporarily offload-
ing code so it executes in closer proximity to the cloud. For this, we developed the
mobile functions a programming abstraction, and an execution server capable
of receiving and executing such functions.

In our original implementation of satellite execution, referred to as baseline,
the execution server receives mobile functions as serialized objects. Before the
mobile function’s entry point can be invoked, the objects must be deserialized
and allowed to execute. Deserialization can fail if an unresolvable assembly refer-
ence is encountered. In the baseline implementation, we handled this and other
assembly resolution errors by returning an error to the client. The client would
then have to upload the missing assembly to the execution server, before making
a new attempt to offload the mobile function.

The baseline design for offloading mobile functions was grounded in two
assumptions: (1) the client will have the code for any assemblies that are refer-
enced by its mobile functions, and (2) the execution server has some means to
resolve any assembly resolution errors it encounters. Although both assumptions
are reasonable, they can cause excessive back-and-forth communication between
the client and the execution server for mobile functions that depend on multiple
assemblies.

Refactoring our baseline implementation to use lady made the implementa-
tion of both the execution server and the client simpler, and the services became
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more robus. The modified execution server can deserialize mobile functions with-
out having to interact with the client, trusting lady to resolve assemblies. Sim-
ilarly, a mobile function can be invoked through its entry point, and any ref-
erenced assemblies will be loaded through lady. Additionally, we use lady’s
sandboxing support, as described in Sect. 2.6, to isolate the execution of mobile
functions in a separate application domain, minimizing the potential for disrup-
tion by misbehaving mobile functions.

We envision diverse applications for lady, that may exhibit many different
access and usage patterns. Performance also depends on how an application is
deployed geographically, since this affects the latency to access both the execu-
tion server and dns. Therefore, we use synthetic workloads in our experiments,
and run experiments from multiple geographical locations, comparing the base-
line and lady implementation.

We set up experiments with the execution server hosted on Amazon EC2
nodes in various geographically zones. We chose Ireland, California, Singapore
and Sydney to exhibit variations in the routing distance to the client located
in Norway. The EC2 nodes was equipped with 4 GB memory and a dual-core
2.5 GHz 64 bit vcpu, and the client was a desktop machine equipped with 64 GB
memory and a quad-core Intel Xeon E5-1620 3.7 GHz cpu. Typical observed ping
latency and hop count between the client and the execution nodes is illustrated
in Table 1.

Table 1. Machines involved in evaluating the effectiveness of using lady for reducing
latency in satellite execution, along with the latency and hop count to the desktop
client located in Tromsø.

Location EC2 type Ping latency # Hops

Ireland t2.medium 64 ms 15

California t2.medium 155 ms 17

Singapore t2.medium 339 ms 20

Sydney t2.medium 365 ms 12

We stored a set of assemblies in a separate table in the DynamoDB database
in each of the locations, acting as our package management system, and regis-
tered these assemblies with lady. We then tried executing mobile functions with
a varying number of assembly dependencies that would be resolved sequentially
as the execution progressed.

Figure 2 shows the difference in latency between our baseline implementation
of satellite execution, and the refactored implementation using lady. Given
that the motivation for satellite execution is to reduce latency, the observed
performance benefits of using lady are highly significant. Even when a mobile
function has no additional dependencies beyond its own assembly, it saves one
round-trip between the execution server and the client. By comparison, lady
is only making low-latency dns requests to resolve assemblies, coupled with
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Fig. 2. Observed mean latency when executing a mobile function with a varying num-
ber of assembly dependencies with and without lady for various geographical locations.

lookups to DynamoDB to retrieve the assembly data. The reason that we save
latency in this scenario is two-fold:

1. We substitute long round-trips between Norway and Ireland with much faster
dns lookups.

2. Assembly data is stored in the cloud, instead of at the client. Since we need
to load the assemblies at a node in the cloud, this data placement is more
optimal.

Not every application that employs lady will benefit from the same fortu-
itous circumstances. For example, if all assemblies are obtained in advance, lady
will add the overhead of one dns lookup for each resolved assembly. In exchange,
lady guarantees that the most recent assembly version is found. Whether this
is a reasonable trade-off depends on the application’s requirements for flexibility
and extensibility. Figure 3 shows the overhead added by lady for the satellite
execution scenario, when the experiment is set up so that all assembly data
has been obtained in advance. The overhead is proportional to the number of
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Fig. 3. Observed mean latency when executing a mobile function with all assembly
data present, where lady performs dns lookups to ensure that the latest versions will
be loaded, and the baseline does not check for updated versions.

dependencies, as each dependency adds another dns lookup. The actual resource
requirements for performing a dns lookup are negligible.

It is worth noting that the overhead illustrated in Fig. 3 is the worst-case
scenario. The mobile function used in the experiment does not do any useful
work, and will be stalled while waiting for lady to check for updated assembly
versions. In a more realistic scenario the mobile function will do useful work
while lady checks for updated assemblies in the background, and might not
need to stall when the next dependency boundary is crossed.

5 Related Work

Package-management systems backed by online code repositories have become
common for deploying applications in many modern systems. For instance, pop-
ular operating systems like the Linux based Ubuntu and Debian systems rely
on the Advanced Package Tool (apt) for software installation, upgrade, and
dependency resolving [8]. To host the code online, these communities depend
on donated third-party servers, known as mirrors, to distribute their software to
millions of end-users. Although, these software mirroring infrastructures lack the
mechanisms to deal with the wide-range of faults that can occur, solutions for
resilient software mirroring has been demonstrated [12,13]. Systems distributed
commercially, like Microsoft Windows, often come equipped with proprietary
mechanisms for distributing software updates [7] and are generally less vulnera-
ble to intrusions.

In the framework for code updates described by [9], semi-automatically gen-
erated software patches include both the updated code and the code for making
the transition safely. By using the Typed Assembly Language, these patches can
consist of verifiable native code, which is highly beneficial to system safety.
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However, these systems are primarily geared towards installing applications
into a relatively static environment. lady goes a step further and supports
dynamic loading of code into running applications. A package management sys-
tem generally aims to ensure that all prerequisites for an application—e.g., the
assemblies that it may depend on—are installed before launching the applica-
tion. lady takes a different approach and obtains these assemblies on demand,
if and when they are referenced and must be loaded. In some cases, the assem-
blies that may be required are truly unpredictable, as in our satellite execution
system, and lady can solve a problem that package management systems fail
to address.

The problems of applying dynamic updates of running programs is well
known and has been the subject of research for several decades [20]. dymos [2]
is perhaps the earliest programming system that explores the ideas of dynamic
updates of functions, types, and data objects. dymos is based on the StarMod
extension of the Modula language, and it is unclear to what extent the proposed
mechanisms are applicable to modern application platforms like .net. Other pro-
gramming languages, like Standard ML, have also been demonstrated to support
dynamic replacement of program modules during execution [6]. Our approach
specifically targets the .net platform and leverages the capabilities of the .net
application domains and their customizable assembly resolution mechanism.

The general complexity of developing and deploying modern distributed
applications, which span a variety of mobile devices, personal computers, and
cloud services, has been recognized as a new challenge. Users expect applica-
tions and their state to follow them across devices, and to realize this function-
ality, one or more cloud services must usually be involved in the background.
Sapphire [23] is a recent and comprehensive system that approaches this prob-
lem by making deployment more configurable and customizable, separating the
deployment logic from the application logic. The aim is to allow deployment deci-
sions to be changed, without major associated code changes. Applications are
factored into collections of location-independent objects, communicating through
remote procedure calls.

We envision lady as a particularly useful sidekick for the design and imple-
mentation of this new generation of highly flexible and extensible distributed
systems. By facilitating the on-demand resolution of assemblies, system archi-
tectures can make the simplifying assumption that all participants will share a
common code base, and enjoy greater freedom in their deployment decisions.

6 Conclusion

A key idea underlying lady is to make all code live in a globally accessible
namespace so that it can be referenced unambiguously by name and retrieved
on demand in any context. Strong-named .net assemblies already have globally
unique names, but the ability to load code in any context is missing. lady fills
in this gap by creating a lookup service for assemblies, and by implementing
the mechanisms for obtaining code on demand. This aligns with a vision where
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code can be deployed only once, and then instantiated anywhere, in various
configurations.

The general approach of loading code on demand means that distribution of
code is decoupled from distribution of state. In other words, code does not have
to be propagated through a distributed system along the same communication
paths as data. Consider, for example, a system where nodes communicate over
a gossip-based protocol. A message might contain serialized data and traverse
multiple edges of the gossip graph before it arrives at a node where the data must
be deserialized. Any intermediate nodes will only be passing along the serialized
data and may never have a need for the associated code. But the sender does
not know if the target node has the requisite code installed. So to be safe, the
sender will have to include the possibly redundant code as part of its outgoing
message, or the design must be complicated in some other way, for example by
adding additional rounds of gossip to retrieve the code.

With the separation of concerns that lady offers, the design of such gossip-
based systems could be simplified, since code would be retrieved on demand via
an entirely independent mechanism whenever data was deserialized. Our satellite
execution refactoring in Sect. 4 also helps to illustrate how lady can simplify
the design of other distributed systems, to improve extensibility and serve as a
convenient foundation for mobile code.
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