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Abstract. Cloud computing enables the delivery of compute resources
as services in an on-demand fashion. The reliability of these services
is of significant importance to their consumers. The presence of anom-
aly in Cloud platforms can put their reliability into question, since an
anomaly indicates deviation from normal behaviour. Monitoring enables
efficient Cloud service provisioning management; however, most of the
management efforts are focused on the performance of the services and
little attention is paid to detecting anomalous behaviour from the gath-
ered monitoring data. In addition, the existing solutions for detecting
anomaly in Clouds lacks a multi-dimensional approach. In this chapter,
we present a wavelet-based anomaly detection framework that is capa-
ble of analysing multiple monitored metrics simultaneously to detect
anomalous behaviour. It operates in both frequency and time domains in
analysing monitoring data that represents system behaviour. The frame-
work is first trained using over seven days worth of historical monitoring
data to identify healthy behaviour. Based on this training, anomalous
behaviour can be detected as deviations from the healthy system. The
effectiveness of the proposed framework was evaluated based on a Cloud
service deployment use-case scenario that produced both healthy and
anomalous behaviour.

Keywords: Multi-dimensional anomaly detection · Wavelet transfor-
mation · Cloud monitoring · Data analysis · Cloud computing

1 Introduction

Cloud computing has transformed the delivery of IT resources into services that are
accessible through the Internet. The large-scale and abstract nature of Cloud plat-
forms is intimidating to both consumers and administrators. This is reflected in
the difficulty of managing such systems to provision consistent and reliable Cloud
services in order to gain consumer trust and high adoption of Clouds. Anomalous
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behaviour endangers the consistent performance of virtual machines in providing
resources for the execution of consumer applications. It is therefore important to
have a strategy for detecting anomalous events in Cloud environments to prevent
such inconsistency and improve the reliability of Cloud services. To detect anomaly
in Clouds, a number of challenges such as the differentiation between normal and
anomalous behaviours need to be addressed. In addition, Cloud environments are
dynamic. This means that normal behaviour can be continuously unfolding and a
current model of normal behaviour may be different in the future.

Moreover, Cloud service provisioning management, based on monitoring, has
focused on detecting performance issues and has largely ignored anomaly detec-
tion. Most of the existing anomaly detection solutions tend to address a par-
ticular fixed formulation of the problem [8,19]. A recent survey on anomaly
detection in Clouds [20] has shown the lack of multi-level detection techniques
to adequately address reliability issues in Clouds.

In this chapter, we propose a novel anomaly detection framework for detect-
ing anomalies in the behaviour of services hosted on Cloud platforms. The
framework consists of a monitoring tool to supervise service execution on Cloud
infrastructures, and a wavelet-inspired anomaly detection technique for analysing
the monitoring data across Cloud layers and reporting anomalous behaviour.
Based on a service-deployment use-case scenario, the detection technique is eval-
uated to demonstrate its efficiency. The achieved results are compared against
existing algorithms to show the technique’s significance.

The rest of the chapter is organised as follows: Sect. 2 presents somebackground
knowledge on anomaly detection and discusses categories of anomaly. In Sect. 3,
we analyse the related work and differentiate our contributions to it. Section 4
presents the proposed framework, focusing on the monitoring and anomaly detec-
tion components, while Sect. 5 describes its implementation details. In Sect. 6, we
present the evaluation of the framework and Sect. 7 concludes the chapter.

2 Background

Anomaly detection (or outlier detection) is the identification of items, events or
observations that do not conform to an expected pattern or to other items in a
data set. In a regular and repeatable time series, a profile of expected behaviour
should be easily obtainable. In medicine, one such example is an electrocardio-
gram (ECG). This is used to classify a patient’s heart activity. A medical doctor
has been trained to quickly identify anomalous ECGs, or indeed anomalies in an
ECG, by studying a large number of healthy ECGs. An analogous health mon-
itor would therefore be desirable in other areas of science, including the health
of shared network resources and Cloud-based services [9,14] that are subject to
demands that vary greatly and experience periodic growth, seasonal behaviour
and random variations. Anomalous behaviour can be the result of unprecedented
user requirements, malicious (hacking) activities, or can be symptomatic of issues
with the system itself. Before identifying the cause of anomalous behaviour, one
must first identify anomalous behaviour by detecting a measurable deviation
from the expected behaviour.
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2.1 Anomaly Categories

Based on existing research [8], anomalies can be grouped into the following
categories:

1. Point Anomaly: This is a situation where an individual data instance can
be considered as anomalous with respect to the rest of the data. It is seen as the
simplest form of anomaly and most of the existing research on anomaly detection
is focused on this category [8].

2. Contextual Anomaly: This represents a data instance that is anomalous in
a particular context. It is also known as a conditional anomaly [27]. The context
is mostly derived from the structure in the data set and should be included in the
problem formulation. Mostly, the choice to use a contextual anomaly detection
technique depends on its meaningfulness in the target application domain. For
example, where an ambient temperature measurement would be at the lowest
during the winter (e.g., −16 ◦C) and peak during the summer (e.g., 38 ◦C), a
temperature of 80 ◦C would be anomalous. However, 80 ◦C is an acceptable value
in a temperature profile of boiling water. In this category, the availability of
contextual attributes is a key factor. In some cases, it is easy to define context
and therefore the use of a contextual anomaly detection technique would be
appropriate. In some other cases, context definition and the application of such
techniques are challenging.

3. Collective Anomaly: This represents a situation where a collection of
related data instances is anomalous with respect to the entire data set. The sin-
gle data instances in this collection may not be anomalous individually but when
they occur together, they are considered anomalous. The following sequence of
events in a computer network provides an example:

. . . http-web, buffer-overflow, http-web, smtp-mail, ssh, smtp-mail, http-
web, ftp, smtp-mail, http-web . . .

The occurrence of the above highlighted events together could signify an
attack where the attacker caused a buffer-overflow to corrupt the network, and
then remotely accessed the machines using SSH and copied data through FTP. In
this example, note that each of these events could be normal but their clustering
is anomalous.

3 Related Work

Previously, extensive research has been done for anomaly detection in large-
scale distributed systems such as Clouds [15,16,20,23,25]. Ibidunmoye et al. [20]
present a review of the work done in performance anomaly detection and bottle-
neck identification. They describe the challenges in this area and the extent of the
contributed solutions. In addition, they pointed out the lack of multi-level anom-
aly detection in Clouds. Mi et al. [23] present a hierarchical software-orientated
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approach to anomaly detection in Cloud systems, tracing user requests through
VMs (virtual machines), components, modules and finally functions. The authors
attempt to identify those software modules that are responsible for system degra-
dation by identifying those that are active during abnormal and normal behaviour
of the system. For example, this approach considers a module to be responsible for
abnormal system behaviour if its response latency exceeds the required threshold.
However, it does not consider a module that finished quickly because of a software
crash as contributing to system degradation.

Some current research in anomaly detection relies on fixed thresholds [7,30].
In [30], particular mention is made of the assumption of Gaussian distributed
data with defined thresholds. Unfortunately, this places assumptions (and there-
fore limitations) on the data being analysed if it must fit (or is assumed to fit)
a particular distribution. Typically, these thresholds must be calculated com-
pletely a priori and therefore require anomaly-free time-series data of the sys-
tem. MASF [7] is one of the more popular threshold-based techniques of use in
industry, where thresholds are defined over precise time-intervals (hour-by-hour,
day-by-day, etc.). Lin et al. [21] firstly use a global locality-preserving projection
algorithm for feature extraction, which combines the advantages of PCA (Prin-
cipal Component Analysis) with LPP (Locality Preserving Projection). They
then use an LOF (Local Outlier Factor) based anomaly detection algorithm on
the feature data. LOF assigns a factor to each data point that measures how
anomalous it is, and considers points whose factor exceeds a certain threshold
to be anomalies.

Statistical approaches have also been developed in prior academic work
[1,2,5] to extend to multi-dimensional data as well as reducing false positives.
However, these methods often require knowledge of the time-series distribution
or may not adapt well to an evolving distribution. On the other hand, probabilis-
tic approaches, such as Markov chains [6,26], can produce excellent predictions
of a system’s behaviour, particularly if the system is periodic with random,
memory-less transition between states. The size of the probability matrix will
grow with the number of defined Markov states, and this may present an issue
when extending to multi-metric analysis. However, all of these methods only
rely on time-domain information while more information exists in the frequency
domain. Considering the distributed nature of Clouds, it is a prime target for
sophisticated intrusion attacks [18] and therefore merits the consideration of all
information available.

Recent works [17,22,23,29] have begun to use wavelet transforms (which
utilise time and frequency domain information) as part of their pre-processing
techniques to identify and characterise anomalies in Cloud-based network sys-
tems. Wang et al. [29] describe EbAT - an anomaly detection framework that
performs real-time wavelet-based analysis to detect and predict anomalies in
the behaviour of a utility Cloud. Their system does not require prior knowledge
of normal behaviour characteristics, and is scalable to exascale infrastructure.
Using the RUBiS benchmark to simulate a typical website, it achieves 57.4% bet-
ter accuracy than threshold-based methods in detecting uniformly distributed



Detecting Anomaly in Cloud Platforms Using a Wavelet-Based Framework 135

injected anomalies. It aggregates metric data before analysis in order to achieve
better scalability. However, it does not consider multi-level anomaly detection.
Guan et al. [17] present a wavelet-based anomaly detection mechanism that
exhibits 93.3% detection sensitivity and a 6.1% false positive rate. The algo-
rithm requires normal runtime Cloud performance training data. However, it is
not indicated how transient anomalies in the training data are identified to pre-
vent false negatives. A subset of metrics that optimally characterises anomalies
is chosen. Metric space combination is then applied to further reduce the metric
space. It is unclear from this approach what would occur if a metric that was
initially stable – and therefore excluded from the metrics under consideration –
began to exhibit anomalous behaviour. Once an anomaly is detected using this
method the metric responsible cannot be identified.

To the best of our knowledge, none of the existing solutions present a wavelet-
based multi-level anomaly detection technique that can detect and diagnose the
root causes of anomalies across Cloud resource and application layers.

4 Anomaly Detection Framework

This section describes the architecture of our proposed anomaly detection frame-
work. It is designed to address the previously identified challenges. The archi-
tecture is capable of handling the service provisioning lifecycle in a Cloud envi-
ronment, which includes service scheduling, application monitoring, anomaly
detection and user notification.

Fig. 1. System architecture.
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Figure 1 presents an abstract view of our architecture and its operations. Cus-
tomers place their service requests through a defined interface (Service Deploy-
ment Interface), which acts as the front-end in the Cloud environment. The
received requests are validated for format correctness before being forwarded
to the Provisioning Manager for further processing. The provisioning man-
ager includes a Load Balancer that is responsible for equally distributing the
service/application deployment for optimal performance. The applications are
deployed on the Compute Resources for execution. The Service Monitor super-
vises the execution of the applications on the compute resources. The resulting
monitoring data are forwarded to the Detection/Analytic component for analysis.
Any anomaly detection from the analysis is communicated to the provisioning
manager to take appropriate action.

The proposed architecture is generic to support a wide range of applications,
varying from traditional web services to parameter sweep and bag-of-task applica-
tions. In this chapter,we detail themonitoring and anomaly detection components.

4.1 Service Monitor Design

The service monitor comprises individual configurable monitoring tools in a
decentralised fashion. It is capable of monitoring Cloud resources and appli-
cations, which gives it an advantage over resource-monitoring only tools such as
LoM2HiS framework [10,11]. At the application level, the service monitor sup-
ports event-based monitoring of activities. Figure 2 presents an overview of the
service monitor.

Fig. 2. Service monitor.
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As shown in Fig. 2, the service monitor has a modular design. The configura-
tion of the tools is done through the Monitor Configuration Interface. It allows
the parameterisation of the individual monitoring tools, for example to specify
different monitoring intervals.

The Input Processing API is responsible for gathering the configurations
from the previous component and parsing them into a suitable format for the
back-end service monitor core engine to understand. The Service Monitor Core
instantiates the necessary monitoring tools with the proper configuration para-
meters and supervises them while monitoring the deployed Cloud services. The
monitoring tools are executed in parallel and each sends its monitored data using
the Communication Protocol into a database as well as to the anomaly detection
module.

In designing the service monitor, we strived to make it non-intrusive, scalable,
interoperable and extensible. These qualities have been associated with efficient
monitoring tools as described in a recent monitoring survey [12]. The separa-
tion of the service monitor components into modules makes it easily extensible
with new functionalities. To achieve non-intrusiveness, we host the monitoring
software on separate Cloud nodes to the ones used to execute the customer ser-
vices. However, we deploy light weight monitoring agents on the compute node
for gathering the monitoring data and sending it back to the server. This helps
to avoid resource contention between the monitoring server and the deployed
Cloud services that might degrade customer service performance. In addition,
this separation increases the scalability of the monitoring tool since it facilitates
the creation of clusters of monitoring agents with decentralised control servers.
The communication protocol uses a platform-neutral data interchange format
for formatting and serialising data to achieve interoperability.

4.2 Anomaly Detection Algorithm

Our anomaly detection algorithm is highly configurable for different detection
stages. This extended version can tolerate data of an arbitrary rank. In our use
case, we consider multiple one-dimensional metrics simultaneously. The wavelet
algorithm could also consider matrix and other forms of data streams (e.g.
matrix/tensor) if available.

In the algorithm’s operation as shown in Fig. 3, we first configure the rank
to one (vector data) for N data streams. It currently uses the Morlet wavelet
form. Other waveforms can also be used and may be more efficient. An optimal
configuration is part of our ongoing work.

The second stage details the training by taking the pre-processed data and
performing the wavelet-transform on each metric. The returned spectrograms
are then passed to a machine learning technique that has a knowledge of the
history of the Cloud system. The newest spectrograms are used to update the
running estimate of the mean and standard deviation of an ideal performance.
In this way, a profile of behaviour can be extracted, and a deviation from this
profile can be identified as an anomaly.
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Fig. 3. Flow chart of anomaly detection technique.

Thirdly, the trained multi-metric spectrogram is then compared to the multi-
metric spectrogram of data under investigation. The steps are outlined in the
pseudo code included in Algorithm 1. One benefit of this multi-layer approach
is that after having inspected a given data sample for anomalies, the new data
can be easily used to extend the usefulness of the trained model and tolerances
for normal behaviour can be updated.

The threshold scaling parameter m allows for a specific tolerance to be set
for each metric. The wavelet transform is computed using Eq. 1.

CWTψ
x (τ, s) = Ψψ

x (τ, s) = 1√
|s|

∫
x(t)ψ∗( t−τ

s )dt (1)

The mother wavelet (ψ) is a windowing function that scales (s is the scaling
parameter and a scalar quantity) and translates (τ is the translation parame-
ter) the time trace (x(t), a vector of metrics recorded simultaneously). A two-
dimensional spectrogram (of the complex coefficients) is generated from varying
s and τ , for each metric. As s is increased, the time window becomes smaller.
This in turn fafects the resolution of frequencies detected in the time traces.
The wavelet transform offers superior temporal resolution of the high frequency
components and scale (frequency) resolution of the low frequency components.
The values of s and τ range from 0 to the length of the time trace undergoing
transformation. The exact configuration of the anomaly detection algorithm is
introduced in a broad sense so that it can be further optimised without major
restructuring.
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Algorithm 1 . Pseudo code for Multi-metric Wavelet Transform and Welford training.

1: function Train data(timetraces,metric)
2: for day in timetraces do
3: SPEC = wavelet transform(rank, N1, N2, ....Nn, metric, Δt, Δω, . . . )
4: MT , ST = Welford N rank(MT , ST , SPEC, day)

return MT ,
√

ST
days

1: function Check for anomaly(metricsA,MT , ST ,m)
2: MA = wavelet transform(metricsA, Δt, Δω, . . . )
3: if MA > (MT + m · |ST |) then
4: anomaly found
5: Record location to locs
6: else if MA < (MT − m · |ST |) then
7: anomaly found
8: Record location to locs
9: else

10: no anomalies found
Ratio = MA

MT

return Ratio, locs

1: function Welford N rank(M ,S,SPEC,day))
2: MTemp=M
3: M += (SPEC−M)

day

4: S += (SPEC − MTemp)(SPEC − M)
return M, S

5 Implementation Details

This section describes the implementation of the proposed anomaly detection
framework. Our focus is on the monitoring and anomaly detection components.

5.1 Service Monitor Implementation

The monitor configuration interface was realised using Ruby on Rails technology,
which enabled rapid development and facilitates its compatibility with other
components. A key feature of Ruby on Rails is its support for modularity. We
used this feature to make it easily extendible with new functionality. Ruby on
Rails also has a rich collection of open source libraries. Based on this, we used
the JSON library to aggregate the input configuration data before transferring
them down to the next component.

The input processing API component is implemented as a RESTful service
in Java. Since Ruby on Rails supports RESTful design, it integrates seamlessly
with this component in passing down the input data. The input processing
API extracts these data and makes them available to the service monitor core
component.

The service monitor core component sets up and manages the execution of
user selected and configured monitoring tools. We use multi-threading to achieve
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parallel execution of the monitoring tools since they are developed as individual
applications.

Each monitoring tool incorporates communication protocols for transferring
the monitoring data to head components. The communication protocols com-
prise a messaging bus based on RabbitMQ [28], HTTP and RESTful services.
This combination achieves interoperability between platforms. We use a MySQL
database to store the monitoring data. Hibernate is used to realise the inter-
action between the Java classes and the database. With Hibernate, it is easy
to exchange database technologies. Thus, the MySQL database could be easily
exchanged for another database platform.

5.2 Anomaly Detection Algorithm Implementation

The wavelet transform is implemented in a similar fashion to the wavelet module
in MLPY [3]; however, several modifications have been made to accommodate
dynamic Cloud metric data. Firstly, the Fast Fourier Transform(FFT) backend
is specified using libraries such as scipy, numpy, GSL or FFTW [13]. Secondly,
our implementation overcomes dimensionality restriction of data. This means
that we are capable of considering a matrix form of data as opposed to the
single dimension required by the previous system. We perform a one-dimension,
column-wise, multi-scale wavelet transform. That is, the data of an arbitrary N
metrics recorded in time are transformed from the time domain to the frequency-
time domain across all metrics simultaneously. There exists also an opportunity
to use this extended routine further to bring the multi-scale wavelet transform
to near real-time applications by executing each individual scale calculation in
parallel.

The wavelet transform is usually implemented as part of a larger routine
that includes some pre-processing [6,24] and is often trained using an advanced
neural network (ANN) such as RPROP (Resilient BackPRoPagation) or SOMS
[31]. The routine employed here for the machine learning based on the wavelet
transform is outlined in Fig. 3.

In Fig. 3, the solid black arrows indicate the elements of the routine currently
available. The dashed black arrows indicate features still in development.

The use of additional ANNs after the Welford Algorithm could allow the
identification or correlation of anomalies between metrics.

6 Evaluation

The goal of our evaluation is to demonstrate the efficacy of the proposed frame-
work to monitor Cloud service execution, analyse the monitoring data and detect
anomalous behaviour. It is based on a use-case scenario that describes the ser-
vice interactions. First, we present the evaluation environment and the use-case
descriptions.
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6.1 Experimental Environment

To set up the experimental environment, an OpenStack Cloud platform instal-
lation running Ubuntu Linux was used. The basic hardware and virtual
machine configurations of our OpenStack platform are shown in Table 1. We
use the Kernel-based Virtual Machine (KVM) hypervisor for hosting the virtual
machines.

Table 1. Cloud environment hardware.

Machine Type = Physical Machine

OS CPU Cores Memory Storage

OpenStack Intel Xeon 2.4 GHz 8 12 GB 1 TB

Machine Type = Virtual Machine

OS CPU Cores Memory Storage

Linux/Ubuntu Intel Xeon 2.4 GHz 1 2048 MB 50 GB

As shown in Table 1, the physical machine resources are capable of support-
ing on-demand starting of multiple virtual machines for hosting different Cloud
services.

6.2 Use Case Scenario

This use case scenario describes a Cloud service deployment, the monitoring of
the service and the analysis of the monitoring data to detect anomalous behav-
iour. To realise this, we set up Apache web servers with back-end MySQL data-
bases on our OpenStack platform as the demonstrator Cloud service. On the web
servers, we deploy a transactional video-serving web application that responds
to requests and makes queries to back-end databases. Video data were uploaded
to the web servers that could be rendered on request. The service is designed to
receive and process different queries and workloads generated by users.

In this scenario, we simulate user behaviour in terms of generating queries
and placing them to the Cloud service using Apache JMeter [4]. The workload
consists of three HTTP queries and two video rendering requests. With these
queries, we generate approximately 15 requests per second, representing light to
moderate load on a real-world service. The video requests invoke playback of
music video data on the web servers. We generate five requests per second for
two videos in a mixed sequence.

The execution of this service on the web servers was monitored using the ser-
vice monitor described in Sect. 4.1. The application-level monitor is event-based.
Therefore, it can continuously monitor the performance of each request/query
placed to the web application. We monitor 74 metrics (such as BytesReceived,
ByteSent, ResponseTime, CPUUserLevel, CPUIdle, FreeDisk, FreeMemory etc.)
from this service deployment.
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For this evaluation, we gathered 10 days’ worth of data from this service exe-
cution monitoring. Since the workload is simulated, the load distribution on each
particular machine was repeated each day, therefore the recorded metrics should
vary in similar ways each day. No seasonal or periodic effect of the environment
on the machines should have occurred; therefore the metric distribution should
be normal apart from the presence of small amount of random noise.

Due to the velocity, volume, and real-time nature of Cloud data, it is difficult
to obtain time-series data with true labelled anomalies. Moreover, to aptly test
our N-metric anomaly detector, a multi-metric anomaly is needed to be present
in the monitoring data. To address this, we chose to simulate a Distributed
Denial of Service (DDoS) attack by injecting appropriate chosen values into the
time trace data from one of the monitored virtual machines (post training).
To simulate this attack, a simple anomaly injector was written to inject an
anomaly into several metrics including CPUIDLE, CPUUSER, CPUSYSTEM
and INBYTES. The DDoS attack was ramped up in 40 s (one time step between
measurements), had a duration of around 100 min and then returned to a typical
behaviour for the system. Figures 4 and 5 demonstrate this visually.

Given that there is a redundancy between CPUUSER, CPUIDLE and
CPUSYSTEM, we will leave out CPUIDLE in this evaluation. We compare the
trained spectrograms against the data injected with anomalies in the following
sections.

Fig. 4. Sample anomaly injection: (a) compares a sample trace (blue) of CPUIDLE
against an average time trace with an anomaly injected (black). Here the CPUIDLE
drops to zero in under 40 s (one time step between measurements). (b) Demonstrates
the conservation of total CPU usage between CPUIDLE, CPUUSER and CPUSYS-
TEM (their sum equals 100%). Here a ratio of 0.8 is used to divide the CPUUSER and
CPUSYSTEM levels. (Color figure online)
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Fig. 5. Sample anomaly injection of INBYTES comparing a sample trace (blue) of
INBYTES against an average time trace with an anomaly injected (black). Here the
INBYTES increases rapidly over 40 s and maintains a large height for 100 min before
dropping back to typical levels. (Color figure online)

6.3 Data Analysis and Results

This section presents the achieved results of our multi-metric anomaly detection
framework.

Based on the wavelet algorithm, we generate a separate spectrogram for each
day of data. Given that the system load is approximately similar from one day
to the next, a typical presence (or absence) of frequency-time events can be
detected through the comparison of the individual spectrograms.

To determine if a point is anomalous, we perform a simple test including
the comparison of the ratio of MNew

MTrained
with the relative magnitudes of the

spectrograms, where MNew is the spectrogram from data under investigation and
MTrained is the expected form of the spectrogram based on past behaviour. First,
we present the trained and the anomalous spectrograms for visual inspection.

Figure 6 presents the trained and injected data spectrograms. From a visual
inspection, it is easy to identify regions of similarity and difference. According to
these results, we were able to detect the DDoS attack, which affected the CPU
usage and the number of incoming bytes. As shown in Fig. 6, we can see that
the anomalous behaviours in the three metrics occurred at the same time point.
To deeply analyse the location of the anomaly, Fig. 7 presents the ratio of the
trained and injected data spectrograms. This further confirms the consistency
of the anomalous behaviour across the multiple metrics.

The injected anomaly has successfully been detected in each of the presented
metrics. However, given the symmetry of the anomaly shape further explanation
is required.

Wide side-bands are seen at lower frequencies (frequencies ≤ 0.004); this
is because the wavelet transform is based on the FFT and therefore expects
periodic data. Cloud-based data can contain periodic behaviour, as the use of
cloud-based services is user-need driven. In the data monitoring and collection,
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Fig. 6. Visual comparison of trained spectrograms (left) and spectrograms that contain
a simulated DDoS attack (right).

similar loads were observed on the monitored VMs from one day to the next. This
is appropriate as it reflects a real-world scenario with periodic user behaviour.

Additionally, the wavelet method employed here is multi-scale. This means
that we can reduce time-resolution to increase frequency resolution, and vice-
versa. One effect of this means that the side bands of the highlighted anomaly
will increase due to reduced time resolution.

Finally, the size of the DDoS attack is also a point for discussion. It is possible
that the duration of the simulated attack was unnecessarily large. The simulated
DDoS lasted for 100 min and occupied 7% of the total modelled day.
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Fig. 7. Plot of the ratio of the anomalous spectrograms (a) CPUUSER, (b) CPUSYS-
TEM and (c) INBYTES to the trained spectrograms shown in Fig. 6. The high ratios
(red) indicate the presence of anomalous behaviour. (Color figure online)

6.4 Principal Component Analysis

In this section, we present comparisons between the results of the wavelet
inspired method and a pure statistical approach to show the former’s signifi-
cance. In this case, we calculate the mean of the data column and determine the
distance of each element from the centroid. Outliers are determined to be any
points that lie outside a confidence interval of 99%.

Figure 8(a) displays two of the injected metrics versus REPORTTIME. The
detected anomalies are highlighted in red. This verifies that the injected anom-
alies satisfy the definition of an anomaly sought by this method (they lie outside
the strict confidence interval).
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Fig. 8. 3D plots of sample injected metrics and PCA analysis.

Figure 8(b) contains the results of the Principal Component Analysis (PCA).
Here it is shown that for the much reduced system, the data is not normally distrib-
uted and two of the PCA axes returned would be sufficient to describe the data.

A limitation of this statistical method is that for a given confidence interval, it
will always identify points as anomalous (false positives). Another limitation with
PCA analysis is that the data supplied are required to be linearly independent (no
redundant data) and therefore this requires some knowledge of the data to know
which metrics are co-linear. For a low number of metrics, this can addressed quite
quickly; however, this can become tedious for higher numbers of metrics recorded.

Figure 9(a) presents a 3D plot of the three analysed example metrics from one
of the training data-sets used to train the wavelet-based anomaly detector. The
three metrics FREEDISK, OUTPACKETS and CPUIDLE are plotted. From
the plot it is clear that anomalous points are identified.

Figure 9(b) shows the PCA reduction performed on 10 metrics. The axes
(PC1, PC2 and PC3) are the three most significant vectors demonstrating the
extent of the non-normality of the data. Taking a confidence interval of 99%
yielded many anomalies. This is expected, as a purely statistical approach will,
by construction, always discover anomalous points regardless of whether the
points are in fact anomalous or not. Furthermore, the number of outliers will be
determined by the confidence interval selected. The interesting thing is that this
approach failed to detect some of the injected anomalies in the gathered data.
This demonstrates an advantage of the wavelet method over a pure statistical
approach.
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Fig. 9. 3D plots of sample injected metrics and PCA analysis.

7 Conclusion

This paper presented an anomaly detection framework for detecting anomalous
behaviour of services hosted on Cloud platforms. It contains a monitoring tool
to monitor service executions in Clouds and gather monitoring data for analysis.
A wavelet-based detection algorithm was implemented to provide a multi-level
analysis of the monitoring data for anomaly detection. It uses frequency domain
and time domain information to estimate an anomaly-free spectrogram. The
healthy spectrogram is trained (removing seasonality and noise/randomness) by
using an extended two-dimensional Welford algorithm to create two-dimensional
mean and standard deviations. These quantities are then used to check for the
presence of anomalies by comparing the trained mean and standard deviation
with those of the new data.

The framework was evaluated based on a Cloud service deployment use-case
scenario in an OpenStack evaluation testbed. We used 10 days of gathered mon-
itoring data from the service execution from which a day’s data were systemat-
ically injected with anomalies for the evaluation. The wavelet-inspired method
successfully detected the injected anomalies, and a brief comparison was made
with a pure statistical approach, reinforcing the success of our technique.

In the future, we aim to progress this work to a near real-time implementa-
tion where the anomaly detection will be carried out on the monitoring data at
runtime. The effect of moving to real time will mean the introduction of a time-
window, which will be continuously updated as the monitoring platform reports
updated metric values. Moving to real time will also distribute the computational
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workload as each time the metrics are updated, the spectrogram will be appended
to rather than being entirely recalculated. Further extensions to this work will
permit the comparison of multiple ANNs across multiple (and individual) met-
rics, which would allow for cross-metric comparison while retaining the ability of
identifying the metric(s) containing the anomaly. This will allow for the detec-
tion of more complex anomalies in Cloud platforms. Further work is also possible
to extend the anomaly injection techniques so we can better determine the limits
of this and other anomaly detection frameworks.
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