
Trade-offs Based Decision System for Adoption
of Cloud-Based Services

Radhika Garg(B), Marc Heimgartner, and Burkhard Stiller

Communication Systems Group CSG@IfI, University of Zürich, UZH,
Binzmühlestrasse 14, 8050 Zürich, Switzerland

{garg,stiller}@ifi.uzh.ch, marc.heimgartner@uzh.ch

Abstract. Decision of adopting any new technology in an organization
is a crucial decision as it can have impact at the technical, economical,
and organizational level. Therefore, the decision to adopt Cloud-based
services has to be based on a methodology that supports a wide array of
criteria for evaluating available alternatives. Also, as these criteria or fac-
tors can be mutually interdependent and conflicting, a trade-offs-based
methodology is needed to take a decisions.

This paper discusses the design, implementation, and evaluation of the
prototype developed for automating the extended theoretical method-
ology of Trade-offs based Methodology for Adoption of Cloud-based
Services (TrAdeCIS) developed in [5]. This system is based on Multi-
attribute Decision Algorithms (MADA), which selects the best alterna-
tive, based on priorities of criteria of a decision maker. The applicability
of this methodology to the adoption of cloud-based services in an organi-
zation is validated with a use-case and is even extended to other domains,
especially for Train Operating Companies.

Keywords: Cloud computing · Cloud adoption · Decision support sys-
tem · Multi-attribute Decision Algorithms

1 Introduction

Traditional IT (Information Technology) aligns resources according to applica-
tions in order to fulfill their business requirements. Each application has its own
dedicated infrastructure and data storage [11]. For data protection and conti-
nuity of business operations, dedicated backup and recovery solutions are also
deployed. As an alternative, Cloud Computing (CC) has recently emerged as a
paradigm that offers its users the flexibility of scaling their computing resource
usage without the concern of over or under-provisioning. CC is the result of evo-
lution and embracement of various technologies as that of Virtualization (sepa-
rating physical devises into one or more virtual devices), Service-oriented Archi-
tecture (based on loosely coupled independent services), and Utility Computing
(which charges the user based on the usage instead of a fixed rate). The major
benefits of cloud-based services include pay-as-you-go model, business agility and
flexibility, increase in economies of scale. However, there also exist disadvantages
c© Springer International Publishing AG 2017
M. Helfert et al. (Eds.): CLOSER 2016, CCIS 740, pp. 65–87, 2017.
DOI: 10.1007/978-3-319-62594-2 4

66 R. Garg et al.

in terms of security, privacy risk, or vendor-lock in [1]. CC has four deployment
models (1) Private Cloud, (2) Public Cloud, (3) Hybrid Cloud, and (4) Com-
munity Model [1]. CC today can be delivered as XaaS (Anything-as-Service),
which includes the fundamental service models of Software-as-a-Service (SaaS),
Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS) and can be
extended to anything such as Network-as-a-Service, Database-as-a-Service, or
Communication-as-a-Service, Business-as-a-Service [5]. Owing to several avail-
able options an organization has to decide various following aspects:

– Selection of Deployment Model: Each deployment model has its advan-
tage and disadvantages; therefore, several factors have to be considered while
making a decision.

– Selection of Service Model: Each service model consists of various require-
ments to be fulfilled both from the side of Cloud Service Provider (CSP) and
the organization that plans to adopt the solution. For example, in case of
PaaS, CSP provides both hardware and software on which applications run,
whereas, in IaaS a virtual machine is provided by CSP. For OS and middle-
ware, organization is responsible. Therefore, here again the decision of which
service model can be adopted depends on various requirements.

– Selection of Appropriate Service Package: Also, there is a variation
in terms of capabilities CSP provider in numerous different packages. These
packages can have different benefits or drawbacks. For example, some CSPs
might offer services at low cost, however, they might then not offer backups
or redundant storage of data at multiple locations. This implies that the
factors influencing the decision can be dependent and mutually contradictory.
Therefore, organization has to make a trade-off and make the selection based
on the best match to its requirement.

Due to this wider range of decisions to be taken and selections to be made, an
automated Decision Support System with industrial strength will have to make
trade-off decisions, which need to show a respective detailed evaluation of alter-
native options. Thus, the research questions to be answered are the following:

– How can a quantified trade-off based strategy be established?
– How can such a strategy evaluate several alternatives with respect to numer-

ous interdependent and contradictory requirements?

To address this problem of decision making while adopting Cloud-based services
in an organization, the methodology TrAdeCIS was introduced [5]. TrAdeCIS
automates the decision process and the paper evaluates its applicability and
validity not only in the context of Cloud Computing but also in the decision of
adopting any new technology in an organization.

The remainder of this paper is structured as follows. Section 2 discusses
related work in the field of the decision analysis for adopting any technology in an
organization. It also highlights existing gaps and how TrADeCIS bridges them.
Section 3 presents the architecture of the prototype for implementing TrAdeCIS
and discusses the applicability and relevance of the algorithms used for making

Trade-offs Based Decision System for Adoption of Cloud-Based Services 67

such a decision. Section 4 presents key functionality and tests as well as evaluates
the methodology with respect use cases from the domain of cloud computing and
Internet on train. Furthermore, this section also evaluates the performance of
the implementation of the prototype. Finally, Sect. 5 concludes the paper.

2 Related Work

Spokesperson of Gartner stated that customers should be very careful while
selecting the correct service provider, and ask them detailed questions about
contractual terms [10]. Therefore, the decision maker has to be aware of com-
plete requirements, their interdependencies, and conflicts in order to evaluate
different CSPs. This was performed in [6]. The second challenge is to develop a
quantitative approach to make decision of adopting best alternative that encom-
passes all requirements (criteria) and their interrelations. There have been efforts
in the past to make a decision whether to move the legacy infrastructure into
cloud or not. [1] and [14] propose two different approaches. While [1] compares
the cost of using a cloud-based service with the costs of a datacenter on an hourly
basis, [14] presents an approach to compare the costs of leasing and purchasing
a CPU (Central Processing Unit) over several years. Both of these approaches
only consider cost as a factor, when there are multiple conflicting factors that
must be considered. Also, this approach is not open to an extension to multiple
quantitative factors (that can have different measurement units) and to factors
that are of qualitative nature [9]. Therefore, there is a need for a methodology
encompassing multiple factors for evaluating several alternatives.

In the past, Multi-attribute Decision Algorithms (MADA) have been used for
the decision on outsourcing [15] that supports multiple factors. MADAs include a
finite set of alternatives, and their performance in multiple criteria is identified in
the beginning of the analysis. These methods can either be used to sort or classify
available alternatives. However, the current research is restricted to a number
of predefined factors for taking a decision. Research so far on a cloud adoption
decision process also suggests approaches such as Goal-oriented Requirements
Engineering (GRE) ([2,16]) and a quantified method using MADA [9,13]. GRE-
based approaches are based on a step-by-step process of fulfilling requirements of
the cloud user and are qualitative in nature. MADA-based approaches are quan-
titative in nature, however, fail to evaluate impact such an adoption will have on
an organization and do not incorporate business or organizational aspects in the
decision. They also do not consider the influence of one attribute over another.
In addition, they do not establish a trade-off strategy, where conflicting factors
are involved. A trade-off strategy refers to the technique of reducing or forgoing
one or more desirable parameters in exchange of increasing or obtaining other
desirable outcomes in order to maximize the total return.

As shown in Table 1, a gap still exists in terms of not only developing a
trade-offs-based methodology for decision making while adopting CC, but also
in automating it. The comparison of related work to the work done in this paper
is based on four key features, “

√
” describing the presence and “×” denoting

68 R. Garg et al.

Table 1. Comparison of related work with respect to main characteristics.

Features Cost-based
approaches

MADA-based
approaches

TrAdeCIS

Interrelations of factors Partially Partially
√

Trade-offs based quantified methodology × × √

Automated decision support system × × √

Applicability to other domains × Partially
√

the lack of that feature. This paper, therefore, fills this gap by (a) automating
trade-off based quantified methodology and (b) studying its applicability for a
CC use-cases, which models all relevant factors and their interrelations.

3 Research Methodology and Architecture of the System

The methodology followed to establish trade-offs-based decision of selecting the
best alternative is based on algorithms of MADA- The Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) and Analytic Network
Process (ANP). The methodology of TrAdeCIS is shown in detail with the flow
diagram in Fig. 1. Both of these algorithms of ANP and TOPSIS require multiple
alternatives and criteria as inputs. TOPSIS is used to rank the alternatives
from the technical perspective. ANP is used to rank the same alternatives from
economical and business perspective. The relevant criteria from the domain of
CC, has already been identified in [6]. A user can either select the relevant criteria
from this list, or enter their own requirements. The details of these algorithms
and their implementations are described in the following sections. Furthermore,
the architecture as implemented for the prototype of TrAdeCIS and the database
model of the system developed is also discussed below.

3.1 TOPSIS

TOPSIS is based on the concept that the optimal solution is the one, which
has geometrically the shortest distance from the best possible solution and the
longest distance from the worst possible solution [8]. TOPSIS does pair-wise
comparisons of all alternatives across all the criteria and facilitates trading-off
a poor performance of an alternative in one factor by a good performance in
another factor. Pair-wise comparison is a process of comparing alternatives in
pairs to judge which of the two alternatives is preferred, has better performance
with respect to a factor, or whether or not the two alternatives are performing
at the same level with respect to a factor. Listing 1, expects three inputs:

– a N× M matrix of the values with N criteria as columns and M alternatives
as rows.

Trade-offs Based Decision System for Adoption of Cloud-Based Services 69

Fig. 1. Flow diagram for TraAdeCIS.

70 R. Garg et al.

– weights, N priority values in order to prioritize the criteria.
– has positiv effect, N true or false values, depending on the positive or negative

impact of the criteria on the decision.

As shown in Listing 1, the first step is to normalize the NxM matrix and
weights in order to gain homogeneous values, which can be mutually compared
(Line 4). This step is performed to transform the attributes having different
dimensions into non-dimensional attributes, hence allowing comparisons across
criteria. From the normalized and weighted matrix the minimum and maximum
values are taken for each criteria for later use of finding the relative distance of
alternative from best possible solution and worst possible solution (Line 7, 8).
After that the best possible solution is computed by taking the maximum value,
if the criteria has a positive effect on the result or the minimum value, if it has
a negative impact on the result (Line 11).

Listing 1. Algorithm for TOPSIS as Implemented in TrAdeCIS.

def topsis (matrix, weights, has positiv effect , normalization=vector normalization):

normalize and apply weights
weighted matrix = normalization(weights) ∗ normalization(matrix)1

extract min and max values for each column
mins = numpy.min(weighted matrix, axis=0)2

maxs = numpy.max(weighted matrix, axis=0)2

create ideal and anti ideal arrays
ideal = numpy.where(has positiv effect, maxs, mins)3

anti ideal = numpy.where(has positiv effect, mins, maxs)3

calculate distances to the ideal and anti ideal arrays
distance ideal = norm(weighted matrix − ideal, axis=1)1

distance anti ideal = norm(weighted matrix − anti ideal, axis=1)1

compute relative closeness
relative closeness = distance anti ideal / (distance ideal + distance anti ideal)4

return relative closeness

1Number of executions: N ∗ (M + (M − 1) + M1/2), for N columns the M values are squared,
summed and then the square root of the sum is taken (vector normalization)
2Number of executions: M ∗ N , for N columns check the values
3Number of executions: N , create arrays with N values
4Number of executions: 2 ∗ N , N additions and divisions

The worst possible solution is constructed by taking the minimum value if the
impact is positive and the maximum value if the impact is negative (Line 12). The
next step is to compute the distance of the matrix to the ideal as well as the anti-
ideal solution. This is done by computing the Euclidean distance (Line 15, 16).
Finally the relative closeness is computed. Ranking of alternatives is based on the
relative closeness of alternatives to the ideal solution.Higher the value, higher is the
ranking of the alternative (Line 19). The complexity1 of the TOPSIS algorithm,
1 Complexity: N ∗ (M + (M − 1) + M1/2) + 2 ∗ M ∗ N + 2 ∗ N + 2 ∗ (N ∗ (M +

(M − 1) + M1/2) + 2 ∗ N = 8 ∗ M ∗ N + N + 3 ∗ M1/2 = O(M ∗ N).

Trade-offs Based Decision System for Adoption of Cloud-Based Services 71

with respect to implementation shown above is O(N ∗M) where N is the number
of alternatives and M the number of criteria.

3.2 ANP

ANP is the generalization of the Analytic Hierarchy Process (AHP) [8], and is
a method where dependencies can be modeled between any of the elements. In
ANP, all criteria are represented as a cluster, and their sub-criteria (if any) are
modeled as elements or nodes within that cluster. Also, all available alternatives
constitute an additional cluster. Each connection symbolizes the interdepen-
dency between the 2 connected nodes or clusters. On one hand, it results in the
modeling of more accurate models, but on other hand it increases the complex-
ity of the required input. This is because pairwise comparison matrices where
criteria or alternatives are compared with respect to every other interconnected
element in the network(see use cases for an example) has to be constructed. As
shown in Listing 2 the next step is to compute the super matrix. Super matrix is
generated with the eigenvectors of all the possible pairwise comparison matrices.

Listing 2. Generation of the Super Matrix as Implemented in TrAdeCIS.

supermatrix: function (clusterNodes) {
var children = graph.findChildren(clusterNodes);
var matrix = utils .matrix(children.length, 0);

children .each(function (column, sourceNode) {
children .each(function (row, targetNode) {

matrix[row][column] = graph.getValue(sourceNode, targetNode) || 0;
});

});

return matrix
}

As the super matrix represents all interrelations between any two nodes in
the network, the alternatives are listed always as last n elements of the super
matrix, where n is the number of alternatives. The ranking of alternatives in
obtained by computing the limit matrix, and transforming it into an array. In
order to compute the limit matrix, the super matrix has to be raised to high odd
powers until it converges. It can be shown that the limit exists if the matrix is
column stochastic [12].

As shown in Listing 3, the computation of limit matrix is an iterative process
where the matrix is raised by the power of 3 and then again normalized in order
to keep the matrix column stochastic (Line 7). Then the result is checked if it
is equal up to the 8th decimal precision with the previous result (Line 12). If
so the process is ended. Usually this takes around 3 iterations to find a result.
The number of iterations depends on the limit of the super matrix (the power
at which the matrix converges), and therefore on the values in the super matrix,
which consist of the global cluster comparison, the criteria comparison of the
cluster, and the criteria value.

72 R. Garg et al.

Listing 3. Generation of Limit Matrix as Implemented in TrAdeCIS.

def limit matrix(matrix):
result = matrix
previous matrix = result

while True:
result = linear normalization(numpy.linalg.matrix power(result, 3))1

if numpy.isnan(numpy.sum(result))2:
raise ArithmeticError(’received not a number’)

if numpy.allclose(previous matrix, result)3 :
break

previous matrix = result

return result

1Number of executions: 2∗N3, two matrix multiplications are done, matrix multiplication has
a complexity of O(N3)
2Number of executions: M ∗ N , all the values are summed up
3 Number of executions: M ∗ N , all the values are compared

The reason for raising the super matrix by the power of 3 is that odd numbers
have the advantage of preserving the structure of the matrix (in matrix multi-
plication, depending on where a zero is the other values might switch places
with the zeros). When the limit is found, the values for the whole row are the
same. The advantage, however, is that if is raised by an odd number the first
column will certainly have non-zero values. These values denote the ranking of
the alternatives. The value of 3 is chosen so as to maintain a balance between
the rising complexity of the computation with higher values, and the number of
iterations needed to compute the limit matrix. The complexity2 of the algorithm
is O(N3), where N is the dimension of the super matrix.

3.3 Trade-off Based Decision

A trade-offs-based strategy is required, if the ranking of alternatives obtained
by using TOPSIS (from technical perspective) and ANP (from business – eco-
nomical and organizational – perspective) is different. TrAdeCIS therefore, as
shown in Fig. 1, compares the rankings obtained and gives the option to a deci-
sion maker to select the best technical solution at a trade-off of business value.
Trade-offs are achieved by altering the priorities of criteria. There are essentially
three possible dimensions at which priorities can be adjusted in ANP.

1. At the global cluster level, prioritizing an entire cluster compared to others.
The alternatives cluster can also be compared as an exception to other clusters
if needed.

2 Complexity: 2 ∗ N3 + M ∗ N + M ∗ N = O(N3).

Trade-offs Based Decision System for Adoption of Cloud-Based Services 73

2. At the cluster level, comparing the importance of criteria in a cluster.
3. At the criteria level, changing the values of the comparison matrix.

In order to assist a decision maker in deciding which criteria or alternative
should be adjusted, TrAdeCIS provides a basic approach to calculate the impact
of changing any of these values. A column of the super matrix shows the influence
that a node has on other criteria and alternatives (outgoing influence). Therefore,
by increasing and decreasing the row values in a super matrix the influence of
a node to the final rankings as per ANP can be evaluated. Hence, the approach
developed and followed here for calculating trade-offs is outlined in Algorithm 1.
The increase (inc) and decrease (dec) for each element of original super matrix
as shown in Algorithm 1 is calculated using on the current normalized value
and half of the minimum element of the original super matrix (relative change).
Choosing relative change to be less than the minimum element of the super
matrix removes the possibility of division by zero error in inc. Also, dec will
never be zero or negative, because the relative change is smaller than the lowest
value in the super matrix.

Table 2. Original super and limit matrices for trade-offs.

(a) Super matrix
C1 C2 A1 A2

C1 0 0 0.5 0.5
C2 0 0 0.5 0.5
A1 0.75 0.3333 0 0
A2 0.25 0.6667 0 0
(b) Limit matrix

C1 C2 A1 A2

C1 0 0 0.5 0.5
C2 0 0 0.5 0.5
A1 0.5417 0.5417 0 0
A2 0.4583 0.4583 0 0

The above developed methodology is illustrated here with an example to
understand the application of this trade-offs process. In this example the result
of TOPSIS favors A2, while ANP favors A1. A user now has to make a trade-off
decision by adjusting ANP values so that the result will also be A2. By analyzing
the super matrix in Table 2(a) and comparing it with the model structure shown
in Fig. 2 the meaning of values in the super matrix can be analyzed.

Each row of the super matrix represents how much a node is influenced by
other criteria or alternatives (incoming influence), e.g., the first row of Table 2(a)

74 R. Garg et al.

Algorithm 1. Algorithm for establishing Trade-offs.

� % Sx denotes the super matrix x
� %: Lx denotes the limit matrix of super matrix x
� %: Row is the set of elements in a row of a super matrix or
limit matrix
� %: Node denotes to a criteria or alternative
� %: inc denotes the value by which values of super matrix
has to be increased
� %: dec denotes the value by which values of super matrix
has to be decreased
� %: current value denotes an element of original super
matrix
� %: relative change = 0.5 ∗ (minimum element of the original
super matrix)

Compute the limit matrix Lc from the current super matrix Sc

for each row in the super matrix do
inc = relative change/(1 − (current value + relative change))
dec = relative change/(1 + (current value − relative change))
Construct super matrix Srow+ by increasing each element in

Row by inc
Construct super matrix Srow− by decreasing each element in

Row by dec
end for

for each constructed super matrix ∈ {Srow+, Srow−} do
Compute the limit matrix Lrow+

Compute the limit matrix Lrow−
end for

for each computed limit matrix ∈ {Lrow+, Lrow−} do
Compute the differences to the original limit matrix Lc,

Lrow+ − Lc and Lrow− − Lc

end for
Sort the the differences of the limit matrix in the previous
step to obtain a list of the nodes which have the highest
impact

for each positive difference of the limit matrix do
Repeat the process but only specific to one element at a

time
end for

shows that C1 is equally influenced by A1 and A2 and not influenced by C1 and
C2 at all. In Table 2(a) the minimum value is 0.25, therefore the relative change
is 0.125. The algorithm is applied here only specific to row 3, for illustration
purposes.

Tables 3(a) and 4(a) show the super matrices after increasing and decreasing
the non-zero values of row 3 by inc and dec respectively. By computing the limit

Trade-offs Based Decision System for Adoption of Cloud-Based Services 75

Fig. 2. ANP model for trade-off.

Table 3. Super and limit matrices with increase for trade-offs.

(a) Super matrix
C1 C2 A1 A2

C1 0 0 0.35 0.35
C2 0 0 0.25 0.25
A1 1.75 0.5641 0 0
A2 0.25 0.6666 0 0
(b) Limit matrix

C1 C2 A1 A2

C1 0 0 0.5 0.5
C2 0 0 0.5 0.5
A1 0.7163 0.7163 0 0
A2 0.2837 0.2837 0 0

matrix for these super matrices (cf. Tables 3(b) and 4(b)), and subsequently
calculating the difference to the original limit matrix (cf. Tables 5(a) and (b))
the influence of A2 on the result of ANP can be identified.

This process is repeated for each row and the values corresponding to A2
(as this was the highest ranked alternative according to TOPSIS) from limit
matrices are shown in Table 6(a). Table 6(a) shows that increasing A2 in terms
of its interconnected node is the most beneficial (highest value corresponds to
A2) for ranking A2 as the highest ranked alternative per ANP. Table 6(b) shows
for every positive value in Table 6(a) those values obtained by increasing or
decreasing only one element at time in the original super matrix. For example,

76 R. Garg et al.

Table 4. Super and limit matrices with decrease for trade-offs.

(a) Super matrix
C1 C2 A1 A2

C1 0 0 0.5 0.5
C2 0 0 0.5 0.5
A1 0.4167 0.1754 0 0
A2 0.25 0.6666 0 0
(b) Limit matrix

C1 C2 A1 A2

C1 0 0 0.5 0.5
C2 0 0 0.5 0.5
A1 0.3924 0.3924 0 0
A2 0.6076 0.6076 0 0

Table 5. Differences of limit matrices.

(a) Difference of increased matrix
C1 C2 A1 A2

C1 0 0 0.5 0.5
C2 0 0 0.5 0.5
A1 0.1746 0.1746 0 0
A2 −0.1746 −0.1746 0 0
(b) Difference of decreased limit matrix

C1 C2 A1 A2

C1 0 0 0.5 0.5
C2 0 0 0.5 0.5
A1 −0.1492 −0.1492 0 0
A2 0.1492 0.1492 0 0

as C2 has positive value in Table 6(a), two values are obtained in Table 6(b)
corresponding to the interrelation of C2 to A1 and C2 to A2. This leads to the
identification of the node that is interrelated to A2: when changed in terms of
its associated priority it will make A2 the highest ranked alternative. In this
example, as A2 associated with C2 has highest positive value, change in priority
of C2 will lead to the desired ranking.

Trade-offs Based Decision System for Adoption of Cloud-Based Services 77

Table 6. Trade-offs result.

(a) Row specific limit matrix values
Node Increase Decrease

C1 −0.0520 0.0520
C2 0.0520 −0.0520
A1 −0.1746 0.1492
A2 0.1548 −0.1421
(b) Element specific limit matrix values
Node Connected node Increase Decrease

C1 A1 - 0.0246
C1 A2 - 0.0226
C2 A1 0.0297 -
C2 A2 0.0285 -
A1 C1 - 0.0917
A1 C2 - 0.0392
A2 C1 0.0492 -
A2 C2 0.1250 -

3.4 Implementation Architecture

TrAdeCIS 1.0 was implemented as a traditional client-server architecture, where
for each action a new request is made and the server answers with the cor-
responding markup. This architectural implementation lead to duplication of
code, because some parts of the webpage had to update asynchronous. The fur-
ther details of TrAdeCIS 1.0 are available in [4,7]. For TrAdeCIS 2.0 the imple-
mented architecture was designed based on the Single-Page-Application (SPA)
architecture. A SPA is defined as web application or web site that fits on a single
web page. This can be either achieved by initially loading all necessary code for
the representation (HTML, JavaScript and CSS) or resources are dynamically
loaded and added to the page as necessary. This design has been implemented
in order to improve performance as well as avoid potential duplication of code.
A cycle of requests in a tradition client-server architecture with asynchronous
elements (e.g., TrAdeCIS 1.0) can be outlined like the following:

1. Client visits the webpage
2. Backend processes the request, renders the webpage via a template language
3. Client receives the webpage
4. Client changes data on the previously received webpage
5. Frontend issues an AJAX request and updates the user interface

This approach shows overlapping logic at step 2 and 5 just in different envi-
ronments (frontend, backend) and programming languages. A SPA architecture

78 R. Garg et al.

has the advantage to overcome those issues by separating all logic for the rep-
resentation on the frontend and all the data manipulation logic on the backend.
The added advantages are (1) the clear separation of concerns for the frontend
and backend, (2) that user no longer experiences browser reloads (everything
will now be loaded asynchronously by the client) and that (3) the data flow is
minimized (only the necessary data is loaded, no markup). Additionally future
implementations of native clients would be simplified as they have already an
API to address. However this approach has also disadvantages, indexing will no
longer work, e.g., from Google and also because routing has to be done in the
frontend, therefore a request on a route in a web browser will not exist. There is
one way to solve both problems by using the concept of “universal javascript”.
Briefly said it means that javascript code will also run in the backend. In order
that this is possible a node.js instance has to process the JavaScript code and
then return a html page. However this will raise the complexity of the backend
because the communication between the two instances has to be managed. Due
to this added complexity TrAdeCIS does currently not implement a “universal
javascript” approach. In TrAdeCIS 2.0 the implemented architecture reads as
follows:

– The backend is built with Django and Django REST framework and exposes
REST endpoints for all the necessary tasks.

– The frontend is built with React.js, consumes the data from the REST end-
points and visualizes them on the client side.

Backend. The architecture of the system follows the community standards
with Django projects. Django is fullstack web framework for Python. In Django
coherent logic is bundled in a so-called “app”. TrAdeCIS is built with two

Fig. 3. Database interrelations.

Trade-offs Based Decision System for Adoption of Cloud-Based Services 79

apps: (1) “mcda”, for storing, computing and visualizing TOPSIS and ANP, and
(2) “account”, to manage the different access levels which TrAdeCIS provides.
The app “mcda” consists of three database models namely, Decision, TOPSIS
and ANP (cf. Fig. 3). Decision model denotes one use-case, which consists of a
name, optional description and the data for TOPSIS and ANP, which are stored
in their respective tables. The access as well as the modification of the data is
exposed via REST endpoints by utilizing the “Django REST Framework”, which
simplifies the creation of REST APIs with Django.

Frontend. The SPA frontend is built with several new technologies, which
are briefly introduced: (1) “React.js”, is a Frontend-Framework developed and
maintained by Facebook. It challenges current standards by writing everything
in Javascript. Rather than DOM changes it utilizes a virtual DOM which is
performs faster on changes and computes the minimal changes which have to
be done to the actual DOM. The key feature is that a webpage is built with
reusable components, which are defined by programmer. There are many other
Frontend-Frameworks which could be used and there is no specific reason to favor
React.js. (2) “Webpack”, is a module bundler, which allows to build browser
javascript which can be modularized. Apart from that there are many addi-
tional features which make Webpack valuable, for example minification of code,
import of other files (e.g. css), removing unused code, etc. (3) “Redux”, is a state
management library which makes the state immutable at all time and therefore
leads to clearer, as well as better testable state. Additional new technologies and
concepts like “Css Modules”, “PostCss”, “ES6”, “JSX” were used as well as the
following libraries “React-Router”, “Cytoscape” and “Chartjs”.

4 Testing and Evaluation

This section tests the developed system with the objective of evaluating its
applicability, usability in various use-cases of making such decisions. The perfor-
mance values of all alternatives with respect to criteria is taken from [3], which
is platform to measure and monitor these values. In addition, performance of the
system is also evaluated, which includes calculation of load-up and processing
time of the system, depending of number of alternatives and criteria.

4.1 Decision of Adopting PaaS (Use Case 1)

For Use Case 1 (UC1) the scenario of adopting PaaS is considered, with alter-
native providers and criteria as shown in Table 7. For TOPSIS the criteria of
“Runtimes” denotes the number of supported programming languages. “Ser-
vices” are additional services that are supported (for example databases), and
“Add-ons” are additional other programs which can be used. Also, “uptime” of
the service in the past 30 days for all the providers is included. In this scenario
as well, all these criteria have a positive impact and are weighted equally. The
result of TOPSIS is computed with code snippet 1 and is “Heroku”.

80 R. Garg et al.

Table 7. Decision of adopting PaaS input for TOPSIS.

Alternatives Uptime RAM (MB) Runtimes Services Add-ons

Heroku 99.91 512 9 2 17
dotcloud 99.95 32 5 1 7
AppHarbor 99.99 512 1 3 33

Fig. 4. Decision of adopting PaaS ANP model.

Table 8. Decision of adopting PaaS resulting super matrix.

Location Performance

cost

Integration

cost

Cost

flexibility

Heroku dotcloud AppHarbor

Location 0 0 0 0 0.083 0.083 0.083

Performance cost 0 0 0 0 0.021 0.056 0.028

Integration cost 0 0 0 0 0.062 0.028 0.056

Cost flexibility 0 0 0 0 0.083 0.083 0.083

Heroku 0.100 0.037 0.104 0.035 0 0 0

dotcloud 0.050 0.025 0.022 0.144 0 0 0

AppHarbor 0.100 0.022 0.040 0.071 0 0 0

For ranking the alternatives from the business perspective the model in Fig. 4
for ANP is constructed. In this case there is a self-loop on the cost cluster, which
allows to give relative priority to each criteria in a cluster. Here the criteria of
Integration Cost is considered 2 times more important than that of Performance
Cost. For this scenario, the resulting super matrix is shown in Table 8 and not
every pairwise comparison matrix.

Again by applying Listing 3 the limit matrix is found, shown in Table 9,
which ranks dotCloud the highest.

Trade-offs Based Decision System for Adoption of Cloud-Based Services 81

Table 9. Decision of adopting PaaS resulting limit matrix.

Location Performance

cost

Integration

cost

Cost

flexibility

Heroku dotcloud AppHarbor

Location 0 0 0 0 0.333 0.333 0.333

Performance cost 0 0 0 0 0.140 0.140 0.140

Integration cost 0 0 0 0 0.193 0.193 0.193

Cost flexibility 0 0 0 0 0.333 0.333 0.333

Heroku 0.335 0.335 0.335 0.335 0 0 0

dotcloud 0.343 0.343 0.343 0.343 0 0 0

AppHarbor 0.322 0.322 0.322 0.322 0 0 0

Table 10. Decision of adopting PaaS tradeoff.

Node Connected node Increase Decrease

Location Heroku 0.00087 -
Location dotcloud 0.00087 -
Location AppHarbor 0.00079 -
Performance cost Heroku 0.00131 -
Performance cost dotcloud 0.00146 -
Performance cost AppHarbor 0.00118 -
Integration cost Heroku 0.00560 -
Integration cost dotcloud 0.00418 -
Integration cost AppHarbor 0.00458 -
Cost flexibility Heroku - 0.00514
Cost flexibility dotcloud - 0.00437
Cost flexibility AppHarbor - 0.00427
Heroku Location 0.01561 -
Heroku Performance cost 0.00704 -
Heroku Integration cost 0.01535 -
Heroku Cost flexibility 0.01089 -
dotcloud Location - 0.00643
dotcloud Performance cost - 0.00294
dotcloud Integration cost - 0.00353
dotcloud Cost flexibility - 0.01148
AppHarbor Location - 0.00799
AppHarbor Performance cost - 0.00264
AppHarbor Integration cost - 0.00376
AppHarbor Cost flexibility - 0.00656

82 R. Garg et al.

However, now the results of TOPSIS and ANP do not match and therefore
a trade-off is necessary to match the results of TOPSIS and ANP. Table 10
shows the trade-offs result based on the approach shown in Sect. 3.3. These
values conclude that the highest change towards “Heroku” can be achieved by
increasing the priority of the criteria Location (highest positive value is 0.01561
in Table 10).

4.2 Applicability of TrAdeCIS in Other Domains (Use Case 2)

TrAdeCIS was developed to support organizations in the adoption of cloud-based
services. However, organizations may also utilize TrADeCIS to improve their
understanding of the value of technologies from other domains than cloud-based
services. This is illustrated by applying TrAdeCIS to Train Operating Companies
(TOC), who need to take a decision of choosing the best technology, to improve
both voice- and data coverage on-board trains (UC2). This decision takes the
perspective of the TOC, who is hoping to sell more tickets by providing the
service. For the train-to-wayside connection, all on-board solutions are assumed
to use the same technology, especially a connection to mobile base stations by 3G
or beyond. The following alternatives are considered (cf. Table 11) to be installed
on-board of trains:

– Option 1: Wireless Access Point (WAP)
– Option 2: Analog repeater
– Option 3: Femtocells

Technical requirements from these and their relative priorities read:

– Internet has to be available to all passengers with a mobile device (Priority 1)
– Quality of voice calls needs to be improved for all passengers with a phone

(Priority 2)
– Internet speed should be as high as possible (Priority 3)

Therefore, after applying TOPSIS to these technical requirements, installa-
tion of WAPs is ranked the highest. From the financial/economic requirements
perspective, ANP is used to model it as shown in Fig. 5. The factor of Net Present
Value, which should be positive as soon as possible, is of highest priority. How-
ever, it is broken into sub-factors as that of low deployment time, high revenue,

Table 11. Applicability of TrAdeCIS in other domains input for TOPSIS.

Alternatives Internet availability Voice coverage Internet speed

Option 1 3 1 3
Option 2 2 2
Option 3 2 2 2

Trade-offs Based Decision System for Adoption of Cloud-Based Services 83

Fig. 5. Applicability of TrAdeCIS in other domains ANP model.

Table 12. Applicability of TrAdeCIS in other domains resulting super matrix.

OPEX CAPEX Time Revenue

ticket sales

License WAPs Analogue

repeater

Femtocells

OPEX 0 0 0 0 0 0.083 0.083 0.083

CAPEX 0 0 0 0 0 0.083 0.083 0.083

Time 0 0 0 0 0 0.083 0.083 0.083

Revenue ticket sales 0 0 0 0 0 0.083 0.083 0.083

License 0 0 0 0 0 0.333 0.333 0.333

WAPs 0.05 0.041 0.021 0.308 0.425 0 0 0

Analogue repeater 0.05 0.081 0.041 0.154 0.425 0 0 0

Femtocells 0.05 0.027 0.014 0.154 0.142 0 0 0

low capital expenditure, and low operational expenditure. In addition, all these
factors contribute differently to the factor of Net Present Value. This is repre-
sented with a self-loop and the respect weighing or priorities of these factors are
entered in the corresponding comparison matrix. Also in terms of organizational
requirements, the TOC prefers to avoid the use of licensed spectrum (medium
importance). The resulting super matrix, which is constructed from all compar-
ison matrices, is shown in Table 12. The highest ranked alternative from ANP
is also WAPs, as calculated in the limit matrix (cf. Table 13). Therefore, as the
ranking obtained from both TOPSIS and ANP is the same, for the scenario of
providing internet and voice call connectivity on-board train, WAP is the best
alternative.

84 R. Garg et al.

Table 13. Applicability of TrAdeCIS in other domains resulting limit matrix.

OPEX CAPEX Time Revenue

ticket sales

License WAPs Analogue

repeater

Femtocells

OPEX 0 0 0 0 0 0.125 0.125 0.125

CAPEX 0 0 0 0 0 0.125 0.125 0.125

Time 0 0 0 0 0 0.125 0.125 0.125

Revenue ticket sales 0 0 0 0 0 0.125 0.125 0.125

License 0 0 0 0 0 0.5 0.5 0.5

WAPs 0.428 0.428 0.428 0.428 0.428 0 0 0

Analogue repeater 0.409 0.409 0.409 0.409 0.409 0 0 0

Femtocells 0.164 0.164 0.164 0.164 0.164 0 0 0

4.3 Performance Test

This section analyses the performance of TrAdeCIS 2.0 with respect to how long
functionalities of ranking the alternatives and establishing trade-offs need to
execute. Additionally, the improvements of the system compared to TrAdeCIS
1.0, where the implemented architecture was based on a traditional client-server
architecture are discussed. All the performance tests are executed on a system
with a 2.6 GHz Intel Core i5 CPU, 8 GB 1600 MHz DDR3 RAM and a Intel HD
Graphics 4000 1536 MB graphics card. The implemented architecture introduced
in Sect. 3.4 has a major influence on the overall performance as well as the user
experience. This is due to the fact that all needed files for the representation are
loaded on the first connection, and only the necessary data has to be retrieved
in subsequent requests. This minimizes data flow and results in load-up time for
pages in around 100–300 ms. In TrAdeCIS 1.0 depending on the complexity of
the ANP model a user had to wait up to 3 s until the page was fully loaded.
It can be concluded that based on these implementation specific changes the
execution time has improved by a factor of 5–10.

Another crucial performance impact is on the visualization of TOPSIS and
ANP model on GUI. While TOPSIS scales well even with growing number of
alternatives and criteria, ANP does not. TOPSIS only needs tabular data as
input. ANP, however, has a complex model of interrelations which is created
by a html canvas, as shown Fig. 5. The highly complex model of ANP, and its
corresponding input value limits the size at which it is user friendly to work
with. By trial and error it could be evaluated that the number of nodes in the
visualization should not be higher than 100, because otherwise the user has to
wait longer intervals to be able to interact with the model. Because of changes
in the interaction with the canvas the performance has been increased by a
factor of 3 compared to TrAdeCIS 1.0. Figure 6 shows average execution time
for 1000 executions of ranking alternatives with TOPSIS and ANP with respect
to different number of criteria and alternatives. In case of ANP the values are
obtained by an average over 1000 computation of random super matrices. The
random super matrices are generated by random values in the interval of 0 and 1
with the given dimension from the number of criteria and alternatives. This can

Trade-offs Based Decision System for Adoption of Cloud-Based Services 85

Fig. 6. Execution time measurements of TOPSIS and ANP.

Fig. 7. Execution time measurements of the tradeoff approach.

be justified by the fact that the values are normalized, therefore a higher interval
is not necessary. Also when considering the distribution of the random values,
zero will occur sparsely, this implies that the resulting random super matrix
will be very well connected and therefore computationally more expensive. In
general, the execution time should be slightly below the given values since such
well connected models are not frequently constructed.

86 R. Garg et al.

Figure 7 shows the average runtimes for 1000 executions of the trade-off app-
roach introduced in Sect. 3.3. The complexity of the trade-off in a worst case
scenario is O(N2 ∗ N3) = O(N5), because for all elements in the NxN matrix
the ANP computations have to be executed. However as shown in Sect. 3.3 those
are only done for changes with a positive impact on the alternative. In most cases
the partition will be around half has a positive and other half an negative impact.
Additionally a case where all would have a positive impact is impossible. In the
vast majority of cases the complexity will therefore be O((N/2)5). The results
in this section show that the overall performance is in an optimal interval even
when complexity of the functionalities of TrAdeCIS is high.

5 Summary and Conclusions

This work has designed, developed, and evaluated the decision support system
to automate the methodology of TrADeCIS to facilitate the decision of adopt-
ing cloud-based services in an organization. TrAdeCIS makes a trade-offs based
quantified decision of selecting the best alternative as per requirements of the
organization using integrated MADAs of TOPSIS and ANP. An appropriate use-
case (involving train operating companies) validated the applicability of TrADe-
CIS in a decision process of adopting a different technology besides that of
cloud-based services.

The evaluation of the prototype TrAdeCIS 2.0 implemented concluded that
TrAdeCIS is scalable to large number of alternatives, factors, and their associ-
ated interrelations. This allows modeling of real-world complexities involved in
such a decision making. Trade-offs established are measured by change in priori-
ties required in economical and organizational factors, in order to reach the same
alternative both from the technical and business perspective. The time taken to
establish trade-offs for 50 alternatives and 100 criteria is less than a minute.
This is achieved with the optimized implementation of TrAdeCIS to ensure that
results obtained are not outdated due to dynamically changing input in perfor-
mance values of an alternative.

Acknowledgements. This work was partly funded by FLAMINGO, the Network
of Excellence Project ICT-318488, supported by the European Commission under its
Seventh Framework Program. The authors would also like to thank Bram Naudts for
discussions and excellent input with respect to applying TrAdeCIS to Train Operating
Companies.

References

1. Armburst, M., Fox, A., Griffith, R., Anthony, J.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

Trade-offs Based Decision System for Adoption of Cloud-Based Services 87

2. Beserra, P.V., Camara, A., Ximenes, R., Albuquerque, A.B., Mendonça, N.C.:
Cloudstep: a step-by-step decision process to support legacy application migration
to the cloud. In: IEEE 6th International Workshop on the Maintenance and Evolu-
tion of Service-Oriented and Cloud-Based Systems (MESOCA), Trento, Italy, pp.
7–16 (2012)

3. Cloud Harmony Inc.: Cloud Harmony (2015). https://cloudharmony.com/.
Accessed October 2015

4. Garg, R., Heimgartner, M., Stiller, B.: Decision support system for adoption of
cloud-based services. In: 6th International Conference on Cloud Computing and
Services Science, Rome, Italy, pp. 71–82, April 2016

5. Garg, R., Stiller, B.: Trade-off-based adoption methodology for cloud-based
infrastructures and services. In: Sperotto, A., Doyen, G., Latré, S., Charalambides,
M., Stiller, B. (eds.) AIMS 2014. LNCS, vol. 8508, pp. 1–14. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-43862-6 1

6. Garg, R., Stiller, B.: Factors affecting cloud adoption and their interrelations. In:
Proceedings of the 5th International Conference on Cloud Computing and Services
Science (CLOSER), SCITEPRESS (Science and Technology Publications, Lda),
Lisbon, Portugal, pp. 87–94, May 2015

7. Heimgartner, M.: Design and implementation of prototype for TrAdeCIS. Depart-
ment of Informatics, University of Zurich, Zurich, Switzerland. Communication
Systems Group, December 2015

8. Ishizaka, A., Nemery, P.: Multi-criteria Decision Analysis: Methods and Software.
Wiley, Chichester (2013)

9. Menzel, M., Schönherr, M., Tai, S.: (MC2)2: criteria, requirements and a soft-
ware prototype for cloud infrastructure decisions. Softw. Pract. Experience 43(11),
1283–1297 (2013)

10. Moore, S.: Gartner says worldwide cloud Infrastructure-as-a-Service spending to
grow 32.8% in 2015e. http://www.gartner.com/newsroom/id/3055225. Accessed
October 2015

11. NetApp: The journey from traditional IT to the Cloud-Net App (2015). http://
webobjects.cdw.com/webobjects/media/pdf/netapp/NetApp-Virtualization-To-
Cloud-Brochure-1.pdf?cm sp=NAPShowcase- -Cat4- -CloudComputing.
Accessed October 2015

12. Saaty, T.L., Vargas, L.G.: Decision Making with the Analytic Network Process.
Springer, New York (2006)

13. Saripalli, P., Pingali, G.: MADMAC: Multiple Attribute Decision Methodology for
Adoption of Clouds. In: IEEE 4th International Conference on Cloud Computing
(CLOUD), Washington D.C., USA, pp. 316–323 (2011)

14. Walker, E.: The real cost of a CPU hour. IEEE Comput. 42(4), 35–41 (2009)
15. Wang, J.J., Yang, D.L.: Using a hybrid multi-criteria decision aid method for

information systems outsourcing. Comput. Oper. Res. 34(12), 3691–3700 (2007)
16. Zardari, S., Bahsoon, R.: Cloud adoption: a goal-oriented requirements engineering

approach. In: ACM 2nd International Workshop on Software Engineering for Cloud
Computing, Honolulu, Hawaii, USA, pp. 29–35 (2011)

https://cloudharmony.com/
http://dx.doi.org/10.1007/978-3-662-43862-6_1
http://www.gartner.com/newsroom/id/3055225
http://webobjects.cdw.com/webobjects/media/pdf/netapp/NetApp-Virtualization-To-Cloud-Brochure-1.pdf?cm_sp=NAPShowcase-_-Cat4-_-CloudComputing
http://webobjects.cdw.com/webobjects/media/pdf/netapp/NetApp-Virtualization-To-Cloud-Brochure-1.pdf?cm_sp=NAPShowcase-_-Cat4-_-CloudComputing
http://webobjects.cdw.com/webobjects/media/pdf/netapp/NetApp-Virtualization-To-Cloud-Brochure-1.pdf?cm_sp=NAPShowcase-_-Cat4-_-CloudComputing

	Trade-offs Based Decision System for Adoption of Cloud-Based Services
	1 Introduction
	2 Related Work
	3 Research Methodology and Architecture of the System
	3.1 TOPSIS
	3.2 ANP
	3.3 Trade-off Based Decision
	3.4 Implementation Architecture

	4 Testing and Evaluation
	4.1 Decision of Adopting PaaS (Use Case 1)
	4.2 Applicability of TrAdeCIS in Other Domains (Use Case 2)
	4.3 Performance Test

	5 Summary and Conclusions
	References

