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Abstract. Due to the current hype around cloud computing, the term
‘native cloud application’ becomes increasingly popular. It suggests an
application to fully benefit from all the advantages of cloud computing.
Many users tend to consider their applications as cloud native if the
application is just bundled as a monolithic virtual machine or container.
Even though virtualization is fundamental for implementing the cloud
computing paradigm, a virtualized application does not automatically
cover all properties of a native cloud application. In this work, which is
an extension of a previous paper, we propose a definition of a native cloud
application by specifying the set of characteristic architectural proper-
ties, which a native cloud application has to provide. We demonstrate
the importance of these properties by introducing a typical scenario from
current practice that moves an application to the cloud. The identified
properties and the scenario especially show why virtualization alone is
insufficient to build native cloud applications. We also outline how native
cloud applications respect the core principles of service-oriented archi-
tectures, which are currently hyped a lot in the form of microservice
architectures. Finally, we discuss the management of native cloud appli-
cations using container orchestration approaches as well as the cloud
standard TOSCA.

1 Introduction

Cloud service providers of the early days, such as Amazon, started their
Infrastructure as a Service (IaaS) cloud business by enabling customers to run
virtual machines (VM) on their datacenter infrastructure. Customers were able
to create VM images that bundled their application stack along with an operat-
ing system and instantiate those images as VMs. In numerous industry collab-
orations we investigated the migration of existing applications to the cloud and
the development of new cloud applications [1–3]. In the investigated use cases
we found that virtualization alone is not sufficient for fully taking advantage of
the cloud computing paradigm.

In this article, which is an extension of a previous paper [4] presented at
the 6 th International Conference on Cloud Computing and Services Science
(CLOSER), we show that although virtualization lays the groundwork for cloud
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computing, additional alterations to the application’s architecture are required
to make up a ‘cloud native application’. We discuss five essential architectural
properties we identified during our industry collaborations that have to be imple-
mented by a native cloud application [5]. Based on those properties we explain
why an application that was simply migrated to the cloud in the form of a VM
image does not comply with these properties and how the application has to
be adapted to transform it into a native cloud application. These properties
have to be enabled in any application that is built for the cloud. Compared to
the original article, we additionally discuss the deployment and management
aspects of native cloud applications. Therefore, we describe how Kubernetes1

can be employed to manage native cloud applications that are deployed using
fine-grained Docker containers. We also point out specific limitations of Kuber-
netes and similar container orchestration approaches and discuss how to over-
come those using TOSCA as cloud management standard. Note that we provide
a definition of native cloud applications and how to deploy and manage them;
we do not aim to establish a migration guide for moving applications to the
cloud. Guidelines and best practices on this topic can be found in our previous
work [2,6,7].

Section 2 introduces a reference application that reflects the core of the archi-
tectures of our industry use cases. Based on the reference application, Sect. 3
focuses on its transformation from a VM-bundled to a native cloud application.
We also discuss why virtualization or containerization alone is not sufficient to
fully benefit from cloud environments. Therefore, a set of architectural proper-
ties are introduced, which a native cloud application has to implement. Section 4
discusses how native cloud applications are related to microservice architectures,
SOA, and continuous delivery. Section 5 discusses how the reference application
itself can be offered as a cloud service. How to deploy and run a native cloud
application using container orchestration is discussed in Sect. 6 by example of
Kubernetes. In Sect. 7 a more holistic and technology-agnostic management app-
roach of native cloud application based on TOSCA is described. Finally, Sect. 8
concludes the article.

2 Reference Application

Throughout the article, the application shown in Fig. 1 is used as running exam-
ple for transforming an existing application into a cloud native application. It
offers functionality for accounting, marketing, and other business concerns. The
architecture specification of this application and the following transformation
uses the concept of layers and tiers [8]: the functionality of an application is
provided by separate components that are associated with logical layers. Appli-
cation components may only interact with other components on the same layer
or one layer below. Logical layers are later assigned to physical tiers for appli-
cation provisioning. In our case, these tiers are constituted by VMs, which may
be hosted by a cloud provider.
1 http://kubernetes.io.

http://kubernetes.io
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Fig. 1. Reference application to be moved to the cloud.

The reference application is comprised of three layers. Each layer has been
built on different technology stacks. The accounting functions are implemented
as Enterprise Java Beans2 (EJB) on a Java Enterprise Edition (JEE) server mak-
ing use of a Database Management Systems (DBMS); the marketing functions
are built in a .Net environment3 using a Content Management System (CMS).
All application functions are integrated into a graphical user interface (GUI),
which is realized by servlets hosted on a Web server.

The servlet, EJB and .Net components are stateless. In this scope, we dif-
ferentiate: (i) session state - information about the interaction of users with
the application. This data is provided with each request to the application and
(ii) application state - data handled by the application, such as a customer
account, billing address, etc. This data is persisted in the databases.

3 Transforming the Reference Application to a Cloud
Native Application

When moving the reference application to a cloud environment, the generic prop-
erties of this environment can be used to deduct required cloud application

2 https://jcp.org/aboutJava/communityprocess/final/jsr318.
3 http://www.microsoft.com/net.

https://jcp.org/aboutJava/communityprocess/final/jsr318
http://www.microsoft.com/net
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properties. The properties of the cloud environment have been defined by the
NIST [9]: On-demand self-service: the cloud customer can independently sign
up to the service and configure it to his demands. Broad network access: the
cloud is connected to the customer network via a high-speed network. Resource
pooling: resources required to provide the cloud service are shared among cus-
tomers. Rapid elasticity: resources can be dynamically assigned to customers to
handle currently occurring workload. Measured service: the use of the cloud by
customers is monitored, often, to enable pay-per-use billing models.

To make an application suitable for such a cloud environment, i.e. to utilize
the NIST properties, we identified the IDEAL cloud application properties [5]:
Isolation of state, Distribution, Elasticity, Automated Management and Loose
coupling. In this section, we discuss why VM-based application virtualization
and containerization alone is rather obstructive for realizing them. Based on
this discussion, the steps for enabling these properties are described in order to
transform a VM-based application towards a native cloud application. As we
start our discussion on the level of VMs, we first focus on the Infrastructure as
a Service (IaaS) service model. Then we show how it can be extended to use
Platform as a Service (PaaS) offerings of a cloud provider.

3.1 Complete Application per Virtual Machine

To provide an application to customers within a cloud environment as quickly
as possible, enterprises typically bundle their application into a single virtual
machine image (VMI)4. Such VMIs are usually self-contained and include all
components necessary for running the application. Considering the reference
application, the data access layer, the business logic layer, and the presentation
layer would be included in that VMI. Figure 2 shows an overview of that package.

Customers now start using the application through their Web browsers.
As shown in Fig. 2, all requests are handled by the same VM. Consequently,
the more customers are using the application, the more resources are required.
At some point in time, considering an increasing amount of customer requests,
the available resources will not be able to serve all customer requests any more.
Thus, the application needs to be scaled in order to serve all customers ade-
quately.

The first approach to achieve scalability is to instantiate another VM con-
taining a copy of your application stack as shown in Fig. 3. This allows you to
serve more customers without running into any bottleneck. However, the oper-
ation of multiple VMs also has significant downsides. You typically have to pay
for licenses, e.g. for the database server, the application server, and the content
management system, on a per VM basis. If customers use the account manage-
ment features mostly, why should you also replicate the marketing campaigns
stack and pay for the corresponding licenses? Next, what about your databases

4 From here on we do not mention containerization explicitly by considering them
as similar to virtual machine images - well recognizing the differences. But for the
purpose of our discussion they are very similar.
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Fig. 2. Packaging the application into one VM.

Fig. 3. Scaling based on complete VMs.

that are getting out of sync because separate databases are maintained in each
of the VMs? This may happen because storage is associated to a single VM but
updates need to be synchronized across those VMs to result in consistent data.

Therefore, it should be possible to scale the application at a finer granular,
to ensure that its individual functions can be scaled independently instead of
scaling the application as a whole. This can be achieved by following the distrib-
ution property in the application architecture. This property requires the appli-
cation functionality to be distributed among different components to exploit the
measured service property and the associated pay-per-use pricing models more
efficiently. Due to its modularized architecture comprising of logical layers and
components, the distribution property is met by the reference application. How-
ever, by summarizing the components into one single VM, i.e. in one tier, the
modularized architecture of the application gets lost.
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Moreover, this leads to the violation of the isolated state property, which
is relevant for the application to benefit from the resource pooling and elastic-
ity property. This property demands that session and application state must
be confined to a small set of well-known stateful components, ideally, the stor-
age offerings and communication offerings of the cloud providers. It ensures
that stateless components can be scaled more easily, as during the addition and
removal of application component instances, no state information has to be syn-
chronized or migrated, respectively.

Another IDEAL property that is just partly supported in case the applica-
tion is bundled as a single VM is the elasticity property. The property requires
that instances of application components can be added and removed flexibly and
quickly in order to adjust the performance to the currently experienced work-
load. If the load on the components increases, new resources are provisioned
to handle the increased load. If, in turn, the load on the resources decreases,
under-utilized components are decommissioned. This scaling out (increasing the
number of resources to adapt to workload) as opposed to scaling up (increas-
ing the capabilities of a single cloud resource) is predominantly used by cloud
applications as it is also required to react to component failures by replacing
failed components with fresh ones. Since the distribution is lost, scaling up the
application by assigning more resources to the VM (e.g. CPU, memory, etc.) is
fully supported, but not scaling out individual components. Hence, the elastic-
ity property is just partly met if the application is bundled as a single VM. The
incomplete support of the elasticity property also hinders the full exploitation
of the cloud resource pooling property, as the elasticity property enables unused
application resources to be decommissioned and returned to the resource pool
of the cloud if they are not needed anymore. These resources can then be used
by other customers or applications.

3.2 Stack-Based Virtual Machines with Storage Offerings

Because of the drawbacks of a single VM image containing the complete
application, a suitable next step is to extract the different application stacks
to separate virtual machines. Moreover, data can be externalized to storage
offerings in the cloud (‘Data as a Service’), which are often associated to the
IaaS service model. Such services are used similar to hard drives by the VMs,
but they are stored in a provider-managed scalable storage offering. Especially
the stored data can be shared among multiple VMs when they are being scaled
out, thus, avoiding the consistency problems indicated before and hence fostering
the isolated state property. Figure 4 shows the resulting deployment topology of
the application, where each stack and the Web GUI is placed into a different
virtual machine that accesses a Data as a Service cloud offering.

When a particular stack is under high request load, it can be scaled out
by starting multiple instances of the corresponding VM. For example, in Fig. 5
another VM instance of the accounting stack is created to handle higher load.
However, when another instance of a VM is created the DBMS is still replicated
which results in increased license costs.
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Fig. 4. Packaging stacks into VMs.

3.3 Using Middleware Virtual Machines for Scaling

The replication of middleware components such as a DBMS can be avoided by
placing these components again into separate VMs that can be scaled out inde-
pendently from the rest of the application stack on demand. The middleware
component is then able to serve multiple other components. In case of the refer-
ence application the DBMS associated with the account management is moved
to a new VM (Fig. 6), which can be accessed by different instances of the JEE
server. Of course, also the JEE server or the .Net server could be moved into
separate VMs. By doing so, the distribution property is increased and elasticity
can be realized at a finer granular.

Even though the single components are now able to scale independently from
each other, the problem of updating the application components and especially
the middleware installed on VMs still remains. Especially, in large applications
involving a variety of heterogeneous interdependent components this can become
a very time- and resource-intensive task. For example, a new release of the JEE
application server may also require your DBMS to be updated. But the new
versions of the DBMS may not be compatible with the utilized .Net application
server. This, in turn, makes it necessary to run two different versions of the same
DBMS. However, this violates an aspect of the automated management property
demanding that required human interactions to handle management tasks are
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Fig. 5. Scaling stacked VMs.

reduced as much as possible in order to increase the availability and reactiveness
of the application.

3.4 Resolving Maintenance Problems

To reduce management efforts, we can substitute components and middleware
with IaaS, PaaS, or SaaS offerings from cloud providers. In Fig. 7, the VMs
providing the Web server and application server middleware are replaced with
corresponding PaaS offerings. Now, it is the cloud provider’s responsibility to
keep the components updated and to rollout new releases that contain the latest
fixes, e.g. to avoid security vulnerabilities.

In case of the reference application, most components can be replaced by
cloud offerings. The first step already replaced physical machines, hosting the
application components with VMs that may be hosted on IaaS cloud environ-
ments. Instead of application servers, one may use PaaS offerings to host the
application components of the business logic layer. The DBMS could be substi-
tuted by PaaS offerings such as Amazon SimpleDB; marketing campaign .Net
assemblies could be hosted on Microsoft Azure, as an example.

To offload the management (and even development) of your .Net assemblies
one could even decide to substitute the whole marketing stack by a SaaS offering
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Fig. 6. Middleware-VMs for scaling.

that provides the required marketing functionality. In this case, the Web GUI is
integrated with the SaaS offering by using the APIs provided by the offering.

Of course, before replacing a component with an *aaS offering, it should be
carefully considered how the dependent components are affected [6]: adjustments
to components may be required to respect the runtime environment and APIs
of the used *aaS offering.

3.5 The Final Steps Towards a Cloud Native Application

The reference application is now decomposed into multiple VMs that can be
scaled individually to fulfill the distribution and elasticity property. Isolation
of state has been enabled by relying on cloud provider storage offerings. The
software update management has been addressed partially.

However, the addition and removal of virtual machine instances can still be
hindered by dependencies among application components: if a VM is decommis-
sioned while an application component hosted on it interacts with another compo-
nent, errors may occur. The dependencies between application components mean-
ing the assumptions that communicating components make about each other can
be reduced by following the loose coupling property. This property is implemented
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Fig. 7. Making use of cloud resources and features.

by using cloud communication offerings enabling asynchronous communication
between components through a messaging intermediate as shown in Fig. 8. This
separation of concerns ensures that communication complexity regarding routing,
data formats, communication speed etc. is handled in the messaging middleware
and not in components, effectively reducing the dependencies among communi-
cation partners. Now, the application can scale individual components easier as
components do not have to be notified in case other components are provisioned
and decommissioned.

To make elastic scaling more efficient, it should be automated. Thus, again
the automated management property is respected. This enables the applica-
tion to add and remove resources without human intervention. It can cope with
failures more quickly and exploits pay-per-use pricing schemes more efficiently:
resources that are no longer needed should be automatically decommissioned.
Consequently, the resource demand has to be constantly monitored and cor-
responding actions have to be triggered without human interactions. This is
done by a separate watchdog component [8,10] and elasticity management com-
ponents [11]. After this step, the reference application became cloud native,
thus, supporting the IDEAL cloud application properties: Isolation of state,
Distribution, Elasticity, Automated Management and Loose coupling [5].
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Fig. 8. Making use of cloud communication features.

In terms of virtualization techniques and technologies, fully fledged VMs
with their dedicated guest operation system could also be replaced by more
lightweight virtualization approaches such as containers, which recently became
popular with Docker [12]. However, such approaches may not provide the same
degree of isolation, so depending on the specific requirements of an application,
the one or the other virtualization approach fits better.

4 Microservices and Continuous Delivery

Microservice architectures provide an emerging software architecture style, which
is currently discussed and hyped a lot. While there is no clear definition of
what a microservice actually is, some common characteristics have been estab-
lished [13,14]. Microservice architectures are contrary to monolithic architec-
tures. Consequently, a specific application such as a Web application (e.g. the
reference application presented in this paper) or a back-end system for mobile
apps is not developed and maintained as a huge single building block, but as a
set of ‘small’ and independent services, i.e. microservices. As of today, there is no
common sense how ‘small’ a microservice should be. To make them meaningful,
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these services are typically built around business capabilities such as account
management and marketing campaigns as outlined by the reference application.
Their independence is implemented by running each service in its own process
or container [12]. This is a key difference to other component-based architecture
styles, where the entire application shares a process, but is internally modular-
ized, for instance, using Java libraries.

The higher degree of independence in case of microservices enables them to
be independently deployable from each other, i.e. specific parts of an application
can be updated and redeployed without touching other parts. For non-trivial and
more complex applications, the number of services involved quickly increases.
Consequently, manual deployment processes definitely do not scale anymore for
such architectures, because deployment happens much more often and indepen-
dently. Therefore, fully automated deployment machinery such as continuous
delivery pipelines are required [15].

As a side effect of the services’ independence, the underlying technologies
and utilized programming languages can be extremely diverse. While one ser-
vice may be implemented using Java EE, another one could be implemented
using .Net, Ruby, or Node.js. This enables the usage of ‘the best tool for the
job’, because different technology stacks and programming languages are opti-
mized for different sets of problems. The interface, however, which is exposed
by a particular service must be technology-agnostic, e.g. based on REST over
HTTP, so different services can be integrated without considering their specific
implementation details. Consequently, the underlying storage technologies can
also differ, because ‘decentralized data management’ [13] is another core princi-
ple of microservice architectures. As outlined by the reference application, each
service has its own data storage, so the data storage technology (relational, key-
value, document-oriented, graph- based, etc.) can be chosen according to the
specific storage requirements of a particular service implementation.

In addition, microservice architectures follow the principle of ‘smart end-
points and dumb pipes’ [13], implying the usage of lightweight and minimal
middleware components such as messaging systems (‘dumb pipes’), while mov-
ing the intelligence to the services themselves (‘smart endpoints’). This is con-
firmed by reports and surveys such as carried out by Schermann et al.: REST in
conjunction with HTTP as transport protocol is used by many companies today.
JSON and XML are both common data exchange formats. There is a trend to
minimize the usage of complex middleware towards a more choreography-style
coordination of services [16]. Finally, the architectural paradigm of self-contained
systems [17] can help to treat an application, which is made of a set of microser-
vices, in a self-contained manner.

In this context, an important fact needs to be emphasized: most of the core
principles of microservice architectures are not new at all. Service-oriented archi-
tectures (SOA) are established in practice for some time already, sharing many
of the previously discussed core principles with microservice architectures. Thus,
we see microservice architectures as one possible opinionated approach to realize
SOA,whilemaking each service independentlydeployable.This ideaof establishing
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independently deployable units is a focus of microservice architectures, which was
not explicitly a core principle in most SOA-related works and efforts. Therefore,
continuous delivery [15] can now be implemented individually per service to com-
pletely decouple their deployment.

Our previously presented approach to transition the reference application’s
architecture towards a native cloud application is based on applying the IDEAL
properties. The resulting architecture owns the previously discussed characteris-
tics of microservice architectures and SOA. Each part of the reference application
(account management, marketing campaigns, etc.) now represents an indepen-
dently (re-)deployable unit. Consequently, if an existing application is transi-
tioned towards a native cloud application architecture by applying the IDEAL
properties, the result typically is a microservice architecture. To go even further
and also consider development as part of the entire DevOps lifecycle, a separate
continuous delivery pipeline can be implemented for each service to perform
their automated deployment when a bug fix or new feature is committed by
a developer. Such pipelines combined with Cloud-based development environ-
ments, such as Cloud9 [18], also make the associated application development
processes cloud-native in addition to deploying and running the application in a
cloud-native way.

5 Moving Towards a SaaS Application

While the IDEAL properties enable an application to benefit from cloud envi-
ronments and (micro)service-oriented architectures, additional properties have
to be considered in case the application shall be offered as a Service to a large
number of customers [11,19]: Such applications should own the properties clus-
terability, elasticity, multi-tenancy, pay-per-use, and self-service. Clusterability
summarizes the above- mentioned isolation of state, distribution, and loose cou-
pling. The elasticity discussed by Freemantle and Badger et al. [11,19] is identical
to the elasticity mentioned above. The remaining properties have to be enabled
in an application-specific manner as follows.

5.1 Multi-tenancy

The application should be able to support multiple tenants, i.e. defined groups
of users, where each group is isolated from the others. Multi-tenancy does not
mean isolation by associating each tenant with a separate copy of the application
stack in one or more dedicated VMs. Instead, the application is adapted to have
a notion of tenants to ensure isolation. The application could also exploit multi-
tenant aware middleware [20] which is capable to assign tenant requests to the
corresponding instance of a component.

In scope of the reference application, the decomposition of the application
into loosely coupled components enables the identification of components that
can easily be shared among multiple tenants. Other components, which are more
critical, for example, those sharing customer data likely have to be adjusted in
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order to ensure tenant isolation. In previous work, we discussed how such shared
components and tenant-isolated components may be implemented [5]. Whether
an application component may be shared among customers or not may also affect
the distribution of application components to VMs.

5.2 Pay-Per-Use

Pay-per-use is a property that fundamentally distinguishes cloud applications
from applications hosted in traditional datacenters. It ensures that tenants do
only pay when they are actually using an application function, but not for the
provisioning or reservation of application resources. Pay-per-use is enabled by
fine-grained metering and billing of the components of an application stack. Con-
sequently, the actual usage of each individual component within the application
stack must be able to be monitored, tracked, and metered. Depending on the
metered amount of resource usage, the tenant is billed. What kind of resources
are metered and billed depends on the specific application and the underlying
business model. Monitoring and metering can also be supported by the under-
lying middleware if it is capable to relate the requests made to the application
components with concrete tenants.

In scope of the reference application, sharing application component instances
ensures that the overall workload experienced by all instances is leveled out
as workload peaks of one customer happen at the same time where another
customer experiences a workload low. This sharing, thus, enables flexible pricing
models, i.e. charging on a per-access basis rather than on a monthly basis. For
instance, the reference application may meter and bill a tenant for the number
of marketing campaigns he persists in the CMS. Other applications may meter
a tenant based on the number requests or the number of CPUs he is using.
Amazon, for instance, provides a highly sophisticated billing model for their
EC2 instances [21].

5.3 Self-service

The application has to ensure that each tenant can provision and manage his
subscription to the application on his own, whenever he decides to do so. Espe-
cially, no separate administrative staff is needed for provisioning, configuring,
and managing the application. Self-service capability applies to each component
of the application (including platform, infrastructure, etc.). Otherwise, there
would not be real improvements in time-to-market. The self-service functional-
ity can be provided by user interfaces, command line interfaces, and APIs to
facilitate the automated management of the cloud application [11].

In scope of the reference application, automated provisioning and decommis-
sioning of application component instances is enabled by the used cloud envi-
ronment. Therefore, customers may be empowered to sign up and adjust sub-
scriptions to the cloud-native application in a self-service manner, as no human
management tasks are required on the application provider side anymore.
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6 Native Cloud Applications and Container Orchestration

The previous sections of this paper aim to point out the key concepts of native
cloud applications. Applications that are simply packaged as a virtual machine
image (VMI) or monolithic container do not benefit from the cloud proper-
ties discussed previously. Therefore, such applications do not represent native
cloud applications. However, instead of packaging existing legacy applications as
monolithic virtual machines, this paper presented an approach to systematically
split such an application into fine-grained building blocks (Sect. 3). This app-
roach is compatible with the emerging microservice architecture style (Sect. 4),
which essentially is a modernized flavor and opinionated implementation of
service-oriented architecture (SOA). Container virtualization (containerization)
approaches such as Docker can be utilized to package and deploy applications
comprising of such fine-grained building blocks, i.e. components or microservices:
each component runs inside a separate container instead of hosting the entire
application inside a monolithic container. The latter option would be conceptu-
ally the same as putting everything inside a monolithic virtual machine. This is
technically different from using virtual machines because the overhead of VMs is
significantly larger: each VM runs a completely dedicated instance of an operat-
ing system. While this approach leads to strong isolation, it implies the overhead
of running each component on top of a dedicated operating system. Containers
share the underlying operating system of their host and are, therefore, often
referred to as ‘lightweight’ virtualization. Docker5 and Rocket6 are two popular
container virtualization approaches. The Open Container Initiative (OCI)7 aims
to standardize a packaging format for containers.

While containers help to package, deploy, and manage loosely coupled com-
ponents such as microservices that make up a specific application, their orches-
tration is a major challenge on its own. Container orchestration approaches such
as Docker Swarm8, Kubernetes, and Apache Mesos9 are emerging to address
this issue and simplify the process of combining and scaling containers. The
Cloud Native Computing Foundation (CNCF)10 is an emerging standard in this
field, which promotes Kubernetes as one of the most actively developed container
orchestration frameworks. Therefore, the remainder of this section discusses how
the split application outlined in Fig. 7 can be deployed based on containers that
are managed using Kubernetes.

Figure 9 outlines how the application topology can be distributed across a
diverse set of containers, e.g. Docker containers. Persistent data is stored in con-
tainer volumes11, which are connected to the corresponding containers that run

5 http://www.docker.com.
6 http://coreos.com/rkt.
7 http://www.opencontainers.org.
8 http://docs.docker.com/engine/swarm.
9 http://mesos.apache.org.

10 http://cncf.io.
11 http://docs.docker.com/engine/tutorials/dockervolumes.

http://www.docker.com
http://coreos.com/rkt
http://www.opencontainers.org
http://docs.docker.com/engine/swarm
http://mesos.apache.org
http://cncf.io
http://docs.docker.com/engine/tutorials/dockervolumes
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Fig. 9. Container-based application topology.

DBMS and CMS components. This approach makes data persistence more reli-
able because if a container crashes, a new one can be started and wired with
the persistent volume. Some of the outlined containers such as the account man-
agement container can be scaled independently, i.e. container instances can be
added and removed depending on the current load of this part of the application.
This mechanism is the foundation for providing elasticity, an essential property
of native cloud applications.

While Docker and similar solutions provide the basic mechanisms, tooling,
and APIs to manage and wire containers, the orchestration and management
of containers at scale add further challenges that have to be addressed. This is
where large-scale container orchestration frameworks such as Kubernetes come
into play. They provide key features that would have to be implemented using
custom solutions on top of container virtualization solutions such as Docker.
These features include the optimized distribution of containers inside a cluster,
self-healing mechanisms to ensure that crashed containers are replaced, auto-
mated scaling mechanisms based on current load to ensure elasticity, and load
balancing of incoming requests among container instances. Figure 10 sketches
the simplified architecture using Kubernetes by example of the split applica-
tion discussed in this paper. A cluster consists of worker nodes and at least one
master node. Technically, a node is either a physical or virtual machine running
on-premises or in the cloud. Each worker node runs Docker to host and exe-
cute containers. Pods are groups of containers that inherently belong together
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Fig. 10. Simplified Kubernetes architecture overview.

and cannot be deployed and scaled individually. Each pod consists of at least
one container. Consequently, pods are the smallest units in Kubernetes that can
be managed individually. Each node runs a kubelet, which acts as Kubernetes
agent for cluster management purposes. The primary master node connects to
these kubelets to coordinate and manage the other nodes, i.e. monitoring and
scheduling containers, removing crashed ones, etc. Pods can either be main-
tained manually through the Kubernetes API of a cluster or their management
is automated through application-specific replication controllers running on the
master nodes. A replication controller such as the account management replica-
tion controller shown in Fig. 10 ensures that the defined number of replicas of a
specific pod are up and running as part of the cluster. For example, the previ-
ously mentioned replication controller is associated with the pod comprising the
container that runs the account management EJBs on top of the JEE applica-
tion server. If, for instance, a replica of this pod fails on a particular node, the
replication controller immediately schedules a new replica on any node in the
cluster. While a single master node is technically sufficient, additional master
nodes can be added to a cluster in order to ensure high availability: in case the
primary master node fails, another master node can immediately replace it.

Technically, JSON or YAML files are used to define pods and replication
controllers. The following YAML listing provides an example how the account
management pod can be specified as outlined in Fig. 10 by the pod that consists
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of a single container (containing account management EJBs and JEE application
server), which runs on the upper worker:

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 # Labels describe properties of this pod
5 labels:
6 name: account-management-pod
7 spec:
8 containers:
9 - name: account-management

10 # Docker image running in this pod
11 # Contains EJBs and JEE application server
12 image: account-mgmt-jee:stable
13 ports:
14 - containerPort: 8080

In order to maintain pods in an automated manner by Kubernetes, a replication
controller can be created instead of defining a manually managed pod. The
account management replication controller denoted in Fig. 10 can be specified,
for example, using the following YAML listing:

1 apiVersion: v1
2 kind: ReplicationController
3 metadata:
4 name: account-management-controller
5 spec:
6 # Three replicas of this pod must run in the cluster
7 replicas: 3
8 # Specifies the label key and value on the pod that
9 # this replication controller is responsible

10 selector:
11 app: account-management-pod
12 # Information required for creating pods in the cluster
13 template:
14 metadata:
15 labels:
16 app: account-management-pod
17 spec:
18 containers:
19 - name: account-management
20 image: account-mgmt-jee:stable
21 ports:
22 - containerPort: 8080

Each pod dynamically gets an IP address assigned. Especially when dealing
with multiple replicas that are managed through a replication controller, it is
a major challenge to keep track of the IP addresses. Moreover, the transparent
load balancing of requests between existing replicas is not covered. Kubernetes
tackles these issues by allowing the definition of services, which can be specified
as outlined by the following YAML listing:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: account-management-service
5 spec:
6 ports:
7 - port: 80 # port exposed by the service
8 targetPort: 8080 # port pointing to the pod
9 selector:

10 app: account-management-pod
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Each service provides a single and stable endpoint that transparently distributes
requests between running replicas of the pod specified by the given selector, for
example, the previously defined account-management-pod. In addition to pods,
replication controllers, and services, Kubernetes allows to attach volumes to
pods. For example, an Amazon Elastic Block Store volume12 can be mounted
into a pod to provide persistent storage. This is key for database back-ends of
applications as outlined in Fig. 9.

Kubernetes provides a broad variety of additional features such as liveness
and readiness probes13, also known as health checks. These checks are not only
important for monitoring purposes, e.g. to find out whether a particular con-
tainer is up and running, they are also key to wire different containers. For
example, container 1 connects to an endpoint exposed by container 2. However,
the component started in container 2 that exposes the required endpoint takes
some time until the connection can be established. Therefore, container 1 uses a
readiness probe (e.g. an HTTP endpoint that must return the success response
code 200) to find out when container 2 is ready for establishing the actual connec-
tion between the two components. Moreover, Kubernetes provides mechanisms
to perform rolling updates14 on a cluster, which is a key enabler for continuously
delivering updated application instances into production as discussed in Sect. 4.

Although container orchestration such as Kubernetes provide a comprehen-
sive framework to deploy and manage native cloud applications at scale, there
are several constraints and assumptions made by such container orchestration
approaches. (i) It is typically assumed that each application component runs
inside a stateless container, i.e. a container can be terminated and replaced by a
new instance of it at any point in time. Many existing legacy applications were
not designed this way, so significant effort is required to wrap them as stateless
containers. Moreover, the scaling mechanisms of some legacy application com-
ponents rely on specific features provided by application servers such as Java EE
servers. Migrating them toward a container orchestration is a non-trivial chal-
lenge. (ii) A container is considered immutable, i.e. container instances are not
patched or updated (security fixes, etc.), but instances are dropped and replaced
by updated containers. (iii) A Kubernetes cluster is based on a pretty homoge-
nous infrastructure, e.g. a set of virtual servers running at a single cloud provider.
Consequently, multi-cloud or hybrid cloud deployments are hard to implement.
However, the Kubernetes community is working on cluster federation solutions15.
(iv) Logic cannot be added to relationships between containers, i.e. the relations
between containers are dumb (e.g. sharing TCP ports), so the containers must
be smart enough to establish corresponding connections between them. This is
achieved by utilizing readiness and liveness probes as discussed previously in this
section. (v) Application components cannot be split into arbitrarily fine-grained

12 http://kubernetes.io/docs/user-guide/volumes/#awselasticblockstore.
13 http://kubernetes.io/docs/user-guide/production-pods.
14 http://kubernetes.io/docs/user-guide/rolling-updates.
15 http://github.com/kubernetes/kubernetes/blob/master/docs/proposals/

federation.md.

http://kubernetes.io/docs/user-guide/volumes/#awselasticblockstore
http://kubernetes.io/docs/user-guide/production-pods
http://kubernetes.io/docs/user-guide/rolling-updates
http://github.com/kubernetes/kubernetes/blob/master/docs/proposals/federation.md
http://github.com/kubernetes/kubernetes/blob/master/docs/proposals/federation.md
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containers. For example, the account management EJBs outlined in Fig. 9 must
run in the same container as the JEE application server because the application
server exposes the port that is used by other components to utilize the functional-
ity provided by those EJBs. An EJB itself would not be capable of providing and
exposing such a port through a separate container. (vi) Finally, external services
such as platform-as-a-service offerings cannot be immediately managed as part
of a container orchestration solution such as Kubernetes. Although containerized
application components running inside the cluster can connect to external ser-
vices such as a hosted database instance, their configuration and management is
another challenge that needs to be tackled in addition to managing the cluster.

7 Standards-Based Modeling, Orchestration,
and Management of Native Cloud Applications

In the previous sections, we discussed how native cloud applications can be
developed, how the approach is compatible with the microservice architecture
style, and how container virtualization approaches can be utilized to package
and deploy such applications. However, we have seen that there are several con-
straints in terms of orchestrating containers, for example, application compo-
nents must be stateless, strong assumptions about the communication in and
between containers, and the difficulties regarding multi- and hybrid cloud appli-
cations. Moreover, the automation of holistic management processes, such as
migrating the whole application including its data to another cloud provider, is
an unsupported challenge. Therefore, in this section, we describe a solution to
tackle these issues by discussing how the TOSCA [22–25] standard supports mod-
eling, orchestrating, and managing various kinds of applications components.

The Topology and Orchestration Specification for Cloud Applications
(TOSCA) is an OASIS standard released in 2013 that enables modeling cloud

Fig. 11. The TOSCA concepts: topology model and management plans.
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applications and their management in a portable manner. Beside portability, the
automation of application provisioning and management is one of the major goals
of this standard. TOSCA models conceptually consist of two parts as depicted
in Fig. 11: (i) application topology model and (ii) management plans. An appli-
cation topology model is a directed, possibly cyclic graph that describes the
structure of the application to be provisioned. The nodes of this graph repre-
sent the application components (virtual machines, etc.), edges represent rela-
tionships between those. The topology model also specifies information about
components and their relationships in terms of types, properties, available man-
agement interfaces, etc. Especially, TOSCA provides an extensible type system
for describing the types of components and relationships. Thus, the standard
allows modeling arbitrary components and relationship types, even the defini-
tion of proprietary types for supporting legacy applications—a specific feature
that gets important in the following discussion.

The second part of TOSCA models are management plans, which are
executable process models implementing management functionality for the
described application, for example, to backup all application data or to migrate
the application from one provider to another. Management plans are typically
implemented using the workflow technology [26] in order to provide a reliable
execution environment. In addition, standardized workflow languages such as
BPEL [27] and BPMN [28] support this choice. To implement their functionality,
plans invoke operations provided by the nodes of the topology model. Therefore,
additional artifacts are required: (i) deployment artifacts (DAs) implement busi-
ness logic whereas (ii) implementation artifacts (IAs) implement management
operations provided by the components of the topology model. Typical deploy-
ment artifacts are, for example, the binaries of an application server whereas a
corresponding implementation artifact may be a shell script that starts the appli-
cation server. Moreover, TOSCA defines a portable packaging format, namely
Cloud Service Archive (CSAR), that contains the topology model, all manage-
ment plans, as well as all other required artifacts. Thus, the archive is completely
self-contained and provides all required information to automatically provision
and manage the application using a TOSCA Runtime Environment, e. g., Open-
TOSCA [29]. For more details about TOSCA we refer to Binz et al. [25], who
provide a compact overview on the TOSCA standard.

These concepts of TOSCA tackle the orchestration issues mentioned in the
previous section. First of all, the extensible type system allows modeling arbi-
trary types of application components and relationships that shall be provi-
sioned. Thus, also stateful and non-containerized resources such as databases
can be included in the provisioning process and do not have to be handled sep-
arately. Moreover, the extension concept enables modeling hybrid- and multi-
cloud applications because arbitrary types can be defined and used in the topol-
ogy model. For example, one part of the topology may be hosted on Amazon
EC2, another part of the application on an on-premise OpenStack installation.
This also enables including legacy components into the overall provisioning that
shall not or cannot be adapted for the cloud following the approach presented
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in Sect. 3. To specify non-functional requirements regarding the provisioning or
management of the application, TOSCA employs the concept of policies [22]
that may be used, for example, to specify the regions of a cloud provider in
which an application is allowed to be deployed [30].

However, it is important to emphasize that the concept of topology models
does not compete with containerization and container orchestration: container-
ized components, e. g., in the form of Docker containers, can be modeled as part
of a topology model. Furthermore, container orchestration technologies such as
Kubernetes can be modeled in the form of a component that hosts other com-
ponents, in this case, Docker containers. Thus, arbitrary technologies can be
included in these topology models since the type system is extensible. As a result,
container technologies may be used as building blocks for TOSCA models. More-
over, using this modeling concept, they can be combined with other technologies
that are not supported natively by container technologies: for example, a web
application that is hosted on a web server contained in a Docker container may
be connected to a legacy, non-containerized application that gets provisioned,
too. In addition, containers hosted in different clouds may be wired with each
other using this higher-level modeling concept. Therefore, TOSCA can be seen
as an orchestration language on top of existing provisioning, virtualization, and
management technologies.

To automate the provisioning of such complex composite cloud applications,
TOSCA employs two different approaches: (i) declarative and (ii) impera-
tive [23]. Using the declarative approach, the employed TOSCA Runtime Envi-
ronment interprets the topology model and derives the required provisioning
logic by itself. Based on well-defined interfaces, such as the TOSCA lifecycle
interface [23] which defines operations to install, configure, start, stop, and ter-
minate components, runtimes are enabled to provision arbitrary types of com-
ponents as long as the Cloud Service Archive provides implementations for the
required operations. Moreover, there are approaches that are capable of auto-
matically generating provisioning plans out of topology models [31–33]. As the
semantics of component types and relationship types—or at least of their man-
agement interfaces—must be defined and understood by the employed runtime,
the declarative approach is limited to provisioning scenarios that consist of com-
mon components such as web servers, web applications, and databases. However,
if the provisioning of a complex application requires custom provisioning logic
for individual components, for example, legacy components, and an application-
specific orchestration of those components, automatically deriving all required
provisioning steps is often not feasible.

TOSCA tackles these issues by the imperative approach, which employs man-
agement plans to model all activities that have to be executed, including their con-
trol and data flow. As management plans, in this case Build Plans that automate
the provisioning of the application [22], describe all steps to be executed explic-
itly, this concept enables customizing the provisioning for arbitrary applications
including custom, application-specific logic. Thus, also complex applications that
possibly employ containerization technologies hosted ondifferent clouds connected



38 F. Leymann et al.

to stateful non-containerized legacy components can be provisioned automati-
cally using this approach as any required activity can be described explicitly. The
TOSCA-based management plan modeling language BPMN4TOSCA [34,35]
additionally supports creating management plans based on the management oper-
ations provided by the components in the topology model. In addition, combined
with the aforementioned plan generation, Build Plans may be generated even for
complex applications and refinedafterwards for custom, application-specificneeds.

8 Summary

Based on the IDEAL cloud application properties we have shown how an exist-
ing application can be transformed to a native cloud application. Moreover,
we discussed the relation of native cloud applications to (micro)service-oriented
architectures and continuous delivery. Additional properties defined by Freeman-
tle and Badger et al. – multi-tenancy, pay-per-use, and self-service – enabling a
native cloud application to be offered as a service require significant adjustments
of the application functionality. Multi-tenancy commonly requires adaptation of
application interfaces and storage structures to ensure the isolation of tenants.
Functionality to support pay-per-use billing and self-service commonly has to be
newly created using application-specific knowledge.

Based on the transformation of the reference application we have shown that
virtualization is a mandatory prerequisite for building a native cloud application,
but just virtualizing an application in a monolithic manner does not satisfy all
cloud application properties. Hence, it is insufficient to simply move an appli-
cation into a monolithic virtual machine and call it a native cloud application.
Furthermore, we outlined how emerging container orchestration approaches such
as Kubernetes and Docker Swarm can be utilized to manage native cloud applica-
tions. Since these container orchestration approaches make specific assumptions
about containerized application components, we further discussed how TOSCA
can be used as standards-based modeling, orchestration, and management app-
roach for native cloud applications. More specifically, TOSCA provides over-
arching and extensible mechanisms to integrate and orchestrate legacy, typi-
cally stateful, and non-containerized components with stateless and container-
ized application components.
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