
Towards a Framework for Privacy-Preserving
Data Sharing in Portable Clouds

Clemens Zeidler(B) and Muhammad Rizwan Asghar

Department of Computer Science, The University of Auckland,
Auckland 1142, New Zealand

{clemens.zeidler,r.asghar}@auckland.ac.nz

Abstract. Cloud storage is a cheap and reliable solution for users to
share data with their contacts. However, the lack of standardisation and
migration tools makes it difficult for users to migrate to another Cloud
Service Provider (CSP) without losing contacts, thus resulting in a ven-
dor lock-in problem. In this work, we aim at providing a generic frame-
work, named PortableCloud, that is flexible enough to enable users to
migrate seamlessly to a different CSP keeping all their data and contacts.
To preserve the privacy of users, the data in the portable cloud is con-
cealed from the CSP by employing encryption techniques. Moreover, we
introduce a migration agent that assists users in automatically finding a
suitable CSP that can satisfy their needs.

Keywords: Portable cloud · Privacy · Data sharing · Data migration ·
Migration costs · Migration agent

1 Introduction

Cloud storage is a cheap and reliable alternative to a local storage system.
A Cloud Service Provider (CSP) is considered to ensure availability of cloud
services so that users can get access to their data from anywhere at any time.
Leveraging cloud storage can be an attractive business model for individuals as
well as for enterprises that do not have resources to deploy and maintain cus-
tom storage solutions. However, data in the cloud is stored at geographically
dispersed locations, thus raising serious privacy concerns. Assuming that the
CSP is honest-but-curious [1], data has to be kept confidential. Technically, the
confidentiality of the data can be guaranteed by employing encryption before
storing the data in the cloud.

Many CSPs allow their users to share data with each other, which is a great
way to collaborate with third parties. For example, Dropbox1 enables users to
share files with each other. However, sharing data with users who do not belong
to the same CSP is usually limited and less secure and requires a manual token or
key exchange with third parties. Throughout this chapter, we call third parties
contacts, i.e., the parties with whom users shares their data.
1 https://www.dropbox.com/.

c© Springer International Publishing AG 2017
M. Helfert et al. (Eds.): CLOSER 2016, CCIS 740, pp. 273–293, 2017.
DOI: 10.1007/978-3-319-62594-2 14

https://www.dropbox.com/


274 C. Zeidler and M.R. Asghar

There are various reasons why a user may want to migrate her data from
one CSP to another one. For example, if there are cheaper CSPs available, the
service conditions have changed or the current service is not reliable enough.
Furthermore, there are jurisdictional restrictions on the CSP [2]. In the worst
case, a CSP might have to shut down its services for financial or legal issues. For
instance, if a CSP is used for illegal file sharing, the CSP may face legal issues
and its service may get interrupted. For innocent users, this can lead to loss of
their personal data.

Having contacts at a certain CSP can be a hindrance for a user to migrate to
another CSP since these contacts would then be lost, i.e., a user and a contact
would not be able to access and share data with each other anymore. Another
problem that makes it hard to migrate a cloud service is that there is often a lack
of tools for a seamless migration. For example, there is no simple way to migrate
data between CSPs when data needs to be transformed to a different format or
encryption scheme. These problems that could stop users from migrating to a
different CSP are also known as vendor lock-in [3–5].

In this chapter, we propose PortableCloud, a generic framework that
addresses the problem of vendor lock-ins and allows users to seamlessly migrate
data between CSPs that run PortableCloud. If required, data can even be
removed from the cloud and migrated to a local service that runs PortableCloud.
Data can be shared between contacts that reside either at the same or a different
CSP (see Fig. 1). To preserve the privacy of users, data is stored encrypted and
can only be accessed by authorised parties. When migrating the portable cloud
to a new CSP, all contacts are kept and automatically notified about the migra-
tion, i.e., the migration is transparent to users and their contacts. We provide
a migration cost analysis of the portable cloud migration. Further, we propose
an agent that informs users about CSPs with better conditions in order to help
them to migrate to a new CSP.

Our contributions can be summarised as follows:

• A proposal of a novel privacy-preserving portable cloud framework
PortableCloud that enables seamless migration to a new CSP while main-
taining all existing contacts.

• A cost analysis of a portable cloud migration.
• A migration agent that assists users in migrating to another CSP.

Section 2 motivates and defines requirements for PortableCloud. Section 3
provides an overview of the system model. Section 4 elaborates PortableCloud.
Section 5 explains the migration process, analyses the migration cost and
describes a migration agent. Section 6 discusses privacy aspects of the portable
cloud and how the portable cloud can be used by enterprises. Section 7 reviews
related work. Section 8 concludes this chapter and gives directions for future
work.



Towards a Framework for Privacy-Preserving Data Sharing 275

2 Scenario and Requirements

2.1 Motivating Scenario

In this section, we briefly explain a scenario that motivates why we need a
portable cloud. Let us assume an organisation that has to store data of its users
who could share data with their contacts that may or may not belong to the
same organisation. A typical example of such an organisation is a university,
where data is shared between researchers from the same university as well as
with collaborating researchers from other universities and industrial partners.

We consider that the organisation outsources storage services to a CSP. Like
a typical storage system in the trusted environment, accounts are created and
access rights are defined for users and external contacts for sharing data among
them residing on the CSP servers. Since a CSP could compromise the privacy
of users when getting cleartext access to the data, the organisation employs
encryption techniques before storing any data in the cloud. Consequently, sharing
data becomes a matter of sharing secret keys for the encrypted data.

The organisation might decide to migrate from an existing CSP to a new one.
There could be various reasons behind such a migration. The most prominent
reasons include cost, limitation of (hardware and software) resources and trust.
For instance, there is a CSP that (i) offers cheaper services, (ii) does not have
sufficient hardware to offer more storage or a particular version of software is
not supported or (iii) a CSP is not trusted anymore due to some unexpected
event or bad experience.

For migrating from one CSP to another, the organisation could face a number
of problems. First, it is not easy to just copy data from one system to another. For
instance, a migration process could require downloading a part of encrypted data
locally and re-encryption before uploading it to the new CSP. Unfortunately,
current CSPs do not support tools for aforementioned operations. Second, all
users and their contacts need to be notified about the new CSP. This is not only a
tedious task but could also be erroneous and can lead to serious access right issues
for users in the system. Third, the new encryption keys and the new tools, which
are required to access the data, need to be distributed to the users and contacts.
In the case of the second and third problems, any manual change by users or
contacts could result in some human errors. Fourth, during the migration process,
users and contacts might face issues in accessing the data or consuming services.
Even if the old CSP keeps serving till completion of the migration process, there
could be inconsistencies in the data if it is modified meanwhile. In other words,
there could be serious issues if any data write operation is encountered during
the migration process. Last but not least, organisations need to manually explore
themselves CSPs that can make competitive offers. More precisely, the existing
infrastructure does not take into account automatic discovery of alternative CSPs
or their services.

Currently, all these problems result in vendor lock-in issues because an organ-
isation cannot easily choose to migrate to another CSP. An organisation has to



276 C. Zeidler and M.R. Asghar

consider any migration carefully since it could affect their users as well as their
users’ contacts.

2.2 Requirements

From the above scenario, we can deduce a set of requirements for a portable
cloud architecture. First, the option to migrate to a set of different CSPs can
lead to certain security threats since it could be difficult to judge which CSPs
keep data private and could be trusted. The data must not only be encrypted,
but users and contacts must be able to ensure that the data can only be read by
authorised entities, is not modified by unauthorised entities [6] and the origin of
the data is authenticated [7]. More precisely, the framework of portable clouds
must provide mechanisms to ensure user privacy, integrity and provenance. This
can be achieved by using cryptographic methods to encrypt the data to conceal
private information from the CSP and sign it. Furthermore, any information
that any CSP could infer from the stored or exchanged data must be as minimal
as possible.

Second, the migration should be seamless for all stakeholders, in particular
for users and contacts. Moreover, the downtime for a migration should be small
and contacts need to be notified automatically about the migration. This makes
it easy for users to migrate to a new CSP without losing connections to existing
contacts, i.e., contacts are able to access data at the new CSP.

Fig. 1. Data sharing between a user and her contacts who may or may not be at the
same CSP. Even after a migration to a new CSP contacts are still able to access data
at the new CSP.

Third, users must be able to share data with their contacts that may or may
not belong to the users’ CSP (see Fig. 1). This is a quite natural requirement
since data sharing should stay functional after the migration.

To summarise the requirements:

1. User privacy must be preserved.
2. Data integrity and provenance must be provided.



Towards a Framework for Privacy-Preserving Data Sharing 277

3. A migration to a new CSP must be transparent and seamless to the user and
her contacts.

4. Data needs to be shareable with contacts that may or may not belong to the
users’ CSP.

3 System Model

A user of a CSP stores all her data at the CSP. Data at the CSP can be shared
with contacts. Contacts are users of the same or different CSPs. In our system
model, we assume the following entities:

• Cloud Service Provider (CSP): It is responsible for storing the data and
runs the PortableCloud software. The CSP ensures that only authorised par-
ties can access the data. Furthermore, the CSP manages the communication
between users and their contacts.

• User or Organisation: It is an entity that owns the data managed by the
CSP and regulates access to the data by deploying access control policies on
the CSP. It is a client of the CSP. In case of an organisation, there could
be an administrator. However, in case of individuals, we do not distinguish
between an administrator and a user. It is responsible for the encryption of
the data before storing it in the cloud.

• Contact: A contact is a party that can access data at the user’s CSP accord-
ing to an access control policy defined by the user. Contacts are users of the
same or of a different CSP.

Data at the CSP could be stored in any format. It could be managed in files
or there could be a database. We assume that the CSP is honest-but-curious [1].
This means the CSP runs PortableCloud correctly but the user cannot trust the
CSP to provide confidentiality. For this reason, the user encrypts confidential
data locally to prevent the CSP to gain cleartext access to this data. The user
encrypts data using a secure symmetric key encryption algorithm, such as AES.

To be able to securely communicate with contacts, each user has a set of
(asymmetric) key pairs. These are signing keys and verification keys for digital
signatures and public keys and private keys for the public key encryption. We
assume that the initial key exchange takes place, typically once, through a secure
channel. In this way, information such as data encryption keys or migration
notifications can be exchanged in a secure manner.

4 Proposed Framework

In this work, we propose PortableCloud a framework that aims at providing cloud
portability by seamlessly allowing data migration from one CSP to another one.
Using PortableCloud, we not only address the vendor lock-in problem but also
preserve the privacy of users by encrypting data before storing it in the cloud.



278 C. Zeidler and M.R. Asghar

Fig. 2. PortableCloud: a user stores data at the CSP in an encrypted way. Only autho-
rised contacts get access to the data at the CSP. The user and her contacts can exchange
commands through their CSPs.

PortableCloud enables users to share data with their contacts who may or may
not belong to the same CSP.

Figure 2 depicts PortableCloud. In PortableCloud, the core system enti-
ties include a CSP, users, their contacts. A CSP is the core component of
PortableCloud and the user data is stored at the CSP. The user data contains all
information needed by the CSP to operate. For example, the user data contains
the access policy and a command queue as a way to communicate with contacts.
This encapsulated design of the user data makes it easy to migrate to a new
CSP since the user data can be used as it is at the new CSP.

In this section, we provide an overview of the technical details of
PortableCloud. We point out possible solutions and techniques to implement
a portable cloud. After we discuss the CSP (Sect. 4.1), we describe how a new
portable cloud account is set up (Sect. 4.2). In PortableCloud, users and contacts
can communicate over a secure channel (Sect. 4.3). After a contact is estab-
lished (Sect. 4.4), users and contacts can share and access the data (Sect. 4.5).
PortableCloud also ensures data integrity and provenance (Sect. 4.6).

4.1 Cloud Service Provider (CSP)

A CSP is responsible for storing the user’s data. It also regulates access to the
data if a contact satisfies access policy specified by the user. Moreover, the CSP
dispatches control commands between the user and her contacts, e.g., commands



Towards a Framework for Privacy-Preserving Data Sharing 279

to notify contacts about the migration. The user interacts with the CSP through
a client such as a desktop, mobile app or web page. The CSP mainly consists
of three main components including User Data, Access Manager and Command
Dispatcher.

User Data. The user data is the core entity at the CSP that holds all the data
of a single user. It also contains information the CSP needs to operate, e.g., it
includes the access control policy that is deployed to regulate access to the data.
As we describe later, this simplifies the migration process since the user data
is largely decoupled from the CSP. All sensitive elements of the user data are
encrypted using a symmetric key encryption algorithm, where each element uses
a separate symmetric key. The user data contains the following sub-components.

Data Storage. The data storage is a repository to store the data. Typically,
it could be a database, a file system or a combination of both. Since the data
in cleartext could compromise privacy of users, data elements (say files) are
encrypted using different symmetric keys. This increases the security since con-
tacts can only decrypt these entries for which they possess the corresponding
decryption keys.

Meta Data. The meta data consists of structural information about the data,
e.g., directories and file names or table and column names of an encrypted data-
base [8]. Furthermore, the meta data contains integrity and provenance infor-
mation for the data stored in the data storage. Entries in the meta data are
encrypted with encryption keys of the associated data.

Key Store. The key store is used to manage and store cryptographic keys at
the CSP. It is important to note that all secret cryptographic keys are stored
securely in an encrypted manner. Only the user can access the key store and
get access to the keys using a password. This prevents the CSP accessing secret
keys [9]. Thus, having access to the keys in the key store enables the user to
decrypt all user data stored at the CSP.

We consider that keys in the key store are encrypted with a symmetric master
key. This master key, which could be realised as a role key, is stored encrypted
as well. The master key can be decrypted by deriving a user key from the user’s
password using a Key Derivation Function (KDF) [10] (see Fig. 3). This key chain
approach is similar to the one used in the Linux Unified Key Setup (LUKS)2 or
adopted by Boxcryptor3.

The key chain approach makes it easy to change a password for the key store.
For changing the password, only the key store master key has to be re-encrypted
with a user key derived from a new password. All other keys in the key store do
not need to be re-encrypted.
2 https://gitlab.com/groups/cryptsetup.
3 https://www.boxcryptor.com.

https://gitlab.com/groups/cryptsetup
https://www.boxcryptor.com


280 C. Zeidler and M.R. Asghar

Fig. 3. A user key is generated from the user password using a Key Derivation Function
(KDF). The user key is then used to decrypt the master key that allows the user access
to the key store.

Note that the security of the key store is limited by the complexity of the
user password. The KDF can make it harder for brute-forcing attacks, i.e., by
using a salt and a high number of iterations. However, simple passwords can still
be guessed easily. If a high degree of security is required, a password in form of
a large cryptographic key should be used and stored safely at the user client.

Contacts. This entity contains information about all contacts known to the
user. This information contains the CSP location of the contacts as well as con-
tacts’ public keys and verification keys. Furthermore, each contact entry contains
information to access and decrypt shared data that is located at the contact’s
CSP. All the contact information is stored encrypted.

Access Policy. The access control policy – or access policy in short – specifies
what contacts are eligible to access at the user’s CSP. In this work, we consider
that access policies are readily available in the cleartext to allow the CSP to
regulate access to the data. Without loss of generality, in case of sensitive access
policies, we could employ encrypted policy enforcement mechanisms, such as [11,
36–38].

Command Queue. The command queue holds incoming or outgoing com-
mands. Commands are generic messages that can be used to communicate
requests between a user and her contacts. As discussed in Sect. 4.3, using com-
mands, users can communicate securely with their contacts.

All commands in the incoming command queue are fetched and handled
by the user. Outgoing commands are placed in the outgoing command queue
together with a CSP address of the receiving contact. The CSP address is stored
in cleartext in order to allow the CSP to dispatch the command.

Access Manager. The access manager is a sub-component of the CSP, which
ensures that only authorised entities can get access to the data stored at the
CSP. It authenticates users and contacts and provides access to the requested
data, given the deployed access policies are satisfied.



Towards a Framework for Privacy-Preserving Data Sharing 281

Command Dispatcher. The command dispatcher is a sub-component of the
CSP that dispatches commands from the outgoing command queue and aims at
delivering them to the target CSP. If a command has been delivered successfully,
it is removed from the queue. Moreover, this sub-component receives incoming
commands and places them in the incoming command queue.

4.2 Account Creation

Once a new user signs up, a signing key pair as well as an encryption key pair
are generated. Both key pairs are securely stored in the key store. As already
explained in Sect. 4.1, a key chain is used, which starts from the user’s password
from which the user client derives the user key. Using this key chain, users can
get access to the user data.

For authenticating the user to the CSP, we need to present user credentials.
As a possible solution, we can use another password (different from one already
mentioned above) but it would require the user to manage two passwords: one for
authentication and another for decrypting the key chain, thus raising usability
concerns. To avoid this usability issue, we propose authentication using the same
password for deriving an additional authentication key from it. When signing
up, the user chooses a different set of KDF parameters, i.e., number of iterations
and salt, to generate the authentication key.

4.3 Command Passing

A user needs a way to communicate with contacts at the same or different
CSPs, say to establish a new contact (Sect. 4.4) or to share data with a contact
(Sect. 4.5). In general, a direct peer-to-peer connection between the user and a
contact is not always possible, in particular when the contact is offline. For this
reason, the CSP is used to pass commands between communicating parties.

To send a command to a contact, the command is delivered to the contact’s
CSP as illustrated in Fig. 4. The contact’s CSP puts the command into the
contact’s incoming command queue. In case the contact’s CSP is not available,

Fig. 4. The user can pass commands to the contact’s CSP. These commands are han-
dled by fetching them from the incoming command queue.



282 C. Zeidler and M.R. Asghar

the command is placed into the user’s outgoing command queue and the user’s
CSP aims at delivering the command at a later time.

Commands are always signed by the sender and, whenever possible,
encrypted with the public key of the receiver, assuming the public key has already
been exchanged.

4.4 Contact Establishment

Data can be shared with contacts at the same or a different CSP. To establish
a link between a user and an unknown contact, they have to exchange their
verification keys and public keys. This key exchange could take place out-of-
band, say using PGP [12]. Alternatively, we can rely on Public Key Infrastructure
(PKI), where a trust anchor, which is a root Certificate Authority (CA), issues
X.509 certificates [13].

After a successful contact establishment, both the user and the new con-
tact create a new contact entry in their contacts databases. Each contact entry
contains the contact’s keys as well as the CSP location of the contact.

4.5 Data Access and Sharing

Data Access. The user has full access to the user data by logging into the
CSP using her user name and password (see Sect. 4.2). However, the access for
contacts needs to be restricted and is managed using access tokens. The typical
frameworks for access tokens include OAuth4, OpenID Connect5, where tokens
are used to provide access to a service.

Typically, an access token is an identifier that is presented to a service
provider to get access to requested services or resources. In the traditional access
token model, there is no way to identify the requester. However, we consider spe-
cial access tokens that are used to allow contacts access to specified resources.
In the context of portable clouds, access tokens consist of two parts: a private
signing key and a public verification key. The public part of the token, i.e., the
verification key, is stored in the user’s access policy and is mapped to access
rights specified in an Access Control List (ACL) [14] (see Fig. 5). The ACL can
also be used to define group access, i.e., multiple access tokens are mapped to
the same access rights in the ACL. As described later, an eligible contact is in
possession of the private part of the token, i.e., the signing key.

A contact can access data by signing an access request using the private
signing key. If the CSP can verify the access request using the public verification
key in the ACL then the requested access is granted to the contact.

There are various scenarios in which access tokens are generated and how
they are distributed. First, the user generates an access token when sharing data
with a contact and sends the private signing key to the contact (see Sect. 4.3).
Second, the contact generates an access token and sends the public verification

4 http://oauth.net.
5 http://openid.net/connect.

http://oauth.net
http://openid.net/connect


Towards a Framework for Privacy-Preserving Data Sharing 283

Fig. 5. Contacts can use tokens to gain access to the shared data. Tokens or groups of
tokens are then associated with access rights defined in an ACL.

key to the user. Third, one of the contact’s signing keys is used in which case
the user already knows the public verification key of the contact (see Sect. 4.4).
In the following, we assume the first scenario, i.e., the user generates an access
token when sharing data.

Data Sharing. A user can share data with contacts located at the same or at
a different CSP (see Fig. 1). To access shared data, a contact needs an access
token and an encryption key to decrypt the data (see Fig. 6).

Fig. 6. A contact can access or modify data at a user’s CSP. Therefore, the contact
needs an access token and an encryption key.

To share data with a contact, the user has to send the token as well as the
encryption key to the contact. This is done using a secure command as described
in Sect. 4.3. Moreover, the access rights in the access policy have to be updated
for the used token. If the contact declines the sharing offer, the changes made
to the access policy are reverted. When revoking data access for a certain access
token, the affected contacts are notified.

In case a contact wants to share data with the user and the user accepts
the sharing offer, the user adds a new shared data entry. This shared data entry
contains information about the shared data; the access token as well as the data
encryption key. It is important to note that the contact’s CSP location is already
stored in the contacts database; thus, all information to access the contact’s data
is available.



284 C. Zeidler and M.R. Asghar

4.6 Data Integrity and Provenance

An important property of a cloud storage is that users can ensure the integrity
of their data stored at the CSP [15], i.e., detecting if potential attackers have
tampered with the data at the CSP. Moreover, if the data is shared with a contact
and the contact writes the data to the CSP, i.e., modifies, adds or deletes the
data, the user may want to ensure that the changes really originate from a certain
contact [7]. On the other hand, when the user writes the data, the user may want
to certify that changes indeed originates from the user. This means not only data
integrity is required but also data provenance is needed for a cloud storage.

To verify data integrity, integrity information is generated by the writer. One
way to generate integrity information is to encrypt the data hash with the data
encryption key and use this encrypted hash as integrity information [6]. The
integrity information is stored in the meta data entity and can be accessed by
users or contacts who can access the associated data. A user or a contact who
is able to decrypt the data can also decrypt the integrity information and verify
the data integrity by comparing the included hash to the hash of the actual data.

Integrity information does not help to ensure data provenance since multi-
ple different writers may have write access to the same data. The writer also
has to provide provenance information. The provenance information is stored
along with the integrity information in the meta data. Same as the integrity
information, the provenance information is encrypted with the data encryption
key to prevent the CSP accessing the provenance data. The provenance informa-
tion contains a hash that identifies the performed write operation, the ID of the
writer and the ID of the hosting CSP user. Moreover, a time stamp can help to
track when changes were made. Before encrypting the provenance information,
the provenance information is signed with the writer’s signing key.

The user can verify the data provenance by verifying that the hash of the
write operation is compatible with the actual data. The receiver ID contained in
the provenance information ensures that the write operation was indeed intended
for the user. By verifying the writer’s signature on the provenance information,
the user can ensure that the changes were performed by the writer.

Unlike integrity information, the user may want to prevent contacts to access
the provenance data. The provenance data contains information about with
whom the user shares her data and the user may want to conceal this infor-
mation [7]. For example, if a user shares data with multiple contacts, the user
may want to hide who else has access to the data. For that reason, the user can
define in the access policy if contacts are allowed to access the provenance data
from the meta data entity.

5 Migration

The migration process of PortableCloud consists of two main steps. First, the
user data has to be copied to the new CSP. Second, all contacts need to be
notified about the new CSP. It is important to ensure that the migrations should
be transparent for the contacts and there should be a minimal downtime.



Towards a Framework for Privacy-Preserving Data Sharing 285

Since the user data does not need to be adapted for the new CSP, the migra-
tion can take place through a direct data transfer between both CSPs. However,
copying a large amount of user data can take a significant amount of time. For
that reason, the data should be copied gradually. This can be done by first copy-
ing a snapshot of the user data and then successively copy new changes made
during the migration. With the assumption that new changes are small, the time
to synchronise the data with the new CSP during the migration is small.

One problem that can affect the migration is ongoing write or read transac-
tions that are performed by contacts. A conservative approach is to block new
changes at the old CSP and wait unless all the data is migrated. Alternatively,
we can imagine more sophisticated approaches that are able to handle ongoing
changes during and after the migration.

Once all data is copied to the new CSP, the contacts need to be notified about
the migration. This is done by sending them migration commands that contain
the location of the new CSP. A problem that can occur here is that a contact
might not be reached. One reason for that could be the temporary unavailability
of the contact’s CSP. However, since the migration command is in the outgoing
command queue, the new CSP will try to deliver the message at a later point.
Another situation when a migration command cannot be delivered is when the
user and a contact both migrate to a new CSP at the same time. In this case,
there is no easy way to determine the CSP location of the migrating contact.
For this reason, the old CSP can be configured to point to the new CSP location
when contacts try to communicate with the old CSP. One possible approach is
to introduce one or more central name servers where users can register their CSP
location.

If a user receives a migration command from a migrated contact, the new
contact’s CSP location has to be updated in the user’s contacts list. Furthermore,
the user has to verify that undelivered outgoing commands to the migrated
contact are updated to target the contact’s new CSP.

5.1 Migration Costs

For enterprises as well as individuals, the costs and services of a CSP are impor-
tant. If a preferable CSP (say based on various factors such as quality of service
or costs) is available, the user may consider migrating to this CSP.

Data Sharing Systems. In the following, we discuss the migration between
two different data sharing systems. It also includes the migration to the portable
cloud architecture. We assume that the user encrypts data on the client side to
prevent the CSP accessing the data.

One of the major costs includes set up costs, such as initial setup fees for the
new CSP. There are various sources of costs when transferring data from the old
to the new CSP. First, one or both of the involved CSPs may have data transfer
fees. Second, it might not be possible to transfer the data directly between both
CSPs and the user needs a local data storage to copy the data. For instance,



286 C. Zeidler and M.R. Asghar

data formats or databases may be incompatible, data requires re-encryption or
there is a lack of APIs to transfer data directly.

Once the data is transferred to the new CSP, connections to old contacts
have to be re-established and access policies have to be set up. In general, there
is no automatic way to convert the old access policy to a new system. For this
reason, the access policy has to be verified manually, which can be an expensive
and erroneous process, e.g., due to human errors crucial data could accidentally
be leaked to wrong contacts.

Portable Clouds. For the migration of the portable clouds, there may be set
up and data transfer costs. Even the small migration downtime for the portable
clouds could lead to further costs.

PortableCloud minimises the cost described above. Since the data can be
transferred directly between the old and the new CSP, expensive data re-
encryption and round trips to the user’s local storage could be eliminated. Fur-
thermore, PortableCloud ensures that contacts can still access the shared data
and no new encryption keys have to be exchanged. This not only minimises the
service downtime but also is fail-safe against human errors, i.e., the old access
policies are re-used at the new CSP.

The user as well as all contacts do not need to update or reconfigure their
client software since the migration process is transparent. This eliminates sup-
port costs and expensive software adoptions.

5.2 Migration Agent

There are various decision making and other tools that could assist during
the migration process [5,16,17]. Like these tools, we use a migration agent in
PortableCloud. The migration agent calculates costs based on various parame-
ters of interest, which includes, but are not limited to, historical growth pattern,
manual input or a combination of both. The migration agent assists users in
providing statistics about data usage, forecasting and listing alternative CSPs
that can offer similar or even better services. If the agent finds a better CSP, it
suggests it to the user as a migration option. For that, the cloud agent main-
tains a knowledge base of alternative CPSs in real-time. This knowledge base is
updated regularly by services that host the migration agent.

A core aspect when considering migration of the portable clouds is cost.
The costs identified in Sect. 5.1, e.g., initial set up and data transfer costs, are
taken into account. Another interesting parameter is the migration time. The
migration agent can estimate how long a migration will take, e.g., how much
time the account set up and the data transfer will take. This helps the user in
estimating when the new service of the CSP is available.

The migration agent also estimates usage patterns and notifies a user about
possible performance problems and issues. These problems could be a result of
lacking or surplus of data storage, transfer problems with the users/contacts, or
stability and reliability issues with the CSP. For example, if for a certain period



Towards a Framework for Privacy-Preserving Data Sharing 287

of time the user consumes less storage space than she pays for, the migration
agent analyses if there are more suitable (i.e., economical) options available.

The migration agent also considers different factors such as customer satis-
faction, reputation or legal issues with the CSP. However, these factors are sub-
jective and have to be considered carefully. Furthermore, the migration agent
helps users in finding better service plans at the current CSP, if available.

6 Discussion

One goal of PortableCloud is to maintain privacy of users. In this section, we
discuss what information the CSP can gain about the user and what information
is concealed from the CSP. Moreover, we discuss requirements and solutions for
an enterprise that uses the portable clouds.

Privacy. There is some general knowledge a CSP has about its users. For
instance, when registering with a CSP, information such as the user name/login
name, email address, phone numbers, postal address or payment details may be
revealed to the CSP.

All data the user stores at the CSP is encrypted and can only be read by
the user who has the corresponding key. In PortableCloud, the meta data is also
protected. Thus, the CSP cannot learn any sensitive user data.

Outgoing commands contain the target CSP in order to deliver a command
to a certain contact. This may reveal the identity of contacts. Although all
information about contacts is stored encrypted, the CSP can derive information
about the number of contacts of a user. To address this issue, Oblivious RAM
(ORAM) [18,19] or related techniques may be necessary.

The access policy maps access tokens to an access control map, which may
reveal information to the CSP. For example, the CSP can analyse how many
access tokens exist for a certain data entry and may derive information about
the number of contacts or the importance of the data entry.

Note that the CSP can analyse traffic from/to the user data, which could also
reveal information about the stored data as well as about the contacts [20,39].

Enterprises. In PortableCloud, as described above, users control their data
and manage contacts they share their data with. However, for commercial enter-
prises, this model might not be an ideal option. In the following, we describe
what requirements an enterprise may have concerning portable clouds and how
PortableCloud can be customised to fulfil these tailored requirements.

An enterprise usually has a number of employees and there are certain restric-
tions on how data can be shared with internal and external contacts. For this
reason, the enterprise needs a way to manage their employees. To do so, the
enterprise takes the role of an admin user who can manage a group of users at
the CSP (see Fig. 7). The admin user has several privileges such as:



288 C. Zeidler and M.R. Asghar

Fig. 7. An enterprise can administrate and manage multiple users (e.g., its employees).
The enterprise may have special access rights to its employees’ data and key stores.

• Administration of new users, i.e., creation and deletion.
• Control data access among users of the enterprise and external contacts.
• Prevent users to migrate their user data to another CSP.

In general, an enterprise can require access to all data produced by their
employees. The enterprise can require employees to enable their admin access
to their secret key. This would also allow the admin to reset their secret keys.
Since employees only use their own personal password to encrypt their secret
key (see Sect. 4.1), the personal password is not revealed to the employer. This
is important in case the employee uses this password also for other purposes.

Another approach of using PortableCloud in an enterprise is to allow multiple
clients to access a single portable cloud account. This is easily possible since the
key store supports multiple access passwords. However, since all employees have
the same access rights, all data can be accessed by all employees. Thus, this
solution is only suitable for small enterprises.

Data Sharing with External Contacts. PortableCloud only allows sharing
data with contacts that have a PortableCloud account at the same or a different
CSP. It is often desirable to share data with external contacts, those who do
not have a PortableCloud account. A common solution for this is public links.
By sharing public links with external contacts, e.g., via email, external contacts
can gain access to shared data. For example, in Dropbox6, files can be shared
with external contacts using a public hyperlink. Overleaf7 even allows external
contacts to edit documents shared through a public hyperlink.

In general, a public link contains an access token that ensures that only
contacts who know the link are able to access the shared data. By choosing a
sufficiently large random access token, it becomes very difficult for an adversary

6 dropbox.com.
7 www.overleaf.com.

https://www.dropbox.com
www.overleaf.com


Towards a Framework for Privacy-Preserving Data Sharing 289

to gain access to the shared data. Thus, public links provide fairly good access
control.

A disadvantage of public links is that, they are not easy to remember due
to the embedded access token. External contacts have to manage their public
links manually. Another problem with public links occurs if the shared data is
encrypted. In this case, also the decryption key has to be shared with external
contacts. For example, to access encrypted data through a web application, the
external contact would need to provide the decryption key to the web application.
Note that, in the case of a web application, the entity who provides the web
application has to be trusted for not leaking the decryption key from the web
application to an adversary. Another solution is to drop the privacy requirement
for the data that is shared through public links and reveal the decryption key
to the CSP. However, this is usually not desirable.

Data Update Notifications. When having access to the shared data, it
becomes interesting to know when the data has been updated at the CSP. This
is because polling for data updates can be expensive especially when monitoring
a huge amount of data. For example, if a user has access to multiple files from
different contacts, frequently checking for data updates becomes expensive for
the user as well as for the involved CSPs. A more efficient way to monitor data
updates is a publish-subscribe model [21,22]. Here, a subscriber can register with
a publisher and the publisher notifies the subscriber if updates are available.

The simplest approach for a user to notify contacts about data updates is
to send a data update command to all contacts who have access to the updated
data. This approach does not leak information about who has access to the data.
However, contacts do not get notified immediately when other contacts modify
data because the contact who changed the data may not know who else has
access to the data and thus is not able to send data update commands to other
sharing contacts.

A different approach is to let the server notify contacts when data has been
updated. For example, a contact registers with the user’s CSP to indicate that
she is interesting in updates on certain data sets. When data has been changed
the CSP automatically sends data update commands to the registered contacts.
A problem with this approach is that the CSP can gain information on who
has access to which data. Protection of this information requires some other
privacy-preserving techniques [23].

7 Related Work

Although migrating a system to the cloud is a challenging task, migration also
brings scalability while offering flexible pricing options [24]. Migrating a local
service to the cloud can reduce the cost to run and maintain servers but can also
increase the dependency on external third parties and a potential deterioration
of the service quality due to less control over the system [17].



290 C. Zeidler and M.R. Asghar

For enterprises, it is not easy to decide if the migration from their IT system
to the cloud is really beneficial. Cloud Genius assists users in finding an optimal
CSP that provides IaaS, i.e., it finds the IaaS that is able to run a certain VM
image at better service conditions [25]. The problem of vendor lock-in can be
addressed by using unified programming APIs and domain-specific languages to
model application components and cloud requirements [5]. In a so-called meta-
cloud, an agent continuously checks for alternative CSPs with better conditions
for the specified requirements [5].

One way to share data is to use a distributed peer-to-peer data sharing
system, such as PeerDB [26]. However, the data in PeerDB is not encrypted.
Moreover, for sharing data, both peers are expected to be online.

Various security and privacy issues in cloud computing have been identi-
fied [27]. When transferring the data from/to the cloud, confidentiality and
integrity must be ensured. When sharing data with other parties, there must
be mechanisms to control access rights. To ensure privacy when storing data in
the cloud, the usual way is to encrypt data. However, users may not have enough
expertise to manage their keys. The data integrity can usually not be verified on
the cloud storage without transferring the data to a local machine. When delet-
ing data in the cloud, the user usually cannot ensure that no data copies remain
at the CSP. One way of dealing with privacy issues is to keep users anonymous
while storing the user’s data in cleartext in the cloud [28]. K2C allows users to
share encrypted data with other users but users have to manage their encryp-
tion keys in a local key store [29]. A more convenient approach is to store the
encryption keys in an encrypted key store in the cloud [9]. Even when data is
encrypted, it is possible to perform a search query on the encrypted data while
respecting multi-user access policies [8].

The cloud storage system DepSky [30] stores encrypted and signed data at
multiple CSPs. DepSky uses a secret sharing scheme [31], which means that shares
of the secret key are distributed to different CSPs. While DepSky allows users to
replicate data at different CSPs, it does not offer any contact management.

There are various popular cloud sharing systems available. The cloud software
ownCloud8 allows users to setup a personal cloud server. However, while own-
Cloud enables public data access, private data can only be shared securely with
users of the same server and not with users of other ownCloud servers. ownCloud
only supports server side encryption, which requires trusting the server that
hosts the ownCloud instance. Data sharing platforms, such Boxcryptor9, sup-
port the client side encryption. However, these services neither support migration
to another CSP nor do they allow private data sharing with users of other CSPs.

Mona allows users to share data with contacts and revoke access if neces-
sary [32]. While the identity of a contact is concealed from the CSP, the user
knows about the provenance of the data. To define an access policy, a simple
Role-Based Access Control (RBAC) mechanism can be used. Here, roles can

8 https://owncloud.com/.
9 https://www.boxcryptor.com.

https://owncloud.com/
https://www.boxcryptor.com


Towards a Framework for Privacy-Preserving Data Sharing 291

be granted and revoked if necessary [33]. Moreover, hierarchical attribute-based
encryption can be used to control and revoke data access [34].

When establishing a contact, the public keys of both parties have to be
exchanged. This key exchange is vulnerable to man-in-the-middle attacks. SafeS-
linger enables an easy and secure exchange of public keys between contacts as
long as there a secure channel between them, i.e., they can exchange a simple
word phrase in person or via other channels [35].

8 Conclusions and Future Work

In this chapter, we addressed the problem of vendor lock-in, which makes it
difficult for cloud users to migrate to an alternative CSP because the data cannot
easily be transferred to a new CSP and data shared with contacts at the old
CSP may become inaccessible after the migration. To fill the gap, we presented
PortableCloud, a framework that makes it possible to migrate a data sharing
system to a new CSP. In PortableCloud, users can share data with contacts
located at the same or at different CSPs. PortableCloud provides mechanisms
to store the data in an encrypted manner.

We discussed the cost of migrating a portable cloud and various aspects,
necessary for designing PortableCloud. We described a migration agent that
assists users in automatically finding a suitable CSP that could satisfy their
needs.

As future work, we plan to complete the implementation of PortableCloud.
Furthermore, investigating accountability aspects of portable clouds would be
an interesting research direction.

References

1. Capitani, D., di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Pelosi, G.,
Samarati, P.: Preserving confidentiality of security policies in data outsourcing. In:
WPES 2008, pp. 75–84 (2008)

2. Joint, A., Baker, E., Eccles, E.: Hey, you, get off of that cloud? Comput. Law
Secur. Rev. 25, 270–274 (2009)

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53, 50–58 (2010)

4. De Chaves, S., Uriarte, R., Westphall, C.: Toward an architecture for monitoring
private clouds. Commun. Mag. 49, 130–137 (2011). IEEE

5. Satzger, B., Hummer, W., Inzinger, C., Leitner, P., Dustdar, S.: Winds of change:
from vendor lock-in to the meta cloud. IEEE Internet Comput. 17, 69–73 (2013)

6. Hacigümüş, H., Iyer, B., Mehrotra, S.: Ensuring the integrity of encrypted data-
bases in the database-as-a-service model. In: Data and Applications Security XVII,
vol. 142, pp. 61–74 (2004)

7. Asghar, M.R., Ion, M., Russello, G., Crispo, B.: Securing data provenance in the
cloud. In: Open Problems in Network Security. LNCS, vol. 7039, pp. 145–160 (2012)



292 C. Zeidler and M.R. Asghar

8. Asghar, M.R., Russello, G., Crispo, B., Ion, M.: Supporting complex queries and
access policies for multi-user encrypted databases. In: CCSW 2013, pp. 77–88
(2013)

9. Ferretti, L., Colajanni, M., Marchetti, M.: Distributed, concurrent, and indepen-
dent access to encrypted cloud databases. Parallel Distrib. Syst. 25, 437–446 (2014)

10. Josefsson, S.: PKCS#5: password-based key derivation function 2 (PBKDF2) test
vectors. Technical report (2011)

11. Asghar, M.R.: Privacy Preserving Enforcement of Sensitive Policies in Outsourced
and Distributed Environments. Ph.D. thesis, University of Trento (2013)

12. Garfinkel, S.: PGP: pretty good privacy (1995)
13. Burr, W.E., Nazario, N.A., Polk, W.T.: A proposed federal PKI using X.509 v3

certificates. NIST (1996)
14. Sandhu, R., Samarati, P.: Access control: principle and practice. Commun. Mag.

32, 40–48 (1994). IEEE
15. Zhao, G., Rong, C., Li, J., Zhang, F., Tang, Y.: Trusted data sharing over untrusted

cloud storage providers. In: Cloud Computing Technology and Science (Cloud-
Com), pp. 97–103 (2010)

16. Ward, C., Aravamudan, N., Bhattacharya, K., Cheng, K., Filepp, R., Kearney, R.,
Peterson, B., Shwartz, L., Young, C.: Workload migration into clouds challenges,
experiences, opportunities. In: Cloud Computing (CLOUD), pp. 164–171 (2010)

17. Khajeh-Hosseini, A., Sommerville, I., Bogaerts, J., Teregowda, P.: Decision support
tools for cloud migration in the enterprise. In: Cloud Computing (CLOUD), pp.
541–548 (2011)

18. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path
ORAM: an extremely simple oblivious ram protocol. In: CCS 2013, pp. 299–310
(2013)

19. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43, 431–473 (1996)

20. Gong, X., Kiyavash, N., Borisov, N.: Fingerprinting websites using remote traffic
analysis. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, CCS 2010, pp. 684–686 (2010)

21. Cabrera, L.F., Jones, M.B., Theimer, M.: Herald: achieving a global event noti-
fication service. In: 2001 Proceedings of the Eighth Workshop on Hot Topics in
Operating Systems, pp. 87–92. IEEE (2001)

22. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H.A., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted data
serving platform. Proc. VLDB Endow. 1, 1277–1288 (2008)

23. Pal, P., Lauer, G., Khoury, J., Hoff, N., Loyall, J.: P3S: a privacy preserving
publish-subscribe middleware. In: Narasimhan, P., Triantafillou, P. (eds.) Mid-
dleware 2012. LNCS, vol. 7662, pp. 476–495. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-35170-9 24

24. Zhao, J.F., Zhou, J.T.: Strategies and methods for cloud migration. Int. J. Autom.
Comput. 11, 143–152 (2014)

25. Menzel, M., Ranjan, R.: CloudGenius: decision support for web server cloud migra-
tion. In: WWW 2012, pp. 979–988 (2012)

26. Ng, W.S., Ooi, B.C., Tan, K.L., Zhou, A.: PeerDB: a P2P-based system for dis-
tributed data sharing. In: Data Engineering, pp. 633–644 (2003)

27. Takabi, H., Joshi, J.B., Ahn, G.J.: Security and privacy challenges in cloud com-
puting environments. Secur. Priv. 8, 24–31 (2010)

http://dx.doi.org/10.1007/978-3-642-35170-9_24
http://dx.doi.org/10.1007/978-3-642-35170-9_24


Towards a Framework for Privacy-Preserving Data Sharing 293

28. Khan, S., Hamlen, K.: AnonymousCloud: a data ownership privacy provider frame-
work in cloud computing. In: Trust, Security and Privacy in Computing and Com-
munications (TrustCom), pp. 170–176 (2012)

29. Zarandioon, S., Yao, D., Ganapathy, V.: K2C: cryptographic cloud storage with
lazy revocation and anonymous access. In: Security and Privacy in Communication
Networks, vol. 96, pp. 59–76 (2012)

30. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: Dependable
and Secure Storage in a Cloud-of-clouds. In: EuroSys 2011, pp. 31–46 (2011)

31. Butoi, A., Tomai, N.: Secret sharing scheme for data confidentiality preserving in
a public-private hybrid cloud storage approach. In: UCC 2014, pp. 992–997 (2014)

32. Liu, X., Zhang, Y., Wang, B., Yan, J.: Mona: secure multi-owner data sharing for
dynamic groups in the cloud. Parallel Distrib. Syst. 24, 1182–1191 (2013)

33. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29, 38–47 (1996)

34. Wang, G., Liu, Q., Wu, J., Guo, M.: Hierarchical attribute-based encryption and
scalable user revocation for sharing data in cloud servers. Comput. Secur. 30,
320–331 (2011)

35. Farb, M., Lin, Y.H., Kim, T.H.J., McCune, J., Perrig, A.: SafeSlinger: Easy-to-use
and secure public-key exchange. In: MobiCom 2013, pp. 417–428 (2013)

36. Asghar, M.R., Ion, M., Russello, G., Crispo, B.: ESPOON: enforcing encrypted
security policies in outsourced environments. In: The Sixth International Confer-
ence on Availability, Reliability and Security, pp. 99–108. IEEE Computer Society
(2011)

37. Asghar, M.R., Russello, G., Crispo, B.: E-GRANT: enforcing encrypted dynamic
security constraints in the cloud. In: Future Internet of Things and Cloud
(FiCloud), pp. 135–144 (2015). Special Track on Security, Privacy and Trust

38. Muhammad, R.A., Mihaela, I., Giovanni, R., Bruno, C.: ESPOONERBAC : enforc-
ing security policies in outsourced environments. Comput. Secur. (COSE) 35, 2–24
(2013). Elsevier

39. Raymond, J-F.:Traffic analysis: protocols, attacks, design issues, and open prob-
lems. In: Designing Privacy Enhancing Technologies, pp. 10–29. Springer (2001)


	Towards a Framework for Privacy-Preserving Data Sharing in Portable Clouds
	1 Introduction
	2 Scenario and Requirements
	2.1 Motivating Scenario
	2.2 Requirements

	3 System Model
	4 Proposed Framework
	4.1 Cloud Service Provider (CSP)
	4.2 Account Creation
	4.3 Command Passing
	4.4 Contact Establishment
	4.5 Data Access and Sharing
	4.6 Data Integrity and Provenance

	5 Migration
	5.1 Migration Costs
	5.2 Migration Agent

	6 Discussion
	7 Related Work
	8 Conclusions and Future Work
	References


