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Abstract. Complex Cloud applications consist of a variety of individual
components that need to be provisioned and managed in a holistic man-
ner to setup the overall application. The Cloud standard TOSCA can be
used to describe these components, their dependencies, and their man-
agement functions. To provision or manage the Cloud application, the
execution of these individual management functions can be orchestrated
by executable management plans, which are workflows being able to
deal with heterogeneity of the functions. Unfortunately, creating TOSCA
application descriptions and management plans from scratch is time-
consuming, error-prone, and needs a lot of expert knowledge. Hence, to
save the amount of time and resources needed to setup the management
capabilities of new Cloud applications, existing TOSCA description and
plans should be reused. To enable the systematic reuse of these arti-
facts, we proposed in a previous paper a method for combining existing
TOSCA descriptions and plans or buildings blocks thereof. One impor-
tant aspect of this method is the creation of BPEL4Chor-based man-
agement choreographies for coordinating different plans and how these
choreographies can be automatically consolidated back into executable
plans. This paper extends the previous one by providing a much more
formal description about the choreography consolidation. Therefore, a set
of new algorithms is introduced describing the different steps required
to consolidate the management choreography into an executable man-
agement plan. The method and the algorithms are validated by a set of
tools from the Cloud application management ecosystem OpenTOSCA.

1 Introduction

Due to the steadily increasing use of information technology in enterprises, accu-
rate development, provisioning, and management of applications becomes of cru-
cial importance to align business and IT. While developing application compo-
nents and modelling application architectures and designs is supported by sophis-
ticated tools, application management still presents major challenges: Especially
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in Cloud Computing, management automation is a key prerequisite since manual
management is (i) too slow to preserve Cloud properties such as elasticity and
(ii) too error-prone as human operator errors account for the largest fraction
of failures in distributed systems [1,2]. Thus, management automation is a key
incentive in modern IT.

While various management technologies1 exist that are capable of automat-
ing generic management tasks, such as automatically scaling application compo-
nents or installing single software components, the automation of complex, holis-
tic, and application-specific management processes is an open issue. Automat-
ing complex management processes, e. g., migrating an application compo-
nent from one Cloud to another while avoiding downtime or acquiring new
licenses for employed software components, typically requires the orchestration of
multiple heterogeneous management technologies. Therefore, such management
processes are mostly implemented using workflows languages [6], e. g., BPEL [7]
or BPMN [8], since other approaches such as scripts are not capable of providing
the reliability and robustness of the workflow technology [9].

Creating management processes, however, requires integrating the different
invocation mechanisms, data formats, and transport protocols of each employed
technology, which needs enormous time and expertise on the conceptual as well
as on the technical implementation level [10].

To avoid continually reinventing the wheel for problems that have been
already solved multiple times for other applications, developing new applications
by reusing and combining proven (i) structural application fragments as well as
(ii) the corresponding available management processes would pave the way to
increase the efficiency and quality of new developments. However, while automat-
ically combining and merging individual application structures is resolved [11],
integrating the associated management processes is a highly non-trivial task
that still has to be done manually. Unfortunately, similarly to manually author-
ing such processes, this leads to error-prone, time-consuming, and costly efforts,
which is not appropriate for modern software development and operation.

In this paper, we tackle these issues. We first present a method that describes
how to employ choreographies to systematically reuse existing management
workflows. Choreography models enable coordinating the distributed execution
of individual workflows without the need to adapt their implementation. Thus,
they provide a suitable integration basis to combine different management work-
flows without the need to dive into or change their technical implementation.

Since choreographies are not intended to be executed on a single workflow
engine—which is a mandatory requirement in application management as typ-
ically sensitive data such as credentials or certificates have to be exchanged
between the coordinated workflows—they must be transformed into an exe-
cutable workflow model. Therefore, we introduced in our former work [12], that
was presented at the 6 th International Conference on Cloud Computing and
Services Science (CLOSER), a process consolidation approach that transforms

1 E.g., configuration management technologies such as Chef [3] or Puppet [4], or Cloud
management platforms such as Heroku [5].
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a choreography including all coordinated workflow models into one single exe-
cutable workflow model.

The consolidation results also in a faster execution due to reduced communi-
cation over the wire. It also simplifies deployment as only a single workflow has
to be deployed instead of various interacting workflows along with the chore-
ography specification itself. Thus, reusing management workflows following this
approach leads to significant time and cost savings when developing new applica-
tions out of existing building blocks. In this paper, which is an extended version
of the original paper [12], we a provide in Sect. 4 a more detailed and comprehen-
sive description of the consolidation approach. Therefore, the new contributions
are an additional set of algorithms describing the consolidation steps in a much
more formal way than in the original paper. To discuss these algorithms also the
choreography meta-model was extended.

To validate the presented approach, we apply the developed concepts to the
choreography modelling language BPEL4Chor [13] and the Cloud standard
TOSCA [14,15]. For this purpose, we developed a standard-based, open-source
Cloud application management prototype by extending the OpenTOSCA ecosys-
tem [16–18] in order to support managing applications based on choreographies,
that are transparently transformed into executable workflows behind the scenes.

The remainder is structured as follows. Section 2 provides background and
related work information along with a motivating scenario. In Sect. 3, we con-
ceptually describe the method for reusing TOSCA-based applications and their
management plans by introducing management choreographies. In Sect. 4 we
formally discuss the step of the method, that transforms a choreography into an
executable management plan. Section 5 validates the method proposed in Sect. 3
and Sect. 6 concludes the work.

2 Background and Related Work

This section discusses background and related work about (i) the Cloud standard
TOSCA, (ii) management workflows, and (iii) the transformation and consoli-
dation of choreographies. In Sect. 2.3, we introduce a motivating scenario that
is used throughout the paper to explain the approach.

2.1 TOSCA and Management Plans

In this section, we introduce the Topology and Orchestration Specification for
Cloud Applications (TOSCA), which is an emerging standard to describe Cloud
applications and their management. We explain the fundamental concepts of
TOSCA that are required to understand the contributions of this paper and
simplify constructs, where possible, for the sake of comprehension. For more
details, we refer interested readers to the TOSCA Specification [14] and the
TOSCA Primer [15]. TOSCA defines a meta-model for describing (i) the struc-
ture of an application, and (ii) their management processes. In addition, the
standard introduces an archive format that enables packaging applications and
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all required files, e. g., installables, as portable archive that can be consumed
by TOSCA runtimes to provision and manage new instances of the described
application. The structure of the application is described in the form of an appli-
cation topology, a directed graph that consists of vertices representing the com-
ponents of the application and edges that describe the relationships between
these components, e. g., that a Webserver component is installed on an operat-
ing system. Components and relationships are typed and may specify properties
and management operations to be invoked. For example, a component of type
ApacheWebserver may specify its IP-address as well as the HTTP-port and pro-
vides an operation to deploy new applications. In addition, required artifacts,
e. g., installation scripts or binaries implementing the application functionality,
may be associated with the corresponding components, relationships, and opera-
tions. Thereby, TOSCA enables describing the entire structure of an application
in the form of a self-contained model, which also contains all information about
employed types, properties, files, and operations. These models can be used by
a TOSCA runtime to fully automatically provision instances of the application
by interpreting the semantics of the modeled structure [15,19].

Fig. 1. TOSCA example: topology (left) and provisioning plan (right).

Figure 1 shows an example on the left rendered using Vino4TOSCA [20].
The shown topology describes a deployment consisting of a PHP application
that is hosted on an ApacheWebserver running on a virtual machine (VM) of
type Ubuntu12.04VM. This VM is operated by the Cloud management system
OpenStack. To run the PHP application on an Apache Webserver, a PHPModule
needs to be installed. In the topology the component types and relationship
types, e. g., the desired hostedOn, of the VM, are put in brackets. The component



236 S. Wagner et al.

properties, e. g., the desired RAM of the VM, are depicted below the component
types. The actual application implementation, i. e., the PHP files implementing
the functionality, is attached to the PHP component.

While the provisioning of simple applications can be described implicitly
by such topology models, TOSCA also enables describing complex provisioning
and management processes in the form of explicitly modeled management plans.
Management plans are executable workflows that specify the (i) activities to be
executed, (ii) the control flow between them, i. e., their execution order, as well
as (iii) the data flow, e. g., that one activity produces data to be consumed by a
subsequent activity [6]. There exists standardized workflow languages and corre-
sponding engines, for example, BPEL [21] or BPMN [22], that enable describing
workflows in a portable manner. Standard-compliant workflow engines can be
employed to automatically execute these workflow models. The workflow tech-
nology is well-known for features such as reliability and robustness [6], thus,
providing an ideal basis to automate management processes [7]. In addition,
there are extensions of workflow standards which are explicitly tailored to the
management of applications. For example, Bpmn4TOSCA [8] is an extension to
easily describe management plans for applications modeled in TOSCA. TOSCA
supports using arbitrary workflow languages for describing executable manage-
ment plans [14].

Figure 1 shows a simplified management workflow on the right that automat-
ically provisions the application (data flow modeling is omitted for simplicity).
The first activity reads properties of components and relationships from the
topology model, which enables customizing the deployment without adapting
the plan. Other information, e. g., the endpoint of Open Stack, are passed via
the plan’s start message. Using these information, the plan instantiates a new
virtual machine by invoking the HTTP-API of Open Stack. Afterwards, the plan
uses SSH to access the virtual machine and installs the Apache Webserver and
the PHP module using Chef [3], a configuration management technology. Finally,
the application files, which have been extracted from the topology, are deployed
on the Webserver and the application’s endpoint is returned.

The TOSCA standard additionally defines an exchange format to package
topology models, types, management plans and all required files in the form
of a Cloud Service Archive (CSAR) [14,15]. These archives are portable across
standards-compliant TOSCA runtimes and provide the basis to automatically
provision and manage instances of the modeled application. Runtimes such as
OpenTOSCA [16] also enable automatically executing the associated manage-
ment workflows, thereby, enabling the automation of the entire lifecycle of Cloud
applications described in TOSCA. Thus, TOSCA provides an ideal basis for sys-
tematically reusing (i) proven application structures as well as their (ii) man-
agement processes as both can be described and linked using the standard.

2.2 Choreography Transformation

There exist manual approaches for transforming choreographies to executable
processes (plans). Hofreiter et al. [23] suggest for instance a top-down approach
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where business partners agree on a global choreography by specifying the inter-
action behavior the processes of the partners have to comply with. The chore-
ography and the corresponding processes have to be modeled in UML and the
authors propose a manual transformation to BPEL. Mendling et al. [24] use
the Web Service Choreography Description Language (WS-CDL) [25] to model
choreographies and to generate BPEL process stubs out of it. However, these
process stubs have to be also completed manually. Another drawback of WS-CDL
is that it is an interaction choreography which is less expressive than intercon-
nection models as we will briefly discuss in Sect. 3.3.

In Sect. 4 a process consolidation algorithm is presented to generate an exe-
cutable process from a choreography. Existing process consolidation techniques,
e. g., from Küster et al. [26] or Mendling and Simon [27], focus on merging seman-
tically equivalent processes, which is different from the proposed consolidation
algorithm that merges complementing processes of a choreography into a single
process.

In contrast to our approach Herry et al. [28] aim to execute a former central-
ized management workflow in a decentralized fashion. To accomplish that they
are describing an approach to decompose the management workflow into a set
of different interacting agents coordinating its execution.

2.3 Motivating Scenario

This section describes a motivation scenario based on the previous example
to explain the difficulties of implementing executable management plans and
the significant advantage that would be enabled by an approach that facilitates
systematically reusing and combining existing workflows. As described before,
for provisioning the PHP-based example application several management tasks
have to be performed: Open Stack’s HTTP-API has to be invoked for instanti-
ating the VM while SSH and Chef are used to install the Webserver. However,
already this simple example impressively shows the difficulties: Two low-level
management technologies including their invocation mechanisms, data formats,
and transport protocols have to be (i) understood and (ii) orchestrated by a
workflow. This requires complex data format transformations, building integra-
tion wrappers to invoke the technologies, and results in many lines of complex
workflow code [10]. Thus, implementing such management plans from scratch is
a labor-intensive, error-prone, and complex task that requires a lot of expertise
in very different fields of technologies - reaching from high-level orchestration
to low-level application management. Therefore, systematically reusing existing
plans and combining them and coordinating them would significantly improve
these deficiencies.

Figure 2 shows an example how TOSCA may support this vision. On the left,
the provisioning plan and the topology of the TOSCA example introduced in
Sect. 2.1 is shown. On the right, a topology is shown that describes the deploy-
ment of a MySQL database including the corresponding provisioning plan. This
plan automatically provisions a new VM, installs the MySQL database manage-
ment system, creates a new database, and inserts a specified schema, which is
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Fig. 2. Motivating scenario showing that management plans have to be combined to
reuse existing topology models and management processes.

attached to the MySQL component. Thus, if a LAMP-application2 has to be
developed, the two topologies could be merged and connected with a new rela-
tionship of type SQLConnection. Obviously, to provision the combined stack,
also their provisioning plans have to be combined. However, while merging
TOSCA topology models can be done easily using tools such as Winery [17],
manually combining workflow models is a crucial and error-prone task since
(i) the individual control flows and possible violations have to be considered,
(ii) low-level artifacts, e. g., XML schema definitions, have to be imported, and
(iii) typically hundreds of lines of workflow code have to be integrated. Handling
these issues manually is neither efficient nor reliable. Therefore, a systematic
approach for combining TOSCA topologies and management plans is required
that enables combining plans without the need to deal with their actual imple-
mentation.

3 A Method to Reuse TOSCA-based Applications

This section presents a generic method to systematically reuse existing TOSCA-
based topology models and their management plans as building blocks for the
development of new applications. The method is subdivided in two phases and
shown in Fig. 3: (i) a manual modeling phase, which describes how application
developers and manager model new applications by reusing existing topology

2 An application consisting of Linux, Apache, MySQL, PHP components.



Fostering the Reuse of TOSCA-based Applications 239

Applica�on 
Developer

Applica�on 
Developer

1. Manual Modelling Phase 2. Automated Execu�on Phase 

Select and Merge  
TOSCA Topology Models

A 

Connect Merged 
Parts of the Applica�on

B 

Coordinate Management 
Plans by Choreographies 

C 

Transform 
Choreographies Into 

Executable Workflows
D 

Deploy and Execute 
Resul�ng Workflows 

E 

Applica�on 
Manager

Fig. 3. Steps of the method to systematically reuse TOSCA-based (i) application
topologies and (ii) their corresponding management plans.

models and plans, and (ii) an automated execution phase, which enables auto-
matically deploying and managing the modeled application. The five steps of the
method are explained in detail in the following.

3.1 Select and Merge TOSCA Topology Models

In the first step, the application developer sketches the desired deployment and
selects appropriate TOSCA topology models from a repository to be used for its
realization. The selected topologies are merged by copying them into a new topol-
ogy model, which provides a recursive aggregation model as the result is also a
topology that can be combined with others again. This is a manual step that may
be supported by TOSCA modeling tools such as the open-source implementation
Winery [17]. In previous works, we showed how multiple application topologies can
be merged automatically while preserving their functional semantics [11] and how
valid implementations for custom component types can be derived automatically
from a repository of validated cloud application topologies [29]. These works sup-
port technically merging individual topologies, but the general decisions which
topologies to be used are of manual nature as only developers are aware of the
desired overall functionality of the application to be developed.

3.2 Connect Merged Parts of the Application

The resulting topology model contains isolated topology fragments that may
have to be connected with each other. For example, the motivating scenario
requires the insertion of a SQLConnection relationship to syntactically connect
the merged topology models. Using well-defined relationship types enables spec-
ifying the respective semantics. This is also a manual step as these connec-
tions exclusively depend on the desired functionality. Moreover, TOSCA enables
specifying requirements and capabilities of components, which can be used to
automatically derive possible connections [15]. Modeling tools may use these
specifications to support combining the individual fragments, but in many cases
the final decisions must be made manually by the application developers. For
example, if multiple business components and databases exist, in general, a mod-
eling tool cannot derive with certainty which component has to connect to which
database.
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3.3 Coordinate Management Plans by Choreographies

Similarly to connecting isolated topology fragments, their management plans
need to be combined for realizing holistic management processes that affect
larger parts of the merged application at once, for example, to terminate the
whole application. However, as discussed in Sect. 2.3, manually merging work-
flow models is a highly non-trivial and technically error-prone task. Therefore,
we propose using interconnection choreographies to coordinate the individual
workflows without changing their actual implementation. Interconnection chore-
ographies define interaction specifications for collaborating processes by inter-
connecting communication activities, i. e., send and receive activities, of these
processes via set of message links3. This enables modeling different interaction
styles between the individual management workflows, e. g., asynchronous and
synchronous interactions. Thus, in this step, (i) application managers analyse
required management processes, (ii) select appropriate management workflows
of the individual topology models, and (iii) coordinate them by modeling chore-
ographies. In addition, (iv) depending on required input and output parameters
of the individual workflows, the data flow between the workflow invocations has
to be specified. For example, the MySQL provisioning workflow of the motivat-
ing scenario outputs the endpoint and credentials of the database, which are
required to invoke a management plan of the PHP model that connects the

Fig. 4. Provisioning choreography coordinating management plans.

3 In contrast to interaction choreographies that model message exchanges as abstract
interactions not considering the workflow implementation.
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PHP frontend to this database4. This is a manual step as the desired function-
ality, in general, cannot be derived automatically for application-specific tasks.
For example, the individual provisioning plans of the motivating scenario can
be used to model the overall provisioning of the entire application as well as to
implement management plans that scale out parts of the application to handle
changing workloads.

Figure 4 shows an example choreography that coordinates three manage-
ment workflows from the motivating scenario. The coordination plan invokes
in parallel the provisioning workflows of the PHP and MySQL topology models,
respectively, by specifying message links to their receive activities. After their
execution, messages are sent back to the coordination plan, which continues with
invoking the aforementioned management workflow for transferring the database
information (endpoint, database name, and credentials) to the PHP application
by invoking the corresponding management operation.

3.4 Transform Choreographies into Executable Workflows

After manually modeling the choreography, the resulting model has to be trans-
formed into an executable workflow. This has to be done as choreographies are
not suited to be executed on a single workflow machine: unnecessary commu-
nication effort between the different workflows would slow down the execution
time [30] and passing sensitive data over the wire, e. g., the database credentials,
is not appropriate. Therefore, in this step, the choreography is automatically
translated into an executable workflow model. This is described in detail in the
next section and implemented by our prototype.

3.5 Deploy and Execute Resulting Workflows

In the last step, the generated workflow model is deployed on an appropriate
workflow engine. Afterwards, the plan can be triggered by sending the start
message to the workflow’s endpoint. TOSCA runtimes such as OpenTOSCA [16]
explicitly support management by executing such workflows.

4 Process Consolidation

To transform the management choreography into an executable workflow we
provide a set of algorithms in Sect. 4.2 implementing the process consolidation
approach described in [31] and [32]. Compared to the original paper, which is
language-agnostic, the algorithms and the corresponding meta-model are focused
on BPEL. This is because BPEL supports block-structured and graph-based

4 Such management workflows can be realized in a generic manner by binding them
exclusively to operations defined by the respective component type. TOSCA enables
exchanging the implementations of these operations on the topology layer to imple-
ment application-specific management logic.
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modeling [33]. Hence, the consolidation can be also applied to other block-
structured languages such as BPMN. Moreover, BPEL has a well-defined oper-
ational semantics and it is still one of the most prominent executable workflow
languages [34].

4.1 Choreography Meta-model

The algorithms base on the interconnection choreography meta-model that is
defined in the following. The choreography meta-model uses the process meta-
model introduced in [6] and the formalization introduced in [35] as foundation.
For simplicity reasons BPEL constructs such as compensation handlers, event
handlers, termination handlers or loops are omitted in this meta-model and left
for future works.

Definition 1 (Process). A process P = (A,E, E f ,H,V, Cond) is a directed
acyclic graph where A is the set of activities within the process. E ⊆ A×A×Cond
is the set of directed control links between two activities. E f denotes the set of fault
events that may occur during the execution of a process. H ⊆ Ascope ×{⊥, E f }×
A denotes the set of hierarchy relations between a scope activity and its child
activities. The nesting ⊥ indicates that an activity is a direct child of a scope
activity and the nesting E f indicates that an activity is a fault handling activity
of a scope. Cond denotes the set of transition conditions and join conditions
used within P that can be evaluated to true or false.

The transition condition of a control link is evaluated if the execution of the
source activity of the link (i) completed, (ii) faulted, or (iii) if it is affected by
dead path elimination [6,36].

Definition 2 (Activity). The operational semantics of an activity a ∈ A is
implied by its type which can be assigned to an activity with the function type :
A → T . The following sets of activities are distinguished:

A = Ainvoke ∪ Areceive ∪ Areply ∪ Atask ∪ Aempty ∪ Aopaque ∪ Aassign ∪ Ascope

An activity with incoming control links has a join condition referring to the states
of its incoming control links. It can be assigned with the function joinCond : A →
Cond. The condition must evaluate to true to start the execution of the activity.
If no join condition is defined explicitly, the activity execution is started when
one of its in incoming control links is activated.

Invoke activities Ainvoke within a process send messages to another process
over a message link. These messages can be received by receive activities Areceive .
An invoke activity supports either the asynchronous or synchronous one-to-one
interaction5 pattern [37]. The asynchronous invoke activity sends a message to
the receive within the other process in a “fire and forget” manner, i. e., after the

5 In one-to-one interactions an invoke activity sends a message to exactly one receive
activity, while in one-to-many interactions an invoke activity communicates with
multiple receives, e. g., via loops.
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message was sent the invoke completes and its successor activities are performed.
A synchronous interaction is modeled at the sender side with an invoke activity,
that waits until it receives a response from the called partner process before
it completes, i. e., it “blocks” until the response is received. At the receiver’s
side a synchronous interaction is modeled with a receive activity that is followed
in the control flow by a set of one or more reply activities Areply sending the
response back to the calling invoke. During runtime just one reply activity must
be executed, hence, the reply activities for a single receive must reside on mutual
exclusive branches in the control flow.

Task activitiesAtask implement the actualmanagement logic, such as executing
human tasks, calling scripts etc.This activity type is not part ofBPEL specification
but introduced here to indicate that a management operation is performed. Empty
activities Aempty do not perform any business functions but act a synchronization
point for control links. Assign activities Aassign perform data assignments, such as
copying a value from one variable to another. As data flow is out of scope of this
work, we will not further discuss how these assignments are performed in detail.
Opaque activities Aopaque act as placeholder for other activities.

A scope activity s ∈ Ascope defines an execution context for its direct and
indirect child activities and defines a common fault handling behavior on them.
Therefore, a scope activity defines a set of fault handlers. Each handler contains
one fault handling activity to process the thrown fault. A fault handler reacts on
a certain fault event fault ∈ E f thrown by the direct or indirect child activities
of s. A scope activity has exactly one standard fault handler that reacts on all
faults not being caught by the other fault handlers. This standard fault handler
can be defined with the function catchAll : E f → {true, false}. Scopes can be
arbitrarily nested where the root scope is the process, i. e., a process is just a
special type of scope. In contrast to scopes whose fault handlers may rethrow
faults to their parent scopes, the process scope must not rethrow any faults.

The following further functions are used in the algorithms in Sect. 4.2. The
function incoming : A → ℘(E) returns the incoming control links and the func-
tion outgoing : A → ℘(E) the outgoing control links of an activity a. The function
parentHR : A → H returns the hierarchy relation between the given activity and
its direct parent activity. To denote the projection to the ith component of a
tuple πi is used.

Definition 3 (Choreography). A choreography C ∈ C is defined by the tuple
C = (P,ML), i. e., it consists of a set of interacting processes P and the message
links ML between them. A message link ml connects a sending and a receiv-
ing activity: ML ⊂ Ainvoke ∪ Areply × Ainvoke ∪ Areceive . ∀ml ∈ ML : P1 	=
P2 ∧ P1 , P2 ∈ P where π1 (ml) ∈ π1 (P1 ) ∧ π2 (ml) ∈ π1 (P2 ). A message link is
activated when the sending activity is started. A receiving activity cannot com-
plete until its incoming message link was activated.

In a choreography the processes interact just via message exchanges. Hence,
activities originating form different processes are isolated form each other, i. e.,
state changes of activities within one process, such as faults, are not affecting
activities originating from other processes directly.
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4.2 Choreography-Based Process Consolidation

The process consolidation operation gets a choreography as input and returns
a single process Pµ. The operation ensures that Pµ contains all activities Atask

defined within the processes of C and that the execution order between these
activities is preserved. Pµ is able to generate the same set of activity traces of
Atask during runtime as C [31,32]. Since the consolidation was just described
on a conceptual level, we provide a more formal description in the following.
Algorithm 1 acts as entry point for the consolidation. It creates the consolidated
process Pµ and calls the algorithms implementing the consolidation steps. Note
that we only address the control flow aspects of the consolidation here. Data
flow aspects are just briefly discussed.

Algorithm 1. Process Consolidation.

1: Pµ ← new Process
2: APµ ← π1(Pµ), EPµ ← π2(Pµ), E f

Pµ
← π3(Pµ)

3: HPµ ← π4 (Pµ), VPµ ← π5 (Pµ), CondPµ ← π6 (Pµ)
4: procedure Consolidate(C )
5: AddProcessElements(C )
6: MaterializeControlFlow(C )
7: As = {a ∈ APµ | a ∈ Ascope}
8: ResolveViolations(As)
9: end procedure

4.3 Adding Process Elements

Algorithm 2 adds the activities, control links, variables etc. being defined in
the processes of choreography C to Pµ (line 3). The activities originating from
different processes in C have to be isolated from each other in Pµ. This ensures
that the original property of a choreography is preserved, that faults occurring
in one process are not directly propagated to activities in another processes.
The isolation is guaranteed by adding a scope s for each process P to be merged
(lines 4 to 9). The attached fault handler catches and suppresses all faults that
may be thrown from the activities within the scope.

Algorithm 2. Add elements of process to be merged to Pµ.

1: procedure AddProcessElements(C )
2: for all P ∈ π1 (C ) do
3: APµ ← APµ ∪ π1 (P ), . . . , CondPµ ← CondPµ ∪ π6 (P )
4: s ← new scope

5: fault ← new E f

6: catchAll(fault) ← true

7: afh ← new empty

8: HPµ ← HPµ ∪ {(s, fault , afh), (Pµ, ⊥, s)}
9: APµ ← APµ ∪ {s, afh}

10: end for
11: end procedure
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4.4 Control Flow Materialization

The control flow materialization shown in Algorithm 3 derives the control flow
between activities originating from different processes from the interaction pat-
terns defined in C . Here the materialization of asynchronous and synchronous
one-to-one interactions is discussed. The materialization of one-to-many inter-
actions is described in [32].

Algorithm 3. Control Flow Materialization.

1: procedure MaterializeControlFlow(C )
2: MLinv = {ml ∈ π2 (C ) | π1 (ml) ∈ Ainvoke}
3: for all mlinv ∈ MLinv do
4: inv ← π1 (mlinv )
5: rcv ← π2 (mlinv )
6: MLrp ← {ml ∈ π2 (C ) | π1 (ml) ∈ Areply}
7: if MLrp = ∅ then
8: MaterializeAsyn(inv, rcv)
9: else

10: MaterializeSyn(inv, rcv, π1 (MLrp))
11: end if
12: end for
13: end procedure

To determine the interaction pattern Algorithm 3 checks in line 7 for each
invoke activity if it is also a target of one or more message links MLrp orig-
inating from reply activities. If this is the case the synchronous control flow
materialization is called, otherwise the asynchronous materialization is called.

The materialization for asynchronous interactions is implemented by
Algorithm 4. The algorithm replaces the invoke activity inv and receive activity
rcv with the synchronization activities syninv and synrcv . Activity syninv serves as
synchronization point for the control links of the former invoke activity inv . Thus,
it inherits the control links and join condition of the invoke inv . The activity also
emulates the message transfer by assigning the data that were transported in mes-
sage before to the variable, where the message content was copied to by the receive
activity. The new activity synrcv gets the control links and join condition of rcv
assigned. This preserves the control flow order between the predecessor and suc-
cessor activities of the former rcv. To emulate the control flow constraint implied
by an asynchronous interaction, i. e., that successor activities of the former activity
rcv are not started before the message was sent over the message link, a new control
link einv2Rcv is created between syninv and synrcv .

To perform the synchronous consolidation, beside invoke inv and receive rcv ,
also the set AreplyInv of possible reply activities for inv is passed to Algorithm 5.
An example for a synchronous interaction with two reply activities is depicted
in Fig. 5. If a fault occurs during the execution of b4 reply activity b5′ within
fault handler fh is executed. In the standard faultless flow b5 is performed.
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Algorithm 4. Asynchronous Control Flow Materialization.

1: procedure MaterializeAsyn(inv, rcv)
2: syninv ← new assign

3: ReplaceActivity(inv , syninv )
4: synrcv ← new empty

5: ReplaceActivity(rcv , synrcv )
6: einv2Rcv ← new link(syninv , synrcv , true)
7: joinCond(synrcv ) ← joinCond(rcv) AND einv2Rcv = true

8: end procedure
9: procedure ReplaceActivity(oldAct, newAct)

10: APµ ← (APµ ∪ {newAct}) \ {oldAct}
11: ∀e ∈ incoming(oldAct) : π2 (e) ← newAct
12: ∀e ∈ outgoing(oldAct) : π1 (e) ← newAct
13: joinCond(newAct) ← joinCond(oldAct)
14: hrparent ← parentHR(oldAct)
15: HPµ ← (HPµ ∪ {(π1(hrparent), π2(hrparent), newAct)}) \ {hrparent}
16: end procedure

Algorithm 5. Synchronous Control Flow Materialization.

1: procedure MaterializeSyn(inv, rcv, AreplyInv )
2: syninv ← new assign

3: ReplaceActivity(inv , syninv )
4: synrcv ← new empty

5: ReplaceActivity(rcv , synrcv )
6: einv2Rcv ← new link(syninv , synrcv , true)
7: synrcRp ← new empty

8: ∀e ∈ outgoing(inv) : π1 (e) ← synrcRp

9: einv2RcRp = new link(syninv , synrcRp , true)
10: for all rp ∈ Areply do
11: synrp ← new assign

12: ReplaceActivity(rp, synrp)
13: erp2RcRp ← new link(synrp , synrcRp , true)
14: EPµ ← EPµ ∪ {erp2RcRp}
15: end for
16: joinCond(synrcRp) ← erp2RcRpi = true OR . . . OR erp2RcRpn = true �

(n = |Areply |)
17: end procedure

In a first step Algorithm 5 replaces inv and rcv with synchronization activities
and creates a control link between these activities. This is implemented in the
same way as for asynchronous interactions (lines 2 to 6). In the second step, the
loop in line 10 replaces each reply activity rp being an origin of a message link
targeting the former activity inv with another synchronization activity synrp .
The created reply activities synrp assign the response data to the same variable,
where the content of the reply message (transported over message link mlrp)
was copied to by activity inv . In the example in Fig. 5 two synchronization
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Fig. 5. Synchronous control-flow materialization.

activities synrp and syn′
rp are created from the two reply activities. To emulate

the control flow constraint that the successor activities of a synchronous invoke
are not started before the response message is sent from exactly one of the reply
activities, a control link is created from each synchronization activity synrp to
the new activity synrcRp (created in line 7). The join condition of synrcRp set
in line 16 ensures that synrcRp is executed when one of the synchronization
activities synrp completed.

4.5 Resolving Cross-Boundary Link Violations

Workflow languages supporting block-structured and graph-based modeling
impose certain restrictions on control links crossing the boundaries of block-
constructs such as loops, subprocesses, error handlers etc. For instance, in BPMN
it is forbidden that the source activity of a control link lays outside of a BPMN
subprocess while the target of this link is pointing to an activity inside the
subprocess. In BPEL control links must not pass the boundary of loops, event
handlers or compensation handlers. For fault handlers just control links point-
ing outside the handler are allowed. The control flow materialization, however,
may create control links crossing the boundary of block-constructs if the send-
ing or receiving activity, where control link is created from, is located in such a
construct. In [38] we proposed algorithms for resolving these cross-boundary vio-
lations for links crossing BPMN and BPEL loops. Here an algorithm is provided
for solving these violations for fault handlers.

An example scenario for a cross-boundary violation involving a fault handler
is shown on the left side in Fig. 6. There activity afhRoot is the fault handling
activity of fault handler fh. It contains the fault handling logic including syn-
chronization activities (not depicted in Fig. 6). The control flow materialization
created the invalid control link ecbl pointing to activity afhRoot and causing a
cross-boundary violation.
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Fig. 6. Resolving fault handler cross-boundary violation by refactoring fault handling
logic.

An informal discussion about resolving the violations for fault handlers was
provided in [12]. Based on this discussion Algorithm 6 is introduced. The algo-
rithm needs to resolve the violations while preserving the control flow semantics
of BPEL scopes and fault handlers. Before the algorithm is introduced this
semantics is briefly discussed.

If the execution of a scope completes successfully without throwing a fault,
all of its fault handlers are uninstalled. However, if a scope throws a fault the
normal processing within the scope stops. All control links originating from
activities within the scope which were not activated before the faulted occurred
are deactivated (dead path elimination). Then the fault handler catching the
fault is installed, i. e., the fault handling activities within the fault handler are
performed. All other fault handlers are uninstalled as well. After fault handling
completed the control flow continues at the scope boundaries and the transition
conditions of all control links originating from the scope are evaluated as usual.
The deactivation of a fault handler implies that the root activity of the fault
handler and also its child activities cannot be executed anymore or, spoken in
terms of BPEL, are marked as dead. Consequently, all control links originating
from within an uninstalled fault handler are deactivated.

Algorithm 6 performs two steps. In a first step procedure ResolveViola-

tions checks for each of the provided scopes if there exist cross-boundary viola-
tions caused by control links pointing into one or more fault handlers. Therefore,
all fault handlers of scope s are determined in line 6. In line 9 the actual violation
check is performed. In the example in Fig. 6 only fault handler fh violates the
cross-boundary constraint.

In the second step procedure RefactorFaulHandlerLogic resolves the
violation by moving the fault handling logic afhRoot out of the fault handler into
a new fault handling scope sfh , such as the one depicted at the right side of
Fig. 6. Thereby, for each violated fault handler a separate fault handling scope
sfh is created. All fault handlers not being affected by a cross-boundary violation
remain unchanged. To ensure that the fault handling logic afhRoot is executed if the
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Algorithm 6. Removing Control Links Pointing into Fault Handlers.

1: procedure ResolveViolations(As)
2: for all s ∈ As do
3: hrparentS ← parentHR(s)
4: aparentS ← π1 (hrparent)
5: asyn ← ∅

6: FH = {hr ∈ HPµ | s = π1 (hr) ∧ π2 (hr) ∈ E f }
7: for all fh ∈ FH do
8: AFH = π3(FH)
9: if ∃e ∈ E : π1(e) /∈ AFH ∧ π2 (e) ∈ AFH then

10: if asyn = ∅ then
11: asyn ← new empty

12: HPµ ← HPµ ∪ {(aparentS , ⊥, asyn)}
13: es2syn ← new link(s, asyn , true)
14: ∀e ∈ outgoing(s) : π1 (e) ← asyn

15: end if
16: RefactorFaultHandlerLogic(s, fh, aparentS , asyn)
17: end if
18: end for
19: end for
20: end procedure
21: procedure RefactorFaulHandlerLogic(s, fh, aparentS , asyn)
22: sfh ← new scope

23: fault ← π2 (fh)
24: afhRoot ← π3 (fh)
25: aanchor ← new empty

26: efhl ← new link(aanchor , sfh , true)
27: efh2syn ← new link(sfh , asyn , true)
28: EPµ ← EPµ ∪ {efhl , efh2syn}
29: HPµ ← (HPµ ∪ {(aparentS , ⊥, sfh), (sfh , ⊥, afhRoot), (s, fault , aanchor )}) \

(s, fault , afhRoot)
30: joinCond(asyn) ← joinCond(asyn) OR eefh2syn = true

31: end procedure

corresponding fault is caught, a new control link efhl is created in line 26. It con-
nects the newly created empty activity aanchor (line 25) within the fault handler
with the fault handling logic afhRoot . The additional activity asyn created in line
11 becomes the source of the outgoing control links of scope s (line 14) to ensure
that the successor activities of s are not started before either s or its fault han-
dling scopes completed. Activity asyn is just created once per scope s. To preserve
the property that control links originating from scope boundaries are always per-
formed no matter whether the scope s completed successfully or not, asyn becomes
the target for the set of control links originating from each created fault handling
scope. The join condition of asyn created in line 30 ensures that asyn and its succes-
sors (i. e., the former successors of s) are performed if one these links is activated.

The resulting example process Pµ is depicted at the right side of Fig. 6.
Moving the fault handling logic out of the fault handlers of scope s resolves
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the violations but also preserves the original control flow. If scope s completes
successfully, all of its fault handlers are uninstalled and the dead path elimina-
tion marks the activities within the fault handlers as dead. Hence, also activity
aanchor is marked as dead and its successor activity afhRoot . The the successors
of scope s can be executed as link es2syn is activated.

If a fault occurs during the execution of scope s the execution of s is inter-
rupted and the matching fault handler is installed. If the matching fault handler
was not changed by Algorithm 6 its fault handling logic is directly performed.
After the completion of the fault handling logic link es2syn is activated and thus
also the successors of s. In case a fault handler is called whose fault handling
logic was moved out of the fault handler, activity aanchor is executed. As aanchor

is an empty activity, it completes directly and its outgoing control link causes the
execution of the actual fault handling logic afhRoot . Since the BPEL control link
semantics requires that all incoming control links of an activity are evaluated, it
is guaranteed that the former successor activities (in the example a6 and a7) of
scope s are not started before either s or its fault handling logic completed.

4.6 Consolidation Example

The single process LAMP Provisioning Plan shown in Fig. 7 results from the
application of Algorithm 1 on the provisioning choreography. As all plans interact

Fig. 7. Consolidation of a provisioning choreography into single LAMP provisioning
plan.
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synchronously only the synchronous control flow materialization is applied. Thus,
the sending and receiving activities related to each message link are replaced with
synchronization activities as described in Sect. 4.4.

5 Validation

In this section, we validate the practical feasibility of the presented method
by a prototypical implementation. We applied the method and merge algo-
rithms to the choreography modeling language BPEL4Chor and extended the
OpenTOSCA Cloud management ecosystem to support choreographies. This
ecosystem consists of (i) the graphical TOSCA modelling tool Winery [17], the
(ii) OpenTOSCA container [16], and (iii) the self-service portal Vinothek [18].
An overview of the entire prototype is shown in Fig. 8: Application developers
use Winery to merge existing topology models, while application managers use
the choreography modelling tool ChorDesigner [39] to coordinate the associated
management workflows.

TOSCA CSAR

Topology Model

Winery
Modelling Tool

Choreographies

Management
Workflows

Choreography
Modelling Tool

Choreography
Consolida�on

OpenTOSCA
Container

Vinothek
Portal

TOSCA
Repository

Applica�on
Developer

Applica�on
Manager

End
Users

Fig. 8. Architecture of the open-source Cloud management prototype.

Based on the merge algorithm described in Sect. 4 a process consolidation
tool was developed for generating a single executable BPEL processes out of a
choreography6. Therefore the algorithm was extended to accommodate the lan-
guage idiosyncrasies of BPEL. This includes the emulation of the choreography’s
data flow in the merged process and the elimination of cross-boundary violations.
Beside asynchronous and synchronous one-to-one interactions the tool does also
support the consolidation of one-to-many interactions [32,37].
6 The prototype is available as Open-source: https://github.com/wagnerse/chormerge.

https://github.com/wagnerse/chormerge


252 S. Wagner et al.

The merged topology model as well as the generated management plans can
be packaged as CSAR using Winery. The resulting CSAR can be installed on
the OpenTOSCA container, which internally deploys the workflows and, thereby,
makes them executable. To ease the invocation of provisioning and management
workflows, we employ our TOSCA self-service portal Vinothek, which wraps the
invocation of workflows by a simple user interface for end users. All tools are
available as open-source implementations, thus, the developed prototype pro-
vides an end-to-end Cloud application management system supporting chore-
ographies for modelling coordinated management processes.

6 Conclusion and Future Work

In this work, we proposed a method for developing new TOSCA-based appli-
cations in a more efficient way by reusing topologies and management plans
from existing applications. This method describes the steps to be performed
to combine existing application topology artifacts or parts thereof into a single
topology and how the plans for managing these artifacts can be coordinated by
BPEL4Chor-based management choreographies. To provide the choreography
again as plan for reusing it in other topologies and for the efficient execution of
the choreography on a single workflow engine, this method encompasses a step
to consolidate the choreography into a single management plan. Therefore, we
introduced a set of new algorithms describing the consolidation of interacting
BPEL processes in a formal way. To validate the method different tools of the
OpenTOSCA ecosystem were used. Each of these tools enables one or more steps
of the proposed method to be performed in a semi-automatic manner.

As BPEL4Chor has the same modeling capabilities as BPMN collabora-
tions [40] the proposed algorithms can be also applied on BPMN collaborations.
In the near future also the OpenTOSCA ecosystem will be extended to model
and enact BPMN-based management plans and collaborations. Failures during
the execution of a management plan may need already completed tasks in other
plans of the same choreography to be compensated, i. e., the effects of these tasks
must be undone. Therefore, BPEL and BPMN offer compensation constructs
to implement this behavior. To support the consolidation of plans interacting
via compensation constructs, we plan to extend process consolidation approach
accordingly. To provide a comprehensive set of reusable management plans, we
also plan to transform low-level management scripts into plans.

Acknowledgements. This work was partially funded by the BMWi projects Smar-
tOrchestra (01MD16001F), NEMAR (03ET40188), and by the DFG project SitOPT
(610872).
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11. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F., Weiß, A.: Improve resource-
sharing through functionality-preserving merge of cloud application topologies. In:
CLOSER. SciTePress (2013)

12. Wagner, S., Kopp, O., Leymann, F.: Consolidation of interacting bpel process
models with fault handlers. In: Proceedings of the 5th Central-European Workshop
on Services and their Composition (ZEUS), CEUR (2013)

13. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for
modeling choreographies. In: ICWS. IEEE (2007)

14. OASIS: TOSCA v1.0 (2013). http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/
TOSCA-v1.0-os.html

15. OASIS: TOSCA Primer v1.0 (2013). http://docs.oasis-open.org/tosca/
tosca-primer/v1.0/tosca-primer-v1.0.html
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