
Supporting Users in Data Outsourcing
and Protection in the Cloud

S. De Capitani di Vimercati(B), S. Foresti, G. Livraga, and P. Samarati

Dipartimento di Informatica, Università degli Studi di Milano, 26013 Crema, Italy
{sabrina.decapitani,sara.foresti,giovanni.livraga,

pierangela.samarati}@unimi.it

Abstract. Moving data and applications to the cloud allows users and
companies to enjoy considerable benefits. However, these benefits are also
accompanied by a number of security issues that should be addressed.
Among these, the need to ensure that possible requirements on security,
costs, and quality of services are satisfied by the cloud providers, and the
need to adopt techniques ensuring the proper protection of their data and
applications. In this paper, we present different strategies and solutions
that can be applied to address these issues.

1 Introduction

The ‘Cloud’ has emerged as a successful paradigm that enables users and com-
panies to outsource data and applications to cloud providers, enjoying the avail-
ability of virtually unlimited storage and computation resources at competi-
tive prices. An ever-growing number of cloud providers offer a variety of ser-
vice options in terms of pricing, performance, and features. The advantages in
adopting cloud services, however, come also with new security and privacy prob-
lems [24,54]. A first important problem consists in selecting, among the wide vari-
ety of cloud providers available on the market, the cloud provider most suitable
for the needs of applications and data to be outsourced. This requires to prop-
erly model the requirements and/or preferences and to match such requirements
with the characteristics and the service options offered by the cloud providers.
Clearly, these requirements may differ for different users and/or for different
data and applications that are moved to the cloud. Users therefore need flexible
and expressive techniques supporting both the definition of their requirements
and preferences, and the matching of these requirements with the characteristics
of the different cloud providers (e.g., [6,28]).

Another problem (which often may lead users and companies to refrain from
adopting the cloud for managing their data and applications) is related to ensur-
ing proper protection of the outsourced data. As a matter of fact, when data and
applications are moved to the cloud, they are no more under the direct control
of their owner and must be properly protected from unauthorized parties or the
cloud provider itself. Cloud providers may be honest-but-curious (i.e., trusted
for managing data but not to access their content) or may even have a lazy or
malicious behavior. Depending on the trust assumption that the user has on
c© Springer International Publishing AG 2017
M. Helfert et al. (Eds.): CLOSER 2016, CCIS 740, pp. 3–15, 2017.
DOI: 10.1007/978-3-319-62594-2_1



4 S. De Capitani di Vimercati et al.

the provider running the selected cloud service, different problems might need
to be addresses, including data confidentiality, integrity, and availability protec-
tion (e.g., [24]), the enforcement of access control (e.g., [16,19,34,59]), and the
management of fault tolerance (e.g., [38–40]).

The remainder of this paper is organized as follows. Section 2 describes some
approaches enabling users to express their requirements and preferences as well
as possible strategies for selecting a cloud provider (or set thereof) that satisfies
such requirements and preferences. Section 3 discusses the main data security
issues that arise when using the cloud, and possible solutions to them. Finally,
Sect. 4 concludes the paper.

2 Supporting Users in Cloud Provider Selection

Due to the growing number of cloud providers offering services that differ in
their costs, security mechanisms, and Quality of Service (QoS), the research
and industry communities have dedicated attention to the problem of improving
the user experiences and the use of available cloud services. Industry security
standards such as the Cloud Security Alliance Cloud Controls Matrix [13] have
been proposed to allow cloud vendors and users to assess the overall security
risks of cloud providers. Also several techniques have been recently proposed
to assist data owners in selecting the cloud provider that better satisfies their
needs. In this section, we provide an overview of such techniques.

User-side QoS. A natural strategy to compare a set of candidate cloud
providers is based on measuring their Quality of Service (QoS) and comparing
the results. Cloud providers typically publish indicators about the performance
of their services in their Service Level Agreements (SLAs). Some of these indica-
tors are used as parameters to measure the QoS of the provider (e.g., the response
time). However, the value declared by the provider in its SLA (provider-side QoS)
can differ from the value observed by a user (user-side QoS). Also, different users
can experience different user-side QoS values for the same provider. For instance,
the response time observed by a user can differ from the one experienced by
another user operating in a different geographical area because they operate on
networks with different latencies. Therefore, if a user selects a cloud provider on
the basis of the provider-side QoS, she may end up with a choice not optimal for
her. To overcome this problem, some techniques introduced the idea of selecting
the cloud provider(s) based on the user-side QoS (e.g., [61]). A precise evaluation
of user-side QoS values can however be a difficult task. In fact, in many situa-
tions, it requires to measure the parameters of interest (e.g., the response time)
by actually invoking/using the services offered by the provider. This practice
may cause communication overheads and possible economic charges that might
not be always acceptable. To solve this issue, QoS parameters could be predicted
by defining an automated QoS prediction framework that considers past service
usage experiences of other “similar users”. Measured or estimated QoS parame-
ters are finally used to rank all the (functionally equivalent) providers among
which the user can choose (e.g., [61]).



Supporting Users in Data Outsourcing and Protection in the Cloud 5

User Requirements. A user may have different requirements (i.e., conditions)
that cloud providers should satisfy to meet the user’s needs (e.g., at least four
backup copies of the outsourced data should be maintained), or preferences on
the values of the characteristics of the cloud service (e.g., a user may specify a
value for the required availability and for the response time). User requirements
might depend, for example, on the specific application scenario (e.g., data that
need timely retrieval have to be stored at a provider with negligible downtime
and fast response time) as well as by laws and regulations (e.g., sensitive data
have to be stored at a provider applying appropriate security measures).

A line of research has investigated the definition of approaches to select the
cloud provider (or set thereof) that better satisfies all the users requirements (i.e.,
optimizing the values of the attributes of interest for the user). The proposed
solutions are typically based on the presence of a trusted middleware/interface
playing the role of a broker [33] in the system architecture. The broker takes
both the requirements of the user and the characteristics of the candidate cloud
providers (possibly expressed in a machine-readable format [52]) as input, and
tries to find the best match between the user requirements and the characteristics
of the cloud providers. This matching problem can become more complex when
a user defines multiple, may be even contrasting, requirements. In this case, it
is necessary to quantify the satisfaction of each requirement by each provider,
and to properly combine the measures associated with each provider. Multi-
Criteria Decision Making (MCDM) techniques have been proposed as one of the
basic approaches to address such a problem (e.g., [51]). Among the solutions
relying on MCDM techniques, SMICloud [30,31] adopts a hierarchical decision-
making technique, called Analytic Hierarchy Process, to compare and rank cloud
providers on the basis of the satisfaction of user requirements. SMICloud mod-
els user requirements as key performance indicators (KPIs) that include, for
example, the response time of a service, its sustainability (e.g., environmental
impact), and its economic costs. MCDM, possibly coupled with machine learn-
ing, has also been proposed as a method for selecting the instance type (i.e.,
the configuration of compute, memory, and storage capabilities) that has the
best trade-off between economic costs and performance and that satisfies the
user requirements (e.g., [47,55]). For each of the resources to be employed (e.g.,
memory, CPU), these proposals select the provider (or set thereof) to be used
for its provisioning as well as the amount of the resource to be obtained from
each cloud provider so that the user requirements are satisfied.

Besides expressing requirements over QoS indicators and KPIs, a user might
wish to formulate her requirements as generic conditions over a non-predefined
set of attributes characterizing the service delivery and the cloud provider. For
instance, to obey security regulations, a user may require that sensitive data
be stored only in servers located in a given country, even if the physical loca-
tion of a server is not an attribute explicitly represented in the provider SLAs.
The satisfaction of user-based requirements might depend on the (joint) satis-
faction of multiple conditions expressed over the attributes declared by cloud
providers. Also, certain characteristics of a cloud provider may depend on other



6 S. De Capitani di Vimercati et al.

characteristics. For instance, the response time of a system may depend on the
incoming request rate (i.e., the number of incoming requests per second), mean-
ing that it can be ensured only if an upper bound is enforced on the number
of requests per time unit. When checking whether cloud providers satisfy the
user requirements it is also important to consider such dependencies, account-
ing for the fact that different services might entail different dependencies (e.g.,
two services with different hardware/software configurations might accept dif-
ferent request rates to guarantee the same response time). Recent approaches
have designed solutions for establishing an SLA between a user and a cloud
provider based on generic user requirements and on the automatic evaluation of
dependencies existing for the provider (e.g., [26]). For instance, a dependency
can state that a response time of 5 ms can be guaranteed only if the request rate
is lower than 1 per second. The solution in [26] takes as input a set of generic
user requirements and a set of dependencies for a provider. By adopting off-the-
shelves Constraint Satisfaction Problem (CSP) solvers, this technique determines
a valid SLA (if it exists), denoted vSLA, that satisfies the conditions expressed
by the user as well as further conditions possibly triggered by dependencies. With
reference to the example above, if the requirement of the user includes a value
for the response time, then the generated vSLA will also include a condition on
the request rate that the candidate provider should also satisfy. Given a set of
requirements and a set of dependencies, different valid SLAs might exist. The
approach in [25] extends the work in [26] by allowing users to specify preferences
over conditions that can be considered for selecting, among the valid SLAs, the
one that the user prefers. Preferences are expressed over the values that can be
assumed by the attributes involved in requirements and dependencies (e.g., the
one between the response time and the request rate). Building on the CSP-based
approach in [26], these preferences are used to automatically evaluate vSLAs,
ranking higher those that better satisfy the preferences of the user.

Multi-application Requirements. Many of the approaches for selecting cloud
provider(s) operate under the implicit assumption that a user is moving to the
cloud a single application at a time (or a set of applications with the same
requirements). Hence, the user requirements reflect the application needs. How-
ever, if a user wishes to outsource multiple applications to a single cloud provider,
the selection process may be complicated by the fact that different applications
might have different, even conflicting, requirements. Conflicting requirements
then need to be reconciled to find a cloud provider that better suits the needs
of all the applications. For instance, for an application operating with sensi-
tive/personal information, a user will likely have a strong requirement on the
security measures applied by the cloud provider (e.g., encryption algorithms,
access control), while for an application performing data-intensive computations
on non-sensitive information the same user will be more likely interested in per-
formance (e.g., processing speed and network latency). An intuitive approach
for considering the requirements of multiple applications in the selection of a
cloud provider consists in first identifying the provider that would be preferred
by each application singularly taken, and then in selecting the provider chosen



Supporting Users in Data Outsourcing and Protection in the Cloud 7

by the majority of the applications. While such an approach would certainly
choose a single provider, it may still leave the requirements of some applica-
tions completely unsatisfied. To overcome this problem, alternative approaches
based on MCDM techniques (e.g., [6]) aim at selecting cloud provider(s) in such
a way that the chosen provider(s) balances the satisfaction of the application
requirements, thus ensuring not to leave any application unsatisfied. Given the
requirements characterizing the needs of each application and a set of cloud plans
(among those available from cloud providers), the solution in [6] first adopts a
MCDM technique to produce, for each application, a ranking of the cloud plans.
Then, a consensus-based process is adopted to select the plan that is considered
more acceptable by all applications. In particular, the consensus-voting algo-
rithm takes as input the rank of each application and chooses the plan that
better balances the preferences of all applications. Note that this approach con-
siders all applications, and rankings produced by them, to be equally important
when computing a solution to reach consensus. This implies that the proposed
solution only considers the position of the plans in the ranking and does not
take into consideration their relative distance. The cloud provider chosen by
applying this technique may not be the first choice of any of the considered
applications, but the technique guarantees that no application is left completely
unsatisfied. An interesting alternative to be investigated can consider the appli-
cation requirements by different applications as a single set of requirements to
be globally optimized, considering not only the rankings but the distance among
plans, possibly evaluating also preferences among applications.

Fuzzy User Requirements. To express precise requirements on the character-
istics that should be satisfied by cloud providers, a user needs to have a technical
understanding of both the service characteristics and the needs of the applica-
tions. However, the identification of ‘good’ value(s) for a given attribute might
be challenging for some users, due to either a lack of technical skills, or the dif-
ficulty in identifying the precise needs for their applications. Also, the choice of
a specific value or of a precise threshold for an attribute may be an overkill in
many situations, imposing a too strong constraint. As an example, a requirement
imposing a minimum service availability of 99.995% would exclude a service with
a guaranteed availability of 99.990%, which – while less desirable – may still be
considered acceptable by the user. To provide users with higher flexibility in
the definition of their requirements, some works have considered fuzzy logic for
the specification and consideration of requirements (e.g., [15,28]). Fuzzy logic
can help users in defining their requirements in a flexible way whenever these
requirements cannot be expressed through crisp values over attributes or are not
easily definable. For instance, it is simpler for a non-skilled user to generically
require ‘high availability’ rather than specifying precisely which values are good
and which are not. In this example, ‘high availability’ maps to a set of values for
the availability attribute, which fit the definition of ‘high availability’ according
to the fuzzy membership function to be applied. In fact, the user and the cloud
provider must agree on the meaning of the fuzzy values that a user can use in
the definition of her requirements. Fuzzy logic can be used also to address other



8 S. De Capitani di Vimercati et al.

issues in cloud scenarios, including the evaluation of cloud service performances
(e.g., [49]) and the allocation by the provider of its resources to users applications
(e.g., [4,15,29,50]). In this context, the allocation of resources to applications
needs to take into account several aspects (e.g., the performance of applications,
users costs, energy consumption, and security). Hence, finding an allocation that
optimizes all these aspects is a difficult task that is usually addressed through
MCDM techniques. Also, fuzzy logic can be useful for supporting flexible rea-
soning in resource allocation, especially in dynamic scenarios where applications
are frequently activated/deactivated.

3 Protecting Data in the Cloud

Moving data and applications to the cloud implies a loss of control of the data
owner over them and consequent concerns about their security. Guarantee data
and applications security requires to address several problems such as the pro-
tection of the confidentiality and integrity of data and computations as well as
data availability (e.g., [16,19,34,38–40,59]), the enforcement of access control
(e.g., [16,19,34,59]), and query privacy (e.g., [22,23]). In this section, we focus
on the solutions addressing the confidentiality, integrity, and availability of data.

3.1 Data Confidentiality

The protection of the confidentiality of (sensitive) data is the first problem that
has to be considered when storing data at an external cloud provider. Sensi-
tive data must be protected from untrusted/unauthorized parties, including the
storing cloud provider, which can be considered honest-but-curious (i.e., trusted
to properly operate over the data but not to see their content). Current solu-
tions addressing this problem are based on the (possibly combined) adoption of
encryption and fragmentation.

Encryption. Wrapping data with a layer of encryption before outsourcing rep-
resents a natural and effective solution to protect the confidentiality of out-
sourced data [53]. Indeed, only the data owner and authorized users, knowing
the encryption key, can access the plaintext data. Encrypting data before out-
sourcing them guarantees that neither the cloud provider nor external third
parties (possibly gaining access to the provider storage devices) can access the
data content in the clear. However, encryption makes query execution difficult
because data cannot be decrypted at the provider side. To address this problem,
different solutions have been proposed, including encrypted database systems
supporting SQL queries over encrypted data (e.g., [5,48]) and indexes for query
execution (e.g., [10,37]). CryptDB [48] is an example of encrypted database sys-
tem that supports queries on encrypted data. The idea is to encrypt the values of
each attribute of a relational table with different layers of encryption, computed
using different kinds of encryption (i.e., random, deterministic, order-preserving,
homomorphic, join, order-preserving join, and word search), which depend on
the queries to be executed. For instance, the values of an attribute can be first



Supporting Users in Data Outsourcing and Protection in the Cloud 9

encrypted using an order-preserving encryption schema, then a deterministic
encryption schema, and then a random encryption. Proceeding from the out-
ermost layer to the innermost layer, the adopted encryption scheme provides
weaker security guarantees but supports more computations over the encrypted
data. As an example, if the cloud provider has to execute a group by on such
attribute, the random encryption layer is removed since such encryption does
not allow to determine which values of the attribute are equal to each other.
Instead, deterministic encryption supports grouping operations, and therefore it
is not necessary to remove the deterministic encryption layer.

An index is a metadata associated with the encrypted data that can be
used by the cloud provider to select the data to be returned in response to
a query. Indexing techniques differ in the kind of queries supported (e.g., [2,
14,37,57]). In general, indexes can be classified in three main categories: (1)
direct indexes map each plaintext value to a different index value and vice versa
(e.g., [14]); (2) bucket-based indexes map each plaintext value to one index value
but different plaintext values are mapped to the same index value, generating
collisions (e.g., [37]); (3) flattened indexes map each plaintext value to different
index values, each characterized by the same number of occurrences (flattening),
and each index value represents one plaintext value only (e.g., [57]).

Besides indexing techniques classified as discussed, many other approaches
have been proposed. For instance, indexes based on order preserving encryption
support range conditions as well as grouping and ordering clauses (e.g., [2,57]),
B+-tree indexes [14] support range queries, and indexes based on homomorphic
encryption techniques (e.g., [32,36]) support the execution of aggregate func-
tions.

While promising, encrypted database systems and indexes present open prob-
lems, such as the possible information leakage and the still limited support for
query execution (e.g., [9,45]).

Fragmentation. Approaches based on encryption for protecting data confiden-
tiality work under the assumption that all data need protection. However, in
many scenarios, what is sensitive is the association among data values, rather
than values singularly taken. For instance, with reference to a relational table,
while the name of patients or the possible values of illness can be considered pub-
lic, the association among them (i.e., the fact that a patient has a given illness) is
clearly sensitive. Confidentiality can be guaranteed in this case by breaking the
association storing the involved attributes in separate (unlinkable) data frag-
ments (e.g., [1,10–12,17]). The application of fragmentation-based techniques
requires first the identification of the sets of attributes whose joint visibility
(i.e., association) is considered sensitive. A sensitive association can be modeled
as a confidentiality constraint corresponding to sets of attributes that should
not be publicly visible in the same fragment. For instance, with respect to the
previous example, confidentiality constraint 〈Name,Illness〉 states that the val-
ues of attribute Name cannot be visible together with the values of attribute
Illness. Fragmentation splits attributes in different data fragments in such a
way that no fragment covers completely any of the confidentiality constraint.



10 S. De Capitani di Vimercati et al.

Fragments need to be unlinkable for non-authorized users (including cloud
providers) to avoid the reconstruction of the sensitive associations. Different
approaches have been proposed to fragment data, as summarized in the following.

– Two can keep a secret [1]. The original table is split in two fragments to be
stored at two non-communicating cloud providers. Sensitive attributes (i.e.,
singleton confidentiality constraints) are protected by encoding (e.g., encrypt-
ing) them. Sensitive associations are protected by splitting the involved
attributes in the two fragments. If an attribute cannot be placed in any of
the two fragments without violating a confidentiality constraint, it is encoded.
Encoded attributes are stored in both fragments. Only authorized users can
access both fragments as well as the encoded attributes, and reconstruct the
original relation by joining the two fragments through a common key attribute
stored in both fragments.

– Multiple fragments [10,12]. The original table can be split into an arbitrary
number of disjoint fragments (i.e., fragments that do not have any common
attribute). The idea is that sensitive attributes are stored in encrypted form
while sensitive associations can always be protected by splitting the involved
attributes in different fragments. Each fragment stores a set of attributes in
plaintext and all the other attributes of the original table in encrypted form.
Authorized users know the encryption key and can reconstruct the original
table by accessing a single fragment (any would work) at the cloud provider.
The use of multiple fragments guarantees that all the attributes in the original
relation that are not considered sensitive by themselves can be represented
in plaintext in some fragments.

Unlinkability among fragments is ensured by the absence of common
attributes in fragments. Such a protection may however be put at risk by
data dependencies among attribute values since the value of some attributes
may disclose information about the value of others attributes. For instance,
knowing the treatment with which an individual is treated can reduce the
uncertainty over her disease. If these attributes are stored in different frag-
ments, they could be exploited for (loosely) joining fragments, thus possibly
violating confidentiality constraints. Data dependencies have then to be con-
sidered in the fragmentation design [17].

– Keep a few [11]. The original table is split into two fragments, one of which
is stored at the data owner side. Sensitive attributes are stored at the data
owner side while sensitive associations are protected by storing, for each asso-
ciation, at least one attribute at the data owner side. This approach permits
to completely depart from encryption. An identifier is maintained in both
fragments to allow the data owner to correctly reconstruct the original table.
Since one fragment is kept by the data owner, an access request may require
her involvement.

3.2 Data Integrity and Availability

In addition to data confidentiality, data integrity and availability are also critical
aspects. Data integrity means that the data owner needs guarantees on the



Supporting Users in Data Outsourcing and Protection in the Cloud 11

fact that cloud providers (and non-authorized users) do not improperly modify
the data without being detected. Verifying data integrity consists not only in
verifying whether the stored data have not been tampered with or removed
(integrity of stored data) but also in verifying the integrity of query results. The
integrity of a query result means that the result is correct (i.e., the result is
computed on the original data and is correct), complete (i.e., the computation
has been performed on the whole data collection and the result includes all data
satisfying the computation), and fresh (i.e., the result is computed on the most
recent version of the data). Existing solutions addressing these issues can provide
deterministic or probabilistic guarantees.

– Deterministic techniques provide guarantees of data integrity with full con-
fidence. Techniques for the integrity of stored data can be based on hashing
and digital signatures as building blocks (e.g., [8,35,44]). These solutions
require data owners to access their data in the cloud to check their integrity
(which may imply high communication overhead). Deterministic guarantees
on the integrity of computation results can be achieved by building authen-
ticated data structures on the data (e.g., Merkle hash trees [43,46] and skip
lists [3,27]). Every computation result is then complemented with a verifi-
cation object VO, extracted by the cloud provider from the authenticated
data structure. By checking the VO, the requesting user can easily and effi-
ciently verify if the computation result is correct, complete, and fresh. While
the adoption of authenticated data structures has the advantage of providing
full confidence on the integrity of computation results, they are defined on a
specific attribute and hence provide guarantees only for computations over it.

– Probabilistic techniques offer only probabilistic integrity guarantees, but are
more flexible than deterministic approaches. Traditional solutions providing
probabilistic integrity guarantees of stored data are Proof of Retrievability
(POR) and/or Provable Data Possession (PDP) schemes [7,41]. These solu-
tions either include sentinels in the encrypted outsourced data (POR) or
pre-compute tokens over encrypted or plaintext data (PDP) to provide the
owner with a probabilistic guarantee that the data have not been modified
by non-authorized parties.

Probabilistic guarantees on the integrity of computation results can be
obtained by inserting fake tuples as sentinels/markers in the original dataset
before outsourcing (e.g., [42,60]) or by duplicating (twinning) a portion of
the original dataset (e.g., [20,58]). If sentinels/markers and duplicates/twins
are not recognizable as such by the cloud provider, their absence in the com-
putation result signals to the requesting user its incompleteness. Clearly, the
higher the number of marker/twin tuples the higher the probabilistic guar-
antees obtained. It is interesting to note that these probabilistic strategies
can be jointly used as their protection guarantees nicely complement each
other [20,21] and can also be extended to work in a MapReduce scenario [18].

Data availability in the cloud can be interpreted as the ability of verifying
whether the cloud provider satisfies users’ requirements. Typically, the expected



12 S. De Capitani di Vimercati et al.

behaviors of a cloud provider can be formalized using a Service Level Agreement
(SLA) stipulated between a user and the cloud provider itself. An SLA can
include confidentiality, integrity, and availability guarantees that the provider
undertook to provide. Some proposals have then investigated the problem of
how users can verify whether a cloud provider satisfies the security guarantees
declared in an SLA (e.g., [56]). Also the PDP and POR techniques previously
discussed for data integrity can also be used for verifying whether the cloud
provider stores the data as declared.

4 Conclusions

In this paper, we have discussed the problems of enabling users to select cloud
providers that best match their needs, and of empowering users with solutions to
protect data outsourced to cloud providers. In particular, we have described tech-
niques that allow users to express their security requirements, possibly defined
for multiple applications and also using fuzzy logic, and to ensure confidentiality,
integrity, and availability of outsourced data.

Acknowledgments. This work was supported in part by the EC within the FP7
under grant agreement 312797 (ABC4EU), and within the H2020 under grant agree-
ment 644579 (ESCUDO-CLOUD).

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K.,
Motwani, R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: a dis-
tributed architecture for secure database services. In: Proceedings of CIDR 2005,
Asilomar, CA, USA, January 2005

2. Agrawal, R., Kierman, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of ACM SIGMOD, Paris, France, June 2004

3. Anagnostopoulos, A., Goodrich, M.T., Tamassia, R.: Persistent authenticated dic-
tionaries and their applications. In: Proceedings of ISC 2001, Malaga, Spain, Octo-
ber 2001

4. Anglano, C., Canonico, M., Guazzone, M.: FC2Q: exploiting fuzzy control in server
consolidation for cloud applications with SLA constraints. Concurrency Comput.
Pract. Experience 22(6), 4491–4514 (2014)

5. Arasu, A., Blanas, S., Eguro, K., Kaushik, R., Kossmann, D., Ramamurthy, R.,
Venkatesan, R.: Orthogonal security with cipherbase. In: Proceedigs of CIDR 2013,
Asilomar, CA, USA, January 2013

6. Arman, A., Foresti, S., Livraga, G., Samarati, P.: A consensus-based approach for
selecting cloud plans. In: Proceedings of IEEE RTSI 2016, Bologna, Italy, Septem-
ber 2016

7. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.,
Song, D.: Provable data possession at untrusted stores. In: Proceedings of ACM
CCS 2007, Alexandria, VA, USA, October/November 2007

8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Proceedings of EUROCRYPT 2003, Warsaw,
Poland, May 2003



Supporting Users in Data Outsourcing and Protection in the Cloud 13

9. Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Modeling and assessing inference exposure in encrypted databases.
ACM TISSEC 8(1), 119–152 (2005)

10. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Combining fragmentation and encryption to protect privacy in data
storage. ACM TISSEC 13(3), 22:1–22:33 (2010)

11. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Selective data outsourcing for enforcing privacy. JCS 19(3), 531–566
(2011)

12. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Livraga, G., Samarati, P.:
An OBDD approach to enforce confidentiality and visibility constraints in data
publishing. JCS 20(5), 463–508 (2012)

13. Cloud Security Alliance: Cloud Control Matrix v3.0.1. https://
cloudsecurityalliance.org/research/ccm/

14. Damiani, E., Capitani, D., di Vimercati, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Balancing confidentiality and efficiency in untrusted relational
DBMSs. In: Proceedings of CCS 2003, Washington, DC, USA, October 2003

15. Dastjerdi, A.V., Buyya, R.: Compatibility-aware cloud service composition under
fuzzy preferences of users. IEEE TCC 2(1), 1–13 (2014)

16. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Enforcing dynamic write privileges in data outsourcing. Comput.
Secur. 39, 47–63 (2013)

17. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Fragmentation in presence of data dependencies. IEEE TDSC 11(6),
510–523 (2014)

18. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Integrity for distributed queries. In: Proceedings of IEEE CNS 2014,
San Francisco, CA, USA, October 2014

19. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM TODS 35(2),
12:1–12:46 (2010)

20. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Integrity for join queries in the cloud. IEEE TCC 1(2), 187–200 (2013)

21. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Efficient integrity checks for join queries in the cloud. JCS 24(3), 347–378 (2016)

22. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Efficient and private access to outsourced data. In: Proceedings of ICDCS 2011,
Minneapolis, Minnesota, USA, June 2011

23. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Shuffle index: efficient and private access to outsourced data. ACM TOS 11(4),
1–55 (2015). Article 19

24. De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Managing and accessing
data in the cloud: Privacy risks and approaches. In: Proceedings of CRiSIS 2012,
Cork, Ireland, October 2012

25. De Capitani di Vimercati, S., Livraga, G., Piuri, V.: Application requirements with
preferences in cloud-based information processing. In: Proceedings of IEEE RTSI
2016, Bologna, Italy, September 2016

26. De Capitani di Vimercati, S., Livraga, G., Piuri, V., Samarati, P., Soares, G.:
Supporting application requirements in cloud-based IoT information processing.
In: Procedings of IoTBD 2016, Rome, Italy, April 2016

https://cloudsecurityalliance.org/research/ccm/
https://cloudsecurityalliance.org/research/ccm/


14 S. De Capitani di Vimercati et al.

27. Di Battista, G., Palazzi, B.: Authenticated relational tables and authenticated skip
lists. In: Proceedings of DBSec 2007, Redondo Beach, CA, USA, July 2007

28. Foresti, S., Piuri, V., Soares, G.: On the use of fuzzy logic in dependable cloud
management. In: Proceedings of IEEE CNS 2015, Florence, Italy, September 2015

29. Frey, S., Claudia, L., Reich, C., Clarke, N.: Cloud QoS scaling by fuzzy logic. In:
IEEE IC2E 2014, Boston, MA, USA, March 2014

30. Garg, S.K., Versteeg, S., Buyya, R.: SMICloud: A framework for comparing and
ranking cloud services. In: Proc. of IEEE UCC 2011, Melbourne, Australia, Decem-
ber 2011

31. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing
services. Future Gener. Comput. Syst. 29(4), 1012–1023 (2013)

32. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
STOC 2009, Bethesda, MA, USA, May 2009

33. Goscinski, A., Brock, M.: Toward dynamic and attribute based publication, dis-
covery and selection for cloud computing. Future Gener. Comput. Syst. 26(7),
947–970 (2010)

34. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of ACM CCS 2006,
Alexandria, VA, USA, October/November 2006

35. Hacigümüs, H., Iyer, B., Mehrotra, S.: Ensuring integrity of encrypted databases
in database as a service model. In: Proceedings of DBSec 2003, Estes Park, CO,
USA, August 2003

36. Hacigümüs, H., Iyer, B., Mehrotra, S.: Efficient execution of aggregation queries
over encrypted relational database. In: Proceedings of DASFAA 2004, Jeju Island,
Korea, March 2004

37. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data in
the database-service-provider model. In: Proceedings of SIGMOD 2002, Madison,
WI, USA, June 2002

38. Jhawar, R., Piuri, V.: Fault tolerance management in IaaS clouds. In: Proceedings
of IEEE-AESS ESTEL 2012, Rome, Italy, October 2012

39. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource
management in cloud computing. In: Proceedings of IEEE CSE 2012, Paphos,
Cyprus, December 2012

40. Jhawar, R., Piuri, V., Santambrogio, M.: Fault tolerance management in cloud
computing: a system-level perspective. IEEE Syst. J. 7(2), 288–297 (2013)

41. Juels, A., Kaliski Jr., B.S.: PORs: Proofs of retrievability for large files. In: Pro-
ceedings of ACM CCS 2007, Alexandria, VA, USA, October/November 2007

42. Liu, R., Wang, H.: Integrity verification of outsourced XML databases. In: Pro-
ceedings of CSE 2009, Vancouver, Canada, August 2009

43. Merkle, R.: A certified digital signature. In: Proceedings of CRYPTO 1989, Santa
Barbara, CA, USA, August 1989

44. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. ACM TOS 2(2), 107–138 (2006)

45. Naveed, M., Kamara, S., Wrigh, C.: Inference attacks on property-preserving
encrypted databases. In: Proceedings of CCS 2015, Denver, CO, USA, October
2015

46. Pang, H., Jain, A., Ramamritham, K., Tan, K.: Verifying completeness of relational
query results in data publishing. In: Proceedings of SIGMOD 2005, Baltimore, MA,
USA, June 2005



Supporting Users in Data Outsourcing and Protection in the Cloud 15

47. Pawluk, P., Simmons, B., Smit, M., Litoiu, M., Mankovski, S.: Introducing
STRATOS: A cloud broker service. In: Proceedings of IEEE CLOUD 2012,
Honolulu, HI, USA, June 2012

48. Popa, R., Redfield, C., Zeldovich, N., Balakrishnan, H.: Cryptdb: Protecting con-
fidentiality with encrypted query processing. In: Proceedings of SOSP, Cascais,
Portugal (2011)

49. Qu, L., Wang, Y., Orgun, M.A.: Cloud service selection based on the aggregation of
user feedback and quantitative performance assessment. In: Proceedings of IEEE
SCC 2013, Santa Clara, CA, USA, June/July 2013

50. Rao, J., Wei, Y., Gong, J., Xu, C.Z.: DynaQoS: Model-free self-tuning fuzzy control
of virtualized resources for QoS provisioning. In: Proceedings of IEEE IWQoS 2011,
San Jose, CA, USA, June 2011

51. Rehman, Z., Hussain, O., Hussain, F.: IaaS cloud selection using MCDM methods.
In: Proceedings of IEEE ICEBE 2012, Hangzhou, China, September 2012

52. Ruiz-Alvarez, A., Humphrey, M.: An automated approach to cloud storage service
selection. In: Proceedings of ACM ScienceCloud 2011, San Jose, CA, USA, June
2011

53. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing scenar-
ios: issues and directions. In: Proceedings of ASIACCS 2010, Beijing, China, April
2010

54. Samarati, P., De Capitani di Vimercati, S.: Cloud security: issues and concerns.
In: Murugesan, S., Bojanova, I. (eds.) Encyclopedia on Cloud Computing. Wiley,
Chichester (2016)

55. Samreen, F., Elkhatib, Y., Rowe, M., Blair, G.S.: Daleel: Simplifying cloud instance
selection using machine learning. In: Proceedings of IEEE/IFIP NOMS 2016,
Istanbul, Turkey, April 2016

56. van Dijk, M., Juels, A., Oprea, A., Rivest, R., Stefanov, E., Triandopoulos, N.:
Hourglass schemes: How to prove that cloud files are encrypted. In: Proceedings
of ACM CCS 2012, Raleich, NC, USA, October 2012

57. Wang, H., Lakshmanan, L.: Efficient secure query evaluation over encrypted XML
databases. In: Proceedings of VLDB 2006, Seoul, Korea, September 2006

58. Wang, H., Yin, J., Perng, C., Yu, P.: Dual encryption for query integrity assurance.
In: Proceedings of CIKM 2008, Napa Valley, CA, USA, October 2008

59. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Proceedings of PKC 2011, Taormina, Italy,
March 2011

60. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In:
Proceedings of VLDB 2007, Vienna, Austria, September 2007

61. Zheng, Z., Wu, X., Zhang, Y., Lyu, M.R., Wang, J.: QoS ranking prediction for
cloud services. IEEE TPDS 24(6), 1213–1222 (2013)


	Supporting Users in Data Outsourcing and Protection in the Cloud
	1 Introduction
	2 Supporting Users in Cloud Provider Selection
	3 Protecting Data in the Cloud
	3.1 Data Confidentiality
	3.2 Data Integrity and Availability

	4 Conclusions
	References


