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1 Introduction

Recently, increase in industrialization and urbanization has brought about a rise in

energy demand. Orientation to renewable energy sources is inevitable because

resources used in energy production have been running out, and they cause irre-

versible damages to the environment. Wind is one of these renewable energy

resources. The most positive impact of wind energy is to not cause the release of

greenhouse gases that are formed as a result of the combustion of fossil fuels.

Besides, the widespread use of wind energy will also reduce pollutant emissions as

a result of reduction in fossil fuel consumption (Fig. 1 and Table 1).

Turkey is under the influence of the northern wind caused by the general

circulation of the atmosphere. It is also surrounded by seas on three sides and has

high valleys, especially in the eastern regions. All these lead to high wind energy

potential for Turkey. Turkey’s gross wind potential is thought to be 400 billion kWh

per year, while technical potential is thought to be 120 billion kWh per year

(Genço�glu 2002). According to the Global Wind Report published by Global

Wind Energy Council, the total installed capacity of Turkey was 2312 MW at the

end of 2012; then 646 MW were added in 2013, and it increased to 2959 MW at the

end of 2013 (Url-1 2014).

A.S. Sirdas (*) • A. Nilcan

Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of

Meteorological Engineering, Maslak, 34469 Istanbul, Turkey

e-mail: sirdas@itu.edu.tr; ssirdas@gmail.com

I. Ercan

Yildiz Technical University, Faculty of Electrical Engineering,

Davutpasa Campus, Istanbul, Turkey

© Springer International Publishing AG, part of Springer Nature 2018

F. Aloui, I. Dincer (eds.), Exergy for A Better Environment and Improved
Sustainability 2, Green Energy and Technology,

https://doi.org/10.1007/978-3-319-62575-1_46

651

mailto:sirdas@itu.edu.tr
mailto:ssirdas@gmail.com
https://doi.org/10.1007/978-3-319-62575-1_46


Turkey has continued to make new breakthroughs related to wind energy. In this

respect, this work aimed to form a preliminary study for a wind turbine planned to

take place in Terkos, Istanbul, as the first national turbine of Turkey. For this

reason, short-term analysis and predictions of wind for Terkos region were handled

in this study.

Nomenclature

V1 The observed wind speed (m.s�1)

V2 The calculated wind speed (m.s�1)

Z2 The height level 2 (m)

Z1 The height level 1 (m)

Greek letters

α An empirically derived coefficient that varies depending upon the stability of the

atmosphere

(continued)
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Fig. 1 Digital map of study area by WaSPV3
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Superscripts

α 0.169

Subscripts

i Time step

n Number of time steps

2 Data and Methodology

The study area, Terkos, is in the northwest of Istanbul, Turkey, with 41� 180 N
latitude and 28� 390 E longitude (Fig. 2). A measurement mast with measuring

instruments at 20, 40, 65, 80, and 81 m is located in the area, which is at 51 m from

sea level. Temperature, pressure, wind speed, and wind direction data can be

obtained on these levels at 10 min intervals. The measurement mast is shown in

Fig. 3. In this study, wind speed data from August 1, 2012, to August 1, 2013, were

Table 1 Roughness lengths specified in WAsP1

Physical z0
[m] Terrain surface characteristics

Roughness class

z0

Specified in WAsP

[m]

1.5 4 (1.5 m) 1.5

>1 Tall forest >1

1.00 City 1.00

0.80 Forest 0.80

0.50 Suburbs 0.50

0.40 3 (0.40 m) 0.40

0.30 Shelter belts 0.30

0.20 Many trees and/or bushes 0.20

0.10 Farmland with closed appearance 2 (0.10 m) 0.10

0.05 Farmland with open appearance 0.05

0.03 Farmland with very few buildings/

trees

1 (0.03 m) 0.03

0.02 Airport areas with buildings and

trees

0.02

0.01 Airport runway areas 0.01

0.008 Mown grass 0.008

0.005 Bare soil (smooth) 0.005

0.001 Snow surfaces (smooth) 0.003

0.0003 Sand surfaces (smooth) 0.003

0.0002 (Used for water surfaces in the

Atlas)

0 (0.0002 m) 0.0

0.0001 Water areas (lakes, fjords, open sea) 0.0
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measured at all levels. Wind direction data were obtained from 20 and 65 m of the

mast for the same time period.

Due to the absence of data measured at 10 m, it was obtained from the other

levels by using power law (Eq. 1):

Fig. 2 Study area
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V2 ¼ V1

Z2

Z1

� �α

ð1Þ

where V2 (m/s) is the calculated wind speed at height z2 (m), V1 (m/s) is the

observed wind speed at z1 (m), and α is the power law exponent, which is affected

by the roughness of the location. For the study area, α was found as 0.169.

The daily and monthly averages of wind speeds were shown by time series

graphs. Daily mean wind speed time series derived from 10 min interval observa-

tion data showed that wind speeds were higher in October, November, and February

(Fig. 4). Especially in the earliest days of February, wind speeds reached maximum

values.

Monthly mean wind speed graphs show that wind speed values decrease in

summer season of the region (May–June–July) and increase in autumn season

(August–September–October) (Fig. 4). Determining the wind directions is crucial

Fig. 3 Measurement mast
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for wind energy studies. Wind roses derived from wind direction data from 20 to

65 m of measurement mast are demonstrated in Fig. 5. Accordingly, the most

windward directions are northwest and southeast.

2.1 Short-Term Wind Prediction with WRF/ARW

The Weather Research and Forecasting (WRF) model has two dynamical core

variants named nonhydrostatic mesoscale (NMM) and advance research (ARW).

NMM is used for making operational forecasts, while ARW is used for both

meteorological research and numerical weather prediction. In this study,

WRF/ARW version 3.2.1 was used.

2.1.1 Initial and Boundary Conditions

The initial and boundary conditions supplied to the WRF/ARW model were

provided by the National Centers for Environmental Prediction (NCEP) Final
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Operational Model Global Tropospheric Analyses, with 1� of spatial and 6 h of

temporal resolution.

2.1.2 Design of the Simulations

The model was built over three nested domains shown in Fig. 6. The coarser domain

(d01) with 30 km spatial resolution covers eastern Europe and Turkey between

33–49� N latitudes and 19–39� E longitudes. The middle domain (d02) with 10 km

spatial resolution covers Marmara Region located in the northwest of Turkey. The

inner domain (d03) with 3 km spatial resolution covers Thrace region and Terkos.

All domains are cantered to the same point where measurement mast locates with

latitude 41� 180 N and longitude 28� 390 E. The vertical structure of the model

contains 28 layers.

There are several physical options for the WRF model predictions. These

physical options consist of the combination of microphysics, cumulus parameter-

izations, surface physics, planetary boundary layer (PBL) physics, and atmospheric

radiation physics. In this study, six different WRF/ARW simulations obtained with

different physical options are listed in Table 2. It was aimed to test mainly the PBL

parameterizations. In the simulations, Asymmetrical Convective Model version

2 (ACM2), Medium Range Forecast Model (MRF), Mellor–Yamada–Janjic
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Fig. 6 WRF/ARW domain configuration
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(MYJ), Mellor–Yamada Nakanishi and Niino Level 2 (MYNN2), Yonsei Univer-

sity (YSU), and Quasi-Normal Scale Elimination (QNSE) PBL options were used

(Table 2). The differences between the PBL parameterizations are indicated in

Table 3. They can differ from each other by the prognostic variables TKE_PBL

(turbulent kinetic energy from PBL) and QKE (turbulent heat flux) and diagnostic

variables EL_PBL (length scale from PBL), exch_h (scalar exchange coefficient),

exch_m (exchange coefficient), Tsq (liquid water potential temperature variance),

Qsq (liquid water variance), and Cov (liquid water-liquid water potential

temperature covariance) (Url-3 2014).

According to the National Center for Atmospheric Research (NCAR) Technical

Note, microphysics schemes have a wide range of options from basic physics for

idealized studies to complicated mixed-phase physics for process studies and

numerical weather prediction (Skamarock et al. 2008). In this study, Thompson

option including both ice-phase and mixed-phase processes were chosen for all

simulations as the microphysics scheme.

Another parameterization option is cumulus physics scheme. The cumulus

physics schemes are responsible for the subgrid-scale effects of convective and/or

shallow clouds (Skamarock et al. 2008). The Kain–Fritsch scheme including

updraft and downdraft changes was used for this study. This scheme makes the

calculations by using a basic cloud model bearing updrafts and downdrafts with

dragging effects (Skamarock et al. 2008).

Using these parameterizations, 3-day and 10-day predictions were performed by

WRF/ARW. Simulation period covered 1–4 February and 1–4 March for 3-day

Table 2 WRF/ARW physics options

Parameterization PBL Land surface model Surface layer physics

1 ACM2 Pleim-Xiu Pleim-Xiu

2 MRF Noah LSM Monin-Obukhov

3 MYJ Noah LSM Eta similarity

4 MYNN2 Noah LSM MYNN

5 YSU Noah LSM Monin-Obukhov

6 QNSE Noah LSM QNSE

Table 3 WRF/ARW PBL schemes

Scheme

WRF dynamic

core

Prognostic

variables Diagnostic variables

Cloud mixing

ratio

ACM2 ARW – – QC, QI

MRF ARW NMM – – QC, QI

MYJ ARW NMM TKE_PBL EL_PBL, exch_h QC, QI

MYNN2 ARW QKE Tsq, Qsq, Cov, exch_h,

exch_m

QC

YSU ARW NMM – exch_h QC, QI

QNSE ARW NMM TKE_PBL EL_PBL, exch_h, exch_m QC, QI

Url-2 (2014)
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runs. In the 10-day predictions, 1–11 February and 1–11 March periods were

chosen. The results were derived as 1 h outputs.

Because the WRF/ARW gave results only for the grid points, the data on the

grids were moved to Terkos where the measurement mast locates by two down-

scaling methods: weighted average method and nearest neighbor method.

2.2 Artificial Neural Networks (ANN)

The artificial neural network (ANN) method was used to try and reduce the errors of

WRF/ARW results that were derived from different parameterizations. The ANN

method is the study of cellular networks with storage of the experimental knowl-

edge feature (Aleksander 1989). The development of ANN is known to be inspired

by the neurons in the brain. The functioning of the artificial neuron is shown in

Fig. 7.

An ANNmodel is trained using the available data and then tested with the rest of

the data. The purpose of the training is to calculate the weights and minimize the

errors (Aşkın et al. 2011). In this study, 70% of the WRF/ARW prediction results

were used as training data and the remaining 30% data were tested.

In the ANN model, the Levenberg–Marquardt algorithm was performed. It is a

least squares calculation method mainly based on the maximum neighborhood and

consists of the best features of Gauss–Newton and gradient descent algorithms

(Aşkın et al. 2011).

3 Applications

WRF/ARW was run with six different initial conditions, and the results were

obtained. First, February 1–4 and March 1–4 results were derived. Then they

were downscaled to the point where the observation data exist. Model results

were achieved for the selected nesting area separately.

Hourly wind speed data (measured) were compared to the hourly model results

(predicted) at 10 m. Results are shown in Figs. 8 and 9.

From a coarser domain to the inner domain, the model results were closer to the

observations (Fig. 7). A bigger domain and lower resolution made predictions that

Fig. 7 An artificial neuron

(Gershenson 2001)
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Fig. 8 1–4 February model results (downscaled by nearest neighbor method) and observations for

(a) coarser domain (d01), (b) middle domain (d02), (c) inner domain (d03)

Fig. 9 March 1–4 model results (downscaled by nearest neighbor method) and observations for

(a) coarser domain (d01), (b) middle domain (d02), (c) inner domain (d03)
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were far from the observed data. The model results were seen to be close to each

other, and WRF-3 results were closer to the observations.

4 Results and Discussions

4.1 WRF/ARW Predictions

Model performances were established by the root mean square error (RMSE)

(Eq. 2) compared to the measured data in Terkos:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Fi � Oið Þ
s

ð2Þ

where n is number of data, Fi is forecast values, and Oi is observed values at time i.
The RMSE calculations are given in Tables 4 and 5.

The model results belonging to March 1–4 were more successful than February

1–4 results. Where the wind speeds are high, especially in March 3, observations

and predictions overlapped well (Fig. 9). Although observations had more fluctu-

ations than the predictions, general oscillation could be followed by the

simulations.

4.2 ANN Predictions

The different model predictions were used in a two-layer ANN model to get more

correlated results with the observations. The first 70% of hourly March 1–11 results

were inserted in the ANN as the training data. Then the remaining data were used as

the test data. The predictions were attained hourly for the first 6 h. Table 6 shows the

correlations and RMSE between predictions derived by using WRF/ARW simula-

tions and observations. “1” refers to training and “2” refers to test data.

In order to make a comparison, six different WRF/ARW simulation results and

ANN results using these simulations are indicated in Table 7.

Correlations between the observations and the forecasts used as the training data

began to decrease at the third hour. Generated test data were more correlated to the

observations when compared to the training data. Temporal variation of the corre-

lation is noticeable in Table 5. For all WRF/ARW simulations, correlations of the

first hour were very low, whereas the ANN correlations were considerably higher.

The general view was that ANN increased the correlations substantially.
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5 Conclusions

WRF/ARW simulation results showed that inner domain results are closer to the

observations than the other domains due to higher spatial resolution. In addition, the

nearest neighbor downscaling method generally worked better than the weighted

average method. When the wind speeds are higher than 12–13 m/s, model results

were much more underestimated while comparing the rest. Because WRF/ARW is

a mesoscale model, it was unable to predict the short-time variation of the winds in

microscales and follow the general oscillation on time.

February results had less accuracy because of relatively high wind speed values

when compared to March results. Predictions were accurate for the wind speeds less

Table 4 RMSE results for 1–4 February

1–4 February RMSE (m/s) WRF-1 WRF-2 WRF-3 WRF-4 WRF-5 WRF-6

D01

Nearest neighbor 1.32 1.36 1.20 1.47 1.44 1.29

Weighted ave. 1.38 1.38 1.21 1.51 1.50 1.31

D02

Nearest neighbor 1.16 1.17 1.09 1.20 1.17 1.12

Weighted ave. 1.35 1.38 1.20 1.44 1.39 1.27

D03

Nearest neighbor 1.19 1.44 1.31 1.38 1.38 1.30

Weighted ave. 1.21 1.45 1.29 1.37 1.36 1.30

Table 5 RMSE results for 1–4 March

1–4 March RMSE (m/s) WRF-1 WRF-2 WRF-3 WRF-4 WRF-5 WRF-6

D01

Nearest neighbor 0.89 0.91 0.91 0.89 0.87 0.95

Weighted ave. 0.87 0.90 0.89 0.91 0.85 0.92

D02

Nearest neighbor 0.70 0.71 0.80 0.86 0.70 0.87

Weighted ave. 0.78 0.89 0.84 0.86 0.70 0.83

D03

Nearest neighbor 0.79 0.88 0.88 0.85 0.76 1.01

Weighted ave. 0.78 0.96 0.85 0.85 0.74 0.96

Table 6 ANN results 1 h 2 h 3 h 4 h 5 h 6 h

Correlation 1 0.77 0.66 0.61 0.50 0.40 0.25

Correlation 2 0.58 0.61 0.60 0.65 0.57 0.57

RMSE 1 1.54 1.80 1.90 2.06 2.18 2.28

RMSE 2 2.23 2.17 2.34 2.29 2.46 3.05
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than 10 m/s, especially in March results. On the contrary, the predictions were

underestimated for the peak values in February.

Different parameterizations showed slightly different results. While WRF-3 and

WRF-6 parameterizations had fewer errors in February predictions, WRF-1 and

WRF-5 parameterizations were more successful than the others in March results.

Consequently, it was observed that different initial conditions, such as physics

options or resolution, gave different results. If different scheme results are com-

bined in ANN, much more accurate results can be obtained.
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