
Enabling Legacy Applications
for Multi-tenancy Without Reengineering

Uwe Hohenstein(&) and Preeti Koka

Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81730 Munich,
Germany

{Uwe.Hohenstein,Preeti.K}@siemens.com

Abstract. Multi-tenancy is an architectural style to share resources amongst
several tenants. It is an important facet of Cloud Computing and often considered
a key element to make Software-as-a-Service (SaaS) profitable. Indeed, SaaS
providers adopt multi-tenancy to optimize resource usage and to save operational
costs. While literature often discusses how to develop new, green-field software
with multi-tenancy, this paper focuses on adding multi-tenancy to existing,
brown-field software. This is particularly relevant in the context of Cloud
migration where legacy software should be moved into the Cloud. The major
contribution of this paper is to present an approach to leave the application’s
source code untouched, i.e., to add some new components in order to enable the
application for multi-tenancy. To this end, we apply the aspect-oriented language
AspectJ in an industrial case study to evaluate what can be achieved with such an
approach as well as to enumerate the benefits and drawbacks in detail. In a
nutshell, the approach is appropriate to handle REST applications and/or backend
services. The following important facets of multi-tenancy can be achieved:
Tenant management; tenant-specific authentication and data isolation among
multiple tenants for various database servers and strategies; tenant-specific cus-
tomization by modifying existing behavior, particularly, removing functionality
but also to introduce new functionality; and as a by-product, to monitor all
tenants’ activities as a prerequisite for a tenant-specific billing.

Keywords: Multi-tenancy � Cloud migration � Aspect-orientation � AspectJ �
Industrial application � Case study

1 Introduction

The NIST definition [21] defines Cloud computing as “a model for enabling ubiqui-
tous, convenient, on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider
interaction”. Software-as-a-Service (SaaS) is thereby one service model besides
Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS). SaaS is a delivery
model that enables customers, the so-called tenants, to lease and use services without
buying a software license and setting up a local installation [17]. Moreover, tenants pay
only for what they use to what extent according to the pay-as-you-go principle.

© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 284–308, 2017.
DOI: 10.1007/978-3-319-62569-0_14

The goal of SaaS providers is to save operational cost in order to be competitive by
means of an efficient utilization of hardware and software resources and improved ease
of maintenance [3]. This let SaaS providers usually adopt a multi-tenant architecture
[5]. Multi-tenancy is a software architecture principle that lets several tenants share a
common infrastructure. It is widely agreed that a well-economical SaaS application has
to pursue a multi-tenant architecture.

Since software is more and more becoming an on-demand service drawn from the
Cloud, industries are interested in offering SaaS to enter new businesses. Having a huge
amount of legacy applications, there is a strong interest in moving these applications
into the cloud first for entering SaaS business while preserving investments. As a side
effect, applications can also benefit from features such as elasticity and pay-as-you-go.
But industries have the challenge to convert legacy applications into multi-tenant SaaS
without spending too much time and effort on refactoring [4].

Several papers such as [3, 29] discuss multi-tenant architectures with pros and cons
according to what is shared by the tenants: the topmost web frontend, middle tier
application servers, the underlying database. Others, e.g., [1], define further degrees of
sharing and categorize migration types to cloud-enable applications.

Striving for multi-tenancy, the SaaS provider has to balance between easy imple-
mentation and saving operational costs by efficient resource utilization. The simplest
approach to make an application multi-tenant with lowest development effort is a
virtualization approach [14]. This approach let each tenant obtain a virtual machine
(VM) containing an application server, the application and a DB server. The ease of
this approach is paid by a higher consumption of resources and higher costs especially
in public clouds where each VM (one for each tenant) has to be paid. Even on premises
more equipment than necessary has to be provided. Moreover, each tenant requires a
database server license or additional costs for using a database as a Cloud service.

At the other edge of the scale, fully efficient multi-tenancy [5] let all the tenants
share all resources: one Tomcat, one application, and one database server amongst all
tenants. However, a significant re-engineering of applications is required to set up a
fully multi-tenant application, thus leading to high development costs [23].

Recent technologies facilitate further approaches. Particularly, container tech-
nologies enable another approach to make application deployments multi-tenant, lying
in between the previous two extremes. This implementation involves deploying the
application stack (application server, application and database server) on a separate
container for each tenant. Containers such as Docker are more light-weight than virtual
machines, but still produce more load and thus require more resources than fully
efficient multi-tenancy. As an advantage, tenant-specific customizations become easier
since each container can be equipped with a different software variant.

In fact, SaaS applications have to be customizable or configurable to fulfil the varying
functional requirements of individual tenants [14]; customers want to add or modify
specific features. From the SaaS provider’s view, various degrees of feature sets could be
offered with different prices, especially a “freemium” version with a reduced function set.
Several papers such as [2, 9] recognize tenant customization as one important require-
ment and challenge, and [17] states that it is not trivial to adapt the business logic and data
to the requirements of the different tenants. Most work on customization focuses on
product-line approaches [26] to offer variability. Using aspect-oriented programming
(AOP) is sometimes proposed to achieve configurability, e.g., by [29, 34].

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 285

In this paper, we also apply AOP, however, at a broader scope to migrate existing
applications into fully multi-tenant SaaS applications. We investigate how to benefit
from the aspect-oriented language AspectJ [16] in this context. We have a clear idea in
mind: To add multi-tenancy to existing applications without any reengineering and
without explicitly modifying the source code. To explore our idea, we use an existing
industrial application that was originally not developed for a multi-tenant environment
and serves users of exactly one tenant. More precise, each tenant obtains one dedicated
application instance deployed on a Tomcat application server and using an Oracle
database on premise so far. That is, the application is managed per tenant similar to
traditional application service providers. We then elaborate upon the feasibility to
realize the AOP idea thereby illustrating the major advantages of our migration
approach. Hence, this paper takes a practical view on Cloud migration and presents a
low-effort approach for offering legacy applications as multi-tenant SaaS in a Cloud.

In a nutshell, it is possible to achieve tenant isolation, to modify existing behavior in
a tenant-specific manner, to introduce new services for specific tenants, and to monitor
requests per tenant for billing purposes. Enabling such multi-tenancy facets is achieved
without explicitly touching source code or building a new application; only a restart of
Tomcat is required after having deployed some additional components. Hence, we
obtain a simple and cheap mechanism by only adding components to existing appli-
cations – without any further reengineering and refactoring of source code.

The motivation for our work is manifold. The approach is a first step to let existing
applications become Cloud-ready and to enable entering the SaaS business fast and
easily. Such a first trial can explore SaaS business opportunities, maybe offering reduced
functionality, and to expand business to a larger customer base with low expenses.
Being easily applicable to other applications, our solution reduces time-to-market and
saves development effort. And finally, free demo versions of existing applications can be
made publicly available in a Cloud as a teaser. Since no profit can be directly made in
that case, we benefit from small investments in development.

This paper is an extended version of [10] where we have already outlined the basic
ideas for the previously mentioned software running in Tomcat and using an Oracle
database. Here, we extend the mechanism to cover other database servers and further
data isolation strategies according to [6].

The remainder of this paper is structured as follows. Section 2 presents related
research and deduces the necessity for this work. Before discussing the migration
approach in depth, we give in Sect. 3 a short introduction into the aspect-oriented
AspectJ language, as far as it is necessary to understand how we applied
AspectJ. Section 4 introduces the application, which we used in a concrete industrial
study to prove effectiveness, in its original single-tenant form. We present our approach
to migrate to a multi-tenant Cloud application with low programming effort in detail by
discussing the components that implement important facets of multi-tenancy such as
tenant isolation and customization. In Sect. 5, we elaborate upon the flexibility of the
AspectJ approach to cover other database servers and further data isolation strategies in
addition to our previous work [10]. Section 6 presents an evaluation of the AspectJ
approach with regard to implementation effort, modularity, and adaptability. Moreover,
the lessons learned are discussed. Finally, the conclusions summarize the discussion and
presents future ideas.

286 U. Hohenstein and P. Koka

2 Related Work

A lot of recent research focuses on migrating legacy applications into the cloud, e.g.,
suggesting checklists and methodologies to perform migrations. For example, ARTIST
[24] provides methods, techniques, and tools to guide companies in moving applica-
tions into the cloud in three phases pre-migration, migration, and post-migration. The
approach attempts to better support the complex, time-consuming, and expensive tasks
during migration.

Decisions to migrate existing services to the cloud can be complicated as the
benefits, risks, and costs of using the Cloud are complex. [11] states that a migration
should also consider organizational and socio-technical factors. Their Cloud Adoption
Toolkit offers a collection of tools for decision support and helps to identify relevant
concerns and match them to appropriate technologies. A particular cost modeling tool
can be used to compare the cost of different cloud providers and deployment options.
A case study presents in detail this tool.

Binz et al. [4] discuss vendor lock-in as a major difficulty for migrating existing
applications into and between different clouds. The CMotion framework models
entities and their dependencies as a basis for supporting migration. Anyway, adapters
have to be implemented manually.

This work in the area of cloud migration is quite general and does not address the
integration of multi-tenancy into legacy applications. Indeed, our approach combines
migrating applications to the Cloud with adding multi-tenancy to legacy applications.

In fact, the specific topic of multi-tenancy is often considered as a challenge in
research. Several papers, for example [6] and [15], describe the possible variants of
multi-tenancy. Momm and Krebs [23] consider approaches to reduce resource con-
sumption and discuss some cost aspects of sharing. Wang et al. [33] make recom-
mendations on the best multi-tenant variant to use based on the number of tenants, the
number of users per tenant, and the amount of data per tenant. Guo et al. [9] discuss the
implementation principles for application-level multi-tenancy and explore different
approaches to improve isolation of security, performance, availability, and adminis-
tration. Fehling et al. [8] come up with prospects for the optimization of multi-tenancy
by distributing the tenants with respect to Quality of Service.

Bezemer et al. [2] present an architectural approach for reengineering applications to
enable multi-tenancy in software services. The discussion especially considers a
multi-tenancy reengineering of workflow and UI configuration. A specific multi-tenancy
reengineering pattern takes into account a multi-tenant database, tenant-specific
authentication, and configuration. This reengineering pattern is applied to an existing
single-tenant application in a case study. However, the reengineering effort was rela-
tively little due to a well-designed and layered architecture. In an additional work [3],
they manually transform the ScrewTurn wiki case to a multi-tenant application and
encounter security, data protection, data isolation, configurability, performance isolation
of tenants, and scalability issues for tenants from different continents, as the core
challenges. Unfortunately, the authors do not solve all the previously mentioned issues.
Beside implementation effort, they consider the recurrence of maintenance tasks such as
patches or software updates as another driver for operational cost.

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 287

In contrast to this general work on strategies and their impact on resource con-
sumption, our approach tackles the problem of adding multi-tenancy by avoiding
reengineering efforts.

Further research considers tenant-specific customizations as an important require-
ment for multi-tenancy, e.g., case studies such as [15, 18] which try to configure
multi-tenant applications for tenants. The elements of an application that need to be
customized are graphical user interface, business logic, service selection and config-
uration, and data [30]. Customization could be performed in two ways [29]: A
source-code based approach allows customizing SaaS applications by integrating new
tenant-specific source code. Such an approach has been pursued by [13, 35]. In spite of
giving tenants more flexibility in the customization process, this approach has several
disadvantages. At first, each tenant must know the implementation details of the SaaS
application. Then, security regulations of the application might be violated if tenants
are able to integrate source code. Since all the tenant-specific extensions have to be
retained, software upgrades become more complicated for the SaaS provider. [32]
considers source code based approaches as too complex.

An alternative composition-based approach let SaaS applications be customized by
composing variants. An application template contains customization points [20], i.e.,
unspecified parts, which can be configured by selecting predefined components from a
provided set [19, 22, 25].

Adopting work from the area of product-line engineering, Pohl et al. [26] point out
four key concerns to be addressed for customization: modeling customization points
and variations, describing relationships among variations, validating customzations
performed by tenants, and dis-/associating variations from/to customization points
during runtime.

Shahin et al. [29] tackle all these concerns and propose the Orthogonal Variability
Modeling (OVM) to model customization points and variations and to describe the
relationships among variations. Tenants’ customizations are validated by a
Metagraph-based algorithm. An aspect-oriented extension of the Business Process
Execution Language (BPEL) is used to associate and disassociate variations to/from
customization points at run-time. The approach is illustrated by a Travel Agency
example.

Three of the above concerns are dealt with by [20]. They also use Metagraphs to
model customization points, variants, and their relationships. Moreover, they propose
an algorithm to validate customizations made by tenants. [30, 31] handle only the
modeling of customization points and variants using an ontology-based customization
framework with OVM. Tenants are guided through the customization process to avoid
unpredictable customizations.

Walraven et al. [32] investigate middleware component models with respect to
offering software variations to different tenants and come to the conclusion that support
is too inflexible. Using Google AppEngine, they propose a multi-tenancy support layer
that combines dependency injection with middleware support. They evaluate opera-
tional expenses and flexibility for an online booking scenario. The approach requires
that dedicated customization points are inserted into the code for applying cus-
tomization. Similarly, Wang and Zheng [34] apply aspect-orientation in a case study,
but still rely on preparing the software architecture accordingly.

288 U. Hohenstein and P. Koka

In spite of providing interesting insights in multi-tenancy and configurability, all
this research starts from green-field or need to insert customization points in the
existing application. In contrast, our approach leaves the original application unchan-
ged. To our knowledge, there is also no work combining an approach to migrate
applications to the Cloud with adding multi-tenancy for a legacy application by
avoiding major code changes.

3 Aspect-Oriented Programming in AspectJ

Aspect-orientation (AO) is a paradigm that helps to develop software in a modular
manner [12]. AO provides systematic means for effectively modularizing crosscutting
concerns (CCCs). CCCs are those functionalities that are typically spread across sev-
eral places in the source code and often lead to lower programming productivity, lower
degree of code reuse, and poor traceability and quality [7]. Special aspect-oriented
languages offer advanced concepts to modularize CCCs and to avoid the well-known
symptoms of non-modularization such as code tangling and code scattering.

Our approach relies on the AspectJ language [16]. AspectJ is an extension of the
Java language introducing a new concept of aspect to Java. An aspect changes the
dynamic structure of a program by intercepting certain points of the program flow, the
so-called join points. Join points can be method and constructor calls or executions,
field accesses, and exceptions etc. Pointcuts syntactically specify those join points in
the flow by means of a signature expression. The actions to be taken before and/or after
the join points are defined by advices.

AspectJ, as presented in [16], is a language of its own, in fact, an extension of Java.
Hence, it requires a dedicated AspectJ compiler. Usually, the AJDT plug-in will be
installed in Eclipse. However, an AspectJ compiler requires changes in the build
process, which is often not desired, so for us: We do not want to re-compile the existing
application. Then, using Java annotations is an alternative. The following is an example
for a simple aspect with annotations:

@Aspect class MyAspect {
@Before("execution(* MyClass*.get*(..))")
public void myAdvice() {
do something in Java before specified join points

} }

An annotation @Aspect lets the Java class MyAspect become an aspect. The
method myAdvice is a @Before advice that adds Java logic before those joinpoints
that are captured by the pointcut. The pointcut is specified within @Before as a string:
Any execution of any method starting with get, having any parameters and any return
type, belonging to a class starting with MyClass. Wildcards can be used to determine
several methods of several classes. A star “*” in names denotes any character
sequence; “*” used as a type stands for any type. Parameter types can be fixed with

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 289

data types or left open (..). Similarly, @After and @Around advices can be used to
execute an advice after or around join points, resp. An aspect can also declare attributes
and methods; it can also extend another aspect.

This is only a very brief overview of AspectJ. Concrete examples will be discussed
in the successive section. It is important to note that this is pure Java code that runs
with any Java compiler. So-called load-time weaving (LTW) lets the advices be woven
into the code whenever a class is loaded by the class loader.

4 Adding Multi-tenancy to Existing Applications

In this paper, we use an existing industrial Java application that provides customers a
REST service in the travel management domain. The application runs in a Tomcat
application server and uses an Oracle database (DB) for storing data at the backend.
Currently, the application is shipped as a single-tenant application to individual cus-
tomers and deployed at the customer site. Thus, each customer obtains a full appli-
cation stack consisting of Tomcat, the application, and an Oracle database server.

The intention is to deploy this application in a public cloud thereby enabling it for
multi-tenancy. This means that Tomcat, the application and the database have to be
shared amongst several tenants. Further details about the application are subject to
confidentiality and irrelevant for the message of this paper.

4.1 Tomcat and Oracle Basics

Tomcat and Oracle have some specific concepts the understanding of which is nec-
essary for the remainder of this paper. Tomcat provides several forms of user
authentication, a form-based for Web application, basic authentication for REST ser-
vices etc. Having enabled authentication, Tomcat shields the application by asking for a
user and a password. User, passwords, and user roles are stored for each application in
a configurable “user/roles store” like an XML file, a relational DB, a JDNI store etc.
When a user logs in to an application, the Tomcat container checks that store for valid
credentials. The application can also restrict functionality to users with specific roles.
The legacy application we use in our case study applies Tomcat’s basic authentication.
To this end, a dedicated schema Auth(entication) in Oracle contains the
user/roles tables. The connect string with a specific user/password is part of the Tomcat
configuration file.

In Oracle, each user requires a password to login; the user obtains an associated DB
schema with the same name. Every user can create the same set of tables with the same
statement – in his schema. Thus, an Oracle user/schema corresponds to a tenant
“database”. Schemas are isolated from each other. To access data in another schema
(i.e., of another user), tables can be prefixed by a schema name. However, the owner of
the foreign schema must explicitly grant access to the user. In the following, we use the
notion schema.table to refer to a table in a specific schema.

A database instance is the Oracle notion of a database server. Such an instance has
exactly one database being associated. A JDBC driver connects to that database.

290 U. Hohenstein and P. Koka

4.2 Tenant and User Management

The major concern of this paper is to enable an existing Tomcat application for
multi-tenancy, i.e., to share the Tomcat application server, the application, and the
Oracle database instance amongst tenants. According to [2], one important prerequisite
for multi-tenancy is an appropriate tenant/user management. In particular, the following
workflow should be supported:

1. Tenants must be given a possibility to register for using the application.
2. A SaaS administrator should be able to approve or deny the tenant for using the

application depending on whether a contract about payment details has been set up
between the SaaS provider and the tenant.

3. If the SaaS provider has approved a tenant, the tenant obtains a dedicated database.
Moreover, the tenant is allowed to register its users.

4. All the registered tenants’ users should be able to use the application.

4.3 Initial DB Setup for Multi-tenancy

The original application keeps its data in a database schema. Indeed, there might be
several, however, we collapse them to one referred to as Appl. We assume another
schema, referred to as Auth, which contains the Tomcat authentication tables Users
and User_Roles with Tomcat users with their roles. Tomcat accesses these tables to
check the password for any login to the application during authentication. Only Tomcat
users in the Users table can authenticate.

During an initial database setup, the Users table in the Auth schema is extended
with a column tenant to keep the association between a user and the tenant s/he
belongs to. Moreover, a new Oracle user/schema Admin is created that is exclusively
used by the SaaS administrator to keep information about tenants. The setup also
creates a new table Tenants in this schema to keep registered tenants with their
administrators and a UserMonitoring table for monitoring purposes (cf. Sect. 4.7).

The newly introduced tenant administration service (cf. Sect. 4.4) requires a SaaS
administrator to perform tenant management. To this end, a new Tomcat user SaaS
with a new role SaaS is added to the Users and User_Roles tables.

Finally, an SQL script createApplicationTables.sql is required to create
all the application’s tables in any new tenant schema.

All these steps do not affect the existing application, but only require some SQL
scripts to be executed.

4.4 Tenant Administration Service

New services are required for tenant administration purposes, especially for registering
tenants and users, to support the workflow in Subsect. 4.2. The existing application
source code is not affected. Hence, we implemented a new REST server to provide
corresponding functionality:

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 291

1. POST TenantService allows a tenant to register for using the application.
Everybody is allowed to invoke this service. The request payload has to specify a
name for the tenant and an administrator by name and password. Name and
password are required to let a tenant register users in Step 3. This information is stored
in a table Admin.Tenants(name, admin, password, approved, …).

2. can be used by the SaaS
administrator to enable or disable access for the request body contains
{“approve”:Yes} or {“approve”:No} accordingly. Only the SaaS admin-
istrator is allowed to invoke the service. To this end, we set up a new organizational
Tomcat role SaaS which allows the administrator to manage tenants. If the SaaS
administrator approves TenantA, then approved=1 is set for TenantA in the
Admin.Tenants table; the record for TenantA’s admin is copied from Admin.
Tenants (cf. Step 1) to the Auth.Users table. Moreover, the tenant adminis-
trator obtains a new Tomcat role TAdmin in the Auth.User_Roles table. This
role allows him to register tenant’s users for the application. The approved tenant
obtains an Oracle user and schema TenantA, i.e., a database to keep the tenant’s
application data isolated. Finally, all the application tables are created in the new
schema by executing the SQL script createApplicationTables.sql in
schema TenantA.

3. lets the tenant administrator
for create a user to make a user known to the application. The invoker
requires the TAdmin Tomcat role for Tomcat authentication. The request payload
specifies the name of the user and a password, which both are inserted to the Auth.
Users table. Furthermore, the user obtains one or more roles, which enables him to
use the application with the above credentials. The association of a user to his tenant
is stored in the tenant column of the Auth.Users table. Table 1 shows the
contents of the Users and User_Roles tables after the administrator AdminA
for TenantA has registered UserA1 and UserA2; an explanation describes when
each record has been added.

4. The users UserA1 and UserA2 of TenantA are then able to login to the application
and to use it.

Table 1. Database contents for authentication (adopted from [10]).

Wugtu wugtapcog wugtarcuu vgpcpv

… existing users … NULL

SaaS SaaS NULL in 4.3
AdminA PwA TenantA Step 2
UserA1 PwA1 TenantA Step 3
UserA2 PwA2 TenantA Step 3

WugtaTqngu wugtapcog tqngapcog
… existing users … existing roles
SaaS SaaS in 4.3
AdminA TAdmin Step 2
UserA1 User Step 3
UserA2 User Step 3

292 U. Hohenstein and P. Koka

These services can simply be deployed as a new application in Tomcat in order to
become immediately effective. Services rely on the following Tomcat roles giving
privileges to the various types of users:

• A new SaaS role for the administrator of the SaaS applications to perform
administrative tasks such as tenant approval;

• a new TAdmin role for a tenant administrator to enable registering tenant’s users;
• User for the users of the application: Indeed, there may be several with specific

privileges. For the ease of discussion, we collapse them to one User schema.

4.5 Data Isolation

Tenants and their users are now known to Tomcat and allowed to access the application
since Tomcat authenticates against the Auth.User/UserRoles tables. However,
all these users access the same application and use the original tables in the Appl
schema. Hence, there is no effective data isolation between different tenants as
requested by [9]. To achieve data isolation, a user’s data must be stored in the tenant’s
schema (i.e., database). This means that every database access of a logged-in user must
be re-directed to the correct tenant schema. In fact, AspectJ comes here into play since
it enables intercepting every user authentication without explicitly modifying, recom-
piling, or rebuilding the original application. Then, the user can be determined and the
corresponding TenantX for the user derived. The following code sketches a corre-
sponding AspectJ aspect:

@Aspect rwdnke encuu MTE {
@Around(

"execution(* com.siemens.app.ExistingAppl.svc*(..))
&& !within(com.siemens.aspects.MTE)")

rwdnke Object interceptRequests
(ProceedingJoinPoint jp) {

(1) determine user from HTTPRequest and
derive role & tenant (from Users table);

(2) store user/tenant/role for later usage;

(3) switch acces to tenant database;

tgvwtp jp.proceed(jp.getArgs()); /* call original
logic of svc* method */

} }

We do not use the AspectJ language and its compiler because we do not want to
change the build process. Instead, we rely on pure Java with AspectJ annotations and
load-time weaving. The annotation @Aspect let the Java class MTE (Multite-
nancyEnabler) become an aspect. The method interceptRequests is
annotated with @Around and defines an advice to be executed at join points. These
join points are specified by a pointcut string within the @Around annotation. The
advice intercepts any execution of methods starting with svc… belonging to the class

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 293

ExistingAppl (i.e., the basic REST service) with any parameters (..) and
returning any type (*). We could also specify several method signatures individually
and combine them with ‘‖’ (logical OR) without wildcards.

The @Around method interceptRequests implements the logic to be exe-
cuted at each join point, i.e., any execution of a svc… method specified by the
pointcut, and replaces the original behavior with its body. The parameter jp of type
ProceedingJoinPoint is used to execute the original logic at the join points in
the advice by means of jp.proceed(). Furthermore, jp also gives access to the
context of invocation such as the parameter values (jp.getArgs()) and the sig-
nature of the concrete svc… method (jp.getSignature()). Since the method is
implicitly invoked by jp.proceed() inside the aspect, an endless loop will occur.
This is avoided by adding !within(MTE) in the pointcut to not intercept any
invocation that occurs within the aspect itself.

Please note only the pointcut “execution(* com.siemens.app. Exist-
ingAppl.svc*(..)” of advice interceptRequests depends on the applica-
tion code. This pointcut specifies what methods or services are intercepted, here of
class ExistingAppl that implements the REST service.

One open point now is how to get the user name from Tomcat authentication (cf.
(1) in the code above). Unfortunately, there are several ways to pass the authentication
context to the application, and it is unknown what mechanism has been used in the
original application. For instance, the application can declare a HttpServletRe-
quest req variable. Such a variable declaration can be annotated with @Context in
a service class which let the value be injected by the Tomcat container. The
HttpServletRequest can then be used to derive authentication information, e.g.,
by req.getUserPrincipal().getName(). Another way is to specify an
additional @Context HttpServletRequest parameter in a service method.
Besides not knowing the used mechanism, even a global variable req is usually
private and not accessible from an external aspect.

Investigating the behavior of Tomcat, we noticed that Tomcat invokes for
authentication in any case a _handleRequest method of a class WebApplica-
tionImpl. Thus, a @Before advice in the MTE aspect can intercept the method
execution in order to extract the HttpRequest and then the user name:

@Before("execution
(* com.sun.jersey.server.impl.application
.WebApplicationImpl._handleRequest(..))
&& this(w) && !within(com.siemens.aspects.MTE)")

rwdnke xqkf getUserInfo(JoinPoint jp,
WebApplicationImpl w) {

String user = w.getThreadLocalHttpContext()
.getRequest().getUserPrincipal().getName();

determine role and tenant for user;
}

294 U. Hohenstein and P. Koka

Please note AspectJ is able to intercept JARs, even of 3rd party tools like Tomcat
without having the source available!

The clause this(w) binds the variable w to the called object of type
WebApplicationImpl. The method getThreadLocalHttpContext() is
used to get the request-local HttpContext, which is then used to derive the
HttpRequestContext and the Principal of the user who has logged in. The
tenant to whom the user belongs can be determined by using the Auth.Users table.

The user and tenant information has to be passed to the interceptRequests
advice. This is simply possible since information can be shared amongst several
advices within the same aspect. Hence, the getUserInfo advice can store the user
information in a variable within the MTE aspect, which is the used by the inter-
ceptRequests advice in the sense of Laddad’s wormhole pattern [16].

Please note this advice is only specific to Tomcat but is independent of the appli-
cation. Any other application server will require slight modifications of this advice.

Finally, we have to take care of tenant isolation. Using another advice within MTE,
we intercept every access to a database Connection and re-direct access to the tenant
schema. For JDBC accesses, the advice looks as follows:

@Around("call(java.sql.Connection
java.sql.DriverManager.getConnection(..)

&& !within(com.siemens.aspects.MTE)")
public Object interceptGetConnection

(final ProceedingJoinPoint jp) {
get the user and tenant (stored locally in MTE);
Connection con = (Connection) jp.proceed(jp.getArgs());

// original logic gets connection
Statement stmt = con.createStatement();
// switch to tenant’s database/schema:
stmt.execute("SET SCHEMA '" + tenant + "'");
return con;

}

Every successive database operation will use the tenant schema, i.e., database.
Indeed, an@After advice would have been sufficient here. However,@Around is more
flexible to handle other databases with different concepts such as an explicit database
name in the URL. Section 5 will dive into the details and will also illustrate how to
implement other strategies such as sharing the original tables between several tenants.

4.6 Customization

Several papers like [29] emphasize the importance of tenant-specific customizations of
an application for business, thereby considering customization as a major challenge of
multi-tenancy. Again, AspectJ can be used to give an application a tenant-specific
behavior without explicitly touching the source code. To this end, each tenant-specific
behavior requires one dedicated aspect, e.g., TenantAModifier for TenantA, which

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 295

defines the specific tenant behavior. Since the logic of the aspect is technically applied
to the overall application, the aspect must determine the expected tenant and only apply
the logic to that tenant. That is why the aspect has to implement an interface
GenericModifier, which demands for a method getTenantName(); it should
return the tenant name of the modifier, i.e., “TenantA” for aspect TenantAModifier.
Using getTenantName(), an advice can then compare the calling tenant with the
expected one and modify the logic only for that tenant:

if (nameOfCallingTenant.equals(getTenantName()) {
… modify logic …

} else { // don’t modify behavior
return jp.proceed(jp.getArgs()); // original logic

}

An @Around advice can define pointcuts where to modify logic. Inside the advice,
the original call can be ignored by omitting jp.proceed(). Hence, functionality can
be disabled, for example, by returning an empty result, a result masked out with stars
‘*’, or an HTTP code 403 (FORBIDDEN) in case of REST services. Similarly, the
original logic can be modified or extended. Especially information to be returned can
be changed by using the original logic.

Adding new REST services offering additional functionality that is not part of the
original application is more complicated since the logic will be implemented in a
different class. We have to use static introduction to this end in the following manner:

@Aspect rwdnke encuu TenantAModifier
korngogpvu GenericModifier {

@DeclareParents(
defaultImpl=com.siemens.newfunc.NewFunction.class,
value="com.siemens.app.ExistingAppl")

rwdnke com.siemens.nf.NewFunctionIF mix;
}

Then, a new GET service /newFunctionality, can be implemented in the
class NewFunction.

@Path("newFunctionality")
rwdnke encuu NewFunction korngogpvu NewFunctionIF {
@GET rwdnke Response svcNewGetOperation(...) { ... }

}

The new logic implemented in svcNewGetOperation becomes available in
class ExistingAppl (implementing the original REST service) because Exist-
ingAppl inherits from the newly introduced superclass NewFunction – although its
definition is done in another class. This happens because @DeclareParents places a
new superclass NewFunction of interface NewFunctionIF on top of those classes

296 U. Hohenstein and P. Koka

that are specified by the value clause, here the single class ExistingAppl. The
interface NewFunctionIF is only required for enabling a syntactic cast from
ExistingAppl to NewFunction; the variable mix is of no further importance.

Thanks to AspectJ, the application itself does not have to be prepared or modified for
allowing intercepted code at the right place. The powerfulness certainly depends on the
power of the pointcut syntax and the context information available at the intercepted join
points. The approach suffers only if certain points in the code cannot be addressed by
pointcuts. Moreover, the application code has to be available to find appropriate join
points; the weaving itself does not require the source code and is satisfied with byte
code! This point is the major advantage of our approach: Other customization
approaches require special, prepared customization points, where to plug in tenant logic.
However, this would violate our goal not to touch the original application.

4.7 Monitoring

Every SaaS provider has to define a billing model for charging his tenants for using the
application. In turn, a SaaS provider has expenses for running the application, espe-
cially in a public cloud. Then, he has to pay for the all used resources. In fact, the
billing model must be appropriate to make profit. The investment covers both the
operational costs in a Cloud as well as the costs for developing an application or
SaaS-enabling it [23] and later maintenance [2].

Many proposed billing models for SaaS are post-paid. Tenants receive a bill and
pays for usage periodically. Hence, the SaaS provider has to monitor and aggregate the
consumption costs for each tenant [27] for billing purposes. If a SaaS provider charges
his tenants by a fixed rate per month or based upon other factors such as the number of
users (registered or in parallel), then it is important to throttle exhaustive usage by a
single tenant because the SaaS providers’ revenue will be reduced or even lost
otherwise.

Consequently, it is necessary to monitor and log the activities of all tenants’ users
and the costs they produce. As [28] discusses, such a tracking is the task of the SaaS
providers. The support given by underlying Cloud platforms is only rudimentary and
not detailed enough to determine the costs for resources for each tenant individually.

To enable a tenant-specific monitoring, we have added the following table to the
Admin schema in order to track tenants’ user activities as shown in Table 2.

We again use AspectJ to intercept any user actions (maybe filtering out a few
relevant ones by a pointcut). To this end, we extend the interceptRequests
advice from Subsect. 4.5 to compute the elapsed time around jp.proceed():

Table 2. Table UserMonitoring.

id name tenant operation timestamp elapsed

1 UserA1 TenantA Operation1 2016-11-10 17:00:01 12 ms

2 UserA2 TenantA Operation2 2016-11-10 17:00:02 21 ms

3 UserB1 TenantB Operation2 2016-11-10 17:00:03 10 ms

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 297

long start = System.nanoTime();
Object o = jp.proceed(args);
double elapsed = (double) (System.nanoTime() - start);
createLogEntry(user, tenant, elapsed,

jp.getSignature().toShortString());

createLogEntry logs the elapsed time together with the signature of the
method, tenant, user etc. at a central place. Dedicated pointcuts can define what has to
be tracked; this might depend on the application. The table now gives an overview over
all user activities and forms the basis for several scenarios. Using the table, tenants can
be charged back for their consumed resources. Moreover, it is possible to check
profit-making, i.e., whether the chosen billing model for one/all tenant(s) is appropriate
to make profit. Also the (elapsed) execution times or the number of service requests for
each user or tenant can be accumulated; if thresholds are exceeded, further access is
throttled or rejected. Hence, a SaaS provider is able to timely react on frequent and
massively active tenants by throttling them before costs rise. Even further use cases can
be supported. For example, if a Service Level Agreement (SLA) specifies a maximum
number of concurrent users, a @Before advice is able to check the current number of
concurrent users for a tenant in the UserMonitoring table before executing a
service request. Similarly, if an SLA states a threshold for the number of registered
users, the Users table can be used to supervise the limit in the user registration
process. Finally, all the monitoring information might be used to implement
auto-scaling features that enable Cloud elasticity.

4.8 Configuration

AspectJ load-time weaving requires an additional configuration file aop.xml that
specifies what aspects (<aspects>)are active and what packages (<include …>)
should be intercepted by the aspect logic. The following content is an example:

<aspectj>
<aspects>
<aspect name="com.siemens.aspects.MTE"/>
<aspect name="com.siemens.aspects.TenantAModifier"/>
<aspect name="com.siemens.aspects.TenantBModifier"/>

</aspects>
<weaver> <include within="com.siemens.app.*"/>
</weaver>

</aspectj>

298 U. Hohenstein and P. Koka

5 Other Types of Database Servers and Isolation Strategies

We want to expand the scope of our investigation and discuss what has to be done to
apply the principle to other database servers beside Oracle and to other data isolation
strategies following Chong et al. [6]. This paper was one of the first to investigate
multi-tenant data architectures and distinguishes between “separate databases”, “shared
database, separate schemas”, and “shared database, shared schema” for an SQL Server.
This section follows this structure and also investigates PostgreSQL and SQL Server
databases as further candidates.

5.1 Separate Databases

Storing the tenant’s data in a separate database offers the highest degree of data iso-
lation. In principle, using a separate database server for each tenant is an even higher
isolation. For a strong isolation it is important to authenticate units for each tenant
individually. Hence, there is essentially no difference between using a separate database
server (i.e., an instance, containing several databases) and a database (within such a
database server) as far as individual privileges can be defined for the units.

Oracle has a notion of a “database”, but this is closely related to a database server,
named instance: Each instance can only be associated with one database. Hence, we
have to set up an instance for each tenant. An Oracle JDBC URL thus refers to the
instance as jdbc:oracle:thin:@<Host>:1521:<Instance>. This means
for multi-tenancy that we have to replace <Instance> in the URL with the
respective tenant’s instance name in order to switch from the existing instance to the
tenant one. To this end, the pointcut for the interceptGetConnection advice
from Subsect. 4.5 can still be used with minor changes of the advice:

@Around("call(java.sql.Connection java.sql.DriverManager
.getConnection(String, String, String))

&& args(url,usr,pw) && !within(com.siemens.aspects.MTE)")
public Object interceptGetConnection(ProceedingJoinPoint

jp, String url, String usr, String pw) {
get the user and tenant (stored in MTE);
url = exchange instance name with tenant name in URL;
usr = tenant; // provide credentials
pw = password; // for database connect
return jp.proceed(url,usr,pw);

}

PostgreSQL has both options, one DB server or one database for each tenant; the
URL jdbc:postgresql://<Host>:<Port>/<Database> specifies the host,
the database, and optionally the port number (if several PostgreSQL instances run on
the same host):. The tenant-specific substitutions can be done analogous to Oracle in
the interceptGetConnection advice using the same pointcut:

url = replace host or database with tenant name in URL;

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 299

The URL of the SQL Server resembles the PostgreSQL URL: jdbc:sqlser-
ver://<Host>\<ServerName>;databaseName=<Db>, i.e., server name and
database name can be specified in addition to the host name. Hence, it is possible to
change the DB server and/or database for corresponding tenants by a URL modifica-
tion. Again, the same pointcut can be used with slight modifications of the related
advice.

To sum up, only the advice has to be adapted to handle the different formats of
URLs while keeping the original pointcut.

Furthermore, the Tenant Administration Service must create a tenant-specific
database or server when a tenant has been approved. Here, the implementation depends
on DB-specific concepts and dialects. Moreover, a user for the tenant with a password
is required to provide database access in the MTE aspect. However, it is quite easy to
organize the syntactic variants in Java. For example, users are created in Oracle with

CREATE USER TenantA IDENTIFIED BY <Pw>;

while PostgreSQL requires

CREATE ROLE TenantA WITH LOGIN ENCRYPTED PASSWORD '<Pw>',
TEMPLATE applicationTables;

CREATE DATABASE TenantA WITH OWNER=TenantA;

and SQLServer a statement like
CREATE USER TenantA IDENTIFIED BY <Pw>;

In general, the database set up of the original application has to be understood, i.e.,
what databases and schemas are available, which tables are tenant-specific etc.
According to that, the creation of tables can be done during setup (cf. Subsect. 4.3) by
executing createApplicationTables.sql in the tenant instance. PostgreSQL
has a so-called template mechanism for handling the pre-creation of tables, views,
stored procedures etc. during database creation (see the statement above).

5.2 Separate Schemas

A schema is basically a special concept of some database servers. The idea of a schema
is to have a dedicated and isolated space within a database, e.g., one for each tenant. In
such a schema, the same set of tables etc. can be created. Sometimes, even individual
users and privileges can be specified for a schema.

In order to take care of data isolation, we can use the same pointcut inter-
ceptGetConnection as before in Subsect. 5.1 to intercept the request of a database
connection for all types of database systems. The corresponding advice does not need
to change the URL, but simply switches the schema by a statement that uses a
database-specific syntactic variant. That is, all tenants connect to the same database
setting the schema afterwards. How to use the Oracle schema for multi-tenancy has
already been demonstrated in the interceptGetConnection advice in Sect. 4.5:

SET SCHEMA TenantA;

300 U. Hohenstein and P. Koka

Furthermore, the Tenant Administration Service (cf. Sect. 4.4) has to create a
schema for each tenant:

CREATE USER TenantA IDENTIFIED BY <Pw>;

As already mentioned in Subsect. 4.1, each Oracle user possesses a schema with
the same name. Hence, there is no explicit schema definition.

PostgreSQL uses a different advice for the same pointcut due to a different syntax:
SET SEARCH_PATH TO "TenantA";

Again, the Tenant Administration Service has to create a tenant-specific schema,
when a tenant has been approved:

CREATE ROLE TenantA WITH LOGIN ENCRYPTED PASSWORD '<Pw>'
CREATE SCHEMA "TenantAschema" AUTHORIZATION TenantA

SQL Server has a different syntax to switch the schema, too:

ALTER USER TenantA WITH DEFAULT_SCHEMA = TenantAschema;

User and schema have to be created in the Tenant Administration Service:

CREATE USER TenantA ...;
CREATE SCHEMA TenantAschema AUTHORIZATION TenantA;

The creation of tables can be done during setup by executing createAppli-
cationTables.sql in the particular tenant schema.

Please note there is a strong danger of SQL injection in any case if a user can issue
SQL arbitrary statements: a user can switch to another tenant’s schema! Special pre-
vention is required to prevent SQL injection.

If a database server does not support a dedicated schema concept, all the
tenant-specific tables can be replicated in the same database by adding a tenant suffix:
<Table>_TenantA. However, more effort is required because all SQL statements
are affected due to changing table names in all queries. Furhermore, authentication with
user/password is lost compared to an explicit schema concept. The principles of the
next subsection can be applied to provide a smarter solution.

5.3 Shared Schemas

A third approach uses the same database and the same set of tables for all the customers.
Thus, each table contains the data of several tenants. This certainly requires a discrimi-
nator column in each tenant-specific table, the TenantId. As an immediate conse-
quence, every INSERT on such a table has to provide this TenantId, while queries
(including delete and updates) must filter for the tenant’s id by TenantId=<id>.

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 301

Indeed, this is the lowest level of data isolation, which requires the highest effort for
application development. Anyway, AspectJ is able to handle the new arising challenges
in a modular manner with general principles.

As a presumption, all tenant-specific tables must be known and handled. However,
the createApplicationTables.sql script can be maintained, since ALTER
TABLE statements can add the new TenantId column afterwards.

In contrast to the previous strategies, the Tenant Administration Service is not
affected by this isolation strategy as no tenant-specific database or schema is required.
In general, there is no dependency on the type of database server.

As already mentioned, all queries issued by the application have to be changed at
runtime to add a filter TenantId=<id > . The interception is not an issue and can be
done by pointcuts, e.g., for SQL queries executed by executeQuery in JDBC:

@Around("call(java.sql.ResultSet
java.sql.Statement.executeQuery(String))

&& !within(com.siemens.aspects.MultitenancyEnabler)")
rwdnke Object interceptExecute(ProceedingJoinPoint jp) {
String theQuery = (String)jp.getArgs()[0];
theQuery = "modified query";
tgvwtp jp.proceed(jp.getArgs());

}

The pointcut interceptGetConnection used in Subsects. 5.1 and 5.2 is no
longer necessary. The principle is easy, but disguises a lot of technical issues. For
example, let us assume the following original SQL query with two tenant-specific
tables Tab1 and Tab2:

SELECT *
FROM Tab1 t1 LEFT OUTER JOIN Tab2 t2 ON t1.id=t2.fk
WHERE t1.col1=10 OR t2.col2=20

Simply adding “AND TenantId = <id>” does not work since TenantId is
ambiguous due to the two tables with a TenantId column. Even an addition “AND
t1.TenantId=<id>AND t2.TenantId=<id>” is incorrect because of OR in the
WHERE clause, which changes the original semantics drastically. Obviously, brackets
are required around the OR condition. Next, LEFT OUTER JOINs must be treated
carefully. A condition “(t1.col1=10 OR t2.col2=20) AND t1.TenantI-
d=<id>AND t2.TenantId=<id>” returns wrong results in many database servers
as such a condition in the WHERE clause diminishes the outer join by implicitly forcing
a join. Finally, SELECT * has additional TenantId columns for which an existing
cursor is not prepared. In sum, the correct form is:

SELECT concrete columns without TenantId
FROM Tab1 t1 LEFT OUTER JOIN Tab2 t2 ON t1.id=t2.fk

AND t1.TenantId=<id>AND t2.TenantId=<id>
WHERE (t1.col1=10 OR t2.col2=20)
AND t1.TenantId=<id>

302 U. Hohenstein and P. Koka

This simple example already shows some important pitfalls. Further points to be
handled appropriately are inner queries with IN and EXISTS. Hence a lot query string
parsing and manipulation is required for queries, making the logic in the advice quite
complex. This has to be done for DELETE and UPDATE statements in the same
manner. Furthermore, INSERT statements have to be modified, too, because of the new
TenantId column. Here, the TenantId value has to be added to the VALUES
clause.

One nasty challenge are stored procedures. Again, it is easy to intercept the
invocation of stored procedures in JDBC. But the source code of those procedures is
not directly accessible because of being stored in the database. The solution we sug-
gested is as follows:

• Modify the code of all the stored procedures manually, i.e., modifying the SQL
statements according to the previous discussion (this does not require a
re-compilation of the application code);

• add a new parameter TenantId to each procedure in order to transport the tenant
information to the procedure;

• modify the procedure call by passing the TenantId as a parameter to the procedure
call during interception.

So far, the use of JDBC for database accesses has been discussed. Hence, the
question arises what happens if an object/relational (O/R) framework such as Hibernate
or EclipseLink is used. There are two general options:

• To intercept JDBC at a deeper level, i.e., inside the O/R framework or within a
connection pool. Please remember that AspectJ is able to intercept even 3rd party
libraries without having source code available. The pointcuts do not need to be
changed, however, the packages to be intercepted are specific to a particular
framework and must be listed in the aop.xml configuration file (cf. Subsect. 4.8).

• As an alternative, the higher O/R requests can be intercepted by pointcuts. Different
String modifications then become necessary for query languages such as JPQL of
the JPA standard. This is more complex since the new TenantId properties must be
added to the persistent Java classes to match the changed table structures with the
TenanId column. This might have an impact on the build process and/or Java code.

6 Evaluation

6.1 Modularity and Adaptability

Separation of concerns is one of the driving forces of aspect oriented programming.
Bringing in the notion of reuse without compromising the advantages of separation of
concerns is an important consideration for application development. The positive
impact of code reuse during application development and maintenance should not be
under-weighed.

The strategies to enable multi-tenancy follow the best practices of using AspectJ
and the individual concepts can be reused across other similar applications. All the

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 303

multi-tenancy logic is concentrated in classes to be added to the application’s WAR file
thereby adjusting the aop.xml configuration file accordingly. Moreover, tenant specific
logic is also clearly separated in particular classes. Only a restart of Tomcat is required
for the multi-tenancy configuration to take effect.

All the multi-tenancy components rely on simple mechanisms that can easily be
applied to other legacy Java applications to make them multi-tenant. Thus, develop-
ment cost can be reduced for other applications. Indeed, REST services are easier to
handle than applications with a graphical user interface since there are pure Java
methods annotated with @GET, @PUT etc., which are the entry points for functionality.
Anyway, background logic of other applications can be handled the same way.

The MTE aspect that takes care of tenant isolation mainly depends on tools, i.e., the
application server and the database server, especially the isolation strategy to apply.
This aspect has to be adapted if MTE should be applied to applications using JBoss
and/or MySQL, for instance. Sticking to the same technologies allows for an immediate
reuse of the MTE aspect. The pointcuts to intercept DB accesses rely on JDBC or an
object/relational framework and are not DB-specific. Hence, only switching the per-
sistence technology requires a modification of pointcuts.

However, the pointcut interceptRequests in MTE depends on the application
methods to be intercepted just as customization does; other applications require dif-
ferent pointcuts and/or advices.

Anyway, any adaption and modification is made in central components – outside
the original application. Reusability can be further enhanced. An abstract aspect can
implement an advice but leaves out the pointcut, while application-specific sub-aspects
reuse the general logic and only specify the concrete pointcuts.

6.2 Implementation Effort

Taking a look at the lines of code, the simplicity of the approach becomes obvious:

• The new Tenant Administration Service has about 400 lines of Java code;
• The aspect MTE consists of ca. 150 lines all together for the Oracle schema

approach, however, a shared-schema approach requires about 500 lines of code due
to a more complex logic;

• The effort for a customizing TenantXModifier aspect depends on what should be
modified. To give an impression, disabling functionality in a REST service requires
10 lines, a simple modification of service behavior 23 lines, and introducing a new
REST service about 60 lines.

6.3 Lessons Learned

The lack of comprehension and maintainability of aspect-orientation is often criticized.
Since we only have a small number of dedicated aspects serving a very special purpose
such as tenant isolation, customization, and monitoring, we did not detect any problems
in this respect. Indeed, the impact of multi-tenant aspects to behavior is clearly
arranged.

304 U. Hohenstein and P. Koka

As explained throughout the paper, we could benefit a lot from aspect-orientation to
achieve our goal to leave code untouched. Especially, the possibility to intercept
3-rd-party tools such as Tomcat and to exchange information between advices
according to the “Wormhole Pattern” [16] helped a lot.

However, we also recognized some limitations. The first idea was to have a Users
table in each tenant schema instead of global table. As a consequence, Tomcat
authentication has to use the corresponding tenant database. However, we failed to
intercept the start-up of Tomcat to bring in the logic. That is the reason why the
approach relies on the single Users table of the existing application.

6.4 Advantages

We achieve with our AspectJ approach the general advantages of full multi-tenancy
such as cost saving by sharing resources (hardware, application server, database etc.)
amongst tenants and reducing operational expenses (OPEX). But the major additional
advantage of our approach lies in the fact that the source code of the existing appli-
cation does not need to be touched explicitly.

In fact, Tenant Administration Service (cf. Sect. 4.4) is just a new service to be
deployed in the Tomcat application server as a WAR file. Tenant isolation is achieved
by adding a new MTE.class to the deployed application WAR. Additional files
TenantXModifier.class in the WAR provide a tenant-specific behavior for each
TenantX. Only a restart of Tomcat is required to apply the MTE aspect thanks to
AspectJ load-time weaving. Adding a new tenant class can even be done at runtime
without a restart by just deploying the TenantXModifier class and adjusting the aop.
xml file.

Hence, the approach offers a cost-efficient way to speed up time-to-market by
migrating existing applications quickly into SaaS-offerings. The approach also allows
for a flexible configuration, e.g., for various tenant isolation strategies (one DB for each
tenant, one schema for each tenant, or one single-table for all tenants).

7 Conclusions

While research has investigated many facets of multi-tenancy for designing and
implementing new applications, this paper focuses on migrating legacy single-tenant to
fully multi-tenant applications. This is an important and necessary step to offer an
existing application as Software-as-a-Service (SaaS).

There are a couple of approaches and methodologies that demonstrate how to
convert legacy applications into multi-tenant software. However, they require to
re-engineer the legacy source code to a large extent. In contrast, our approach consists
of simply adding components to the legacy application – without explicitly touching
the application’s source code.

We propose several components, being implemented as aspects in AspectJ, which
have to be added to an application’s WAR file. The major component for tenant
isolation depends only on technological choices such as application server, database

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 305

server, and the chosen data isolation strategy. Furthermore, tenant customization
depends on the application; pointcuts specify what to intercept in the application and
advices implement the customization.

In order to validate the approach, we used an existing industrial REST application
that runs in Tomcat and uses an Oracle database. In particular, we discuss how to
achieve three main concerns in detail:

• tenant isolation [5] for different strategies and database servers;
• tenant-specific customization of behavior;
• monitoring tenants’ user activities for billing purposes.

We elaborated upon how to benefit from the aspect-oriented language AspectJ in
order to achieve these points. We presented the AspectJ approach in detail and eval-
uated the approach with regard to modularity, adaptability, and implementation effort.
The effort to be spent for the overall principle requires only a few 100 lines of aspect
code. We also concluded with some lessons learnt. The approach can directly be
adapted to other Java applications, especially REST services.

In general, REST services are easier to handle than applications with a graphical
user interface since there is pure Java code without any parts in HTML or Javascript. In
order to evaluate the limits, our future work will consider applications with a graphical
user interface. First experiences show that the MTE (Multi-Tenancy Enabler) aspect
works well for achieving data isolation. Moreover, logic can be customized on a
per-tenant basis as far as no GUI is concerned. Further investigations are required to
evaluate customizing the UI.

Currently, applying the presented aspects to other applications requires some
copy&paste of code and an adjustment of pointcuts and advice logic. This is also true
for the MTE aspect which depends on technologies. Feature modelling tools might be
useful to generate the aspect code according to a domain-specific language that
describes the database server, data isolation strategy, and application server. Alterna-
tively or in addition, we think of providing a reusable aspect framework. The idea is to
have an aspect hierarchy that reflects technological choices. If for example an appli-
cation uses JBoss and SQLServer with a shared schema isolation approach, then an
application-specific sub-aspect has to derive from an Oracle_JBoss_SharedSchema
aspect. The sub-aspect itself only contains those parts that are specific to the appli-
cation, e.g., the database URL and pointcuts.

In case of too much load, several Tomcat instances have to be started with a load
balancer in front. Hence, migrating an application into the cloud is much more than just
adding multi-tenancy. Taking care of scalability issues and replacing software com-
ponents with Cloud services is also subject to future work.

References

1. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to adapt applications for the
Cloud environment - Challenges and solutions in migrating applications to the cloud.
Computing 95(6), 493–535 (2013)

306 U. Hohenstein and P. Koka

2. Bezemer, C., Zaidman, A. Platzbeecke, B. Hurkmans, T., Hart, A.: Enabling multitenancy:
an industrial experience report. In: Technical Report of Delft University of Technology,
TUD-SERG-2010-030 (2010)

3. Bezemer, C., Zaidman, A.: Challenges of reengineering into multitenant SaaS applications.
In: Technical Report of Delft University of Technology, TUD-SERG-2010-012 (2010)

4. Binz, T., Leymann, F., Schumm, D.: CMotion: a framework for migration of applications
into and between clouds. In: SOCA 2011, pp. 1–4 (2011)

5. Chong, F., Carraro, G.: Architecture strategies for catching the long tail (2006). https://msdn.
microsoft.com/en-us/library/aa479069.aspx. Accessed Nov 2016

6. Chong, F., Carraro, G., Wolter, R.: Multi-tenant data architecture (2006). http://msdn.
microsoft.com/en-us/library/aa479086.aspx. Accessed Nov 2016

7. Elrad, T., Filman, R., Bader, A. (eds.): Theme section on aspect-oriented programming.
CACM 44(10) (2001)

8. Fehling, C., Leymann, F., Mietzner, R.: A framework for optimized distribution of tenants in
cloud applications. In: IEEE 3rd International Conference on Cloud Computing (CLOUD),
pp. 252–259 (2010)

9. Guo, C., Sun, W., Huang, Y., Wang, Z., Gao, B.: A framework for native multi-tenancy
application development and management. In: CEC/EEE 2007: International Conference on
Enterprise Computing, E-Commerce Technology and International Conference on Enterprise
Computing, E-Commerce and E-Services, pp. 551–558 (2007)

10. Hohenstein, U., Koka, P.: An approach to add multi-tenancy to existing applications. In:
ICSOFT 2016, pp. 39–49 (2016)

11. Khajeh-Hosseini, A., Greenwood, D., Smith, J., Sommerville, I.: The cloud adoption toolkit:
supporting cloud adoption decisions in the enterprise. Softw. Pract. Exp. 42(4), 447–465
(2012)

12. Kiczales, G., et al.: Aspect-oriented programming. In: Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), Finland, pp. 230–242 (2007)

13. Kong, L., Li, Q., Zheng, X.: A novel model supporting customization sharing in SaaS
applications. In: International Conference on Multimedia Information Networking and
Security (MINES), pp. 225–229 (2010)

14. Krebs, R., Momm, C., Kounev, S.: Architectural concerns in multi-tenant SaaS applications.
In: CLOSER 2012, pp. 426–431 (2012)

15. Kwok, T., Nguyen, T., Lam, L.: A software as a service with multi-tenancy support for an
electronic contract management application. In: International Conference on Services
Computing (SCC), pp. 179–186 (2008)

16. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming, 2nd edn. Manning,
Greenwich (2009)

17. Lee, W., Choi, M.: A multi-tenant web application framework for SaaS. In: 2012 IEEE 5th
International Conference on Cloud Computing (CLOUD), pp. 970–971 (2012)

18. Lee, J., Kang, S., Hur, S.: Web-based development framework for customizing java-based
business logic of SaaS application. In: 14th International Conference on Advanced
Communication Technology (ICACT), pp. 1310–1313 (2012)

19. Li, Q., Liu, S., Pan, Y.: A cooperative construction approach for SaaS applications. In: 2012
IEEE 16th International Conference on Computer Supported Cooperative Work in Design
(CSCWD), pp. 398–403 (2012)

20. Lizhen, C., Haiyang, W., Lin, J., Pu, H.: Customization modeling based on metagraph for
multi-tenant applications. In: 5th International Conference on Pervasive Computing and
Applications (ICPCA), pp. 255–260 (2010)

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 307

https://msdn.microsoft.com/en-us/library/aa479069.aspx
https://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://msdn.microsoft.com/en-us/library/aa479086.aspx

21. Mell, P., Grance, T.: The NIST definition of cloud computing. National Institute of
Standards and Technology, September 2011. http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf. Accessed Nov 2016

22. Moens, H., Truyen, E., Walraven, S., Joosen, W., Dhoedt, B., De Turck, F.: Developing and
managing customizable software as a service using feature model conversion. In: IEEE
Network Operations and Management Symposium (NOMS), pp. 1295–1302 (2012)

23. Momm, C., Krebs, R.: A qualitative discussion of different approaches for implementing
multi-tenant SaaS offerings. In: Proceeding Software Engineering 2011, pp. 139–150 (2011)

24. Orue-Echevarria, L., et al.: Cloudifying applications with ARTIST: a global modernization
approach to move applications onto the cloud. In: CLOSER 2014, pp. 737–745 (2014)

25. Park, J., Moon, M., Yeom, K.: Variability modeling to develop flexible service-oriented
applications. J. Syst. Sci. Syst. Eng. 20(2), 193–216 (2011)

26. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, New York (2005)

27. Ruiz-Agundez, I., Penya, Y., Bringas, P.: A flexible accounting model for cloud computing.
In: SRII 2011, pp. 277–284 (2011)

28. Schwanengel, A., Hohenstein, U.: Challenges with tenant-specific cost determination in
multi-tenant applications. In: 4th International Conference on Cloud Computing, Grids and
Virtualization 2013, pp. 36–42 (2013)

29. Shahin, A., Samir, A., Khamis, A.: An aspect-oriented approach for SaaS application
customization. In: 48th Conference on Statistics, Computer Science and Operations
Research 2013, Cairo University, Egypt, pp. 1–15 (2013)

30. Tsai, W., Shao, Q., Li, W.: OIC: ontology-based intelligent customization framework for
SaaS. In: IEEE International Conference on Service-Oriented Computing and Applications
(SOCA), pp. 1–8 (2010)

31. Tsai, W., Sun, X.: SaaS multi-tenant application customization. In: IEEE 7th International
Symposium on Service Oriented System Engineering (SOSE), pp. 1–12 (2013)

32. Walraven, S., Truyen, E., Joosen, W.: A middleware layer for flexible and cost-efficient
multi-tenant applications. In: Kon, F., Kermarrec, A.-M. (eds.) Middleware 2011. LNCS,
vol. 7049, pp. 370–389. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25821-3_19

33. Wang Z. et al.: A study and performance evaluation of the multi-tenant data tier design
pattern for service oriented computing. In: IEEE International Conference on eBusiness
Engineering, (ICEBE), pp. 94–101 (2008)

34. Wang, H., Zheng, Z.: Software architecture driven configurability of multi-tenant SaaS
application. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds.) WISM 2010. LNCS, vol. 6318,
pp. 418–424. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16515-3_52

35. Zhou, X., Yi, L., Liu, Y.: A collaborative requirement elicitation technique for SaaS
applications. In: 2011 IEEE International Conference on Service Operations, Logistics, and
Informatics (SOLI), pp. 83–88 (2011)

308 U. Hohenstein and P. Koka

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://dx.doi.org/10.1007/978-3-642-25821-3_19
http://dx.doi.org/10.1007/978-3-642-16515-3_52

	Enabling Legacy Applications for Multi-tenancy Without Reengineering
	Abstract
	1 Introduction
	2 Related Work
	3 Aspect-Oriented Programming in AspectJ
	4 Adding Multi-tenancy to Existing Applications
	4.1 Tomcat and Oracle Basics
	4.2 Tenant and User Management
	4.3 Initial DB Setup for Multi-tenancy
	4.4 Tenant Administration Service
	4.5 Data Isolation
	4.6 Customization
	4.7 Monitoring
	4.8 Configuration

	5 Other Types of Database Servers and Isolation Strategies
	5.1 Separate Databases
	5.2 Separate Schemas
	5.3 Shared Schemas

	6 Evaluation
	6.1 Modularity and Adaptability
	6.2 Implementation Effort
	6.3 Lessons Learned
	6.4 Advantages

	7 Conclusions
	References

