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Abstract. Many “theoretical” frameworks have been proposed for software
systems design with a plethora of techniques, scopes and degrees of sophisti-
cation. However, a clear delineation of the forbidden in software design terms is
almost universally absent in all these frameworks. This absence is surprising, as
other engineering disciplines obviously display forbidden regions. This paper
claims that an acceptable software design theory should clearly demarcate the
forbidden in contrast to the possible. Algebra is argued to be the mathematical
field appropriate to determine boundaries of forbidden regions. To this end, a
spectral approach is demonstrated, in which matrix eigenvectors play a central
role. Such boundaries of forbidden regions are illustrated by a case study.
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1 Introduction

Forbidden regions surrounding possible solutions to engineering problems are ubiq-
uitous in mature engineering disciplines and their underlying basic sciences. A central
claim of this work is that Software Engineering deserves such a theory implying a
definition and delineation of forbidden regions or domains. This is true in particular for
software embedded in larger systems, which without forbidden domain restrictions may
cause critical failures and endanger human life.

An aeronautical engineering example is a case that really happened above the
Atlantic Ocean, of an airplane flying at high altitude that inadvertently entered a
weather storm area. The pilots should have tried to either totally avoid the well-known
storm area, or once inside that area to escape the storm from below, gaining speed
through the airplane descent. Instead the inexperienced pilots, tried to climb above the
storm causing an increasing loss of speed. The final outcome was the free fall of the
airplane in the middle of the ocean. This is just one example that there are clearly
forbidden maneuvers for any given aircraft — dictated by aerodynamics theory — that
may result in total loss of control with unfortunate consequences.

Another example, this one in civil engineering, is the famous Tower of Pisa. The
tower was obviously planned to be vertical, with a nice view of the surrounding area.
Along time, it gradually became inclined. Without reinforcements, it would continue to
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increase its angle relative to the vertical axis, and finally fall. The statics theory, an old
branch of physics, states the laws of the relevant forbidden region. Roughly one says
that, the tower cannot be more inclined than some angle, in which the projection of the
tower center of mass passes a threshold distance of the building ground basis.

There are uncountable cases of forbidden regions in science and technology. We
shall, later on, motivate forbidden regions in software, by two examples of physics.

1.1 Models of the Possible are not a Theory

We wish to emphasize, early in this paper, that models of the possible are not a theory;
therefore they do not produce forbidden regions. The widely used UML (Unified
Modeling Language) diagrams [25] are an example of software design models and not
a theory. They can be indefinitely modified at will by software engineers while
developing a software system. They impose no restrictions, and do not highlight design
problems, since they do not imply any design quality criteria.

The same occurs with code in a programming language, say Java or Python. These
languages are below a suitable level of abstraction to generate software design criteria.
Thus, the currently used compilers help in eliminating language syntax bugs, but
otherwise allow indefinite program variations.

1.2 Forbidden Domains are Essential for a Software Theory

The main thrust of this paper — which is an update and extension of the paper by Exman
[11] — is the claim that forbidden regions or domains are essential for a Software
Theory. This is based on the following assumptions:

e Hierarchical software system composition problem — a theory of software com-
position should solve the design problem of a hierarchical software system, through
increasingly simpler subsystems, down to indivisible components;

e Existence of forbidden region boundaries — these boundaries should restrict com-
position variability, for pragmatic reasons, which limit the search effort in design
space, and for more fundamental reasons, such as keeping conceptual integrity,
facilitating system development, comprehension and maintenance.

e Formal algebraic criteria — representing software systems by matrices, enables the
full power of linear algebra formalism, obtaining boundaries determined by quality
of design criteria, viz. suitable eigenvectors of those matrices.

1.3 Related Work

This concise literature review focuses into two topics, forbidden regions and linear
algebra. It omits non-software references, such as “forbidden transitions” in pure
physical systems.
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a- Forbidden Regions

The notions of forbidden regions or forbidden domains have appeared in several
contexts in the scientific literature, with differing meanings. The common idea of all the
contexts is the existence of a problem sub-space where a solution cannot be found. We
provide here just a limited sample of papers specifically referring to algorithms in
embedded and/or pure software systems.

Aneja and Parlar [2] describe transportation-related algorithms for optimal single
facility location problems with forbidden regions. These regions are those were loca-
tion is not permitted, but one can travel through them, such as a lake. Wu et al. [27]
estimate answer sizes for XML queries by excluding forbidden regions and assuming
some distribution over the remainder of a two-dimensional diagram.

A whole area of embedded systems referring to forbidden regions is that dealing
with robots. Abbot et al. [1] discuss ways of preventing robot manipulators to enter
forbidden regions of a workspace. Payandeh and Stanisic [17] state that in order to train
a novice operator of a robotic manipulator, one may define “forbidden regions virtual
fixtures” (FRVF); when an operator moves the manipulator in these regions, a
graphical clue can be generated, a force feedback can be generated or an embedded
command in the FRVF can maintain the robot at a safe configuration.

Devadas and Aydin [4] discuss real-time dynamic power management in which
they explicitly enforce device sleep intervals, the so-called forbidden regions. The goal
is to enhance energy savings. This is done by time-demand analysis, which determines
duration and frequency of forbidden regions to preserve the temporal correctness of all
the tasks. They show that the problem of generating feasible schedules for preemptive
periodic real-time tasks in which all device sleep intervals are longer than the device
break-even times, is NP-Hard in the strong sense.

b- Linear Algebra

Matrices of several types have been used to analyze software design, in which an
essential feature is a spectral approach using matrix eigenvectors, delimiting “forbidden
regions”. For comparisons about the applicability of the referred matrices to software
design, we refer the reader to e.g. Exman [8] and Exman and Sakhnini [9].

Besides the Modularity Matrix one finds the Laplacian matrix [26], see e.g. Exman
and Sakhnini [9], the Design Structure Matrix (DSM), see e.g. Sullivan et al. [24], and
the affinity matrix, see e.g. the work by Li and Guo [15].

1.4 Organization of the Paper

The remainder of the paper is organized as follows. Section 2 deals with forbidden
domains in physical systems, to motivate the later sections which refer to software
systems. Section 3 introduces the software algebraic theory that we use. Section 4
describes a generic design algorithm dealing with forbidden regions. In Sect. 5, we
discuss a case study, focusing on a design pattern, to illustrate the theory and the idea of
forbidden regions. A discussion in Sect. 6 ends the paper.
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2 Sources of Forbidden Domains: Physical Metaphors

In this section we deal with sources of forbidden domains within two physical realms.
These serve as metaphors motivating the software theory to be introduced in the next
section. One metaphor refers to transverse standing waves generated with a Slinky toy.
The other refers to wave-functions of the so-called “particle in a box”.

2.1 The 1% Physical Metaphor: Standing Waves in a Slinky

Slinky is a toy made of a pre-compressed helical spring — cf. e.g. Slinky [20, 21]. It has
been used for concrete and intuitive demonstrations of properties of physical waves.
Here we focus on transverse waves.

Let us imagine the following experiment. A slinky is stretched horizontally on the
floor — or on a table — by two persons, grasping its end-points. If both persons move
their hands laterally, in parallel to the floor (see the arrows in Fig. 1), but perpendic-
ularly to the slinky axis, each person generates transverse waves travelling towards the
other person. In Fig. 1 a stretched slinky depicts an S due to the schematic grasping
hands lateral motion.

—

Fig. 1. Slinky transverse wave — two schematic hands move laterally a slinky, the helical spring.
The motion, in the direction shown by the arrows, is perpendicular to the slinky axis. The hands’
oscillation back and forth generates a transverse wave with an S form.
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Fig. 2. Transverse standing waves in a slinky bounded by its end-points — the dashed lines show
the amplitude of wave oscillation in each slinky point. Three permitted wave modes are shown:
1- The 1% fundamental (lowest) wave, the mode number is 1 and it has no nodes; 2- The 2" wave
mode number is 2, because it has two half-waves with a node in between; its continuous (blue)
line is a full sinusoidal wave since it has zero vibration at the left-most point, goes up before the
node, goes down after the node and returns to zero at the right-most point; 3- The 3™ wave mode
number is 3 and is divided by two nodes. Fractional mode numbers are forbidden (see text).
Figure adapted from Ref. [11]. (Color figure online)

Once the hands’ motions of both persons are synchronized, standing waves are
obtained. Standing waves divide the slinky in an integer number of equal parts,
delimited by the nodes (see Fig. 2). These nodes are fixed in space and do not oscillate,
despite the fact that overall, the slinky is oscillating as a whole. Oscillation modes are
characterized by mode numbers, i.e. the number of sinusoidal half-waves of the
vibration, explained in Fig. 2. Thus, we state the limitations imposed on slinky motions
and the oscillation modes forbidden by the physical nature of the motions:

e Boundaries on slinky behavior — besides the material and geometry of the slinky
itself, the nature of the boundaries, be they fixed walls or hands in motion, is the
most significant limitation of behavior;

e Forbidden slinky oscillation modes — Standing waves can be obtained only for
integer mode numbers; fractional mode numbers are forbidden by the destructive
interference of waves travelling in opposite directions.

The slinky toy is very intuitive and its demonstration is easily reproduced. Dynamic
views of oscillating standing waves can be seen in a graphical simulation — as shown
by the standing wave in [22] — and in a video — see e.g. standing waves on a slinky
in [23].
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2.2 The 2" Physical Metaphor: Wave-Functions of a Particle in a Box

Our 2"! metaphor, the particle in a box, is a gradual intermediate transition from the
slinky physical metaphor (in the previous Subsect. 2.1), to the software theory to be
described in the next Sect. 3. The two physical metaphors have in common the same
“wave” solutions, as seen below. This 2" metaphor and the software theory in Sect. 3
have in common that solutions are obtained by means of eigenvectors, either from an
eigenvalue equation here, or from the eigenvectors of a matrix in the software theory.

This 2" metaphor demands deeper physics knowledge to fully understand its
details. But this should not discourage a reader which is not familiar with this spe-
cialized knowledge. The reader may skip the details; they are not essential to under-
stand the overall meaning of this example. For a gradual elementary introduction to the
subject, the reader may look at [18].

The “particle in a box” is a simple quantum mechanics’ problem — see e.g. Messiah
[16]. The particle has mass m. The so-to-speak box is one-dimensional!, has finite
length ¢, and zero potential. The particle is confined and cannot escape the two
bounding walls with infinite potential.

The problem to be solved is an eigenvalue problem. In such a problem, when a
matrix or operator H multiplies an eigenvector vk one obtains back the same eigen-
vector multiplied by a constant, the respective eigenvalue k. This has the form:

H vk = Ak - vk (1)

Specifically this is the Schrodinger equation in which H is the Hamiltonian operator,
and the k™ eigenvector vk fits the eigenvalue Ak, standing for an energy value. As the
potential inside the box is null, the particle Hamiltonian reduces just to a Laplacian.
Some solutions of this problem, the wave functions, are seen in Fig. 3.

Fig. 3. Wave functions of the particle in a one-dimensional box — these waves are indexed by
integers, seen in the above diagram. Just three of the possible solutions are shown in this figure.
Intermediate energy values are forbidden. Note that their form is identical to the slinky waves of
Fig. 2. Figure adapted from Ref. [11].
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The meaning of the wave functions of the particle in a box problem is certainly
different from the slinky transverse standing waves, but their form (seen in Fig. 3) is
identical to the slinky waves (in Fig. 2) for similar reasons. Also here the wave
functions vanish in the confining walls.

The conclusions from this 2"! metaphor are analogous to the slinky ones:

o Boundaries of behavior of a Particle in a box — besides the mass of the particle
itself the boundaries’ nature, i.e. the infinite potential in the fixed walls and the box
length 7, is the most important behavior limitation;

e Forbidden energy values — Wave functions, the solutions to the eigenvalue prob-
lem, have discrete energy values, indexed by integers; other energy values are
forbidden.

2.3 Common Features of Both Physical Metaphors

The two physical metaphors described in this section have very different underlying
physical systems. A slinky is a real macroscopic toy made of metal or plastic materials,
obeying classical mechanics, which can be hand held, stretched and oscillated. A par-
ticle in a box is a microscopic system obeying quantum mechanics, and rather serves as
a thought experiment useful to demonstrate the simplest quantum system enclosed
between walls.

Nonetheless, there are some striking similarities between these two kinds of sys-
tems. These common features are abstracted from the conclusions we extracted from
each of them:

e Boundaries on behavior — the nature of the boundaries of these systems, either
fixed walls or hands in motion, have a significant influence on the system behavior.
For instance, a particle confined by finite (instead of an infinite) potential has a very
different behavior.

e Forbidden non-solutions — The actual solution waves obtained are discrete and can
only be indexed by integer numbers. For instance, fractional number indices are
forbidden by the system constraints.

We shall compare these characteristics with those of software systems design in the
next sections. It turns out that software systems also have clear similarities to these
physical systems.

3 A General Software Theory of the Forbidden

A general Software Theory of the Forbidden is presented in this section in two parts: a
set of basic axioms and mechanisms to delimit forbidden domains from algebraic
structures which describe design sub-spaces for the desired software system.
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3.1 Basic Axioms

The starting point of our software theory is a couple of basic axioms formulated in the
two next text-boxes and explained in the paragraphs following the axioms.

Axiom 1 — Bounded Design Space

The design space of any particular software system is
composed of a discrete and finite number of components.

The Design Space of a software system, in terms of numbers of components, is
larger than the actual final design of the desired software system. The former contains
all the potential components for that system. On the other hand, the final output design
of a certain software system is obtained by the search results within the Design Space
limited by the boundaries of the forbidden domains. Components are used here in the
generic sense of Sect. 1.2. They are either subsystems in a given hierarchical level or
the smallest indivisible parts of the system.

Axiom 2 — Hierarchical Design Sub-spaces

The design space of any particular software system is
hierarchical, with each design sub-space corresponding to an
abstraction level of the hierarchy. Adjacent sub-spaces are
related by collapsing/expanding operations.

Any particular software system is assumed to be composed as a hierarchy of
abstraction levels. One goes up in the hierarchy by collapsing sub-systems into a higher
system level. One goes down the hierarchy by expanding a higher system level into
sub-systems in the lower level, recursively until one reaches the lowest indivisible
components. Likewise, the Design Space of a software system is hierarchical, with
sub-spaces corresponding to the abstraction levels.

These axioms are needed for two purposes:

a. Design Space Bounded size — to assure that the search process for the final Soft-
ware System output design is efficient;

b. Software System Comprehensibility — comprehensibility is a far reaching demand
from the Software System design. It concerns system development, maintenance,
improvement and fundamental principles, as conceptual integrity — see Brooks [3],
Jackson [14], and Exman [12].

The two axioms are needed for design efficiency, since just discreteness and
finiteness of design space, in the 1% axiom, are not enough to guarantee a small enough
space for efficiency. The 2" axiom is necessary, as we still envision the design process
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as not fully automatic. Automated computation is alternated with human intervention,
justifying the importance of comprehensibility.

3.2 Algebraic Structures and Forbidden Software Compositions

Design Sub-Spaces and the final Software System design at a certain hierarchical
abstraction level are both represented by an algebraic structure. Typically such alge-
braic structure is a matrix — say the Modularity Matrix, see e.g. Exman [7] — or a
Laplacian Matrix — see e.g. Exman and Sakhnini [9]. The algebraic structure may also
be a graph obtained from a matrix, for instance the algebraic structure of a Modularity
Lattice — see e.g. Exman and Speicher [10] — or a bipartite graph which originates and
is intimately linked to the Laplacian Matrix. In this paper we focus on matrices.

The physical metaphors of Sect. 2 are clearly suggestive of our software theory of
the forbidden. Its most important characteristics are as follows:

a. Boundaries around a software system and its modules — the Software System
boundaries idea is ubiquitous in object oriented software, and known as encapsu-
lation. An outer boundary separates the software system from its environment. The
inner boundaries separate system modules from each other.

b. Forbidden compositions are delimited by matrix Eigenvectors — the above referred
boundaries imply forbidden regions. Eigenvectors fitting certain eigenvalues of the
chosen matrices delimit forbidden compositions. One still needs conjunction with a
formal definition of cohesion — see e.g. Exman [8] and Exman and Sakhnini [9].
The final design discrete components are determined by suitable elements of the
relevant eigenvectors.

c. OQutliers in forbidden regions eliminated by redesign — outlier matrix elements in
forbidden regions point out to undesirable couplings between modules. These
should be eliminated by software system redesign, usually done by human inter-
vention of software engineers.

These characteristics are put together in a software system design algorithm, capable to
deal with forbidden regions. This algorithm is presented in the next section, in pseudo-
code format.

4 Generic Design Algorithm with Forbidden Regions

In this section we present our algorithm with boundaries capable of excluding for-
bidden regions. This is a generic algorithm displayed in pseudo-code. In order to design
an actual software system, one must first choose a specific matrix type, say Modularity
Matrix or Laplacian matrix. Then, suitable specific procedures should be applied to
select eigenvalues and get modules from their respective eigenvectors.

The generic algorithm consists of four phases:

a. Initialize a matrix and a cohesion threshold;
b. Search Loop calculating eigenvalues and corresponding eigenvectors, to obtain
modules;
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c. Check modules’ cohesion whether they comply with the threshold;
d. Redesign if indicated by outliers.

The generic design algorithm is shown in the next text-box.

Generic Design Algorithm — with Forbidden Regions

Init:
Design Sub-Space = obtain suitable matrix;
Set lower cohesion threshold;

Search Loop — obtain modules:
While (there are low cohesion modules)
Do {
Obtain matrix eigenvalues/eigenvectors;
Select suitable eigenvalues;
Pick corresponding eigenvectors;
Get modules from eigenvector elements;
Calculate modules’ cohesion;
Forbidden boundary — cohesion check:
If (module cohesion < threshold)
{split module;
Repeat while loop}

Else
End While}

Forbidden region redesign:
If (outlier left)
{Redesign matrix as needed;}

Cohesion is calculated by the inverse of the sparsity of a module (which is itself a
sub-matrix). The sparsity is the ratio of zero-valued matrix elements to the total number
of matrix elements in the matrix or sub-matrix. A typical sparsity threshold is 50%.
Modules should have high-cohesion (low sparsity). The environment, i.e. matrix ele-
ments outside modules, should display low cohesion (high sparsity).

5 Case Study: Boundaries of the Forbidden

In this section we describe the well-known Command design pattern, given in the GoF
(so-called “Gang of Four”) book by Gamma et al. [13] as a case study. The main goal
here is to illustrate the boundaries of the forbidden. The design pattern is first presented
in terms of the UML class diagram. Next, we demonstrate the Generic Design Algo-
rithm of Sect. 4, in a series of steps, starting with the chosen Modularity Matrix — see
Exman [7]. We could as well choose a Laplacian Matrix — see Exman and Sakhnini [9].
The specific steps, following the algorithm are:
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a. Obtain a matrix — we choose the Modularity Matrix to represent the design pattern;
such a matrix is symmetrized and weighted by means of an affinity;

b. Get eigenvalues/eigenvectors — use the suitable approach for the chosen matrix; for
a Modularity Matrix the eigenvectors are listed in decreasing order of their
respective eigenvalues; then one takes the highest eigenvectors that completely span
the matrix size;

c. Obtain the module sizes — from the respective eigenvector positive elements;

d. Hlustrate the case of an outlier — by intentionally adding an arbitrary matrix element
coupling two modules; this shows how one deals with elements in the forbidden
region;

e. Collapse sub-systems — to illustrate the hierarchy of the Software System levels.

5.1 The Command Design Pattern — Its Class Diagram

The goal of the Command design pattern is to enable abstraction of commands, say in a
text editor application. It decouples an object that invokes an action, by clicking a Save
menu-item, from another object that actually performs the file saving action. Moreover,
the Command pattern enables generic features such as Undo and Redo, independently
of whether the specific action is a saving or printing a file.

Figure 4 shows a class diagram of the Command design pattern. It is similar to the
Command class diagram of this pattern in the GoF book (see Gamma et al. [13],
p- 233). The Command pattern in this class diagram has the following classes:

Invoker O b Command
Execute()
Client ﬁl
Receiver
< Concrete Command
»| Save() «
Paste() State
Print() Execute()
Set-Receiver()

Fig. 4. Command Design pattern UML Class Diagram — the invoker, a menu-item or button,
once clicked triggers commands execution. The Concrete-Command inherits the abstract
Command class (both with a beige color) and actually executes an action on the Receiver (a
document). Figure adapted from Ref. [11]. (Color figure online)

e An invoker, say a menu-item or button, to be clicked in order to activate execution
of a command;
An abstract Command which characterizes the pattern;
A Concrete Command class inheriting the abstract Command to actually execute a
specific command;

e A Receiver, which represents an abstraction of a document file.

e A client, which in fact does not belong specifically to this design pattern.
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Design patterns, declared as reusable software architectural units, could be expected
to have well-defined standard forms. But any such standard does not exist.

The Command section of the GoF book (Gamma et al. [13]) displays no less than
four different class diagrams of this pattern, besides the pattern generic diagram similar
to Fig. 4. The situation is even worse when considering the Internet literature on design
patterns and their implementations in a variety of programming languages.

As was stated in Sect. 1.1, UML allows indefinite variability for any software
system. It is a flexible design model, not a theory with forbidden regions. Therefore, the
next logical step is to translate the Command class diagram into a Modularity Matrix,
enabling a theory which limits forbidden regions.

5.2 Boundaries by the Modularity Matrix

A Modularity Matrix (see Exman [5-7]) was chosen for the Command pattern case
study linking structors (generalizing classes) to provided functionals (generalizing
methods). The standard Modularity Matrix, by the Linear Software Models is square
and block-diagonal. The Command pattern Modularity Matrix displayed in Fig. 5 is
indeed square and block-diagonal.

Structor — Command ((;.‘;":f,{;},‘;l Client | Invoker |History Receiver
Functional s1 s2 S3 S4 S5 S6
execute F1 1 1
Set-receiver| gy 0 1
('gea(e- F3 1 0 0
objects
Bind-emd | F4 1 1 0
Undo Fs 0 1 1
RecHlds™ |¥o 1

Fig. 5. Command Design pattern Modularity Matrix — it is square and block diagonal with 6
Structors (columns) and Functionals (rows). Diagonal blocks (blue background) are modules:
Top-Left = essential Command pattern roles, with structors S1, S2 and functionals F1, F2
designations (again marked by beige color); Middle = generic classes; Bottom-Right = Receiver.
Zero-valued elements outside the modules are omitted for simplicity. Figure adapted from Ref.
[11]. (Color figure online)

A Modularity Matrix, containing only the system structors and functionals,
establishes a boundary between the software system and its environment. The diagonal
blocks also set well-defined boundaries among modules.
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5.3 Eigenvectors Delimit the Forbidden Regions

A spectral approach applied to the Modularity Matrix has been developed [8] to find
the software system module sizes and eventual outliers, based upon the matrix
eigenvectors and eigenvalues. The approach is formally described by an eigenvalue
equation, entirely analogous to Eq. (1) in Subsect. 2.2:

M -vk = Jk - vkZ (2)

M is a symmetrized and weighted Modularity Matrix; vk stands for the k™ eigenvector
of M; the eigenvector vk fits to its eigenvalue k. Symmetrizing and weighting details
by an affinity expression are not essential to understand the arguments and conclusions
of this paper. More details can be found in the paper by Exman [8].

The Command pattern Modularity Matrix eigenvectors and eigenvalues are shown
in Fig. 6. The eigenvalues are sorted in decreasing order. One can easily verify that the
positive eigenvector elements in the first three eigenvectors span the whole matrix.
These eigenvector elements correspond to the module sizes shown in Fig. 5. The
elements of these eigenvectors have only zero-valued or positive values, in contrast to
the remaining eigenvectors.

Eigenvectors 1 2 3 4 5 6
0 0.707 0 0 0.707 0
0 0.707 0 0 -0.707 0
0.5 0 0 0707] © -0.5
0.707 0 0 0 0 0.707
0.5 0 0 0.707 0 -0.5
0 0 1 0 0 0
Eigenvalues> | 1.52 | 1.367 1 1 0.633 | 0.48

Fig. 6. Command pattern eigenvectors/eigenvalues — the three first eigenvectors fitting the first
three eigenvalues — to the left of the red vertical separator — span the Modularity matrix modules.
Positive eigenvector elements (blue background) obtain the matrix module sizes in Fig. 5. Here
the module sizes fit the eigenvalues’ order. Figure adapted from Ref. [11]. (Color figure online)

Had we chosen a Laplacian Matrix (see Exman and Sakhnini [9]) instead of the
Modularity Matrix to solve our case study, the generic eigenvalue Eq. (2) would still be
valid. On the other hand, the specific eigenvalues and eigenvectors would be different,
as well as their meaning and the way to obtain the module sizes. These Matrix specifics
are not essential for the understanding the results of this paper. The generic approach,
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viz. the fact that eigenvectors delimit the boundaries of the forbidden regions, is the
important message.

5.4 Redesign to Eliminate Forbidden Outliers

The treatment of existing outliers can be illustrated by intentionally adding a 1-valued
matrix element to the block diagonal matrix of the Command pattern in Fig. 5 as
follows. The outcome matrix in Fig. 7 has an added element, in row F2 and column S3,
which indeed is an outlier. The latter element couples the upper-left module (over-
lapped by row F2) with the middle module (overlapped by column S3), while itself
being outside the borders of both these modules.

The outlier in Fig. 7 is revealed by the Forbidden boundary — cohesion check
within our Generic Design Algorithm (in Sect. 4) as follows:

1. The eigenvector module size — it fits a large module of size 5 * 5 which is the result
of coupling of the upper-left module of size 2 * 2 with the middle module of size
3%3;

2. The cohesion of the large module — is too low, as it has a total of 16 zero-valued
elements, 5 inside the coupled modules and 11 in the forbidden regions of the
environment of these modules, viz. in rows F3 to F5 below the upper-left module
and in columns S3 to S5 above the middle module. Its sparsity is then calculated as
16/25 = 0.64, which is higher than the threshold of 50%. Thus this larger coupled
module must be split.

Structor — Command &%‘gg;ﬁl Client | Invoker |History Receiver
Funciional s1 S2 S3 sS4 S5 S6

execute F1 1 1

7
Set-receiver | g 0 1
Y

St I8 1 0 0
Bind-cmd | F4 1 1 0

Undo F5 0 1 1

Regtls™ |Fo |

Fig. 7. Command pattern Modularity Matrix with outlier — this is the matrix in Fig. 5, with an
added outlier element in row F2 and column S3 (with dark blue hatched background).
Zero-valued matrix elements outside the modules are omitted for clarity. Figure adapted from
Ref. [11]. (Color figure online)
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Our Generic Design Algorithm determines that outliers — 1-valued matrix elements
in forbidden matrix regions — i.e. outside the diagonal modules, should be eliminated
and the matrix redesigned.

5.5 Hierarchical Sub-spaces of the Command Design Pattern

We finally illustrate the meaning of the Hierarchical Design Sub-Spaces of Axiom 2 in
Subsect. 3.1. The modules of the Modularity Matrix of the Command design pattern, in
Fig. 5, have its structors and functionals explicitly shown. Each of these three modules
may be collapsed into the next higher level of the hierarchy for this system, to obtain
the Modularity Matrix in Fig. 8. This is a 3 * 3 matrix. Expanding this higher level
matrix into the next lower level, obtains back the matrix in Fig. 5.

Structor Command Generic Receiver
-> roles Classes
Functional
unctional J s1 S2 S3
Execute
command F1 1
Generic F2
function 1
Receiver F3
Action l

Fig. 8. Collapsed high-level Modularity Matrix of the Command Design pattern — modules of
Fig. 5 were collapsed to single matrix elements: Top-Left = essential Command pattern roles;
Middle = generic classes; Bottom-Right = Receiver of the action. Zero-valued matrix elements
are omitted for clarity. Figure adapted from Ref. [11].

Performing one further collapsing operation into the highest level of the Command
pattern hierarchy, one obtains the Modularity matrix in Fig. 9, whichis a 1 * 1 matrix.

Structor Command
> Design
pattern
Functional J
S1
Execute
Command F1 1

Fig. 9. Collapsed highest-level Modularity Matrix of the Command Design pattern — modules
of Fig. 8 were collapsed into a single matrix element.

The whole hierarchy of the Command design pattern, viz. the upper-level system,
the next level sub-systems and the lower-level sub-sub-systems, is shown in Fig. 10, to
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Fig. 10. Hierarchical System of Command Design pattern — the three Modularity Matrices in the
Command design pattern hierarchy. Top-Left: fully collapsed system; Middle: collapsed
sub-systems; Bottom-right: fully expanded sub-sub-systems to the resolution of Fig. 5.

illustrate the idea of a hierarchical software system. Note that this is the final designed
system. The Hierarchical Design Sub-Spaces have the same pyramidal structure, in
which each abstraction level corresponds to a sub-space, which in turn is represented
by one Modularity Matrix.

6 Discussion

This paper has shown, motivated by physical systems’ metaphors, that generic formal
quality criteria for software system design are provided by Linear Algebra, within the
theory of Linear Software Systems. Here we discuss the nature of such criteria and why
they are essential.

6.1 The Theoretical Importance of Forbidden Regions

The idea of focusing on Forbidden Regions is somewhat surprising, since apparently
one would most probably prefer an emphasis on positive rather than negative design
criteria. But the purpose of real theories is to simultaneously provide positive and
negative criteria. When one says that some decisions are desirable, one is concomi-
tantly saying that other decisions are undesirable.
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Positive criteria declare that some design space regions lead to desirable properties
of a software system, such as modularity.

What is the theoretical importance of Forbidden Regions?

Their importance is to call the attention of software engineers to design problems,
say undesirable coupling between software modules, which must be solved. Thus,
Forbidden Regions are clear signals that the design process is still not fully
accomplished.

6.2 Formalization of the Design of Artificial Systems

In principle one could refute the validity of the physical metaphors, since there is no
special reason to assume that physical systems and software systems behave analo-
gously. One must provide further arguments with this respect.

A first argument is the existence of a common body of knowledge covering both
natural and artificial systems, which justifies similar treatment of both kinds of systems.
An example, referring to the science of aerodynamics, is that designed artificial sys-
tems, be it an airplane or the software embedded in its computers, behave to a large
extent like natural systems. Citing Herbert Simon from his book The Sciences of the
Artificial [19] (in p. 7): “Given an airplane, or given a bird, we can analyze them by the
methods of natural science without any particular attention to purpose or adaptation...”.

A second argument is the hierarchical structure which is common to social systems,
natural systems and software systems. Referring to software systems, we find it so
important for this paper, that we explicitly stated hierarchy in Axiom 2, and in the
explanations surrounding this axiom in Subsect. 3.1. Again citing Herbert Simon’s
book [19] (in p. 184): ““...my central theme is that complexity frequently takes the form
of hierarchy and that hierarchic systems have some common properties independent of
their specific content.” This is further and thoroughly discussed by Simon in Chap. 8
“The Architecture of Complexity: Hierarchic Systems” of the same book.

The issue of the validity of physical metaphors for software systems is much
deeper, but space limitations of this paper prevent us to embark in the broader dis-
cussion that this issue deserves.

6.3 Why Eigenvectors?

Eigenvectors are important for dimensionality reduction. Specifically, in the context of
software engineering, as shown in Sect. 5.3 of this paper, they enable modularity in a
software system represented by a Modularity Matrix, or alternatively by a Laplacian
matrix, in each of the abstraction levels of the hierarchical software structure.

Eigenvectors reduce and simplify the set of vectors describing a software system.
Accordingly, the corresponding modules have the effect of reducing a large software
system to a smaller set of sub-systems that are easier to comprehend.

Formally, software system modularity implies lack of dependence among different
modules. In terms of Modularity matrices — e.g. the matrix in Fig. 5 — modules are
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mutually independent since each module is composed by a set of structors and func-
tionals which is disjoint to the sets of structors and functionals of all other modules.

Modules exactly reflect the eigenvectors’ mutual orthogonality. Eigenvectors — e.g.
the first three in Fig. 6 in Subsect. 5.3 — have zero-valued pairwise scalar products. The
same is true for any structor from a given module: it is orthogonal to structors
belonging to any other modules of the same Modularity Matrix. Mutatis mutandis, any
functional from a given module is mutually orthogonal to any functional belonging to
other modules of the same Modularity matrix.

6.4 Search Efficiency Issues

The 1% axiom on the Software System Design Space in Subsect. 3.1 of this paper, tells
that the Design Space is discrete and finite. It does not guarantee that the Design Space
is small. Search in the Design Space could still take a long time.

The 2™ axiom in Subsect. 3.1 — demanding a hierarchical Design Space for a
software system — is the basis of an intuitive argument for the claim that, while the
overall Design Space for the whole system may not be small, the Design Sub-Space for
each subsystem in any level in the Design Space hierarchy is expected to be of bounded
size.

For instance, looking at each abstraction level of our case study — the Command
Design pattern shown in Fig. 10 — one sees that the maximal size of each module is
bounded by a 3 * 3 matrix. In general, one expects for a multi-level hierarchy of a large
system, that in each abstraction level the subsystem matrix size is bounded by a small
integer. In other words, design space search in each module is efficient for all hierarchy
levels.

6.5 Main Contribution

This paper claims that real software system theories need to be of practical use for
software design. Such theories should provide formal design quality criteria, supporting
system modularity. Concomitantly these theories should point out to forbidden system
compositions, signaling undesired modules’ coupling in need of software system
redesign.
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