
123

Enrique Cabello
Jorge Cardoso
André Ludwig
Leszek A. Maciaszek
Marten van Sinderen (Eds.)

11th International Joint Conference, ICSOFT 2016
Lisbon, Portugal, July 24–26, 2016
Revised Selected Papers

Software Technologies

Communications in Computer and Information Science 743

Communications
in Computer and Information Science 743

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Orhun Kara, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Enrique Cabello • Jorge Cardoso
André Ludwig • Leszek A. Maciaszek
Marten van Sinderen (Eds.)

Software Technologies
11th International Joint Conference, ICSOFT 2016
Lisbon, Portugal, July 24–26, 2016
Revised Selected Papers

123

Editors
Enrique Cabello
Edifici Ampliación del Rectorado
Universidad Rey Juan Carlos
Madrid
Spain

Jorge Cardoso
Departamento de Engenharia Informática
Universidade de Coimbra
Coimbra
Portugal

André Ludwig
Kühne Logistics University – KLU
Hamburg
Germany

Leszek A. Maciaszek
Wroclaw University of Economics
Wroclaw
Poland

Marten van Sinderen
Information Systems Group
Enschede
The Netherlands

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-62568-3 ISBN 978-3-319-62569-0 (eBook)
DOI 10.1007/978-3-319-62569-0

Library of Congress Control Number: 2017945730

© Springer International Publishing AG 2017, corrected publication 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The present book includes extended and revised versions of a set of selected papers
from the 11th International Joint Conference on Software Technologies (ICSOFT
2016), held in Lisbon, Portugal, during 24–26 July, 2016.

ICSOFT 2016 received 84 paper submissions from 26 countries, of which 19% are
included in this book. The papers were selected by the event chairs and their selection
is based on a number of criteria that include the classifications and comments provided
by the Program Committee members, the session chairs’ assessment and also the
program chairs’ global view of all papers included in the technical program. The
authors of selected papers were then invited to submit a revised and extended version
of their papers having at least 30% innovative material.

The purpose of ICSOFT is to bring together researchers, engineers, and practitioners
working in areas that are either related to new software paradigm trends or to main-
stream software engineering and applications. ICSOFT is composed of two co-located
conferences, each specialized in the aforementioned areas. Together, ICSOFT-EA and
ICSOFT-PT aim at becoming a major meeting point for software engineers worldwide.

The papers selected to be included in this book contribute to the understanding of
relevant trends of current research on software technologies, including:

– Modelling for mobile devices
– Software and system testing
– Model-driven software development
– Reengineering systems for multi-tenancy
– Embedded and real-time systems reconfiguration
– Domain-specific languages and modelling
– Software and systems quality
– Context-aware and dynamically adapting software systems

We would like to thank all the authors for their contributions and the reviewers who
have helped ensure the quality of this publication.

February 2017 Enrique Cabello
Jorge Cardoso
André Ludwig

Leszek Maciaszek
Marten van Sinderen

Organization

Conference Chair

Enrique Cabello Universidad Rey Juan Carlos, Spain

Program Co-chairs

ICSOFT-EA

Leszek Maciaszek Wroclaw University of Economics, Poland and
Macquarie University, Sydney, Australia

ICSOFT-PT

Jorge Cardoso University of Coimbra, Portugal and Huawei European
Research Center, Germany

André Ludwig Kühne Logistics University, Germany
Marten van Sinderen University of Twente, The Netherlands

ICSOFT-EA Program Committee

Markus Aleksy ABB Corporate Research Center, Germany
Waleed Alsabhan KACST, UK
Nicolas Anquetil Inria and USTL, France
Jocelyn Armarego Murdoch University, Australia
Bernhard Bauer University of Augsburg, Germany
Fevzi Belli Izmir Institute of Technology, Turkey
Jorge Bernardino Polytechnic Institute of Coimbra, ISEC, Portugal
Mario Berón Universidad Nacional de San Luis, Argentina
Andrea Burattin University of Innsbruck, Austria
Dumitru Burdescu University of Craiova, Romania
Fergal Mc Caffery Dundalk Institute of Technology, Ireland
Antoni Lluís Mesquida

Calafat
Universitat de les Illes Balears (UIB), Spain

Krzysztof Cetnarowicz AGH, University of Science and Technology, Poland
Kung Chen National Chengchi University, Taiwan
Marta Cimitile Unitelma Sapienza, Italy
Rem Collier University College Dublin, Ireland
António Miguel Rosado

da Cruz
Instituto Politécnico de Viana do Castelo, Portugal

Lidia Cuesta Universitat Politècnica de Catalunya, Spain
Aldo Dagnino ABB Corporate Research, USA
Steven Demurjian University of Connecticut, USA
Philippe Dugerdil Geneva School of Business Administration,

University of Applied Sciences of Western
Switzerland, Switzerland

Maria Jose Escalona University of Seville, Spain
João Faria FEUP, University of Porto, Portugal
Cléver Ricardo Guareis de

Farias
University of São Paulo, Brazil

Matthias Galster University of Canterbury, New Zealand
Kehan Gao Eastern Connecticut State University, USA
Hamza Gharsellaoui Al-Jouf College of Technology, TVTC, Saudi Arabia
Paola Giannini University of Piemonte Orientale, Italy
J. Paul Gibson Mines-Telecom, Telecom SudParis, France
Hatim Hafiddi INPT, Morocco
Slimane Hammoudi ESEO, MODESTE, France
Jean Hauck Universidade Federal de Santa Catarina, Brazil
Pedro Rangel Henriques University of Minho, Portugal
Jose Luis Arciniegas

Herrera
Universidad del Cauca, Colombia

Jose R. Hilera University of Alcala, Spain
Jang-Eui Hong Chungbuk National University, Korea, Republic of
Shihong Huang Florida Atlantic University, USA
Zbigniew Huzar University of Wroclaw, Poland
Ivan Ivanov SUNY Empire State College, USA
Judit Jasz University of Szeged, Hungary
Lingxiao Jiang Singapore Management University, Singapore
Bo Nørregaard Jørgensen University of Southern Denmark, Denmark
Sanpawat Kantabutra Chiang Mai University, Thailand
Dimitris Karagiannis University of Vienna, Austria
Carlos Kavka ESTECO SpA, Italy
Mieczyslaw Kokar Northeastern University, USA
Jitka Komarkova University of Pardubice, Czech Republic
Jun Kong North Dakota State University, USA
Martin Kropp University of Applied Sciences Northwestern

Switzerland, Switzerland
Rob Kusters Eindhoven University of Technology and Open

University of the Netherlands, The Netherlands
Giuseppe Lami Consiglio Nazionale delle Ricerche, Italy
Konstantin Läufer Loyola University Chicago, USA
David Lorenz Open University, Israel
Ivan Lukovic University of Novi Sad, Serbia
Ricardo J. Machado Universidade do Minho, Portugal
Leszek Maciaszek Wroclaw University of Economics, Poland and

Macquarie University, Sydney, Australia

VIII Organization

Fabrizio Maria Maggi University of Tartu, Estonia
Ivano Malavolta Gran Sasso Science Institute, Italy
Ahmad Kamran Malik Quaid-i-Azam University, Pakistan
Eda Marchetti ISTI-CNR, Italy
Katsuhisa Maruyama Ritsumeikan University, Japan
Tom McBride University of Technology Sydney, Australia
Jose Ramon Gonzalez de

Mendivil
Universidad Publica de Navarra, Spain

Marian Cristian Mihaescu University of Craiova, Romania
Dimitris Mitrakos Aristotle University of Thessaloniki, Greece
Mattia Monga Università degli Studi di Milano, Italy
Antao Moura Federal Universisty of Campina Grande (UFCG),

Brazil
Takako Nakatani The Open University of Japan, Japan
Paolo Nesi University of Florence, Italy
Jianwei Niu University of Texas at San Antonio, USA
Rory O’Connor Dublin City University, Ireland
Hanna Oktaba Universidad National Autonoma de Mexico, Mexico
Luis Pedro University of Aveiro, Portugal
Dietmar Pfahl University of Tartu, Estonia
Giuseppe Polese Università Degli Studi Di Salerno, Italy
Gustavo Rossi Lifia, Argentina
Chandan Rupakheti Rose-Hulman Institute of Technology, USA
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Maria-Isabel

Sanchez-Segura
Carlos III University of Madrid, Spain

Luis Fernandez Sanz University of Alcala, Spain
Riccardo Scandariato University of Gothenburg, Sweden
Bradley Schmerl Carnegie Mellon University, USA
Istvan Siket Hungarian Academy of Science, Research Group on

Artificial Intelligence, Hungary
Harvey Siy University of Nebraska at Omaha, USA
Michal Smialek Warsaw University of Technology, Poland
Yeong-Tae Song Towson University, USA
Anongnart Srivihok Kasetsart University, Thailand
Miroslaw Staron University of Gothenburg, Sweden
Andrzej Tarlecki University of Warsaw, Poland
Bedir Tekinerdogan Wageningen University, The Netherlands
Joseph Trienekens Open University Heerlen, The Netherlands
László Vidács University of Szeged, Hungary
Sergiy Vilkomir East Carolina University, USA
Gianluigi Viscusi EPFL Lausanne, Switzerland
Christiane Gresse von

Wangenheim
UFSC, Federal University of Santa Catarina, Brazil

Dietmar Wikarski FH Brandenburg University of Applied Sciences,
Germany

Organization IX

Dietmar Winkler Vienna University of Technology, Austria
Murat Yilmaz Çankaya University, Turkey
Elena Zucca University of Genoa, Italy

ICSOFT-EA Additional Reviewers

Sharmistha Chatterjee Florida Atlantic University, USA
Aritra Ghosh Florida Atlantic University, USA
Carlos Salgado Universidade do Minho, Portugal
Nikolaos Tantouris University of Vienna, Austria
Michael Walch University of Vienna, Austria

ICSOFT-PT Program Committee

Hafiz Farooq Ahmad King Faisal University, Saudi Arabia
Markus Aleksy ABB Corporate Research Center, Germany
Uwe Assmann TU-Dresden, Germany
Colin Atkinson University of Mannheim, Germany
Maurice H. ter Beek ISTI-CNR, Pisa, Italy
Wolfgang Bein University of Nevada, Las Vegas, USA
Fevzi Belli Izmir Institute of Technology, Turkey
Jorge Bernardino Polytechnic Institute of Coimbra, ISEC, Portugal
Marcello M. Bersani Politecnico di Milano, Italy
Marcello Bonsangue Leiden University, The Netherlands
Thomas Buchmann University of Bayreuth, Germany
Dumitru Burdescu University of Craiova, Romania
Nelio Cacho Federal University of Rio Grande do Norte, Brazil
Fergal Mc Caffery Dundalk Institute of Technology, Ireland
Gerardo Canfora Rcost, Research Centre On Software Technology, Italy
Marta Cimitile Unitelma Sapienza, Italy
Rem Collier University College Dublin, Ireland
Agostino Cortesi Università Ca’ Foscari di Venezia, Italy
Sergiu Dascalu University of Nevada, Reno, USA
Steven Demurjian University of Connecticut, USA
Morgan Ericsson Linnaeus University, Sweden
Maria Jose Escalona University of Seville, Spain
Jean-Rémy Falleri Bordeaux INP, France
João Faria FEUP, University of Porto, Portugal
Cléver Ricardo Guareis de

Farias
University of São Paulo, Brazil

Alain Finkel École Normale Supérieure Cachan, France
Chiara Di Francescomarino FBK-IRST, Italy
Kehan Gao Eastern Connecticut State University, USA
Paola Giannini University of Piemonte Orientale, Italy
J. Paul Gibson Mines-Telecom, Telecom SudParis, France
Gregor Grambow AristaFlow GmbH, Germany

X Organization

Hatim Hafiddi INPT, Morocco
Øystein Haugen Østfold University College, Norway
Christian Heinlein Aalen University, Germany
Jose Luis Arciniegas

Herrera
Universidad del Cauca, Colombia

Jose R. Hilera University of Alcala, Spain
Andreas Holzinger Medical University Graz, Austria
Jang-Eui Hong Chungbuk National University, Korea, Republic of
Milan Ignjatovic Prosoftwarica GmbH, Switzerland
Ivan Ivanov SUNY Empire State College, USA
Hermann Kaindl Vienna University of Technology, Austria
Dimitris Karagiannis University of Vienna, Austria
Dean Kelley Minnesota State University, USA
Jun Kong North Dakota State University, USA
Martin Kropp University of Applied Sciences Northwestern

Switzerland, Switzerland
Konstantin Läufer Loyola University Chicago, USA
David Lorenz Open University, Israel
Ahmad Kamran Malik Quaid-i-Azam University, Pakistan
Eda Marchetti ISTI-CNR, Italy
Manuel Mazzara Innopolis University, Russian Federation
Greg Michaelson Heriot-Watt University, UK
Marian Cristian Mihaescu University of Craiova, Romania
Tommi Mikkonen Institute of Software Systems, Tampere University

of Technology, Finland
Dimitris Mitrakos Aristotle University of Thessaloniki, Greece
Valérie Monfort LAMIH Valenciennes UMR CNRS 8201, France
Mattia Monga Università degli Studi di Milano, Italy
José Arturo Mora-Soto Mathematics Research Center, Mexico
Claude Moulin JRU CNRS Heudiasyc, University of Compiègne,

France
Elena Navarro University of Castilla-La Mancha, Spain
Paolo Nesi University of Florence, Italy
Rory O’Connor Dublin City University, Ireland
Claus Pahl Free University of Bozen-Bolzano, Italy
Marcos Palacios University of Oviedo, Spain
Jennifer Pérez Universidad Politécnica de Madrid (UPM), Spain
Frantisek Plasil Charles University in Prague, Czech Republic
Rosario Pugliese Università di Firenze, Italy
Michel Reniers Eindhoven University of Technology, The Netherlands
Carlos Rodriguez University of Trento, Italy
Colette Rolland Université de Paris 1 Panthèon Sorbonne, France
Carlos Rossi Universidad de Málaga, Spain
Gustavo Rossi Lifia, Argentina
Matteo Rossi Politecnico di Milano, Italy

Organization XI

Gunter Saake Institute of Technical and Business Information
Systems, Germany

Francesca Saglietti University of Erlangen-Nuremberg, Germany
Maria-Isabel

Sanchez-Segura
Carlos III University of Madrid, Spain

Lionel Seinturier University of Lille, France
Yeong-Tae Song Towson University, USA
Hiroki Suguri Miyagi University, Japan
Clemens Szyperski Microsoft, USA
Carolyn L. Talcott SRI International, USA
Dávid Tengeri University of Szeged, Hungary
Chouki Tibermacine LIRMM, CNRS and Montpellier University, France
Gianluigi Viscusi EPFL Lausanne, Switzerland
Christiane Gresse von

Wangenheim
UFSC, Federal University of Santa Catarina, Brazil

Dietmar Wikarski FH Brandenburg University of Applied Sciences,
Germany

Andreas Winter Carl von Ossietzky University Oldenburg, Germany
Jinhui Yao Xerox Research, USA
Jingyu Zhang Macquarie University, Australia
Elena Zucca University of Genoa, Italy

ICSOFT-PT Additional Reviewers

Dominik Bork University of Vienna, Austria
Md Moinul Hossain University of Nevada, Reno, USA
Lisa Palathingal University of Nevada, Reno, USA
Larisa Safina Innopolis University, Russian Federation

Invited Speakers

Uwe Assmann TU-Dresden, Germany
Schahram Dustdar Vienna University of Technology, Austria
Henry Muccini University of L’Aquila, Italy

XII Organization

Contents

Software Engineering and Applications

Collaboration Viewpoint for Modeling Cross-Organizational
Business Concerns . 3

Ayalew Kassahun and Bedir Tekinerdogan

A New Approach for Automatic Development of Reconfigurable
Real-Time Systems . 22

Wafa Lakhdhar, Rania Mzid, Mohamed Khalgui, and Nicolas Treves

Testing Web Services with Model-Based Mutation 45
Faezeh Siavashi, Junaid Iqbal, Dragos Truscan, and Jüri Vain

Software Product Line Test Suite Reduction with Constraint Optimization . . . 68
Mats Carlsson, Arnaud Gotlieb, and Dusica Marijan

A Survey on Testing Distributed and Heterogeneous Systems:
The State of the Practice . 88

Bruno Lima and João Pascoal Faria

Model-Based Recovery and Adaptation Connectors: Design
and Experimentation . 108

Emad Albassam, Hassan Gomaa, and Daniel A. Menascé

Supporting Visual Data Exploration via Interactive Constraints 132
Wendy Lucas and Taylor Gordon

I-Codesign: A Codesign Methodology for Reconfigurable
Embedded Systems . 153

Ines Ghribi, Riadh Ben Abdallah, Mohamed Khalgui,
and Marco Platzner

CRMPSoC: New Solution for Feasible Reconfigurable MPSoC. 175
Imen Khemaissia, Olfa Mosbahi, Mohamed Khalgui, and Zhiwu Li

Software Paradigm Trends

Bidirectional Model Transformations Using a Handcrafted Triple
Graph Transformation System. 201

Thomas Buchmann and Sandra Greiner

http://dx.doi.org/10.1007/978-3-319-62569-0_1
http://dx.doi.org/10.1007/978-3-319-62569-0_1
http://dx.doi.org/10.1007/978-3-319-62569-0_2
http://dx.doi.org/10.1007/978-3-319-62569-0_2
http://dx.doi.org/10.1007/978-3-319-62569-0_3
http://dx.doi.org/10.1007/978-3-319-62569-0_4
http://dx.doi.org/10.1007/978-3-319-62569-0_5
http://dx.doi.org/10.1007/978-3-319-62569-0_5
http://dx.doi.org/10.1007/978-3-319-62569-0_6
http://dx.doi.org/10.1007/978-3-319-62569-0_6
http://dx.doi.org/10.1007/978-3-319-62569-0_7
http://dx.doi.org/10.1007/978-3-319-62569-0_8
http://dx.doi.org/10.1007/978-3-319-62569-0_8
http://dx.doi.org/10.1007/978-3-319-62569-0_9
http://dx.doi.org/10.1007/978-3-319-62569-0_10
http://dx.doi.org/10.1007/978-3-319-62569-0_10

Domain-Specific Modelling Using Mobile Devices 221
Diego Vaquero-Melchor, Antonio Garmendia, Esther Guerra,
and Juan de Lara

Applying MDA to Rule and Data Generation for Compliance Checking 239
Deepali Kholkar, Sagar Sunkle, and Vinay Kulkarni

Software System Theory of the Forbidden Within Discrete Design 264
Iaakov Exman

Enabling Legacy Applications for Multi-tenancy Without Reengineering 284
Uwe Hohenstein and Preeti Koka

An Incremental Approach to Testing AOP . 309
André Restivo, Ademar Aguiar, and Ana Moreira

Facilitating Reuse of Control Software Through Context Modelling
Based on the Six-Variable Model . 332

Nelufar Ulfat-Bunyadi, Rene Meis, and Maritta Heisel

Correction to: CRMPSoC: New Solution for Feasible
Reconfigurable MPSoC . C1

Imen Khemaissia, Olfa Mosbahi, Mohamed Khalgui, and Zhiwu Li

Author Index . 359

XIV Contents

http://dx.doi.org/10.1007/978-3-319-62569-0_11
http://dx.doi.org/10.1007/978-3-319-62569-0_12
http://dx.doi.org/10.1007/978-3-319-62569-0_13
http://dx.doi.org/10.1007/978-3-319-62569-0_14
http://dx.doi.org/10.1007/978-3-319-62569-0_15
http://dx.doi.org/10.1007/978-3-319-62569-0_16
http://dx.doi.org/10.1007/978-3-319-62569-0_16

Software Engineering and Applications

Collaboration Viewpoint for Modeling
Cross-Organizational Business Concerns

Ayalew Kassahun(&) and Bedir Tekinerdogan

Information Technology Group, Wageningen University, Hollandseweg 1,
Wageningen, The Netherlands

{ayalew.kassahun,bedir.tekinerdogan}@wur.nl

Abstract. Organizations very often need to collaborate to achieve their busi-
ness goals. Hereby it is important that the collaboration concerns are properly
identified and reflected in their businesses. In practice, the business process
design and architecture design are often carried out separately. This often leads
to a misalignment between the business process and architecture design, a
problem which becomes more severe when multiple collaborating organizations
are involved. To address this problem, it is important to provide the proper
design abstractions that can be used to detect and correct misalignments. To this
end, we propose the architecture collaboration viewpoint that can be used by
teams of business analysts and software architects when addressing business
collaboration concerns. The collaboration viewpoint uses elements from busi-
ness process and architecture viewpoints to provide new modeling artifacts for
alignment. The design artefacts are mapping tables and workflow pattern dia-
grams that are used to identify misalignments and redesign the business pro-
cesses. The viewpoint facilitates the communication between business analysts
and architects. We illustrate the collaboration viewpoint for a food supply chain
transparency system from a real industrial case study.

Keywords: Architecture viewpoint � Business collaboration � Collaboration
viewpoint � Business process modeling � Workflow patterns

1 Introduction

Businesses today rarely operate in isolation but must collaborate with others in a
coordinated fashion. To address collaboration concerns business analysts design
business process models (BPMs) that integrate business activities across the collabo-
rating organizations. BPMs have to be supported by underlying software systems, and
therefore, BPMs will have a direct impact on the required software systems and the
corresponding architectural design. Conversely, the architectural design imposes con-
straints on BPMs, and as a consequence, an inherent, mutual dependency exists
between these two sets of designs.

Business collaboration involves BPMs that span multiple organizations – which we
hereafter refer to as business collaboration processes. When realizing business col-
laboration processes multiple software systems need to be taken into account. As a
result, the mutual alignment of BPMs and architectural designs becomes very

© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 3–21, 2017.
DOI: 10.1007/978-3-319-62569-0_1

cumbersome. We define the difficulties associated in aligning the two designs as
business collaboration concerns.

The current practice addresses business process concerns and architectural concerns
separately, and sequentially—first the BPMs are designed then the software architec-
ture is designed using the BPM models as inputs. This approach is to an extent feasible
if applied within the context of an individual organization. However, when dealing
with multiple software systems from different organizations the approach becomes
infeasible due to the mutual dependency between business process models and the
software architecture.

To address the problem we studied the existing modelling approaches. At present,
two distinct sets of viewpoints are used to address business collaboration concerns.
Various architecture viewpoints are used for modelling the structure of software sys-
tems, which we hereafter referred to as structural viewpoints. Business process models
and notations are used for modelling business processes and are hereafter referred to as
business process viewpoints. The structural viewpoints do not directly address business
process concerns. Likewise, the business process viewpoints do not consider archi-
tectural concerns. As a consequence, a business-IT alignment problem arises. The
alignment problem has been discussed in the context of individual organizations
(Avison et al. 2004; Hong-Mei 2008; Bartens et al. 2014; Aversano et al. 2016) but not
in the context of business collaborations.

In this paper we introduce the collaboration viewpoint for addressing business
collaboration concerns. In the collaboration viewpoint we use architectural and busi-
ness process viewpoints to provide new kinds of models with the corresponding iter-
ative design process for applying them. We introduce mapping tables and use workflow
patterns as a means of identifying misalignment and redesigning the BPMs. The col-
laboration viewpoint is meant as means of enabling teamwork between software
architects and business process analysts. The teamwork ensures that the business
process and architecture views are well-aligned and feasible. We illustrate the view-
point in real industrial case study for which a safety and quality transparency system for
food supply chains is designed.

The remainder of this paper is organized as follows. Section 2 provides background
information. Section 3 presents the case study used to demonstrate the collaboration
viewpoint. Section 4 presents the collaboration viewpoint and a method for applying it.
In Sect. 5 the viewpoint is applied to the case study. In Sect. 6 the related work is
presented and in Sect. 7 concluding remarks are made.

2 Background

In this section we first discuss the background on software architecture, BPM, and
workflow patterns.

4 A. Kassahun and B. Tekinerdogan

2.1 Software Architecture

Software architecture defines the gross-level structure of a software system
(ISO/IEC/IEEE 2011). Architecture modeling is important to enhance the under-
standing of the software system, support the communication among stakeholders, and
guide the development process (Tekinerdogan 2014). A common practice to modeling
architecture is using different architectural views that address the concerns of a specific
group of stakeholders. Architectural views document the architectural design decisions
from a specific viewpoint. That means, the designs documented in an architectural view
follow the conventions, including models and notations, defined in the corresponding
architectural viewpoint. From a given architectural viewpoint one or more architectural
views can be designed (Clements et al. 2010; ISO/IEC/IEEE 2011).

In the literature, a number of viewpoints have been identified (Kruchten 1995;
Hofmeister et al. 2000; Kruchten 2004; Lattanze 2008; Clements et al. 2010). The
Views and Beyond (V&B) approach identifies three major viewpoints: module, com-
ponent-and-connector (C&C), and allocation. Module views deal with concerns related
to implementation, such as, decomposition and generalization. The C&C and allocation
viewpoints are structural viewpoints since they largely refer to the structure of the
software system. The C&C views deal with the interaction structure, such as, data flow
and message routing. The allocation viewpoint describes how software elements are
allocated to the environment of the software system, such as, hardware or development
team (Clements et al. 2010).

Recognizing that new viewpoints may be needed to address new kinds of concerns,
the ISO/IEC 42010 standard for documenting software architecture (ISO/IEC/IEEE
2011) provides an extensible metamodel for defining new viewpoints.

2.2 BPM

A business process describes how the activities for achieving a particular business
outcome are interrelated and how they are executed (Davenport and Short 1998). The
process modelling approach has historically gained the attention of businesses when it
was effectively used to address inefficiencies in functional organizations (Dumas et al.
2013). At its core, a BPM identifies the events of the business process and the series of
activities that are triggered by them (Dumas et al. 2013). In practice, business processes
are modeled by business analysts using visual modelling methods. The most prominent
business processes modeling language is BPMN (Business Process Model and Nota-
tion) (ISO/IEC 2013). BPMs address business requirements, and as such, are inputs for
the software architects as requirements that should to be addressed in the architectural
design (The Open Group 2013).

2.3 Workflow Patterns

Workflow patterns are recurring problem-solution pairs that have been frequently used
in business process modeling (Russell et al. 2006). In fact, BPMs can be viewed as
being composed of workflow patterns. Since workflow patterns represent well-known

Collaboration Viewpoint for Modeling Cross-Organizational Business Concerns 5

problem-solution pairs, it is easier to describe, discuss and redesign a BPM by
manipulating its constituent workflow patterns.

In the past, more than a hundred workflow patterns have been identified, catego-
rized and cataloged (van der Aalst and ter Hofstede 2011). The most prominent cat-
egories are control-flow, data-flow and resource-flow workflow patterns (Van der Aalst
et al. 2003). Control-flow patterns model the execution ordering of activities and are the
basis for the patterns in the other categories. The data-flow patterns model how data
flows along the flow of control. The resource-flow patterns model how work is
assigned to resources (e.g. devices, people) following the flow of control. A short
summary of workflow pattern categories and the workflow patterns in each category is
provided in a previous publication (Kassahun and Tekinerdogan 2016).

3 Illustrative Case and Problem Statement

In this section we use a case study from the FIspace business collaboration research
project (Verdouw et al. 2014) to illustrate collaboration concerns and describe the
problem statement.

3.1 Case: Transparency in Food Supply Chains

A food supply chain network is a collaboration linkage of a series of food operators that
transform agricultural input products into finished food products. The food operators
involved include farmers, a series of food processors and distributors, and retailers. In
addition, mandated by food regulations, various third-parties are involved to guarantee
the safety and quality of food. In Europe, for instance, recurring food scandals and
crises have led to regulations that mandate centralized animal registry systems (EC
2000; EC 2004; EC 2015) and procedures for tracking and tracing of food products (EC
2002; EC 2007; EC 2011). Guaranteeing the safety and quality of food requires, among
other things, the smooth flow of transparency data. Transparency in food supply chains
refers to the ability to track and trace input, intermediate and finished food products
along the supply chain. A conceptual model of a food supply chain network is depicted
in Fig. 1.

Transparency involves two basic business processes: data capture and data query.
These business processes are implemented within the individual food operators (in-
ternal transparency) as well as across the supply chain (external transparency).
A software system that realizes internal transparency is referred to as Internal Trans-
parency System (ITS); the integration of internal transparency systems that realizes
external transparency is referred to as External Transparency System (ETS). Recently,
the GS1 system architecture is increasingly being adopted (GS1 2015) in realizing both
internal and external transparency systems. The EPCIS (Electronic Product Code
Information System) specification (EPCglobal 2014), which is part of the GS1 System
Architecture, provides generic data models and interface definitions for both data
capture and data query business processes.

6 A. Kassahun and B. Tekinerdogan

We elaborate business collaboration concerns using the data query BPM depicted
in Fig. 2. The BPM complies with the EPCIS specification, and is considered the
preferred scenario. However, many food operators cannot support it. In the following,
we first describe the BPM and then state the collaboration concern related to the model.
The data query BPM is initiated when an end-user takes a food product—which can be
input, semi-finished or end product—at a food operator and requests transparency data
from the food operator’s ITS. For the sake of simplicity we assume that each individual
food product item has a unique ID and the ID is obtained by scanning the barcode of
the product item. The end-user obtains transparency data using a barcode scanner or a
smartphone application (End-User App). Upon scanning a barcode, the end-user app
makes a query request and displays the transparency data returned. When the end-user
scans a product item, the app requests transparency data from the food operator
(indicated as focal). The ITS of the food operator determines where the product data
reside. If the data reside locally it fetches the data from its own database; otherwise, it
looks up the service address of the food operator (indicated as partner) that has the
required data at a third-party discovery service. It then makes a query request to the
partner food operator ITS, upon which the partner ITS returns the data it has about the
item. Since the product may have passed through many food operators—and since
transparency data about the ingredients are also part of the transparency data of a
product item—this process is repeated until no more transparency data is desired or no
more transparency data can be obtained. The focal and partner food operators are
identical but drawn in two separate lanes to be able to show the interactions among the
food operators clearly. Note, the focal food operator lane represents the one food
operator that received the request from the end-user; the partner food operator lane
represents all other food operators involved. After all data is gathered, the focal food
operator sends the aggregated data to the app, which displays the data to the user.

Fig. 1. A conceptual model of food supply chain networks. (Arrowed lines represent the flow of
information through the network.).

Collaboration Viewpoint for Modeling Cross-Organizational Business Concerns 7

The BPM shown in Fig. 2 has to be implemented by all the four types of food
operators shown in Fig. 1. The end-user app should also be provided by the food
operators. However, in practice, many of the food operators do not support most of the
activities the BPM and cannot provide end-user apps.

3.2 Problem Statement

In the previous sub-section we have described food supply chains and illustrated an
inherent business collaboration concern they face regarding transparency. In the case

Fig. 2. A BPM showing how transparency data is queried across a food supply chain.

8 A. Kassahun and B. Tekinerdogan

study we identified a number of problems in aligning the BPMs representing the
preferred scenario and the software systems that realistically can be realized by the
collaborating partners. Specifically, we can define the following problems:

• Difficulty in realizing business collaboration processes

The elements of BPMs have to be supported by businesses depending on their
roles. That is, process elements, such as, events, tasks and gateways have to be realized
by architectural elements, such as, modules, components and nodes of the software
systems that are distributed across many businesses. It turns out that the mapping of
BPMs to the diverse software systems is not straightforward. For example, the BPM
shown in Fig. 2 spans many food operators, many of which are, in practice, not capable
of fulfilling all the steps. Particularly, many of the small food operators (mainly
farmers) cannot afford to deploy the required software systems.

• Lack of a common model for supporting the interaction between business analyst
and architects

Faced with the problem stated above business analysts and software architects from
the various businesses come together to address the problem. However, the two
stakeholder types use two separate sets of models hampering the communication
between them. Business analysts use BPMs to define business processes. On the other
hand, software architects use architecture viewpoints that mainly address concerns
related to the structure of the software system. For the given case study, it was required
early on to know which activities can be fulfilled by which food operators. Neither the
business process models nor the software architecture views provide this information.
A common model that depicts the business collaboration concerns (a model that maps
elements of BPMs to elements of architectural design) would help to support the
communication and the design rationale.

• Early validation of the business process-architecture alignment is difficult

Too often BPMs are validated after the software system is realized creating major
risks. For example the BPM of Fig. 2 has an impact on the software components that
need to be deployed at each food operator node. Given only this BPM and the cor-
responding architectural designs, it is not easy to validate that the two are aligned and
feasible.

In light of the above obstacles we formulated the following general research
question: How can we support software architects and business analysts to design
BPMs and the corresponding software architecture as a team and minimize the mis-
match between the two designs?

4 Collaboration Viewpoint

Adapting the template for documenting architecture viewpoints proposed in the
ISO/IEC standard mentioned before we propose a collaboration viewpoint shown in
Table 1. The key stakeholders for the viewpoint are identified as software architects
and business analysts. In the collaboration viewpoint we adopt the BPMN modelling

Collaboration Viewpoint for Modeling Cross-Organizational Business Concerns 9

Table 1. Collaboration viewpoint documentation guide.

10 A. Kassahun and B. Tekinerdogan

method to represent BPMs. BPMN is widely used among business analysts and is also
easily understandable for software architects. BPMN models are used for three reasons.
First, we use them to represent business collaboration. Second, we map BPMN ele-
ments to organizations in mapping tables so that we can reallocate them to a different
organization during redesign. Third, we map fragments of BPMN models to workflow
patterns so that we can redesign the business collaboration process based on
well-understood patterns.

In addition to the business concerns the collaboration viewpoint uses elements of
the C&C and allocations views. Hereby, we consider only the elements of the models
of these structural views as modelling elements in the corresponding mapping table.
The architectural elements we consider most relevant are components and nodes.

The mappings of business process and architectural elements are made using two
tables shown in Table 1. The first table captures how business process elements are
allocated across the collaborating partners; the second table captures how architectural
elements are allocated across the collaborating partners. The tables are used for both
redesign and validation purposes.

Workflow patterns are represented using a workflow pattern diagram which can
also be represented as workflow mapping table. The workflow pattern diagram is a
BPMN diagram on which the BPMN elements that belong to distinct workflow patterns
are delineated using dashed-line blocks. To delineate the BPMN elements the BPM
diagram will mostly require simplification. The creation and application of workflow
pattern diagram is demonstrated in Sect. 5.

4.1 Method for Applying the Viewpoint

Figure 4 shows the method for applying the collaboration viewpoint. The method is
started by business analysts; they first design the business collaboration models as
BPMN models (step 1) and subsequently identify the relevant workflow patterns (step
2). The two steps are displayed sequentially but, in reality, they are intertwined. Next,
in step 3, software architects model the structural views of the software architecture.

In step 4 the business analysts and the software architects work as a team to allocate
elements of the BPMN and architectural views to collaborating partners using mapping
tables. They use the workflow pattern diagrams to facilitate the allocation. In this step
they identify misalignments and determine if redesign is required. If redesign is
required the next (in step 5) they identify possible redesign business process elements,
architectural elements and workflow patterns based on the insights gained from the
mapping tables. In fact, the mapping tables are used reallocate elements. Then, either
the entire process or part of it is repeated until no redesign is required. Finally (in step
6), the BPMs, the workflow pattern diagrams and the mapping tables are documented
in collaboration views following the documentation outline proposed in the next sub
section (Fig. 3).

Collaboration Viewpoint for Modeling Cross-Organizational Business Concerns 11

5 Applying the Collaboration Viewpoint

In this section we illustrate how the approach shown in Fig. 4 is applied in the real
industrial case mentioned in Sect. 3. The first step of designing the BPMs is already
demonstrated in the business collaboration model shown in Fig. 2. The second step is
identifying the workflow patterns.

Figure 4 shows the main workflow patterns of the business collaboration model we
identified, which are: sequence (cf-1), exclusive choice (cf-4), simple merge (cf-5),
multiple instances without synchronization (cf-12) and structured loop (cf-21). A fur-
ther analysis shows that the workflow patterns cf-4 and cf-5 belong together. Similarly,
the workflow patterns cf-21 and cf-12 belong together. Therefore, we identify three
workflow patterns, two of which are composite patterns.

The third step of the approach is to capture the existing software architecture that is
already in place. For the sake of simplicity we distinguish between two major groups of
food operators in terms of their existing software systems, i.e. their ITSs: small food
operator (FOsmall) and large food operator (FOlarge), and a single third party (3P).
Similarly, we identify three components of an ITS: a data query component, a data

Fig. 3. A process diagram representing the process of modeling a collaboration view.

12 A. Kassahun and B. Tekinerdogan

aggregator component and a product data repository service. In relation to the busi-
ness collaboration process shown in Fig. 2 the data query component implements the
lookup and query tasks and the 2nd XOR decision; the data aggregator component
implements the aggregate data task and the 1st XOR decision; the data retrieval service
implements the fetch data task.

The next step, step 4, is mapping the allocation of the elements of the business
collaboration model and the architectural design to the collaborating partners. Table 2
shows how the BPM elements are allocated across the two types of food operators;
Table 3 does the same but for architectural elements. The tables are interpreted as
follows. A ‘+’ sign in a cell implies that the business process or the architectural
element is allocated to the corresponding collaboration partners and the collaboration
partner indeed supports the element. For instance, the scan product task should be
supported in large food operator nodes and it is indeed supported. A ‘–’ sign implies
that the business process or the architectural element is allocated to the collaboration
partner but the collaboration partner fails to support the element. Using the above
example, the scan product task should have been supported by small food operator
nodes but it is not. An empty cell implies that the element is not relevant for the specific
collaboration partner. A ‘*’ sign implies that the business process or the architectural
element is not allocated to the collaboration partner according to the models but in
reality the collaboration partner supports the element. For instance, in the given supply

Fig. 4. A workflow pattern diagram of the query business collaboration process.

Collaboration Viewpoint for Modeling Cross-Organizational Business Concerns 13

chain a third party provides, for part of the supply chain, an end-user transparency app
and transparency system that supports a number of tasks. An empty cell implies that the
element is not relevant for the specific collaboration partner. Typically, these tables
require knowledge of the state of affairs in all collaboration partners, which could be
many, and it may require more fine-grained attributes than the simple +, –, * and
blank entries. As shown in the table, it turns out that small food operators implement
none of the required architectural elements adequately, large food operators provide
only part, and a third party seems to fill the gap left by the food operators, albeit partly.

From Tables 2 and 3 it is clear that the desired business processes are not aligned
with the existing architecture. The next step, step 5, is redesigning the business col-
laboration process by identifying better fitting workflow patterns, structural compo-
nents and allocations. Obviously improved versions of Tables 2 and 3 are required. For
instance, though small food operators do not fulfill the allocated tasks, it turned out that

Table 2. Mapping of business process elements to the corresponding collaborating partners.

BPMN elements Collaboration
partners
FOsmall FOlarge 3P

Events
Start – + *
End – + *
Gateways
XOR {1} – – *
XOR {2} – –

Tasks
Scan product – + *
Lookup – –

Discover service – – –

Query – –

Fetch data – + *
Aggregate data – + *
Format and display data – + *

Table 3. Mapping architectural elements to the corresponding collaborating partners.

Structural elements Collaboration
partners
FOsmall FOlarge 3P

End-user app – + *
Query component – –

Data aggregator component – – *
Product data repository service – + *
Discovery service +

14 A. Kassahun and B. Tekinerdogan

they are, however, willing to (and usually do) delegate the tasks to a third party and
pass the required transparency data to it that enables it to perform the delegated tasks.
This is also consistent with some aspects of the food laws described in Sect. 3.1 that
require centralized repositories of transparency data to be managed by third-parties or
regulatory authorities.

In Table 4 we show the improved allocation of architectural elements that elimi-
nates the misalignment identified in Table 3. (Similarly, a new allocation table for
Table 2 can be produced but is not included for brevity.) The new allocation allows all
food operators (small and large) to comply with the EPCIS specification by formalizing
the roles that the third party was playing. However, it raises a new issue related to data
capture. Because food operators have to pass transparency data to the third-party that
enables it to perform the new tasks assigned to it, the data capture (which so far was
local and trivial) now becomes a collaboration concern.

Now that we identified redesign options, we start a new iteration to improve the
business collaboration model and associated software architecture. We start by
rede-signing the workflow pattern diagram because the workflow patterns identified
earlier seem to capture the fundamental essence of the query BPM and may not need
substantial modifications. The BPM, on the other hand, may change substantially. In
Fig. 5 we provide the improved workflow pattern diagram that contains the same three
workflow patterns but in a slightly different configuration. The change in the config-
uration of the workflow patterns is a direct consequence of the new allocation. The
details of the consequences of the new allocation are shown in the new BPM provided
in Fig. 6. As in the previous business collaboration process the new business process is
triggered by the end-user app but all query requests are always sent to the third party.
Instead of all food operators, the new model involves only large food operators in the
query business process. Small food operators no longer need to maintain their own
transparency data and to support the fetch data task, because the third-party supports
this task on their behalf. When these and other business process redesign issues are
resolved the software architects (re)design the software architecture. Then new map-
ping tables are produced to see if there are any misalignments that have to be
addressed.

Table 4. New allocation of architectural elements to collaborating partners.

Structural elements Collaboration
partners
FOsmall FOlarge 3P

End-user app +
Query component
Data aggregator component +
Product data repository service + +
Discovery service +

Collaboration Viewpoint for Modeling Cross-Organizational Business Concerns 15

6 Related Work

The prominent way addressing business processes and software architecture concerns
along with other concerns, such as general vision for the system, concerns related to
technology, etc. in a consistent manner is to follow guidance provided by an enterprise
architecture framework. The Zachman (Rational Software 2001) and
TOGAF/ArchiMate (The Open Group 2013) frameworks are probably the most widely
used and include the modeling of business processes and the designing of software
architecture as part of the larger enterprise architecture. This framework use largely
fixed categories of perspectives and concerns (e.g. vision, business concerns, software
architecture concerns, etc.) Moreover, they follow a hierarchical conceptualization of
models in which requirements cascade from vision, to BPMs, to software architecture
and finally to technology architecture. A hierarchical approach suggests the use of
elaborate methods to get the design at a higher hierarchical level before moving to the
next. There are for instance extensive methods for analyzing the as-is BPMs and
designing elaborate to-be BPMs (Sharp and McDermott 2009) before a large scale
architectural design process commences. These approaches do not directly address

Fig. 5. Improved workflow pattern diagram of the query business collaboration process.

16 A. Kassahun and B. Tekinerdogan

business collaboration concerns that often arise when different organizations are
involved.

Business collaboration concerns could probably be addressed generically as cross
cutting quality concerns across different viewpoints. In this respect business collabo-
ration concerns could be viewed as concerns that cut across business process and
architecture viewpoints. In this regard the concept of architectural perspectives is
suggested that include a collection of activities, tactics and guidelines to be used across
a number of the architectural views to address quality concerns (Woods and Rozanski
2005). In this context, Rozanski and Wood define several architectural perspectives for
selected quality concerns such as security, performance, scalability, availability and
evolution. In order to capture the system-wide quality concerns, each relevant per-
spective is applied to some or all views. In this way, the architectural views provide the
description of the architecture, while the architectural perspectives can help to analyze

Fig. 6. Improved query business process model.

Collaboration Viewpoint for Modeling Cross-Organizational Business Concerns 17

and modify the architecture to ensure that system exhibits the desired quality proper-
ties. However, no architectural perspective for addressing business collaboration con-
cerns has been addressed yet.

In this paper we have defined a collaboration viewpoint which is defined on top of
structural viewpoints. Similarly, in our earlier work, we have considered the explicit
modelling of viewpoints for quality concerns (Tekinerdogan and Sözer 2011) from
viewpoints that address functional concerns. We have shown that quality concerns do
not easily match the architectural elements that are primarily functional in nature. As a
result, the communication and analysis of these quality concerns becomes more
problematic in practice. We have introduced a general and practical approach for
supporting architects to model quality concerns by extending the architectural view-
points of the so-called V&B approach and illustrated the approach for defining
recoverability and adaptability viewpoints (Sözer et al. 2013). In this paper we have
focused on collaboration concerns which could also be seen as a non-functional con-
cern. Like other quality concerns collaboration concerns require a dedicated viewpoint
which we have discussed in this paper.

The collaboration viewpoint concerns the mutual alignment of BPMs and archi-
tectural designs and in this respect is closely related to architectural consistency
analysis. Architecture consistency analysis has been mainly investigated in relation to
consistency between software code and software architecture. Hereby, architecture
consistency implies that the architecture design elements can be mapped to the
implementation elements. In case the relationships between the architecture and
implementation do not correspond then these are called architectural violations. If the
relations that are present in the architecture are also found in the implementation then
this is convergent relation. In case the architecture relation is not present in the
implementation then this is called an absence relation. A successful design recovery
technique that is used for architecture consistency checking is the reflexion modeling
approach as proposed by Murphy et al. (Murphy et al. 2001). In this paper we have also
focused on consistency of the architecture but now from a business model perspective
in which we focused on business collaboration concerns.

In our earlier work (Tekinerdogan 2015), we have proposed to enhance existing
reflexion modeling approaches using architecture viewpoints. We introduced the ar-
chitecture reflexion viewpoint that can be used to define reflexion model for different
architecture views. The viewpoint includes both a visual notation and a notation based
on design structure matrices. The design structure reflexion matrices (DSRMs) that we
have defined provide a complementary and succinct representation of the architecture
and code for supporting qualitative and quantitative analysis, and likewise the refac-
toring of the architecture and code. For this we introduce the notion of design structure
reflexion matrices (DSRM) and a generic reflexion modeling approach based on
DSRMs.

In service-oriented architecture business collaboration concerns are addressed using
choreography languages. In this respect recent research show that it is possible to
automate the generation software from business processes choreography models (Autili
et al. 2015). However, design heuristics for integrating misaligned business process and
IT systems are largely missing.

18 A. Kassahun and B. Tekinerdogan

7 Conclusion

The problem of business-IT alignment has been broadly addressed in the literature and
several solutions have been provided for this. In this paper we have focused on the
business process alignment with the architecture design. Further we have explicitly
considered the alignment within the context of collaborating organizations. To this end
we have identified three key collaboration concerns: ensuring that the BPMs are indeed
supported by software components, ensuring that business analyst can communicate
effectively with software architects in search of better design solutions, and validating
the architecture with respect to the BPMs. The architecture collaboration viewpoint that
we have proposed is novel from both the software architecture design perspective as
well as the business process modeling perspective. We have shown that the viewpoint
can support the communication among the business analysts and architects, and like-
wise help to align the business process models and the software architecture of the
collaboration system. This has been justified by the application of the viewpoint to a
real industrial case study on food supply chains. In our future work we will apply the
viewpoint for other industrial cases.

References

Autili, M., Inverardi, P., Tivoli, M.: Automated synthesis of service choreographies. IEEE Softw.
32(1), 50–57 (2015)

Aversano, L., Grasso, C., Tortorella, M.: Managing the alignment between business processes
and software systems. Inf. Soft. Technol. 72, 171–188 (2016)

Avison, D., Jones, J., Powell, P., Wilson, D.: Using and validating the strategic alignment model.
J. Strateg. Inf. Syst. 13(3), 223–246 (2004)

Bartens, Y., Schulte, F., Voss, S.: E-business IT governance revisited: an attempt towards
outlining a novel bi-directional business/IT alignment in COBIT5. In: 2014 47th Hawaii
International Conference on System Sciences (HICSS) (2014)

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R.,
Stafford, J.: Documenting Software Architectures: Views and Beyond. Addison-Wesley,
Boston (2010)

Davenport, T.H., Short, J.E.: The new industrial engineering: information technology and
business process redesign. IEEE Eng. Manage. Rev. 26(3), 46–60 (1998)

Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Introduction to business process
management. In: Dumas, M., La Rosa, M., Mendling, J., Reijers, H. (eds.) Fundamentals
of Business Process Management, pp. 1–31. Springer, Heidelberg (2013)

EC: Regulation (EC) No 1760/2000 of the European Parliament and of the Council of 17 July
2000 establishing a system for the identification and registration of bovine animals and
regarding the labelling of beef and beef productsand repealing Council Regulation (EC) No
820/97. Off. J. Eur. Communities L204, 1–10 (2000)

EC: Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January
2002 laying down the general principles and requirements of food law, establishing the
European Food Safety Authority and laying down procedures in matters of food safety. Off.
J. Eur. Communities L31(1), 1–24 (2002)

Collaboration Viewpoint for Modeling Cross-Organizational Business Concerns 19

EC: Regulation No. 911/2004 of 29 April 2004 implementing Regulation (EC) No 1760/2000 of
the European Parliament and of the Council as regards eartags, passports and holding
registers. Off. J. Eur. Union L163, 65–70 (2004)

EC: Factsheet: tracing food through the production and distribution chain to identify and address
risks and protect public health, Brussels (2007)

EC: Commission Implementing Regulation (EU) No 931/2011 of 19 September 2011 on the
traceability requirements set by Regulation (EC) No 178/2002 of the European Parliament
and of the Council for food of animal origin. Off. J. Eur. Union L242, 1–2 (2011)

EC: Regulation (EU) No 2015/262 of 17 February 2015 laying down rules pursuant to Council
Directives 90/427/EEC and 2009/156/EC as regards the methods for the identification of
equidae (Equine Passport Regulation). Off. J Eur. Union L59, 51 (2015)

EPCglobal: EPC Information Services (EPCIS) Version 1.1 Specification. GS1 Standard Version
1.1, May 2014, Brussels, Belgium, GS1 AISBL (2014)

GS1: GS1 General Specifications, version 15, no 2, January 2015, GS1: 490 (2015)
Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley Profes-

sional, Boca Raton (2000)
Hong-Mei, C.: Towards service engineering: service orientation and business-IT alignment. In:

Proceedings of the 41st Annual Hawaii International Conference on System Sciences (2008)
ISO/IEC:. Information technology - Object Management Group Business Process Model and

Notation. ISO/IEC 19510:2013 (2013)
ISO/IEC/IEEE: Systems and software engineering – architecture description. ISO/IEC/IEEE

Standard 42010:2011 (2011)
Kassahun, A., Tekinerdogan, B.: Architecture viewpoint for modeling business collaboration

concerns using workflow patterns. In: The 11th International Joint Conference on Software
Technologies, Lisbon, 1: ICSOFT-EA, pp. 27–38 (2016)

Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley Professional,
Boca Raton (2004)

Kruchten, P.B.: The 4 + 1 view model of architecture. IEEE Softw. 12(6), 42–50 (1995)
Lattanze, A.J.: Architecting Software Intensive Systems: A Practitioners Guide. CRC Press, Boca

Raton (2008)
Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: bridging the gap between

design and implementation. IEEE Trans. Softw. Eng. 27(4), 364–380 (2001)
Rational Software: The Zachman framework for enterprise architecture and rational best practices

and products, a Rational Software White paper (2001). http://www.rational.com/
Russell, N., van der Aalst, W.M., Mulyar, N.: Workflow control-flow patterns: a revised view.

BPM Center Report BPM-06-22 (2006)
Sharp, A., McDermott, P.: Workflow modeling: tools for process improvement and applications

development. Artech House, Norwood (2009)
Sözer, H., Tekinerdoğan, B., Akşit, M.: Optimizing decomposition of software architecture for

local recovery. Softw. Qual. J. 21(2), 203–240 (2013)
Tekinerdogan, B.: Software architecture. In: Computing Handbook, Third edn., pp. 1–16.

Chapman and Hall/CRC (2014)
Tekinerdogan, B.: Architectural drift analysis using design structure reflexion matrices. In:

Sofware Quality Assurance in Large Scale and Complex Software-Intensive Systems,
pp. 221–236. Elsevier (2015)

Tekinerdogan, B., Sözer, H.: Defining architectural viewpoints for quality concerns. In:
Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 26–34. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23798-0_3

The Open Group: ArchiMate 2.1 Specification (2013). http://pubs.opengroup.org/
architecture/archimate2-doc/toc.html

20 A. Kassahun and B. Tekinerdogan

http://www.rational.com/
http://dx.doi.org/10.1007/978-3-642-23798-0_3
http://pubs.opengroup.org/

van der Aalst, Wil., M.P., ter Hofstede, A.H.M.: Workflow Patterns (2011). http://www.
workflowpatterns.com/. Accessed 23 Dec 2015

van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

Verdouw, C., Beulens, A., Wolfert, S.: Towards software mass customization for business
collaboration. In: 2014 Annual SRII Global Conference (SRII) (2014)

Woods, E., Rozanski, N.: Using architectural perspectives. In: 5th Working IEEE/IFIP
Conference on software architecture WICSA 2005 (2005)

Collaboration Viewpoint for Modeling Cross-Organizational Business Concerns 21

http://www.workflowpatterns.com/
http://www.workflowpatterns.com/

A New Approach for Automatic Development
of Reconfigurable Real-Time Systems

Wafa Lakhdhar1(B), Rania Mzid2,3, Mohamed Khalgui1,5,6,
and Nicolas Treves4

1 LISI Lab INSAT, INSAT Centre, University of Carthage,
Urbain Nord BP 676, Tunis, Tunisia

wafa.lakdhar@live.fr, khalgui.mohamed@gmail.com
2 ISI, University Tunis-El Manar, 2 Rue Abourraihan Al Bayrouni,

Ariana, Tunisia
rania.mzid@gmail.com

3 CES Lab ENIS, University of Sfax, B.P:w.3, Sfax, Tunisia
4 CEDRIC Lab, CNAM, 292 rue Saint-Martin, Paris, France

5 Systems Control Lab, Xidian University, August Bebel Str 70, Halle, China
nicolas.treves@cnam.fr

6 School of Electrical and Information Engineering, Jinan University,
Zhuhai Campus, Zhuhai 519070, China

Abstract. In the industry, reconfigurable real-time systems are speci-
fied as a set of implementations and tasks with timing constraints. The
reconfiguration allows to move from one implementation to another by
adding/removing real-time tasks. Implementing those systems as threads
generates a complex system code due to the large number of threads
and the redundancy between the implementation sets. This paper shows
an approach for software synthesis in reconfigurable uniprocessor real-
time embedded systems. Starting from the specification to a program
source code, this approach aims at minimizing the number of threads
and the redundancy between the implementation sets while preserving
the system feasibility. The proposed approach adopts Mixed Integer Lin-
ear Programming (MILP) techniques in the exploration phase in order
to provide feasible and optimal task model. An optimal reconfigurable
POSIX-based code of the system is manually generated as an output of
this technique. An application to a case study and performance evalua-
tion show the effectiveness of the proposed approach.

Keywords: Real-time system · Reconfigurable architecture · Timing
constraints · Mixed Integer Linear Programming (MILP) · POSIX-based
code

c© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 22–44, 2017.
DOI: 10.1007/978-3-319-62569-0 2

A New Approach for Automatic Development 23

NOMENCLATURE

U Processor utilization
n Number of thread
m Number of implementation
Sys System implementations set

impi The ith implementation

Fi The ith Function

Tfi The Period of the ith function

Cfi The WCET of the ith function

τi The ith task

ri The release time of the ith task

Ti The period of the ith task

Ci The WCET of the ith task

Di The deadline of the ith task

Pi The priority of the ith task

Repi The Response time of the ith task
Treconf The reconfiguration time
Tdelete the spent time to delete a task
Tcreat the spent time to create a task
A the number of deleted tasks
B is the number of created tasks
Mergeij Merging Matrix
InitTask Initial Task model
NewTask New task model

1 Introduction

A real-time system is any system which has to respond to externally generated
input stimuli within a finite and specified delay [1]. The development of real-time
systems is not a trivial task because a failure can be critical for the safety of human
beings [2]. The researchers are moving today toward proposing techniques for pro-
gramming concurrent reconfigurable real-time systems. The reconfiguration refers
to the architectural or behavioral modifications of a software system during its
execution to meet user requirements [3]. The successful development of recon-
figurable real-time systems greatly depends on low development costs and the
respect of timing requirements. In fact, several approaches have been proposed
to assist the designer in the synthesis of real-time systems at different levels of the
development process. For real-time concerns, Cheddar tool [4] allows to model
software architectures of real-time systems while ensuring the respect of real-
time properties. To provide design-time guarantees on timing constraints, differ-
ent scheduling methodologies can be used, such as earliest deadline first scheduling
algorithm (EDF) which at each instant in time chooses for execution the currently-
active job with the smallest deadline [5]. Indeed the authors in [6] propose the
RT Reconfiguration tool based on EDF scheduling to assist in designing a fea-
sible reconfigurable real-time system using an agent-based approach. Among all
priority driven policies, Rate Monotonic (RM) is a scheduling algorithm which

24 W. Lakhdhar et al.

was defined by Liu and Layland [7] where the priority of tasks is inversely propor-
tional to their periods. The authors of [8] provide a method to drive the designer
by producing a set of design solutions based on RM scheduling algorithm. In [9–
11], the authors are interested in the optimization of deployment techniques from
functional and platform models of real-time systems by using mixed integer linear
programming (MILP). An MILP formulation is easily extensible, re-targetable to
a different optimization metric and can easily accommodate additional constraints
or legacy components [9]. The TASTE Toolset approach results from spin-off stud-
ies of the ASSERT project in order to propose innovative and pragmatic solutions
to develop real-time systems using a language based on Simulink, SDL, ASN.1, C,
and Ada [12]. There are many programming languages designed for the develop-
ment of real-time systems such as POSIX (Portable Operating System Interface)
[13]. The POSIX standard promotes portability of applications across different
operating system platforms. The authors [14] use POSIX in the development of
software for real-time and embedded systems.

The synthesis of a valid and optimal implementation model from a given spec-
ification is a crucial issue in the development of reconfigurable real-time applica-
tions. This synthesis consists in building the set of tasks implementing the applica-
tive functions while meeting all related real-time constraints. The reconfigura-
tion at the implementation level consists in adding/removing tasks or modifying
their timing parameters to go from one implementation to another, which may
require an additional time for reconfiguration. So that, the resulting implemen-
tation model should avoid redundancy between the different implementations to
minimize the possible overhead.

In this paper, we present an approach toward an optimal implementation of
reconfigurable uniprocessor real-time systems. The proposed approach aims to
automatically produce a valid and optimal task model from a given specification.
The task model consists of a set of tasks implementing the applicative functions
that we assume independent and periodic. We assume also that assigning priori-
ties to tasks is performed using rate monotonic algorithm RM [15]. The proposed
approach is composed of three phases: the purpose of the first one is to produce
an initial task model from the user specification. The second step aims to opti-
mize this model by using mixed integer linear programming (MILP) techniques
to generate a feasible and an optimal task model. The proposal considers tim-
ing constraints. As for metrics, we consider a multi-objective optimization which
includes the minimization of the response time. Since there are many solvers han-
dling MILP formulations, we use in this paper the CPLEX tool [16]. From this
optimal model, the objective of the third phase is to produce a POSIX-based code
for the considered application. The proposed approach is applied to a CCAS case
study in order to show its applicability.

The paper is organized as follows. Section 2 gives an overview on related works.
Section 3 provides the formalisation of approach. Section 4 explains in details the
proposed approach to obtain a valid and optimal implementation model from the
user specification. Section 5 illustrates the approach on the chosen case study and
evaluates its efficiency. Finally, we summarize our work and discuss the future
work in Sect. 6.

A New Approach for Automatic Development 25

2 RelatedWorks

In this section, we present the related works that deal with real-time systems and
reconfigurable architectures.

2.1 Real-Time Scheduling

Several works deal with the synthesis problem of real-time systems. The cor-
rectness of such systems depends both on the logical result of the computation
and the time when the results are produced [17]. Thus enforcing timeliness con-
straints is necessary to maintain correctness of a real-time system. In order to
ensure a required real-time performance, the designer should predict the behav-
iour of a real-time system by ensuring that all the tasks meet their deadlines.
Different classes of scheduling algorithms exist where each one is developed for
a particular task model or an environment in which a real-time system operates.
Among all priority driven policies, Rate Monotonic (RM) is a scheduling algo-
rithm used in real-time operating systems. In the case of n synchronous, inde-
pendent and periodic tasks such that their deadlines are equal to their periods,
the processor utilization factor U ≤ ∑n

i=1 n(2
1
n − 1) is a necessary and suffi-

cient condition for the RM-based scheduling of real-time tasks [18]. In the lit-
erature, many approaches such as [19–22] have been carried out in the area of
schedulability analysis for meeting real-time requirements. In [23], the authors
focus on worst-case execution by making conservative assumptions about the sys-
tem. The authors of [22] use a combined offline and online scheduling technique.
A worst-case execution time (WCET) schedule, which provides the ideal operat-
ing frequency and voltage schedule assuming that tasks require their worst-case
computation time, is calculated offline. The online scheduler further reduces fre-
quency and voltage when tasks use less than their requested computing quota, but
can still provide deadline guarantees by ensuring all invocations complete no later
than in the WCET schedule. Pillai and Shin [24] propose an optimal algorithm
for computing the minimal speed that can make a task set schedulable. Chetto et
al. [19] consider the effect of precedence constraints between tasks on the dynamic
priority scheduling problem. That paper proposes an algorithm to accept or reject
aperiodic tasks with precedence constraints to guarantee the timing behavior of
the rest of the system’s tasks. Liu et al. developed an algorithm PASS for real-
time tasks with different priorities and deadlines. PASS considers the hard real-
time tasks and the soft real-time tasks at the same time. The authors of [8,9,25–
29] explore the use of constraint programming to solve scheduling problems, and
presents several optimizations to speed up the search for a valid solution.

In [25], the authors propose a technique to minimize the number of tasks in
a real-time system while satisfying timing constraints. The approach in [8] aims
both to reduce the number of preemptions for minimizing timing overheads and
to maximize the laxity of tasks in order to improve the schedulability of the
design model. In [9], the authors propose a method for an optimized synthesis
of AUTOSAR (Automotive Open System Architecture) which are architectures

26 W. Lakhdhar et al.

based on Mixed Integer Linear Programming (MILP) and GA (Genetic Algo-
rithm). It takes into account three optimization objectives which are extensibil-
ity maximization, latency and tasks number minimization. In [30], the authors
present Integer Linear Programming (ILP) for scheduling problem with depen-
dent tasks in a multiprocessor homogeneous system. Jeannenot proposed in [31] a
set of algorithms under periodic real-time tasks in a processor with dynamic vari-
able speed to determine the suitable speeds execution for each task and minimize
the total energy consumption.

2.2 Reconfiguration of Real-Time System

Nowadays, many research works have been proposed to develop reconfigurable
systems. The authors in [6] propose an approach that deals with reconfigurable
systems to be implemented with different tasks under deadline constraints accord-
ing to user requirements. For that purpose, the authors define an agent-based
architecture to check after any reconfiguration scenario the system’s feasibility
that can be affected when the tasks violate corresponding deadlines. In this case,
the agent provide new parameters for infeasible tasks in order to re-obtain the sys-
tem’s feasibility. In [32], the authors describe a concurrent function block model to
control the run-time reconfiguration process of a real-time holonic controller. They
describe a real-time java implementation to support the function block-based real-
time task execution and the run-time reconfigurability.

The authors in [33] propose a complete methodology to dynamically recon-
figure tasks. They present an interesting experimentation showing the dynamic
change by users of tasks without disturbing the whole system. The authors in
[34] use the Real-time-UML as a meta-model between design models of tasks and
their implementation models to support dynamic user-based reconfigurations of
control systems. In [35], the authors aim to provide an automated development
process from modelling to implementation for the dynamic software part of recon-
figurable systems. TimeAdapt [36] is a development process for reconfigurable sys-
tem design. It allows to specify reconfiguration actions, estimate whether their
execution can be carried out within a given time bound and execute them in a
timely manner. In the same context, the authors of [37] present an approach which
deals with reconfiguration at different levels within the development process of dis-
tributed applications. They propose a model driven approach to help specifying
and configuring reconfigurable systems.

2.3 Code Generation

There are some related approaches which generate complete real-time systems.
In [12], the authors deliver an approach called TASTE to enable the generation
of a complete real-time distributed system. This approach involves four phases:
(i)The system modeling phase using formal techniques, (ii) The transformation
phase, (iii) The feasibility analysis phase, and (vi) The code generation phase
where the authors propose a new language based on existing and mature technolo-
gies such as Simulink, SDL, ASN.1, C, and Ada [1]. Barreto et al. [38] propose a

A New Approach for Automatic Development 27

software synthesis method for automatic generation of executable code from the
formal model is performed. This approach is an extension of their previous work
[39] which uses pre-runtime approach in order to find feasible schedules satisfying
timing and power constraints. The authors in [40] provide a framework that allows
designers to automatically generate, from a functional specification with depen-
dency constraints described by the Prelude language, a set of real-time tasks that
can be executed on a uniprocessor architecture.

Nowadays, there are many programming languages designed for the develop-
ment of real-time systems. Among the most used real-time languages, we cite
real-time java (RT-java) [41] formalized in June 2000. RT-java aims to support
the programming of real-time codes from different directions used by other soft-
ware development platforms. POSIX (Portable Operating System Interface) is a
standard written in terms of the C programming language [13]. POSIX allows to
create POSIX threads (pthreads [1]) by calling the pthread create API function
with different thread scheduling policies and priorities to meet different applica-
tion requirements. POSIX defines three scheduling policies that can be used to
schedule real-time applications [42]:

– SCHED FIFO: FIFO order among entities of the same priority.
– SCHED RR: Round robin order among entities of the same priority.
– SCHED SS: Sporadic server scheduling, useful for scheduling aperiodic tasks.

As we assume that assigning priorities to tasks is performed using rate monotonic
algorithm RM, we can implement it using POSIX primitives: At first we assign
priorities to tasks in the usual way for RM (i.e. Pi = 1

Ti
). Then we query the range

of allowed system priorities with:

sched get priority min()

sched get priority max()

After that we map task set onto system priorities. Finally we start tasks using
assigned priorities and SCHED FIFO.

This standard facilitates the application portability that is why we adopt it as
a target language to implement a reconfigurable real-time system in the current
paper.

The main contributions of this paper are four-fold. The first part consists in
ensuring the respect of timing properties before the effective implementation of the
real-time system (i.e. at the design level). Second, we are interested in the reconfig-
uration of real-time systems where the addition and removal of tasks are applied at
run-time.Third,weproposeamulti-optimizationmetric. Indeed, theproposedapp-
roach aims tominimize the reconfiguration time by avoiding a redundancy between
the different implementations from one side. From the other side, it aims to mini-
mize the response times of the real-time tasks in order to maintain the performance
of the system. Finally, this work automatically generates a complete reconfigurable
real-time system from the specification level by using the programming language
POSIX. None of the existing works is solving all the four problems together.

28 W. Lakhdhar et al.

3 System Formalization

In this section, we present a formal description of a reconfigurable uniprocessor
system. We present in addition real-time prerequisites required to introduce the
paper’s contribution.

It is assumed in this work that a reconfigurable real time system Sys is defined
as a set of implementations: Sys = {imp1, imp2 . . . impm}. We denote by Sys(t)
the implementation defining the system at a particular time t (i.e. Sys(t) = impi).
An implementation impi is composed of n tasks that we assume independent and
periodic (i.e. impi = {τ1, τ2, τ3 . . . τn}). Each task τi executes a set of applicative
functions τi = {F1, F2, F3 . . . Fk}. A function Fi is characterized by static para-
meters Fi = (Tfi , Cfi) where Tfi is the activation period of the function Fi and
Cfi is an estimation of its Worst Case Execution Time WCET. Note that these
parameters are considered as inputs to the proposed approach and must be spec-
ified by the user. Each task τi is characterized by a set of real-time parameters
(ri, Ti, Ci,Di, Pi): its release time ri, we assume that ri = 0, its activation period
Ti which is deducted from the activation periods of the functions implemented by
this task, its capacity or worst case execution time Ci which is equal to the sum
of the WCETs of the functions executed by this task, its deadline Di we assume
that Di = Ti, the priority Pi, we assume that Pi = 1/Ti since we adopt the Rate
Monotonic (RM) priority assignment. The Fig. 1 depicts the task parameters:

Let U be the processor utilization factor defined by: U =
∑n

i=1
Ci

Ti
. For timing

verification, we perform in this paper Rate-Monotonic (RM) response time analy-
sis based on the computation of an upper bound of the response time Repi of the
different tasks constituting the task model. This analysis aims to verify whether
these tasks complete their computations within the time limit specified by the
real-time application i.e. the deadline (Repi ≤ Di) [18].

The reconfiguration scenario corresponds to adding/removing tasks or modify-
ing timing parameters. Thus, we introduce the reconfiguration time Treconf which
refers to the time required to jump from one implementation to another according

Fig. 1. Real-time task parameters.

A New Approach for Automatic Development 29

to user requirements (i.e. reconfiguration conditions). This parameter is defined
as follow:

Treconf = A ∗ Tdelete + B ∗ Tcreat

where A is the number of deleted tasks, B is the number of created tasks, Tdelete

is the spent time to delete a task and Tcreat is the spent time to create a task.
We assume that the blanking time Tdelete and creation time Tcreat of all the tasks
are equal for a considered platform (i.e. Tdelete = Tcreat). We denote by Tcost the
spent time to create a task or to delete it (i.e. Tdelete = Tcreat = Tcost). Thus, the
reconfiguration time is given as follow: Treconf = (A + B) ∗ Tcost.

4 Proposed Approach

In this section, we present an overview on our approach and detail the structure
of different modules involved in this work.

4.1 Motivation and Definitions

We deliver an approach which automatically converts a high-level specification
of a reconfigurable real-time system into an executable running on POSIX plat-
form. The proposed approach aims to optimize the system code while meeting
all related real-time constraints and avoiding any redundancy between the imple-
mentation sets. Figure 2 shows the process of the proposed approach. As entry, the
designer provides the specification model which defines the reconfiguration condi-
tions, the applicative functions that must be executed under a considered condi-
tion and the temporal parameters of each function. This model presents the input
of the task generator step which aims to produce an initial task model. Then, the
optimization step receives the generated model and proposes a valid and optimal
task model. This model is finally converted into an executable program running
under POSIX.

4.2 Task Generator

The first step consists in generating the initial task model. This stage considers the
specification model as an input and aims to generate the initial task model which
defines a possible implementation of the considered system. For each reconfigura-
tion condition, this step generates an implementation and associates its appropri-
ate functions. Then, for each generated implementation, it regroups the functions
having the same period Tfi to be executed by one task τi. Since we assume that the
release time ri = 0 and Pi = 1/Ti, the task τi is characterized only by (Ti, Ci,Di)
where the period Ti corresponds to the period of the grouped functions, Ci is the
sum of WCETs of the grouped functions and the deadline Di of each task is equal
to the corresponding period Ti.

Let us note that for the generation of this model, the optimization and
real-time feasibility concerns are not considered. Algorithm1 illustrates this

30 W. Lakhdhar et al.

Fig. 2. Process overview.

generating step. The Initial task model can be generated with complexity O(N ∗
M) + O(P ∗ M) = max(O(N ∗ M);O(P ∗ M)), where N denotes the size of
the conditions, M denotes the number of functions and P presents the number of
implementations.

4.3 Task Model Optimization

This phase aims to produce a feasible and optimal implementation of the recon-
figurable real-time system from the initial task model.

In order to avoid redundancy between the sets of implementation and reduce
the number of tasks, this phase aims to merge the tasks belonging to different
implementations but implementing the same functions and/or having close peri-
ods. For instance, let us consider two tasks τi ∈ impk and τj ∈ impl. τi and τj
are defined by a set of parameters: τi = (Ti, Ci,Di) and τj = (Tj , Cj ,Dj). These
two tasks have close periods (i.e. Ti = Tj + δt) where δt is a constant defined by
the user. We denote by τ ′

i the task resulting from merging these two tasks which
is characterized by

τ ′
i(T

′
i , C

′
i,D

′
i) =

⎧
⎨

⎩

T ′
i = min(Ti, Tj)

C ′
i = Ci + Cj

D′
i = min(Di,Dj)

A New Approach for Automatic Development 31

Algorithm 1. Task Generation

Input:
- F : Functions set
- ReconfCnd : Reconfiguration condition
Output:
- InitTask : Initial Task Model

1 Notations:
2 - Reconf Cnd Func: Correlation table between the reconfiguration conditions

and the functions.
3 - imp : Implementation set
4 nbr t ← 0
5 k ← 0
6 /* Generation Of Implementations */
7 for i ← 0 to SizeOf(ReconfCnd) do
8 for j ← 0 to SizeOf(F) do
9 if (F [j] ∈ Reconf Cnd Func[i]) then

10 imp[i][k] = F [j]
11 k + +;

12 /* Generation Of Task Model */
13 for each implementation impi do
14 for eachfunctionFj do
15 /* We create a task and we initialize its parameters with function Fj

parameters */
16 WcetOf(InitTask[nbr t]) = WcetOf(Fj)
17 PeriodOf(InitTask[nbr t]) = PeriodOf(Fj)
18 DeadlineOf(InitTask[nbr t]) = DeadlineOf(Fj)
19 for eachfunctionFj+1 do
20 /* We check if Fj and Fj+1 have the same period and we evaluate if

the result WCET is less than the task period to ensure the system
feasibility */

21 if PeriodOf(Fj) == PeriodOf(Fj+1)) then
22 if (WcetOf(Fj) + WcetOf(Fj+1) <=

PeriodOf(InitTask[nbr t])) then
23 WcetOf(InitTask[nbr t]) =

WcetOf(InitTask[nbr t]) + WcetOf(Fj+1)

24 nbrt + +;

25 return InitTask

Where T ′
i corresponds to minimum of the two periods, C ′

i is equal to the sum
of their WCETs and the deadline D′

i of τ ′
i is equal to the corresponding period

T ′
i . This approach allows to merge more than two tasks by optimizing other

parameters like the sum of their response times. Thus, the considered problem
is a combinatorial one, and the solution depends on many parameters. In order
to implement properly the problem by taking into consideration the different
constraints, we propose a MILP formulation of our problem. So we should define
the objective function and the required constraints for parameters and variables.

32 W. Lakhdhar et al.

Figure 3 shows an example to illustrate the scenario of reconfiguration which
correspond to the transition from imp1 to imp2. The reconfiguration consists in
removing τ2, τ3,τ4 and adding τ5, τ6,τ7, thus the reconfiguration time is defined
as follows:

Treconf = 3 ∗ Tdelete + 3 ∗ Tcreat = 6Tcost.

In order is to minimize the reconfiguration time Treconf , tasks having close
periods (or same period T in this example) must be merged (see Fig. 3). Conse-
quently, after merging these tasks (i.e. τ2 with τ6, τ3 with τ7) Treconf becomes:

Treconf = 2 ∗ Tdelete + 2 ∗ Tcreat = 4Tcost

Fig. 3. Example of a reconfiguration scenario.

Definitions
Let m be the number of tasks in the initial model, let N be the number of tasks
in the new task model, let s be the starting time which corresponds to effective
starting time of each task. We denote by InitTask the initial task model which
is a three column matrix where the first column presents the period Ti of task,
the second one presents their WCETs Ci and the third column is their deadline
Di. NewTask is the resulting task model after merging the different tasks (i.e.
optimized task model).

Objective Function

Maximize
∑

i,j∈{1,m}
Mergeij −

∑

i,j∈{1,m}
Repij (1)

A New Approach for Automatic Development 33

This expression defines the objective function of our problem. Merge denotes a
boolean variable used to mention whether two tasks τi and τj are merged. More
in detail, Mergeij is equal to 1 if task ti ∈ impk and task tj ∈ impl are merged.
The expression(1) aims to maximize the number of merged tasks and minimize
the sum of response times of the different tasks constituting the task model.
In order to limit non meaningful merging situations, we define in addition the
following constraints:

Merging Situation Constraints
The constraints (2) and (3) introduce the merging condition such as tow the
tasks τi ∈ impk and τj ∈ impl will be merged if they have the same period.

∀i, j ∈ {1 . . . m} et i �= j,
if(InitTask[i, 1] − InitTask[k, 1]) = δt then Mergeij = 1 (2)

∀i, j ∈ {1 . . . m} et i �= j,
if(InitTask[i, 1] − InitTask[k, 1]) �= δt then Mergeij = 0 (3)

The constraint (4) means that we have to maximize the number of merged
tasks and thus minimize the number of tasks used in the task model. Indeed,
this equation serves as a bound for the objective function (i.e. the number of
merging operations).

N = m − (
∑

i,j∈{1...m}
Mergeij)/2 (4)

Real-Time Constraints
NewTask is a three column matrix where the first column presents the periods
of the new tasks computed by the constraint (5). The second column presents
the WCETs of the tasks computed by the constraint (6) and the last column is
the deadline presented by the constraint (7)

∀k ∈ {1 . . . N}, ∀i, j ∈ {1 . . . N} : NewTask[k, 1] = min(InitTask[i, 1], InitTask[j, 1])
(5)

NewTask[i, 2] = (InitTask[i, 2] + InitTask[j, 2])Merge[i, j]+
(1 − Merge[i, j])InitTask[i, 2] (6)

∀i ∈ {1 . . . N}, NewTask[i, 3] = NewTask[i, 1] (7)

The constraint (8) verifies whether the new model meets the timing constraints.

U =
N∑

i=1

NewTask[i, 2]
NewTask[i, 1]

≤
N∑

i=1

N(2
1
N − 1) (8)

Constraint (9) ensures that the response times Repi of the different tasks in the
optimized model are lower or equal than their deadlines:

∀i ∈ {1 . . . N}Repi ≤ NewTask[i, 3] (9)

34 W. Lakhdhar et al.

Constraint (10) gives the computation formula of the response time Repi of
task τi:

Repi = s[i] + NewTask[i, 2] (10)

The response time Repi of a task τi is defined as the sum of its start time and
its execution time.

∀i ∈ {1 . . . N}s[i] − s[j] >= NewTask[j, 2] (11)

∀i ∈ {1 . . . N}s[j] − s[i] >= NewTask[i, 2] (12)

To ensure a single executed task at any time, we should have either
s[i] − s[j] − NewTask[j, 2] >= 0 or s[j] − s[i] − NewTask[i, 2] >= 0, for every
pair of tasks ti and tj .

∀i ∈ {1 . . . N}s[i] <= r[i] (13)

By respecting these constraints, the objective function will seek for the best
way to merge tasks, so as to reduce the reconfiguration time while ensuring the
respect of timing properties. The task model generated by the linear program
will be interpreted by the code generator in order to generate a running program
in POSIX.

4.4 Code Generator

The last step of our approach consists in building the executable application from
the optimized task model. We generate a POSIX code on the basis of transfor-
mation rules. For each task in the optimized task model, the code generator
implements a POSIX thread by using pthread. In addition, this step produces
the controller code of the reconfigurable real-time system, which allow mov-
ing from implementation to another, following well-defined conditions (i.e. user
requirements).

5 Case Study

In this section, we illustrate the proposed approach through a case study. The
considered case study consists in a Car Collision Avoidance System (CCAS)
[43]. Firstly, we present the CCAS specification. Then we apply the proposed
approach using the suite of tools associated to an automatic construction of a
feasible and optimal implementation of a reconfigurable real-time system.

5.1 CCAS Presentation

The Car Collision Avoidance System (CCAS) detects obstacles in front of the
vehicle to which it is mounted and, if an imminent collision is detected, applies
the brakes to slow the vehicle. To show the applicability of our approach, we
consider in this paper a simplified version of this system. For clarity, several
features of the system (CCAS) were omitted. Therefore, we only define two
modes of operation:

A New Approach for Automatic Development 35

(i) Default mode: represents a traditional use of CCAS,
(ii) Economic mode: represents a restrictive use of CCAS with safety require-

ments.

In the case where the economic mode must be enabled, the system jumps from
the default mode to the secure one.

Default Mode: This mode is defined by five functions:

(i) F1 (ReadImage): reads images from the input to the system from a radar,
(ii) F2 (Discrete Cosine Transformation: DCT) moves the representation of the

image from the spatial domain into the frequency domain
(iii) F3 (Quantization): data in the frequency domain is selectively discarded to

compress the image
(iv) F4 (InverseDCT): moves the image back into the spatial domain
(v) F5 (Display): displays the images for monitoring

The Figs. 4 and 5 present the overview of the CCAS system.

Fig. 4. CCAS overview in default mode.

Fig. 5. CCAS overview in economic mode.

36 W. Lakhdhar et al.

Table 1. CCAS specification in economic mode.

Fi Tf Cf

F1 5 ms 1 ms

F ′
1 5 ms 1 ms

F2 5 ms 1 ms

F3 15 ms 0.5 ms

F4 15 ms 0.25 ms

F ′
4 15 ms 0.25 ms

F5 20 ms 2 ms

Table 2. CCAS specification in default mode.

Fi Tf Cf

F1 5 ms 1 ms

F2 5 ms 1 ms

F3 15 ms 0.5 ms

F4 15 ms 0.5 ms

F5 20 ms 2 ms

Economic Mode: The economic Mode is defined by seven functions. Compared
with the default mode, we have added two function F ′

1 to compress the received
image and F ′

4 to decompress it. Tables 1 and 2 give a tabular presentation of the
specification model describing the different functions of the CCAS system.

5.2 CCAS Initial Task Model

The second step consists in generating the implementations and their tasks from
the specification model by applying Algorithm1. Tables 3 and 4 give a tabular
description of the initial task model describing the CCAS. This model shows
two possible implementations of the CCAS which refer respectively to the two
execution modes already specified. Thus, we denote by CCASsys the recon-
figurable real-time system of the Car Collision Avoidance which defines two
implementations:

CCASsys = {DefaultMode,EconomicMode}

The first implementation executes three tasks DefaultMode = {τ1, τ2, τ3} and
the second executes also three tasks EconomicMode = {τ4, τ5, τ6}. Each task is
defined by the specific real-time parameters and implements the set of applicative
functions having the same period.

A New Approach for Automatic Development 37

Table 3. Tabular description of the initial task model of the CCAS in default mode.

Task Ti (ms) Ci (ms) Di (ms) Fi

τ1 5 3 5 {F1, F2}
τ2 15 1 15 {F3,F4}
τ3 20 2 20 {F5}

Table 4. Tabular description of the initial task model of the CCAS in economic
mode.

Task Ti (ms) Ci (ms) Di (ms) Fi

τ4 5 3 5 {F1, F
′
1, F2}

τ5 15 1 15 {F3,F4, F
′
4}

τ6 20 2 20 {F5}

5.3 CCAS Optimized Task Model

The third step corresponds to the generation of the optimized task model from
the initial one. The objective of this step is to optimize the initial task model by
minimizing the redundancy, the number of tasks and the response times of the
different tasks. The merging matrix given by the task model optimization phase
is given as follow:

Merge =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

This matrix shows that the solution considered by the solver is the merge of τ2
and τ5 and the merge of τ3 and τ6. We note that tasks τ1 and τ4 are not merged
by the solver even they have the same period because due to feasibility concerns
(i.e. if the solver decide to merge τ1 and τ4, the resulting task will not meet its
deadline). Tabular descriptions of task models generated by this phase are given
in Tables 5 and 6.

Table 5. Tabular description of the optimized task model of the CCAS in default
mode.

Task Ti (ms) Ci (ms) Di (ms) Repi (ms) Function

τ1 5 3 5 7 F1,F2

τ ′
2 15 2 15 10.7 F3,F4,F

′
4

τ ′
3 20 4 20 5.2 F5

38 W. Lakhdhar et al.

Table 6. Tabular description of the optimized task model of the CCAS in economic
mode.

Task Ti (ms) Ci (ms) Di (ms) Repi (ms) Function

τ ′
1 5 3 5 8 F1,F

′
1,F2

τ ′
2 15 2 15 10.8 F3,F4,F

′
4

τ ′
3 20 4 20 5.3 F5

After optimisation, the CCAS system consists also in two implementations
but implementing different functions: DefaultMode = {τ1, τ

′
2, τ

′
3} and Economic-

Mode = {τ ′
1, τ

′
2, τ

′
3}. We note that the number of tasks implementing the CCAS

after optimization is only 4 tasks compared to 6 tasks in the initial task model.
In addition, as we can see from Tables 5 and 6, the response times Repi of the
different tasks are lower than their deadlines Di and thus the timing constraints
of the CCAS system are met. Figures 6 and 7 present the execution graphs of
the tasks in the default mode and the economic mode of the CCAS system given
by cheddar simulator [4]. These figures confirm that the system is feasible since
all the tasks meet the related deadlines.

Fig. 6. Execution graph of CCAS tasks in default mode.

Fig. 7. Execution graph of CCAS tasks in economic mode.

A New Approach for Automatic Development 39

Fig. 8. Excerpt of the controller implementation.

5.4 Code Generation

The last step in our approach is the code generator. We generate a POSIX
code from the optimized task model describing the CCAS. Figure 8 presents an
excerpt of the controller POSIX code. The controller’s role is to switch from
one implementation to another under a considered condition. As shown in Fig. 8
if the variable “CND” is equal to “Economic” then the control executes the
EconomicMode implementation else it executes the DefaultMode.

5.5 Performance Evaluation

The experiments are carried-out on Intel Core i5-4200U processor running at
1.6 GHz with 6 GB of cache memory. CPLEX is used as a MILP solver for the
whole set of experiments. We evaluate the proposed approach by considering the
CCAS system CCASsys previously defined.

We denote by Treconfinitial
the reconfiguration time in the initial task model

of the CCAS and TreconfCurrent
the reconfiguration time in the optimized task

one. These parameters are given as follow:

Treconfinitial
= 5 ∗ Tdelete + 6 ∗ Tcreat = 11 ∗ Tcost

TreconfCurrent
= 1 ∗ Tdelete + 2 ∗ Tcreat = 3 ∗ Tcost

40 W. Lakhdhar et al.

10 20 30 40

0

10

20

30

40

Number of tasks

R
ec

on
fig

ur
at

io
n

tim
e(

m
s)

InitialReconf T
CurrentReconf T

Fig. 9. Comparison between current reconfiguration time and initial one.

10 20 30 40

0

1

2

3

4
·104

Number of tasks

R
es

po
ns

e
tim

e(
m

s)

InitialRep
CurrentRep

Fig. 10. Comparison between current response time and initial one.

We note that the proposed approach allows to reduce the reconfiguration time
and thus improves the overall performance of the reconfigurable real-time system
(CCAS). It minimizes also the sum of the response times of the considered tasks
such as Repinitial = 3010 ms and after optimization it becomes Repoptimized =
1920 ms.

A New Approach for Automatic Development 41

0 20 40 60 80 100
0

20

40

60

Number of tasks

N
um

be
r

of
ta

sk
s

af
te

r
m

er
gi

ng

Fig. 11. Results of task merging.

In addition, we have randomly generated instances with 5 to 40 tasks. We
compare the reconfiguration time and the sum of response times after opti-
mization with the initial corresponding parameters. The numerical results are
depicted in Figs. 9 and 10.

These figures show that the optimization of the reconfiguration and response
times are clearer and more important for large scale reconfigurable real-time
systems. In fact, when the number of tasks is more important, the optimisation
phase will seek for solutions to merge tasks having the same periods while min-
imizing the response times of the different tasks. Such optimisation, reduce the
reconfiguration time and guarantee the system feasibility. Figure 11 shows the
number of tasks obtained after merging compared to the initial number of task.
We compute average results by executing several times the linear program on
randomly generated task sets. We observe from this figure that we are able to
merge many tasks. Thus, we minimize the additional time overhead.

6 Conclusion

The contribution presented in this paper consists in a methodology that supports
the development of reconfigurable real-time systems. By defining the specifica-
tion such as reconfigurable conditions, functions and temporal constraints the
approach generates as first step an initial task model. Then, this model will be
optimized using MILP techniques to produce an optimized task model. Finally,
our approach generates a POSIX-based code which describes the reconfigurable
real-time system. We have evaluated the performance of the three-step approach.
The numerical results show that the integer programming model allows to min-
imize the reconfiguration time and response times. As a future work, we aim to

42 W. Lakhdhar et al.

extend our approach by considering multiprocessor systems and other optimiza-
tion metrics. So that we expect to evaluate scalability of the proposed method
with an industrial example.

References

1. Burns, A., Wellings, A.: Real-Time Systems and Programming Languages: Ada,
Real-Time Java and C/Real-Time POSIX, 4th edn. Addison-Wesley Educational
Publishers Inc., USA (2009)

2. Cottet, F., Grolleau, E.: Systmes Temps Réel de Contrôle-Commande. Dunod,
Paris (2005)

3. Polakovic, J., Mazare, S., Stefani, J.-B., David, P.-C.: Experience with safe
dynamic reconfigurations in component-based embedded systems. In: Schmidt,
H.W., Crnkovic, I., Heineman, G.T., Stafford, J.A. (eds.) CBSE 2007. LNCS, vol.
4608, pp. 242–257. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73551-9 17

4. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time schedul-
ing framework. In: Proceedings of the ACM SIGADA International Conference,
Atlanta. ACM (2004)

5. Baruah, S., Goossens, J.: Scheduling real-time tasks: Algorithms and complexity.
Handb. Sched.: Algorithms Models Perform. Anal. 3 (2004)

6. Gharsellaoui, H., Gharbi, A., Khalgui, M., Ahmed, S.: Feasible automatic reconfig-
urations of real-time OS tasks. In: Handbook of Research on Industrial Informatics
and Manufacturing Intelligence: Innovations and Solutions: Innovations and Solu-
tions (2012)

7. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM (JACM) 20, 46–61 (1973)

8. Bouaziz, R., Lemarchand, L., Singhoff, F., Zalila, B., Jmaiel, M.: Architecture
exploration of real-time systems based on multi-objective optimization. In: Pro-
ceedings of the 20th International Conference on Engineering of Complex Com-
puter Systems (ICECCS), Gold Coast, QLD, pp. 1–10. IEEE (2015)

9. Mehiaoui, A., Wozniak, E., Tucci-Piergiovanni, S., Mraidha, C., Natale, M.D.,
Zeng, H., Babau, J., Lemarchand, L., Gerard, S.: A two-step optimization tech-
nique for functions placement, partitioning, and priority assignment in distributed
systems. ACM SIGPLAN Not. 48, 121–132 (2013)

10. Woźniak, E.: Model-based synthesis of distributed real-time automotive architec-
tures. Ph.D. thesis, Université Paris Sud-Paris XI

11. Marinca, D., Minet, P., George, L.: Analysis of deadline assignment methods in
distributed real-time systems. Comput. Commun. 27, 1412–1423 (2004)

12. Pillai, P., Shin, K.: Taste-an open-source tool-chain for embedded system and soft-
ware development. In: Proceedings of the Embedded Real Time Software and Sys-
tems Conference (ERTS), Toulouse, France (2012)

13. Lewine, D.: POSIX programmers guide. O’Reilly Media Inc., USA (1991)
14. Obenland, K.M.: The Use of Posix in Real-time Systems, Assessing its Effectiveness

and Performance. The MITRE Corporation, McLean (2000)
15. Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: exact

characterization and average case behavior. In: Proceedings of the Real Time Sys-
tems Symposium, pp. 166–171. IEEE (1989)

16. Ltkebohle, I.: IBM CPLEX Optimizer - United States (2016). http://www-01.ibm.
com/software/commerce/optimization/cplex-optimizer/. Accessed 10 Apr 2016

http://dx.doi.org/10.1007/978-3-540-73551-9_17
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

A New Approach for Automatic Development 43

17. Stankovic, J.: Misconceptions about real-time computing: a serious problem for
next-generation systems. Computer 21, 10–19 (1988)

18. Klein, M., Ralya, T., Pollak, B., Obenza, R., Harbour, M.G.: Analyzing complex
systems. In: Klein, M., Ralya, T., Pollak, B., Obenza, R., Harbour, M.G. (eds.)
Proceedings of Real-Time Analysis, pp. 535–578. Springer, US (1993)

19. Chetto, H., Silly, M., Bouchentouf, T.: Dynamic scheduling of real-time tasks under
precedence constraints. Real-Time Syst. 2, 181–194 (1991)

20. Swaminathan, V., Chakrabarty, K.: Real-time task scheduling for energy-aware
embedded systems. J. Franklin Inst. 338, 729–750 (2001)

21. Gruian, F.: Hard real-time scheduling for low-energy using stochastic data and
DVS processors. In: Proceedings of the 2001 international symposium on Low
power electronics and design, pp. 46–51. ACM (2001)

22. Krishna, C.M., Lee, Y.H.: Voltage-clock-scaling adaptive scheduling techniques for
low power in hard real-time systems. IEEE Trans. Comput. 52, 1586–1593 (2003)

23. Bini, E., Buttazzo, G.: A hyperbolic bound for the rate monotonic algorithm. In:
Proceedings of the 13th Euromicro Conference on Real-Time Systems, Delft, pp.
59–66. IEEE (2001)

24. Pillai, P., Shin, K.: Real-time dynamic voltage scaling for low-power embedded
operating systems. In: Proceedings of the 13th Euromicro Conference on Real-
Time Systems, USA, pp. 59–66. ACM (2001)

25. Bertout, A., Forget, J., Olejnik, R.: Minimizing a real-time task set through task
clustering. In: Proceedings of the 22nd International Conference on Real-Time
Networks and Systems, p. 23, Versailles, France. ACM (2014)

26. Racu, R., Jersak, M., Ernst, R.: Applying sensitivity analysis in real-time distrib-
uted systems. In: 11th IEEE Real Time and Embedded Technology and Applica-
tions Symposium, pp. 160–169. IEEE (2005)

27. Pop, T., Eles, P., Peng, Z.: Design optimization of mixed time/event-triggered
distributed embedded systems. In: Proceedings of the 1st IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System Synthesis, pp.
83–89. ACM (2003)

28. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software architec-
ture optimization methods: a systematic literature review. IEEE Trans. Software
Eng. 39, 658–683 (2013)

29. Mraidha, C., Tucci-Piergiovanni, S., Gerard, S.: Optimum: a marte-based method-
ology for schedulability analysis at early design stages. ACM SIGSOFT Softw.
Eng. Notes 36, 1–8 (2011)

30. Hladik, P.-E., Cambazard, H., Déplanche, A.M., Jussien, N.: Solving a real-time
allocation problem with constraint programming. Comput. Ind. Eng. 81, 132–149
(2008)

31. Harbour, M.G.: Ordonnancement temps reel avec profilsvariables de consommation
d’energie. In: Embedded Systems (2004)

32. Xu, Y., Brennan, R.W., Zhang, X., Norrie, H.: A reconfigurable concurrent function
block model and its implementation in real-time java. Discret. Event Dynamic Syst.
9, 263–279 (2002)

33. Rooker, M.N., Sünder, C., Strasser, T., Zoitl, A., Hummer, O., Ebenhofer,
G.: Zero downtime reconfiguration of distributed automation systems: the
εCEDAC approach. In: Mař́ık, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS
2007. LNCS, vol. 4659, pp. 326–337. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74481-8 31

http://dx.doi.org/10.1007/978-3-540-74481-8_31
http://dx.doi.org/10.1007/978-3-540-74481-8_31

44 W. Lakhdhar et al.

34. Thramboulidis, K., Doukas, G., Frantzis, A.: Towards an implementation model for
FB-based reconfigurable distributed control applications. In: IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, pp. 193–200.
IEEE (2007)

35. Krichen, F., Hamid, B., Zalila, B., Coulette, B.: Designing dynamic reconfigura-
tion for distributed real time embedded systems. In: Proceedings of 10th Annual
International Conference on New Technologies of Distributed Systems (NOTERE),
Tozeur, Tunisia, pp. 249–254. IEEE (2010)

36. Guo, Y., Sierszecki, K., Angelov, C.A.: A reconfiguration mechanism for resource-
constrained embedded systems, pp. 1315–1320. IEEE Computer Society, Washing-
ton, DC, USA (2008)

37. B. Hamid, A. Lanusse, A.R., Gérard, S.: Designing reconfigurable component sys-
tems with a model based approach. In: ARTIST Workshop on Adaptive and Recon-
figurable Embedded Systems, Saint Louis, MO, USA, pp. 69–73 (2008)

38. Barreto, R., Neves, M., Oliveira Jr., M., Maciel, P., Tavares, E., Lima, R.: A formal
software synthesis approach for embedded hard real-time systems. In: Proceedings
of the 17th symposium on Integrated circuits and system design, pp. 163–168.
ACM (2004)

39. Tavares, E., Barreto, R., Junior, M.O., Maciel, P., Neves, M., Lima, R.: An app-
roach for pre-runtime scheduling in embedded hard real-time systems with power
constraints. In: 16th Symposium on Computer Architecture and High Performance
Computing, 2004, SBAC-PAD 2004, pp. 188–195. IEEE (2004)

40. Pagetti, C., Forget, J., Boniol, F., Cordovilla, M., Lesens, D.: Multi-task imple-
mentation of multi-periodic synchronous programs. Discret. Event Dyn. Syst. 21,
307–338 (2011)

41. Binder, W., Hulaas, J.: Using bytecode instruction counting as portable cpu con-
sumption metric. Electron. Notes Theoret. Comput. Sci. 153, 57–77 (2006)

42. Harbour, M.G.: Real-time posix: an overview. In: VVConex 93 International Con-
ference, Moscu. Citeseer (1993)

43. Brosse, E.: Marte-designer example-ccas - marte user manual (english) - modelio
community forge (2011). https://forge.modelio.org/projects/marte-user-manual-
english/wiki/marte-designer example-CCAS. Accessed 1 Nov 2016

https://forge.modelio.org/projects/marte-user-manual-english/wiki/marte-designer_example-CCAS
https://forge.modelio.org/projects/marte-user-manual-english/wiki/marte-designer_example-CCAS

Testing Web Services with Model-Based
Mutation

Faezeh Siavashi1(B), Junaid Iqbal1, Dragos Truscan1, and Jüri Vain2

1 Faculty of Science and Engineering, Åbo Akademi University, Åbo, Finland
{faezeh.siavashi,junaid.iqbal,dragos.truscan}@abo.fi

2 Department of Computer Science, Tallinn University of Technology,
Tallinn, Estonia

juri.vain@ttu.ee

Abstract. One way of evaluating the robustness of a web service is to
test it against invalid inputs. We introduce a model-based mutation tech-
nique which automatically generates faulty test inputs. From the speci-
fication of a Web service, a test model is designed using Uppaal Timed
Automata and the conformance between the model and the implementa-
tion is validated via online model-based testing with the Uppaal Tron
tool. A set of mutation operators is applied to the test model in order to
generate mutant test models. We validate all generated mutants via ver-
ification rules and select those that are executable and introduce proper
mutations. We employ bisimulation as a tool for detecting and eliminat-
ing equivalent mutants, that is those mutants which have identical input-
output behavior with the original test model. The resulting mutants are
used for online test generation against the service implementation in order
to check whether the latter allows for unspecified behavior. We discuss
tool support and present an experiment of applying our method for a case
study of a blog web service with real-life properties. The experiment shows
that the proposed approach of mutating the specifications is effective in
detecting errors both in the system functionality and in the test model.

Keywords: Web service · Model-based mutation testing · Uppaal ·
Tron · Bisimulation of Uppaal Timed Automata

1 Introduction

Software applications that support machine-to-machine interactions over the
Internet have heavily increased the role of web services. One main character-
istic of web services is that they are accessed via clearly defined interfaces over
the standard HTTP protocol. This kind of systems should be robust against
erroneous inputs. This means that one needs to ensure that the web service
implementation is tested with respect not only to its expected behavior, but
also to its unexpected behavior. The former can be checked by running test
cases derived from the specification, whereas the latter can be done via robust-
ness testing, by executing invalid inputs.
c© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 45–67, 2017.
DOI: 10.1007/978-3-319-62569-0 3

46 F. Siavashi et al.

When defining test inputs, the model-based specifications are preferred over
manually written test scripts since the machine can verify the correctness of the
models and automatically generate the test inputs from them. Moreover, test
generation from models enables systematic construction of extensive test cases.

One way to create invalid test inputs is using specification mutation, where
a set of well-defined mutation operators generate syntactic changes to the spec-
ifications and produce specification mutants. Although originally the mutations
have been applied directly to source code, it has also been extended also to
specification languages [1]. When applied to modeling languages, mutation used
to create the models that generate invalid scenarios as test cases, which then
are executed against the implementation under test (IUT). If the IUT conforms
to the mutated specification (i.e., the IUT accepts an unspecified sequence of
inputs), it means that its behavior is inconsistent with its original specification
and it may have unspecified or incorrect behavior.

In this work, we propose a tool-supported approach for robustness testing of
web service using Uppaal Timed Automata (UTA). The conformance between
the model and the IUT is first checked via Uppaal Tron, an online conformance
testing tool which supports both test generation and test execution. As a first
contribution, we introduce a test generation method, which derives mutants
from the specification and executes them via online testing. We use a selection
of mutation operators that are previously defined in the literature and adapt
them for the online testing process targeted in this work.

As a second contribution, in our method, we add verification properties to
mutated model segments to ensure reachability of the mutated elements at run-
time. If a mutant does not satisfy the verification properties, it cannot be used for
online testing, hence, we eliminate it. Furthermore, to ensure that the mutated
part will be executed during the testing process, we monitor whether the mutated
elements are reached during test execution.

As a third contribution, we provide an approach for detecting and eliminating
equivalent mutants, that is those mutant models which exhibit identical timed
input-output behavior with the original test model, even if the two models are
syntactically different. For this purpose, we verify the timed bisimilarity of the
corresponding Uppaal timed automata models.

As a forth contribution, we empirically evaluate which of the existing muta-
tion operators for Uppaal timed automata are effective for online testing of web
services. For this purpose, we define two formulas to measure the efficiency of
mutation operators as well as their fault detection rate.

Parts of this work have been originally presented in [2]. In this version, we
extend previous work as follows: we provide a method for detecting equivalent
mutants, we discuss tool support for the entire approach, we address a larger set
of mutation operators, we use a different case study to complement the previous
results and we provide a more detailed analysis of the results.

The remainder of this paper is organized as follows: In Sect. 2, we briefly revisit
the background concepts behind Uppaal timed automata, conformance testing
with Tron, and specification mutation analysis. Section 3 details the steps of
our approach and its tool support. The case study and the experiments used to

Testing Web Services with Model-Based Mutation 47

validate our approach are presented in Sect. 4. The results are discussed in Sect. 4.6
and possible improvements are suggested in Sect. 6. Threats to validity of the pro-
posed method are discussed in Sect. 7. We review the literature for related work
in Sect. 8. Finally, we conclude our study and present future work in Sect. 9.

2 Background

We first review the Uppaal tool set and we introduce the conformance testing
with Uppaal Tron , then we elaborate on the concept of specification mutation
testing.

2.1 Uppaal Timed Automata (UTA)

Uppaal is a model-checker tool for modeling, simulation, and verification of
real-time systems using an extended version of timed automata called Uppaal
timed automata (UTA) [3]. A timed automaton is a state machine with locations,
actions, and clocks.

In Uppaal, a system is designed as a network of several such timed-automata
called processes working in parallel. A process can be executed individually or
in sync with another process. Synchronization of two processes is possible by
using input/output actions (denoted as “!” for emitting and “?” for receiving
synchronizations, respectively). The processes consist of locations and edges. The
state of the system can be shown by the locations of all processes, their clock
value intervals, and their variable values. The edges between locations represent
state transitions including clock resets. Uppaal is extended further with global
and local to some process variables that can be of type integer, boolean, clock
and arrays of those.

Edges can be constrained by predicates (over the clocks or variables) known
as guards, which defines when the corresponding edge is enabled. State tran-
sitions are specified on edges as variable updates. A location can be restricted
over the clock invariants, which specify how long the system can stay in that
location. If there is more than one enabled edge at a time, then one of them will
be randomly selected. This gives more freedom to represent non-deterministic
behaviour, especially in systems with random discrete events [4].

Fig. 1. Example of an UTA model [2].

48 F. Siavashi et al.

An example of a UTA model consisting of two timed automata is shown in
Fig. 1. The communication between automata is modeled using channel synchro-
nizations (e.g., a, b, c, d) and variables (e.g., n). Time is modeled via the clock
variable cl.

The Uppaal model-checker uses a simplified version of TCTL [5], which
enables to exhaustively verify the models w.r.t their specifications. The query
language consists of state formulae and path formulae. State formulae (ϕ) is
an expression that describes the properties of an individual state while path
formulae can be used to specify which properties (like reachability, safety, and
liveness) hold over a given path [6].

If there is a state in the model that has no enabled outgoing transitions, then
the model is said to be in a deadlock. A � not deadlock query, can be used to
verify that for all paths in the model, there is no deadlock state.

The safety property checks that “something bad will never happen”. In
Uppaal it can be expressed in the form A � ϕ (ϕ should be true in all reach-
able states) and E � ϕ (there should exist a maximal path such that ϕ is always
true).

The liveness property determines that “something will eventually happen”
and it is shown by A ♦ ϕ (ϕ is eventually satisfied) and ϕ � φ (whenever ϕ is
satisfied, then eventually φ will be satisfied).

Reachability properties validate the basic behavior of the model by checking
whether a certain property is possible in the model with the given paths. The
reachability can be expressed in the form of E ♦ ϕ (there is a path from the
initial state, such that ϕ is eventually satisfied along that path).

2.2 Online Model-Based Testing

Model-Based Testing (MBT) [3] is an approach which uses behavioral models of
the system under test to generate tests. Based on how tests are generated and
executed, there are two distinct approaches of MBT: offline and online testing.
In offline testing, the complete test scenarios and test oracle are created before
the test execution, whereas online testing is a combination of test generation
and execution: only one test input at a time is generated and executed, then the
next test input is generated based on the previous test output [7]. This continues
until the test termination criteria are satisfied or an error occurs.

In this study, we use the online testing tool Uppaal Tron, which is an
input/output conformance testing tool for testing real-time systems based on
the rtioco conformance relation [8]. In Tron, the UTA model is divided in two
partitions: a system partition and an environment partition, and the communi-
cation between the two is observed against the inputs and outputs of the IUT.
Test stimuli are selected randomly from the enabled test inputs. A test adapter
is used for converting abstract test cases to concrete inputs to the IUT and for
converting concrete outputs into abstract outputs represented in the model. Via
online testing, the state-explosion problem is reduced because only a portion of

Testing Web Services with Model-Based Mutation 49

the state space is needed to be calculated and stored at each step. Also, the
non-determinism of systems can be simulated on-the-fly by random selection of
the test inputs.

The result of online testing with Tron can be passed, failed, or inconclusive.
An inconclusive test result means that the environment model cannot progress
since the IUT output is unexpected or timeout occurred when waiting for test
output.

2.3 Specification Mutation Analysis

Specification mutation analysis is an approach used to design tests to evaluate
the correctness and consistency of the specification or of the program [1]. When
the mutation analysis is applied to the specification, a set of mutation operators
create slightly altered versions (mutants) of the specification. The tests will
be generated from the mutated specification and used to assess whether the
IUT is accepting the tests. The following types of mutants are defined in the
literature [9]:

• Killed: the tests generated from a mutant specification fail against the imple-
mentation, under the precondition that the tests generated from the original
specification have passed.

• Alive: all test cases generated from the mutant pass against the IUT. Alive
mutants can be divided into two sub-types:

• Equivalent: The mutant manifests the same behavior as the original model,
even if they are syntactically different.

• Non-equivalent: The mutant does not have the same behavior as the orig-
inal model, however, all tests generated from the mutant pass against the
IUT. These mutants indicate that the implementation is too permissive and
is not able to detect the invalid inputs.

3 Method

In this section, a method which combines specification mutation testing and
online model-based testing is presented. The outcome of the method is to gener-
ate and identify non-equivalent alive mutants which are used to show that there
might be some inconsistencies between the specification and the implementation.
The collected mutants are subject to further investigation to identify whether the
source of the problem is in the specification or in the implementation. Figure 2
illustrates an overview of the method including six main phases (separated by
dashed lines), as follows:

3.1 Design and Conformance Testing

From the given specifications of a system, e.g., a web service, a test model is
designed. The test model consists of two partitions: the system under test and

50 F. Siavashi et al.

Fig. 2. Model-based mutation testing approach.

Testing Web Services with Model-Based Mutation 51

its environment. The former models the activities that a typical user performs
against the web service, while the latter models how the system should respond
to user activities. For instance, a flight booking server receives different HTTP
requests (such as searching, checking in, etc.) and returns the corresponding
HTTP responses. For each request and response, two edges are specified in the
model. It should be noted that, failure responses are not modeled since adding
all possible failure response types might make the model too complex.

In order to ensure that the model is correctly designed according to the
specification, we verify it via model-checking. Deadlockfreeness and reachability
properties are two common and essential properties that the model should satisfy.
These properties ensure that the model can be used later on for online testing.

The test adapter is implemented to convert the observable test interface I/O
actions into HTTP messages and vice-versa. The adapter is also used to check
the status codes of different HTTP responses, before forwarding them to the
tester. The Tron testing tool orchestrates the communications between the test
model and the IUT, and check the I/O conformance between the two. During
the online testing, the expected behavior of the IUT is validated and possible
modeling errors or implementation bugs are resolved.

3.2 Mutation Generation

From a verified test model various modified versions are created. Each modified
version of the original model is called mutant model (or simply mutant). Test
generated from mutants will also exhibit a mutated behaviors compared to the
original ones.

Mutation operators implement the rules that create systematic mutation of
a given context. They are uniquely defined for a specific modeling language. For
example, different modeling languages (UML, Petri Nets, Uppaal, etc.) have
different mutation operators. Mutation operators for UTA have been previously
defined by Aboutrab et al. [10] and by Aichernig et al. [11], as summarized
in Table 1. As one may notice, the two sets of operators are mostly similar
in purpose, however they differ in the restrictions that are employed in each
element. For instance, for a guard, three mutation operators (RTC,WTC and
STC) are defined by Aboutrab et al., while, all three definitions are covered in
one mutation operator (μCG) in the work of Aichernig et al.

Mutation operators that are used in this paper are selected from this list,
combining the definition of the similar mutation operators in both studies. Only
one of the mutation operators (sink location) was not selected in this study, since
it will produce higher order mutations which are beyond the scope of this work.

We have restricted some of the operators to make them suitable for online
testing with Tron. As we mentioned earlier, the IUT and its environment (user,
or other systems) are specified in separate automata and they communicate via
synchronization channels and global variables. All channels between the model of
the system and its environment and the variables attached to those channels are
observable by Tron. Based on the type of the input or output, Tron controls
which action can be executed at a given time. Therefore, if there are multiple

52 F. Siavashi et al.

Table 1. Mutation operators of timed-automata, [2].

Mutated
elements

Aichering et al. [11] Aboutrab et al. [10] Informal definition

Guard Change Guard (µCG) Restricting Timing
Constraints (RTC)

Restricts, expands or alters
guards

Widening Timing
Constraints (WTC)

Shifting Timing
constraints (STC)

Negate guard (µCg) - Guard will be replaced by its
negation

Invariant Change invariant (µCi) - Restricts, expands or change
value of invartiants

Clock Invert reset (µIr) Resetting a Clock
(RC)

Removes or adds clock resets

Not-Resetting a Clock
(NRC)

Action Change action (µCa) Exchanging Input
Actions (EIA)

Changes names of actions

Exchanging Output
Action (EOA)

Change source (µCs) - Changes source location of
actions

Change target (µCt) Transferring
Destination Locations
(TDL)

Changes target locations of
actions

Location Sink location (µSl) - Makes a new locations and
changes targets of all actions
to the new location

processes in the model and some of the synchronizations among them are not
defined in the IUT, then they cannot be observed by Tron. Thus, they will not
be mutated either. It should be noted that in this study, only the system under
test (SUT) partition is mutated and we limit our approach to partitions with
only one timed automaton process.

Additionally, the mutation operator for changing the name of the actions
(i.e. μCa) is only applied on input actions in the SUT model. The reason behind
this is that the implementation of the web service is a black box and thus we
cannot change them. The requests (inputs actions), on the other hand, come
from outside of the SUT and can be manipulated. We select EIA mutation
operator that will be effective since the sequence of requests will be mutated,
whereas mutating the output actions does not make a suitable mutation.

Finally, the direction of synchronizations will not be changed (i.e., switching
“?” to “!”) since the requests from the environment are modeled as input actions
(“?”) and changing them into output actions indicates that the requests will be
changed into responses, which is not applicable in web services. The web service
is the receiver of the requests from the user and not the sender of the requests.

Testing Web Services with Model-Based Mutation 53

The mutation operators adapted from Table 1 and used in this paper are
presented in the following.

1. Change Name of Input Action (CNI). This operator is same as EIA,
which replaces the name of an input action (denoted by “?”) with the name
of other actions. Thus, the expected sequence of the inputs to the implemen-
tation will be different.

2. Change Target (CT). This operator is similar to TDL and μCT . As it
name suggests, it changes the target of an interface action to other location.
This operator can break the flow of test inputs and violate the state of the
IUT. Both input and output actions can be mutated by this operator.

3. Change Source (CS). This operator is similar to μCS defined in [11]
changes the source location of an action to other locations. Similar to CT,
this operator gives a different I/O sequence.

4. Change Guard (CG). For this operator, we followed the definition of μCG,
which changes the clock constants in guards by a random value. It is effective
for mutating the enabling condition of an action.

5. Negate Guard (NG). It is the same operator as μNG which negates the
guards and may cause some paths of the test model to become unreachable.

6. Change Invariant (CI). Similar to μCI, it shifts values of the invariants
to a different range, extending or restricting the constraints of the model. It
can cause actions fire earlier (or later) than expected by original model.

7. Invert Reset (IR). This operator is same as μIR which deletes the resetting
of the clock and moves it to one action before or after. It means that the
resetting is shifted one edge earlier or later.

Figure 3 shows the mutants of a model and corresponding mutants using the
above operators. In our approach, we only apply first order mutation. That is,
a mutant model contains only one mutated segment based on a single operator.

3.3 Selecting Valid Mutants

In the context of this paper, we define a valid mutant as one which can be
executed by Tron and in which the mutated part is reachable. To this end, we
verify if all mutations are reachable and deadlock free.

In Uppaal, the reachability property is defined for locations and the valu-
ations of variable sets. When an action is mutated, we define the reachability
property for the target location of that action. For instance, in Fig. 3(b), the
input action a? is mutated into c?, hence, the reachability for this mutation
should be defined for its target location (i.e., l). For example, in Fig. 3(b), we
have E � l, which verifies if that the mutation can be reached and executed.

Nevertheless, for CT and CS that change target and source of actions, the
above reachability is not suitable. Thus, we add an alternative method to define
reachability in these circumstances. For a mutated action, we add a trap variable
update [12] on its edge. The initial value of the variable is set to false. The
variable will be updated to true whenever the mutated action is executed, and

54 F. Siavashi et al.

(a) The original model (b) CNI: Change the name of
input action

(c) CT: Change Target

(d) CS: Change Source (e) CG: Change Guard (f) NG: Negate Guard

(g) CI: Change Invariant (h) IR: Invert Reset

Fig. 3. A model with examples of mutants generated by the selected mutation
operators [2].

so the reachability can be achieved by checking if the variable eventually will be
set to true (E � trap).

One can use trap variables to ensure that the mutation part of the model
will be reached during the test execution as well. In the case that the minimum
repetitive execution of mutation is needed the boolean trap variable should be
replaced by an integer counter variable count and the reachability condition
with E � count >= const. Those models that pass the verification process are
considered as valid mutants and can be executed against the IUT.

Beside reachability, the deadlock-freeness property will also be verified. The
deadlock freeness property can be expressed as A� not deadlock, which indicates
that for all existing path in the model there is no deadlock.

Early validation of the mutants reduces the number of final valid mutants by
eliminating false negatives which cause semantic and syntactic errors.

3.4 Detecting and Removing Equivalent Mutants

In order to detect those mutants which have equivalent observable input-output
behavior we employ bisimulation relation checks. Intuitively, two UTA are bisim-
ilar if they accept the same timed language, i.e., they perform exactly the same
observable action transitions and if they reach bisimilar states. In other words,
each of the systems cannot be distinguished from the other by an external
observer. Bisimulation relation is symmetric. Bisimulation for timed automata
has been originally introduced by [13] and shown in [14] to be decidable for

Testing Web Services with Model-Based Mutation 55

parallel timed processes. In order to observe bisimilarity between the original
model and one of its mutants, we follow these steps:

1. we compose a new UTA model containing both the original and a mutant
model,

2. we add additional, side-effect free, synchronization channels between the mod-
els for the observable actions,

3. we verify that the complete model never deadlocks on all possible paths.

The mutants selected after the validation step described in Sect. 3.3 were
examined for their bisimilarity.

Figure 4 depicts an example of a bisimulation model used to detect bisimilar-
ity between two models. The observable channels and shared variables between
environment and the SUT partition of the mutant process are renamed (using
the BISIM prefix) and added as a counterpart to observe the bisimilarity.
A committed location between each channel and its counterpart to ensure that
both observable actions take place at the same time. Thus, the deviation of the
behavior of either process results in a deadlock which violates the condition of
bisimilarity. The non-bisimilar models are good candidates for mutation testing
due to their erroneous behavior. All mutants which are found to be bisimilar with
the original model are considered equivalent, and consequently, are eliminated.

Fig. 4. UTA containing an original process (model), a mutated process (MutModel),
and a shared environment process (user).

3.5 Mutation Testing

Each valid mutant model is executed in a testing session with Uppaal Tron.
The verdict of an online testing session with Tron can be passed, failed, or

56 F. Siavashi et al.

inconclusive. In Tron, an inconclusive verdict indicates that either the observed
output from the IUT is not valid, or there is an unacceptable delay in receiving
responses from the IUT. We consider that the mutants that generate inconclusive
test cases exhibit different behavior than the original model and thus they are
considered as killed. When executing the mutants we assume implicitly that these
test runs are exhaustive w.r.t. the mutation, i.e. all mutations injected are also
covered by these test runs.

3.6 Result Analysis

The last phase of our method is to evaluate the results by reasoning about the
unexpected behaviors that the IUT shows during test execution. The focus of the
analysis is on the non-equivalent mutants, which generate different invalid test
inputs, thus, these test inputs are manually evaluated to find the correlations
between them and the actual faulty behaviors.

3.7 Tool Support

Tool support has been implemented to automate several of the activities dis-
cussed in the previous section. The Uppaal tool set is used for modeling and
verification of the original model. Then the Tron tool and a test adapter is
implemented to interface Tron with the IUT.

A prototype tool set, called MuUTA, has been implemented to support the
generation of mutants based on the selected mutation operators, to automati-
cally perform the verification of reachability and deadlock-freeness rules for each
mutant via the verifyta utility of Uppaal and run bisimulation checks. The
tool also instantiates a test session for each mutant using Tron test adapter
and IUT and eliminates those mutants that are killed. All generated mutants
are stored based on their status in corresponding folders for further analysis.

4 Experiment

We exemplify our approach using the case study of a blog web service. We
define the specifications of the web service and present different use cases that
are satisfied.

4.1 Case Study

The case study represents a blog website that is implemented in REpresen-
tational State Transfer (REST) [15] architectural style. The web service pro-
vides functionality for creating a user account, posting new articles, commenting,
deleting/editing posts and comments, managing the user profile, etc. similar to
other social networks. These main characteristics of a sample blog web service
include authorization of users to access to features of the web service. The web
service is implemented in Python using Flask web developing micro framework
[16]. Figure 5 shows a use case diagram of the blog web service. Each use case is
detailed below:

Testing Web Services with Model-Based Mutation 57

Fig. 5. Use case diagram of blog web service.

– Create New Profile. A new user can create a unique profile in blog service
in order to use the features of the web service. It includes inserting a valid
(and unique) username and a password.

– Log In. A user is able to log in with registered username and password. No
two usernames are similar.

– Manage Profile. A signed up user can have access to his profile for further
settings.

– Delete Profile. A user can delete his profile. This action logs him out from
the blog as well as removes all of his posts and comments.

– Post New Article. A user can post new articles. Each article has a title
and body.

– View Articles. Both user and reader (blog reader) are able to search
throughout the blog and read the posted articles.

– Comment Articles. A user can comment on articles of the blog.
– Edit/Delete Articles. A user, who is owner of an article can edit/delete it.
– Edit/Delete Comments. An owner of the article can manage his

comments.
– Idle User. There is a timer in the blog which checks whether a user is idle

for more than 10 min. If so, then the service will automatically logs out the
user.

58 F. Siavashi et al.

4.2 Model

From the above descriptions, we have specified the system as a UTA model which
consists of two automata: one for the blog web service and one for the environ-
ment (user). Figure 6 shows the models of the case study and the interactions
between the service and the users.

From the specifications, we can define some use case scenarios which are
designed in the model as well. For example, the above specification of edit/delete
an article is designed in the model accordingly. In order to delete/edit an arti-
cle, in the user and blog automata are synchronized as follows: the user sends
a request logged in, which is received in the blog by the same channel. The
response from the blog will be either loged in which changes the state of the
model to the next location (id46 in blog) or login failed which returns it to
the initial location. This synchronization will continue by manage ar (getting
an specific article), which will be responded by either access ar (access to the
article) or access denied (does not allow to have access to the article, or the
article does not exists). If the response channel is access ar, then there are two
options for the next request from the user: edit ar and delete ar which will be
responded by edited ar and deleted ar respectively. Similarly, the rest of the
specifications are designed as UTA models as described above.

The model is verified before using it for test generation for deadlock-freeness
and that the requirements are satisfied. For example, to ensure that editing
article is possible we define a global boolean variable (e.g. a) and update its value
to TRUE on edited ar. Then we define a reachability property like E ♦ a ==
true which, if satisfied, indicates that there is at least a path in which a will be
eventually true.

4.3 Generating Valid Mutants

In this experiment, we mutate the blog automaton (Fig. 6(a)) to generate
mutated models. The total time for generation and validation of all mutants
took 246 s on a Windows 7 Enterprise 64-bit operating system, Intel quad-core
CPU and 16 GB RAM. In total, the generator provided 1019 mutants, of which
470 mutants were valid (i.e., passed the verification properties). As the num-
bers suggest, early verification of the mutants is helpful in having only mutants
applicable for testing and thus, reducing the time of the test execution. The
majority of the valid mutants, 300, were generated by the CS operator, in con-
trast with 102 valid mutants provided by CNI and 32 by CT. All generated
mutants by IR and NG passed the validation process, and other mutation oper-
ators have a small share of valid mutants.

4.4 Detecting and Removing Equivalent Mutants

After performing equivalence checking, a number of 31 mutants were eliminated
as being bisimulation equivalent. We eliminated them from the valid mutants,

Testing Web Services with Model-Based Mutation 59

Fig. 6. Behavioral model of blog: (a) blog service, (b) blog user.

60 F. Siavashi et al.

resulting a number of 439 valid non-equivalent mutants. The equivalence detec-
tion process took 286 s. Obviously, none of the mutants generated by CS, CT,
CG and CNI were equivalent since they change the trace of the mutant which is
clearly different than the original one. Only one mutant from NG is remained as
valid non-equivalent. All mutants generated by IR and NG were equivalent and
thus were eliminated.

4.5 Mutation Testing

We execute each mutant with Tron against the implementation of the blog
web service. Each test session is set for 180 s in sequence, and we check that
the mutated state is covered by the test and is also covered at runtime. It took
roughly 8 h to execute the 439 non-equivalent mutants of which 436 have been
killed.

4.6 Results Analysis

The resulting 33 alive mutants have been used for further analysis. In this step,
we are interested in understanding why the tests generated from each alive
mutant did not fail against the IUT. The process is done manually.

We detected 3 inconsistencies in the test model and the test adapter while no
error in the code. In contrast, to the results presented in the previous paper [2],
where the errors were detected on the implementation of the IUT, in this paper
the detected errors were localized in the test adapter and the test model only.

The inconsistencies that are found are as follows:

– Mutation in some of alive mutants change the timing of which could not
be killed by the IUT. Mutants by CG and NG are mainly addressing this
inconsistency.

– For some mutants, although the IUT detects the mutation, the test adapter
does not stop the test session. Some of alive mutants by CT revealed this
problem.

– Some mutants generate the cases that regardless their difference from the
original test cases, they are not erroneous. Alive mutants by CS, CN and CT
revealed the same problem.

5 Analysis of Experimental Results

One of the questions that we wanted to answer in this paper was about the
efficiency of the mutation operators used in our approach. Table 2 summarizes the
results of the method at different steps, while Fig. 7 shows the 100% stacked bar
chart showing the ratio of different types of mutants for different operators. For
instance, IR and NG have the highest percentage of valid mutants in proportion
to their generated mutants, however, majority of them were eliminated by the
equivalence detection. The valid mutants in CS and CNI are more than half of

Testing Web Services with Model-Based Mutation 61

Table 2. Result of mutation testing.

Name Generated Valid Non-equivalent Alive

CNI 132 102 102 1

CT 420 32 32 8

CS 420 300 300 19

CG 12 4 4 4

NG 16 16 1 1

CI 3 0 0 0

IR 16 16 0 0

Total 1019 470 439 33

Fig. 7. The proportion of the result of each mutation operator and the total result of
testing.

their generated mutants and none of them were equivalent. Small proportion of
generated mutants in CT and CG are valid and no valid mutant is generated
by CI.

Two formulas were defined previously for the efficiency of mutation operators
showing how many of the mutants reveal the faults [2]. By calculating the number
of equivalent mutants we can calculate the mutation efficiency for each mutation
operator as follows:

62 F. Siavashi et al.

Mutation Efficiency: For each mutation operator, we calculate how many
mutants are alive. We calculate the efficiency of each mutation operator in gen-
erating alive mutants:

MEi =
Ai

Vi
, (1)

where A is the number of alive mutants, V is the number of valid non-equivalent
mutants of the mutation operator i.

Mutation Fault Detection: Since after finding a fault in each category, we
discard the rest of them, the formula for fault detection will be applied based on
the categories. For each category that shows a fault, we score the corresponding
operators. For each operator, we measure the mutation fault detection with
following formula:

MFDi =
NEi

Ti − Ei
, (2)

where NE is the number of non-equivalent mutants that reveal hidden faults, T
is the number of total mutants and E is the number of equivalent mutants.

By using Formula 1, we calculated the efficiency of the operators that have
alive mutants. The result shows that all alive mutants generated by CG remained
alive, however, none of them shows a fault and thus CG has 0% in fault detection.
A quarter of generated mutants by CT and only 6.3% of the mutants generated
by CS were efficient. While CS is in the bottom of the list in ME, it has the
highest rank in MFD. It means that CS is more able to detect faults in the
model and the test adapter. Table 3 illustrates information on how the mutation
operators are able to show some faults in the case study.

Table 3. Mutation efficiency and mutation fault detection for the suggested operators.

Operators ME MFD

CNI ∼1% 0.7%

CT 25% 1.6%

CS 6.3% 2.3%

CG 100% 0%

NG 6.2% 0%

6 Discussion

Some improvements can reduce the test execution time while increasing the
probability of finding faults. The results of mutation testing from this study and
the previous one [2] indicate that an intelligent choice of the mutation operators
can attain high mutation efficiency scores while reducing the time of testing. For
instance, the mutations generated by IR, NG and CG were not effective, thus
either they should be changed to stronger operators or simply not considered.

Testing Web Services with Model-Based Mutation 63

Another improvement could be done in the process of fault detection. Redun-
dant work is done on detecting the same faults. This extra effort can be reduced
by categorizing the alive mutants in such a way that all mutations of a certain
location or action in the model will be in a single category. As soon as any of the
mutants in a category detects a fault, then the rest of the mutants on that group
can be eliminated from the fault detection analysis. The idea behind this is that
the locations and actions in a model represent actual states of the system under
test and if there is a state which contains a fault, then any mutant from that
state may be able to reveal that fault. However, more experiments are needed
to show the correctness of this test effort reduction technique.

The main downside of model-based mutation testing comes from MBT: the
process of designing models from the specification, verifying them and writing
the test adapter (to translate model-level test inputs into acceptable test script
for the IUT and vice versa) is time consuming. However, once the above artifacts
are created, the model-based mutation testing process could be automated to
a large extent. Also reusing existing models from development process would
help in reducing the effort as it is often the case in regression testing. Moreover,
the new method of equivalence detection helped us to reduce the number of
alive mutants into half. The mutation testing does not add any overhead into
MBT. The mutation generator tool automatically generates correct and valid
mutations and thus, it reduces the mutant generation time.

Finally, the process of result analysis is manual and for large-scale sys-
tems, it is tedious. But some degree of tool support could be provided via
TRON2UPPAAL backtracing tool described in [17]. This tool allows one to
load a test execution trace generated from Tron and load it in the Uppaal
simulator for visualization and step-wise debugging.

7 Threats to Validity

There are two main threats related to our study. One is related to the mutation
operators. Despite the fact that we have followed the systematically and formally
defined mutation operators and implemented them in our study, there might be
some more effective mutation operators or combinations of operators that we
have missed. We argue that the current number of mutation operators provides
a large number of mutants which can provide faulty test inputs which are close
to the accepted inputs.

The other threat is that the results are strongly related to the test model
and to the case study used. Different test designers can specify the same system
in various ways which may provide different results of mutation testing. Perhaps
having a systematic modeling approach specifically for web services (if there is
any) would resolve such threat.

More extensive studies are needed in order to investigate how the specification
mutation can be applied in larger case studies preferably industrial-sized web
services. Besides, more experiment on larger scales would be helpful in finding
whether there is any correlation between certain mutation operators and the real
faults in design and implementation of web services.

64 F. Siavashi et al.

8 Related Work

A comprehensive analysis is done on all available mutation testing method pre-
senting the current state of the art in this field and the open challenges [18].

Lee and Offutt [19] introduced an Interaction specification Model which for-
malize the interactions among Web components. They defined a set of mutation
operators for XML data model in order to mutate the inputs of the Web compo-
nents. Li et al. [20] presented mutation testing methods using XML schema to
create invalid inputs. Mutation testing is extended to XML-based specification
languages for Web services. Lee et al. presented an ontology based mutation oper-
ators on OWL-S, which is an XML-based language for specifying semantics of
web services [21]. They mutate semantics of the specifications of their case study
such as data mutation, condition mutation, etc. Wang and Huang presented a
mutation testing approach based on OWL-S to validate the requirements of web
services [22]. Also, Dominguez et al. presented a mutation generator tool for
WS-BPEL.

We discuss those that are most similar to our approach. Work has been
done on using model checking techniques for validation and verification of web
servicesWSC. There are two studies that review the literature on testing Web
services [23,24]. Starting from specification languages for modeling Web services,
researchers perform simulation, verification and test generation using model
checking tools. Most of the works use model checking for specification and veri-
fication and only one group use the models for the test generation as well.

Using TA models for mutation testing has been mostly studied on a real-
time and embedded system. In [10,11] mutation operators for TA are presented.
Aboutrab et al. proposed a set of mutation operators for timed automata to
empirically compare priority-based testing with other testing approaches [10].
However, in their approach, the generation of mutations is done manually.
Aichernig et al. presented model-based mutation testing real-time system using
Uppaal [11]. The mutation operators that are defined in their work are more
detailed and some of them are implemented as mutation bounded model-checking
and incremental SMT solving. They showed that using mutations for timed
automata has potential on debugging and revealing the unexpected behavior of
the IUT.

We applied/modified the mutation operators of TA presented by these studies
for testing the robustness of web servicesWSC. Similar to [11], we apply muta-
tions on non-deterministic models, however, in their work, they use only the
UTA model of the IUT and do not consider the environment. In our approach,
however, each mutant is a closed model communicating with its environment. We
check deadlockfreeness and reachability in order to reduce the number of invalid
mutants. Also, we use different verification and test generation processes.

There are some works that target UTA as the specification language for Web
services. In most of the works, the authors transformed the specification that
is defined in their selected languages into UTA and then they investigated its
properties. For instance, in [25], the specification of a web serviceWSC is defined
initially in the form of UML and then transformed into UTA for an online testing

Testing Web Services with Model-Based Mutation 65

purpose. In [26], Cambronero et al. verify web services by the Uppaal tool for
validation and verification of their described system that is transformed from
WS-CDL into a network of TA. In [27], Diaz et al. also provide a translation from
WS-BPEL to UTA. Time properties are specified in WS-BPEL and translated
to UTA. However, requirements are not traced explicitly, while verification and
testing are not discussed.

9 Conclusions and Future Work

The popularity of web services has significantly increased in recent years and
as a consequence their robustness and reliability have become more important.
One way of testing robustness of such dynamic systems is to check their behavior
against invalid and stressful environment. In this paper, a model-based mutation
testing method is presented using the Uppaal TA for assessing the robustness
of web services.

The method includes six steps, starting with designing a test model
via Uppaal TA and executing online conformance testing with Uppaal-
Tronagainst the implementation of the service, continuing with the generation
of mutant test models based on a selection of mutation operators and with elim-
inating invalid and equivalent mutants. Then, the IUT is tested against each
mutant, and the mutants which result in a failure are considered killed and
eliminated. Finally, the results of the mutation testing are evaluated manually,
by investigating the alive mutants, in order to reveal potential faults in the test
model or in the IUT.

In this paper, we evaluated the presented method by experimenting Blog
System as a case study. The web service is implemented in REST architectural
style and with timing constraints. The results showed that from a total 1019
generated mutants, 470 were found to be valid mutants, that were usable for
testing and from 33 alive mutants, three different errors in the test model were
uncovered. Combined with the previous results on a different case study, in which
several faults were uncovered in the implementation, it shows the our approach
has the potential to detect faults not found otherwise via functional testing. One
improvement compared to the previous work of the paper is in the automatic
detection of equivalent mutants, which was previously done manually and which
now allowed us to reduce the number of mutants.

There are some research directions that would certainly improve the current
method. From the two different case studies of web services, we have achieved
some useful information for reducing the testing effort specially in larger scale
use cases. Automation of this process of the approach reduces the errors and
increases the scalability of the target applications.

For future work, we plan to run more experiments and evaluate a larger set
of mutation operators. We also plan to make the mutation process more efficient
by applying more mutation selection and mutation reduction techniques and by
running different processes in parallel.

66 F. Siavashi et al.

References

1. Budd, T.A., Gopal, A.S.: Program testing by specification mutation. Comput.
Lang. 10, 63–73 (1985)

2. Siavashi, F., Truscan, D., Vain, J.: On mutating UPPAAL timed automata to assess
robustness of web services. In: Maciaszek, L., Cardoso, J., Ludwig, A., Sinderen,
M.V., Cabello, E. (eds.) Proceedings of the 11th International Joint Conference on
Software Technologies, vol. 1, pp. 15–26. SCITEPRESS-Science and Technology
Publications (2016)

3. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22, 297–312 (2012)

4. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) Formal Methods and Testing. LNCS, vol. 4949, pp. 77–117. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78917-8 3

5. Alur, R., et al.: Model-checking for real-time systems. In: Proceedings of Fifth
Annual IEEE Symposium on e Logic in Computer Science, LICS 1990, pp. 414–
425. IEEE (1990)

6. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30080-9 7

7. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31848-4 6

8. Larsen, K., et al.: Testing real-time embedded software using UPPAAL-TRON: an
industrial case study. In: Proceedings of the 5th ACM International Conference on
Embedded Software, pp. 299–306. ACM (2005)

9. Belli, F., et al.: Model-based mutation testing approach and case studies. Sci.
Comput. Program. 120, 25–48 (2016)

10. Aboutrab, M., et al.: Specification mutation analysis for validating timed testing
approaches based on timed automata. In: 36th Annual IEEE Computer Software
and Applications Conference, COMPSAC 2012, Izmir, Turkey, 16–20 July 2012,
pp. 660–669 (2012)

11. Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants — model-based
mutation testing with timed automata. In: Veanes, M., Viganò, L. (eds.) TAP
2013. LNCS, vol. 7942, pp. 20–38. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38916-0 2

12. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from require-
ments specifications. In: Nierstrasz, O., Lemoine, M. (eds.) ESEC/SIGSOFT FSE
-1999. LNCS, vol. 1687, pp. 146–162. Springer, Heidelberg (1999). doi:10.1007/
3-540-48166-4 10

13. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-27755-2 3

14. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes.
In: Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315.
Springer, Heidelberg (1993). doi:10.1007/3-540-56496-9 24

15. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly, Sebastopol (2008)
16. Grinberg, M.: Flask Web Development: Developing Web Applications with Python.

O’Reilly Media, Inc., Sebastopol (2014)

http://dx.doi.org/10.1007/978-3-540-78917-8_3
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1007/978-3-540-31848-4_6
http://dx.doi.org/10.1007/978-3-642-38916-0_2
http://dx.doi.org/10.1007/978-3-642-38916-0_2
http://dx.doi.org/10.1007/3-540-48166-4_10
http://dx.doi.org/10.1007/3-540-48166-4_10
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1007/3-540-56496-9_24

Testing Web Services with Model-Based Mutation 67

17. Iqbal, J., Truscan, D., Vain, J., Porres, I.: TRON2UPPAAL backtracer tool from
TRON logs to UPPAAL traces. Technical report 1138, Turku Centre for Computer
Science (2015)

18. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37, 649–678 (2011)

19. Lee, S.C., Offutt, J.: Generating test cases for XML-based web component inter-
actions using mutation analysis. In: Proceedings of 12th International Symposium
on Software Reliability Engineering, ISSRE 2001, pp. 200–209 (2001)

20. Li, J.H., Dai, G.X., Li, H.H.: Mutation analysis for testing finite state machines.
In: Second International Symposium on Electronic Commerce and Security, ISECS
2009, vol. 1, pp. 620–624. IEEE (2009)

21. Lee, S., et al.: Automatic mutation testing and simulation on OWL-S specified web
services. In: 41st Annual Simulation Symposium, ANSS 2008, pp. 149–156 (2008)

22. Wang, R., Huang, N.: Requirement model-based mutation testing for web ser-
vice. In: 4th International Conference on Next Generation Web Services Practices,
NWESP 2008, pp. 71–76 (2008)

23. Rusli, H.M., et al.: Testing web services composition: a mapping study. In: Com-
munications of the IBIMA 2011, pp. 34–48 (2007)

24. Bozkurt, M., et al.: Testing web services: a survey. Department of Computer Sci-
ence, King’s College London, Technical report TR-10-01 (2010)

25. Rauf, I., Siavashi, F., Truscan, D., Porres, I.: An integrated approach for designing
and validating REST web service compositions. In: Monfort, V., Krempels, K.H.
(eds.) 10th International Conference on Web Information Systems and Technolo-
gies, vol. 1, pp. 104–115. SCITEPRESS Digital Library (2014)

26. Cambronero, M.E., et al.: Validation and verification of web services choreographies
by using timed automata. J. Logic Algebraic Program. 80, 25–49 (2011)

27. Dıaz, G., et al.: Model checking techniques applied to the design of web services.
CLEI Electron. J. 10, 5–11 (2007)

Software Product Line Test Suite Reduction
with Constraint Optimization

Mats Carlsson1(B), Arnaud Gotlieb2, and Dusica Marijan2

1 RISE SICS, P.O. Box 1263, 164 29 Kista, Sweden
mats.carlsson@ri.se

2 Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway
{arnaud,dusica}@simula.no

Abstract. In many cases, Software Product Line Testing (SPLT) tar-
gets only the selection of test cases which cover product features or
feature interactions. However, higher testing efficiency can be achieved
through the selection of test cases with improved fault-revealing capa-
bilities. By associating each test case a priority-value representing (or
aggregating) different criteria, such as importance (in terms of fault dis-
covered in previous test campaigns), duration or cost, it becomes pos-
sible to select a feature-covering test suite with improved capabilities.
A crucial objective in SPLT then becomes to identify a test suite that
optimizes reaching a specific goal (lower test duration or cost), while
preserving full feature coverage.

In this article, we revisit this problem with a new approach based
on constraint optimization with the NValue and GlobalCardinal-
ity constraints and a sophisticated search heuristic. These constraints
enforce the coverage of all features through the computation of max flows
in a network flow representing the coverage relation. The computed max
flows represent possible solutions which are further processed in order to
determine the solution that optimizes the given objective function, e.g.,
the smallest test execution costs.

Our approach is implemented in a tool called Flower/C and experi-
mentally evaluated on both randomly generated instances and standard
benchmarks. Comparing Flower/C with MiniSAT+ and Cplex, state-
of-the-art tools for constraint optimization, we show that our approach is
competitive with both tools on random instances and benchmarks. Our
results show that MiniSAT+ is not competitive at all, whereas when
the priority-value of each test case is uniformly set to 1, that Flower/C
approaches Cplex in performance. We compare four different models of
Flower/C, using different global constraints, and the one mixing dif-
ferent constraints shows the best performance with high reduction rates.
These results open the door to an industrial adoption of the proposed
technology.

Keywords: Test suite reduction · Test suite optimization · Software
product line testing · Feature coverage

c© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 68–87, 2017.
DOI: 10.1007/978-3-319-62569-0 4

Software Product Line Test Suite Reduction with Constraint Optimization 69

1 Introduction

1.1 Context

Testing a software product line entails at least the selection of a test suite which
covers all the features of the product line. Indeed, even if it may not guar-
antee that each product would behave correctly, ensuring that each feature is
tested at least once is a minimum requirement of Software Product Line Testing
(SPLT) [1,2]. However, among the various test suites which cover all the features,
some have higher fault-revealing capabilities than other, some have reduced over-
all execution time or energy consumption properties [3]. Dealing with different
criteria when selecting a feature-covering test suite is thus important. Yet, at
the same time, the budget allocated to the testing phase is usually limited and
reducing the number of test cases while maintaining the quality of the process
is challenging. For example, selecting a feature-covering test suite which mini-
mizes its total execution time is desirable for testing some product lines which
are developed in continuous delivery mode [4]. Similarly, if the execution of each
test case is associated to a cost (because the execution requires access to cloud
resources under some service level agreement), then there is a challenge in select-
ing a subset of test cases which can minimize this cost. Of course, ideally one
would like to deal with all the criteria (feature coverage, execution time, energy
consumption, . . .) at the same time in an optimization process [5]. Unfortu-
nately, this approach cannot offer strong guarantee on the coverage of features
or reachability of a global minimum, which is often not acceptable for validation
engineers. Thus, there is room for approaches which offer guarantees in terms of
feature coverage and optimize individually some criterion such as test execution
time or energy consumption.

1.2 Existing Results

Test suite reduction has received considerable attention in the last two decades.
Briefly, we can distinguish greedy techniques [6–8], search-based testing tech-
niques [5,9], and exact approaches [3,10–13]. Test suite reduction should not be
confused with test selection and generation for software product lines which has
also received considerable attention these last years [2].

Greedy techniques for test suite reduction are usually based on variations
of Chvátal’s algorithm [14], which selects first a test case covering the most
features and iterates until all features are covered. In the 90’s, [15] proposed
a technique which approximates the computation of minimum-cardinality hit-
ting sets. This work was further refined with different variable orderings [16,17].
More recently, [7] introduced the delayed-greedy technique, which exploits impli-
cations among test cases and features to further refine the reduced test suite.
The technique starts by removing test cases covering the features already cov-
ered by other test cases. Then, it removes test features which are not in the
minimized feature set, and finally it determines a minimized test suite from the
remaining test cases by using a greedy approach. Jeffrey and Gupta extended

70 M. Carlsson et al.

this approach by retaining test cases which improve a fault-detection capabil-
ity of the test suite [8]. The technique uses additional coverage information of
test cases to selectively keep additional test cases in the reduced suites that
are redundant with respect to the testing criteria used for the suite. Comparing
to [15], the approach produces bigger solutions, but with higher fault detection
effectiveness.

One shortcoming of greedy algorithms is that they only approximate true
global optima without providing any guarantee of test suite reduction. Search-
based testing techniques have been used for test suite reduction through the
exploitation of meta-heuristics. [18] explores classical evolutionary techniques
such as hill-climbing, simulated annealing, or weight-based genetic algorithms
for (multi-objective) test suite reduction. By comparing 10 different algorithms
for different criteria in [5], it is observed that random-weighted multi-objective
optimization is the most efficient approach. However, by assigning weights at
random, this approach is unfortunately not able to place priority over the various
objectives. Other algorithms based on meta-heuristics are examined in [9].

All these techniques can scale up to problems having a large number of test
cases and features but they cannot explore the overall search space and thus they
cannot guarantee global optimality. On the contrary, exact approaches, which
are based either on Boolean satisfiability or Integer Linear Programming (ILP)
can reach true global minima. The best-known approach for exact test suite
minimization is implemented in MINTS [10]. It extends a technique originally
proposed in [19] for bi-criteria test suite minimization. MINTS can be interfaced
with either MiniSAT+ (pseudo-Boolean) or Cplex (ILP). It has been used to
perform test suite reduction for various criteria including energy consumption
on mobile devices [3]. Similar exact techniques have also been designed to han-
dle fault localization [12]. Generally speaking, the theoretical limitation of exact
approaches is the possible early combinatorial explosion to determine the global
optimum, which exposes these techniques to serious limitations even for small
problems. In the context of feature covering for software product lines, an app-
roach based on SAT solving has been proposed in [20]. In this approach, test suite
reduction is encoded as a Boolean formula that is evaluated by a SAT solver.
An hybrid method based on ILP and search, called DILP, is proposed in [11]
where a lower bound for the minimum is computed and a search for finding a
smaller test suite close to this bound is performed. Recently, another ILP-based
approach is proposed in [21] to set up upper limits on the loss of fault-detection
capability in the test suite. In [22], Monthuy et al. proposed a constraint called
SC for the set covering problem. They created a propagator for SC by using a
lower bound based on an ILP relaxation. Finally, [13] introduced an approach for
test suite reduction based on the computation of maximum flows in a network
flow. This theoretical study was further refined in [23] where a comparison of
different constraint models was given, but there was no multi-objective test suite
optimization.

In this article, we propose a new approach of feature-based test suite reduc-
tion in software product line testing. Starting from an existing test suite covering

Software Product Line Test Suite Reduction with Constraint Optimization 71

a set of features of a software product line, our approach selects a subset of test
cases which still covers all the features, but also minimizes one additional cri-
terion which is given under the form of sum of priorities over test cases. This
is an exact approach based on two abstractions from Constraint Programming:
the NValue [24] and GlobalCardinality [25,26] global constraints. These
constraints enforce the link between test cases and features while constraining
the cardinality of the subset of features each test case has to cover. By com-
bining these tools with a sophisticated search heuristics, our approach creates
a constraint optimization model which is able to compete with the best known
approaches for test suite reduction, namely MiniSAT+ and Cplex.

Associating a number to each test case is convenient to establish priorities
when selecting test cases. Indeed, such a priority-value can represent or aggregate
different notions such as execution time, code coverage, energy-consumption [3],
fault-detection capabilities [12] and so on. Using these priorities, feature-based
test suite reduction reduces to the problem of selecting a subset of test cases such
that all the feature are covered and the sum of test case priorities is minimized.
Feature-based test suite reduction generalizes the classical test suite reduction
problem which consists in finding a subset of minimal cardinality, covering all
the features. Indeed, feature-based test suite reduction where all test case have
the same priority reduces to size minimization of the test suite. We shall call this
the uniform case. However, solving feature-based test suite reduction is hard as
it requires in the worst case to examine a search tree composed of all the possible
subsets of test cases. For a test suite composed of N cases, there are 2N such
subsets where N typically ranges from a few tens to thousands, which makes
exhaustive search intractable.

1.3 Contributions

The work presented in this article is built on top of previously-reached research
results. In 2014, we initially proposed a simple single-criterion constraint opti-
mization model for test suite reduction based on the search of max-flows in
a network flow representing the problem [13]. This simple model was refined
by using more sophisticated constraint optimization models in [23] which also
reported preliminary experimental results. The present article is an extended
version of [27], where we addressed software product line test suite reduction
with Constraint Programming. The conference paper presented three constraint
optimization models based on two abstractions from Constraint Programming,
namely the NValue and GlobalCardinality global constraints for perform-
ing test suite reduction optimization in the context of SPLT. These models also
featured a dedicated search heuristic for finding an optimal test suite in a very
efficient way. The present article extends the proposed approach by introducing
yet another constraint optimization model, by defining precise presolving rules
and a greedy algorithm for obtaining initial upper bounds. It also extends the
evaluation of the conference paper to standard benchmarks, and discusses the
industrial application of the described methods and tool. According to our knowl-
edge, this is the first time a test suite minimization approach based on advanced

72 M. Carlsson et al.

Constraint Optimization techniques is proposed in the context of SPLT. These
constraint optimization models have been put at work to select test suites on
both randomly-generated instances of the problem and also classical benchmarks.

1.4 Outline

The next section introduces the necessary background material to understand
the rest of the article. Section 3 presents our approach to the feature-based test
suite reduction problem. Section 4 details our implementation and experimental
results. Section 5 discusses the industrial application of our methods and tool,
while Sect. 6 discusses related work. Finally, Sect. 7 concludes the article.

2 Background

This section introduces the problem of feature-based test suite reduction and
briefly reviews the notion of global constraints. It also presents the NValue and
GlobalCardinality global constraints.

2.1 Feature-Based Test Suite Reduction

Feature-based Test Suite Reduction (FTSR) aims to select a subset of test cases
out of a test suite which maximizes the sum of its priorities, or dually minimizes
the sum of its costs, while retaining its coverage of product features. In the
following, we will speak about costs rather than priorities.

Formally, a FTSR problem is defined by an initial test suite T = {t1, . . . , tm},
each test case being associated a cost c(ti), a set of n product features F =
{f1, . . . , fn} and a function cov : F �→ 2T mapping each feature to the subset of
test cases which cover it. Each feature is covered by at least one test case, i.e.,
∀i ∈ {1, . . . , n}, |cov(fi)| > 0. An example with 5 test cases and 5 features is
given in Table 1, where the value given in the table denotes the cost of the test
case. Given T , F , c, and cov , a FTSR problem aims at finding a subset of test
cases such that every feature is covered at least once, and the total cost of the
selected test cases is minimized.

Table 1. An example of a feature-based test suite reduction problem.

f1 f2 f3 f4 f5

ta 2 2 - - -

tb 1 - 1 - -

tc - 3 3 - 3

td - - - 2 2

te - - - 1 -

Software Product Line Test Suite Reduction with Constraint Optimization 73

Definition 1 (Feature-based Test Suite Reduction (FTSR)). A FTSR
instance is a quadruple (T, F, c, cov) where T is a set of m test cases {t1, . . . , tm}
along with their costs c(ti), F is a set of n product features {f1, . . . , fn}, cov :
F �→ 2T is a coverage function mapping each feature to the subset of test cases
that cover it. An optimal solution to FTSR is a subset T ′ ⊆ T such that for each
fi ∈ F , there exists tj ∈ T ′ such that tj ∈ cov(fi) and

∑
tj∈T ′ c(tj) is minimized.

A labeled bipartite graph can be used to encode any FTSR problem, with
edges denoting the function cov and labels denoting c, the costs over the test
cases, as shown in Fig. 1. Note that the costs are associated to the test cases
and not to the features. In fact, in feature-based test suite reduction, all the
features must be covered at least once, and so it is pointless to define costs over
features. As an extension, it is possible to consider for each test case different
costs for covering the features but this complicates the problem without bringing
much benefit as it is too complex for validation engineers to manage complex
priority sets. Note also that the optimal solution shown in Fig. 1 is not unique.
For example, {ta, tb, td} covers all the features and also has Cost = 5. When
all the costs are the same, then the FTSR problem reduces to the problem of
finding a subset of minimal size.

Fig. 1. FTSR as a labeled bipartite graph (a) and an optimal (Cost = 5) solution (b).

2.2 Global Constraints

Constraint Programming is a declarative paradigm where instructions are
replaced by constraints over variables which take their values in a variation
domain [28]. In this context, any constraint enforces a symbolic relation among
a subset of variables, which are known only by their type or their domain.
Formally speaking, a domain variable V is a logical variable with an associ-
ated domain D(V) ⊂ Z which encodes all possible labels for that variable.
In the rest of the article, upper-case letters or capitalized words will denote

74 M. Carlsson et al.

domain variables, while lower-case letters or words will denote constant val-
ues. For example, let the domain variable COLOR take its value in the domain
{black, blank, blue, red, yellow} which is encoded as 1..5, and let the con-
straint PrimaryColor(COLOR) enforce COLOR to be blue, red, or yellow,
but not black or blank. We say that 3, 4 and 5 satisfy PrimaryColor and
that 1, 2 are inconsistent with respect to the constraint. In the rest of the arti-
cle, we will use a..b to denote {a, a + 1, . . . , b − 1, b} and {a, b} to denote the
set composed only of a and b. Note that in our context, we consider only finite
domains, i.e., domains containing a finite number of distinct values.

A constraint program is composed of both regular instructions and con-
straints over domain variables. Interestingly, constraints come with filtering
algorithms which can eliminate some inconsistent values. For example, let the
constraint SameColor(COLOR1,COLOR2) enforce COLOR1 and COLOR2

to take the same color. Suppose that the variable COLOR1 has domain
{blue, red, yellow} and that COLOR2 has domain {blank, blue, red}, then
the constraint prunes both domains to {blue, red}, because all other values
are inconsistent with the constraint SameColor. Among the possible types of
constraints, we have simple constraints, which include domain, arithmetical and
logical operators, and global constraints [29]. The constraints PrimaryColor
and SameColor are simple constraints as they can be encoded with a domain
and an equality operators. A global constraint is a relation which holds over
a non-fixed number of variables and typically implements a dedicated filtering
algorithm. A typical example of global constraint is NValue(N, (V1, . . . , Vm)),
introduced in [24], where N,V1, . . . , Vm are domain variables and the con-
straint enforces the number of distinct values in V1, . . . , Vm to be equal to N .
This constraint is useful in several application areas to solve tasks assignment
and time-tabling problems. For example, suppose that N is a domain vari-
able with domain 1..2 and FLAG1,FLAG2,FLAG3 are three domain variables
with domains FLAG1 ∈ {blue, blank}, FLAG2 ∈ {yellow, blank, black} and
FLAG3 ∈ {red}, then the constraint NValue(N, (FLAG1,FLAG2,FLAG3))
can significantly reduce the domains of its variables. In fact, the value 1 is incon-
sistent with the constraint and can thus be filtered out of the domain of N , as
there is no intersection between the domains of FLAG1 and FLAG3. It means
that, if there is a solution of the constraint, it should contain at least two dis-
tinct values, constraining N to be equal to 2. In addition, the domains of FLAG1

and FLAG2 have only a single value in their intersection (blank), meaning that
they can only take this value and all the other values are inconsistent. So, in
conclusion, the constraint NValue(N, (FLAG1,FLAG2,FLAG3)) is solved and
N = 2, FLAG1 = FLAG2 = blank and FLAG3 = red. Of course, this is a
favorable case, whereas other instances may lead to pruning only some of the
inconsistent assignments and are able to solve the constraint. In this case, a
search procedure must be launched in order to eventually find a solution. This
search procedure selects an unassigned variable and will try to assign it a value
from its current domain. The process is repeated until all the unassigned vari-
ables become instantiated or a contradiction is detected. In the latter case, the
process backtracks and makes another value choice. This process is parametrized
by a search heuristic which selects the variable and the value to be assigned first.

Software Product Line Test Suite Reduction with Constraint Optimization 75

In our framework, we will use a powerful global constraint, which can be
seen as an extension of NValue: the GlobalCardinality constraint or GCC
for short [25]. The GCC(T, d,O) constraint, where T = (T1, . . . , Tn) is a vector
of domain variables, d = (d1, . . . , dm) is a vector of distinct integers, and O =
(O1, . . . , Om) is a vector of domain variables. GCC(T, d,O) holds if and only if
for each i ∈ 1..m the number of occurrences of di in T is Oi. The Oi variables
are called the occurrence variables of the constraint. The filtering algorithm
associated to GCC is based on the computation of max-flows in a network flow.
The time complexity of the algorithm by Quimper et al. [26] is O(n2 +nm), and
so GCC can be exploited for filtering inconsistent values in polynomial time.

3 Feature-Based Test Suite Reduction Through Global
Constraints

In this section, we show how constraint optimization models based on NValue
and GCC can encode the Feature-based Test Suite Reduction problem. These
encodings are explained in Sect. 3.1, while Sect. 3.3 introduces dedicated search
heuristics to deal with priority-based test case selection.

3.1 Constraint Optimization Models for FTSR

The FTSR problem can be encoded with the following scheme: each feature
fi can be associated with a domain variable Fi with domain D(Fi) = {j |
test case tj covers fi}. So, for example, the problem reported in Table 1 can be
encoded as follows: F1 ∈ {1, 2}, F2 ∈ {1, 3}, F3 ∈ {2, 3}, F4 ∈ {4, 5}, F5 ∈ {4}.

In Fig. 2, we show four constraint optimization models of a given a FTSR
problem (F, T, c, cov):

Generic. This is the generic model for priority-based test case selection, where
the explicit objective is to minimize the total cost of the selected test cases.

Altcost. This is also a model for the generic, non-uniform case, but uses an
objective function that is based on a sum over the features instead of over
the test cases. The ith term in the sum is c(Fi) × Xi where c(Fi) denotes
the cost-value associated to the case selected to cover Fi and Xi denotes a
Boolean variable. The term c(Fi) × Xi is nonzero if Fi is assigned to a test
case not covering any previous feature, and zero otherwise. Note that in the
uniform case, the expression c(Fi) × Xi simplifies to Xi.

NValue. This model for the uniform case exploits the NValue constraint, since
the objective can be simplified to minimizing the number of selected test cases.

Mixt. This model, also for the uniform case, is equivalent to the NValue model,
but additionally uses a GCC constraint for counting the occurrences of test
cases.

In these models, (F1, . . . , Fn) and (O1, . . . , Om) are decision variables,
whereas the Boolean variables B1, . . . , Bm are local variables introduced to estab-
lish the link with the costs. Bi = 1 corresponds to test case ti being selected.

76 M. Carlsson et al.

Fig. 2. Four constraint optimization models for solving FTSR where the domain vari-
ables Oi denote the number of times test case i is selected to cover any feature in
F1, . . . , Fn, Bi are Boolean variables denoting the selection of test case i, and Xi are
Boolean variables, true if and only if feature i introduces a new test case into the
solution.

The objective of the models is to minimize Cost , the total cost of the selected
test cases. The models can be solved by searching the space composed of the
possible choices for the decision variables. It is worth noting that this allows us
to branch either on the choice of features or on the choice of test cases, except
in NValue.

Note that even if the models given in Fig. 2 solve the FTSR problem, they
include a search within a search space of exponential size O(dn) where d is the
size of the largest domain among the feature variables. This does not come as a
surprise as the feature covering problem is a variant of the set covering problem,
which is NP-hard [10].

3.2 Search Heuristics

Search heuristics consist of both a variable-selection strategy and a value-
assignment strategy, both of which relate to the finite domain variables used
in the constraint optimization model. Regarding variable selection, a first idea is
to use the first-fail principle in the models of Fig. 2, which first selects a variable
representing a feature that is covered by the least number of test cases. As all the

Software Product Line Test Suite Reduction with Constraint Optimization 77

features have to be covered, it means that those test cases are most likely to be
selected. However, this strategy ignores the selection of the test case having the
smallest cost or the test cases covering the most features, which would be very
interesting for our FTSR problem. Regarding value selection, it is also possible
to define a special heuristic for our problem.

3.3 A FTSR-Dedicated Heuristic

Unlike static variable selection heuristics used in greedy algorithms such as,
for example, the selection of variables based on the number of features they
cover, our strategy is more dynamic and the ordering is revised at each step
of the selection process. As shown in Algorithm 1, our strategy is similar in
spirit to Chvátal’s greedy algorithm. It selects first the occurrence variable Oi

associated to the test case ti that finds the best compromise between cost and
feature coverage (line 2), then the search forks into a forward branch and a
backtrack branch. In forward execution, all features that can be are covered by ti
by assigning Oi to its maximal value (line 4). On backtracking, ti is removed from
the available test cases by assigning Oi to zero (line 5). The search iterates until
all features have been covered. As shown in our experimental results, this FTSR-
dedicated heuristic is a very powerful method for solving the FTSR problem.
Consequently, we use it for all models except NValue, for which we use first-
fail, because that model does not have occurrence variables.

4 Implementation and Results

We implemented the constraint optimization models and search heuristics
described above in a tool called Flower/C. The tool is implemented in SICStus
Prolog [30] and utilizes its clpfd library, which is a constraint solver for finite
domains [31]. It reads a file which contains the data about test cases, covered
features, costs, execution time, etc. and processes these data by constructing a
dedicated constraint optimization model. Solving the model requires an imple-
mentation of the search heuristics and an input format tuned for preprocessing.
These steps are encoded in SICStus Prolog 4.3.2 and a runtime is embedded into
a tool with a GUI, in order to ease the future industrial adoption of the tool.

PROCEDURE FTSR((F1, . . . , Fn), (O1, . . . , Om), c)
1: while not all Oi variables have been fixed do
2: i ← i′ that maximizes |D(Oi′)|/c(i′)
3: switch (execution direction)
4: case forward: Oi ← max(D(Oi)) {fix all possible Fj variables to i}
5: case backward: Oi ← 0 {prune i from all possible Fj variables}
6: end switch
7: end while

Algorithm 1. The FTSR-dedicated search procedure.

78 M. Carlsson et al.

Our experiments include comparisons with IBM Cplex Optimizer 12.2, run-
ning on a single thread, and MiniSat+ 1.0. The experiments were run on a quad
core 2.8 GHz Intel desktop with 8 MB cache per core, running Ubuntu Linux
(using only one processor core).

We performed experiments on both random instances of FTSR and standard
set covering instances benchmarks that were used in the literature. For random
problems, we created a generator of FTSR instances, which takes several parame-
ters as inputs such as the number of features, the number of test cases along with
their associated costs, and the density of the relation cov which is expressed as
the probability of any tj ∈ cov(fi). We generated nine random datasets as shown
in Table 2. As standard benchmarks, we used 80 instances from OR-Library1.
70 of these instances have non-uniform costs and were originally used in [32,33].
Their number of features ranges from 50 to 400 and the number of test cases
from 500 to 4000. Ten of the instances have uniform costs and were originally
used in [34]. Their number of features ranges from 240 to 28160 and the number
of test cases from 192 to 11264. Finally, we used 16 real-world crew scheduling
instances that were used in [35]. Fourteen of them come from American Airlines,
and two are bus driver scheduling problems. The number of features ranges from
105 to 681 and the number of test cases from 2241 to 9524.

Table 2. Random datasets used in the experiments.

SD1 SD2 SD3 SD4 TD1 TD2 TD3 TD4 TD5

Features 100 100 100 100 250 500 1000 1000 1000

Test cases 300 300 300 300 500 5000 5000 5000 7000

Density 0.015 0.020 0.025 0.030 0.04 0.02 0.01 0.005 0.01

Instances 20 20 20 20 50 50 50 50 50

All instances are presolved before test suite minimization. Presolving consists
in applying the following three steps until nothing more can be deleted. Similar
rules can be found in [36]:

– If there are two test cases {ti, tj} ∈ T such that {f | ti ∈ cov(f)} ⊆ {f | tj ∈
cov(f)} and c(ti) ≥ c(tj), then ti is subsumed by tj and can be deleted from
the instance.

– If there are two features {fi, fj} ∈ F such that cov(fj) ⊆ cov(fi), then fi is
subsumed by fj and can be deleted from the instance.

– If there is a feature f with a single covering test case t, then f is pre-assigned
to t, and t and f as well as all other features that can be covered by t are
deleted from the instance.

We then compute with an adapted version of Chvátal’s greedy algorithm (see
Algorithm 2) a first solution to the presolved instance and supply its cost Cgreedy

as an upper bound to the optimization solver in all our experiments.
1 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/scpinfo.html.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html

Software Product Line Test Suite Reduction with Constraint Optimization 79

In our results, we present the reduction rate as the ratio Csolver
Cgreedy

, where Csolver

is the best cost found by the optimization solver in the given experiment. The
figures contain box plots with the first and third quartiles at the ends of the box,
the median indicated by a thick horizontal line in the interior of the box, and
the maximum and minimum at the ends of the whiskers.

PROCEDURE Chvátal((V,E), c) : (cost, solution)
1: (C,S) ← (0, ∅)
2: while E �= ∅ do
3: t′ ← t that maximizes |{f | (f, t) ∈ E}|/c(t)
4: (C,S) ← (C + c(t′), S ∪ {t′})
5: F ← {f | (f, t′) ∈ E}
6: E ← {(f, t) | (f, t) ∈ E ∧ f �∈ F}
7: end while
8: return (C,S)

Algorithm 2. Adapted version of Chvátal’s greedy algorithm applied to bipartite
graph G = (V,E) and cost function c.

4.1 Comparison of the Various CP Models

Figure 3 contains a comparison of the CPU time used to solve instances of
FTSR for the four CP models for the uniform case used in our implementa-
tion Flower/C. We measured the time taken to find a global optimum of the
constraint optimization models. In this experiment, we used datasets SD1–SD4.
A time-out of 300 seconds was used in order to keep reasonable time for the
results analysis.

Fig. 3. Comparison of CPU time for Flower/C with four different CP models to find
a global optimal value (time-out = 300 s).

80 M. Carlsson et al.

We observe that both Generic and Altcost time out on datasets SD2,
SD3 and SD4, but Altcost outperforms Generic on dataset SD1. We also see
that Mixt outperforms all other models, with NValue as the runner-up.

Comparing the CPU time taken by the four models is obviously interesting
but it may hide differences in terms of reduction rates obtained in a given amount
of time. This is the objective of the following experiment.

4.2 Comparison of the Reduction Rate

Figure 4 shows the test suite reduction rate after 30 s of computation. In this
experiment, the NValue model is the least effective one and in fact is never
able to achieve any reduction. This is likely explained by the use of the FTSR-
dedicated heuristic enabled by the GCC constraint, which significantly reduces
the search effort required to solve the problem. We also observe that Altcost
significantly outperforms Generic, where the latter achieves significant reduc-
tion on dataset TD1 only. We speculate that the reason why Altcost outper-
forms Generic lies in the cost function: the former cost function is a sum over
the n features, whereas the latter cost function is a sum over the m test cases,
and usually n << m.

Fig. 4. Comparison of reduction rate for the CP models (time-out = 30 s).

Despite the interest of comparing constraint optimization models using sim-
ilar techniques based on global constraints, it is equally important to compare
Constraint Programming techniques with other approaches.

Software Product Line Test Suite Reduction with Constraint Optimization 81

4.3 Evaluation of FLOWER/C Against Other Approaches

In the next experiment, we compared our implementation, Flower/C using the
Mixt model, with MiniSAT+ and Cplex on randomly-generated instances.

Fig. 5. Comparison of reduction rate of Flower/C (Mixt), MiniSAT+, and Cplex
on random instances with unit costs (time-out = 60 s).

Figure 5 shows the results of experiments when considering the reduction rate
achieved by all the three approaches in 60 s of CPU time. In this experiment,
cost 1 is used for all test cases. We observe that for three of the datasets, Cplex
outperforms the other solvers, whereas for TD3 and TD5, Mixt is able to reduce
the test suite but Cplex is not. This is because Cplex does not find any solution
within the given time contract, whereas Mixt does. If its own preprocessing is
switched off, Cplex is unable to find any solutions for TD2 and TD4 either.
It is also worth noting that MiniSAT+ is never able to achieve any reduction.
This does not come as a big surprise, since the FTSR problem has a simple
formulation in terms of integer linear program which are better solved with an
ILP solver than with a pseudo-Boolean one.

In the experiment reported in Fig. 6, we used a variant of datasets TD1–TD5
with a random cost value for each test case between 1 and 100. This time Cplex
outperformed the other solvers, whereas Altcost was somewhat more effective
than Generic. Once again, MiniSAT+ is never able to achieve any reduction.

4.4 Evaluation on Set-Covering Instances

In this experiment, we compared the reduction rate on the 70 non-uniform and
the 10 uniform instances from OR-library, as well as the 16 non-uniform crew
scheduling problems. The comparison is shown in Fig. 7. For the uniform case,

82 M. Carlsson et al.

Fig. 6. Comparison of reduction rate of Generic, Altcost, MiniSAT+, and Cplex
on random instances with non-uniform costs (time-out = 60 s).

Cplex is able to achieve reduction for three out of ten instances, whereas for
six instances, no solution is found within the time contract. Mixt is able to
achieve reduction for three out of ten instances, and MiniSAT+ on two. For
the non-uniform OR-library instances, Cplex outperforms the other solvers,
achieving reduction for 64 instances out of 70, and Altcost performing slightly
better than Generic. MiniSAT+ is not able to achieve any reduction on these
instances. The picture is similar for the crew scheduling instances.

Fig. 7. Comparison of reduction rate on set-covering problems (time-out = 60s).

Software Product Line Test Suite Reduction with Constraint Optimization 83

5 Application in an Industrial Setting

In collaboration with an industry partner, the proposed approach has been
applied to the testing of large-scale communication software. In this domain,
there are high requirements for software quality, as well as hard requirements
for the duration of the overall testing activities. The software is developed follow-
ing a continuous integration practice, which implies that there is only a limited
amount of time available for testing after a commit has been made to the common
codebase. In addition, not all the test cases that are related to the change are
considered equal in terms of importance. The ones that are testing more critical
functionality have higher priority in execution. Test engineers have been dealing
with the problem of large test suites mainly manually, making a tradeoff between
the size and the quality of test suites. As the size and complexity of the software
started increasing, more test cases were developed covering the new functional-
ity, which made the manual process of test selection highly non-scalable. To help
solve this problem, we proposed the test suite reduction approach discussed in
this article. The approach was applied in testing of one software release in a two-
step process. First, for the given software change, after the code was committed
to the codebase, test engineers identified a set of related test cases out of the
overall test database. Afterwards, we analyzed the selected candidate test set
and located the features, representing software functionality, covered by the test
set. This information was the basis for the mapping between features and test
cases needed by the proposed test reduction approach. The initial results of the
experimentation show that the approach has high potential for effort reduction
in this application domain. Currently, we are preparing to apply the approach
for testing new software releases, in a process that will run in parallel with the
current industry practice. These experiments will enable us to perform a sys-
tematic and thorough evaluation of the effectiveness of the approach based on
several metrics, such as time reduction, or fault detection effectiveness increase.

6 Related Work

In this section, we analyze our approach Flower/C based on Constraint Pro-
gramming and global constraints with other approaches for feature-based test
suite reduction. Different techniques have been proposed to minimize the num-
ber of test cases in the context of feature coverage. Among these approaches,
Combinatorial Interaction Testing (CIT) [37] is the most important. As observed
by Kuhn in [38], software defects are often due to the interactions of only a small
number of parameters of features. A simple case of CIT, widely used by valida-
tion engineers, is one-way or pairwise testing. One-way testing aims at covering
each feature at least once while pairwise testing aims at covering all the inter-
actions between two features [37]. Some of the best algorithms used to generate
all combinatorial interactions have been implemented in commercialized tools,
such as AETG [37], TConfig and so on. Even if these tools have demonstrated
their potential for industrial adoption, they do not guarantee the reach of global

84 M. Carlsson et al.

minima when it comes to find the smallest subset of test cases such that all
features are covered at least once. Moreover, they hardly take into account costs
and other criteria (test execution time, code coverage, etc.) when selecting test
cases.

More recently, some authors have proposed to use constraint solvers to gener-
ate test cases such that all one-way or pairwise feature interactions are covered.
CIT can been tuned for the coverage of feature interactions with SAT-solving as
shown in [39]. [40] proposes to convert variability models (used to represent all
the features of a software product line) in Alloy declarative programs, so that
an underlying SAT-solver can be used to generate test cases. Despite its novelty,
this approach does not scale well because it is based on a generate-and-test para-
digm. More precisely, it proposes a candidate test case and test whether it covers
remaining uncovered features or not. Moreover, it represents the coverage rela-
tion with Boolean variables, which may lead to a combinatorial explosion in the
problem representation. Unlike this approach, Flower/C represents the prob-
lem in a radically different way by associating a finite domain to each variable
associated to a test case. This representation is efficient as it allows us to save
much space. Furthermore, using global constraints, Flower/C can prune the
search space by eliminating in advance possible choices of test cases which would
lead to non-optimal feasible solutions. [41] proposes to use a greedy algorithm
for solving the problem. Another greedy algorithm coupled with clever heuristics
is proposed in [42]. Although this approach allows validation engineers to deal
with large industrial case studies, it is not easily comparable to Flower/C as
it uses heuristics and does not guarantee to reach global minima.

7 Conclusion

In the context of software product line testing, this article addresses the Feature-
based Test Suite Reduction problem which aims at minimizing a test suite where
costs are assigned to the test cases, while preserving the coverage of tested fea-
tures. It introduces Flower/C, a tool based on global constraints and a dedi-
cated search heuristics to solve this problem. The tool is evaluated on both ran-
dom instances and standard benchmarks of the problem and the results showed
that Constraint Programming with global constraints achieves good results in
terms of reduction rate. Among the four Constraint Programming models with
different global constraints which are compared, we show that a mixture of
NValue and GCC achieves the best result. Interestingly, these results show
that Constraint Programming is competitive with other test suite optimization
approaches.

The main perspective of this work includes the deployment of this tech-
nique and its industrial adoption. Even if the preliminary results reported in
this article need to be further refined and extended, we believe that they are
sufficiently convincing to industrialize the technology. For that purpose, its inte-
gration within an existing software development chain needs to be understood.
In particular, handling meta-data about test cases such as duration, priority and

Software Product Line Test Suite Reduction with Constraint Optimization 85

code-coverage needs a proper instrumentation and the implementation or usage
of specific monitoring tools to capture the required information.

Acknowledgement. We are grateful to Marius Liaeen from Cisco Systems, Norway
and Alexandre Petillon for their participation to the discussion and initial work related
to the approach described in the article. This work is partly supported by the Research
Council of Norway (RCN) through the research-based innovation center Certus, under
the SFI program.

References

1. Johansen, M.F., Haugen, Ø., Fleurey, F.: Properties of realistic feature models
make combinatorial testing of product lines feasible. In: Whittle, J., Clark, T.,
Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 638–652. Springer, Heidel-
berg (2011). doi:10.1007/978-3-642-24485-8 47

2. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Traon, Y.L.: Multi-objective
test generation for software product lines. In: 17th International Software Product
Line Conference, SPLC 2013, pp. 62–71 (2013)

3. Li, D., Jin, Y., Sahin, C., Clause, J., Halfond, W.G.J.: Integrated energy-directed
test suite optimization. In: International Symposium on Software Testing and
Analysis, ISSTA 2014, San Jose, CA, USA, 21–26 July 2014, pp. 339–350 (2014)

4. Stolberg, S.: Enabling agile testing through continuous integration. In: Agile Con-
ference, AGILE 2009, pp. 369–374. IEEE (2009)

5. Wang, S., Ali, S., Gotlieb, A.: Cost-effective test suite minimization in product
lines using search techniques. J. Syst. Softw. 103, 370–391 (2015)

6. Rothermel, G., Harrold, M.J., Ronne, J., Hong, C.: Empirical studies of test-suite
reduction. Soft. Test. Verif. Reliab. 12, 219–249 (2002)

7. Tallam, S., Gupta, N.: A concept analysis inspired greedy algorithm for test suite
minimization. In: 6th Workshop on Program Analysis for Software Tools and Engi-
neering (PASTE 2005), pp. 35–42 (2005)

8. Jeffrey, D., Gupta, N.: Test suite reduction with selective redundancy. In: 21st
International Confernce on Software Maintenance, pp. 549–558 (2005)

9. Ferrer, J., Kruse, P.M., Chicano, F., Alba, E.: Search based algorithms for test
sequence generation in functional testing. Inf. Softw. Technol. 58, 419–432 (2015)

10. Hsu, H.Y., Orso, A.: MINTS: a general framework and tool for supporting test-suite
minimization. In: 31st International Conference on Software Engineering (ICSE
2009), pp. 419–429 (2009)

11. Chen, Z., Zhang, X., Xu, B.: A degraded ILP approach for test suite reduction. In:
20th International Conference on Software Engineering and Knowledge Engineer-
ing (2008)

12. Campos, J., Riboira, A., Perez, A., Abreu, R.: GZoltar: an eclipse plug-in for
testing and debugging. In: IEEE/ACM International Conference on Automated
Software Engineering, ASE 2012, pp. 378–381 (2012)

13. Gotlieb, A., Marijan, D.: FLOWER: optimal test suite reduction as a network
maximum flow. In: Proceedings of International Symposium on Software Testing
and Analysis (ISSTA 2014), San José, CA, USA (2014)

14. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

http://dx.doi.org/10.1007/978-3-642-24485-8_47

86 M. Carlsson et al.

15. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a
test suite. ACM TOSEM 2, 270–285 (1993)

16. Offutt, A.J., Pan, J., Voas, J.M.: Procedures for reducing the size of coverage-based
test sets. In: 12th International Conference on Testing Computer Software (1995)

17. Agrawal, H.: Efficient coverage testing using global dominator graphs. In: Work-
shop on Program Analysis for Software Tools and Engineering (PASTE 1999)
(1999)

18. Wang, S., Ali, S., Gotlieb, A.: Minimizing test suites in software product lines
using weight-based genetic algorithms. In: Genetic and Evolutionary Computation
Conference (GECCO 2013), Amsterdam, The Netherlands (2013)

19. Black, J., Melachrinoudis, E., Kaeli, D.: Bi-criteria models for all-uses test suite
reduction. In: 26th International Conference on Software Engineering, pp. 106–115
(2004)

20. Uzuncaova, E., Khurshid, S., Batory, D.: Incremental test generation for software
product lines. IEEE Trans. Soft. Eng. 36, 309–322 (2010)

21. Hao, D., Zhang, L., Wu, X., Mei, H., Rothermel, G.: On-demand test suite reduc-
tion. In: International Conference on Software Engineering, pp. 738–748 (2012)

22. Mouthuy, S., Deville, Y., Dooms, G.: Global constraint for the set covering problem.
In: Journées Francophones de Programmation par Contraintes, pp. 183–192 (2007)

23. Gotlieb, A., Carlsson, M., Liaeen, M., Marijan, D., Petillon, A.: Automated regres-
sion testing using constraint programming. In: Proceedings of Innovative Applica-
tions of Artificial Intelligence (IAAI 2016), Phoenix, AZ, USA (2016)

24. Pachet, F., Roy, P.: Automatic generation of music programs. In: Jaffar, J. (ed.)
CP 1999. LNCS, vol. 1713, pp. 331–345. Springer, Heidelberg (1999). doi:10.1007/
978-3-540-48085-3 24

25. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: 13th
International Conference on Artificial Intelligence (AAAI 1996), pp. 209–215 (1996)

26. Quimper, C.-G., López-Ortiz, A., Beek, P., Golynski, A.: Improved algorithms for
the global cardinality constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258,
pp. 542–556. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30201-8 40

27. Gotlieb, A., Carlsson, M., Marijan, D., Petillon, A.: A new approach to feature-
based test suite reduction in software product line testing. In: Maciaszek, L.A.,
Cardoso, J.S., Ludwig, A., van Sinderen, M., Cabello, E. (eds.) 11th International
Joint Conference on Software Technologies (ICSOFT 2016), pp. 48–58. SciTePress
(2016)

28. Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming (Founda-
tions of Artificial Intelligence). Elsevier Science Inc., New York (2006)

29. Régin, J.C.: Global constraints: a survey. In: van Hentenryck, P., Milano, M.
(eds.) Hybrid Optimization, pp. 63–134. Springer, Heidelberg (2011). doi:10.1007/
978-1-4419-1644-0 3

30. Carlsson, M., et al.: SICStus Prolog User’s Manual. Swedish Institute of Computer
Science. Release 4.3.0 edn. (2014). ISBN 91-630-3648-7

31. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). doi:10.1007/BFb0033845

32. Beasley, J.E.: An algorithm for set covering problem. Eur. J. Oper. Res. 31, 85–93
(1987)

33. Beasley, J.E.: A lagrangian heuristic for set-covering problems. Naval Res. Logist.
(NRL) 37, 151–164 (1990)

34. Grossman, T., Wool, A.: Computational experience with approximation algorithms
for the set covering problem. Eur. J. Oper. Res. 101, 81–92 (1997)

http://dx.doi.org/10.1007/978-3-540-48085-3_24
http://dx.doi.org/10.1007/978-3-540-48085-3_24
http://dx.doi.org/10.1007/978-3-540-30201-8_40
http://dx.doi.org/10.1007/978-1-4419-1644-0_3
http://dx.doi.org/10.1007/978-1-4419-1644-0_3
http://dx.doi.org/10.1007/BFb0033845

Software Product Line Test Suite Reduction with Constraint Optimization 87

35. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering prob-
lem. Oper. Res. 47, 730–743 (1999)

36. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). doi:10.1007/11499107 5

37. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Trans. Softw. Eng. 23,
437–444 (1997)

38. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implica-
tions for software testing. IEEE Trans. Softw. Eng. 30, 418–421 (2004)

39. Mendonca, M., Wasowski, A., Czarnecki, K.: SAT-based analysis of feature models
is easy. In: 13th International Software Product Line Conference, SPLC 2009, pp.
231–240. Carnegie Mellon University, Pittsburgh (2009)

40. Perrouin, G., Oster, S., Sen, S., Klein, J., Baudry, B., Traon, Y.L.: Pairwise testing
for software product lines: comparison of two approaches. Software Qual. J. 20,
605–643 (2012)

41. Oster, S., Markert, F., Ritter, P.: Automated incremental pairwise testing of soft-
ware product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp.
196–210. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15579-6 14

42. Johansen, M.F., Haugen, Ø., Fleurey, F.: An algorithm for generating t-wise cov-
ering arrays from large feature models. In: 16th International Software Product
Line Conference, SPLC 2012, pp. 46–55. ACM, New York (2012)

http://dx.doi.org/10.1007/11499107_5
http://dx.doi.org/10.1007/978-3-642-15579-6_14

A Survey on Testing Distributed
and Heterogeneous Systems: The State

of the Practice

Bruno Lima1,2(B) and João Pascoal Faria1,2

1 INESC TEC, FEUP Campus, Rua Dr. Roberto Frias, s/n,
4200-465 Porto, Portugal

{bruno.lima,jpf}@fe.up.pt
2 Faculty of Engineering, University of Porto,

Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Abstract. Distributed and heterogeneous systems (DHS), running over
interconnected mobile and cloud-based platforms, are used in a growing
number of domains for provisioning end-to-end services to users. Test-
ing DHS is particularly important and challenging, with little support
being provided by current tools. In order to assess the current state
of the practice regarding the testing of DHS and identify opportuni-
ties and priorities for research and innovation initiatives, we conducted
an exploratory survey that was responded by 147 software testing pro-
fessionals that attended industry-oriented software testing conferences.
The survey allowed us to assess the relevance of DHS in software testing
practice, the most important features to be tested in DHS, the current
status of test automation and tool sourcing for testing DHS, and the
most desired features in test automation solutions for DHS. Some follow
up interviews allowed us to further investigate drivers and barriers for
DHS test automation. We expect that the results presented in the paper
are of interest to researchers, tool vendors and service providers in this
field.

Keywords: Software testing · Distributed systems · Heterogeneous sys-
tems · Systems of systems · State of the practice

1 Introduction

Due to the increasing ubiquity, complexity, criticality and need for assurance
of software-based systems [3], testing is a fundamental lifecycle activity, with a
huge economic impact if not performed adequately [16]. Such trends, combined
with the needs for shorter delivery times and reduced costs, demand for the
continuous improvement of software testing methods and tools, in order to make
testing activities more effective and efficient.

Nowadays software is not more like simple applications but has evolved to
large and complex system of systems [4]. A system of systems consists of a set
c© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 88–107, 2017.
DOI: 10.1007/978-3-319-62569-0 5

A Survey on Testing Distributed and Heterogeneous Systems 89

of small independent systems that together form a new system. The system of
systems can be a combination of hardware components (sensors, mobile devices,
servers, etc.) and software systems used to create big systems or ecosystems
that can offer multiple different services. Currently, systems of systems capture
a great interest from the software engineering research community. These type of
systems are present in different domains like e-health [1] or transportation [17].

Testing these distributed and heterogeneous software systems or systems of
systems, running over interconnected mobile and cloud-based platforms, is par-
ticularly important and challenging. Some of the challenges are: the difficulty to
test the system as a whole due to the number and diversity of individual com-
ponents; the difficulty to coordinate and synchronize the test participants and
interactions, due to the distributed nature of the system; the difficulty to test
the components individually, because of the dependencies on other components.
Because of that, the attention from the research community increased, however,
the issues addressed and solutions proposed have been primarily evaluated from
the academic perspective, and not the viewpoint of the practitioner.

Hence, the main objective of this paper is to explore the viewpoint of prac-
titioners with respect to the testing of distributed and heterogeneous systems
(DHS), in order to assess the current state of the practice and identify oppor-
tunities and priorities for research and innovation initiatives. For that purpose,
we conducted an exploratory survey that was responded by 147 software test-
ing professionals that attended industry-oriented software testing conferences,
and present the main results in this paper. Besides introductory questions for
characterizing the respondents and contextualizing their responses, the survey
contained several questions with the aim of assessing the practical relevance of
testing DHS, the importance of testing several features of DHS, the current level
of test automation and tool sourcing, and the desired features in test automa-
tion solutions for DHS. We expect that the results presented in the paper are of
interest to researchers, tool vendors and service providers in the software testing
field.

This paper extends our previous conference paper [11] with detailed expla-
nations and new sections about background and test automation obstacles.

The rest of the paper is organized as follows: Sect. 2 presents some back-
ground on software testing concepts and terminology used in the survey. Section 3
presents the research method used to conduct the survey. Section 4 presents the
results, which are further discussed in Sect. 5. Section 6 presents the conclusions
of follow up interviews to further investigate drivers and barriers for DHS test
automation. Section 7 describes the related work. Section 8 concludes the paper
and points out future work.

2 Background

In this section it is presented some background on software testing concepts and
terminology used in the survey.

90 B. Lima and J.P. Faria

2.1 Test Levels

There are different levels during the software testing process [2]. Typically the
levels considered are: unit testing, integration testing, system testing and accep-
tance testing.

Unit testing is the testing of individual hardware or software units or groups
of related units [7]. The goal of unit testing is to isolate each part of the pro-
gram and show that individual parts are correct in terms of requirements and
functionality.

In the case of a distributed and heterogeneous system comprising a set of
interconnected components running on different machines or execution environ-
ments, unit testing usually refers to the testing of individual components. In
automated testing, if a component under test calls other components, such com-
ponents need to be simulated by test stubs (see definition of test stub in the
next section).

Integration testing is the testing in which software and/or hardware compo-
nents are combined and tested to evaluate the interaction between them [7].

In the case of integration testing of a distributed and heterogeneous system,
besides checking the interactions of system components with the environment
(users or external systems), it is also useful to check the interactions between
components of the system, to improve fault detection and localization. Checking
such interactions may be challenging, because of observability limitations.

System testing is the testing conducted on a complete, integrated system to
evaluate the system’s compliance with specified requirements [7]. System testing
is concerned mainly with testing the interactions of the system with the envi-
ronment (users or external systems), and evaluating extra-functional properties.

In the case of a distributed and heterogeneous system, interactions with the
environment (users or external systems) typically occur at multiple locations. In
automated testing, coordinating the test components that simulate those users
or external systems is specially challenging, because of their distributed nature.

Acceptance testing is the formal testing conducted to determine whether or
not a system satisfies its acceptance criteria and to enable a customer, a user,
or other authorized entity to determine whether or not to accept the system [7].

2.2 Test Harness

In software testing, a test harness is a collection of software and test data con-
figured to test a program unit by running it under varying conditions and mon-
itoring its behavior and outputs.

As shown in the Fig. 1, there are typically three main test components in a
test harness: test driver, test stub and test monitor. The test drivers are respon-
sible for calling the target code, simulating calling units or a user. In automatic
testing they are also responsible for the implementation of test cases and pro-
cedures. The test stubs simulate modules, units or systems called by the target
code; normally mock objects are used for this purpose. The test monitor is
responsible to collect all the informations (or interactions) sent and received by
the component under test. This information is important for fault diagnosis.

A Survey on Testing Distributed and Heterogeneous Systems 91

Fig. 1. Test harness.

2.3 Testing Methods

Software testing methods are traditionally divided into white-box testing [14],
gray-box testing [12] and black-box testing [5].

In white-box testing, the internals of the system under test (SUT) are all
visible. As a consequence, the knowledge about these internal matters can be
used to create tests. Furthermore, white-box testing is not restricted to the
detection of failures, but is also able to detect errors. Failures occur when there
exist discrepancies between the specification and the behavior of the system.
Errors are unexpected errors that occur while running the test. [13] Advantages
are tests of higher quality because of the knowledge about system internals;
however, there is also a big disadvantage, because looking into all aspects of a
program requires a high effort.

In black-box testing, the SUT internal content is hidden from the tester. The
tester only has knowledge about possible input and output values. The black-
box testing only allows to test input-output functionality (functional testing).
As an advantage, this technique is close to realistic conditions. One important
disadvantage is the lack of internal information, which could be useful to generate
tests, because sometimes it is necessary to know the content to test boundary
values, that are normally responsible for failures.

In gray-box testing the advantages of both previous techniques are combined.
The test design is realized at white-box level but the tests are executed at black-
box level. For the tester, this has the advantage of having access to the SUT
internal information while designing tests; however, the tests are executed under
realistic conditions, where only failures are detected. Gray-box testing techniques
are used for commercial model-based testing (MBT), where, e.g., the test model
contains information about the internal structure of the SUT, but the SUT
internal matters themselves are not accessible (e.g. for reasons of non-disclosure).

2.4 Test Automation

Several testing activities can be automated, with varying costs and benefits [15].
The testing activity that is most commonly automated is test execution. This

requires that test cases are implemented as executable test scripts, test classes,

92 B. Lima and J.P. Faria

etc. Support test components may also have to be developed, to act as test
drivers, test monitors or test stubs. Automatic test execution is important to
reduce the cost of regression testing, support iterative development approaches,
enable load and performance testing, and avoid human errors that are common
in manual test execution, among other reasons.

In the case of distributed and heterogeneous systems, automated test execu-
tion is specially challenging, because of the need to support multiple platforms
and the need to coordinate the injection of test inputs and the monitoring of
test outputs at distributed points, and very few testing frameworks exist for such
systems [10].

Test coverage analysis is another testing activity that is commonly auto-
mated, usually in connection with automated test execution. Test coverage
analysis is specially important in white-box testing, to determine parts of the
code that are not being properly exercised, and help identifying additional test
cases for increasing coverage.

Test case generation is usually performed manually. However, model-based
testing (MBT) methods and tools have attracted increasing attention from indus-
try, because of the ability to automatically generate test cases from system mod-
els. Based on behavioral models of the SUT, MBT tools are able to generate
abstract test cases, which can be subsequently translated into concrete test cases
ready for execution, based on mapping information between the model and the
implementation.

In the case of distributed and heterogeneous systems, automated test case
generation is specially challenging, because of the difficulty of modeling several
characteristics inherent to such systems, such as timing aspects, concurrency
aspects, and non-determinism, among other features, with very limited support
provided by current MBT tools.

3 Research Method and Scope

The research method used in this work is the explanatory survey. Explanatory
surveys aim at making explanatory claims about the population. For example,
when studying how developers use a certain inspection technique [18].

3.1 Goal

The main goal of this work is to explore the testing of DHS from the point of
view of industry practitioners, in order to assess the current state of the practice
and identify opportunities and priorities for research and innovation initiatives.

More precisely, we aim at responding to the following research questions:

– RQ1: How relevant are DHS in the software testing practice?
– RQ2: What are the most important features to be tested in DHS?
– RQ3: What is the current status of test automation and tool sourcing for

testing DHS?
– RQ4: What are the most desired features in test automation solutions for

DHS?

A Survey on Testing Distributed and Heterogeneous Systems 93

3.2 Survey Distribution and Sampling

Since our main goal was to collect the point of view of industry practitioners that
were involved in the testing of DHS, we shared the survey to the participants
of two industry-oriented conferences in the software testing area: TESTING
Portugal 20151 and User Conference on Advanced Automated Testing (UCAAT)
20152. In total we distributed 250 surveys and we obtained 167 answers. From
these 167 answers, only 147 were complete and valid. Most of the invalid answers
were related with respondents that did not complete the survey.

3.3 Survey Organization

The survey was composed of two main parts. The first part was an introduction,
where we explained the goal of the survey and define the term “Distributed
and Heterogeneous Systems” in the context of this survey. In the context of
this survey we define a Distributed and Heterogeneous System as a set of small
independent systems that together form a new distributed system, combining
hardware components and software systems, possibly involving mobile and cloud-
based platforms.

The second part of the questions is divided in three different groups. The
first group is related with the professional characterization of the participants.
The second group contains questions about the company characterization. The
last group contains the questions related with the testing of DHS and the main
research questions underlying the survey.

4 Results

4.1 Participants Characterization

Before drawing conclusions on the main questions of this survey it is important
to realize the profile of the survey participants. The results show that most of the
people (70%) that responded this survey work in software testing, verification &
validation and 41% are in the current position for more than five years (see Fig. 2).

Regarding the experience in software testing, the results show (see Fig. 3)
that the majority of the survey participants have more than 5 years of experi-
ence in software testing in general and 40% have more than 5 years of experience
with DHS.

4.2 Company Characterization

The companies surveyed worked in a large range of industry sectors. The results
represented in Fig. 4 identify more than 10 different industry sectors.

1 http://www.cvent.com/events/testing-portugal-2015/event-summary-a1a41d7f0867
4008b58e43454bb9f54a.aspx.

2 http://www.etsi.org/news-events/events/868-2015-etsi-ucaat.

http://www.cvent.com/events/testing-portugal-2015/event-summary-a1a41d7f08674008b58e43454bb9f54a.aspx
http://www.cvent.com/events/testing-portugal-2015/event-summary-a1a41d7f08674008b58e43454bb9f54a.aspx
http://www.etsi.org/news-events/events/868-2015-etsi-ucaat

94 B. Lima and J.P. Faria

Fig. 2. Current position and time in current position [11].

Fig. 3. Time in software testing [11].

Fig. 4. Industry sectors [11].

A Survey on Testing Distributed and Heterogeneous Systems 95

Fig. 5. Company size [11].

Fig. 6. Company roles [11].

We also analyzed the size of the companies according to their number of
collaborators. Most of the companies are large companies, 37% have between 100
and 1,000 collaborators and 45% have more than 1,000 collaborators (Fig. 5).

The answers to ‘In what role(s) does your company conducts software test, if
any?’ show that half of the companies performs tests to the software developed
by themselves (Fig. 6).

Regarding the types of test levels performed, we realize from the answers
(Fig. 7) that the unit testing level is the less performed and the other three levels
(integration, system and acceptance) are performed with the same frequency.

96 B. Lima and J.P. Faria

Fig. 7. Test levels [11].

4.3 Distributed and Heterogeneous Systems Testing

Focusing now on the main questions of this survey, specifically related to the
testing of DHS, the answers to ‘In what role(s) does your company conducts
software test (for DHS), if any?’ show that a vast majority of 90% of the com-
panies (all but 10%) conducts tests for DHS in at least one role, with 42% of
the companies performing tests for DHS developed by themselves (Fig. 8).

Fig. 8. Test roles DHS [11].

A Survey on Testing Distributed and Heterogeneous Systems 97

Fig. 9. Test levels DHS [11].

We also tried to understand what kinds of levels are most commonly used in
the testing of such systems. Regarding the responses obtained (Fig. 9), there is a
higher emphasis on system testing (71%) followed by integration testing (65%).
Only 8% of the respondents did not mention any test level for DHS.

Regarding the most important features that need to be tested in DHS, the
results in Fig. 10 show that the feature that was considered the most important
to be tested was ‘Interactions between components of the system’ (with 76% of
responses high or very high), followed by ‘Interactions between the system and
the environment’ (71%) and ‘Multiple platforms’ (66%). All the features have
been considered of ‘very high’ or ‘high’ importance by a majority of respondents
(50% or more).

Regarding the level of test automation for DHS, the results presented in
Fig. 11 show that 75% of the tests follow some automated process, however only
16% are fully automatic, which is lower than the 25% who claim to perform only
manual testing.

For people who responded that there is at least some automatic process, we
asked what kind of tool they use. With this question we can understand the level
of effort required to automate the testing process. Looking at the results (Fig. 12)
we realize that only 31% use a commercial tool to automate the process, and the
majority, 69%, use a tool developed in-house, reusable or not in different SUTs.

Regarding the desired features of a test automation solution for DHS, the
results presented in Fig. 13 show that the most important features (based in the
percentage of responses high or very high) in an automated testing tool for DHS
are ‘Support for automatic test case execution’ (75%) and ‘Support for multiple
platforms’ (71%).

98 B. Lima and J.P. Faria

Fig. 10. Features.

As a possible solution to test DHS, we asked the participants in this survey
if they would find useful a tool to test these systems that use only a model of
interactions (UML sequence diagram) as an entry model. The results (Fig. 14)
show that 86% consider useful a tool with these characteristics.

A Survey on Testing Distributed and Heterogeneous Systems 99

Fig. 11. Automation level [11].

Fig. 12. Automation tool [11].

4.4 Multivariate Analysis

For questions specifically related to the opinion of the participants, a multivariate
analysis was held with the aim to determine whether the participants’ responses
depend on their current function (Software testing, verification & validation
versus all the others).

The results of the chi-square test for independence show that there is no
statistically significant association (for a 95% significance level) between the
current function (Software testing, verification & validation versus all others)
and the answers to the questions shown in Figs. 10, 13 or 14.

5 Discussion

5.1 Relevance of Respondents

The results presented in the previous section show that this survey met the
original purpose with regard to their target audience, since 70% of respondents’
primary responsibility is related to ‘Software testing, verification & validation’.
With regard to their experience, the results showed that they are not only people

100 B. Lima and J.P. Faria

Fig. 13. Tool features.

who are mostly in their current position for several years, as work with software
testing in general and specifically with DHS. With respect to the type of com-
panies, the results show that this survey covers companies with diverse activity
sectors and also large companies (45% have more than 1000 collaborators) which
provides a great support to the conclusions reached.

Concerning the main conclusions we can draw from the results, they are next
organized according to the initial research questions.

5.2 RQ1: How Relevant Are DHS in the Software Testing Practice?

The results (Fig. 8) show that a vast majority of approximately 90% of the
companies surveyed (all with software testing activities in general) conducts

A Survey on Testing Distributed and Heterogeneous Systems 101

Fig. 14. New tool [11].

tests for DHS, in at least one role and at least one test level, hence confirming
the high relevance of DHS in software testing practice.

5.3 RQ2: What Are the Most Important Features to Be Tested in
DHS?

Regarding the most important features that need to be tested in DHS, the
results in Fig. 10 show that the feature that was considered the most important
to be tested was ‘Interactions between components of the system’ (with 76% of
responses high or very high), followed by ‘Interactions between the system and
the environment’ (71%) and ’Multiple platforms’ (66%).

Nevertheless, all the features inquired were considered of high or very high
importance by a majority of respondents (50% or more).

5.4 RQ3: What Is the Current Status of Test Automation and Tool
Sourcing for Testing DHS?

The results show that the current level of test automation for DHS is still very
low, and there is large room for improvement, since 25% of companies in the
survey claim that they only perform manual tests, against only 16% who claim
to test DHS with a full automatic process.

If we look for companies that have some type of automation in its testing
process, we realize that the automation process is requiring a high effort in the
creation/adaptation of own tools, because only 31% of companies claim to use
a commercial tool to test these types of systems.

102 B. Lima and J.P. Faria

5.5 RQ4: What Are the Most Desired Features in Test Automation
Solutions for DHS?

Regarding the conclusions that can be drawn for future work, particularly at the
level of creating tools that can reduce the effort required to test DHS, looking at
Fig. 13, we realize that companies identify as key aspects of a tool to test such
systems the ability to automate test execution (75% of responses with high or
very high importancte) and the support for multiple platforms (71%).

Nevertheless, all the features inquired were considered of medium, high or
very high importance by a large majority of respondents (83% or more).

The comparison of the degree of importance attributed to automatic test
case execution (96% of the responses mentioning a medium, high or very high
importance in Fig. 13) with the current status (78% of companies applying auto-
matic text execution in Fig. 11), show that there is a significant gap yet to be
filled between the current status and the desired status of automatic test case
execution.

The gap is even bigger regarding automatic test case generation, with 83%
of the responses mentioning a medium, high or very high importance in Fig. 13,
and only 23% of the companies currently applying automatic text generation in
Fig. 11.

We realized even by the Fig. 14, that companies are highly receptive to a test
tool that has only a model of interactions as an input model for automatic test
case generation and execution.

6 Case Based Analysis of Test Automation Obstacles

In order to analyze the drivers and barriers for DHS test automation in com-
panies, we conducted follow-up interviews with some survey respondents. For
the interviews we selected a sample of survey respondents from companies with
different sizes (in terms of number of employees) and different test automation
strategies.

6.1 Case A

Company A is a small company that develops software for external customers.
The company performs manual tests on the software they develop. The justifi-
cations given by this company for only performing manual testing are:

– the low economic capacity to purchase commercial testing tools. Small com-
panies and startups have limited budgets that have to be managed with many
limitations and focusing on the rapid development of their products, leaving
aside investments on test tools;

– the lack of human resources (in terms of availability and expertise) to allocate
to test automation tasks. This type of company usually has a small number
of employees, so all end up taking on various tasks. As the main focus is
the rapid development of products, the use of any testing tool that requires
additional learning time is immediately discarded;

A Survey on Testing Distributed and Heterogeneous Systems 103

– if they adopted a test automation solution, it would be costly to maintain
automated test cases because of constant changes of product requirements
and features, implying frequent changes in the test cases and test harness.

6.2 Case B

Company B is a large company that develops software for government and mil-
itary areas. This company uses automation for test execution but still uses a
manual process for test case generation (i.e., the creation of test scripts). For
test automation, the company uses tools developed in-house, based on open-
source frameworks. The justification given for not resorting to commercial tools
is mainly due to the high costs charged by suppliers of these tools, often requiring
the purchase of extra plug-ins for any additional feature needed.

Besides that reason, the following justifications were given for using tools
developed in-house:

– to maintain knowledge within the company. Large companies prefer to develop
their own tools because they are often unwilling to share information about
their products with commercial tool vendors. For this reason they make use
of open source tools that can be easily modified by the experts of the test
area of the company itself;

– to be able to make adjustments to the tools more quickly, not being depen-
dent on any vendor. Commercial tools leave companies dependent on their
manufacturer, so large companies prefer to develop their own testing tools,
since in the current market conditions it is increasingly important to have a
quick reaction capability to modify the software.

With regard to manual test generation, the following justifications were given
by the representative of the company for not using any automation process:

– the software developed by the company has very specific features that might
be difficult to address with existing test generation tools;

– the lack of knowledge of company staff with regard to the creation of models
needed as input for test case generation and the subsequent generation of
test cases (this is one aspect that the company intends to improve in the near
future).

6.3 Case C

Company C is a small to medium company that provides consulting services
in the area of software testing. Most automation solutions that the company
proposes and implements for its customers are related with test execution (and
not test generation).

The reasons given for this have to do mainly with:

– the difficulty to automatically generate test cases;

104 B. Lima and J.P. Faria

– customers have no system model;
– the creation of system models requires a great effort;
– the system being tested is in a state of constant evolution and therefore

not worth the effort in automatic test generating (or event automatic test
execution).

As regards the tools that this company suggests to their customers for test
execution automation, in most cases they recommend commercial testing tools.
According to the representative of this company, this choice happens due to the
following reasons:

– commercial tools are “ready to use”;
– commercial tools do not require that the company has specialized human

resources to adapt the test tool.

However, when the client has know-how in the test area, this company also
indicates open source solutions that, in spite of requiring more maintenance, end
up giving more flexibility and of course greater freedom to their users.

6.4 Synthesis

Analyzing the answers we have come to the conclusion that there are still several
barriers and obstacles that prevent companies from adopting a fully automated
test process.

Regarding the reasons for not adopting an automated test execution app-
roach, we conclude that the main reasons are:

– cost of commercial testing tools (A);
– lack of human resources (availability and expertise) (A);
– frequent changes in the software under test (A, C).

For companies that have some level of automation in the testing tasks, the
choice between commercial tools and in-house tools (usually based on open
source tools) depends essentially on the type of company, since although the
commercial tools are referred in the interviews as “ready to use” facilitating in
this way the test automation process, they have several drawbacks, namely:

– are expensive, especially if extra functionalities and/or platforms are required
(B);

– create too much dependence from vendors, and reduce flexibility for exten-
sions and adaptations (B, C);

– know-how related with test automation is kept outside the company (B).

Regarding the reasons for choosing between a manual versus an automated
test generation approach (with automatic test generation from models), we
found:

– lack of human resources (availability and/or expertise) (A, B);
– frequent changes in the software under test (A, B, C);
– lack of system models (B, C);
– effort required for the creation of system models (B, C).

A Survey on Testing Distributed and Heterogeneous Systems 105

7 Related Work

We only found in literature one survey [6] that discuss some aspects related to
the testing of heterogeneous systems. The survey conducted by [6] explored the
testing of heterogeneous systems with respect to the usage and perceived useful-
ness of testing techniques used for heterogeneous systems from the point of view
of industry practitioners in the context of practitioners involved in heterogeneous
system development reporting their experience on heterogeneous system testing.
For achieving this goal the authors tried to answer two research questions:

– RQ1: Which testing techniques are used to evaluate heterogeneous systems?
– RQ2: How do practitioners perceive the identified techniques with respect to

a set of outcome variables?

The authors concluded that the most frequently used technique is exploratory
manual testing, followed by combinatorial and search-based testing, and that
the most positively perceived technique for testing heterogeneous systems was
manual exploratory testing. Our work has a different objective of the survey con-
ducted by Ghazi. The Ghazi main goal was to identify testing techniques, our
aim is to understand how distributed systems and heterogeneous are tested in
companies realizing which test levels are performed and which are the automa-
tion levels for testing these systems. The Ghazi survey also involved a much
smaller number of participants (27).

As regards the general software testing in the literature there are many sur-
veys, however as the main aim of our work is to analyze the state of practice, we
analyze surveys carried out in the industry by recognized standardization bodies
as ISTQB [8]. The most recent survey of this organization [9] conducted over
more than 3,000 people from 89 countries, although it has a different purpose of
our work because is related to the software test in general, provides results that
meet the results presented in this article, namely that there are still significant
improvement opportunities in test automation (was considered in this study the
area with highest improvement potential).

8 Conclusions

In order to assess the current state of the practice regarding the testing of DHS
and identify opportunities and priorities for research and innovation initiatives,
we conducted an exploratory survey that was responded by 147 software testing
professionals that attended industry-oriented software testing conferences.

The survey allowed us to confirm the high relevance of DHS in software
testing practice, confirm and prioritize the relevance of testing features charac-
teristics of DHS, confirm the existence of a significant gap between the current
and the desired status of test automation for DHS, and confirm and prioritize
the relevance of test automation features for DHS. The survey results indicated
a limited adoption of complete test automation processes by companies.

106 B. Lima and J.P. Faria

For better understanding what are the obstacles that companies face for not
adopting complete test automation approaches, we conducted follow-up inter-
views with companies of different sizes and testing approaches. The conclusions
drawn from the interviews allowed us to identify some common obstacles, such
as the cost of acquisition and difficulty of adaptation of test automation tools,
the cost of test suite maintenance (namely with frequent changes in the soft-
ware under test), and the effort and expertise required for the creation of system
models needed as input for automatic test suite generation. We expect that the
results presented in the paper are of interest to researchers, tool vendors and
service providers in this field.

As future work, we intend to develop techniques and tools to support the
automatic test generation and execution of test cases for DHS, addressing some
of the obstacles previously identified, namely by using UML sequence diagrams
as input for test generation to simplify the description of the SUT.

Acknowledgements. This research work was performed in scope of the project
NanoSTIMA. Project “NanoSTIMA: Macro-to-Nano Human Sensing: Towards
Integrated Multimodal Health Monitoring and Analytics/NORTE-01-0145-FEDER-
000016” is financed by the North Portugal Regional Operational Programme (NORTE
2020), under the PORTUGAL 2020 Partnership Agreement, and through the European
Regional Development Fund (ERDF).

References

1. AAL4ALL: Ambient Assisted Living For All (2015). http://www.aal4all.org
2. Beizer, B.: Software Testing Techniques. Dreamtech Press (2003)
3. Boehm, B.: Some future software engineering opportunities and challenges. In:

Nanz, S. (ed.) The Future of Software Engineering, pp. 1–32. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-15187-3 1

4. DoD: systems engineering guide for systems of systems. Technical report, Office of
the Deputy Under Secretary of Defense for Acquisition and Technology, Systems
and Software Engineering Version 1.0 (2008)

5. Edwards, S.H.: A framework for practical, automated black-box testing of
component-based software. Softw. Test. Verification Reliab. 11(2), 97–111 (2001)

6. Ghazi, A.N., Petersen, K., Börstler, J.: Heterogeneous systems testing tech-
niques: an exploratory survey. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.)
SWQD 2015. LNBIP, vol. 200, pp. 67–85. Springer, Cham (2015). doi:10.1007/
978-3-319-13251-8 5

7. IEEE: IEEE Standard Glossary of Software Engineering Terminology. IEEE Std
610.12-1990, pp. 1–84, December 1990

8. ISTQB: International Software Testing Qualifications Board, March 2016. http://
www.istqb.org/

9. ISTQB: ISTQB worldwide software testing practices report 2015–2016. Technical
report (2016). http://www.istqb.org/references/surveys/istqb-worldwide-software
-testing-practices-report-2015-2016.html

10. Lima, B., Faria, J.P.: Automated testing of distributed and heterogeneous systems
based on UML sequence diagrams. In: Lorenz, P., Cardoso, J., Maciaszek, L.A.,
Sinderen, M. (eds.) ICSOFT 2015. CCIS, vol. 586, pp. 380–396. Springer, Cham
(2016). doi:10.1007/978-3-319-30142-6 21

http://www.aal4all.org
http://dx.doi.org/10.1007/978-3-642-15187-3_1
http://dx.doi.org/10.1007/978-3-319-13251-8_5
http://dx.doi.org/10.1007/978-3-319-13251-8_5
http://www.istqb.org/
http://www.istqb.org/
http://www.istqb.org/references/surveys/istqb-worldwide-software-testing-practices-report-2015-2016.html
http://www.istqb.org/references/surveys/istqb-worldwide-software-testing-practices-report-2015-2016.html
http://dx.doi.org/10.1007/978-3-319-30142-6_21

A Survey on Testing Distributed and Heterogeneous Systems 107

11. Lima, B., Faria, J.P.: Testing distributed and heterogeneous systems: state of the
practice. In: Proceedings of the 11th International Joint Conference on Software
Technologies - Volume 1: ICSOFT-EA, pp. 69–78 (2016)

12. Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., Guo, Z.: Gener-
ating test cases from UML activity diagram based on gray-box method. In: 11th
Asia-Pacific Software Engineering Conference, pp. 284–291. IEEE (2004)

13. Mills, H.D., Dyer, M., Linger, R.C.: Cleanroom software engineering (1987)
14. Ostrand, T.: White-box testing. In: Encyclopedia of Software Engineering (2002)
15. Ramler, R., Wolfmaier, K.: Economic perspectives in test automation: balancing

automated and manual testing with opportunity cost. In: Proceedings of the 2006
International Workshop on Automation of Software Test, AST 2006, NY, USA,
pp. 85–91. ACM, New York (2006). http://doi.acm.org/10.1145/1138929.1138946

16. Tassey, G.: The Economic impacts of inadequate infrastructure for software testing.
Technical report, National Institute of Standards and Technology (2002)

17. Torens, C., Ebrecht, L.: RemoteTest: a framework for testing distributed sys-
tems. In: 2010 Fifth International Conference on Software Engineering Advances
(ICSEA), pp. 441–446, August 2010

18. Wohlin, C., Höst, M., Henningsson, K.: Empirical research methods in software
engineering. In: Conradi, R., Wang, A.I. (eds.) Empirical Methods and Studies in
Software Engineering, pp. 7–23. Springer, Heidelberg (2003)

http://doi.acm.org/10.1145/1138929.1138946

Model-Based Recovery and Adaptation
Connectors: Design and Experimentation

Emad Albassam, Hassan Gomaa(&), and Daniel A. Menascé

Department of Computer Science, George Mason University, Fairfax, VA, USA
{ealbassa,hgomaa,menasce}@gmu.edu

Abstract. This paper describes the design of model-based Recovery and
Adaptation Connectors (RAC) that handle recovery and adaptation concerns of
services in service-oriented architectures. When a service needs to be dynami-
cally adapted, RAC ensures that the service first transitions to a quiescent state
before it is replaced with a new service. When a service recovers from a run-time
failure, RAC ensures that transactions that have been interrupted due to service
failure are aborted and then restarted with the recovered service. Thus, RAC
ensures that no transactions are lost due to dynamic service adaptation or failure.
The design of the RAC is based on the autonomic computing MAPE-K loop
model and handles both stateless and stateful services. Our approach has been
validated through experimentation of planned failure and adaptation scenarios.

Keywords: Self-adaptation � Self-configuration � Self-healing � Dynamic �
Software adaptation � Autonomic computing � Component recovery � Recovery
patterns � Adaptation patterns � Mape-K loop model � Recovery connectors �
Adaptation connectors � State machines

1 Introduction

Service-oriented architectures (SOA) are a well-known approach for building
increasingly complex software systems from independently developed services. SOAs
often run in environments that are evolving and subject to failures. Thus, these systems
need to be capable of self-configuring and self-healing autonomously without human
intervention.

Previous papers prescribed adaptation connectors and showed how these connec-
tors can be used to adapt service-oriented software systems at run-time [1–3]. This
paper describes the concept of recovery and adaptation patterns and how a model-based
Recovery and Adaptation Connector (RAC) can integrate self-healing and self-
configuration capabilities so that a service or coordinator in SOA can be dynamically
replaced or removed after original deployment or recovered after a run-time failure.

In this paper, we describe how the design of the RAC, which was previously shown
to handle adaptation and recovery concerns of stateless services [4], can be extended to
handle adaptation and recovery of stateful services with both idempotent and
non-idempotent operations [5]. The RAC design is based on the MAPE-K loop model
[6]. The monitoring activity notifies the RAC of service failures. The analysis activity
identifies the transactions interrupted due to service failure. The planning activity

© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 108–131, 2017.
DOI: 10.1007/978-3-319-62569-0_6

determines the procedure to recover interrupted transactions. The execution activity
performs the recovery actions and restores any failed transactions.

The rest of this paper is organized as follows. Section 2 highlights key concepts
and assumptions. Section 3 discusses the design of RACs. Section 4 shows how the
RAC design can be extended to handle stateful services. Section 5 describes how
RACs can be used in different SOA patterns. Section 6 discusses experimentation of
RAC. Section 7 discusses related work. Finally, Sect. 8 concludes the paper and dis-
cusses future work.

2 Key Concepts

This section describes the key concepts for providing a systematic and reusable
approach for self-healing and self-configuration of CBSAs [7].

Autonomic Control. Manual management of large and complex software systems is
difficult and costly. Such manual systems could be automated by providing the fol-
lowing autonomic properties: self-healing, self-configuration, self-optimization, and
self-protection [6]. The MAPE-K loop model is widely used to implement autonomic
controllers and consists of four activities (monitoring, analysis, planning, and execu-
tion) that operate on a knowledge-base of the system. We use the general MAPE-K
loop model to support self-healing and self-configuration of autonomic services.

Recovery and Adaptation Connectors (RACs). RACs are used to separate adapta-
tion and recovery concerns from service concerns so that a service can be dynamically
adapted and recovered from failures.

Recovery Patterns. A recovery pattern defines how components in an architectural
pattern can be dynamically relocated and recovered to a consistent state after a com-
ponent has failed.

Adaptation Patterns. A software adaptation pattern defines how a set of components
that make up an architectural pattern dynamically cooperate to change the software
configuration to a new configuration [3].

Message-based Transactions. A transaction in CBSAs is defined by Kramer and
Magee as an information exchange between multiple components through messages [9]
while a transaction in transactional processing systems is defined as an atomic unit of
work [5]. We combine these two definitions as: a transaction is an information
exchange between two or more components through messages such that either all
messages in a transaction are eventually exchanged or none of them are.

We make the following assumptions in this paper:

• Only one component can fail permanently at a time based on the fail-stop failure
model [10] in which components do not send any erroneous messages but simply
cease functioning when they fail. Furthermore, we assume that failures are not
caused by malicious attacks.

Model-Based Recovery and Adaptation Connectors 109

• Message delivery uses a reliable network transport protocol.
• Recovery and adaptation connectors do not fail.
• Clocks are synchronized among all nodes.

3 Recovery and Adaptation Connectors

This section describes the design of the basic structure of a RAC for SOAs. We assume
that there are multiple clients and a single service that processes multiple client requests
concurrently. The service responds to each request from the client. The RAC manages
transactions between a client and a service that comprise either single request/response
messages or a dialog. Section 5 shows how the same RAC design can handle adap-
tation and recovery in other, more complex architectural patterns.

3.1 Design of RAC

RAC (Fig. 1) behaves as a proxy for the service by receiving requests from clients and
then forwarding these requests to the service. The RAC also receives responses from
the service, which are then forwarded to requesting clients.

To ensure safe adaptation at run-time and recoverability of service failures, the
RAC must keep track of the transactions that the service is currently engaged in and
must maintain messages (i.e., requests and responses) that pass through it so that these
messages can be held during adaptation and can be recovered when the service fails.

<<connector>>
:Service RAC

<<control>>
:Service Response Manager

<<control>>
:Service Request Manager

:Response Recovery Queue
(RRQ)

:Response Forwarding
Queue (RFQ)

:Service Pending Queue
(SPQ)

 Request,
 ACK

Request,
ACK

Response

Forward Response

Response

<<service>>
:Service

<<coordinator>>
:Coordinator

<<client>>
:Client

Forward Request

Queue Request,
Dequeue Request

Queue Request,
Dequeue Request

Queue Response,
Dequeue Response

Forward Request,
Forward Response,
Transac on Completed

Forward Response,
Transac on Completed

Queue Response,
Remove Transac on

Responses

<<coordinator>>
:Service Request Coordinator

<<coordinator>>
:Service Response Coordinator

:Service Recovery
Queue (SRQ)

Queue Request,
Remove Transac on

Requests

:Service Ac ve Queue
(SAQ)

:Ac ve
Transac ons Count

 Increment,
 Decrement<<state-dependent- control>>

:Connector Control

Fig. 1. Design of RAC showing messages during normal execution [4].

110 E. Albassam et al.

RAC has a control object (Connector Control in Fig. 1) that handles sending
messages to and receiving responses from application components, and also handles
adaptation and recovery concerns of the service. To facilitate maintenance of appli-
cation messages, requests and responses are stored by the RAC in queues located at the
Service Request Manager and the Service Response Manager (Fig. 1), respectively.
Each manager is provided with a coordinator component for controlling the queues it
manages. The goal of these coordinators is to separate the concerns of queue man-
agement from adaptation and recovery concerns handled by Connector Control.

3.2 Service Request Manager

Every request sent by a client to a service passes through the Service Request Coor-
dinator (Fig. 1). The Service Request Coordinator maintains the following three queues
for storing client requests based on the status of these requests:

Service Pending Queue (SPQ). The SPQ stores client requests received by the RAC
but that have not yet been forwarded to the service. The purpose of this queue is to
buffer requests for the service so that any requests received by the RAC while the
service is being dynamically adapted or is in the failed state are preserved until the
service becomes active again. Thus, the SPQ ensures that no requests to the service are
lost due to dynamic adaptation or recovery.

Service Active Queue (SAQ). This queue stores client requests that have been for-
warded to the service but do not have corresponding service responses at the RAC,
either because the service is still processing the request and has not generated the
corresponding response yet or because the service response was lost due to service
failure.

The RAC uses this queue to determine pending requests that must be processed by
the service first before the service can be dynamically adapted. Furthermore, the RAC
uses this queue to recover requests that were lost by the service (due to service failure)
before the corresponding responses of these requests are received by the RAC.

Service Recovery Queue (SRQ). This queue stores client requests that have corre-
sponding service responses at the RAC. This queue ensures that previous requests of
each dialog that the service is currently engaged in are preserved so that these dialogs
can also be recovered in case they were interrupted due to service failure.

3.3 Service Response Manager

Responses sent by the service are received by the Service Response Coordinator
(Fig. 1). The Service Response Coordinator maintains two queues for storing
responses:

Response Forwarding Queue (RFQ). This queue stores service responses that have
been received by the RAC but have not yet been forwarded to the requesting client.

Model-Based Recovery and Adaptation Connectors 111

Response Recovery Queue (RRQ). This queue stores service responses after they
have been forwarded to the requesting clients. This queue ensures that a service
response that has been forwarded by the RAC to the requesting client cannot be lost
due to client failure. In this case, when the RAC receives a duplicate request from a
recovered client, the corresponding response is obtained from the RRQ and forwarded
to the recovered client, without requiring the service to process the request again.

3.4 Connector Control State Machine

Connector Control (Fig. 1) is a state-dependent control component that handles
recovery and adaptation of the service by tracking its current state. While the service is
active, Connector Control keeps track of whether the service is currently engaged in
any transactions with its clients so that it can base its adaptation and recovery decisions
accordingly.

The Connector Control state machine (Fig. 2) consists of two orthogonal state
machines (STMs). Integrated Adaptation and Recovery is the orthogonal STM that
handles service adaption and recovery. The Message Queue Management STM is
responsible for notifying the Service Request Coordinator and the Service Response
Coordinator when a client acknowledges the completion of a transaction to enable these
coordinators to remove the messages of this transaction from their queues.

The orthogonal integrated adaptation and recovery state machine (Fig. 3) consists
of three composite states: (1) Active, which defines behaviour during normal service
execution, (2) Adapting, which defines behaviour during dynamic service adaptation,
and (3) Recovering, which defines behaviour during recovery.

Normal Service Execution. Initially, Connector Control is in the Waiting for Request
state (Fig. 3) indicating that the service is currently not engaged in any transactions
with its clients. When Connector Control receives a client request, it forwards the
request to the service, increments the number of active transactions that the service is
currently engaged in, and transitions to the Processing state. While in the Processing
state, Connector Control forwards requests to the service and forwards responses to
requesting clients. Connector Control remains in the Processing state as long as the
service is engaged in one or more transactions. Furthermore, Connector Control
increments the number of active transactions when it forwards a request that initiates a

Connector Control STM

Message Queue
Management

STM

Integrated
Adapta on and
Recovery STM

ACK/
Transac on

Completed {to coordinators}

Fig. 2. State machine executed by Connector Control [4].

112 E. Albassam et al.

new transaction with the service and decrements this number when it receives the final
response of a transaction from the service. At this time, Connector Control forwards
that final response of the final transaction to the requesting client and transitions back to
the Waiting for Request state.

Dynamic Service Adaptation. In order to safely adapt the service at run-time, the
service must be in a quiescent state [9] in which it is not involved in any transactions
and will not receive any new transactions from its clients. At this point, the service can
be removed or replaced at run-time after it has sent the final response of every trans-
action it is currently engaged in. In the Passivating state, Connector Control must not
forward any requests that initiate new transactions with the service, so that the service
can eventually transition to the quiescent state where it can be safely adapted.

If Connector Control receives the Passivate command from Change Management
[9] while it is in the Waiting for Request state (Fig. 3), then the service is not engaged
in any transactions with its clients. It thus transitions immediately to the Quiescent
state, and notifies the Service Request Coordinator that the service is quiescent so that it
holds all requests it receives from clients in the SPQ. On the other hand, if Connector
Control receives the Passivate command while it is in the Processing state, then the
service is engaged in one or more transactions with its clients. In this case, Connector

Integrated Adapta on and Recovery STM

Ac ve

Recovering

Adap ng

First Request/
Forward Request

Increment {Transac on Count}

First Request/
Forward Request,

Increment {Transac on Count}

Intermediate Request, Final Request/
Forward Request

Passivate/
No fy Passiva ng

Analyzing Failure
Events

Planning For
Recovery

Component
Recovering

Failed/
No fy Failed

Failure Analysis Results

Recovery Plan
[Transac ons Count > 0]

Reac vate [Ac ve Transac ons Count == 0]]/No fy Ac ve

Execu ng
Recovery Plan

Restored Lost
Messages

Recovery Plan [Ac ve Transac ons Count = 0]

Reac vate/No fy Ac ve

Final Response
 [Ac ve Transac ons Count = 1]/

Forward Response,
Decrement {Transac on Count}

First Response, Intermediate Response/
Forward Response

Final Response [Transac ons Count > 1]/
Forward Response,

Decrement {Transac on Count}

First Response, Intermediate Response/
Forward Response

Final Response [Transac ons Count > 1]/
Forward Response,

Decrement {Transac on Count}

Wai ng For
Request Processing

Passivate/No fy Quiescent

Final Response
[Transac ons Count = 1]/

Forward Response,
Decrement {Transac on Count},

No fy Quiescent

Passiva ng

Intermediate Request,
Final Request/

Forward Request

Quiescent

Failed/No fy Failed

Reac vate [Ac ve Transac ons Count > 0]]/No fy Ac ve

Fig. 3. Integrated adaptation and recovery state machine executed by Connector Control [4].

Model-Based Recovery and Adaptation Connectors 113

Control transitions to the Passivating state, where the service completes existing
transactions. While in the Passivating state, Connector Control forwards intermediate
requests it receives to the service and forwards service responses it receives to
requesting clients. Eventually, when all active transactions are completed, Connector
Control notifies the Service Request Coordinator that the service is transitioning to the
Quiescent State where the service can be safely adapted.

Service Recovery. While the service is in the recovering state, Connector Control
must not forward any requests and must ensure that all failed transactions are restarted
when the service is recovered.

Recovering a service from failure is handled by the connector using the MAPE-K
loop model for self-healing and self-configuration, as explained next.

The monitoring activity of MAPE-K notifies the RAC of the service failure. When
Connector Control receives a failure notification, it notifies the Service Requests
Coordinator of the failure and then transitions to Analyzing Failure Events state
(Fig. 3).

The Analyzing Failure Events state corresponds to the analysis activity of MAPE-K
where the RAC identifies all transactions that were interrupted due to service failure.
The RAC determines that a transaction has failed if either the SAQ or SRQ contain a
request that initiates a transaction with the service but neither the RFQ nor the RRQ
contains a response that completes that transaction. When failure analysis is completed,
Connector Control transitions to the Planning for Recovery state.

The Planning for Recovery state corresponds to the planning activity of MAPE-K
where the RAC determines the recovery plan for the failed transactions. The plan
identifies which requests must be resent to the recovered service so that failed trans-
actions are restarted at the recovered service. The recovery plan is determined by
executing the following recovery policy:

• First, the RAC forwards previous requests of every failed dialog that the service was
engaged in before it failed. These requests are recovered from the SRQ and are
forwarded sequentially in the same order they were processed before service failure
to ensure that the recovered service also processes these requests in that order.

• Second, the RAC forwards the requests of failed transactions queued in the SAQ,
which contains pending requests that were lost by the failed service before the RAC
received the responses to these requests. Note that at this step, if a request that is
being forwarded is of a dialog, then (from the previous step) the service must have
already received all previous requests of this dialog.

• Third, the RAC forwards all requests in the SPQ, which are new requests that have
been received while the service is in the recovering state, to the recovered service.

The Executing Recovery Plan state corresponds to the execution activity of
MAPE-K where the RAC restores all requests that must be resent to the recovered
service by moving these requests from the SRQ and SAQ to the SPQ, as specified in
the recovery plan. When all requests are restored, Connector Control transitions to the
Component Recovering state in which the connector waits until the service is relocated
and instantiated by Change Management, and then has its connection with the
recovered service established. Eventually, when Connector Control receives the

114 E. Albassam et al.

Reactive command, Connector Control transitions to the Active State and notifies the
Service Request Coordinator that the service is active so that Service Request Coor-
dinator resumes sending requests queued in the SPQ to Connector Control.

3.5 Service Request Coordinator STM

Based on the discussion in the previous section, the Service Request Coordinator must
forward to Connector Control certain types of client requests based on the current state
of the service, as shown in Fig. 4. While the service is active (Fig. 4), the Service
Request Coordinator forwards all client requests it receives to Connector Control and
also queues these requests in the SPQ.

When the Service Request Coordinator is notified that the service is passivating, it
transitions to the Passivating state. The behavior of the Service Requests Coordinator
while in this state is similar to its behavior in the Active state with one exception: in the
Passivating state, the Service Request Coordinator does not forward to Connector
Control any requests that initiate a new transaction with the service, and instead, queues
such requests in the SPQ. Eventually, the Service Request Coordinator is notified that
the service has become quiescent, causing the Service Request Coordinator to transition
to the Quiescent state. While in the Quiescent state, the Service Request Coordinator
does not forward any requests to Connector Control and instead queues them in the
SPQ. Finally, when service adaptation is completed, the Service Request Coordinator
receives a notification that the service is active, causing the Service Request Coordi-
nator to transition to the Active state and to forward all requests queued in the SPQ to
Connector Control.

When service failures occur, the Service Request Coordinator transitions to the
Failed state. While in the Failed state, the Service Request Coordinator holds all client
requests it receives in the SPQ. The Service Request Coordinator may also receive
messages from the execution activity of MAPE-K to restore any client requests that

Fig. 4. State Machine executed by Service Request Coordinator [4].

Model-Based Recovery and Adaptation Connectors 115

were lost due to service failure. As a result, the Service Request Coordinator moves
these requests from the SRQ and the SAQ to the head of the SPQ so that these requests
are resent to the recovered service. Finally, when the service is recovered, the Service
Request Coordinator forwards all requests stored in the SPQ and then transitions back
to the Active state.

4 Handling Adaptation and Recovery of Stateful Services

This section discusses extending the design of the RAC in Sect. 3 to handle recovery
and adaptation of stateful services with both idempotent and non-idempotent opera-
tions. It is assumed that the state of the stateful service is maintained by a transactional
processing system that supports committing, aborting, and preparing transactions [5].
The transactional processing system handles recovery of the service’s state to a con-
sistent state by using a transactional log to:

1. Undo all transactions that have either been aborted or did not complete before
service failure.

2. Redo transactions that have been committed before service failure.
3. Restore the state of prepared transactions until these transactions are either com-

mitted or aborted.

Since the service is a stateful component with non-idempotent operations, RAC
must ensure that the service processes a client request exactly once. That is, the RAC
must ensure that (1) committing the client’s transaction at the service side and
(2) updating the queues at the Service Request Manager are performed as an atomic
operation.

To achieve this behavior, the RAC forwards each client request to the service by
initiating a distributed transaction using the Two-Phase Commit (2PC) protocol [5]. In
this approach, Connector Control of the RAC acts as the coordinator of the distributed
transaction while the service and the Service Request Coordinator act as participants of
this distributed transaction, as explained next.

During normal execution, when there are no failures, the interaction between the
RAC and the service is as follows (Fig. 5):

1. When Connector Control of the service RAC (not shown in Fig. 5) receives a client
request, it forwards the client request to the service in a 2PC transaction. This
request corresponds to the Prepare To Commit message in the 2PC protocol.
Connector Control also forwards this request to the Service Request Coordinator,
which is a second participant of this 2PC transaction. As a result, the Service
Request Coordinator prepares to commit the client request by moving this request
from the Service Pending Queue to the Service Active Queue and then acknowl-
edges preparing the transaction to Connector Control.

2. The service prepares to commit the client request and then sends the response to the
RAC. The service response corresponds to the Ready To Commit message in the
2PC protocol.

116 E. Albassam et al.

3. Connector Control then sends the Commit message to both the service and the
Service Request Coordinator. The Service Request Coordinator then commits the
transaction by moving the client request from the Service Active Queue to the
Service Recovery Queue and then acknowledges committing the transaction to
Connector Control.

4. The service commits the prepared transaction and then sends the Committed
message to the RAC which completes this 2PC transaction.

5. The RAC forwards the service response to the requesting client.

In this pattern, the service can be dynamically removed or replaced after it has
completed all 2PC transactions that it is currently engaged in. When the RAC is
notified of a service failure by the monitoring activity, it determines a recovery action
for each distributed transaction it has initiated with the service as follows:

• If the RAC has forwarded a client request to the service but the service failure
occurred during phase 1 of the 2PC transaction, the RAC restores the client request
by moving it from the Service Active Queue to the Service Pending Queue. When
the service is recovered, the RAC instructs the recovered service to abort this
transaction so that the recovered service aborts the transaction if it has previously
been prepared to commit. Note that if the service failed before preparing to commit
the transaction, it ignores the Abort message from the RAC. Since the client request
is stored back in the Service Pending Queue, then the RAC eventually restarts this
transaction with the recovered service.

• If the RAC has received a service response from the service but has not yet for-
warded the Commit message to the service (i.e., service failure occurred before
initiating phase 2 of the 2PC transaction), then the service must have prepared to
commit this transaction before it failed. As a result, the RAC sends the Commit
message to the service after it has recovered so that it commits this transaction.
When the recovered service commits the transaction, it sends the Committed
message to RAC which completes this transaction.

Fig. 5. Handling stateful services using two-phase commit.

Model-Based Recovery and Adaptation Connectors 117

• If the RAC has forwarded the Commit message to the service but the service failure
occurred during phase 2 of the 2PC transaction, the RAC resends the Commit
message to the service after it has recovered. As a result, the recovered service
commits the prepared transaction and sends the Committed message to the RAC.
Note that the Commit message itself is idempotent. That is, if the service has
committed the transaction before failure, then receiving a duplicate Commit mes-
sage causes the recovered service to send the Committed message to the RAC.

5 Recovery and Adaptation Patterns

This section describes how the RAC design shown in the previous section can be used
to handle adaptation and recovery of components in other architectural patterns [1].

5.1 Asynchronous Message Communication with Callback

Typical client/service communication uses the Synchronous Message Communication
with Reply pattern, in which the client sends a message to the service and waits for a
response. In the Asynchronous Message Communication with Callback pattern
(Fig. 6), a client sends an asynchronous request to the service but can continue exe-
cuting and receive the service response later. The request sent by the client contains a
callback handle that the service uses when it finishes processing the client request so
that it can send the response back to the client. A client in this pattern does not send
another request to the service until it receives a response to the previous request.

Since in this pattern, a client sends one request at a time to the service, the RAC
(shown in Fig. 1) handles requests and responses for this pattern in the same way as for
synchronous communication with reply. Thus, although the client behaviour is dif-
ferent, the service behaviour is not. For this reason, the adaptation and recovery for the
Asynchronous Message Communication with Callback pattern is handled in the same
way as described in Sects. 3 and 4.

5.2 Service Registration

In service-oriented architectures, a service registers its name, location and service
description with a broker, which acts as an intermediary between the clients and the

3: Response4: Forward Response

:Service RAC

1: Request w/Callback Handle
5: ACK

2: Forward Request w/Callback Handle

: Service: Client: Client

Fig. 6. Asynchronous message communication with callback handle pattern.

118 E. Albassam et al.

service. In the Service Registration pattern (Fig. 7), the service initiates a transaction
with the broker by sending it a registration request containing the service information.
The broker then registers the service and sends an acknowledgement to the service. The
service can also re-register with the broker if it moves its location, which requires
another transaction between the service and the broker.

From the adaptation and recovery point of view, this pattern can be treated as a
client that communicates with a service using the Synchronous Message Communi-
cation with Reply pattern. Thus, the adaptation and recovery patterns for this archi-
tectural pattern are exactly the same as described in Sects. 3 and 4.

5.3 Broker Handle

After the service has registered with the broker, clients use the broker to locate the
service. In the Broker Handle pattern (Fig. 8), a client sends a request to the broker to
obtain the service’s handle. The broker then sends a response to the client containing
the service’s handle as a parameter. The client then uses the service’s handle to interact
with the service.

In this pattern, a client initiates two sequential transactions by first initiating a
transaction with the broker to obtain the service’s handle and then by initiating a
transaction with the service using the service’s callback handle. As a result, these
transactions can fail and be recovered independently of each other.

A broker is adapted after it has completed all the requests it has received, including
brokering requests from clients requesting a handle and service requests for

3: Register ACK4: Forward Register ACK

:Broker RAC

1: Register Service
5: ACK

2: Forward Register Service

: Broker: Client:Service

Fig. 7. Service registration pattern.

:Broker RAC :Broker

:Service

1: Service Handle Request
5a: ACK

2: Forward Service Handle Request

3: Service Handle4: Forward Service Handle

5: Service Request
9: ACK

6: Forward Service Request

7: Service Response8: Forward Service Response

:Client :Service RAC

Fig. 8. Broker handle pattern.

Model-Based Recovery and Adaptation Connectors 119

registration. New requests are held up until the broker has been relocated. In the case of
a broker failure, all requests it is dealing with are aborted and only restarted when the
broker has been relocated and instantiated. Both adaptation and recovery are carried out
as described in Sects. 3 and 4.

5.4 Service-Oriented Architectures

In service-oriented architectures (SOAs), the goal is to increase loose coupling between
services so that instead of services depending on each other, coordinators are provided
for situations where multiple services need to be accessed, and access to them needs to
be coordinated and/or sequenced (see Fig. 9). We consider that the coordinator may
interact with the services sequentially and/or concurrently and that the interaction
between the coordinator and the multiple services involves a compound transaction that
can be broken down into an atomic, independent transaction between the coordinator
and each service, as described in the next subsection.

In this pattern, when any of the services fail, the service’s RAC restarts each failed
transaction with the service without affecting other transactions that the coordinator is
currently engaged in with other services. Thus, the recovery and adaptation patterns for
services in this pattern are exactly the same as discussed in Sects. 3 and 4. The
remainder of this section describes recovery and adaptation of the coordinator.

For coordinators, we assume the general case in which the coordinator is a stateful
component. Therefore, the Coordinator RAC must forward client requests to the
Coordinator in 2PC transactions using the same approach described Sect. 4 so that
updating the Coordinator RAC’s queues and updating the Coordinator’s internal state
is an atomic operation. Therefore, the Coordinator RAC coordinates the 2PC trans-
action it initiates with the Coordinator while the Coordinator coordinates access to the
services. The behavior of the Coordinator RAC and the Coordinator is as follows:

<<coordinator>>
:Coordinator

<<connector>>
:Service RAC

<<service>>
:Service

5: Ready To Commit(Service Response 1)
7: Commi ed<<client>>

:Client

15: Ready To Commit (Coordinator
Response)

17: Commi ed
<<connector>>

:Service RAC

10: Prepare To Commit(Service Request N)
12: Commit

<<service>>
:Service

11: Ready To Commit (Service Response N)
13: Commi ed

8: Service Response 1

9: Service Request N
17b: ACK

14: Service Response N

18: Coordinator Response

<<connector>>
:Coordinator RAC

4: Prepare To Commit(Service Request 1)
6: Commit3: Service Request 1

17a: ACK

1*: Client Request
19: ACK

2: Prepare To Commit(Client Request)
16: Commit

Fig. 9. SOA architectural pattern.

120 E. Albassam et al.

1. When the Coordinator RAC receives a client request (message 1 (m1) in Fig. 9), it
forwards this client request to the coordinator in a 2PC transaction (m2). This
message corresponds to the Prepare to Commit message in the 2PC protocol.

2. When the Coordinator receives the client request, it initiates a compound transac-
tion, which consists of initiating a constituent atomic transaction with each service.

3. When the Coordinator receives responses from all services (m8 and m14), it pre-
pares to commit the compound transaction it has initiated in the previous step and
then sends its response (m15) to the Coordinator RAC. This response corresponds
to the Ready To Commit message for the 2PC transaction initiated in step 1.

4. The Coordinator RAC then sends the Commit message (m16) to the Coordinator.
5. The Coordinator then commits the previously prepared compound transaction,

sends ACK messages to the service RACs so that these connectors can safely
remove messages for this transaction from their queues, and then sends Committed
(m17) to the Coordinator RAC. At this point, the 2PC transaction between the
Coordinator’s RAC and the Coordinator is completed.

6. The Coordinator’s RAC sends the Coordinator’s response to the client (m18).

Adaptation and Recovery of Coordinators. In the case of a client interacting with a
coordinator, if the coordinator needs to be adapted, then the client request needs to be
completed before adaptation. This means that the entire 2PC transaction between the
Coordinator RAC and the Coordinator must complete before adaptation can take place,
since completion of this 2PC transaction ensures that the last compound transaction
initiated by the coordinator is also completed.

In the case of coordinator failure, when the coordinator is recovered, the recovered
coordinator must abort the last compound transaction it initiated, if this compound
transaction has not been prepared to commit before failure. Since the interaction
between the coordinator’s RAC and the coordinator involves a 2PC transaction, then
the coordinator’s RAC executes similar recovery actions to those described in Sect. 4
to recover this 2PC transaction in case it failed, as follows:

• If the Coordinator RAC has forwarded a client request to the Coordinator but the
coordinator failure occurred during phase 1 of the 2PC transaction, the coordinator
RAC saves the client request by moving it from the Coordinator Active Queue to
the Coordinator Pending Queue. When the coordinator is recovered, the coordinator
RAC instructs the recovered coordinator to abort this transaction so that the
recovered coordinator aborts the compound transaction, even if it has been prepared
to commit. Since the client request is stored in the Coordinator Pending Queue, then
eventually the coordinator’s RAC restarts this transaction with the recovered
coordinator. Since transactions to coordinators can be restarted, a recovered coor-
dinator may send duplicate requests to Service RACs. These Service RACs detect
and discard duplicate requests by comparing message sequence numbers of
incoming messages with previously received messages. Furthermore, if responses
of duplicate requests are queued in the Response Recovery Queue (RRQ), then
these service RACs resend these responses to the recovered coordinator. Note that
from Fig. 9, a service RAC does not discard a service response for any transaction
until it receives an ACK message from the coordinator that initiated this transaction.

Model-Based Recovery and Adaptation Connectors 121

Because a coordinator sends ACK messages to service RACs only after it has
committed the compound transaction it initiated, this ensures that a service RAC
can always recover responses of the duplicate requests it receives from recovered
coordinators. Note that if a Service RAC does not maintain in its RRQ the response
of a duplicate request, the service RAC forwards the response to the coordinator
after it receives this response from the service.

• If the coordinator RAC has received a ready to commit response from the coor-
dinator but has not yet sent the Commit message to the coordinator (i.e., a coor-
dinator failure occurred before initiating phase 2 of the 2PC transaction), the
coordinator must have prepared to commit this distributed transaction before it
failed. As a result, the coordinator’s RAC sends the Commit message to the
recovered coordinator for this distributed transaction so that it commits this trans-
action. When the recovered coordinator commits the transaction, it sends the
Committed message to the coordinator RAC, which completes this transaction.

• If the coordinator RAC has forwarded the Commit message to the coordinator but
has not yet received the Committed message (i.e., a coordinator failure occurred
during phase 2 of the 2PC transaction), the coordinator’s RAC resends the Commit
message to the recovered coordinator. As a result, the recovered coordinator
commits the prepared transaction, sends ACK messages to the service RACs, and
then sends the Committed message to the coordinator’s RAC.

6 Validation

The design of the RAC has been validated through experiments based on the Online
Shopping System case study [1], which is an example of a service-oriented architec-
ture. In this case study, customers can request to purchase items from suppliers. Several
services are involved to carry out purchase requests such as the Customer Account
Service, Delivery Order Service, Catalog Service, and Credit Card Service. Therefore,
coordinators are used to facilitate integration of these services.

In these experiments, each component and RAC was implemented in Java and has a
separate thread of control. In addition, Java Sockets were used for message delivery.
The implemented architecture runs on a cluster consisting of 30 nodes. Thus, both
components and RACs are concurrent and distributed in these experiments. In addition,
we used MySQL as a transactional processing system that provides the Two Phase
Commit interface for coordinator and service components. Each component uses this
interface to actually prepare, commit, and abort the messages it receives from its RAC.
The use of MySQL at each component was made out of expedience. In practice, one
would implement 2PC without requiring all the complexity of a full Database Man-
agement System (DBMS) (Fig. 10).

6.1 Service Failure Scenario

The service failure scenario demonstrates the ability of the service RAC to recover
failed transactions. In this scenario, the Delivery Order Service (DOS) is concurrently
processing four transactions, which are in different states at the time of failure, as

122 E. Albassam et al.

described below. This experiment validates the failure recovery scenarios described in
Sect. 4. The execution trace (Fig. 11) indicates that DOS fails while it is engaged in
four transactions as follows:

• Transaction t1: this transaction failed after the Service RAC has sent the Prepare to
Commit message to the service but before this RAC has received the Ready To
Commit message from the service. Note that in this case, the service could have
failed either (1) before preparing to commit this transaction, (2) after preparing to
commit the transaction but before sending Ready To Commit to the RAC, or
(3) after sending Ready To Commit to the RAC such that this response was lost due
to service failure. Although these three cases are not distinguishable from the
RAC’s point of view, the RAC executes the same recovery actions to recover these
cases.

• Transaction t2: this transaction failed after the service RAC has received the Ready
To Commit message from the service but before this RAC has forwarded the
Commit message to the service.

• Transaction t3: this transaction failed after the RAC has sent the Commit message to
the service but before receiving the Committed message from the service. There-
fore, the service could have failed either (1) before committing this transaction,
(2) after committing the transaction but before sending Committed to the RAC, or
(3) after sending Committed to the RAC such that this response was lost due to
service failure. Although these three cases are not distinguishable from the RAC’s
point of view, the RAC executes the same recovery actions to recover these cases.

• Transaction t4: this transaction failed after the service RAC has received the
Committed message from the service.

<<user interac on>>
: Customer Interac on

<<connector>>
: Coordinator

RAC

<<coordinator>>
: Customer Coordinator

<<connector>>
: Service RAC

<<connector>>
: Service RAC

<<connector>>
: Service RAC

<<connector>>
: Service RAC

<<service>>
: Delivery Order

Service

<<service>>
: Customer

Account Service

<<service>>
: Catalog Service

<<service>>
: Email Service

<<service>>
: Credit Card

Service

Customer Request Forward Coordinator Response

Coordinator ResponseForward Customer Request

Authoriza on Request

Forward
Auth.
Request

Authoriza on
Response

Forward Authoriza on
Response Send

Forward
Send

Store,
Update,
 Request

Forward Store,
Update,
 Request

Account
Info

Forward
Account
Info <<connector>>

: Service RAC

Store,
Update,
 Request

Forward Store,
Update,
 Request

Delivery
Order

Forward Delivery Order
Query,
Select

Forward
Query,
Select

Catalog
Info

Catalog Info

Fig. 10. Online Shopping System case study [1].

Model-Based Recovery and Adaptation Connectors 123

In addition to these four transactions, the RAC received a fifth transaction (t5) after
it was notified by the monitoring activity of service failure. Upon arrival, the request t5
is held by the RAC in the SPQ. In this scenario, the execution trace (Fig. 11) indicates
that the content of the RAC’s queues is as follows:

The SPQ contains one request that was held due to service failure:

– Request(t5, CC5, DOS) where t5 is the identifier of the transaction, CC5 is the
identifier of the message sender, and DOS is the identifier of the message recipient.

The SAQ contains two prepare to commit requests that have been forwarded to the
service:

– Request(t2, CC1, DOS)
– Request(t1, CC4, DOS)

The SRQ contains two commit requests as follows:

– Request(t4, CC2, DOS)
– Request(t3, CC3, DOS)

The RFQ contains four received responses:

– ReadyToCommit(t2, DOS, CC1)
– ReadyToCommit(t4, DOS, CC2)
– Committed(t4, DOS, ConnectorControl)
– ReadyToCommit(t3, DOS, CC3)

RRQ does not indicate any responses that have been forwarded to clients.
During the analysis activity which is handled in the Analyzing Failure Events state

(Fig. 3), the execution log indicates that the RAC determined a status for each of these
active transactions as follows:

RAC sent Abort for t1
RAC sent Commit for t3

RAC restarted t1

RAC sent Commit for t2

RAC forwarded
request held in SPQ

Active transactions
completed

Fig. 11. Fragment of the execution trace of RAC during planned failure scenario.

124 E. Albassam et al.

• For transaction t1, the RAC determined the status of this transaction as Preparing,
since the SAQ contains the Prepare To Commit request to the service but neither the
RFQ nor the RRQ contain the Ready To Commit response for this transaction.

• For transaction t2, the RAC determined the status of this transaction as Prepared,
since the SAQ contains the Prepare To Commit request to the service and the RFQ
contains the Ready To Commit response for this transaction.

• For transaction t3, the RAC determined the status of this transaction as Committing,
since the SRQ contains the Commit request for this transaction but neither the RFQ
nor the RRQ queues contain the Committed response for this transaction.

• For transaction t4, the RAC determined the status of this transaction as Committed,
since the SRQ contains the Commit request to the service for this transaction and
the RFQ contains a Committed response for this transaction.

During the planning activity which is handled in the Planning for Recovery state
(Fig. 3), the RAC determined recovery actions for each active transaction as follows:

• For transaction t1, since this transaction failed while being prepared to commit by
the service during the first phase of 2PC, the recovery actions determined by the
RAC for this transaction after service recovery were (1) to abort this transaction
with the service and then (2) to restart this transaction with the recovered service.

• For transaction t2, since this transaction failed after being prepared to commit by the
service, the RAC will eventually send the Commit message for this transaction
when the service has recovered.

• For transaction t3, since the service failed while committing this transaction, the
recovery action determined by the RAC for this transaction was to resend the
Commit message to the recovered service.

• Transaction t4 does not require any recovery actions since it was completed before
service failure.

During the execution phase which is handled in the Executing Recovery Plan state
(Fig. 3), the service RAC restored the requests of the transactions that must be restarted
with the recovered service by moving these requests from the SAQ to the head of SPQ.
In this scenario, only transaction t1 needs to be restarted with the recovered service.
Therefore, the execution log indicates that this message is moved from the SAQ to the
SPQ. The content of SPQ after restoration is:

– Prepare(t1, CC4, DOS) //recovered request which was restored from the SAQ
– Prepare(t5, CC5, DOS) //request held in the SPQ due to service failure

When the RAC is reactivated after the service has recovered, the execution trace
indicates that the RAC aborted and then restarted transaction t1 with the recovered
service, (2) requested the recovered service to commit transactions t2 and t3, and
(3) forwarded transaction t5 which was previously held in the SPQ due to service
failure.

The execution trace indicates that service execution resumed normally and that all
active transactions were eventually committed.

Model-Based Recovery and Adaptation Connectors 125

6.2 Service Adaptation Scenario

To illustrate the behavior of the service RAC during adaptation, we use an adaptation
scenario that involves adapting the DOS. This experiment validates the adaptation
scenario described in Sect. 4. In this scenario, the DOS is concurrently processing four
transactions, which are in different states at the time of adaptation, as described below.
In this scenario, the service RAC received the Passivate command from an external
Change Manager (which oversees the adaptation process) [9] while the service is
engaged in the following four active transactions:

• Transactions t1 and t2: service passivation is requested after the Service RAC has
sent the Prepare To Commit messages for these transactions to the service but
before this RAC has received the Ready To Commit responses from the service.

• Transactions t3 and t4: service passivation is requested after the service RAC has
sent the Commit messages for these transactions to the service but before it has
received the Committed responses from the service.

When service adaptation is requested, the content of the RAC queues are as
follows:

The SPQ does not contain any requests held by the service RAC.
The SAQ contains two prepare to commit requests sent to the service:

– Request(t1, CC3, DOS)
– Request(t2, CC2, DOS)

The SRQ contains two commit requests sent to the service:

– Request(t3, CC4, DOS)
– Request(t4, CC1, DOS)

The RFQ contains two service responses as follows:

– ReadyToCommit(t3, DOS, CC4)
– ReadyToCommit(t4, DOS, CC1)

The RRQ does not indicate any responses that have been forwarded to clients.
As a result of passivation, the execution trace indicates that the service RAC tran-

sitioned into the Passivating state (Fig. 3) where it permitted these four active transac-
tions to gradually terminate. While in Passivating state, a new request was received and
queued by the Service RAC into the SPQ. After the service completed all active trans-
actions, the execution trace indicates that the Service RAC transitioned to the Quiescent
state (Fig. 3) at which time the service was dynamically replaced. During the adapting
state, further requests are received and queued by RAC. After adaptation is completed,
the service RAC received the reactivate command. As a result, the RAC transitioned to
the Active state and forwarded all queued requests in its SPQ to the service. At this point,
normal execution is resumed between RAC and the service (Fig. 12).

126 E. Albassam et al.

6.3 Coordinator Recovery Scenario

The coordinator failure scenario demonstrates the ability of the coordinator RAC to
recover failed transactions. In this scenario, the Customer Coordinator (CC) fails while
processing one transaction from Customer Interaction (CI). Furthermore, failure of CC
occurred after the CC has initiated the following three sequential transactions:

1. Before failure, the CC initiated a transaction with the Customer Account Service
(CAS) and received the response of this transaction from this service.

2. Before failure, the CC initiated a transaction with the Credit Card Service
(CCS) and received the response of this transaction from this service.

3. Before failure, the CC initiated a transaction with the DOS. However, the CC failed
before receiving the response of this transaction from this service.

In this recovery scenario, the execution trace (not shown due to space limitation)
indicates that when the CC has recovered, the coordinator RAC (1) instructed the
recovered CC to abort the CI transaction and then (2) restarted this transaction with the
recovered CC. Furthermore, the execution trace of the CAS RAC, CCS RAC, and
DOS RAC indicate that these RACs received duplicate requests from the recovered
CC. The RAC of each of these services reacted to these duplicate requests as follows:

1. The execution trace of the CAS RAC indicates that this RAC discarded the
duplicate request and sent back to the recovered CC the response of this request
using its Response Recovery Queue (RRQ).

2. The execution trace of the CCS RAC indicates that this RAC discarded this
duplicate request and sent back to the recovered CC the response of this request
using its Response Recovery Queue (RRQ).

t3 committed

RAC resumed sending new
transactions held in SPQ

t4 committed

t1 committed

t2 committed

RAC quiescent

RAC passivating
t1, t2, t3, t4 are active

Fig. 12. Fragment of the execution trace of RAC during planned adaptation scenario.

Model-Based Recovery and Adaptation Connectors 127

3. The execution trace of the DOS RAC indicates that this RAC discarded the
duplicate request. The execution trace also showed that this RAC has not yet
received the response of the original request from the DOS (i.e., DOS is still
processing the original request). Therefore when this RAC received the response of
this request from DOS, it forwarded that response to the recovered CC.

After receiving the response from the DOS RAC, the execution trace showed that
the recovered CC continued working on this transaction until it has completed.

6.4 Coordinator Adaptation Scenario

The coordinator adaptation scenario is an experiment to validate the adaptation of the
coordinator as described in Sect. 5. In this scenario, the CC RAC received the passivate
command from the external Change Manager while the CC is preparing to commit a
transaction. As described in Sect. 5, the transaction must complete before the coordi-
nator can be replaced. The execution trace (not shown) of the CC RAC shows a
Passivate command sent to the CC RAC by the external Change Manager, which
results in the CC RAC transitioning from Processing state to Passivating state. When
the transaction ended with the sending of the coordinator response to the client, the
state machine transitioned to the Quiescent state. While the CC RAC is in quiescent
state, it received and queued a new transaction from the CI in the Coordinator Pending
Queue.

After replacing CC, the CC RAC received the reactivate message from the external
Change Manager and then transitioned from the Quiescent to the Waiting for Request
state. When the Request Coordinator of the CC RAC is also reactivated, which caused
it to transition from the Quiescent state to the Active state, it forwarded the queued
transaction to Connector Control. Connector Control then transitioned to Processing
state and handled this transaction normally as described in Sect. 5.

7 Related Work

Approaches to self-healing, self-configuration, and autonomic systems have been the
subject of many recent studies. However, the focus of most of these studies has been on
centralized approaches [11]. Nonetheless, decentralized approaches are more applicable
to SOAs due to high autonomy, loose coupling, and heterogeneity of services. One
challenge with decentralized approaches, however, is carrying out adaptation with only
partial knowledge of the system [12]. In this research, we consider that none of the
nodes has a complete view of the transactions exchanged between application com-
ponents. Instead, knowledge of transactions is distributed among multiple RACs to
increase decentralization such that each RAC maintains only knowledge of transactions
to its component. As a result, a RAC can handle adaptation and recovery concerns of its
component independently of other RACs.

A survey of self-healing systems [13] states that a core problem in these systems is
the integration of the self-healing property with other self-* properties. This paper

128 E. Albassam et al.

tackles this problem by investigating how self-healing and self-configuration approa-
ches, which are described next, can be integrated with the help of a RAC.

In the area of self-configuration and dynamic software adaptation, prior work by
Kramer and Magee investigated how a component must transition to a quiescent state
before it can be safely adapted [9]. Based on this quiescence property, it is possible to
define adaptation patterns for various architectural patterns. For instance, Gomaa et al.
defined several adaptation patterns for SOAs including patterns for different types of
service coordination and distributed transactions [2, 3, 8]. In addition, Ramirez et al.
discussed various reconfiguration patterns for self-adaptive systems [14]. The use of
connectors for reconfiguring service connections without affecting application execu-
tion was proposed by Li et al. [15].

Self-healing is a broad concept that includes a wide range of different approaches
including reactive and proactive [16] self-healing that target different types of problems
such as software aging and transient faults [17], performance degradation [18], and
software faults [19]. Due to the wide spectrum of prior works done in the area of
self-healing, we highlight some of the prior works that focus on self-healing in
service-oriented architectures that are capable of handling fail-stop failures. Interested
readers can refer to existing, more extensive self-healing surveys for other approaches
(e.g., [13]). In the area of self-healing for SOAs, Danilecki et al. suggest a tailored
rollback recovery protocol for the distinctive characteristics of SOAs [20]. Their
approach consists of requesting the service for available checkpoints and then
instructing the service to roll back to a consisting state using one of these checkpoints.
In this paper, we assume that services cannot be queried for checkpoints. However, we
assume that services are transactional [5]. Therefore, recovery is done on a
transaction-by-transaction basis. Prior works also investigated extending BPEL with
self-healing capabilities [21, 22]. Angarita et al. investigated multiple recovery
strategies for recovering web services including retry, replication, and checkpointing
[23]. Salatge et al. suggest the use of fault-tolerance connectors to increase service
dependability in SOAs [24]. However, none of these works considered integrating
self-configuration, by driving the service state to a quiescent state, with self-healing
capabilities. Platform-dependent self-healing approaches are also possible. For
instance, Candea et al. investigated expanding JBoss application services with
self-healing capabilities [25]. In this paper, we consider platform-independent design of
RACs.

Compared to the above approaches, the focus of this paper is to investigate the
problem of integrating adaptation and recovery patterns for SOAs, which is an area that
has received little attention in the literature. Furthermore, we consider embedding
adaptation and recovery state machines in connectors rather than application compo-
nents to achieve higher degrees of reuse and separation of concerns.

8 Conclusions

This paper described recovery and adaptation patterns for various SOA patterns. To
increase reuse of these patterns, we developed an integrated recovery and adaptation
state machine and embedded this state machine into a Recovery and Adaptation

Model-Based Recovery and Adaptation Connectors 129

connector (RAC), so that recovery and adaptation concerns are separated from service
and coordination concerns. To increase decentralization of our approach, we designed
each RAC so that it can handle recovery and adaptation of its component autonomously
and independently of other RACs.

The contributions of this paper are (1) the design of the RAC and (2) the experi-
mentation results of the RAC design, which show the ability of the RAC to handle
adaptation and recovery of both services and coordinators under different failure and
adaptation scenarios.

The focus of this paper has been on recovery of transactions and architecture
adaptation. We are currently investigating how the recovery of components can be
further automated using DeSARM [26], a decentralized software architecture discovery
mechanism. Furthermore, we are working on extending the RAC design so that it can
also handle recovery and adaptation of components in asynchronous architectural
patterns, such as the master/slave and control patterns, in which the RAC does not
receive responses from its component. Future work also includes handling concurrent
node failures and tolerating failures of RACs using replication techniques. In addition,
we are investigating recovery of distributed transactions that involve updates at more
than one service. Finally, we are considering the design of a universal RAC that is
capable of handling recovery and adaptation of components in different architectural
patterns and formally proving recovery and adaptation properties of the RAC.

Acknowledgments. This work is partially supported by the AFOSR award FA9550-16-1-0030.

References

1. Gomaa, H.: Software Modeling and Design: UML, Use Cases, Patterns, and Software
Architectures. Cambridge University Press, Cambridge (2011)

2. Gomaa, H., Hashimoto, K., Kim, M., Malek, S., Menascé, D.A.: Software adaptation
patterns for service-oriented architectures. In: Proceedings of the 2010 ACM Symposium on
Applied Computing, pp. 462–469. ACM, New York (2010)

3. Gomaa, H., Hashimoto, K.: Dynamic self-adaptation for distributed service-oriented
transactions. In: Proceedings of the 7th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. IEEE Press, Piscataway (2012)

4. Albassam, E., Gomaa, H., Menascé, D.A.: Model-based recovery connectors for
self-adaptation and self-healing. In: Maciaszek, L.A., Cardoso, J.S., Ludwig, A., van
Sinderen, M., Cabello, E. (eds.) Proc of the 11th International Joint Conference on Software
Technologies (ICSOFT 2016) - ICSOFT-EA, Lisbon, Portugal, 24–26 July 2016, vol. 1.
SciTePress (2016)

5. Bernstein, P.A., Newcomer, E.: Principles of Transaction Processing, 2nd edn. Morgan
Kaufmann, Burlington (2009)

6. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer. 36, 41–50
(2003)

7. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory,
and Practice. Wiley, Hoboken (2009)

130 E. Albassam et al.

8. Gomaa, H., Hussein, M.: Software reconfiguration patterns for dynamic evolution of
software architectures. In: Fourth Working IEEE/IFIP Conference on Software Architecture
(2004)

9. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change management.
IEEE Trans. Softw. Eng. 16, 1293–1306 (1990)

10. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1, 11–33
(2004)

11. Lemos, R., Giese, H., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: Lemos, R., Giese, H., Müller, Hausi A., Shaw, M. (eds.) Software
Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-35813-5_1

12. Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A survey on engineering
approaches for self-adaptive systems. Pervasive Mob. Comput. 17, 184–206 (2015)

13. Schneider, C., Barker, A., Dobson, S.: A survey of self-healing systems frameworks. Softw.
Pract. Exp. 45, 1375–1398 (2015)

14. Ramirez, A.J., Cheng, B.H.C.: Design patterns for developing dynamically adaptive
systems. In: Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, pp. 49–58. ACM, New York (2010)

15. Li, G., Han, Y., Zhao, Z., Wang, J., Wagner, R.M.: Facilitating dynamic service
compositions by adaptable service connectors. Int. J. Web Serv. Res. 3, 68–84 (2006)

16. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing-degrees, models, and
applications. ACM Comput. Surv. 40, 7:1–7:28 (2008)

17. Silva, L.M., Alonso, J., Torres, J.: Using Virtualization to Improve Software Rejuvenation.
IEEE Trans. Comput. 58, 1525–1538 (2009)

18. Magalhães, J.P., Silva, L.M.: SHÕWA: a self-healing framework for web-based applica-
tions. ACM Trans. Auton. Adapt. Syst. 10, 4:1–428 (2015)

19. Bruning, S., Weissleder, S., Malek, M.: A fault taxonomy for service-oriented architecture.
In: 10th IEEE High Assurance Systems Engineering Symposium, HASE 2007 (2007)

20. Danilecki, A., Hołenko, M., Kobusińska, A., Szychowiak, M., Zierhoffer, P.: Applying
message logging to support fault-tolerance of SOA systems. Found. Comput. Decis. Sci. 38,
145–158 (2013)

21. Subramanian, S., Thiran, P., Narendra, N.C., Mostefaoui, G.K., Maamar, Z.: On the
Enhancement of BPEL engines for self-healing composite web services. In: International
Symposium on Applications and the Internet. SAINT 2008, pp. 33–39 (2008)

22. Modafferi, S., Conforti, E.: Methods for enabling recovery actions in Ws-BPEL. In:
Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 219–236. Springer,
Heidelberg (2006). doi:10.1007/11914853_14

23. Angarita, R., Rukoz, M., Cardinale, Y.: Modeling dynamic recovery strategy for composite
web services execution. World Wide Web 19, 89–109 (2016)

24. Salatge, N., Fabre, J.-C.: Fault tolerance connectors for unreliable web services. In: 37th
IEEE/IFIP International Conference on Dependable Systems and Networks (2007)

25. Candea, G., Kiciman, E., Zhang, S., Fox, A., Keyani, P., Fox, O.: JAGR: An Autonomous
Self-Recovering Application Server (2003)

26. Porter, J., Menasce, D., Gomaa, H.: DeSARM: a decentralized software architecture
discovery mechanism for distributed systems. In: Presented at the 11th International
Workshop on Models@run.time (MODELS 2016), Saint-Malo, France, 4 October 2016

Model-Based Recovery and Adaptation Connectors 131

http://dx.doi.org/10.1007/978-3-642-35813-5_1
http://dx.doi.org/10.1007/11914853_14

Supporting Visual Data Exploration
via Interactive Constraints

Wendy Lucas(&) and Taylor Gordon

Bentley University, Waltham, MA, USA
{wlucas,Gordon_taylor}@bentley.edu

Abstract. This work aims to bridge the gap between the goals of the users of
information visualization systems and the techniques that are currently available
to them for interacting with force-directed layouts. We propose that the benefits
from applying positional constraints to graphical objects extend beyond their
typical use in network graphs. In particular, a constraint-based approach can be
an effective means for aiding users in exploring multivariate data that, by its
nature, is difficult to present effectively. Providing easy to use and understand
slider components for specifying the strength of constraints applied in a layout
gives users the ability to subtly control graphic object positioning. Objects can
be filtered and automatically grouped based on the value of one or more
properties, with each property representing a different data variable. Applying
different constraint strengths to these groups provides an effective means for
identifying commonalities and patterns in multivariate data.

Keywords: Force-directed layouts � Interactive data exploration � Constraint
specification � Multivariate data

1 Introduction

Constraint-based approaches to graph layouts are most frequently applied to network
diagrams. Typically, the goal is to generate aesthetically pleasing layouts that aid users
in identifying and exploring relationships between nodes and node groupings.
Force-directed algorithms help to minimize the crossing of links while clustering
related nodes together. The resulting graphs support many data exploration activities,
such as identifying authorities and hubs in a network community [2] or finding patterns
and anomalies [3].

This type of approach is not usually applied, however, in those cases where the
locations of the individual graphical objects representing the data being visualized also
convey meaning. One issue is that a force-directed layout is continuously in motion and
will not necessarily be in the same configuration each time it is rendered. Furthermore,
user interactions can also affect the layout in indeterminate ways. Thus, while the
positions of graphic objects in a force-directly layout can be useful in discovering
relationships between elements, it is less helpful in revealing information about the
underlying data properties represented by a particular graphical object.

Another issue with applying constraint-based approaches to layouts beyond net-
work graphs is the limited means available to users for controlling the outcome. The

© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 132–152, 2017.
DOI: 10.1007/978-3-319-62569-0_7

most common means available for interacting with objects in a force-directed layout
include:

• Dragging on a node or node grouping. This can affect not only the positions of the
objects with which the user interacts, but potentially all other objects in the layout.
Thus, users cannot know with any certainty the effects their interactions will have
on the layout.

• Jiggling a node. A quick back and forth motion applied to a node can be helpful for
untangling links that have crossed but can also cause unpredictable changes in the
layout.

It is the algorithm underlying the layout, rather than the user, that ultimately determines
the configuration of the nodes and links that are typically being represented. Such
algorithms often model nodes as charged particles that repel each other, with links
acting as dampened springs that pull related nodes together [4]. The position of each
node is then calculated to maintain an equilibrium that minimizes the overall kinetic
energy in the graph.

In most cases, the user will know little if anything about the algorithm that is
controlling a force-directed layout. The varying ways in which forces may be exerted
on the graphical components in the layout are also not obvious. While it may be
possible to configure the strengths of the forces being applied programmatically, it is
unlikely that the typical user will have the skills and knowledge to do so. Sophisticated
users can add their own widgets for manipulating layouts, but this is also not an option
for the majority of users who do not have that expertise [5].

The motivation for the work presented here is based on the premise that
force-directed layouts should not be limited primarily to network diagrams; rather,
users should be able to apply force-based constraints to any graphic object in any type
of layout. In layouts involving multivariate data (i.e., datasets containing more than
three variables), such constraint-based approaches can be particularly beneficial for
supporting exploration and presentation activities.

In order to make a constraint-based approach to visualization accessible to
everyone, mechanisms that are intuitive and easy to use are needed that allow the
user to:

• Manipulate the strength of the constraints applied to all graphic objects in the
layout.

• Form groups of graphic objects based on user-specified criteria and apply different
constraint strengths to each group.

• Exert control over the constraint-solving process so that the user can interact with
objects in a layout without interference.

• Return a layout to its pre-constrained state, regardless of any changes that may have
occurred to that layout due to the constraint-solving process and/or user
manipulation.

We contend that, if users can apply constraint-based approaches to layouts beyond
network graphs and are able to subtly manipulate object positioning, a door will be
opened into new and unanticipated ways for exploring and interacting with data. Pro-
viding additional tools for object selection, grouping, and filtering serves to further

Supporting Visual Data Exploration via Interactive Constraints 133

empower users in data exploration and presentation activities. Supporting user creativity
is an emerging and important direction for computing research and development [6].

The approach described in this paper is built upon a declarative language that
enables the specification of visual layouts by tying graphical objects to data values via a
scaling function [7]. The actual placement of objects is influenced by the strengths of
the constraints applied to them in conjunction with user manipulation. The language
specification currently supports the following five constraint types, as noted in [1]:
equality, approximate equality (henceforth referred to as near), non-overlap, and hor-
izontal and vertical alignment.

The language has been implemented in a proof-of-concept information visualization
(Infovis) prototype. In addition to interacting with graphical objects via standard mouse
movements, the user can manipulate slider components in the interface to control the
strength of the constraints being exerted on those objects. An earlier version of the
language and prototype were used in an initial empirical study with eleven participants.
It demonstrated the usefulness of the slider-based approach to controlling the layout of a
force-directed tree graph that was subjected to conflicting constraints [8].

This paper is an expanded version of [1], in which we demonstrated the application
of constraints in visual layouts that were not limited to network graphs. The controls
that were introduced in [1] allow the user to:

• Pause and resume the constraint solving process. This leaves the user free to explore
the underlying properties represented by the graphic objects without the risk of
making inadvertent changes to the layout.

• Apply a bounding box constraint to confine graphic objects to a specified area.
• Use a free-form “lasso” tool to add graphic objects to a group.
• Manipulate the strength of the constraints being applied to the graphic objects in a

group, either while the constraint-solving process is running or when it has been
paused.

We introduce here the means for filtering graphic objects based on the values of one or
more data attributes. If the user so chooses, those objects can be automatically grouped
together. After the user applies a filter, the color intensity of non-selected objects
decreases, so they fade into the background while the selected objects stand out. Thus,
users can easily identify objects with particular characteristics.

If the user chooses the automatic grouping option, then the filtered objects appear in
a grouping box, just as if they had been selected with the lasso tool mentioned above.
Alternatively, filters can be applied after groups have been formed in order to identify
previously unspecified property values that objects both within and outside of groups
may have in common.

The ability to manipulate the strength of the constraints applied to a filtered group
can be used to declutter a presentation; discover patterns and other shared character-
istics amongst objects in the group; and visually differentiate between those objects and
others in the layout with different attribute values. Objects can be easily removed from
groupings and constraints on their positions can be reset to restore the original layout.

In the next section of this paper, we discuss related work. We then present the
visual interface and demonstrate by example the mechanisms provided for specifying
constraint strengths, grouping graphic objects, and filtering objects based on attribute

134 W. Lucas and T. Gordon

values. This is followed by application examples that highlight the benefits of our
proposed approach. We conclude by summarizing the contributions of this work and
discussing directions for future research.

2 Related Work

Earlier research that laid the groundwork for the approach presented here for user
control of positional constraints include [9–11]. GLIDE [9] is an interactive tool for
drawing small graphs, where node positioning is governed by “macro” constraints (or
Visual Organization Features) such as alignment, sequential placement, even spacing,
etc. The constraint-based authoring tool described in [10] focuses on large networks. It
allows the author to manipulate similar constraints as those supported by GLIDE, but
also provides two higher-level styling tools that automatically generate placement
constraints. The author can then modify the layout by removing some or all of those
constraints. Dunnart [11], another constraint-based authoring tool, supports horizontal
and vertical alignment and distribution constraints; horizontal and vertical sequencing
constraints; and an “anchor” tool for fixing the position of one or more objects. The
author can also manipulate sliders to change parameters of a goal function that mea-
sures the quality of a layout, such as the minimum separation between nodes connected
by directed edges.

A primary difference between the above approaches and the one described in this
article is that the former focus solely on network layouts. While the use of sliders in
Dunnart is similar to our use here for controlling the strength of the constraints that
govern object positioning, no mechanism exists in Dunnart for selecting particular
objects and limiting changes in parameter values to only those objects.

More typically, sliders are used in dynamic queries for narrowing the range of data
points to be selected [12, 13]. They are one of a number of widgets that provide users
of commercial visualization tools, such as Tableau, Spotfire, and QlikView, with the
means for filtering ordinal, quantitative, and temporal data [14].

While filtering alone does not provide users with control over graphic object
positioning, it does reveal those items with shared attribute values. It is one of the three
steps in Shneiderman’s Information Seeking Mantra [15]: Overview first, zoom and
filter, then details-on-demand. These capabilities allow users to explore visualizations
that have already been rendered in accordance with a predefined layout.

According to Yi et al. [12], the intent of interaction in information visualization can
be categorized as: select (mark something of interest), explore (show something else),
reconfigure (show a different arrangement), encode (show a different representation),
abstract/elaborate (show more or less detail), filter (show something conditionally) and
connect (show related items). Thus, users may choose a different representation or
arrangement for their data and can apply filters for showing only those items that have
particular property values. They cannot, however, control their placement within the
selected representation.

A less commonly used interaction technique that does affect positioning is referred
to as the “jitter” operation, which allows the user to apply jitter to items in a visual-
ization. Those items will then randomly shift by a small spatial increment, thus

Supporting Visual Data Exploration via Interactive Constraints 135

revealing other items that may have previously been hidden. This operation is sup-
ported in Spotfire [16]. In our approach, increasing the strength of a non-overlap
constraint while keeping objects close to their original positions by maintaining the
near constraint will achieve the same result.

The Dust & Magnet (DnM) multivariate information visualization technique [17]
has the most in common with our approach, in that user interactions affect not only the
selection but also the positioning of items with particular attribute values. DnM is
based on a magnet metaphor, in which data items are visualized as specks of iron that
move when the user manipulates “magnets” representing data attributes. As the user
drags a magnet across the screen, all dust particles with matching attribute values are
attracted to it. More than one magnet can be added to the screen, so even though the
user can manipulate only one magnet at a time, each particle can be attracted toward
multiple magnets simultaneously. The influence, or magnitude, of a magnet is con-
trollable by a slider. Magnets can also repel dust particles, with another slider con-
trolling the repellent threshold. The user can also change the size or color of a dust
particle to reflect attribute values.

The approach described in this paper allows the user to vary the strength of
positional constraints applied to all and/or selected graphic objects in a layout. Groups
of objects can be formed based on shared attribute values, and different constraints can
be specified for each group. Thus, the user is able to manipulate a presentation to
highlight different properties of the data, as represented by visual attributes. In addition,
layouts are not limited to one particular type of graph, as demonstrated in this paper.
The constraint-solving process can also be paused to allow further exploration of the
current configuration, and constraints can be reset to return a graph to its original
layout. The flexibility of this approach and the control it gives to users over object
positioning differentiate it from the other work described here.

3 Applying and Manipulating Constraints

In this section, we describe the prototype Infovis interface and the controls it provides
for specifying the strength of the constraints that can be enforced on a layout. We
demonstrate by example how the user can explore the datasets represented by graphic
objects via constraint manipulation and filtering. Lastly, we show how the user can
group objects by either selecting them with a lasso tool or by adding a filter on their
data properties. A different set of constraint strengths can then be applied to each
grouping, thereby highlighting relationships and patterns in the data being represented.

3.1 Interface Components

The Infovis prototype is comprised of three detachable panels: a coding window, a
canvas, and a panel for controlling constraints. The coding window is where users can
create, edit, and run programs written in the language described in [7]. The output from
running that code is rendered in the canvas. A specification for visualizing Anscombe’s
quartet [18] and the resulting layout are shown in Fig. 1.

136 W. Lucas and T. Gordon

The third panel has controls for manipulating constraint strengths, as shown in
Fig. 2. The five positional constraints identified earlier in this paper that have been
implemented in the language specification are defined as follows [1]:

Fig. 1. Interface panels in Infovis prototype include a coding window and a canvas where the
visualization is rendered.

Switches to Group
ID if showing con-

straints for a group

Each group has
its own instance

of constraint
controls

Fig. 2. Interface panel for controlling constraint strengths. Each grouping has its own instance
of slider values. The bottom of the interface includes the buttons for clearing the drawing canvas
shown in Fig. 1, for pausing the constraint-solving process, and for clearing any filters that have
been applied.

Supporting Visual Data Exploration via Interactive Constraints 137

• Equality (=): anchors the position of a graphic object to a data value or another
graphic object.

• Near (*): specifies that a graphic object should be within close proximity (as
defined in the constraint resolution algorithm) of a data value or another visual
object.

• Non-overlap (NO): specifies that two or more graphic objects should not overlap.
• Horizontal alignment (HAlign): aligns one or more graphic objects along the

x-dimension.
• Vertical alignment (VAlign): aligns one or more graphic objects along the

y-dimension.

The equality constraint is not controllable by a slider, as its strength is absolute. Each of
the other four constraints is unenforced when its slider is set to 0 and is at its maximum
value when its slider is set to 50. There are also controls for specifying a bounding box
around objects. The bounding box constraint is either on or off. In Fig. 2, the bounding
box constraint around the entire frame (i.e., the drawing canvas shown in Fig. 1) has
been selected. The constraints exerted on the objects to keep them within the frame will
counteract the positional constraints that may be pushing them outward.

If a user creates a grouping of objects, as described in the next section, and then
clicks anywhere in that group, the panel in Fig. 2 will be updated to show the values of
the constraints applied to the objects in that group. The heading will also change to
identify the group (such as Group 1). Clicking anywhere in the canvas outside of the
group will reset the constraints panel to showing the values for the overall frame.

There are three buttons located at the bottom of the interface (see Fig. 2):

• Clear terminates the visualization process and clears the drawing canvas.
• Pause Visualization suspends the constraint-solving process. The user can then

interact with the objects in the layout without having to counteract the forces in
effect on those objects. The label on this button toggles between pausing and
resuming the visualization. Clicking on Resume Visualization will reactivate the
constraints in accordance with the values specified by the sliders.

• Clear Filter removes any filters that have been specified for selecting objects in the
visualization based on their underlying data values, as described in the next section.

3.2 Constraint Specification Example

In specifying a visual layout with the Infovis language, data attributes from the datasets
being represented are tied to the visual attributes of graphic objects. An example of this
is shown in Fig. 3, where the attributes of graphic objects called points and ellipses have
been tied to values selected by queries to a database. A point is represented in this
language by intersecting horizontal and vertical lines. Both points and ellipses are
defined by center x and y coordinates, widths, heights, and colors. A built-in scale called
the Canvas maps data values to positions in the drawing area. In the code shown in
Fig. 3, the mapping is one-to-one for each x and y coordinate. Since the widths and
heights of the ellipses are tied to the same data property, they will be rendered as circles.

138 W. Lucas and T. Gordon

The equality (=) and near (*) constraints can be specified between two values,
such as attribute values of two different objects or an attribute value and a scaled data
value. The other constraints in Fig. 3 are non-overlap (NO), vertical alignment
(VAlign) and horizontal alignment (HAlign). They can be specified between two or
more objects and between two sets of objects. In the above specification, a point cannot
overlap with any other point, a circle cannot overlap with any other circle, and points
and circles cannot overlap with each other.

The near constraints will pull each circle and point toward their coordinate values.
At the same time, the non-overlap constraints will push each circle away from other
circles, each point away from other points, and each circle and point away from all
objects of the other type. Horizontal alignment and vertical alignment constraints will
conflict with each other and may also conflict with the near and non-overlap
constraints.

When the visualization process is initiated, all of the constraint sliders are set to 0,
so there are no conflicts. The user can then choose which constraints to apply, and at
what strength levels. Individual graphic objects can also be moved by the user, which
can aid the constraint resolution process. In addition, the user can pause the process,
reposition any objects, and then resume it.

Figure 4 shows the output from executing the code in Fig. 3. In the image on the
left, the equality constraint is the only one being enforced, with the near constraint
acting like an equality constraint since no other forces are in effect. The x-y coordinates
that determine the initial, center position of the circle and point objects are, in many
cases, in close proximity, so there is a great deal of overlap.

In the image in the middle of Fig. 4, the near and non-overlap constraint sliders
have been manipulated. The near constraint, which has a higher precedence in the
constraint-solving algorithm, was adjusted slightly upward from the zero position to a

Fig. 3. Specification for a scatterplot using circle and point objects, with non-overlap, horizontal
alignment, and vertical alignment constraints applied to the positions of sets of circles, sets of
points, and sets of circles and points.

Supporting Visual Data Exploration via Interactive Constraints 139

value of 2. The non-overlap constraint was adjusted to a value of 15. The graphic
objects have moved out from their initial positions but are in the same general pattern.
There is still, however, some overlap, but it is possible to see all of the objects,
including those that were entirely hidden before.

For the image on the right in Fig. 4, the non-overlap constraint was increased to 20.
Now all of the objects are clearly visible in their entirety. This makes it easier to
double-click on any object in the layout, which will open its property window. The
properties of the object, and the values retrieved from the database that were assigned
to those properties, will be listed. The graphic properties typically include an x and y
coordinate, width, and height. For objects represented by geometric shapes, such as
ellipses and rectangles, an area property is also defined.

To return objects in a layout to their original position, the user can simple set the
near constraint slider to its maximum value and set all other sliders to zero.

Filtering and Grouping Objects
Constraints can also be applied to groups of objects. The constraints specified for a
group will override those specified for the entire frame. For example, if the near
constraint slider is set to 40 for the objects in the frame but to five for the objects in a
group, then the latter will be the strength of the constraint applied to objects in the
grouping.

There are two ways that groups can be created. One is by filtering objects in a layout
based on specified property values and then automatically adding all filtered objects to
a group. The other is by using a lasso tool to select objects to be grouped together.
Following are descriptions of each of these approaches.

Grouping Objects via Filtering. Filters can be specified for highlighting objects whose
properties are tied to one value, one or more values, or a range of values, depending on
the property type. For example, a data range can be specified for a numeric property,
while multiple options can be selected for a shape or color property. Right-clicking
anywhere on the canvas will open the Filter window, as shown in Fig. 5. After
applying a filter, the color intensity of all graphic objects that do not meet the selection
criteria will fade, leaving those that do meet the criteria easy to identify, as shown in the

Fig. 4. In the left image, only the equality constraint is being enforced. In the middle image, the
near constraint and the non-overlap constraint are enforced. In the right image, the near constraint
is lessened and the non-overlap constraint is strengthened.

140 W. Lucas and T. Gordon

left image in Fig. 6. If the user selects the Group Objects option in the Filter window,
then the filtered objects will be added to a group, as shown in the right image in Fig. 6.

When an object in a group is clicked on, the background of the grouping box
becomes light blue (see right image in Fig. 6). The constraints panel will also change to
show the set of constraints applied to the objects in the selected group. While the
constraints specified for the entire frame will still be applied to all objects, the con-
straints specified for the group will take precedence.

Fig. 5. Filter window in which Shape has been set to Point or Ellipse (dropdown menu not
shown), Color to red or blue, Width to above 10, and X to between 70 and 100, inclusive. (Color
figure online)

Fig. 6. Left image shows results of applying filter shown in Fig. 5 to rightmost layout in Fig. 4.
Right image shows same filter applied with the Group Objects option selected. (Color figure
online)

Supporting Visual Data Exploration via Interactive Constraints 141

In generating the images shown in Fig. 7, the near constraint was set to zero, the
non-overlap constraint to 27, and the horizontal alignment constraint to 50 for objects
in the group. Clicking on any object that has not been grouped clears the background of
the grouping box and switches the constraints panel to showing the values that have
been set for the frame.

Removing filtering by clicking the Clear Filter button (see Fig. 2) causes the color
intensity of non-filtered objects to return to their original values, as shown in the image
on the right in Fig. 7. Objects can be removed individually from a group, or all objects
can be removed at once, as described later in this section.

Grouping Objects with a Lasso Tool. Filtering is one way to automatically group
objects. Another option is for the user to select objects to be grouped using a “lasso”
tool. To activate this option, the user right-clicks on an unpopulated portion of the
frame. The mouse cursor then appears as a lasso. Dragging the cursor along the canvas
leaves a dotted trail showing the path that has been followed.

As the user selects graphic objects with the mouse, a color mask is applied to those
objects to show they have been selected. When the user releases the mouse after
selecting two or more objects, a pop-up window appears. The user is then given the
option of adding the selected objects to a group, in which case a grouping box appears
around them and the constraints panel is updated to show the set of sliders for that
group. If that option is not chosen, the color masking is removed from any objects that
had been selected.

To make the selection process easier, the user can pause the visualization by clicking
on the Pause button shown in Fig. 2. Once the selection has been completed, clicking
that button again will cause the visualization to resume.

In the image shown on the left in Fig. 8, the user has first moved the objects in the
group created with filtering (identified as Group 1) to the bottom of the canvas. Since
the horizontal alignment is in effect, all of the objects in that group move together when
any one of them is dragged. The user then used the lasso tool to randomly select and
group objects. This grouping is identified as Group 2.

Fig. 7. Left image shows the results of removing the near constraint and enforcing the
non-overlap and horizontal alignment constraints on the grouped objects in Fig. 6. Right image
shows the same layout after the filter has been removed.

142 W. Lucas and T. Gordon

The right image in Fig. 8 shows the outcome of setting the near constraint to zero,
the non-overlap constraint to 11, and the vertical alignment constraint to 39 for the
objects in Group 2. The user has also dragged the objects in this group to the right side
of the canvas.

To remove an object from a grouping, the user must first pause the visualization and
then right-click on the object. The grouping box will be highlighted in blue, and a
recycle bin icon will appear under the selected object, as shown in the left image in
Fig. 9. Clicking the ‘X’ on the bin will delete the object from the group. The user can
then select more objects for removal. Alternatively, the user can double-click on any
item in a group. A pop-up window will then appear, giving the user the option of
removing all objects from a group. This option was applied to the objects in Group 1,
with the results shown in the right image in Fig. 9.

Group 1

Group 2

Fig. 8. Left image shows results of dragging Group 1 below other objects in the layout and then
selecting and grouping other miscellaneous objects into Group 2. Right image shows results of
removing the near constraint and enforcing the non-overlap and vertical alignment constraints on
the objects in Group 2.

Group 2

Group 1

Group 2

Fig. 9. Left image shows objects being removed one at a time. In right image, some objects
remain in Group 2, while Group 1 has been entirely removed. (Color figure online)

Supporting Visual Data Exploration via Interactive Constraints 143

When the removal process has been completed, the resume button can then be
clicked. The layout will remain in the current configuration until the user changes any
of the constraint sliders set for the entire frame or moves any of the objects in the
layout. Any slight adjustment will reinforce the constraints applied to all ungrouped
objects. For those in any remaining groups, the constraints will be enforced so long as
no other constraints specified for the group take precedence.

To return a visualization to its initial layout, all groups must first be removed. Then
the near constraint should be set to its maximum value and all other constraints to zero.

4 Application Examples

In this section, we demonstrate by example some of the advantages of applying a
constraint-based approach to data exploration and presentation. Our focus here is on
multivariate data, in which each variable is represented by a different visual property.

4.1 Flow Map

A classic example of visualizing multivariate data is Charles Minard’s famous depic-
tion of Napoleon’s March on Moscow (parts of this example were also used in [1]). We
consider here the portion of the map that focuses on the route of troop movement on the
March to and from Moscow. In Minard’s depiction, a flow map was used to represent
both locations and the flow of objects between locations. He used approximate
geography to show troop movements, with line segments for the legs of the journey.
The width of those segments indicated the number of surviving troops and the color
indicated the direction of troop movement.

The top image in Fig. 10 shows the troop movement portion of the map generated
with the Infovis prototype. Constraint strengths are all set to zero, so labels appear at
their specified locations. Some of these labels are not readable, as they overlap with
each other and/or line segments in the map.

To address the first issue of labels overlapping with each other, a non-overlap
constraint on labels was added to the graph specification code. The strengths of the
non-overlap constraint and the near constraint were both then adjusted, so that labels
would stay close to their designated locations but would not overlap with each other.
The resulting layout is shown in the middle image of Fig. 10.

While more labels are now visible, some are still hidden by line segments. The next
step was to add an additional non-overlap constraint on labels and lines, so that objects
of one type cannot overlap with objects of the other. Since the position of the line
segments is set with equality constraints, only labels are allowed to move during the
constraint-solving process. The bottom image of Fig. 10 shows the layout when the
non-overlap constraint is enforced on labels and lines. All of the labels are now clearly
visible, though they are no longer as close to the locations they were marking. Labels
can easily be returned to their correct positions by increasing the near constraint slider
to its maximum value and decreasing the non-overlap constraint slider to zero.

144 W. Lucas and T. Gordon

4.2 Plot of Sales Data

In this next example, we consider a plot of randomly generated monthly sales data over
a six month time period. Monthly sales figures by sales territory and by sales person are
represented by circular objects. The center of each circle indicates the month
(x-coordinate) and dollar value of sales in 100k units (y-coordinate). The area of each
circle is proportional to the sales volume, while its color indicates the sales territory,
with NE for northeast, NW for northwest, C for central, SE for southeast, and SW for
southwest. Each circle is also labeled with the initials of the sales manager for that
territory during that time period. Figure 11 shows the initial plot of this data (a similar
plot using the same data appears in [1].

It is evident that some of the objects representing monthly sales data in Fig. 11 are
not visible, based on the overlapping values for certain data labels. Enforcing the
non-overlap constraint on all circular objects reveals those that were hidden, as shown
in Fig. 12. The repositioning of the affected objects, however, has made it very difficult
to determine which circles go with which month and sales values.

Before applying non-overlap constraints, it would be helpful to filter the data so that
we can explore a portion of it at a time. As a first step, the user sets a filter to select the
data from months one and two, the results of which are shown in Fig. 13. The lasso
tool is then used to create two groups of data, one for each case where there are
overlapping circles. Horizonal and non-overlap constraint strengths are then increased
for those groups. The results are shown in the image on the left of Fig. 14, while the
image on the right shows the layout after the groupings have been removed.

Fig. 10. The top image uses data from Minard’s map of Napolean’s March on Moscow to depict
troop movement. No constraints are applied. In the middle image, non-overlap constraints are
enforced on labels. In the bottom image, non-overlap constraints are enforced on labels and on
labels and lines.

Supporting Visual Data Exploration via Interactive Constraints 145

It is now possible to read the labels and discern the relative sizes of all the sales data
for months one and two (right-clicking on any of the circles reveals the actual attribute
values). A similar process can be followed for presenting and exploring all of the sales
data represented in this plot.

The layout can always be returned to its original configuration by removing any
filters and groupings and setting the near constraint slider to its maximum value.

4.3 Scatterplot of Patient Data

This last example involves a scatterplot for examining relationships between age,
gender, body mass index (BMI) and hemoglobin A1c (HbA1c), which identifies
average plasma glucose concentration. Elevated levels of HbA1c characterize diabetes.

Fig. 11. Dollar sales by month by territory, with circle area proportional to sales volume, color
indicating territory, and manager initials as labels.

Fig. 12. The layout from Fig. 11 with the non-overlap constraint enforced on circular objects.

146 W. Lucas and T. Gordon

In the scatterplot in Fig. 15, there are 70 rectangular objects. Each of these is
associated with an individual patient using randomly generated data. The center of each
rectangle indicates the patient’s age (x-coordinate) and HbA1c measure (y-coordinate),
the area represents the BMI, and the color represents gender, with red for female and
blue for male. Half of the patients are identified as male and half as female. All are
between 20 and 40 years in age.

It is difficult at this point to identify any patterns or relationships in the data. As a
first step, applying filters and automatically grouping the results can be used to stratify
the patients into different risk levels. In Fig. 16, a filter has been applied to identify

Fig. 13. The layout from Fig. 11 with a filter applied to months one and two.

Fig. 14. The left image shows two groups, one for each of the overlapping circles representing
sales in months one and two, respectively. Horizontal and non-overlap constraints have been
enforced on those groups. In the image on the right, the groupings have been removed.

Supporting Visual Data Exploration via Interactive Constraints 147

Fig. 15. Scatterplot of HbA1c versus Age, with the area of the rectangular objects proportional
to BMI and their color indicating gender. (Color figure online)

Fig. 16. After applying a filter to the plot shown in Fig. 15 that limits HbA1c to values between
5.7 and 6.4, inclusive, and automatically grouping the results. (Color figure online)

148 W. Lucas and T. Gordon

patients whose HbA1c level places them in the prediabetes category (ranging from 5.7
to 6.4), and the results have been automatically grouped.

After removing that filter, the unfiltered objects return to their original color
intensity. Additional filters and groupings can then be specified.

Figure 17 shows the plot after specifying two additional filters, one on HbA1c
values at or below 5.6 (normal) and the other on values at or above 6.5 (diabetes). All
filters have been removed in this scatterplot.

After grouping by HbA1c ranges, it is easier to see the ages associated with each
group. In addition, it appears that the areas of the rectangular objects, indicating BMI,
are typically larger as the level of HbA1c increases in this random dataset. However,
several of the rectangles are overlapping, so this cannot be determined with any cer-
tainty. It is also not possible to determine which group contains the most patients and
which the least.

In Fig. 18, the non-overlap constraint has been strongly enforced in each group In
addition, horizontal alignment constraints of a more moderate strength have been
applied to the set of all males and the set of all females in both the top and middle
groups (the middle group is shown in this figure as being currently selected). It is now
possible to see that there are more females in the diabetes group (top) and the normal
group (bottom), while more males fall into the middle category (normal). For females,
it appears that the largest rectangles, indicating higher BMI values, are in the diabetes
group.

To determine if this is indeed the case, a filter is added on BMI values in the obese
category (30 and above for this age group). Figure 19 shows obese patients for each

Fig. 17. After adding additional filters and groupings. The top group contains rectangles
associated with HbA1c levels of 6.5 and higher (diabetes), the middle group with levels between
5.7 and 6.4, inclusive (pre-diabetes), and the bottom group with levels at or below 5.6 (normal).

Supporting Visual Data Exploration via Interactive Constraints 149

Fig. 18. After strongly enforcing non-overlap constraints on all groups and moderately
enforcing horizontal alignment constraints on all blue objects and on all red objects in the top and
middle groups. (Color figure online)

Fig. 19. After applying a filter on the area of the rectangle. Visible rectangles represent patients
who fall into the obese category, defined here as a BMI of 30 and above.

150 W. Lucas and T. Gordon

strata. It is now evident that all females in the obese category are in the top
group. Males in the obese category are primarily in the top group, with two in the
middle group.

The application of non-overlap and horizontal alignment constraints has moved the
graphic objects from their actual data value positions in Figs. 18 and 19. While their
current positions are still somewhat indicative of their HbA1c and Age values, the
associations are no longer accurately portrayed. The options available to the user for
revealing the actual data values of these attributes are to right-click on an individual
object to view all data properties; apply filters to identify objects by HbA1c and/or Age
values; or restore the original placement of objects within each groups by setting the
associated near constraint to its maximum value and all other constraints to zero.

5 Conclusions

In this paper, we have presented a constraint-based approach to visualizing and
exploring multivariate datasets, with layouts not limited to node-link diagrams. In
particular, we have demonstrated the usefulness of this approach in revealing graphic
objects that are hidden by other objects and in physically separating and stratifying
objects based on the attribute values of the data they represent. These capabilities are
supported by a filtering mechanism for selecting and automatically grouping graphic
objects based on their attribute values. Different constraint strengths can then be
specified for groups of objects versus those specified for the layout overall. Filters can
also be added after groups have been formed to highlight commonalities in the data
amongst both grouped and ungrouped objects. The functionality described here sup-
ports data exploration activities while providing the user with greater control over
object positioning.

This work adds to the repertoire of approaches available to users for exploring and
presenting multivariate data. We plan on evaluating our prototype implementation
with users and will apply their feedback to further development of this interactive,
constraint-based approach to visualization.

References

1. Lucas, W., Gordon, T.: User control of force-directed layouts. In: 11th International Joint
Conference on Software Technologies, vol. 1, pp. 91–99 (2016)

2. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–
632 (1999)

3. Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web usage mining: discovery and
applications of usage patterns from web data. ACM SIGKDD Explor. Newsl. 1(2), 12–23
(2000)

4. Heer, J., Bostock, M., Ogievetsky, V.: A tour through the visualization zoo. Commun. ACM
53(6), 59–67 (2010)

Supporting Visual Data Exploration via Interactive Constraints 151

5. Pantazos, P., Lauesen, S.: Constructing visualizations with InfoVis tools – an evaluation
from a user perspective. In: International Conference on Information Visualization Theory
and Applications, pp. 731–736 (2012)

6. Shneiderman, B.: Creativity support tools: accelerating discovery and innovation. Commun.
ACM 50(12), 20–32 (2007)

7. Lucas, W., Shieber, S.M.: A simple language for novel visualizations of information. In:
Filipe, J., Shishkov, B., Helfert, M., Maciaszek, L.A. (eds.) ENASE/ICSOFT 2007. CCIS,
vol. 22, pp. 33–45. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88655-6_3

8. Lucas, W.: An interactive approach to constraint-based visualizations. In: Yamamoto, S.
(ed.) HCI 2014. LNCS, vol. 8521, pp. 54–63. Springer, Cham (2014). doi:10.1007/978-3-
319-07731-4_6

9. Ryall, K., Marks, J., Shieber, S.M.: An interactive constraint-based system for drawing
graphs. In: 10th Annual Symposium on User Interface Software and Technology, pp. 97–
104. ACM Press (1997)

10. Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P., Woodward, M., Wybrow, M.:
Exploration of networks using overview+detail with constraint-based cooperative layout.
IEEE Trans. Visual. Comput. Graph. 14(6), 1293–1300 (2008)

11. Dwyer, T., Marriott, K., Wybrow, M.: Dunnart: a constraint-based network diagram
authoring tool. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 420–
431. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00219-9_41

12. Yi, J.S., Kang, Y.A., Stasko, J.: Jacko. J.: Toward a deeper understanding of the role of
interaction in information visualization. IEEE Trans. Visual. Comput. Graph. 13(6), 1224–
1231 (2007)

13. Shneiderman, B.: Dynamic queries for visual information seeking. IEEE Softw. 11, 70–77
(1994)

14. Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Commun. ACM 55(4),
45–54 (2012)

15. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: IEEE Symposium on Visual Languages, pp. 336. IEEE Computer Society
(1996)

16. Ahlberg, C.: Spotfire: an information exploration environment. SIGMOD Rec. 25(4), 25–29
(1996)

17. Yi, J.S., Melton, R., Stasko, J.T., Jacko, J.A.: Dust & magnet: multivariate information
visualization using a magnet metaphor. Inf. Visual. 4, 239–256 (2005)

18. Anscombe, F.J.: Graphs in statistical analysis. Am. Stat. 27(1), 17–21 (1973)

152 W. Lucas and T. Gordon

http://dx.doi.org/10.1007/978-3-540-88655-6_3
http://dx.doi.org/10.1007/978-3-319-07731-4_6
http://dx.doi.org/10.1007/978-3-319-07731-4_6
http://dx.doi.org/10.1007/978-3-642-00219-9_41

I-Codesign: A Codesign Methodology
for Reconfigurable Embedded Systems

Ines Ghribi1,2(B), Riadh Ben Abdallah1, Mohamed Khalgui1,3,
and Marco Platzner4

1 LISI Lab, University of Carthage, Carthage, Tunisia
ines.ghrr@gmail.com, riadh.benabdallah@gmail.com,

khalgui.mohamed@gmail.com
2 Faculty of Science of Tunis, University of Tunis el Manar, Tunis, Tunisia

3 Systems Control Lab, Xidian University, Xi’an, China
4 University of Paderborn, Paderborn, Germany

platzner@upb.de

Abstract. Hardware/software codesign involves various design prob-
lems including system specification, design space exploration and
hardware/software partitioning. An effective codesign process requires
accurately predicting the performance, cost and power consequence of
any design trade-off in algorithms or hardware characterization. In order
to satisfy these design constraints we developed a new codesign method-
ology: I-codesign. It starts with describing the system specification with
probabilistic estimations of the execution scenarios along with real-time
and inclusion/exclusion parameters. Then, a three phase partitioning
approach is applied to the specification where each phase deals with a
specific set of constraints. An embedded controller code is generated at
the end of the methodology that acts at run-time on the reconfiguration
requests.

Keywords: Codesign · Real-time · Reconfiguration · Partitioning ·
Probabilistic software

1 Introduction

Hardware/software co-design has been a recognized research field for about a
decade. Within that time, it has moved from an emerging discipline to a main-
stream technology. Researchers developed some basic approaches to the design
of embedded software running on CPUs, and their work formed the roots of
a hardware/software codesign methodology. In fact, the complexity of design-
ing embedded systems is constantly increasing which motivates the need for
using more efficient tools and design methodologies. Designing at a higher level
of abstraction reduces the number of components with which the designer has
to deal, and thus increasing design productivity. This paradigm shift in design
requires methodologies and automated tools to support design at higher lev-
els abstractions [1]. Hardware/software co-design is the technique of designing
c© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 153–174, 2017.
DOI: 10.1007/978-3-319-62569-0 8

154 I. Ghribi et al.

concurrent hardware and software components of an embedded system [2,3].
Generally, hardware/software co-design starts with specification then modeling
the system behavior at the system level [4]. The hardware/software partitioning
step follows. This step is a combinational optimization problem that assigns the
system functions to the target architecture on the software and hardware domain
under the condition of meeting the design constraints [5]. This is a key task in the
system level design, because the decisions made during this step directly impact
the performance and cost of the final implementation. One of the main perfor-
mance issues in embedded systems design is to guarantee the results within a
given time [6,7]. Such systems, which have to fulfill posed constraints, are called
real-time systems [8,9]. In these systems, time at which results of a computa-
tion are available is crucial. Another challenge in designing embedded systems
is dealing with reconfigurablility, since they have the capability to modify their
functionalities, to add or to remove components and to modify interconnections
among them. The basic idea behind these systems is to have a system that
autonomously modifies its functionalities according to the changing application
inputs [10].

In [11], we present a new technique for modeling and partitioning of reconfig-
urable embedded systems. The software model is composed of probabilistic tasks
where each task executes a set of elementary functions. A directed acyclic graph
(DAG) models each task where the vertices are functions connected with edges.
The edges are valued with both probability values and communication costs.
The probability on the edges gives an estimation of the execution progress of
the tasks. Hence, the most probabilistic execution scenarios are placed together
on the same processing unit (PE) during the partitioning. Hence, the traffic cir-
culation on the interconnection network is minimized. The functions could be
related with inclusion/exclusion constraints. A three phases partitioning app-
roach for the proposed probabilistic software model is also proposed. A func-
tional partitioning step deals with hard constraints and aims to optimize the
number of processors by evaluating inclusion/exclusion constraints. The second
step generates initial partitions or clusters by evaluating the most probabilistic
executions of the software model. Finally, generated partitions are optimized
with iterative techniques by evaluating the combination of their communication
costs and their probability values. A reduction of the communication costs and
the traffic circulation on the network was proved.

In the present work, we introduce a new co-design methodology using the
described modeling and partitioning techniques called “I-Codesign”. It is divided
into four major tasks: (1) writing the system specification according to the new
probabilistic specification model; (2) partitioning the task functions into clusters
under several execution constraints; (3) Checking real-time, memory and energy
constraints at each partitioning phase; (4) Generation of a controller matrix
that supervises, synchronizes and handles the reconfiguration of the software
and hardware components at run-time. A reconfiguration is assumed to be any
addition/removal of a task set, or the modification of the execution path at
the task level. We developed a framework tool to walk through our methodology

I-Codesign: A Codesign Methodology for Reconfigurable Embedded Systems 155

steps. The input of the tool is a software specification according to I-codesign plus
a hardware description of a set of processors equipped with a quantified amount
of memory and battery energy. While applying the partitioning approach, the
memory and energy constraints are verified firstly at each iteration followed by
the real-time constraints according to the earliest deadline first algorithm. The
output of this tool is a generated matrix used by the controller in order to
associate each task to a PE according to I-codesign for each implementation.
A new design strategy is defined where each implementation scenario is treated
separately and placed into the controller matrix.

The current paper is organized as follows: the next Section describes useful
background. Section 3 presents the system model and the used notations in this
paper. In Sect. 4 a new co-design methodology is introduced. Section 5 exposes
a case study to evaluate our methodology. Simulations and results are given in
Sect. 6 and finally we conclude in Sect. 7.

2 State of the Art

Software design and hardware design are required to be integrated closely and
coordinated with each other. This leads to the development of a new design
theory: hardware and software co-design. After a decade of research, hard-
ware/software codesign has a rich literature that is impossible to survey exhaus-
tively in one article. Thus, this short recap merely introduces some of the
decade’s major research themes [12].

One of the earliest codesign efforts was the SOS system from Prakash and
Parker of the University of Southern California, which could synthesize an arbi-
trary multiprocessor topology and schedule and allocate processes onto the mul-
tiprocessor. The system formulated the synthesis problem as a mixed integer-
linear program, so it was slow and could not handle large problems, but it was
important foundational work.

About a year later, the CODES workshop in Colorado and the CASHE work-
shop in Austria introduced several pieces of significant research that had evolved
in parallel. From these, hardware/software partitioning emerged as an important
first step in creating models and algorithms. Two early systems, Vulcan from
Stanford and Cosyma from the Technical University of Braunschweig, took com-
plementary approaches to this basic problem [13]. Its partition method is mainly
for software to optimize the calculation through co-processors. The input to
both Vulcan and Cosyma was a C like program. Based on an analysis of the
performance and cost of various implementations of the program, some of the
program’s functions were put in the ASIC while other parts were implemented
in software running on the CPU [14–16].

Traditionally, HW/SW partitioning is carried out manually based on system
designer’s experience. Many approaches have been proposed recently to fulfill
and optimize multiple objectives and costs. Although there exist a wide variety
of problem formulation and cost definition, these are highly dependent on tar-
geted system architectures. The most common problem described in literature

156 I. Ghribi et al.

is the optimization of execution time, hardware area and communication cost,
targeted for simple single-software single-hardware system. The most common
problem described in literature is the optimization of execution time, hardware
area and communication cost, targeted for simple single-software single-hardware
system. Other works have also incorporated different cost metrics and objec-
tives in HW/SW partitioning, including power consumption, and software mem-
ory usage. Many researchers have applied general-purpose heuristics to hard-
ware/software partitioning. In particular, genetic algorithms have been exten-
sively used as well as simulated annealing [17,18]. Other less popular heuristics
in this group are tabu search and greedy algorithms [19]. These methods tend to
be used with data oriented applications. In more recent work, Banerjee et al. in
[20] have presented a placement-aware method for simultaneous partitioning and
scheduling of task graph. They also have considered some characteristics such
as configuration prefetching and placement constraints. In the current paper, we
used a combination of well-known heuristics that are usually applied to parti-
tioning problems. First, the hierarchical clustering, a constructive heuristic that
builds a partitioning in bottom-up fashion by grouping nodes using closeness-
functions to estimate the costs, is used. Also, Kernighan-lin heuristic, an iterative
heuristic that was substantially improved by Fiduccia and Mattheyses and later
by many others, is applied [21]. It starts from an arbitrary partition and swaps
pairs of nodes in order to improve the cost of the partition. Gain calculation of
moving a node x from a cluster to another using a metric is calculated according
to the following formula: Gx = Ex −Ix where: Ex is the cost of edges connecting
a node x with other clusters and Ix is the cost of edges connecting a node x
within its own cluster. In the current work the cost of the edges is Probability
× communication cost. The advantage of this heuristics is its rapidity and its
capability of processing large amount of data.

Contribution
In the present work, we introduce a new co-design methodology based on con-
structive and iterative partitioning phases. The originality of this work compared
with the previously proposed approaches in the literature resides in multiple
aspects including:

• A probabilistic estimation of the software models aiming to predict the exe-
cution flow which leads to an improvement in the codesign results and a
noticeable enhancement in the performance of the system,

• An original codesign methodology based on multiple constraints and feasibil-
ity analysis that show good performance enhancements especially in terms of
execution time and communication cost,

• A novel reconfiguration approach at two levels: (i) the modeling level which
considers multiple execution scenarios (configurations) and estimates the
probability of each configuration, (ii) the partitioning level that considers the
possible automatic reconfigurations by generating a controller matrix which
is responsible of executing the proper modifications at run-time.

I-Codesign: A Codesign Methodology for Reconfigurable Embedded Systems 157

3 Formalization

We present in this section the formal definitions and notations of the system.

3.1 System Model

The system model is based on processing units PEs linked by interconnects.
We assume that all the processors are identical in term of processing power,
memory size and energy consumption relationship aspects. Each processor PEi

is characterized by its operating voltage/frequency ranges, its battery load and
its internal memory.

Definition 1 (processing unit PE)
A processing unit PE is formalized by quintuplet (PID, f, V, Weightmax,
BL) where: (i) PID: Processor identifier (ii) f: The range of frequency points,
(iii) V: The range of voltage points, (iv) Weightmax: The maximum load in term
of memory space that P could support, (v) BL: The available battery charge.

The energy consumption of the PE if executed at frequency f is calculated
as: EPE = Pf . PEtime where:

– Pf : is the power consumption at frequency f.

Definition 2 (interconnect)
An interconnect L is a communication link between two PEs. It is character-
ized with the pair (LID, Th) where: (i) LID: The link identifier, (ii) Th: The
bandwidth of L.

The hardware architectures are mainly homogeneous cores and some ASIC
or FPGA built on an Mp Soc. It consists in a master processor and a several
slave processors. Each tile in the architecture has a CPU, a local memory used for
communications on the same processor and a communication interface. The tiles
communicate with the shared memory via a multiple buses. The software tasks
are affected to CPU while hardware tasks are placed either on the FPGA or the
ASIC. The FPGA is placed on the master processor along with an Input/output
interface for communications with the physical world. The controller code and
its mapping table are stored on the master tile also for communication and
reconfiguration reasons. Fig. 1 presents an example of the adapted hardware
model.

In [11], we define a function F as the basic entity in the software model to
execute elementary operations.

Definition 3 (Function)
A function F is a quadruplet (ci, pi, di, Si) where: (i) ci: The worst case execution
time of F, (ii) pi: The period of F, (iii) di: The relative deadline of F, (iv) Si:
Describes the memory size occupied by F.

158 I. Ghribi et al.

Tile

Tile

Tile

Tile

CPU RHw

I/O Mem Com

Shared
Memory

Bus1

Bus2

Fig. 1. Hardware model.

Each function F in the specification can be related to its predecessor Fp with
an inclusion or exclusion constraint. The exclusion means that F has not to be
executed on the same processor with Fp while the inclusion means that F and
Fp have to be placed on the same PE. This constraint is modeled in the task
representation by marking the mathematical symbol ⊂ on F in case of inclusion
and �⊂ in case of exclusion. We formalize the exclusion/inclusion constraints as
follows.

– Exclu(F) groups the set of functions that have not to be executed on the
same processor and at the same time with the function F. This constraint is
modeled in the task representation by marking the mathematical symbol ‘⊂’
on the function F,

– Inclu(F) groups the set of functions that have to be executed on the same
processor and at the same time with F. This constraint is modeled by marking
the mathematical symbol ‘ �⊂’ on F.

The processor and links affectation with functions are expressed as follows.

– Assign-P(Pi) groups the set of functions affected to the processor Pi,
– Assign-L(L) groups the set of communications affected to the link L.

A configuration is a path of k function that executes successively. These functions
are related with precedence constraints. The configuration is defined as follows.

Definition 4 (Configuration)
A Configuration Conf is a set of functions. It is formalized by the triplet (CID,
Cci, Dci) where: (i) CID: The configuration identifier, (ii) Cci: The worst case
execution time of Conf, Cci =

∑k
1 ci where k is the number of functions on the

path, (iii) Dci: The relative deadline of Conf, which is the deadline of the leaf
node function.

A task Ti ∈, i ∈ [1..m] is represented by a directed acyclic graph Ti = (Vi, Ei),
where (i) Vi is a set of nodes that correspond to behaviors or functions, and (ii)
Ei is a set of arcs which describe connection between functions/behaviors. A
task is defined as follows.

I-Codesign: A Codesign Methodology for Reconfigurable Embedded Systems 159

F31

F32 F33

F35 F36

0.3/8
0.2/4

0.1/10

0.1/4
F37

0.4/6

0.9/7

0.7/9
0.3/7

0.9/2

F34

F38

0.5/12

0.6/6

F39

1/11 0.7/9

Fig. 2. Software task with a specified configuration path.

Definition 5 (Task)
A task Ti is a set of configurations. It is a doublet (TID, DAG) where: (i) TID:
the task identifier, (ii) DAG: is the Directed Acyclic Graph that models the task.

All tasks are assumed to be independent. Figure 2 shows an example of a task
T with inclusion/exclusion, probability and communication costs parameters
[22]. It represents an example of a configuration and its path in the DAG of T.
The software specification describes different implementation scenarios. At each
iteration an implementation is designed to run on PEs. Each implementation
includes a certain number of software tasks and it is defined as follows.

Definition 6 (Implementation)
An Implementation I is a set of tasks. It is formalized by the simplet IID where:
(i) IID: is the identifier of the Implementation.

Hence, we can define the system to be a set of implementations, PEs and
interconnects as follows.

Definition 7 (System)
A System Sys = {Implementation, PE, Interconnect}.

A reconfiguration scenario can be related to the current implementation of
the system or to a configuration path in one of the implementation tasks. Hence,
during execution another implementation could be loaded or another configura-
tion path could be initiated. We define a reconfiguration scenario R as follows.

Definition 8 (reconfiguration R)
A reconfiguration R is a triplet (RID, event, target) where: (i) RID:
The identifier of the reconfiguration R, (ii) event: The event that induces R,
(iii) target: Specifies which implementation/configuration is concerned with the
reconfiguration.

160 I. Ghribi et al.

3.2 Problem Statement

We consider the partitioning of a task set composed of n tasks {T1, . . . , Tn} on
a set of m PEs {PE1, . . . , PEm}. The aim of our methodology is the following:

(1) Respect the inclusion/exclusion constraints
– ∀ Fk, Fh ∈ Assign-P(Pi), Fk �∈ Exclu (Fh).
– ∀ Fk, Fh/Fk ∈ Inclu(Fh) then Fk and Fh ∈ Assign-P(Pi).

(2) Respect the energy and the memory constraints
– ∀ Fi ∈ Assign-P(PEi),

∑
Fi∈Assign−P (PEi)

Si≤ Weightmax.
– ∀ Fi ∈ Assign-P(PEi), EPEi

≤ BL.
(3) Respect real-time constraints:

– The utilization of a function Fi is ui = ci/pi. U i
tot is the total utilization

of the k function on a processor PEi, that is, U i
tot =

∑k
1 ci/pi ≤ 1.

– The communication delays resulting of a function Fk on PEi communi-
cating with a function Fh placed on PEj must not result in functions
missing their deadlines.

(4) Evaluate the impact of the design constraints on the communication costs,
the energy consumption and the number of preemption.

4 I-Codesign Methodology

The main purpose of I-codesign is to achieve a concurrent design between the
probabilistic task model and the hardware architecture previously described in
a manner that fulfills all the system requirements and respects the design con-
straints. I-codesign deals with a set of models and transformations. All the mod-
els are written in a system-level design language. Figure 3 shows the flow diagram
of I-Codesign methodology extracted from an early work where I-codesign was
first introduced [22]. In the proposed co-design methodology, the design flows
begins with specification of the system behavior with formal models. The soft-
ware part is composed of several implementation scenarios where each imple-
mentation scenarios executes a set of tasks. At each iteration an implementation
scenario is specified for executing its tasks. Each task is modeled with a directed
acyclic graph represented by a graph G = (V, E, W), V is a set of nodes where
each node implements an elementary software function, E is a set of edges con-
necting the nodes and W records a set of weight for each node in V and edge in
E. The weight of each edge in W represents data transfer between the nodes and
it is weighted with two parameters: the communication costs of data transfer
and a probabilistic estimation of the execution progress of the tasks. The next
step is to map the system behavior to the hardware architecture. In this step,
we perform HW/W partitioning and component selection at the same time. We
developed a new partitioning method in (Ghribi et al. 2016). It starts with a
functional partitioning step that evaluates the inclusion/exclusion constraints
between task functions and creates clusters depending on this constraint. Cou-
ples that are concerned with inclusion or exclusion constraints are placed in

I-Codesign: A Codesign Methodology for Reconfigurable Embedded Systems 161

Task

Functional Partitoning

hierarichal Partitoning

Kenrighan-Lin Optimization

End

Add a column in the controller Matrix

Unsatisfied Constraint

CreateCluster()

SwitchCluster()

Unsatisfied Constraint

CreateCluster()

SwitchCluster()
Unsatisfied Constraint

OK

OK

OK

Cancel()

Implementation

Add a line in the controller Matrix

more tasks

more
Implementation

OK

OK

Start

Fig. 3. I-Codesign flow diagram.

either the same or different processors. Each function F in the specification can
be related to its predecessor Fp with an inclusion or exclusion constraint. The
exclusion means that F has not to be executed on the same processor with Fp

while the inclusion means that F and Fp have to be placed on the same PE.
The hierarchical partitioning step follows. The remaining functions are evalu-
ated by their connecting edge’s probabilities and high probability values are
treated first. This step aims to gather the most probabilistic executions on the
same processor. Hence, the communications costs can be reduced. Finally, an
optimization is performed using kernighan-Lin algorithm that evaluates both
probability and communication cost on the edges connecting functions by gain

162 I. Ghribi et al.

calculation. At each of the partitioning phases, design constraints are verified.
First, available energy and memory space are verified. Second, real-time con-
straints are evaluated using a scheduling algorithm feasibility test. A controller
module is developed to supervise and reconfigure the system behavior. It con-
structs a mapping matrix for task assignments at the design phase. The matrix
associates for each implementation the mapping of the corresponding tasks to
the hardware architecture. Hence, when the system is executing the controller
detects internal or external reconfiguration signals, refers to its matrix and per-
form a task migration mechanism.

4.1 HW/SW Partitioning

We define the partitioning problem in a manner that satisfies software constraints
(spatial and temporal constraints). At each phase of the partitioning, we apply
the appropriate rules first. Second, we verify the memory and energy constraints
jointly. When validated, the feasibility analysis is applied. The partitioning phase
is responsible of creating a controller matrix that indicates the proper mapping
of the tasks for each software implementation. Since each implementation is
composed of several tasks, at each iteration of the task partitioning module
an entry is created indicating the next task to be executed, its corresponding
implementation and the target CPU. The matrix is consulted at run-time at
each reconfiguration request triggered by an internal/external signal/interrupt.
Figure 4 depicts the partitioning module.

F1 F2

F3

Behavior specification

CPU FPGA

Architecture Templates

Hw/Sw Partitioner

Mutliprocessor Scheduler PE Allocation Controller

Performance
 Evaluation

Result

Fail

Feasibility Results

Success

Partition

Decision

Partition

Fig. 4. Partitioning module diagram.

I-Codesign: A Codesign Methodology for Reconfigurable Embedded Systems 163

Real-Time Functional Partitioning. Evaluates the inclusion/exclusion con-
straints between task functions and creates clusters depending on this constraint.
Couples that are concerned with inclusion or exclusion constraints are placed in
either the same or different clusters. Once all the inclusions and exclusions are
evaluated, a feasibility analysis is performed. If all clustered functions sets on
the created clusters are schedulable on one of the available processors then the
schedulability test is validated. Otherwise, the functional partitioning is applied
again to create new clusters with schedulable function sets. Since any inclu-
sion/exclusion constraint is hard, the clustered tasks are locked and cannot be
moved any more. The pseudo-code below describes this partitioning phase.

program Functional Partitioning (Functional Graph)

For each function F in T
Extract Inclusion/Exclusion(F)
If (inclusion){
Cluster(F,F’,C1)
}
else if (exclusion){
Cluster(F,C1);
Cluster (F’,C2);
}
End If
Lock(F);
Lock(F’);
End For;
GenerateFunctionalGraph();
end.

Real-Time Hierarchical Partitioning. Clusters the remaining functions that
have no inclusion/exclusion constraints. The functions are evaluated by their
connecting edge’s probabilities and high probability values are treated first. The
available memory space is evaluated at each iteration. Once all the remaining
functions are placed into clusters a feasibility analysis is performed. If all the
functions sets on the created clusters are schedulable on one of the available
processors then the schedulability test is validated. Otherwise, the hierarchical
clustering is applied again to generate clusters with schedulable function sets.
The pseudo-code below describes this partitioning phase.

program Hierarchical-partitioning ()

For each Function F not clustered
{
ExtractHighestEdgeProbability(F);
Cluster(F,F’,C);
End For;
GenerateInitialClusters();
end.

164 I. Ghribi et al.

Real-Time Kernighan-Lin. Optimizes the generated clusters. This phase
evaluates both probability and communication cost on the edges connecting
functions by gain calculation. If the gain is positive, then the function is moved
to another cluster if its energy consumption on the other cluster is less or equal
to its energy consumption on the original cluster. Otherwise it is left on the
original cluster. The pseudo code of the kernighan-lin optimization is described
below.

program Kernighan-Lin()

For each Function F unlocked
{
G := GainCalculation(C1,C2);
If (G < 0)
Move(F,C2);
end if;
GenerateOptimizedClusters();
end.

Feasibility Analysis. The feasibility test at each partitioning phase verifies fea-
sibility on the processors and on communication links: (i) it verifies first whether
the created clusters are schedulable. Since we are using EDF algorithm the fea-
sibility test verifies on each PE ∈ {PE1, . . . , PEm} the following inequation:
U =

∑Ni

1 ci/pi ≤ 1 where ci is the execution time, pi is the period and N is
the number of functions placed on PEi. (ii) The second test on the communi-
cation links verifies whether or not the communications delays between related
functions affected to different PEs results in functions missing their deadlines.

4.2 Multiprocessor Scheduling with Precedence Constraint

The software specification is a set of independent tasks modeled with a directed
acyclic graph where edges are functions and vertices are data dependencies.
Hence, a function is ready to execute when all its predecessors are complete. We
consider the scheduling of a set of functions with simultaneous release times, con-
strained deadlines and simple precedence. The policy proposed below is derived
from [23]. A set of simple precedence is formalized by a relation →. Fi → Fj

states that Fi must execute before Fj . For a precise explanation of the precedence
problem the following assumptions are considered:

– Pred(Fi) = {Fj | (Fj → Fi)}
– succ(Fi) = {Fj | (Fi, Fj) ∈→}

The precedence constraint of the set of functions can be encoded as follows
where d∗

i is the adjusted deadline of a function Fi:

d∗
i = min(di,minFj∈succ(Fi)(d

∗
j − cj)) (1)

I-Codesign: A Codesign Methodology for Reconfigurable Embedded Systems 165

Theorem 1 (). let ℘ = {Fi} a set of independent functions and → ⊆ ℘ × ℘.
Let ℘∗ = {F ∗

i } be a set of independent functions such that d∗
i is given by the

formula (1). We have ℘ feasible if only ℘∗ is feasible.

The scheduling algorithm uses the adjusted parameters to perform the assign-
ment of system applications to the software or hardware domain. Hence, the
scheduling policy resides in adjusting the function deadlines according to the
Eq. (1).

4.3 Controller Generation

A reconfiguration can be specified for a software implementation/configuration.
We propose a controller that involves: (i) observation mechanisms of the system
characteristics (energy, quality of service . . .) (ii) reconfiguration mechanisms
that acts on software tasks. The controller acts following internal or external
events that induces configurations. A reconfiguration can add/remove imple-
mentation or change the configuration path of a task that belongs to the current
implementation. Figure 5 extracted from [22] shows the class diagram of the
controller. The controller class supervises the system environment. It receives
internal or external events like user requests or peripheral entries and initiates
necessary reconfiguration. The software specification is divided into configura-
tions/implementation. Each configuration has a set of tasks to be executed when
initiated. Initially, a boot configuration is loaded. However, a reconfiguration can
occur at run-time which requires to reconfigure (replace, re-parameter, change
the functionality, etc.) of the system tasks. Therefore, a pre-calculated mapping
of all the possible configuration scenarios is necessary and will lead to better
performance. Thus, we propose to build a controller module that manages the
reconfiguration. It acts following internal or external events that induces recon-
figurations. When executing the I-codesign process, a matrix is constructed based
on the output of each partitioned configuration (task set). In fact, the task map-
ping to the execution platform is stored in the controller matrix along with its
corresponding execution scenario. Figure 6 shows an example of the structure of
the controller matrix.

Fig. 5. Class diagram of the controller.

166 I. Ghribi et al.

Implementation1

T1 T2

F11 F13 F14F12 F21 F22 F23 F24

PEv

PEz

PEx

PEx

PEy

PEx

PEz

PEzPEx

PEx

PEy PEy PEv

PEy

PEv

PEc

PEy

PEv

PEz

PEzPEc

PEx

PEy PEz

Implementation3

Implementation2

F25

Fig. 6. An example of the controller matrix.

5 Case Study

We propose in this section to apply the I-codesign methodology to a software
specification composed of three implementations: S1 = {T1, T3}, S2 = {T1, T3,
T4}, S3 = {T2, T3, T4}.

Motivational Example: We propose to apply the I-codesign techniques to S1.
It is composed of two independent tasks T1 = {F11, F12, F13, F14, F15, F16} and
T3 = {F31, F32, F33, F34, F35, F36, F37, F38}. T1 and T3 are represented respec-
tively in Figs. 7 and 8 [22].

F11

F12 F13

F14 F15

0.2/8 0.8/6

0.3/10

1/12
F16

0.3/10

1/8

0.2/90.5/50.7/5

Task T1

Fig. 7. Task T1.

F31

F32 F33

F35 F36

0.3/8
0.2/4

0.1/10

0.1/4
F37

0.4/6

0.9/7

0.7/9
0.3/7

0.9/2

Task T3

F34

F38

0.5/12

0.6/6

Fig. 8. Task T3.

The scheduling properties of the tasks T1 and T3 are listed respectively in
Tables 1 and 2.

This software model will be affected to a hardware architecture composed of
three homogeneous processors PE1, PE2 and PE3. The hardware units have the
characteristics shown in Table 3. Each PE is running with its highest frequency
f, voltage V and its memory size Si. We present in this section the results of
I-codesign on S1. The scheduling algorithm is EDF (Earliest Deadline First).

I-Codesign: A Codesign Methodology for Reconfigurable Embedded Systems 167

Table 1. Scheduling parameters of T1.

Function Execution time Deadline Period Si

F11 5 120 150 5

F12 3 120 200 7

F13 2 90 210 2

F14 6 110 180 6

F15 2 120 190 3

F16 2 200 250 5

Table 2. Scheduling parameters of T3.

Function Execution time Deadline Period Si

F31 3 60 150 4

F32 3 80 200 2

F33 5 90 210 5

F34 5 110 180 6

F35 5 120 190 3

F36 4 160 210 1

F37 1 180 220 5

F38 4 190 260 4

Table 3. Processor characteristics.

PE f (MHz) V (V) Weightmax (byte) Battery (watt)

PE1 250/150 1.2/0.95 40 10

PE2 300/200 1.3/1.08 40 10

PE3 400/120 1.7/0.85 40 10

5.1 Functional Partitioning

The first step is to evaluate the inclusion/exclusion constraints and generate ini-
tial clusters with locked functions. These clusters will hold the functions which
respect the inclusion/exclusion constraints. The functional partitioning creates
two clusters. On the first cluster C1, F11 and F12 of T1 are affected with F36

and F37 of T3. F14, F31, F33 and F34 are affected to the second cluster C2. The
functional graph is constructed for each task. Figure 9 represents the functional
graphs of T1 and T3 respectively [22]. We affect C1 to PE1’s parameters value
and C2 to PE2’s parameters value. Then, we verify the energy and memory
constrains first then we check the real-time constraints. The consumed energy
on PE1 is E = 1.44 ≤ 10 and the consumed memory space is Mem = 27 ≤ 40 on
PE1. On PE2, E = 4≤ 10 and Mem = 12 ≤ 40. The feasibility analysis is verified

168 I. Ghribi et al.

easily using the CHEDDAR tool [24] for instance. In order to verify that the
communication delays do not result in functions missing their deadlines we cre-
ate message dependencies between functions and we affect each message with
the communication cost between the corresponding functions using CHEDDAR
tool. The Utilization Factor is U= 0.12 on PE1 and U = 0.2 on PE2. Hence, the
feasibility test is valid.

F11

Functional Graph Of T1

F31

F33

F34

F36

F37

F32

F35

F38

0.2/4 0.5/12

0.3/8 0.9/2

0.1/10
0.2/3

0.1/4

0.4/6

Functional Graph of T3

Locked Function

F14

F12

0.2/8

F13

F15

0.8/6 0.7/5

0.7/5 1/8

T2
0.2/9

0.3/10

1/12

Fig. 9. Functional graph respectively of T1 and T3.

5.2 Hierarchical Partitioning

The hierarchical clustering aims to generate initial clusters by evaluating the
probability as a metric. We dispose of a functional graph generated by the func-
tional partitioning phase. We extract the highest edge’s probability for each non
clustered function Fj and cluster it with its related clustered functions. Hence,
the link Lij between Fi and Fj communicates only the less probabilistic traffic.
The generated clusters are shown in Fig. 10 [22].

F11

F12

F13

F14

F15 F16

F31

F33F34

F35

F36

F37
F38

0.2/8
0.8/6

0.2/4 0.5/12

0.4/6

C1

1/8

1/12

0.2/3
0.1/4

C2 F32

0.9/2

0.1/10

Fig. 10. Resulted clusters respectively of T1 and T3.

Then, energy and memory constraints are checked. The used memory size
Mem = 35 ≤ 40 and E = 3.2≤ 10 on PE1. On PE2, Mem = 23 and E = 8.4≤ 10.
The real-time constraints are verified. The Utilization Factor is U = 0.18 on PE1
and U = 0.29 on PE2. Hence, the feasibility test is valid.

I-Codesign: A Codesign Methodology for Reconfigurable Embedded Systems 169

F11

F12

F13

F14

F15 F16

F31

F33F34

F35

F36

F37

F38

0.2/8
0.8/6

0.2/4 0.5/12

0.4/6

C1

1/8

1/12

0.2/3
0.1/4

C2

F32

0.3/8

Fig. 11. Resulted clusters respectively of T1 and T3.

5.3 Kernighan-Lin Optimization

Kernighan-Lin optimizes the partitions based on some metrics. In our partition-
ing process we use the combination of two metrics: the probability on the con-
necting edges and the communication cost. The resulted clusters after applying
the Kernighan-Lin optimization are represented in Fig. 11 [22]. After applying
the Kernighan-Lin algorithm, we notice that F32 has been moved from the clus-
ter C2 to C1. The available memory on PE1 is 5 and the memory space of F32

is 2, the new energy consumption on PE1 is E = 4.1. The utilization is measured
with cheddar tool minding the communication delays on the links: U = 0.22. All
the I-codesign constraints are valid. Figure 8 shows the final clusters C1 and C2
where C1 will be placed on PE1 and C2 on PE2 [22].

5.4 Scheduling Simulation Results

The scheduler receives the partitioning results as well as the real-time charac-
teristics of each function. Its job is to determine which function executes on a
processor at a given time. We start with adjusting the deadlines of the set of
functions composing T1 and T3. Tables 4 and 5 present the adjusted values after
applying the precedence constraint formula (1).

5.5 Controller Generation

The application controller use a matrix where each line contains the functions
of tasks and the columns are the different system implementations. In this case,

Table 4. Adjusted scheduling parameters of T1.

Function Execution time Deadline di Period d∗
i

F11 5 120 150 88

F12 3 120 200 104

F13 2 90 210 90

F14 6 110 180 110

F15 2 120 190 120

F16 2 190 250 190

170 I. Ghribi et al.

Table 5. Adjusted scheduling parameters of T3.

Function Execution time Deadline di Period d∗
i

F31 3 60 150 60

F32 3 80 200 80

F33 5 90 210 90

F34 5 110 180 110

F35 5 120 190 120

F36 4 160 210 115

F37 1 180 220 180

F38 4 190 260 190

Implementation S1

T1

F11 F13 F14F12

PE1 PE2

Implementation S3

Implementation S2

F15 F16

PE2 PE2 PE1 PE1 PE2 PE2

PE1 PE2 PE2 PE2

PE1 PE1 PE1PE2 PE2 PE2

Fig. 12. Generated controller matrix.

Table 6. Comparison of the scheduling parameters with and without probabilistic
estimations.

Parameter Method

Using probability and CC Using CC

Utilization factor U 0.22 0.3

Number of preemption 0 1

we have three implementations S1, S2 and S3. Figure 12 shows the affectation of
the task T1 in the controller matrix for each implementation scenario [22].

5.6 Evaluation

In this section, we evaluate the impact of the probabilistic aspect of the software
tasks on the schedulability factors. We eliminate the probability on the edges and
apply the partitioning based only on the communication costs. We schedule then
the generated clusters. The tests are performed using CHEDDAR environment.
Table 6 presents a comparison of some schedulability parameters between the
partitioning results using the probability and the communication costs (CC) in

I-Codesign: A Codesign Methodology for Reconfigurable Embedded Systems 171

one hand and the communication costs only on the other hand. It is clear that
the probability enhances the schedulability quality along with the optimization
of the traffic circulation.

6 Simulations

We have developed a tool environment to evaluate the potential communication
costs, energy savings and execution costs for our methodology. The following
subsections describe our tool and the assumptions made in its design. We show
later some simulations results.

6.1 Simulation Methodology

We develop a co-design execution environment. It provides a toolbox in order to
create a hw/sw system description according to the proposed design models and
implements the co-design algorithms. It proposes a flexible task set generator for
different scenarios and purposes. The tool places the software specification fol-
lowing several design constraints as inclusion/exclusion parameters, probabilistic
execution of the software tasks, available memory and energy on the hardware
units and real-time parameters. At each iteration, it constructs the controller
table that stores all the possible execution scenarios. For simulation purposes
the tool loads a specification file, reads the software and hardware characteris-
tics, applies the co-design algorithms and generates the controller table along
with memory and energy estimation.

6.2 Simulation Results

For performance simulation, we use ARTS framework which is a simulation tool
for user-driven abstract MPSoC design explorations [25]. The framework features
flexible configuration with respect to selection of task partitioning/mapping,
ROTS protocols, communication topology. . . . The application model is based
on static task graphs, where the exact functionality of a task is abstracted away
and expressed using a set of timing constrains (execution time, deadline and
offset). The PE models the behavior of an PI core, for example a CPU. It is
characterized by supporting change of RTOS policies as well as task mapping
during run-time. Based on which events are enabled for recording multiple files
are generated that provide an overview of the architecture-under-test, and the
profile of the application, the PE utilization, the memory or the communication.
Hence, The framework allows to: (i) model processing elements (PE), memory
units and interconnect, (ii) investigate PE utilization, memory usage, commu-
nication issues, and energy/power consumption, and (iii) analyze the causality
between MPSoC components i.e. resource constrains and inter-dependencies. We
have performed several simulations of the I-codesign methodology to determine
the system parameters that affect the communication costs, the energy consump-
tion and the number of preemption. In the following simulations, we compare

172 I. Ghribi et al.

0 0.5

0

20

40

Utilization

C
om

m
un

ic
at
io
n
C
os
t

10 tasks

I-codesign

Alg[Shi et al.]

0 0.5

0

20

40

Utilization
C
om

m
un

ic
at
io
n
C
os
t

20 tasks

I-codesign

Alg[Shi et al.]

0 0.5

0

20

40

Utilization

C
om

m
un

ic
at
io
n
C
os
t

40 tasks

I-codesign

Alg[Shi et al.]

Fig. 13. Communication costs with 10, 20, and 40 tasks.

0 0.5

0

5

10

15

Utilization

E
ne
rg
y

10 tasks

I-codesign

Alg[Shi et al.]

0 0.5

0

10

20

Utilization

E
ne
rg
y

20 tasks

I-codesign

Alg[Shi et al.]

0 0.5

0

10

20

30

40

Utilization

E
ne
rg
y

40 tasks

I-codesign

Alg[Shi et al.]

Fig. 14. Energy consumption with 10, 20, and 40 tasks.

0 0.5

0

5

10

15

Utilization

N
um

be
r
of

Pr
ee
m
pt
io
n 10 tasks

I-codesign

Alg[Shi et al.]

0 0.5

0

10

20

30

Utilization

N
um

be
r
of

Pr
ee
m
pt
io
n 20 tasks

I-codesign

Alg[Shi et al.]

0 0.5

0

20

40

Utilization

N
um

be
r
of

Pr
ee
m
pt
io
n 40 tasks

I-codesign

Alg[Shi et al.]

Fig. 15. Number of preemption with 10, 20, and 40 tasks.

the proposed work with the partitioning and scheduling algorithms Al [16]. We
determine the effects of varying the number of tasks on the communication costs
of the communicating functions placed on different PEs. Figure 13 shows the
communication costs for task sets with 10, 20 and 40 tasks while Fig. 14 shows
the energy consumption on the same task set [22]. Figure 15 presents the number
of preemption with both algorithms using the same task set [22]. We notice that
the I-codesign shows a good results for communications costs, energy savings
and preemption values especially with high-range processor utilization values.

I-Codesign: A Codesign Methodology for Reconfigurable Embedded Systems 173

7 Conclusion

The task mapping onto tiles of the target architecture is an NP-complete design
activity, and when performed at run-time may not get good results. This is due to
the exiguous time and to the large number of solutions to be explored. In order to
deal with these design problems, we introduce a new co-design methodology called
I-codesign. The first original point in this methodology is the modeling techniques
that relies on probabilistic estimations as well as modeling other constraints on
the graphs such as the inclusion/exclusion constraint. Furthermore, the new par-
titioning combination of iterative, constructive and functional techniques allows
the efficient and optimized placements of the software hardware specification while
respecting the limited resources presented by thememory, the energy and real-time
constraints. The second original contribution is the proposed controller module
that stores all the possible reconfiguration scenarios and acts at run-time when-
ever a reconfiguration event occurs. The improvement of the proposed techniques
is highlighted in terms of both communication costs (the number of exchanged
messages), the consumed energy and consequently the required CPU time.

References

1. Shaout, A., El-mousa, H., Mattar, B.: Specification and modeling of HW/SW CO-
design for heterogeneous embedded systems. In: Proceedings of World Congress on
Engineering, Hong Kong, pp. 273–278 (2009)

2. Teich, J.: Hardware software codesign: the past, the present, and predicting the
future. Proc. IEEE 100, 1411–1430 (2012)

3. Cheng, O., Abdulla, W., Salcic, Z.: Hardware software codesign of automatic speech
recognition system for embedded real-time applications. IEEE Trans. Industr. Elec-
tron. 58, 850–859 (2011)

4. Wainer, G.: Applying modelling and simulation for development embedded sys-
tems. In: Proceedings of 2nd Mediterranean Conference on Embedded Computing
(MECO) (2013)

5. Tang, J.W., Hau, Y.W., Marsono, M.: Hardware software partitioning of embed-
ded system-on-chip applications. In: 2015 Proceedings of IFIP/IEEE International
Conference on Very Large Scale Integration, pp. 331–336 (2015)

6. Banerjee, A., Mondal, A., Sarkar, A., Biswas, S.: Real-time embedded systems
analysis; from theory to practice. In: Proceedings of 19th International Symposium
on VLSI Design and Test (VDAT), Ahmedabad, pp. 1–2 (2015)

7. Joshi, P.V., Gurumurthy, K.S.: Analysing and improving the performance of soft-
ware code for real time embedded systems. In: Proceedings of 2nd International
Conference on Devices, Circuits and Systems (ICDCS), pp. 1–5 (2014)

8. Pillai, P., Shin, K.G.: Real-time dynamic voltage scaling for low-power embedded
operating systems. In: Proceedings of 18th ACM Symposium on Operating Systems
Principles, vol. 35, pp. 89–102 (2001)

9. Nikolic, B., Awan, M.A., Petters, S.M.: SPARTS: simulator for power aware and
real-time systems. In: Proceedings of IEEE 10th International Conference on Trust,
Security and Privacy in Computing and communications, pp. 999–1004 (2011)

10. Wang, X.W., Chen, W.N., Wang, Y., Peng, C.L.: A co-design flow for reconfig-
urable embedded computing system with RTOS support. In: Proceedings of ICESS
2009, International Conference on Embedded Software and Systems, pp. 467–474
(2009)

174 I. Ghribi et al.

11. Ghribi, I., Abdallah, R., Khalgui, M., Platzner, M.: New Codesign solutions for
modeling and partitioning probabilistic reconfigurable embedded software. In: Pro-
ceedings of 29th conference on European Simulation and Modeling Conference
(EUROSIS) (2015)

12. Vahid, F., Gajski, D.D.: Incremental hardware estimation during hard-
ware/software functional partitioning. In: Proceedings of IEEE Transactions on
Very Large Scale Integration Systems, pp. 516–521 (2002)

13. Ernst, R., Henkel, J., Benner, T., Holtmann, U.: The COSYMA environment
for hardware/software cosynthesis of small embedded systems. In: Proceedings of
Microprocessors and Microsystems (1996)

14. Camposano, R., Wilberg, J.: Embedded system design. In: Proceedings of Design
Automation for Embedded Systems (2001)

15. Shi, R., Yin, S., Yin, C., Liu, L., Wei, S.: Energy-aware task partitioning and
scheduling algorithm for reconfigurable processor. In: Proceedings of IEEE 11th
International Conference on Solid-State and Integrated Circuit Technology), pp.
1–3 (2012)

16. Rui, S., Yin, S., Chongyong, Y.: Energy-aware task partitioning and scheduling
algorithm for reconfigurable processo. In: Proceedings of IEEE 11th International
Conference on Solid-State and Integrated Circuit Technology), Xi’an, pp. 1–3
(2012)

17. Janakiraman, N., Kumar, P.N.: Multi-objective module partitioning design for
dynamic and partial reconfigurable system-on-chip using genetic algorithm. J. Syst.
Archit. 60, 119–139 (2014)

18. Poornima, B., Kumar, V.: A multilevel partitioning approach for efficient tasks
allocation in heterogeneous distributed systems. J. Syst. Archit. 54, 530–548 (2008)

19. Liu, P., Wu, J., Wang, Y.: Integrated heuristic for hardware/software co-design on
reconfigurable devices. In: Proceedings of 13th International Conference on Parallel
and Distributed Computing, Applications and Technologies, pp. 370–375 (2012)

20. Banerjee, S., Bozorgzadeh, E., Dutt, N.: Physically-aware HW-SW partitioning for
reconfigurable architectures with partial dynamic reconfiguration. In: Proceedings
of 42nd Design Automation Conference, pp. 335–340 (2005)

21. Fiduccia, C.M., Mattheyes, R.M.: A linear time heuristic for improving network
partitions. In: Proceedings of 9th Conference on Design Automation, pp. 175–181
(1982)

22. Ghribi, I., Abdallah, R., Khalgui, M., Platzner, M.: New co-design methodology
for real-time embedded systems. In: Proceedings of 11th International Joint Con-
ference on Software Technologies, Lisbon (2016)

23. Forget, J., Boniol, F., Grolleau, E., Lesens, D., Pagetti, C.: Scheduling dependent
periodic tasks without synchronization mechanisms. In: Proceedings of 16th IEEE
on Real-Time and Embedded Technology and Applications Symposium (RTAS),
pp. 301–310 (2010)

24. Singhoff, F., Legrand, J., Nana, L., Marce, L.: Cheddar: a flexible real time schedul-
ing framework. In: Proceedings of 2004 Annual ACM SIGAda International Con-
ference on Ada: The Engineering of Correct and Reliable Software for Real-Time
Distributed Systems Using Ada and Related Technologies, pp. 1–8 (2004)

25. Mahadevan, S., Storgaard, M., Madsen, J., Virk, K.: ARTS: a system-level frame-
work for modeling MPSoC components and analysis of their causality. In: Proceed-
ings of 13th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, pp. 480–483 (2005)

CRMPSoC: New Solution for Feasible
Reconfigurable MPSoC

Imen Khemaissia1,5(B), Olfa Mosbahi1, Mohamed Khalgui2, and Zhiwu Li3,4

1 Faculty of Sciences, Tunis El-Manar University, 2092 Tunis, Tunisia
khemaissia-imen@hotmail.com, olfamosbahi@gmail.com

2 Cynapsys Company, Tunisia-France-Germany, LISI Lab, INSAT Institute,
University of Carthage, Tunis, Tunisia

khalguimohamed@gmail.com
3 Institute of Systems Engineering, Macau University of Science and Technology,

Taipa, Macau, China
4 School of Electro-Mechanical Engineering, Xidian University,

Xi’an 710071, China
zhwli@xidian.edu.cn

5 College of Computer Science, King Khalid University, Abha, Saudi Arabia

Abstract. This paper is dealing with the reconfiguration of a flexible
real-time Network-on-Chip (NoC) in Multiprocessors System-on-Chip
MPSoC architectures. We assume that each NoC’s node is composed
of a processor and a router. A processor is assumed to be composed
of dependent periodic and aperiodic operating system tasks. The paper
addresses low-power adaptations of MPSoC when dynamic reconfigura-
tions of the periodic and aperiodic tasks (sharing resources) are applied
at run-time to save or improve the performance. The reconfiguration is
defined as any operation allowing the addition-removal-update of peri-
odic dependent OS (Operating System) tasks that share resources. For
two added dependent tasks assigned to different processors, a message is
added automatically on the NoC. After a such scenario, several real-time
constraints may be violated and the power consumption increased. In

This research work is carried out within a MOBIDOC PhD thesis of the PASRI pro-
gram, EU-funded and administered by ANPR (Tunisia). This national project is a
collaboration between LISI Lab at University of Carthage, Cynapsys (French-German
company installed in Tunisia), Systems Control Lab at Xidian University in China
and Macau University of Science and Technology in Macau. We thank all directors of
Cynapsys for their technical and financial stable supports. Special thank to all Master
and Graduate Students who partially supported this project. This work is partially
supported by Science and Technology Development Fund, MSAR, under Grant No.
066/2013/A2.
M. Khalgui is also with ITIA Institute, National Council of Research, Rome 00161,
Italy.
Z.W. Li is also with the Faculty of Engineering, King Abdulaziz University, Jeddah
21589, Saudi Arabia.

The original version of this chapter was revised: An affiliation has been added. The
correction to this chapter is available at https://doi.org/10.1007/978-3-319-62569-0 17

c© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 175–198, 2017.
https://doi.org/10.1007/978-3-319-62569-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-62569-0_9&domain=pdf
https://doi.org/10.1007/978-3-319-62569-0_17
https://doi.org/10.1007/978-3-319-62569-0_9

176 I. Khemaissia et al.

order to resolve this problem, a new approach CRMPSoC (Abbrev.
Cynapsys-Reconfigurable MPSoC) that is composed of two steps is
proposed: (1) Applying a reconfiguration: Selection of reconfiguration
scenarios, and (2) System Feasibility: A multi-agent architecture based
on a master/slave model is defined where a slave agent is assigned to each
node to verify the system/bus feasibility, and a master is proposed for
the whole architecture if any perturbation occurs at run-time by propos-
ing software or hardware solutions. Since the kernel is not reconfigurable,
we develop a new middleware that will support the different steps of our
approach. The latter is applied to a real case study for the evaluation of
the paper’s contribution.

Keywords: Embedded system · Reconfigurable MPSoC ·
Multi-agent · Real-time and low-power scheduling · Middleware

1 Introduction

The new generation of embedded systems is based on the MPSoC oriented tech-
nologies since they are widely used today to run various applications in industry
[51]. We assume that the MPSoC is composed of n nodes where each one contains:
(i) a processor and (ii) a router. Due to possible external or also internal distur-
bances, the system can be automatically adapted by adding/removing/updating
OS periodic tasks to/from/in the processors. Nevertheless, some realtime con-
straints may be violated and the system becomes unfeasible. The reconfiguration
can be also hardware by activating/deactivating a processor of the architecture
[1]. Many projects and researches are dealing today with the reconfiguration of
real-time embedded systems under real-time and energy constraints [2,8,11,34],
more specifically the reconfiguration of MPSoC architectures [29–32]. Also, we
found multiple research works on low-power execution of MPSoC architectures
in [9,17,29,32,52]. A fair amount of algorithms are proposed to schedule the OS
tasks of embedded systems [7,18,19,25,27,28]. Although all of them are inter-
esting, no one in the related works deals with the reconfiguration of a real-time
MPSoC architecture with low-power. We note that no one in all our previous
conference works can resolve the global problem that we are dealing with in the
current paper. The contribution of the current paper is original and resolves a
global problem dealing with low-power-reconfiguration of MPSoC oriented appli-
cations implemented by periodic/aperiodic OS tasks/messages under precedence
constraints and with shared resources.

We assume in the current work that n processors are linked via the NoC. Each
processor is implemented by periodic/aperiodic OS tasks which can exchange
messages on the NoC. They are assumed to be under precedence constraints
and with shared resources. The well-known scheduling policies earliest deadline
first (EDF) and First In First Out are used to schedule the periodic and ape-
riodic tasks, respectively. The immediate priority ceiling protocol IPCP [27] is
used to manage the precedence constraints of dependent tasks. Before any recon-
figuration scenario, the system is assumed to be feasible, i.e., the utilization of

CRMPSoC: New Solution for Feasible Reconfigurable MPSoC 177

each processor is equal or less than 1. Since a reconfiguration is assumed to be
a run-time software operation allowing the addition-removal-update of software
tasks and messages, this scenario can push the execution of new-old tasks to
violate real-time deadlines or to possibly increase the energy consumption or a
message can take a long time to arrive to its destination. In order to guarantee
the respect of the real-time and precedence constraints, a new complete approach
is developed at Cynapsys [57] which is a professional company in the embedded
technologies. This approach is achieved on two steps: (1) Application of recon-
figuration scenarios by adding, removing or updating tasks or messages, and (2)
Feasibility analysis of each processor and also the NoC after any reconfigura-
tion scenario. We propose a multi-agent architecture based on the master/slave
model to handle feasible reconfigurations of RMPSoC. Two types of agents
are defined: (i) A master agent: Controls the evolution of the whole system’s
environment before applying software-hardware reconfigurations and checks the
feasibility of the OS/NoC, (ii) A slave agent: Checks the power consumption
and the respect of real-time constraints of each processor. The contribution of
this paper is applied to FPGA Stratix III and a middleware is developed to han-
dle run-time reconfiguration scenarios with Nios II and to arrange the new lists
of tasks and messages to be executed after each scenario [4]. The middleware
based on agents and deployed on each processor listens to input reconfigura-
tions, arranges the parameters of tasks and controls also the traffic on the NoC.
The rest of the paper is organized as follows: Sect. 2 reviews the related works.
Section 3 formalizes the reconfigurable MPSoC architectures followed by a case
study. Section 4 represents a methodology for a reconfigurable feasible real-time
application. The architecture is implemented, simulated, and analyzed in Sect. 5.
Finally, Sect. 6 concludes this work.

2 Background

We expose and analyze several research works which are related to the contri-
bution. Since this paper addresses the reconfigurable feasible NoC in adaptive
MPSoC architectures, we start first by presenting the characteristics of MPSoC
and NoC. Then we review some interesting related papers dealing with the real-
time scheduling of OS tasks.

2.1 MPSoC and NoC Characteristics

The MultiProcessors System-on-Chip (MPSoC) uses multiple processors usu-
ally targeted for embedded applications. It is used by platforms that contain
multiple usually heterogeneous processing elements with specific functionalities
reflecting the need of the expected application domain [33]. All these compo-
nents are linked to each other by an on-chip interconnect. These architectures
meet the performance requirements of multimedia applications, telecommunica-
tion architectures, network security and other application domains while limiting
the power consumption through the use of specialized processing elements and

178 I. Khemaissia et al.

architectures. Because of their comparatively high performance, flexibility, and
power efficiency, the MPSoC is based on NoC solutions [46–50]. Network on chip
(NoC) is a new paradigm assigned for the interconnections inside a system on
chip (SoC) that presents a viable communication infrastructure [42]. Although
all of them are interesting, there is no related work that deals with the real-time
reconfigurable NoC in MPSoC architectures under low-power constraints.

2.2 Reconfigurable MPSoC

There are many related works dealing with the reconfigurable MPSoC in
the recent years. The work in [45] proposes a configuration exploration tree
for MPSoC architectures with configurable processors and bus interface. The
authors in [30] present a method for mapping streaming applications, with real-
time requirements, onto a reconfigurable MPSoC. In this method, the network
performance interface and the NoC is integrated in the performance models of
the applications. A solution is developed in [31] that consists in synthesizing
a custom bus architecture for reconfigurable computing architectures. In this
research, we develop at Cynapsys Corporation a new approach that deals with
the reconfigurations of real-time MPSoC under low-power and precedence con-
straints and shared resources.

2.3 Low-Power Solutions on MPSoC

The authors in [9] propose a novel dynamic power management scheme for adap-
tive pipelined MPSoCs, suitable for multimedia applications. The paper [17]
presents a global framework for power/energy estimation and optimization of
heterogeneous Within this framework, a power modeling methodology is defined,
and an open platform is developed. This methodology takes into account all the
aspects of embedded systems; the software, the hardware, and the operating
system. The authors in [29,32] describe a NoC architecture for reconfigurable
multiprocessor system-on-chip in.

2.4 Real-Time Scheduling

Several successful studies in the literature deal with the real-time scheduling of
OS tasks. The work in [25] proposes the Earliest Deadline First EDF and the
Rate Monotonic RM to schedule periodic tasks. The work in [27] presents the
original priority ceiling protocol OPCP and immediate priority ceiling protocol
IPCP in order to solve the scheduling problem of the tasks that share resources.
The research work in [28] proposes the stack resource policy SRP that allows
processes with different priorities to share a single run-time stack. In this paper,
we use the EDF for the scheduling of periodic tasks since it is optimal under
some assumptions.

In summary, a lot of successful investigations have been done in the domain of
reconfigurable MPSoC-based embedded technologies. None of the previous works
takes into account the feasibility at run-time of NoC in an MPSoC architecture
under real-time and energy constraints.

CRMPSoC: New Solution for Feasible Reconfigurable MPSoC 179

3 Reconfigurable MPSoC RMPSoC

In this section, we start by formalizing the reconfigurable MPSoC RMPSoC
before exposing a case study that explains the problem under consideration.

3.1 Formalization of RMPSoC

We assume that RMPSoC consists of the matrix Ni∗j of nodes, i.e., RMPSoC =
{N1,1, N1,2, . . . , N2,1, N2,2, Ni,j , . . . , Nl,c} (i ∈ [1...l] and j ∈ [1...c]) where l and
c are respectively the numbers of the rows and columns of the network on chip
NoC which is used to link all the nodes of RMPSoC [32]. RMPSoC is assumed
to be reconfigurable and adapted to its environment or to add-relax new and
old services by adding/updating/removing OS tasks to/from the processors. We
assume that each node Ni,j is composed of: (a) Processor Pri,j : Executes peri-
odic/aperiodic OS tasks τi,j,k (i ∈ [1...l], j ∈ [1...c] and k ∈ [1...ni,j]) that share
resources and under precedence constraints, (b) Router Ri,j : Is responsible of the
message’s forwarding in the NoC. The latter has a buffer that contains the list of
messages to be added from a source node to a destination one. The NoC archi-
tecture is illustrated in Fig. 1. We note that the different processors of RMPSoC
share data in a global memory MG. According to Liu and Layland in [25], each

Fig. 1. NoC architecture.

180 I. Khemaissia et al.

periodic task τi,j,k (i ∈ [1...l], j ∈ [1...c] and k ∈ [1..ni,j]) may produce many
jobs. It is described by:

– Release time Ri,j,k: The time when a job becomes available for execution.
Since the tasks are synchronous, Ri,j,k = 0,

– Period Ti,j,k: Is the regular inter-arrival time,
– Deadline Di,j,k: The absolute deadline is equal to the release time plus the

relative deadline,
– WCET Ci,j,k: the time needed to compute a job, and
– static priority Si,j,k: The highest static priority is equal to 1, i.e., Sk = 1

represents τi,j,k with the highest static priority.

For the aperiodic tasks, they are characterized by a deadline dk, a release time
rk, and a WCET ck. We assume that any aperiodic task arrives according to the
poisson process based on a poisson distribution with a rate λk

r and its WCET
is exponentially distributed with the same mean 1

λk
C

. Also, we consider that the
aperiodic tasks can be with hard or soft deadlines.

We assume that the tasks of RMPSoC share software resources with prece-
dence constraints. We assume that Ti,j,k = Di,j,k. Each task in RMPSoC is
characterized by inclusion and exclusion sets according to user requirements
respectively where:

– Inclusionset(τi,j,k): the set of processors that can handle the execution of
τi,j,k.

– Exlusionset(τi,j,k): the set of processors that cannot handle the execution of
τi,j,k.

For the periodic tasks that share resources, their processor utilization is given
by [5,18]:

Uper(Pri,j) = (
ni,j∑

k=1

Ci,j,k

Ti,j,k
+

Bi,j,k

Ti,j,k
),∀k ∈ [1...ni,j] (1)

where Bi,j,k is the blocking factor that is defined as the time to spend by a task
with a higher priority when blocked. It waits the termination of a task with a
lower priority. In this work, we assume that the blocking factor Bi,j,k is equal to
0 or 1 [18]. The utilization of the aperiodic tasks is as follows:

Upro =
λk

r

λk
C

(2)

The independent tasks are scheduled by using the EDF algorithm for the peri-
odic tasks and the FIFO for the aperiodic ones. The immediate priority ceiling
protocol IPCP is used to schedule the tasks that share resources. To manage the
dependent tasks, we can use the technique proposed in [5,19]. For example, let
us define two dependant tasks τi,j,e and τi,j,f such that τi,j,e precedes τi,j,f . The
deadlines of the tasks are assigned as follows:

CRMPSoC: New Solution for Feasible Reconfigurable MPSoC 181

if τi,j,e precedes τi,j,f then Si,j,e < Si,j,f . The deadline Di,j,e is equal to:

Di,j,e = min(Di,j,e, (Di,j,f − Ci,j,e)) (3)

By Eq. (3), we guarantee that the precedence constraint will be satisfied. We
note that the initial utilization of each processor Ubef is equal to:

Ubef (Pri,j) = Uper(Pri,j) + Upro(Pri,j) (4)

According to [3,4], the energy to be consumed by a processor is proportional to
the processor utilization. It is given by:

Pi,j ∝ Ubef (Pri,j)2 (5)

Let we assume a reconfiguration scenario at a particular time t. We can apply a
software reconfiguration to add or remove OS software tasks and Ubef increases
to be Uaft.

We assume that the source task τi,j,h exchanges a message mp(τi,j,h; τa,b,k)
with a target task destination τa,b,k. A periodic message mp(τi,j,h; τa,b,k) in [5]
is characterized by:

– A size Smp(τi,j,h; τa,b,k),
– A transmission period Tmp(τi,j,h; τa,b,k),
– A deadline Dmp(τi,j,h; τa,b,k),
– A Worst Case Transmission Time WCTTp Cmp(τi,j,h; τa,b,k), where:

WCTT = Smp(τi,j,h; τa,b,k)/debitNoC (6)

and
– A static priority SPmp(τi,j,h; τa,b,k)

We assume that an aperiodic message map(τi,j,h; τa,b,k) is characterized by:

– A size Smap(τi,j,h; τa,b,k),
– A random transmission period Tmap(τi,j,h; τa,b,k),
– A deadline Dmap(τi,j,h; τa,b,k),
– A Worst Case Transmission Time WCTTap Cmap(τi,j,h; τa,b,k), where:

WCTT = Smap(τi,j,h; τa,b,k)/debitNoC (7)

and
– A static priority SPmp(τi,j,h; τa,b,k)

In this work, we assume that after each addition of a pair of tasks a new message
is added automatically. The purpose of this research is to seek the optimal path
between the source task and the destination task under real-time constraints.
According to [40], the bus utilization is calculated as follows:

Ubus(mp(τi,j,h; τa,b,k)) =
m∑

p=1

Cmp(τi,j,h; τa,b,k)
Tmp(τi,j,h; τa,b,k)

(8)

where m is the number of messages.

182 I. Khemaissia et al.

Fig. 2. Stratix III FPGA development board.

3.2 Case Study: Stratix III FPGA

The proposed approach in the current paper is applied to an FPGA Stratix III1.
We use an FPGA-optimized network-on-chip architecture [53] (Fig. 2).

In order to develop new module on FPGA, we have used Quartus II [54]. More-
over, we have used SOPC Builder [55] which is made by Altera to automate the
connection of soft-hardware components to create a complete computer system
that runs on any of its various FPGA chips. The integrated development environ-
ment Nios II IDE [56] is used to create Nios II processors. It is a software develop-
ment tool for graphical Nios II family of embedded processors. The Nios II IDE
provides a platform for a coherent development that works for all Nios II proces-
sor systems. Thus, we illustrate RMPSoC through a running example in order
to explain the proposed methodology by using theoretical tasks. Suppose that a
stratix FPGA contains four Nios II processors Pr1,1, Pr1,2, Pr2,1 and Pr2,2. We
define the NoC as the communication architecture between the components of the
MPSoC. Initially, RMPSoC is assumed to be feasible, i.e., it meets its real-time
constraints with low-power properties. Table 1 lists the parameters of the differ-
ent processors. We assume that its initial utilization of periodic tasks is equal to
0.5 and all the tasks are released at the time Ri = 0 with Ti = Di. We assume
that the aperiodic tasks/messages arrive with λC = 0.5 and λr = 0.1. Then their
utilizations is equal to 0.2. Thus, the initial utilization of each processor is equal to
0.7 and the energy consumption is 0.49. We assume also that the NoC can initially
support all the added messages since its utilization is equal to 0.95.

1 We are very grateful for the company Cynapsys which provides us this FPGA. It
is characterized by: (a) High-performance Stratix III EP3SL150F1152 FPGA, (b)
DDR2 SDRAM and QDR II SRAM, (c) PSRAM and flash memory, (d) USB 2.0
MAC/PHY, (e) Graphics and character LCD displays, and (f) On-board embedded
USB-BlasterTM download cable.

CRMPSoC: New Solution for Feasible Reconfigurable MPSoC 183

Table 1. The characteristics of the initial periodic tasks.

Pr1,1 Pr1,2 Pr2,1 Pr2,2

taui Ci Ti/Di taui Ci Ti/Di taui Ci Ti/Di taui Ci Ti/Di

τ1 1 20 τ6 1 10 τ11 2 10 τ16 2 40

τ2 1 10 τ7 2 40 τ12 4 20 τ17 2 20

τ3 2 10 τ8 4 40 τ13 1 20 τ18 1 10

τ4 2 40 τ9 1 20 τ14 1 40 τ19 1 20

τ5 1 10 τ10 2 10 τ15 1 40 τ20 2 10

τh1 2 10 τs1 1 20 τh1 2 10 τs1 1 20

Fig. 3. Initial scheduling of Pr1,1.

Table 3 indicates the periodic/aperiodic tasks that are dynamically added to
the different processors. We assume that the aperiodic utilization of the added
tasks/messages is equal to 0.1. The processor utilization after the reconfiguration
Uaft(Pr1,1), Uaft(Pr1,2), Uaft(Pr2,1) and Uaft(Pr2,2) will be respectively 1.96,
1.8225, 1.8225 and 1.69. Since the processor utilization of all the processors is
greater than 1, the system is infeasible. Also the energy consumption increases
to be 1.1, 1.1 and 1.21, respectively.

After the addition of several messages, the bus utilization becomes equal
to 1.2 and several messages cannot be supported by the NoC. Moreover, the
messages take a long time to be routed. For that new software solutions are
proposed for the NoC feasibility.

In the next sections, new technical software solutions are proposed in order
to satisfy the real-time constraints and to reduce the power consumption (Fig. 3
and Table 2).

184 I. Khemaissia et al.

Table 2. The characteristics of the initial messages.

Message CMi(τk, τl) DMi(τk, τl)/TMi(τk, τl) taille

m(τ2, τ4) 1 10 12

m(τ5, τ7) 1 20 14

m(τ2, τ3) 2 20 13

m(τ5, τ13) 1 10 25

m(τ12, τ6) 5 50 16

m(τ8, τ2) 2 20 14

m(τ8, τ9) 1 10 20

m(τ13, τ10) 2 40 10

m(τ8, τ2) 2 20 14

m(τ8, τ9) 1 10 20

m(τ13, τ10) 2 40 10

Table 3. The characteristics of the added periodic tasks.

Pr1,1 Pr1,2 Pr2,1 Pr2,2

taui Ci Ti/Di taui Ci Ti/Di taui C T taui C T

τb1 6 30 τc1 2 40 τd1 2 40 τe1 3 30

τb2 4 20 τc2 3 30 τd2 7 35 τe2 2 10

τb3 3 30 τc3 7 35 τd3 2 10 τe3 2 20

τb4 1 10 τc4 2 10 τd4 3 30 τe4 3 30

τbs1 2 10 τch1 1 20 τdh1 2 10 τes1 1 20

4 New Middleware for the Feasible Reconfigurable
MPSoC

We propose in the current paper a new middleware that deals with the feasible
real-time reconfigurable MPSoC architectures as an extension to the contribu-
tions in [1] since in the latter, we do not propose which layer will manage the
addition/removal/ update of OS tasks/messages. The different services offered
by this layer are stated as follows: (i) Application of reconfiguration scenarios in
different processors, (ii) Verification of each processor’s feasibility and (iii) Veri-
fication of the NoC feasibility. For the two last steps, a multi agent architecture
following the Master-Slave model is defined: (i) Master Agent AgM : responsible
of the whole system feasibility and the NoC feasibility, (ii) Slave Agent Agi,j :
defined for each node Ni,j . It informs AgM if the energy increases or if the local
real-time constraints are not satisfied. Figure 5 summarizes the whole contribu-
tion of this current research. It shows the different states of the system and the
proposed strategy to resolve any destabilization that can occur before and after
applying any reconfiguration scenario (Fig. 4 and Table 4).

CRMPSoC: New Solution for Feasible Reconfigurable MPSoC 185

Fig. 4. Scheduling of Pr1,1 after a reconfiguration scenario.

Table 4. The characteristics of the added messages.

Message CMep(τk, τl) DMep(τk, τl)/TMep(τk, τl) taille

m(τb2, τb4) 1 10 15

m(τb3, τc1) 1 20 10

m(τd4, τb1) 2 20 10

m(τc1, τc3) 1 10 12

m(τc2, τb2) 5 50 12

m(τe1, τb1) 2 20 10

m(τe2, τb3) 1 10 10

m(τd3, τb1) 2 40 10

m(τb2, τd4) 2 20 20

m(τd1, τc3) 1 10 10

m(τbs1, τes1) 2 40 20

4.1 OS Feasibility

Many solutions are proposed to re-obtain the system feasibility in all the proces-
sors/NoC of RMPSoC after applying any reconfiguration scenario that violates
real-time or energy constraints.

– Periods and λC modification, or
– WCETs and λC modification, or

186 I. Khemaissia et al.

Fig. 5. CRMPSoC methodology [1].

– Removal of unimportant tasks.
– Relocation of Tasks according to the Bin-packing.

Solution 1: Modification of Parameters. The utilization must be changed
in order to guarantee a stable energy consumption. A technical solution to be
proposed by AgM allows to modify the parameters of all the old and new tasks
after any reconfiguration scenario. In this work, we suggest the modification of
periods as a solution 1.1 or WCETs as a solution 1.2 to meet all the assumed
constraints after such a scenario. We consider that the new utilization after the
reconfiguration is less than/equal to the utilization before the reconfiguration
and then we try to substitute the new utilization by the new parameters until
we obtain the new formulas to calculate the periods/WCETs in function of
Uper(Pri,j). According to [1], the new periods become:

T
(r)
i,j,k =

⌈
(

n∑

k=1

(
(Ci,j,k + Bi,j,k)

Uper(Pri,j)
)

⌉
(9)

CRMPSoC: New Solution for Feasible Reconfigurable MPSoC 187

After the modification of the periods, the new processor utilization of periodic
tasks U

(r)
perT is given by:

U
(r)
perT (Pri,j) =

n∑

k=1

Ci,j,k

T
(r)
i,j,k

+
Bi,j,k

T
(r)
i,j,k

(10)

where n is the number of periodic tasks and r is the reconfiguration number.
Then, we can formulate the new power consumption of the periodic tasks as
follows:

P
(r)
perT (Pri,j) ∝ (U (r)

perT (Pri,j)2) (11)

According to Eq. (9), the new period of old and new tasks to be executed by
Pr1,1 becomes equal to 42 Time Units. It is equal to 76 for the tasks of Pr1,2.
The period of tasks in Pr2,1 and Pr2,1 is equal to 63 and 68, respectively. Thus
the new processor utilizations of Pr1,1, Pr1,2, Pr2,1 and Pr2,2 are equal to 0.5.
Solution 1.1 can stabilize the utilization of all the processors of RMPSoC and
can consequently maintain the power consumption.

If we modify the WCET of tasks, then the new C
(r)
k are given by:

C
(r)
i,j,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
Uper(Pri,j)−

n∑

k=1

Bi,j,k
Ti,j,k

n∑

k=1

1
Ti,j,k

�

1, if
Uper(Pri,j)−

n∑

k=1

Bi,j,k
Ti,j,k

n∑

k=1

1
Ti,j,k

≤ 0

(12)

After the modification of the WCETs, the new processor utilization of the
periodic tasks U

(r)
perC is given by:

U
(r)
perC(Pri,j) = (

n∑

k=1

C
(r)
i,j,k

Ti,j,k
+

Bi,j,k

Ti,j,k
) (13)

The new power consumption is as follows:

P
(r)
perC(Pri,j) ∝ (U (r)

perC(Pri,j)2) (14)

According to Eq. (12), the new constant WCET of tasks (old and new) to
be executed by Pr1,1 is equal to 1 Time Units. The constant WCET of tasks
to be executed by Pr1,2, Pr2,1 and Pr2,2 becomes 2 Time Units. Thus, the new
utilizations of Pr1,1, Pr1,2 and Pr2,1 are equal to 0.55, 0.51 and 0.45, respec-
tively. Solution 1.2 can minimize the processor utilization of all the processors of
RMPSoC and the power consumption is reduced too. Also, we need to modify
lamdak

C of the aperiodic tasks to maintain their utilizations. It is given by:

λ
(i)
Ck = λCk × U (aft)(mici)

Ubef (mici)
, ∀j ∈ [0, i] (15)

188 I. Khemaissia et al.

Solution 2: Tasks Removal. As a second solution, AgM proposes the removal
of some tasks/messages according to their priorities. Before the removal of a
dependent task, we should verify if the tasks which are dependent has a lower
priority or not. In this case, we remove them too. Otherwise, the task cannot
be removed. If we consider the removal of the following tasks: A1 and A4 from
Pr1.1, then its processor utilization becomes 1. If we remove the unimportant
tasks (with the lowest priority) from all the processors, then we can minimize
the processor utilization. This solution can provide a feasible system after any
reconfiguration scenario but the results of the processor/NoC utilization depends
on the number of the added and removed tasks. Solutions 1 and 2 are proposed
to maintain or reduce the power consumption.

Solution 3: Relocation of Tasks According to the Bin-Packing. The bin-
packing algorithm can be used in this work by the relocation of tasks according
to different conditions that will be mentioned below. Based on it, AgM can
reconfigure the system on two levels in order to be temporally feasible with a
low-power consumption. We propose to locate all the added periodic tasks in one
processor. Since we can calculate the processor utilization for each task, two steps
must be done: (a) Step 1: We relocate the tasks by using one of the proposed
algorithms of the bin-packing, and (b) Step 2: We modify their parameters
by following Solution 1 if the current utilization of a processor exceeds 1. To
apply the bin-packing, we should order the tasks in an increasing order and the
processors in a decreasing order according to their utilization. In order to re-
locate a task τi,j,k to Pri,j , two conditions should be satisfied: (i) Condition 1:
the processor Pri,j ∈ Inclusionset(τi,j,k), and (ii) Condition 2: Ubef (Pri,j) ≤
1. The bin-packing is characterized by five heuristics:

– Best Fit Decreasing BFD: For each task, the agent assigns it to a random
processor that satisfies the three conditions and Ul,c is maximal,

– Worst Fit Decreasing WFD: For each task, the agent assigns it to a random
processor that satisfies the three conditions and Ul,c is minimal,

– Next Fit Decreasing NFD: If the three conditions are not satisfied, the pro-
cessor is considered as deactivated,

– First Fit Decreasing FFD: The agent assigns an added task to the first acti-
vated processor that can satisfy condition1, condition 2 and condition 3, and

– Random Fit Decreasing RFD: For each task, the agent assigns it to a random
processor that satisfies the three conditions.

Algorithm 1, that is proposed in [1], describes the different followed steps in order
to relocate the tasks according to the next fit decreasing NFD.

We choose to apply the FFD policy on the running example and we assume
that Pr1,1 can support the added tasks to Pr1,2 and vice versa. For the tasks
of Pr1,2 can be added to Pr2,2 and vice versa. We start by ordering the tasks
in a decreasing order and the processors utilization in an increasing order. We
have Ubef (Pr1,1) = Ubef (Pr1,2) = Ubef (Pr2,1) = Ubef (Pr2,2). If we re-order the
periodic tasks, we get τb1, τb2, τc3, τc4, τd2, τd3, τe2, τb3, τb4, τc2, τd4, τe1, τe3,

CRMPSoC: New Solution for Feasible Reconfigurable MPSoC 189

Algorithm 1. Relocation of new tasks according to NFD.

Order the processors in an increasing order;
Order the tasks in a decreasing order;
for (each processor Pri,j) do

for (each task τi,j,k) do
if (Pri,j is active) and (τi,j,k ∈ Inclusionset(τi,j,k)) then

Calculate the current processor utilization Ubef (Pri,j) after the addition of
τi,j,k;

else
if ((Ubef (Pri,j) ≥ 1) then

Assign τi,j,k to Pri,j that satisfies the conditions (conditions 1, 2 and 3);
Re-Ccompute Ubef (Pri,j) after the addition of τi,j,k to Pri,j ;
break;

else
Close the current processor and open the next one;
Re-Calculate the utilization of the newest opened processor;

end if
end if

end for
end for

τe4, τc1 and τd1, respectively. Every time we add a task, we should verify if the
processor can include it. The algorithm of the FFD is applied as follows: τb1 and
τb2 are packed into Pr1,1 and Pr1,2. τc3 and τc4 are added into Pr1,1 and Pr1,2

too, respectively. Since Pr1,1 /∈ SetInc(τd2), the current added task is put into
Pr2,1. We apply the bin-packing algorithm until we pack all the added tasks into
the different processors. Once we finish the addition of tasks, AgM applies the
parameters modification. The relocation of the periodic tasks according to the
FFD is illustrated by Fig. 6.

4.2 NoC Feasibility

According to [1,5], if the bus cannot support the added messages, then we can
modify the parameters of the messages or remove the unimportant ones. The
new periods or the WCTT of each message is calculated according to [5] as
follows:

Tmp =

⎡

⎢⎢⎢⎢⎢

m∑
i=1

Cmp

UNoC(periodicmessages)

⎤

⎥⎥⎥⎥⎥
(16)

or

Cmp =

⎧
⎪⎪⎨

⎪⎪⎩

1, 0 < UNoC(periodicmessages)
m∑

i=1

1
Tmp

≤ 1

�UNoC(periodicmessages)
m∑

i=1

1
Tmp

�, UNoC(periodicmessages)
m∑

i=1

1
Tmp

> 1
(17)

190 I. Khemaissia et al.

Fig. 6. Relocate new tasks in FFD.

where m denotes the number of messages.
After applying Eq. (16), the new utilization of NoC becomes equal to 0.8.

Then the NoC is considered feasible. It is similar for the messages, i.e., if we
remove the messages with the lowest priority the utilization of NoC will be
reduced.

5 Experimentation

This section presents an experimentation that applies low-power reconfigura-
tions of MPSoC-based architectures. We present first of all the localization of
the middleware that will handle any reconfiguration scenario. Then, we present
the implementation of the agent-based architecture. After that, we show theo-
retical simulations and analysis which are used to underline the benefits of this
contribution. We propose to apply this contribution to Stratix III development
board.

5.1 Localization of the Middleware

In order to handle run-time reconfiguration scenarios with Nios II, a middle-
ware is developed to arrange the new lists of tasks and messages to be executed
after each scenario Fig. 7. The middleware based on agents and deployed on
each processor listens to input reconfigurations and arranges the parameters of
tasks/messages. All the assumed tasks are defined statically and the middleware

CRMPSoC: New Solution for Feasible Reconfigurable MPSoC 191

Fig. 7. Localization of the middleware.

192 I. Khemaissia et al.

runs a subset of them under well-defined conditions. For example, the modifica-
tion of period is implemented by two instances of the same task but with two
values of period. Since all reconfiguration scenarios are predicted off-line, the
implementation of the middleware takes into account all possible implementa-
tions and executions. The goal is to test RMPSoC for their feasibility and also
the required feasibility on the NoC.

5.2 Implementation of the Communication Protocol

In this section, we present the main algorithm [1] that applies the proposed
methodology. We define a protocol which is a set of rules and methods needed
to facilitate the communication between the different agents of the system.
Before describing the algorithm, let us present the different used functions. The
different functions used in this work are defined as follows: (i) Send-approval-
power(Agi,j ,AgM): when the power consumption is inferior to 1 after a recon-
figuration scenario, Agi,j sends an approval message to AgM , (ii) Send-alert-
power(Agi,j ,AgM): when the power consumption is superior to 1 after a reconfig-
uration scenario, Agi,j sends a disapproval message to AgM , (iii) Evaluate-power-
consumption(AgM): after the application of the proposed solutions, AgM calcu-
lates the difference between the power consumption before and after the reconfig-
uration, (iv) Manage-removal(Agi,j): each agent Agi,j must update the memory
after the removal of some tasks from a processor Pri,j , (v) App-sol1.1(): modi-
fication of the periods, (vi) App-sol1.2(): modification of the WCETs/WCTTS,
(vii) App-sol2(): tasks/messages removal, and (viii) App-sol3(): relocation by
using the bin-packing.

Algorithm 2 is proposed in order to control the power consumption by propos-
ing some software solutions. It is with complexity O(n2). First, it reads the
parameters of the initial periodic/aperiodic tasks/messages. Then, it computes
the initial utilization of each processor and in the NoC. After that, it verifies the
feasibility of the system after the reconfiguration. If the utilization of a proces-
sor/NoC is bigger than 1, then the agent suggests solution 1, 2 or 3. Finally, it
evaluates the power consumption by calculating the power decrease.

5.3 Simulations

This section presents the obtained results after applying the proposed solutions.
Before any reconfiguration, we assume that the initial system is feasible. The
processor utilizations of each processor Pr1,1, Pr1,2, Pr2,1 and Pr2,2 are equal to
0.696532, 0.751534 and 0.803858, 0.7415 respectively. Figure 8 depicts the power
consumption after the modifications of the periods and the WCETs. We can
deduct that Solution 1.1 can maintain the power consumption. However, Solution
1.2 can minimize the power consumption since the curves show many variations.
We can deduct that this theoretical simulation result by Solution 1.2 provides
more benefits than Solution 1.1. Figure 10 visualizes the simulation result after

CRMPSoC: New Solution for Feasible Reconfigurable MPSoC 193

Algorithm 2. Allocations of added OS Tasks/messages to Reconfigurable MPSoCs.

for each processor reconfiguration scenario do
Calculate the utilization Uaft and the NoC utilization;
if Uaft ≤ 1 or UNoC ≤ 1 then

Send-approval-power(Agi,j ,AgM);
else

Send-alert-power(Agi,j ,AgM);
Call(App-sol1.1()) or Call(App-sol1.2()) or Call(App-sol2())or Call(App-
sol3());

end if
end for
for each processor do

Calculate the new utilization after the reconfiguration;
Calculate the power consumption after the reconfiguration;
Evaluate-power-consumption(AgM);
Calculate the difference between values of the power consumption after and before
a reconfiguration scenario.

end for

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.5635

0.564

0.5645

0.565

0.5655

0.566

Average U(ia)

A
ve

ra
ge

 P
(i)

Solution 1.1

Fig. 8. Periods modification [1].

applying the bin-packing algorithm. The power consumption is between 0.5635
and 0.5655. In thus case, the variations can be ignored. This solution also is
beneficial (Fig. 9).

194 I. Khemaissia et al.

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.35

0.4

0.45

0.5

Processor utilization after the addition of tasks

P
(i)

WCETs Modification

Fig. 9. WCETs modification [1].

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.563

0.5635

0.564

0.5645

0.565

0.5655

0.566

Average U(ia)

A
ve

ra
ge

 P
(i)

BFD
FFD
NFD
RFD
WFD

Fig. 10. Bin-paking1 [1].

6 Conclusion

We propose in this paper a run-time automatic global approach called
CRMPSoC for low-power reconfigurable MPSoC-based architectures. Before

CRMPSoC: New Solution for Feasible Reconfigurable MPSoC 195

any reconfiguration scenario, the system is assumed to be feasible with low-
power. However, after applying a reconfiguration scenarios, the power consump-
tion can sometimes increase and some real-time constraints may be violated.
To guarantee a feasible real-time system under low-power after a such scenario,
a multi-agent architecture based on the master-slave model is proposed, where
software/hardware technical solutions are applied: (1) Modification of the param-
eters, (2) Remove unimportant tasks/messages and (3) Relocation according the
bin-packing algorithm. This new methodology is applied to confidential projects
at Cynapsys. To our best knowledge, no work dealing with reconfigurable MPSoC
under real-time and low-power constraints was proposed before. The paper’s con-
tribution is applied to the FPGA Stratix III in order to verify the effectiveness of
our approach As a future work, we will be interested in aperiodic/sporadic tasks.
Also, we will be interested in the reconfigurable routing of periodic/sporadic
messages under low-power and low-memory constraints. Also, it sounds inter-
esting to deal with quality of service of these systems for more performance and
flexibility.

References

1. Khemaissia, I., Mosbahi, O., Khalgui, M., Li, Z.W.: New methodology for feasible
reconfigurable real-time networked-on-chip NoC. In: Proceedings of the 11th Inter-
national Joint Conference on Software Technologies (ICSOFT), Lisbon, Portugal,
pp. 249–257 (2016)

2. Wang, X., Khalgui, M., Li, Z.W.: Dynamic low power reconfigurations of real-time
embedded systems. In: Proceedings of 1st Pervasive Embedded Computing and
Communication Systems, Algarve, Portugal, pp. 415–420, March 2011

3. Wang, X., Khemaissia, I., Khalgui, M., Li, Z.W., Mosbahi, O., Zhou, M.C.:
Dynamic low-power reconfiguration of real-time systems with periodic and proba-
bilistic tasks. IEEE Trans. Autom. Sci. Eng. 12(1), 1–14 (2015)

4. Khemaissia, I., Mosbahi, O., Khalgui, M., Bouzayen, W.: New reconfigurable
middleware for feasible adaptive RT-Linux. In: Proceedings of the 4th Pervasive
Embedded Computing and Communication Systems, Lisbon, Portugal, pp. 158–
167, January 2014

5. Khemaissia, I., Mosbahi, O., Khalgui, M.: Reconfigurable CAN in real-time embed-
ded platforms. In: Proceedings of the 11th International Conference on Informatics
in Control, Automation and Robotics (ICINCO), Austria, vol. 01, pp. 3355–3362
(2014)

6. Khemaissia, I., Mosbahi, O., Khalgui, M.: New automatic agent-based solutions for
feasible reconfigurable MP-SoC architectures. In: Proceedings of the 14th Interna-
tional Conference on Application of Concurrency to System Design, Tunis, pp.
152–158 (2014)

7. Wu, N.Q., Zhou, M.C., Li, Z.W.: Short-term scheduling of crude-oil operations:
petri net-based control-theoretic approach. IEEE Robot. Autom. Mag. 22(2), 64–
76 (2015)

8. Zhang, J.F., Khalgui, M., Li, Z.W., Frey, G., Mosbahi, O., Salah, H.B.: Recon-
figurable coordination of distributed discrete event control systems. IEEE Trans.
Control Syst. Technol. 23(1), 323–330 (2015)

196 I. Khemaissia et al.

9. Javaid, H., Shafique, M., Henkel, J., Parameswaran, S.: System-level application-
aware dynamic power management in adaptive pipelined MPSoCs for multimedia.
In: Computer-Aided Design, San Jose, CA, pp. 616–623 (2011)

10. Gharsellaoui, H., Khalgui, M., Ben Ahmed, S.: New optimal preemptively schedul-
ing for real-time reconfigurable sporadic tasks based on earliest deadline first algo-
rithm. Int. J. Adv. Pervasive Ubiquit. Comput. IJAPUC 4(2), 65–81 (2012)

11. George, L., Courbin, P.: Reconfiguration of uniprocessor sporadic real-time sys-
tems: the sensitivity approach. In: IGI-Global Knowledge on Reconfigurable
Embedded Control Systems, pp. 167–189 (2011)

12. Khalgui, M., Mosbahi, O., Li, Z.W., Hanisch, H.-M.: Reconfiguration of distributed
embedded-control systems. IEEE/ASME Trans. Mechatron. 16(4), 684–694 (2011)

13. Khalgui, M., Mosbahi, O., Li, Z.W., Hanisch, H.-M.: Reconfigurable multi-agent
embedded control systems: from modeling to implementation. IEEE Trans. Com-
put. 60(4), 538–551 (2011)

14. Khalgui, M., Gharbi, A.: New solutions for feasible and coherent reconfigurations
of multi-agent embedded software architectures. J. Ubiquit. Comput. Pervasive
Netw. JUSPN 1(1), 19–28 (2010)

15. Khalgui, M., Mosbahi, O., Li, Z.W.: Runtime reconfigurations of embedded con-
trollers. ACM Trans. Embedded Comput. Syst. 12(14) (2013)

16. Khalgui, M., Hanisch, H.M.: Reconfiguration protocol for multi-agent control soft-
ware architectures. IEEE Trans. Syst. Man Cybern. Part C 41(1), 70–80 (2011)

17. Ben Atitallah, R., Senn, E., Chillet, D., Lanoe, M., Blouin, D.: An efficient frame-
work for power-aware design of heterogeneous MPSoC. IEEE Trans. Industr.
Inform. 9(1), 487–501 (2013)

18. Baker, T.: Stack-based scheduling of real-time processes. J. Real-Time Syst. 3(1),
67–99 (1991)

19. Chetto, H., Chetto, M.: Some results of the earliest deadline scheduling algorithm.
IEEE Trans. Softw. Eng. 15(10), 1261–1269 (1989)

20. Coffman, E.G., Csirik, J., Galambos, M., Martello, S., Vigo, D.: Bin packing
approximation algorithms: survey and classification, pp. 46–93. Springer, New York
(2013). ISBN: 978-1-4419-7996-4. Edited by Hochbaum, D.S

21. Decreasing Algorithms. http://www.developerfusion.com/article/5540/bin-
packing/6/

22. Albers, S., Mitzenmacher, M.: Average-case analyses of first fit and random fit bin
packing. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete
algorithms, pp. 290–299 (1998)

23. Davis, T.: Bin packing, 29 November 2006. http://www.geometer.org/mathcircles
24. Ndoye, F., Sorel, Y.: Preemptive multiprocessor real-time scheduling with exact

preemption cost. In: 5th Junior Researcher Workshop on Real-Time Computing,
France (2011)

25. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard
real time environment. J. Assoc. Comput. Mach. 20(1), 46–61 (1973)

26. Singhoff, F., Legrand, J., Nana, L., Marce, L.: Cheddar: a flexible real time schedul-
ing framework. In: Association for Computing Machinery, pp. 1–8 (2004)

27. Chattopadhyay, S.: Embedded System Design. PHI Learning Pvt. Ltd., Delhi
(2013). ISBN-8120347307

28. Burns, A., Gutierrez, M., Rivas, M.A., Harbour, M.G.: A deadline-floor inheritance
protocol for EDF scheduled embedded real-time systems with resource sharing.
IEEE Trans. Comput. 64(5), 1241–1253 (2015)

29. Ahmad, B., Arslan, T.: Dynamically reconfigurable NoC for reconfigurable MPSoC.
In: Custom Integrated Circuits Conference, San Jose, CA, pp. 277–280 (2005)

http://www.developerfusion.com/article/5540/bin-packing/6/
http://www.developerfusion.com/article/5540/bin-packing/6/
http://www.geometer.org/mathcircles

CRMPSoC: New Solution for Feasible Reconfigurable MPSoC 197

30. Holzenspies, P.K.F., Smit, G.J.M., Kuper, J.: Mapping streaming applications on a
reconfigurable MPSoC platform at run-time. In: International Symposium System-
on-Chip, Tampere, pp. 1–4 (2007)

31. Samahi, A., Bourennane, E.: Automated integration and communication synthesis
of reconfigurable MPSoC platform. In: Second NASA/ESA Conference on Adaptive
Hardware and Systems, Edinburgh, pp. 379–385 (2007)

32. Ahmad, B., Erdogan, A.T., Khawam, S.: Architecture of a dynamically reconfig-
urable NoC for adaptive reconfigurable MPSoC. In: First NASA/ESA Conference
on Adaptive Hardware and Systems, Istanbul, pp. 405–411 (2006)

33. Sepulveda, J., Pires, R., Gogniat, G., Jiang Chau, W., Strum1, M.: QoSS hierarchi-
cal NoC-based architecture for MPSoC dynamic protection. Int. J. Reconfigurable
Comput. 2012(3) (2012)

34. Thramboulidis, K., Doukas, G., Frantzis, A.: Towards an implementation model
for FB-based reconfigurable distributed control applications. In: Proceedings of
the Seventh International Symposium on Object-Oriented Real-Time Distributed
Computing, Vienna, pp. 193–200 (2004)

35. Lipari, G., Buttazzo, G.: Schedulability analysis of periodic and aperiodic tasks
with resource constraints. J. Syst. Archit. 46(4), 327–338 (2000)

36. Quan, G., Hu, X.S.: Minimal energy fixed-priority scheduling for variable voltage
processors. IEEE Trans. Comput.-Aided. Des. Integr. Circuits Syst. 22(8), 1062–
1071 (2003)

37. Buttazzo, G.C., Bertogna, M., Yao, G.: Limited preemptive scheduling for real-
time systems. a survey. IEEE Trans. Industr. Inform. 9(1), 3–15 (2013)

38. Spuri, M., Buttazzo, G.: Efficient aperiodic service under the earliest deadline
scheduling. In: Proceedings of IEEE Real-Time Systems Symposium, pp. 2–11,
December 1994

39. Spuri, M., Buttazzo, G.: Scheduling aperiodic tasks in dynamic priority systems.
Real-Time Syst. 10, 179–210 (1996)

40. Bui, B.D., Pellizzoni, R., Caccamo, M.: Real-time scheduling of concurrent trans-
actions in multi-domain ring buses. IEEE Trans. Comput. 61(9), 1311–1324 (2012)

41. Santos, P.C., Nazar, G.L., Anjam, F., Wong, S., Matos, D., Carro, L.: Fully
dynamic reconfigurable NoC-based MPSoC: the advantages of total reconfigura-
tion. In: 7th HiPEAC Workshop on Reconfigurable Computing, Berlin, Germany
(2013)

42. Bobda, C., Ahmadinia, A.: Dynamic interconnection of reconfigurable modules on
reconfigurable devices. Des. Test Comput. 22(5), 443–451 (2005)

43. Ishihara, T.: A multi-performance processor for reducing the energy consumption of
real-time embedded systems. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 93, 2533–2541 (2010)

44. Ghazalie, T.M., Baker, T.P.: Aperiodic servers in a deadline scheduling environ-
ment. Real-Time Systems, Department of Computer Science, Florida State Uni-
versity, Tallahassee, vol. 9, pp. 31–67 (1995)

45. Mishra, D., Samei, Y., Dang, N., Dömer, R., Bozorgzadeh, E.: Multi-layer config-
uration exploration of MPSoCs for streaming applications. In: Electronic System
Level Synthesis Conference (ESLsyn) (2012)

46. Hansson, A., Goossens, K.: Trade-offs in the configuration of a network on chip
for multiple use-cases. In: Proceedings of International Symposium on Networks
on Chip (NOCS), Princeton, NJ, pp. 233–242 (2007)

47. Ching, D., Schaumont, P., Verbauwhede, I.: Integrated modelling and generation of
a reconfigurable network-on-chip. Int. J. Embedded Syst. 1(3/4), 218–227 (2005)

198 I. Khemaissia et al.

48. Stensgaard, M.B., Sparso, J.: Renoc: a network-on-chip architecture with recon-
figurable topology. In: Second ACM/IEEE International Symposium on Networks-
on-Chip, pp. 55–64, April 2008

49. Vallina, F.M., Jachimiec, N., Saniie, J.: Nova interconnect for dynamically recon-
figurable NoC systems. In: IEEE Electro/Information Technology, pp. 9546–9550,
May 2007

50. Bobda, C., Ahmadinia, A., Majer, M., Teich, J., Fekete, S., van der Veen, J.:
Dynoc : a dynamic infrastructure for communication in dynamically reconfugurable
devices. In: Field Programmable Logic and Applications, pp. 153–158, August 2005

51. Hajduk, Z., Trybus, B., Sadolewski, J.: Architecture of FPGA embedded multipro-
cessor programmable controller. IEEE Trans. Industr. Electron. 62(5), 2952–2961
(2015)

52. Salehi, M., Ejlali, A.: A Hardware platform for evaluating low-energy multipro-
cessor embedded systems based on COTS devices. IEEE Trans. Industr. Electron.
62(2), 1262–1269 (2015)

53. Obaid, Z.-A., Sulaiman, A., Hamidon, M.: FPGA-based implementation of digital
logic design using altera DE2 board. Int. J. Comput. Sci. Netw. Secur. 9(8), 186–
194 (2009)

54. Altera, Getting started with Quartus II Simulation Using the ModelSim-Altera
Software. https://www.altera.com/content/dam/altera-www/global/en US/pdfs/
literature/ug/ug gs msa qii.pdf

55. Altera, Sopc Builder User Guide. https://www.altera.com/content/dam/altera-
www/global/en US/pdfs/literature/ug/ug sopc builder.pdf

56. Altera, Nios II Processor. https://www.altera.com/products/processors/overview.
html

57. http://www.cynapsys.de/

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_gs_msa_qii.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_gs_msa_qii.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_sopc_builder.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_sopc_builder.pdf
https://www.altera.com/products/processors/overview.html
https://www.altera.com/products/processors/overview.html
http://www.cynapsys.de/

Software Paradigm Trends

Bidirectional Model Transformations Using a
Handcrafted Triple Graph Transformation System

Thomas Buchmann and Sandra Greiner(B)

Applied Computer Science I, University of Bayreuth, 95440 Bayreuth, Germany
{thomas.buchmann,sandra1.greiner}@uni-bayreuth.de

Abstract. Model transformations are the core essence of model-driven software
development. Over the years, languages and techniques for unidirectional batch
transformations have become mature and are used frequently. However, some
transformation problems rather demand for bidirectional and incremental trans-
formations. Unfortunately, available model transformation languages support this
kind of transformations only to a limited extent. In this paper, we present a solu-
tion for bidirectional and incremental model transformations using a handcrafted
triple graph transformation system. As a real world use case, we show the feasi-
bility of our approach in the context of model and code synchronization.

1 Introduction

Model-driven software development (MDSD) has become more and more popular dur-
ing the last decade. The main goal of this development paradigm is to raise the level of
abstraction from source code to higher level models. Starting from an initial model cap-
turing the requirements, a series of models is derived over multiple levels of abstraction
until the system is eventually implemented.

Usually, modeling languages are defined with the help of metamodels in the context
of object-oriented modeling. The Object Management Group (OMG) provides a stan-
dard for describing metamodels, the Meta Object Facility (MOF) standard [1]. Over
the years, the Unified Modeling Language (UML) [2] has been established as the stan-
dard modeling language for model-driven development. In its current version, UML
comprises seven kinds of diagrams dedicated to structural modeling and seven kinds of
diagrams which address behavioral aspects of a software system.

Model-driven Architecture (MDA) [3] has been proposed by the Object Management
Group (OMG) as a result of a standardization process for core concepts in model-driven
software development, which put strong emphasis on interoperability and portability.
Ideally, the process starts with an initial model capturing the requirements of the sys-
tem to be developed. In MDA, UML serves as the standardized modeling language. In
order to achieve portability and interoperability, MDA makes use of so called platform
independent (PIM) and platform specific models (PSM) and it uses UML to describe
both of them.

In the academic world, the Eclipse Modeling Framework (EMF) [4] is the de-facto
standard for research dedicated to model-driven engineering. EMF strictly focusses on
principles from object-oriented modeling and only provides core concepts for defining
c© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 201–220, 2017.
DOI: 10.1007/978-3-319-62569-0 10

202 T. Buchmann and S. Greiner

classes, attributes and relationships between classes, formalized in its metamodel Ecore,
which is based on a subset of MOF – Essential MOF (EMOF).

Model transformations are the driving force behind model-driven software develop-
ment. They describe how a source model is converted to a target model. Depending on
the representation of the (target) models, we typically distinguish betweenmodel-to-text
(M2T) and model-to-model (M2M) transformations.

Currently, the technology for defining and executing unidirectional batch transfor-
mations seems to be fairly well developed. Unfortunately, many transformation scenar-
ios call for different kinds of transformations: After transforming a source model into a
target model it may be necessary to modify and extend the target model. Consequently,
subsequent changes to the source model need to be propagated in a way which allows to
retain the modifications of the target model. These change propagations require incre-
mental rather than batch transformations. In addition, changes to the target model may
have to be propagated back to the source model. In these cases, transformations need to
be bidirectional. Bidirectionality and incrementality result in a round-trip engineering
process in which source and target models may be edited independently and changes
need to be propagated back and forth.

The work presented in this paper was carried out in the context of the Valkyrie [5]
project. Valkyrie is dedicated to the development of an UML-based environment for
model-driven software engineering, mainly focusing on the provision of model trans-
formation tools, e.g., for generating code from class diagrams and statecharts or for
transforming PIM to PSM models. Please note that Valkyrie is built not only for, but
also with model-driven engineering. To this end, and to reduce implementation effort,
we reuse existing technology whenever possible.

A real-world application scenario of bidirectional model transformations is model
and code synchronization in CASE tools: Code generated from structural models (e.g.,
class diagrams) needs to be refined with behavior, which is usually supplied by hand-
written method bodies. Updates need to be propagated back and forth in a round-trip
engineering process. Unfortunately, tool support for transformations of this kind is
rather poor, which was unveiled by addressing this use case with Triple Graph Gram-
mars [6] and QVT-R [7]. Therefore, we handcrafted a triple graph transformation sys-
tem in the programming language Xtend1, which allows to concisely specify rules for
each transformation direction. The execution of the transformation rules is done in an
incremental way. This paper is an extended version of our conference paper [8].

The paper is structured as follows: In Sect. 2, we briefly classify different model
transformation approaches. While Sect. 3 introduces our application scenario, Sect. 4
describes conceptual and technical aspects of our approach. A critical discussion follows
in Sect. 5 whereas related work is presented in Sect. 6. Section 7 concludes the paper.

2 Background

2.1 Model Transformations

Model transformations constitute the core essence of model-driven software develop-
ment. Given a source model s and a target model t, both conforming to their respective
1 http://www.eclipse.org/xtend.

http://www.eclipse.org/xtend

Bidirectional Model Transformations 203

metamodels, a model transformation describes how s is converted to t. Depending on the
respresentation of the models s and t, we distinguish between model-to-model (M2M),
model-to-text (M2T), text-to-model (T2M), and text-to-text (T2T) transformations.

Throughout the years, a wide range of languages and tools for model transfor-
mations has been developed [9]. These approaches differ from each other in several
aspects:

Computational Paradigms: Computational paradigms of model transformation lan-
guages comprise procedural, functional, object-oriented, or rule-based languages.

Transformation Direction: While some languages only provide support for unidirec-
tional (i.e., from the source to the target model), other languages allow to formalize
and execute bidirectional transformations (i.e., from source to target models and vice
versa).

Execution Modes: While batch transformations create the complete target model in
each transformation run from scratch, incremental transformations may be used to
retain changes made to the target model.

Source/Target Model Relationships: If source and target model refer to the same
model instance, the transformation is called in-place transformation. Out-place
transformations operate on different instances of source and target models.

Source/Target Language Relationships: If both source and target model are instan-
ces of the same metamodel, the transformation is called endogeneous. In an exoge-
neous transformation, the metamodels or source and target models are different.

Different model transformation languages exist, ranging from general ones, like
ATL [10] or QVT [11], graph based languages (e.g., Henshin [12] or eMoflon [13]) to
domain-specific transformation languages such as the Epsilon family of transformation
languages [14] or EMG [15].

2.2 Graph Transformations

Model instances may be interpreted as graphs, as a model typically constitutes a span-
ning containment-tree whose elements are interconnected with cross-tree edges. As a
consequence, a model transformation is regarded as a problem in the domain of graph
transformations [16]. In general, graph-based systems may be classified into two dif-
ferent categories: Graph-rewrite systems and graph grammars. For the application sce-
nario of bidirectional model-to-model transformations, a special kind of graph gram-
mars – triple graph grammars [17] – are used typically. Graph rewriting implies that
the graphs are transformed by applying rewrite rules, which specify the replacement
of a graph pattern (left-hand side) by a subgraph to be embedded into the overall host
graph. Triple Graph Grammars (TGG) [17] interpret both source and target models
as graphs and additionally a correspondence graph whose nodes reference correspond-
ing elements from both source and target graphs, respectively, is used. TGGs allow to
describe model transformations in a highly declarative way by means of production
rules, which are used to describe the simultaneous extension of the involved graphs.

204 T. Buchmann and S. Greiner

2.3 Triple Graph Transformation System

As stated earlier, graphs may be used to represent models in a natural way and graph
transformations declaratively describe modifications of graph structures. In order to
maintain consistency between interdependent and evolving models, a graph transfor-
mation system is necessary dealing with at least two graphs: a source graph s, and a
target graph t. When incremental change propagation is required, an additional cor-
respondence graph c is placed in between s and t, in order to maintain traceability
links. Altogether, this results in a triple graph transformation system (TGTS) compris-
ing rules for defining source-to-target and target-to-source transformations and actions
for checking consistency and repairing inconsistencies. TGGs are able to automatically
derive a corresponding TGTS from a TGG specification but, as described in [18] and
[6], the TGG approach suffers from certain limitations which have been unveiled in our
case study. As a consequence, we decided to provide an alternative implementation by
handcrafting the TGTS which deals with the models involved in this use case. Please
note that we intentionally decided to implement the TGTS manually rather than using
graph transformation tools, like Henshin [12], to specify the corresponding forward and
backward rules since we wanted to compare the bidirectional approaches with manual
implementations of model transformations in a current programming language.

3 Round-Trip Engineering of UML Class Models and Java Source
Code

3.1 Approach

For the use case of round-trip engineering between UML models and Java source code,
we have to implement a bidirectional incremental model-to-text transformation: The
UMLmodel is represented as instance of its metamodel; Java source code is maintained
as a set of text files. Since there is no language or tool available which supports the
definition and execution of transformations of this kind, we have to combine multiple
transformation languages and tools to solve the overall transformation problem.

Since the tools used in our alternative implementations of this use case [6,7] assume
that source and target model are represented as EMF models, an EMF representation
of Java source code is required. The abstract syntax tree (AST) which is maintained
by the Eclipse Java editor cannot be used for this purpose because it is not based on
EMF. Instead, we rely on the MoDisco framework [19] which provides an EMF based
representation of Java source code. In addition, MoDisco’s Java models are located on
a higher level of abstraction than ASTs, which facilitates the development of model-
to-model transformations. Furthermore, MoDisco offers a discoverer which transforms
Java source code to a Java model (text-to-model), and a formatter (implemented with
Acceleo2) operating in the opposite direction (model-to-text).

The specific advantage of our architecture, which is presented below, is the fact, that
for the backward direction (i.e., from Java source code to the UMLmodel), the user only
needs to specify fields and not the accessor methods. After backward transforming the

2 http://www.eclipse.org/acceleo.

http://www.eclipse.org/acceleo

Bidirectional Model Transformations 205

changes to the UML model and subsequently invoking the M2T transformation, the
missing accessor methods will be generated automatically.

It is important to note, that our approach is flexible enough to allow the round-trip
engineering to start at either end. However, the forward and the backward transforma-
tions operate in considerably different ways, which will be explained below.

The forward direction (UML model to Java source code, as depicted in Fig. 1) con-
sists of two steps, which could be carried out concurrently.

1. The model-to-text transformation is used to update Java source code such that it is
consistent with the UML model. This transformation includes all required details,
including accessor methods for properties and their bodies. Thus, it comprises both
a structural and a behavioral transformation. For user-defined operations, methods
with protected bodies are generated.

2. In parallel, the Java model is updated by executing the forward transformation rules
specified in the TGTS. Please notice that these rules cover only structural transfor-
mations but ignore accessor methods.

After an update to the source code, a backward transformation is performed in two
sequential steps:

1. The incremental discoverer is used to update the Java model. In particular, this prop-
agation step includes annotations (if present); however, the round-trip may be initi-
ated with Java source code without any annotations. After the synchronization, the
Java source code and the Java model are equivalent.

2. Subsequently, updates to the Java model are propagated to the UML model by
executing the backward transformation rules specified in the TGTS. All structural
elements (classes, class hierarchies, and field declarations) are transformed into cor-
responding UML elements; if possible, opposite fields are grouped into associations.
Accessor methods—annotated with @accessor—are ignored altogether. The sig-
natures of ordinary methods are inserted into the UML model, too.

The reference architecture which is shown in Fig. 1 is used in our round-trip engi-
neering scenario. It was also used in the alternative implementations using TGGs [6]
and QVT-R [7]. Let us start by explaining the components of this architecture:

– A model-to-text transformation was implemented with the help of Acceleo, which
directly generates Java source code from UML models. Acceleo is based on the
template-based transformation language Mof2Text defined by the OMG [20]. The
M2T transformation is unidirectional and complete inasmuch as it generates behav-
ior (accessor methods) in addition to structure. Furthermore, the transformation
operates incrementally. Manually supplied code fragments in the Java source code
may be retained in subsequent generation steps by means of Java annotations
(@generated tag) and protected blocks. In order to prevent the backward prop-
agation of accessor methods into the UML model (see below), the transformation
marks accessor methods with a non-standard Javadoc tag (@accessor).

206 T. Buchmann and S. Greiner

UML
Model
(EMF-
based)

Java
Source
Code

User Interac on

Round-trip Support

Corres-
pondence

Model (EMF-
based)

MoDisco Java
Model (EMF-

based)

BX
rules

BX
rules

MoDisco
(T2M)

Acceleo (M2T)

edit edit

Fig. 1. Round-trip support in Valkyrie: Revised architecture (Source: [8].)

– The text-to-model transformation does not invert the model-to-text transformation;
rather, it takes Java source code and transforms it into an equivalent Java model. To
this end, we reuse the Java metamodel provided by the MoDisco framework. Since
the discoverer provided by MoDisco operates in batch mode only, we implemented
an incremental discoverer which listens to changes to the AST maintained by the
Eclipse Java editor and translates them into updates of the Java model. Furthermore,
the Java model was extended with universally unique identifiers (UUIDs), which
are required by the respective transformation engines in order to reference elements
of the source and the target model in the correspondence model. Please notice that
propagation includes all elements of the AST, in particular accessor methods.

– The Xtend rules, which form the Triple Graph Transformation System (TGTS) oper-
ate on a UML model, a MoDisco Java model, and a correspondence model which
stores a trace connecting elements of UML and Java models, respectively. In contrast
to the transformation from UML to Java source code, the Xtend rules merely specify
structural transformations—including methods with empty bodies for user-defined
operations in the UML model—and ignore accessor methods. The TGTS may be
executed in both directions. After changes have been performed on a source model,
the target model is updated, based on the information stored in the source model,
the correspondence model, and the target model and vice versa. The transformation
of insertions has to be specified in the rules; changes and deletions are handled in a
generic way by an abstract base rule. Altogether, the transformation developer spec-
ifies a set of Xtend rules describing forward and backward direction explicitly and
obtains an incremental bidirectional transformation.

Bidirectional Model Transformations 207

3.2 The Xtend Programming Language

As stated earlier, we implemented the same use case with the help of state-of-the-art
technology for bidirectional and incremental model transformations [6,7]. The results
obtained from these alternative implementations motivated us to try a hand-crafted
TGTS, as some major drawbacks, like combinatorial explosion in the number of rules,
a high cognitive complexity imposed to the transformation developer and the lack of
reuse of transformation patterns, has been revealed. Consequently, we decided to man-
ually implement a TGTS using a modern procedural and object-oriented programming
language. The Xtend (See footnote 1) programming language, has its syntactical and
semantical roots in the Java programming language. However, it focuses on a less
verbose syntax and extra functionality such as type inference, extension methods and
operator overloading. While being primarily an object-oriented language, Xtend also
provides declarative features known from functional programming, e.g., lambda expres-
sions. The Xtend language is statically typed and uses the type system of Java without
modifications. Consequently, Xtend code is compiled into fully executable Java code,
which allows for a seamless integration with existing Java libraries.

4 The TGTS for Bidirectional Incremental Transformations

Developing a TGTS by hand seems to be a tedious and laborious task: First, besides the
generation of graphs, modifications and deletions have to be addressed. Second, each
direction of the transformation has to be specified and considered explicitly. Addition-
ally, it needs rules for checking consistency and establishing correspondences. In the
following we describe how our TGTS is realized. First, we present the involved meta-
models followed by giving one concrete scenario of our round-trip use case. Finally,
the key concepts of the TGTS realization are provided. Detailed descriptions concern-
ing the implementation of rules can be found in our previous article on this topic [8].

4.1 Metamodels

Eclipse UML2. Eclipse UML2 is part of the Eclipse Modeling Project3. It provides
an Ecore-based implementation of the OMG UML2 specification [2]. Eclipse UML2
only constitutes the abstract syntax of UML2. Figure 2 depicts a simplified overview on
relevant metaclasses involved in the transformation.

The Model, which is a specialization of a Package, forms the root of the containment
hierarchy. A package contains PackageableElements which summarize, besides others,
packages and all kinds of classifiers. A Class may store primitive Properties and, like
Interfaces, Operations with different parameters. In contrast, an Association establishes a
relationship between two or more classifiers. Its ends are contained as properties in
either the association or the opposite classifiers. When both ends are navigable the asso-
ciation is said to be bidirectional otherwise unidirectional.

3 http://www.eclipse.org/modeling/.

http://www.eclipse.org/modeling/

208 T. Buchmann and S. Greiner

Fig. 2. Overview on relevant UML metaclasses (Source: [8]).

Java (MoDisco). Since a bidirectional and incremental M2T engine does not exist, it is
necessary to represent Java source code as a model. Thus, we rely on the tool MoDisco
[10], which allows to parse legacy Java code into an Ecore-compliant model instance.
Relevant cutouts of the MoDisco Java metamodel are shown in Fig. 3.

In contrast to the UML metamodel, in this metamodel the Model forming the root of
the containment hierarchy is no specialization of a Package but contains packages that
are also structured hierarchically. They may contain classes, interfaces or enumerations
which are summarized as AbstractTypeDeclarations. These type declarations reference an
arbitrary number of bodyDeclarations which include methods or fields. A Modifier encap-
sulates the visibility and other properties of a method or field, like being static. The
concept of an association is not present.

Besides the available types, in the Model a CompilationUnit is introduced for every
handwritten classifier which serves as anchor points for the code generator.

Model Differences. While both metamodels share many similarities, major and minor
differences challenge the bidirectional transformation. In particular, the UML2 meta-
model resides on a higher level of abstraction by incorporating concepts, like associ-
ations or multiplicities for typed elements. These concepts have to be mapped to dif-
ferent Java concepts where multiplicities are expressed with arrays or collections. For
associations a separate class is introduced that is annotated with a JavaDoc comment
to distinguish it from regular classes. The association class is used to implement the
association semantics controlling the access on the association ends.

Bidirectional Model Transformations 209

Fig. 3. Overview on relevant metaclasses of the JavaMoDisco metamodel (Source: [8]).

4.2 Round-Trip Example

This section provides a brief example to illustrate a simple round-trip scenario in our
use case. Figure 4 depicts single transformation steps as they occur in the transformation
process explained in detail in Sect. 3. The figure provides cutouts of the UML model in
concrete syntax as well as of the resulting Java model in the Ecore tree representation
and in source code.

The transformation starts with a given UML model and an empty Java model. Sub-
sequent changes are performed incrementally. In the initial (UML) model many persons
may live at one Address where the ends of the association lives at are contained in the
respective opposite class. This indicates a bidirectional association which is navigable
in both directions. Moreover, a person might have a name and the Address stores the
street name.

In the first step Java source code is generated from the UMLmodel with the Acceleo
M2T transformation. Figure 4 shows the class LivesAt, generated for the association,
as well as the class Person and Address. The code generator adds accessor methods
for every field. In parallel, our TGTS transforms the UML model into the equivalent
Java MoDisco model by neglecting accessor methods. They are integrated into the Java
model by the text-to-model transformation of the MoDisco Java discoverer (Step2).

In a subsequent step (Step 3) a newmethod, printAddress, is added to the class Address
in the Java source code whereas the rest remains unchanged. Then, the modification is
incrementally propagated back to the UML model by our TGTS (Step 4). As explained
before, accessor methods are ignored by the Xtend transformation whereas the signa-
tures of ordinary methods, like the added method printAddress, are integrated into the

210 T. Buchmann and S. Greiner

UML model. Likewise, the UML model could be further modified by changing the
multiplicity of the address end to infinity. This modification would be incrementally
added to the Java MoDisco model as it was explained in our preceding article.

MoDisco Java
model

UML model

Java source code

UML model

Fig. 4. Example round-trip scenario.

4.3 The Transformation System

This section provides insights in the realization of the TGTS. In the beginning the
section presents the core of the TGTS, the correspondence model. Afterwards, an
overview on the base concepts of the realization and on how to implement concrete
rules is given.

Correspondence Model. In order to implement a TGTS, besides source and target
graph, a correspondence graph is needed. For our use case the simple correspondence
model, depicted in Fig. 5, serves this purpose.

A Transformation contains an arbitrary number of correspondence elements (Corr). In
order to establish traceability links, such elements always refer to at least one EObject

from the source model and one EObject from the target model. In general, the easi-
est kind of mapping are 1:1 mappings. Thus, for the abstract class at maximum one
source and one target element are allowed. The String desc describes the element. The

Bidirectional Model Transformations 211

EClass Corr is abstract to allow different and complex specializations. In our use case,
however, it was sufficient to introduce one concrete class, BasicElem, without any fur-
ther features. In case of 1:n mappings, which are also possible, no additional elements
are created in the correspondence model nor is the upper bound for source or target
elements extended. Rather the additional elements (2-n) are maintained manually in the
rule that covers the basic (1:1) mapping.

Fig. 5. Correspondence model (Source: [8]).

Rule Construction. When specifying a model transformation, the software engineer
needs to decide whether the model elements should be transformed bottom-up, i.e.,
starting with the leaf nodes of the spanning containment tree, or top-down, starting at
the root node. As declarative approaches perform a topological sort of model elements,
software developers have very limited influence on the transformation order. Accord-
ingly, when declaring the rules, the developer must typically assume the resulting order-
ing of the rules and, thus, the execution semantics. Contrastingly, when hand-crafting a
TGTS, the transformation order is fully under the control of the user. In our round-trip
scenario we chose to strictly follow a top-down approach on the highest level (i.e., on
the element level). As a consequence, when transforming child elements, e.g., attributes
or methods of classes, we can always be sure that the respective containers and the
referred types already exist. Therefore, in our round-trip scenario the transformation
starts at the respective root elements (i.e., the Model in both cases) and the primitive
types. Next, the Package hierarchy is established. Once this is finished, type declara-
tions (classes, interfaces, enumeration) and associations are transformed followed by
the respective inheritance relationships. We further tackle properties and methods after-
wards.

As we are hand-crafting our TGTS (unlike in previous approaches [6,7], where
bidirectional model transformation formalisms were used), we need to explicitly specify
both transformation directions. Furthermore, we need to address creation, deletion or

212 T. Buchmann and S. Greiner

update of existing elements. To reduce the specification effort, we made use of the
fact that Xtend builds on the Java VM and it provides mechanisms for inheritance and
method overloading.

The base class Elem2Elem (a cutout is depicted in Listing 1) serves as base for all
transformation rules. For every element being transformed, it is necessary to specify the
forward and the backward direction. Therefore, the two operations sourceToTarget and
targetToSource are integrated in the abstract class. These two general methods implement
basic behavior that is necessary in every transformation. First, the methods remove all
unreferenced elements inside the target model of the respective direction, i.e., in our
scenario the Java model in the forward and the UML2 model in the backward direction
by invoking the methods seen in line 4 and 9 respectively. Such dangling references
may occur in incremental transformations whenever an element of the source of the
transformation direction was deleted. In this case, the target element is deleted as well as
its correspondence element in the correspondence graph. The String parameter could be
used to define specific deletion behavior depending on the name of the given description
of an element. For instance, if a Java class is deleted, all additional manually created
elements for this object type, e.g., the corresponding CompilationUnit, can be removed
from the Java model as well.

Listing 1. Excerpts of abstract base class for transformation rules.

1 abstract class Elem2Elem {
2 ...
3 def void sourceToTarget(String s) {
4 deleteUnreferencedTargetElements(s)
5 corrModel.save(null)
6 targetModel.save(null)
7 }
8 def void targetToSource(String s) {
9 deleteUnreferencedSourceElements(s)

10 corrModel.save(null)
11 sourceModel.save(null)
12 }
13 def Corr getCorrModelElem(EObject ob) {
14 corrModel.contents.get(0).correspondences.
15 findFirst[c | c.umlElement == ob || c.

javaElement == ob]
16 }
17 def getOrCreateCorrModelElem(EObject ob, String

description) {
18 var Corr c = ob.getCorrModelElem
19 if (c == null) {
20 c = corrFactory.createBasicElem => [
21 if (ob.eClass.EPackage instanceof

UMLPackage)
22 umlElement = ob
23 if (ob.eClass.EPackage instanceof

JavaPackage)
24 javaElement = ob

Bidirectional Model Transformations 213

25 desc = description
26]
27 corrModel.contents.get(0).correspondences += c
28 }
29 return c
30 } }
31 def getOrCreateSourceElem(Corr corr, EClass clazz) {
32 if (corr.umlElement == null)
33 corr.umlElement = createUMLElement(clazz)
34 return corr.umlElement
35 }
36 def getOrCreateTargetElem(Corr corr, EClass clazz) {
37 ...
38 }
39 ...
40 }

The methods getOrCreatCorrModelElem (Listing 1, lines 17–30) and getCorrModelElem

(Listing 1, lines 13–16) are both used to retrieve the correspondence element for a given
EObject. Due to their generic implementation they can be used in either direction. Dur-
ing the transformation, however, it might not be obvious if a correspondence element is
already present which occurs when a new element has been created. Then, the getOrCre-

ateModelElement method is invoked. When there is no correspondence element present
yet, this method adds a new one to the correspondence graph linking the given object
as either source or target element of the correspondence element. Thus, it updates the
correspondence graph which is mandatory in the transformation rules. Contrastingly,
whenever the programmer knows the correspondence element for a given EObject exists,
the method getCorrModelElem searches the respective element in the correspondence
graph.

Furthermore, with getOrCreateSourceElem (Listing 1, lines 31–35) the source element
of the provided correspondence element is retrieved or a new object of the provided type
is created and linked in the correspondence element. Consequently, this method comes
into play when transforming in the backward direction – only then a source element
(here, in the UML model) may be still missing when a new element was added in the
target model (here, the JavaModel). This method can be used to find or link the object as
source element during the transformation. The method getOrCreateTargetElem (Listing 1,
lines 36ff) behaves in exactly the same way except it covers the new creation of a target
element (in the Java model).

In order to specify the transformation, concrete classes that inherit from the abstract
Elem2Elem class are introduced for every 1:1 mapping of elements that can be identified.
All of them cover the forward and backward direction, hence, they (re)implement the
methods sourceToTarget and targetToSource. These redefinitions, however, always adhere
to same basic pattern: In the forward direction, at first, all source elements of this
rule are collected from the source model. Then, for every source object the correspon-
dence model is examined whether it already contains an element referencing this source
object. Such element is either retrieved or created by using the aforementioned method

214 T. Buchmann and S. Greiner

(getOrCreateCorrModelElement). With the correspondence element the reference to its tar-
get element could be used to get or (if not present yet) to create the respective target
element (getOrCreateTargetElem). The maintenance of the structural features of the target
object is addressed afterwards. Further elements that must be additionally created or
maintained can be regarded upon the rule execution. At last, unreferenced elements,
introduced through deletions in the source model, are deleted and the modified models
are saved by calling the base implementation of the super method. The implementations
for the backward direction behave exactly in the same way by interchanging source and
target.

Listing 2. Excerpts of a concrete transformation rule for properties.

1 class Property2Attribute extends Elem2Elem {
2 ...
3 override def sourceToTarget(String s) {
4 sourceModel.allContents.filter(typeof(Property))
5 .forEach [p |
6 val corr = p.getOrCreateCorrModelElement(s)
7 val fd = corr.getOrCreateTargetElem(JavaPackage

::eINSTANCE.fieldDeclaration)
8

9 setOwnerJava(p, fd)
10 fd.originalCompilationUnit = fd.

abstractTypeDeclaration.
originalCompilationUnit

11

12 setNameJava(p,fd)
13 setTypeJava(p, fd)
14 setVisibilityJava(p, fd)
15]
16 super.sourceToTarget(s)
17 }
18

19 override targetToSource(String s) {
20 var allProperties = targetModel.allContents.filter(

typeof(FieldDeclaration))
21 .forEach [fd |
22 val corr = fd.getOrCreateCorrModelElement(s)
23 val p = corr.getOrCreateSourceElem(UMLPackage::

Literals::PROPERTY)
24

25 p.name = fd.fragments.get(0).name
26 setTypeUML(fd, p) // set type and

multiplicity
27 setOwnerUML(fd, p) // set owner of the

property
28

29 p.visibility = javaToUMLVisibility(fd.modifier.
visibility)

30]

Bidirectional Model Transformations 215

31 super.targetToSource(s)
32 } }

Listing 2 provides an example for a concrete specialization of the Elem2Elem rule
regarding the transformation of properties. It shows how the forward (lines 3–17) and
backward (lines 19–31) transformation are implemented.

In the forward direction in a first step all source objects, the properties, are retrieved
from the source model (Listing 2, line 4). Then, in the correspondence model for each
source object a correspondence element referencing the source object is searched which
would be retrieved or created if none is present yet (line 5). Next, the target element,
the FieldDeclaration, can either be retrieved via the existing correspondence element or
it is created and assigned to the target reference (line 7, getOrCreateTargetElem). In the
following (lines 9–14), all structural features are maintained. For a field it is necessary
to set the proper type and name and to establish the corresponding ownership. These
assignments, which involve complex logic to treat every kind of property, are imple-
mented in different operations as seen, e.g., in lines 12–14. In this way, it is possible to
keep the basic transformation rule quite simple and understandable. Note, by outsourc-
ing specific logic to methods, these methods might be reused in other rules, like when
determining and setting the type of the parameters of an operation.

The backward direction behaves in exactly the same way except that source and
target objects are interchanged. In contrast to the forward direction, the visibility could
be assigned by only looking at the modifier visibility of the Java field.

Moreover, we like to point out that the implementation shown in Listing 2 handles
all kinds of properties, i.e., those of primitive type and of non-primitive type. The latter
are more complex to handle as they resemble association ends. If a property is of non-
primitive type, it will be added to an association class that handles the access on the
fields. The navigability and the owner of the association end are encoded in a JavaDoc
comment for the Java field. This comment is used in the backward transformation to
assign the end either to the opposite class or the association and to determine whether
it is navigable. Note that the introduction of a separate class for the association further
provides the benefit to be expandable to more complex UML association concepts, like
n-ary relationships.

5 Lessons Learned

5.1 Implementation Effort

The obvious question is, why take the effort of implementing a TGTS by hand, when
there are model transformation languages and tools, which provide native support for
bidirectional and incremental model-to-model transformations. Our experiences with
solving the transformation problem presented in this paper with TGGs [6] and QVT-R
[7] have shown that a significant effort was required to specify bidirectional rules, even
though the transformation developer does not need to take care of the different execution
directions and the incremental mode of operation. In terms of LOC metrics, the QVT-R
solution required 1905 lines of code. On the other hand, the Xtend solution presented in
this paper only required 1032 lines of code, although both transformation directions had

216 T. Buchmann and S. Greiner

to be specified explicitly and code for handling the trace model and performing updates
and deletions on the respective models were required (the latter ones come for free
by the execution engines of both TGGs and QVT-R). If we only consider the forward
and backward rules transforming the UML model into the Java model and vice versa,
the Xtend solution only requires 738 lines of code. The tool for specifying the TGG
rules, that was used in [6], only supports a graphical notation. Consequently it was not
possible to apply a LOC metrics; however, the redundancy problem (see below) was
shared with the QVT-R implementation.

5.2 Redundancy of the Rule Set

The structure of the metamodels involved in the transformation is similar in a number of
places. This circumstance calls for a formalism which provides means to avoid redun-
dancies by fostering reuse of already existing rule patterns. Both, the TGG approach
and the QVT-R approach are highly declarative. Nevertheless, they miss language fea-
tures, like inheritance, genericity or control structures, which are available in the Xtend
language and extensively exploited in our hand-crafted TGTS. The lack of these fea-
tures leads to a combinatorial explosion of the number of rules, both in the QVT-R
[7] and the TGG approach [6], whereas we were able to reduce the number of rules
in the TGTS significantly: Only one rule per model element was required. In addition,
reuse and modularization is aided by object-oriented paradigms, as complex and recur-
ring assignments may be easily extracted to operations, which may be called whenever
appropriate.

5.3 Cognitive Complexity

The cognitive complexity imposed to the rule developer is another important factor.
Both TGG and QVT-R are highly declarative approaches and they impose a higher
cognitive complexity to the developer than the approach presented in this paper. Since
only one single rule set is specified, which is executed in both directions, the developer
needs to make sure that the rules are actually executable in both directions, which is
not always easy. Furthermore, especially in the case of QVT-R, the execution semantics
is confusing as it is not clear in which order statements specified in when and where
clauses are actually executed.

In the Xtend approach presented in this paper, the cognitive complexity for the
developer is reduced, as there are separate rules for each transformation direction. On
the other hand, the developer needs to make sure that both transformation directions
actually match.

5.4 Level of Abstraction

Highly declarative approaches, like TGG or QVT-R, reside on a high level ob abstrac-
tion. Their main benefit is the fact that only a single rule set is required for transfor-
mations in both directions and the respective execution engines take care of reaction to
changes in the participating models (this reaction does not need to be specified by the
transformation engineer).

Bidirectional Model Transformations 217

The hand-crafted TGTS resides on the lowest level of abstraction, as the Xtend
language primarily is a procedural object-oriented language which is augmented with
some declarative language constructs like lambda expressions. However, in our use case
this fact did not cause negative effects on the required implementation effort or on the
complexity of the resulting forward and backward rules.

6 Related Work

Common approaches that are used to transform text (e.g., source code) to models are
based on parsers for the specific text languages. Usually, these approaches work on the
resulting parse trees and map the tree items to corresponding model elements. Typical
limitations are maintenance problems when the underlying M2T templates are changed.

Hettel et al. [21] propose an approach towards model round-trip engineering based
on abductive logic programming. In particular, this approach does not place restrictions
such as injective behavior on the underlying transformations. A reference implementa-
tion is given which can be used to reverse unidirectional transformations based on the
Tefkat language. It is a general approach, which could also be applied to other model
transformation languages, like QVT. However, since the source transformation does not
necessarily need to be injective, ambiguities have to be solved when reversing the trans-
formation. At the end, the “best” solution has to be picked by the user or it has to be
determined using some kind of heuristics.

Angyal et al. present in [22] an approach for model and code round-trip engineering
based on differencing and merging of abstract syntax trees (AST). In this approach, the
AST is regarded to be the platform-specific model (PSM) according to the taxonomy
of models in MDA [3]. Nevertheless, in this approach the AST model has a very low
level of abstraction because it exactly represents the code. Contrastingly, the discovered
Java model which is used in our approach is on a higher level of abstraction. The round-
trip engineering approach comprises two different round-trip tasks: one between PIM
and PSM and one between PSM and code. The approach tries to prevent information
loss during round-trip engineering by using a so called trace model which is used to
synchronize the PIM and the PSM (the AST). Furthermore, the AST and the source
code are updated using a fine grained bidirectional incremental merge based on three-
way differencing. In our approach, information loss is prevented by using Javadoc tags
as annotations. In case model and code are changed simultaneously and the changes are
contradicting, one transformation direction has to be chosen, which causes that some
changes might get lost.

In [23], Bork et al. describe an approach towards model and source code round-
trip engineering, which is based on reverse engineering of M2T transformation tem-
plates. The idea of this approach is to use (customizable) code generation templates as
a grammar to parse the generated (and later modified) code. The benefit of this approach
compared to other approaches using plain Java parsers and the resulting parse tree as a
source for the code to model transformation is that changes to the templates are auto-
matically taken into account during reverse engineering. While the approach described
in [23] requires considerable implementation effort since a template parser, reasoner
and token creator have to be implemented, our approach just required the specifica-
tion of respective Xtend rules that relate two elements of the respective metamodels.

218 T. Buchmann and S. Greiner

Since MoDisco is able to parse source code which even contains syntax or compile
errors into a corresponding Java model, our approach is also independent of the style
of the generated code and it also does not depend on a (usually) fine grained parse tree.
Furthermore, Javadoc tags can be used to add additional meta-information to the code.
While the approach presented in [23] is able to round-trip engineer only code that has
been generated with the corresponding templates, our approach is able to handle any
code which complies to Java language specification version 5. In addition, the approach
by Bork et al. requires bijective reversible templates. E.g., the approach will fail if an
attribute name in a class contains the class name.

There are also approaches that are dedicated to model-to-model round-trip engineer-
ing. This task involves synchronizing models and keeping them consistent. Antkiewicz
and Czarnecki propose an approach towards round-trip engineering for framework-
specific modeling languages (FSML) [24]. FSMLs are a special category of DSLs
which are defined on top of object-oriented application frameworks. In contrast to gen-
eral round-trip engineering approaches, the approach presented in [24] does not have
to deal with non-isomorphic mappings between the artifacts, as the problem domain is
much smaller and only code for a specific framework is generated by the code genera-
tors of the FSML. The synchronization of the involved implementation model is based
on a comparison inspired by CVS and reconciliation. In a last step, conflict resolution
has to be carried out interactively by the user.

7 Conclusion and Future Work

In this paper, which is an extended version of our conference paper [8], we presented
our approach of realizing bidirectional and incremental model transformations with the
help of a hand-crafted Triple Graph Transformation System (TGTS). We applied the
approach to the common use case of model and code synchronization, which is a stan-
dard example for round-trip engineering in CASE tools.

In our previous work [6,7], we used state-of-the-art technology for bidirectional and
incremental model transformations on this use case. The results revealed major draw-
backs, like combinatorial explosion in the number of rules, a high cognitive complexity
imposed to the transformation developer and the lack of reuse of transformation pat-
terns. As a consequence, we decided to manually implement a TGTS using the Xtend
language, a modern object-oriented programming language, which provides some high-
level concepts, like lambda expressions. We had to explicitly specify forward and back-
ward rules and to maintain trace information and the creation, update and deletion of
model elements. Nevertheless, the overall effort in terms of LOC metrics was signifi-
cantly lower than compared to our QVT-R implementation, as inheritance and reuse of
transformation patterns was exploited to a large extent.

Current work addresses the application of our TGTS approach to other examples for
bidirectional model transformations, as listed in [25]. Furthermore, we currently apply
the approach to the synchronization of UML and Alf [26] models.

Future work comprises a quantitative and qualitative evaluation of our three imple-
mented solutions for incremental round-trip engineering.

Bidirectional Model Transformations 219

References

1. Object Management Group: Meta Object Facility (MOF) Version 2.5. OMG, Needham, MA.
formal/2015-06-05 edn. (2015)

2. Object Management Group: Unified Modeling Language (UML). Object Management
Group, Needham, MA. formal/15-03-01 edn. (2015)

3. Mellor, S.J., Kendall, S., Uhl, A., Weise, D.: MDA Distilled. Addison Wesley Longman
Publishing Co. Inc, Redwood City (2004)

4. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF Eclipse Modeling Framework.
The Eclipse Series, 2nd edn. Addison-Wesley, Boston (2009)

5. Buchmann, T.: Valkyrie: a UML-based model-driven environment for model-driven software
engineering. In: Hammoudi, S., van Sinderen, M., Cordeiro, J. (eds.) Proceedings of the 7th
International Conference on Software Paradigm Trends, ICSOFT 2012, Rome, Italy, 24–27
July 2012, pp. 147–157. SciTePress (2012)

6. Buchmann, T., Westfechtel, B.: Using triple graph grammars to realize incremental
round-trip engineering. IET Softw. (2016). http://digital-library.theiet.org/content/journals/
10.1049/iet-sen.2015.0125

7. Greiner, S., Buchmann, T., Westfechtel, B.: Bidirectional transformations with QVT-R: a
case study in round-trip engineering UML class models and Java source code. In: Hammoudi,
S., Pires, L.F., Selic, B., Desfray, P. (eds.) Proceedings of the 4rd International Conference
on Model-Driven Engineering and Software Development, MODELSWARD 2016, Rome,
Italy, 19–21 February 2016, pp. 15–27. SciTePress (2016)

8. Buchmann, T., Greiner, S.: Handcrafting a triple graph transformation system to realize
round-trip engineering between UML class models and java source code. In: Maciaszek,
L.A., Cardoso, J.S., Ludwig, A., van Sinderen, M., Cabello, E. (eds.) Proceedings of the
11th International Joint Conference on Software Technologies (ICSOFT 2016), ICSOFT-PT,
Lisbon, Portugal, 24–26 July 2016, vol. 2, pp. 27–38. SciTePress (2016)

9. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Syst. J. 45, 621–645 (2006)

10. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. Sci. Com-
put. Program. 72, 31–39 (2008). Special Issue on Second issue of experimental software and
toolkits (EST)

11. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, Needham, MA. formal/2015-02-01 edn. (2015)

12. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced con-
cepts and tools for in-place EMF model transformations. In: Petriu, D.C., Rouquette, N.,
Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-16145-2 9

13. Anjorin, A., Lauder, M., Schürr, A.: eMoflon: a metamodelling and model transformation
tool. In: Störrle, H., Botterweck, G., Bourdellès, M., Kolovos, D., Paige, R., Roubtsova, E.,
Rubin, J., Tolvanen, J. (eds.) Joint Proceedings of the Co-located Events at the 8th Euro-
pean Conference on Modelling Foundations and Applications (ECMFA 2012), Copenhagen,
Denmark, Technical University of Denmark (DTU), p. 348 (2012). ISBN: 978-87-643-1014-
6

14. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C., Poulding, S.M.: Epsilon flock: a
model migration language. Softw. Syst. Model. 13, 735–755 (2014)

15. Popoola, S., Kolovos, D.S., Rodriguez, H.H.: EMG: a domain-specific transformation lan-
guage for synthetic model generation. In: Van Gorp, P., Engels, G. (eds.) ICMT 2016. LNCS,
vol. 9765, pp. 36–51. Springer, Cham (2016). doi:10.1007/978-3-319-42064-6 3

http://digital-library.theiet.org/content/journals/10.1049/iet-sen.2015.0125
http://digital-library.theiet.org/content/journals/10.1049/iet-sen.2015.0125
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-319-42064-6_3

220 T. Buchmann and S. Greiner

16. Ehrig, K., et al.: Model transformation by graph transformation: a comparative. In:
Bruel, J.-M. (ed.) MODELS 2005. LNCS, vol. 3844, pp. 71–80. Springer, Heidelberg (2006).
doi:10.1007/11663430

17. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W.,
Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer,
Heidelberg (1995). doi:10.1007/3-540-59071-4 45

18. Buchmann, T., Dotor, A., Westfechtel, B.: Triple graph grammars or triple graph transforma-
tion systems? In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421, pp. 138–150.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01648-6 15

19. Brunelière, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: a model driven reverse engineering
framework. Inf. Softw. Technol. 56, 1012–1032 (2014)

20. Object Management Group: MOF Model to Text Transformation Language, Version 1.0.
Object Management Group, Needham, MA. formal/2008-01 edn. (2008)

21. Hettel, T., Lawley, M., Raymond, K.: Towards model round-trip engineering: an abductive
approach. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 100–115. Springer, Hei-
delberg (2009). doi:10.1007/978-3-642-02408-5 8

22. Angyal, L., Lengyel, L., Charaf, H.: A synchronizing technique for syntactic model-code
round-trip engineering. In: 15th Annual IEEE International Conference and Workshop on
Engineering of Computer Based Systems (ECBS 2008), 31 March–4 April 2008, Belfast,
Northern Ireland, pp. 463–472 (2008)

23. Bork, M., Geiger, L., Schneider, C., Zündorf, A.: Towards roundtrip engineering - a
template-based reverse engineering approach. In: Schieferdecker, I., Hartman, A. (eds.)
ECMDA-FA 2008. LNCS, vol. 5095, pp. 33–47. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-69100-6 3

24. Antkiewicz, M., Czarnecki, K.: Framework-specific modeling languages with round-trip
engineering. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MODELS 2006.
LNCS, vol. 4199, pp. 692–706. Springer, Heidelberg (2006). doi:10.1007/11880240 48

25. Westfechtel, B.: Case-based exploration of bidirectional transformations in QVT relations.
Softw. Syst. Model. (2016). doi:10.1007/s10270-016-0527-z

26. OMG: Action Language for Foundational UML (ALF). Object Management Group,
Needham, MA. formal/2013-09-01 edn. (2013)

http://dx.doi.org/10.1007/11663430
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/978-3-642-01648-6_15
http://dx.doi.org/10.1007/978-3-642-02408-5_8
http://dx.doi.org/10.1007/978-3-540-69100-6_3
http://dx.doi.org/10.1007/978-3-540-69100-6_3
http://dx.doi.org/10.1007/11880240_48
http://dx.doi.org/10.1007/s10270-016-0527-z

Domain-Specific Modelling Using
Mobile Devices

Diego Vaquero-Melchor, Antonio Garmendia, Esther Guerra(B),
and Juan de Lara

Modelling and Software Engineering Group, Computer Science Department,
Universidad Autónoma de Madrid, Madrid, Spain

{diego.vaquero,antonio.garmendia,esther.guerra,juan.delara}@uam.es
http://miso.es

Abstract. Domain-Specific Languages (DSLs) are languages tailored
for a specific application area, like logistics, networking or mobile app
design. They capture the main primitives and abstractions within a
domain, which permits modelling systems and problems within that
domain in a succinct and natural way. DSLs are heavily used in soft-
ware development paradigms like Model-Driven Engineering, and they
are also a means to enable end-users to perform simple programming
tasks in particular domains.

Traditionally, modelling using DSLs has been supported by desktop
computers in static settings that neglect the surrounding contextual
information. Instead, we claim that DSLs can also be very useful in a
dynamic setting where they can profit from mobility and context. There-
fore, in this paper, we identify several scenarios where modelling using
mobile devices – like smartphones or tablets – is useful. We also pro-
pose an architecture and a tool, called DSL-comet, which enables mobile
modelling using graphical DSLs, and supports seamless integration of
desktop and mobile graphical modelling environments.

Keywords: Model-Driven Engineering · Domain-Specific Languages ·
Graphical modelling languages · Context · Mobile devices · DSL-comet

1 Introduction

Domain-Specific Languages (DSLs) [1,2] are “small” languages tailored to a par-
ticular domain. In contrast to general-purpose languages (GPLs) – like Java for
programming or UML for modelling – DSLs target specific application areas, like
networking, user interface design or logical circuits [1]. This way, DSLs provide
useful primitives of the domain, which can be used to create simpler, more inten-
tional system descriptions than those that would result from the use of GPLs.
DSLs can be either graphical [1] or textual [3], though in this paper we will focus
on graphical ones.

DSLs are heavily used in Model-Driven Engineering (MDE) [4], a software
engineering paradigm that promotes an active utilization of models in all phases
c© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 221–238, 2017.
DOI: 10.1007/978-3-319-62569-0 11

222 D. Vaquero-Melchor et al.

of software development. In MDE, models are used to specify, analyse, simulate,
test, execute and generate code for the final applications, among other activi-
ties. While it is possible to define these models using GPLs like the UML, their
construction using DSLs tailored to particular domains is very frequent in prac-
tice [1,5]. DSLs are also enablers for end-user development [6], as they permit
users with no or little computer science background to perform concrete, simple
programming tasks in particular contexts.

A primary goal of models in MDE is to serve as an automation mecha-
nism for development tasks like code generation. Thus, although initial phases
of modelling may take place in informal settings like whiteboards or using pen
and paper, models need to become precisely defined to be machine processable.
Traditionally, the modelling task takes place in desktop computers (or laptops)
assisted by modelling tools, like those based in Eclipse/EMF [7]. While this is
useful for late phases of model development, it introduces rigidity and prevents
using models in flexible scenarios that imply mobility and collaboration or need
to react to contextual information. Unfortunately, most tools for the creation of
DSLs are targeted to desktop environments [1,3].

We claim that modelling using DSLs can benefit from mobility, collabora-
tion and context in several situations. In this paper, we identify scenarios where
mobile modelling is useful, and present an architecture and prototype tool for
the discussed scenarios. Our approach permits the automatic generation of both
desktop and mobile graphical modelling environments from a single description,
as well as the seamless editing of models in both kinds of environments. Our desk-
top modelling environment is an Eclipse plugin based on the Sirius [8] graphical
modelling platform. The mobile modelling environment is based on iOS, and
permits model sharing and local collaborative model editing via local ad-hoc
WiFi networks. Communication between the desktop and mobile environments
is achieved through a dedicated server. Our tool is called DSL-comet (Domain
Specific Language COllaborative Modelling EnvironmenT) and is freely avail-
able at the Apple’s app store, and at http://miso.es/tools/DSL-comet.html. To
illustrate its functionality, we will introduce a DSL for designing factory plants
as a running example.

This is an extended version of our previous paper [9] presented at the 10th

International Joint Conference on Software Technologies (ICSOFT). In this
paper, we enhance the presentation of the motivating scenarios for mobile mod-
elling, we present a more comprehensive description of the technical aspects of
our tool and architecture using a different case study, and we expand the analysis
of related works.

The rest of this paper is organized as follows. First, Sect. 2 motivates the
need for mobile modelling using DSLs, describes several scenarios of interest,
and elicits some technical requirements for tools aimed at supporting mobile
modelling. Next, Sect. 3 describes the architecture we propose to support these
scenarios. Section 4 introduces DSL-comet, the prototype tool that realizes this
vision. Then, Sect. 5 presents a comparison with related research. Finally, Sect. 6
ends with the conclusions and open lines of future work.

http://miso.es/tools/DSL-comet.html

Domain-Specific Modelling Using Mobile Devices 223

2 Scenarios for Mobile Modelling

In this section, we discuss several scenarios where modelling can profit from
mobility, context and collaboration. We will use these scenarios to elicit require-
ments for tools aimed at supporting domain-specific modelling in mobile devices.

2.1 Multi-device Modelling

Mobile modelling tools should keep models compatible with other devices. There-
fore, in the first scenario, we deem necessary being able to use seamlessly mod-
els both in mobile and desktop environments. This means that models can be
created in a desktop environment and then be used in a mobile device, or vice-
versa. Figure 1 shows a schema of this scenario. A server is in charge of storing
the models, which can be downloaded for their editing in mobile and desktop
environments indistinctly, and then be uploaded to the server again.

Desktop modelling
environment

Server

Mobile modelling
environment

DSL users

Fig. 1. Combined desktop and mobile modelling.

Applications of this scenario include modelling in remote locations (e.g., a
wind turbine) through mobile devices. As an example, an operator of a factory
may need to inspect a model of the factory plant on-site, change its parameters
according to the current working location, or even create a model of the plant
while visiting the factory. In this case, the operator would find preferable per-
forming these modelling actions using a mobile device while staying on the plant.
On the other hand, the same models may need to be analysed by other engi-
neers at desktops in the company offices, or be used for simulation or run-time
monitoring.

The seamless integration of desktop and mobile modelling also enables infor-
mal, agile meetings between engineers, who may use a combination of tablets
and desktop monitors for model visualization.

224 D. Vaquero-Melchor et al.

Finally, this scenario is also applicable to the educational domain. In this
setting, professors can create models and modelling exercises in their desktop
computers, and students may access these exercises or modelling lessons for
learning in mobility. Then, students may upload the solution to the exercises to
the server, and be graded by the professors in their desktops.

From the analysis of this scenario, we derive as a technical requirement the
need of a common format to represent models in desktop and mobile environ-
ments. This is more easily achievable if both environments are generated from a
single definition of the DSL being used to build the models.

2.2 Mobile Collaborative Modelling

When modelling in mobility in remote locations (e.g., a farm or a building in the
country side) one cannot assume the availability of a WiFi Internet connection
or even mobile coverage. In this scenario, users can benefit from the short-range
communication capabilities of mobile devices to enable local collaboration, e.g.,
for joint model construction or inspection. This eliminates the need to use a
remote server to orchestrate and coordinate the collaboration, which may incur
in long delays or can be impossible in remote locations where no data connection
is available. Instead, collaboration can occur by using short-range communication
of mobile devices like Bluetooth or WiFi.

Figure 2 illustrates this scenario. First, one user (user 1) downloads from
the server a palette with the different kinds of elements that can appear in the
model. Alternatively, the user may already have the palette stored locally in the
mobile device. Then, this user sets a local WiFi network and invites other nearby
users to the collaborative session. The collaboration rules may be customizable
depending on the particular application. For example, it can be token-based,
with either implicit or explicit assignment of the modification token. The figure
shows a token-based collaboration, where only the user holding the modification

Server

model

1

2

3

Fig. 2. Local collaborative modelling. User 1 starts the session, and user 2 has the
modification token. All users’ devices display an updated view of the model as it is
being modified.

Domain-Specific Modelling Using Mobile Devices 225

token (user 2) can change the model. In the meantime, the devices of all users
participating in the session will display an updated view of the model as it is
being modified. When the session finishes, the model can be stored either in the
server or locally.

Applications of this scenario include those presented in Sect. 2.1, but
enhanced with local collaboration facilities. In particular, local collaboration
enables joint model creation, model revision and discussion, or the collaborative
solution of modelling exercises in an educational setting.

2.3 Context-Based Modelling

Mobile devices can access contextual information, which can be useful in some
modelling scenarios [10]. For example, a mobile modelling environment may
present different parts of a model, or allow different editing actions, depending
on the context. This context may include information about the device state –
like battery, size of screen, orientation, or availability of a WiFi connection –
and external information – like position, time or weather conditions –. Figure 3
illustrates the adaptation of a mobile modelling environment depending on the
context.

context

Server

model

environment
adaptation

Fig. 3. Mobile contextual modelling.

For instance, in the factory example introduced in Sect. 2.1, the mobile app
may present a model of the plant where the engineer is located, updating this
view when the engineer moves to a different location. This way, it becomes easier
for the engineer to monitor or modify the operating conditions of the machines
nearby the current location.

Domotics is another domain where this scenario applies. Similarly to the
factory example, a mobile app could present a model of the devices (TVs, blinds,
lights, heating, etc.) inside the room where the house owner is currently located.
This view would get updated when the owner moves to a different room. By
manipulating the model, the owner may interact with the home devices.

226 D. Vaquero-Melchor et al.

2.4 Requirements for Mobile Domain-Specific Modelling

From an analysis of the presented scenarios, we identify the following require-
ments for a mobile modelling platform:

Rq1. Models should be compatible in mobile and desktop applications. The
environment should enable the seamless use of models in desktop and
mobile devices.

Rq2. In order to allow multi-device modelling (scenario 1), the generation of
both desktop and mobile environments should be easy. Moreover, the
effort needed to generate one desktop and one mobile environment should
be the same as the effort needed to generate only one of them.

Rq3. Model visualization in the mobile environment should be adapted to the
reduced screen size.

Rq4. Model editing in the mobile environment should be adapted to support
typical mobile interaction gestures (e.g., swipe, tap and pinch).

Rq5. In order to allow mobile collaborative modelling (scenario 2), the platform
should support local collaboration in the mobile environment.

Rq6. In order to allow context-based modelling (scenario 3), the platform
should enable context adaptation in the mobile environment, and incor-
poration of context information and the corresponding adaptation rules
in the DSL definition.

The next section describes an architecture that addresses scenarios 1 and 2
and requirements Rq1 to Rq5. Scenario 3 and requirement Rq6 are left for future
work.

3 Architecture

Figure 4 shows the scheme of our proposed architecture, which provides support
for scenarios 1 and 2. It considers two main phases: DSL definition (label 1) and
DSL use (label 2).

In the first phase, the DSL developer defines the DSL. This includes the def-
inition of the DSL abstract syntax (the concepts of interest, together with their
properties and relations), concrete syntax (their visualization), and semantics
(what the models mean, typically enacted by model simulators or code genera-
tors). In this work, we focus on the abstract and concrete syntax, and leave the
semantics for future work.

In MDE, the abstract syntax of a DSL is described through a meta-model.
Implementation-wise, we use standard tools based on the Eclipse Modelling
Framework (EMF) [7] to create the meta-models. Therefore, meta-models are
built using Eclipse in a desktop environment, and then they are uploaded to the
server once their definition is complete.

The graphical concrete syntax (which we call palette) can be defined either
from the mobile environment or from Eclipse in the desktop [11]. In both cases,
it is defined using a wizard that allows assigning icons and shapes to the different

Domain-Specific Modelling Using Mobile Devices 227

define
abstract
syntax

Server

developer

mobile modelling
environment

DSL

DSL users

desktop modelling
environment

DSL defini on

define
concrete

syntax

m
et

a-
m

od
el

pa
le

e DSL use

1

2

DSL

Fig. 4. Our proposed architecture.

meta-model elements. This palette is stored as a model in the server. For this
purpose, we have created a meta-model to describe graphical concrete syntaxes
in a platform-independent way.

To enable combined modelling, we use the same definition (abstract syntax
meta-model and concrete syntax description) to synthesize both a desktop and
a mobile modelling environment, thus covering requirements Rq1 and Rq2. The
desktop environment is realised as a Sirius editor, while we have built our own
tool called DSL-comet to allow the editing of models in mobile devices. DSL-
comet supports typical visualization and interaction styles for mobile devices,
thus covering requirements Rq3 and Rq4.

The DSL users can build models using any of the two generated environments,
and store the models either locally or in the server. This permits the seamless
editing of models both in the mobile device and the desktop environment. In case
of mobility, it is also possible to set up a collaborative modelling session between
several nearby users by temporarily designating one of their mobile devices as a
local server. This enables collaboration without requiring an internet connection,
as demanded by requirement Rq5.

Currently, we use a MongoDB NoSQL database to store the models, meta-
models and palettes. Technically, all these artefacts are stored in JSON for-
mat, and they are converted into XMI to ensure compatibility with the desktop
environment.

Once we have seen the main parts of the architecture we propose, in the next
section we detail its main features. As a running example, we will use a DSL for
factory plants.

228 D. Vaquero-Melchor et al.

4 Tool Support

This section describes our prototype tool for the proposed architecture. The
tool, named DSL-comet (Domain Specific Language COllaborative Modelling
EnvironmenT) is made of three components: a desktop client, a server, and a
mobile app. The desktop client is based on Eclipse, the server is based on Node.js,
and the client is a native iOS app. Next, we explain the three components. More
information about the tool is available at http://miso.es/tools/DSL-comet.html.

4.1 The Desktop Client

In order to define the abstract syntax of the DSL, we use our tool DSL-tao [12].
The distinguishing feature of the tool is that it permits constructing meta-models
by composing predefined patterns. As an example, the window at the back of
Fig. 5 shows an excerpt of the meta-model for the factory DSL, specified using
DSL-tao. According to the meta-model, a factory may contain different types of
machines (generators, terminators and assemblers) connected through conveyors
and controlled by operators. Machines manipulate different types of parts, like
handles, knobs and hammers. Moreover, two attributes in class Machine permit
configuring whether a machine is busy or broken.

Fig. 5. Meta-model of a DSL for factory plants (back). Wizard to define the concrete
syntax of the DSL (front).

http://miso.es/tools/DSL-comet.html

Domain-Specific Modelling Using Mobile Devices 229

Fig. 6. Excerpt of GraphicRepresentation meta-model.

Once the meta-model of the DSL is complete, we need to define its concrete
syntax. This is performed using a dedicated wizard, which is shown at the front of
Fig. 5. The specified concrete syntax is internally described through a platform-
independent meta-model called GraphicRepresentation that records the selected
appearance for the classes and relations in the DSL meta-model (shape, colour,
etc.) as well as the palette that the generated modelling environments will pro-
vide to create instances of the different classes. An excerpt of the meta-model is
shown in Fig. 6. The diagram elements are organized into layers. This is useful
to occlude elements or show more details. However while the generated desktop
graphical editor supports layers, currently the mobile editor does not.

Layers contain graphical elements (class DiagramElement), which point to
the meta-model classes they represent. Objects can be represented as nodes
(class Node) or edges (class EdgeClass). Class EdgeClass provides attributes for
setting the references acting as the source or target of the edge, from the available
references of the class. Moreover, the EdgeStyle contain the information about the
graphical style of the edge (e.g., dash, dot or solid). With respect to the Nodes,
there are different styles of representation, either defining a predefined figure
(e.g., Ellipse, Rectangle or Diamond) or an external one (e.g., SVG). Some of
its attributes can be selected as the label of the node (class LabelAttribute), and
spatial relations between nodes (adjacency, overlapping, containment) can be
defined. However currently, the mobile editor does not support spatial relations,
but the desktop editor does. Common graphical descriptions among different
objects can be reused using abstract nodes (attribute isAbstract in class Node)
and inheritance relations (references Node.parents). As we will see in Sect. 4.3,
“expandable” nodes (Nodes with isExpandable true) can include non-graphical
objects, especially useful in mobile devices because of their reduced screen size
(Rq3 in Sect. 2.4).

230 D. Vaquero-Melchor et al.

Fig. 7. Screenshot of the Sirius desktop client.

From the DSL meta-model and the concrete syntax description, we generate a
desktop graphical modelling environment based on Sirius. Although we currently
target Sirius, other technologies like Graphiti [13] or EuGENia [14] could be
targeted as well. Figure 7 shows a screenshot of the resulting desktop editor.
Since it is a Sirius-based editor, its generation accounts to producing an odesign
model that describes the modelling workbench.

The desktop client provides a dedicated view called Mobile Server View to
interact with the remote server. This view has two tabs. The first one, named
Meta-models, lists all meta-models stored in the server and its corresponding
graphic representation. The window in the back of Fig. 5 shows this tab. By
right clicking on one of the listed meta-models it is possible to download it,
together with its concrete syntax. Additionally, the client has also functionalities
to upload the meta-model and the concrete syntax in the server. We allow a single
meta-model to have several concrete syntax representations.

Figure 7 shows the second tab of the view, called Diagrams. It displays the
list of diagrams (i.e., models) stored in the server. By right clicking on a model,
a contextual menu with several options appears. From the options in this menu,
it is possible to obtain a pre-visualization of the selected model (as shown in the
figure), download the model in XMI format (standard format to persist EMF
models), and download the graphical information of the model (e.g., position
of nodes). As an example, Fig. 7 shows a model previously created in a mobile
device, which has been downloaded (both its XMI and graphical information) to
the desktop environment from the server. Sirius stores the graphical information
attached to models in aird files.

Domain-Specific Modelling Using Mobile Devices 231

4.2 The Server

We have developed a remote server to store models, meta-models and palettes
(called artefacts henceforth). The server is deployed on the Heroku [15] platform
and uses “Node.js” [16] technology. The server can be accessed from http://
miso.es/tools/DSL-comet.html.

There are two ways to manage artefacts in the server: either using REST
services or through the web-based application. In order to enhance scalability, we
store artefacts in a MongoDB [17] database using JSON format. The advantage
this format brings is that other external tools can use our artefacts directly.

On the other hand, the desktop clients use EMF technology, which is not
directly accessible on mobile platforms. To solve this problem, we have devel-
oped some services to convert back and forth between JSON and XMI. This
technique has the advantage of providing a lighter, portable format for using
models in mobile apps. Other mobile platforms may use these services to work
with meta-models.

4.3 The iOS Client

The mobile client has been developed for iOS devices (i.e., iPhone and iPad).
It has been designed to use the minimum internet traffic, and therefore, it does
not require data connectivity most of the time. An internet connection is only
necessary to download palettes and meta-models from the server though. Once
those files are downloaded, the user may create and edit diagrams with no need
for connectivity.

Figure 8 shows the main screen of the mobile app, where the same model
shown in Fig. 7 is being edited. The image is decorated with labels depicting its
main functionalities.

Label 1 corresponds to the canvas where the model is drawn. We have spe-
cially kept in mind the reduced screen size of mobile devices when creating the
app (from 4.0 in. in an iPhone 5s, to 12.9 in. in an iPad Air). The user may
drag classes from the bottom palette (label 2) to the canvas, in order to create
instances of them. This palette can be collapsed to save space.

The user can add annotations (such as notes, hand-made drawings and tem-
poral alerts) to the diagram, using the button with label 4. A new model can be
created (label 5) and saved locally or in the server (label 6).

Label 7 points to the search tool, which is useful to find elements on the
canvas using filters. Users may initiate a collaboration session with nearby users
(label 8), select a new palette (label 9) and share the model via Airdrop1. Finally,
it is possible to take a screenshot of the current model (label 11) and save it on
the camera roll or send it via Twitter or e-mail.

Tool Workflow. The app user can either use a palette from the server or use
a local one (see Fig. 9). Taking into account that this tool may be used without
internet connection, the app can download a palette and store it locally on the
mobile device.
1 Airdrop is a file sharing technology of iOS similar to Bluetooth.

http://miso.es/tools/DSL-comet.html
http://miso.es/tools/DSL-comet.html

232 D. Vaquero-Melchor et al.

Fig. 8. Screenshot of the editor on an iPhone SE.

Model editing is done by gestures in the mobile touch screen. Draggable
elements are created by dragging from the palette. As the palette may be too
long, we support scrolling to show more elements. The canvas itself supports
zoom-in (open pinch) and zoom-out (close pinch).

Connecting elements is done by a long press from the source node to the
target one. The tool is able to resolve the admissible relationships that may
exist between those two elements. If several relationships are possible, the user
can select the desired one.

If an object is selected in the canvas, the application displays a detailed view
with its attributes and output connections (see Fig. 10). The user can update its
attributes and the visual representation gets updated accordingly. Given that
models can become large, the application includes a search tool where the user
can ask for any object using filters, as shown in Fig. 11. The filters allow searching
for nodes having a certain value in some selected attributes, as shown in Fig. 12.

When defining a DSL (see Sect. 4.1), the DSL developer can declare some
references as “Expandable”. Figure 13 shows an instance of the Conveyor class
with the default behavior, which is representing the links between the conveyor
and the three parts it contains (a hammer, a handle and a knob) as edges. By
setting the part reference of the Conveyor class as “Expandable”, those parts
would not be shown in the canvas. Instead, the details view of the conveyor
would include an option to create instances of Part, as Fig. 14 shows. If we select
the Create Link Parts option, the new view in Fig. 15 will be shown. From this
view, we can create instances associated to the conveyor that will not appear

Domain-Specific Modelling Using Mobile Devices 233

Fig. 9. Selecting a palette. Fig. 10. Example of a node details.

Fig. 11. Filtering by class type. Fig. 12. Filtering by attributes.

on the canvas. This is especially useful in a mobile app to save space, given the
reduced size of the screen of mobile devices.

Once the user has created the model, it can be saved either on the server
or locally. The model can also be shared via Airdrop or via some external apps

234 D. Vaquero-Melchor et al.

Fig. 13. Example of a conveyor without expandable items.

Fig. 14. A conveyor with an expand-
able reference.

Fig. 15. Creating a part linked to
the conveyor.

like Google Drive or Dropbox (Fig. 16). The model is serialized as a “.demiso”
file with XML schema. This file extension is detected by the operative system,

Domain-Specific Modelling Using Mobile Devices 235

whereby it will show the user the option to open those files with the DSL-comet
app.

Fig. 16. Some sharing options.

Collaboration Support. The mobile app allows a group of nearby users to
work together on a diagram without an internet connection. For this purpose,
first, one of the users needs to offer a diagram in collaboration. The user’s device
will become the local server of the session. Then, one or more users can connect
to this local server. The role of this server is to store the diagram information
and send the model changes to the clients periodically, so that every connected
device has a synchronized model status.

We use a token-based collaboration approach, where only the user holding
the token (initially the server) can modify the model. Any model change is sent
to the server device, and from there, it is propagated to all connected clients, so
that they see the synchronized model on their screens. Clients may ask for the
token at any point, and the collaboration server has to agree (or deny) to grant
the token.

5 Related Work

Many tools have been proposed along the years to create graphical DSLs, like
AToM3 [18], EuGENia [14], GMF [19], Graphiti [13], MetaEdit+ [1] or Sirius [8].
However, most of them target the generation of graphical editors for the desktop,
but not for mobile devices.

236 D. Vaquero-Melchor et al.

Some recent works allow creating graphical DSL environments for modelling
in the web, like AToMPM [20], EuGENia Live [21] or WebGME [22]. However,
although these environments can be utilized within a mobile device using a web
browser, this poses several drawbacks. First, the web environments are not tai-
lored to the particularities of mobile devices, whereas a mobile app is optimized
for its execution in the mobile, and enables forms of visualization and interaction
gestures especially designed for the reduced space of a mobile device. Second,
web applications require connectivity, which might not be available when mod-
elling in remote locations. Finally, relying on a web application for collaborative
modelling might involve greater delays than the local short-range form of col-
laboration we support.

On the other hand, although MDE has been used to produce mobile applica-
tions [23], few works report on mobile domain-specific modelling environments.
Some of them are described next.

CEL [24] is a mobile iOS application to create UML class diagrams, with
no support for collaboration or model sharing. FlexiSketch [25] is a sketching
mobile modelling tool especially tailored for software requirements modelling,
and it supports collaboration. However, none of these two tools support combined
modelling in desktop and mobile.

The flexibility that touch screens provide for modelling has also been
explored. For instance, Calico [26] is a sketching tool, where the sketched ele-
ments can be scrapped and reused in other parts of the diagrams. It works on a
digital whiteboard, not on mobiles, but relies on touch-based interaction.

Some works allow programming in mobile devices using graphical lan-
guages [27]. However, such languages are fixed, and the environment is created
ad-hoc for them. Instead, we enable the creation of arbitrary graphical DSLs,
where their environment is configured with the DSL descriptions. We believe that
our tool could greatly simplify the construction of these kinds of applications.

Altogether, we can conclude that our approach is novel as it permits creating
both a desktop and a mobile DSL modelling environment, multi-device modelling
in the mobile and the desktop, and collaboration using mobile devices.

6 Conclusions

In this paper, we have presented our proposal for enabling mobile domain-specific
modelling, showing some scenarios of interest and a working prototype tool called
DSL-comet. We claim that enabling modelling on mobile devices present interest-
ing opportunities for MDE, including more flexibility and the use of contextual
information.

We are currently improving our prototype tool to support more advanced
collaborative model editing. In the short term, we will also address scenario 3 and
requirement Rq6 related to contextual modelling, which implies specifying the
contextual information of interest and adaptation rules in the DSL definition. We
would like to combine the tool with Wodel [28], a system to generate modelling

Domain-Specific Modelling Using Mobile Devices 237

exercises, so that students can make those exercises in mobile devices. Finally,
we plan to conduct empirical user studies to evaluate our proposal for different
domains.

Acknowledgements. This work was supported by the Spanish Ministry of Economy
and Competitivity (TIN2014-52129-R), and the R&D programme of the Madrid Region
(S2013/ICE-3006).

References

1. Kelly, S., Tolvanen, J.: Domain-Specific Modeling - Enabling Full Code Generation.
Wiley, Hoboken (2008)

2. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37, 316–344 (2005)

3. Voelter, M.: DSL Engineering - Designing, Implementing and Using Domain-
Specific Languages (2013). dslbook.org

4. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool, San Rafael (2012)

5. Whittle, J., Hutchinson, J.E., Rouncefield, M.: The state of practice in model-
driven engineering. IEEE Softw. 31, 79–85 (2014)

6. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.F., Burnett, M.M., Erwig, M.,
Scaffidi, C., Lawrance, J., Lieberman, H., Myers, B.A., Rosson, M.B., Rothermel,
G., Shaw, M., Wiedenbeck, S.: The state of the art in end-user software engineering.
ACM Comput. Surv. 43, 21 (2011)

7. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley Professional, Boston (2008)

8. Sirius (2016). https://eclipse.org/sirius/
9. Vaquero-Melchor, D., Garmendia, A., Guerra, E., de Lara, J.: Towards enabling

mobile domain-specific modelling. In: ICSOFT 2016, vol. 2, pp. 117–122. ICSOFT-
PT, SciTePress (2016)

10. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan,
A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive
Mob. Comput. 6, 161–180 (2010)

11. Garmendia, A., Pescador, A., Guerra, E., de Lara, J.: Towards the generation of
graphical modelling environments aided by patterns. In: Sierra-Rodŕıguez, J.-L.,
Leal, J.P., Simões, A. (eds.) SLATE 2015. CCIS, vol. 563, pp. 160–168. Springer,
Cham (2015). doi:10.1007/978-3-319-27653-3 16

12. Pescador, A., Garmendia, A., Guerra, E., Cuadrado, J.S., de Lara, J.: Pattern-
based development of domain-specific modelling languages. In: MODELS, pp. 166–
175. IEEE (2015)

13. Graphiti. https://eclipse.org/graphiti/
14. Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A.C., Botterweck, G.:

Taming EMF and GMF using model transformation. In: Petriu, D.C., Rouquette,
N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 211–225. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16145-2 15

15. Heroku (2016). https://www.heroku.com/
16. Node.js (2016). https://nodejs.org/
17. MongoDB (2016). https://www.mongodb.org/

http://dslbook.org/
https://eclipse.org/sirius/
http://dx.doi.org/10.1007/978-3-319-27653-3_16
https://eclipse.org/graphiti/
http://dx.doi.org/10.1007/978-3-642-16145-2_15
https://www.heroku.com/
https://nodejs.org/
https://www.mongodb.org/

238 D. Vaquero-Melchor et al.

18. de Lara, J., Vangheluwe, H.: AToM3: a tool for multi-formalism and meta-
modelling. In: Kutsche, R.D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp.
174–188. Springer, Heidelberg (2002). doi:10.1007/3-540-45923-5 12

19. GMF. http://www.eclipse.org/modeling/gmp/
20. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S.V., Ergin, H.:

AToMPM: a web-based modeling environment. In: Joint Proceedings of MODELS
Invited Talks, Demonstration Session, Poster Session, and ACM SRC, Proceedings
of CEUR Workshop, vol. 1115, pp. 21–25 (2013). CEUR-WS.org

21. Rose, L.M., Kolovos, D.S., Paige, R.F.: Eugenia live: a flexible graphical modelling
tool. In: XM @ MoDELS, pp. 15–20. ACM (2012)

22. Maróti, M., Kecskés, T., Kereskényi, R., Broll, B., Völgyesi, P., Jurácz, L.,
Levendovszky, T., Lédeczi, Á.: Next generation (meta)modeling: web- and cloud-
based collaborative tool infrastructure. In: MPM @ MoDELS, Proceedings of
CEUR Workshop, vol. 1237, pp. 41–60 (2014). CEUR-WS.org

23. Vaupel, S., Taentzer, G., Harries, J.P., Stroh, R., Gerlach, R., Guckert, M.: Model-
driven development of mobile applications allowing role-driven variants. In: Dingel,
J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS,
vol. 8767, pp. 1–17. Springer, Cham (2014). doi:10.1007/978-3-319-11653-2 1

24. Lemma, R., Lanza, M., Olivero, F.: CEL: modeling everywhere. In: ICSE, pp.
1323–1326. IEEE/ACM (2013)

25. Wüest, D.: FlexiSketch: a mobile sketching tool for software modeling. In: Uhler,
D., Mehta, K., Wong, J.L. (eds.) MobiCASE 2012. LNICST, vol. 110, pp. 225–244.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36632-1 13

26. Mangano, N., LaToza, T.D., Petre, M., van der Hoek, A.: Supporting informal
design with interactive whiteboards. In: CHI, pp. 331–340. ACM (2014)

27. Danado, J., Paternò, F.: Puzzle: a mobile application development environment
using a jigsaw metaphor. J. Vis. Lang. Comput. 25, 297–315 (2014)

28. Gómez-Abajo, P., Guerra, E., de Lara, J.: Wodel: a domain-specific language for
model mutation. In: SAC, pp. 1968–1973 (2016)

http://dx.doi.org/10.1007/3-540-45923-5_12
http://www.eclipse.org/modeling/gmp/
http://ceur-ws.org/
http://ceur-ws.org/
http://dx.doi.org/10.1007/978-3-319-11653-2_1
http://dx.doi.org/10.1007/978-3-642-36632-1_13

Applying MDA to Rule and Data Generation
for Compliance Checking

Deepali Kholkar(B), Sagar Sunkle, and Vinay Kulkarni

Tata Consultancy Services, Pune, India
{deepali.kholkar,sagar.sunkle,vinay.vkulkarni}@tcs.com

Abstract. Compliance to regulations is a critical problem for
enterprises. Increasing regulation and need for reduced time-to-market
has led enterprises to look to technology to scale and automate their
compliance efforts. Automated compliance checking approaches proposed
in research need human experts to formally encode rules, as well as to
extract the relevant data from enterprise data stores. We present a model-
driven architecture (MDA) and method to semi-automate generation of
formal rules and extraction of relevant data for compliance checking,
based on OMG’s MDA methodology. We demonstrate how building a
fact-oriented model of the regulation is central to both relating it to
the enterprise as well as deriving formal specification of rules. We illus-
trate our approach using a real-life case study of the MiFID-2 financial
regulation.

Keywords: Model-driven engineering · Model-Driven Architecture
(MDA) · Regulatory compliance · Rule base · Rule languages ·
Production rule systems · Formal logic · SBVR · CIM · PIM · PSM ·
Data integration

1 Introduction

Modern enterprises operate in an unprecedented regulatory environment [1].
Increasing regulation and heavy penalties on non-compliance have placed regu-
latory compliance among the topmost concerns of enterprises worldwide1. Enter-
prises are increasingly looking to technology to aid their overall compliance
process and efforts.

Industry uses GRC frameworks2 for compliance management and tracking.
These are document-oriented systems that help human experts maintain trace-
ability between various artefacts in the compliance life-cycle. Documents such
as legal text of regulations, compliance process descriptions, audit reports, etc.
can be linked using tagging mechanisms3. Actual implementation of compliance
to regulations happens through organizational processes and IT systems.
1 Top Ten Problems Faced by Business, http://www.bmgi.com/resources/articles/top-

ten-problems-faced-business.
2 MetricStream, http://www.metricstream.com/.
3 OpenCalais, http://www.opencalais.com/.

c© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 239–263, 2017.
DOI: 10.1007/978-3-319-62569-0 12

http://www.bmgi.com/resources/articles/top-ten-problems-faced-business
http://www.bmgi.com/resources/articles/top-ten-problems-faced-business
http://www.metricstream.com/
http://www.opencalais.com/

240 D. Kholkar et al.

Fig. 1. Formal approach to compliance checking [9].

Compliance checking, i.e. validating whether the enterprise adheres to
applicable regulations, can be done at two levels - design-time, i.e. checking
the organization’s business process definitions, and run-time compliance, i.e.
checking enterprise data resulting from process execution.

Several approaches for automated compliance checking have been proposed
in literature [2–8]. All of these use formalisms to encode rules, and a reasoning
engine to check compliance of operational details of the enterprise, as illustrated
in Fig. 1. Operational details could be enterprise business processes or data,
depending on whether design-time or run-time compliance is to be checked, and
are encoded in the same formalism as the rules. The rule engine produces as
output a trace or formal proof of compliance, as shown in Fig. 1 [9].

Most approaches in literature focus on design-time checking [2–4] of business
processes. Of the run-time approaches, some use execution paths generated from
business process models for compliance checking. Others use production rule
systems (PRS) to check data from enterprise application databases [4]. These
systems, also known as business rule management systems (BRMS), are widely
employed in practice. BRMS allow rules to be declaratively specified and eval-
uated on enterprise data, outside of core application code. This approach offers
several advantages, viz. visibility, centralized definition, and easier maintenance
of rules.

Business rules are the most critical component of any application and drive
all the business processes in the organization. It is therefore imperative that
domain experts are able to directly specify, maintain, and control business rule
repositories [40]. However, rule languages have program-like syntax, requiring
programmers to encode rules. This leads to two separate teams to maintain rule
bases - domain experts to specify rules and programmers to encode them, leaving
room for gaps in understanding. In addition, manual coding of rules is effort-
and cost-intensive, also, vulnerable to error.

The entire process of interpreting natural-language (NL) regulations, relating
them to enterprise information, specifying rules in BRMS, extraction of relevant
data for compliance checking, and deciphering the results, all constitute a huge

Applying MDA to Rule and Data Generation for Compliance Checking 241

workload on human experts, accounting for the high effort and cost of compliance
in practice [10]. Automation in the end-to-end process to the extent possible is
highly desirable to bring down effort and cost.

Research approaches as well as BRMS, automate only the compliance check-
ing step, relying on human experts to create both rule and data specifications.
The problem of relating the regulation to the enterprise, i.e. identification of
relevant enterprise data is simplified in current approaches by assuming corre-
spondence between terminology used on both sides. In reality, there are several
issues involved. One, the relation is not a direct mapping. The regulation uses a
conceptual information model at a different level of abstraction from that used by
the enterprise in its systems. The corresponding model of enterprise information
may span several enterprise systems and databases. Moreover, there is typically
an overlap between data in various systems. Finally, there is no mapping or com-
mon enterprise-wide view of the data [9]. Currently, these issues are surmounted
by teams of business, legal, and operations experts working together.

We focus on these two specific problems in the automated compliance check-
ing context, viz.

1. Creation of formal specification of regulation rules from natural-language reg-
ulation text and

2. Identification and extraction of enterprise data relevant to a regulation from
application databases

Both these tasks cannot be completely automated, and require expert inter-
vention. We therefore present a semi-automated solution to aid human experts.
In order to relate the regulation to the enterprise, we need to map their con-
ceptual models. We therefore proposed creation of models as abstractions of
the regulation and enterprise. Models are suitable for mapping as opposed to
NL text, since they are a precise, structured representation adhering to a spe-
cific meta-model. Model-driven engineering (MDE) [11,12] advocates creation
of machine-manipulable models from which code can be generated in an auto-
mated manner. We apply the MDE process defined by the Object Management
Group (OMG) in their model-driven architecture (MDA) standard, to our two
problems in the compliance context, listed above.

In this paper, we present a model-driven architecture that uses separation of
concerns to create models at a suitable level of abstraction for each step of the
compliance process. We show how meta-model mapping between the model lay-
ers enables automated generation of downstream models. Specifically, we demon-
strate how building a model of regulation rules helps automate generation of the
rule base in a rule language, as well as map to relevant data within the enter-
prise. In the next few sections, we describe our approach and illustrate it using
a real-life case study of the MiFID-2 financial regulation.

242 D. Kholkar et al.

2 Our Solution Approach

We first give a more precise definition of our problem. Taking a model-theoretic
view4, the regulatory compliance checking problem can be formally defined as

EM |= R (1)

where EM denotes the model of an enterprise that needs to satisfy the formally
specified set of regulation rules R. EM signifies the relevant enterprise details to
be checked for compliance to R, as depicted in Fig. 1. If EM satisfies R, EM is a
model of R, by model theory.

Existing compliance checking approaches automate the checking of EM
against R, given EM and R [9]. Our earlier-stated two problems of the com-
pliance process can now be defined as

1. Creation of the formal specification R of regulation rules
2. Obtaining the relevant enterprise data EM for checking compliance to R

We have elected to use a model-based approach for derivation of EM and R
and for relating them. The key issues are creation of these models from natural-
language information sources, and choice of modeling languages. In the next few
subsections, we describe the technologies used in our solution approach and the
rationale behind each choice.

Regulation text is unstructured information available as NL text. We choose
to take the knowledge representation (KR) [13] approach as a means to arrive
at a structured abstraction of the regulation and then its conceptual model,
from unstructured NL information. A brief overview of KR follows in the next
subsection.

2.1 Knowledge Representation

Knowledge representation [13] is the construction of systems that contain sym-
bolic representations of information in a problem space, such that the represen-
tations have the following properties

– they express propositions about the problem space
– they capture the intentional stance or goals of the problem space, and cause

the system to behave in accordance with these goals.

This definition is as per the Knowledge Representation Hypothesis [14].
Such systems are knowledge-based systems (KBS) and the representations

constitute a knowledge base (KB) [13]. E.g. a KBS representing the game of
chess captures propositions about playing pieces and moves, as also the rules
and goals of the game.

4 Stanford Encyclopedia of Philosophy: Model theory, http://plato.stanford.edu/entri
es/model-theory/.

http://plato.stanford.edu/entries/model-theory/
http://plato.stanford.edu/entries/model-theory/

Applying MDA to Rule and Data Generation for Compliance Checking 243

Fig. 2. Layers of a fact-oriented model [9].

We proceed to build a knowledge base of regulation rules, referred henceforth
as regulation KB. The representations in the regulation KB express propositions
about the problem domain of the regulation. The goals of building our regulation
KB are, to

1. Establish compliance to regulation rules
2. Identify the data EMdata needed for checking compliance to the rules [9].

We choose the fact-oriented modeling (FOM) formalism [15,16] to represent
the regulation KB. The next sub-section gives an overview of FOM.

2.2 Fact-Oriented Modeling

The fact-oriented formalism captures knowledge about the universe of discourse
in the form of facts, also called fact types. Fact types are propositions about
things in the universe of discourse e.g. Customer holds account, account has
balance. Customer, account and balance are concepts, or things in the universe of
discourse. Rules are built by imposing modalities such as obligation and necessity
onto compositions of fact types. e.g. It is obligatory that account has balance if
customer holds account.

The fact-oriented model thus represents knowledge in three layers: concepts,
fact types based upon concepts, and rules based upon fact types, as shown in
Fig. 2. FOM supports reasoning with data provided as a population of ground
facts, shown by the fact population layer in Fig. 2. E.g. for the fact type customer
holds account, a population of ground facts would give data of accounts held by
specific customers e.g. Cust001 holds AC10076, Cust002 holds AC30012.

FOM is thus suitable for modeling the regulation knowledge base for the
following reasons

– Sentences from NL text of regulations can be expressed as propositions or
fact types in FOM.

– Regulation rules can be modeled as compositions of these fact types.

244 D. Kholkar et al.

Fig. 3. Layers in MDA.

– Representation of rules in terms of fact types and concepts identifies the
concept model on which a rule depends, fulfilling the second goal of our
regulation KB.

– FOM maps to first-order logic, and is thus useful for translating rules from
the regulation KB into logical form R.

– Given a fact population for EMdata, a reasoning engine can reason about the
truth of the set of rules R, as given by Eq. 1.

In the next subsection we give a brief overview of OMG’s MDA standard, on
which our compliance architecture is based.

2.3 MDA

MDA advocates creation of abstract, machine-readable models of the prob-
lem and solution space, stored in standardized repositories [11]. Models can be
repeatedly accessed to generate implementation artefacts such as schemas, code,
test harnesses, deployment scripts [11,12]. Models give a higher-level abstraction
over code that is easier to understand and maintain.

Principles of MDA. MDA emphasizes separation of concerns, where domain,
structural, and platform details are encapsulated in separate layers of abstraction
[12]. The three layers of MDA are illustrated in Fig. 3. A description of the
problem space in purely domain-specific terms is captured in the computation-
independent model (CIM)5. The next layer is the platform-independent model
(PIM) that captures design details of the solution in terms of structure and
behavior, however, devoid of technology platform details. Finally, the platform-
specific model (PSM) is the realization of the PIM on a specific technology
platform.
5 Model Driven Architecture - A Technical Perspective, http://www.omg.org/cgi-bin/

doc?ormsc/2001-07-01.

http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01

Applying MDA to Rule and Data Generation for Compliance Checking 245

Fig. 4. Model mapping and transformations in MDA.

The three layers of MDA correspond to phases of the software development
lifecycle (SDLC), as shown in Fig. 3. CIM is the specification of a system created
in the Requirements Gathering phase, PIM corresponds to the Analysis, and
PSM to the Design phase [17].

Model Mapping and Automated Transformation. Models being machine-
operable, successive model layers and finally implementation code can be derived
from previous layers by meta-model mapping and automated transformation. In
addition to productivity and cost benefits over manual development, this enables
traceability all the way from the CIM to the code, making it easier to track
impact of change. Moving to new technology platforms or a different design
choice requires only the relevant model layer and mapping to be changed, and
downstream model layers can be generated afresh to reflect the change. E.g. to
derive the PSM for a different technology platform, the PIM needs only to be
mapped to the meta-model for the new platform, and its PSM generated.

The mapping and transformations between the three layers are illustrated in
Fig. 4. A mapping is a set of rules for deriving one model layer from another, and
is based on the meta-models of the two layers. PIM-PSM mapping can be used to
generate a realization of the logical PIM on physical execution infrastructure6.
If both PIM and PSM are MOF-compliant models, model-to-model transfor-
mation techniques and tools such as QVT7 can be used to generate the PSM.

6 Model Driven Architecture - A Technical Perspective, http://www.omg.org/cgi-bin/
doc?ormsc/2001-07-01.

7 Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, http://
www.omg.org/spec/QVT/1.2/.

http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://www.omg.org/spec/QVT/1.2/
http://www.omg.org/spec/QVT/1.2/

246 D. Kholkar et al.

Implementation code on the chosen technology platform can then be generated
from the PSM using model-to-text transformation.

In the next section, we describe our application of MDA for automated deriva-
tion of rules and data for compliance checking.

3 MDA Applied to Rule and Data Generation
for Compliance Checking

Our model-driven architecture for compliance checking comprises two parts, to
address the two problems defined earlier, viz. (a) MDA for creation of rule base
R and (b) MDA for extraction of enterprise data EM, where R and EM are as
shown in Fig. 1.

In arriving at an MDA for rule base creation, we focus on the specific require-
ments of rule engines, and select modeling languages accordingly, as described
in the next subsection. We use the rule model obtained in this process as basis
for the architecture for enterprise data extraction.

3.1 MDA for Rule Base Generation

All rule engines work on the basic premise that there is information available as
facts, based on which, truth status of rules is to be determined.

Rule engines can be classified into the following three principal kinds8 based
on the reasoning algorithm used

1. Pure inferencing engines such as Prolog, DR-Prolog. These either use forward
chaining i.e. data-driven inferencing about rules beginning with available data
or information, or backward chaining, i.e. goal-driven inferencing beginning
with a goal or query given by the user, and testing for the truth value of its
contained goals one by one, on available data.

2. Production Rule Systems (PRS) such as JBoss Drools that combine infer-
encing using forward or backward chaining or both, called hybrid reasoning,
with actions based on the conclusions drawn.

3. Reactive rule engines that do complex event processing, i.e. detect events
from available information, and react to them.

Applying MDA principles to our context of modeling rules, domain experts can
provide the specification of regulation rules in domain language, as the CIM.
The common conceptual model used by all rule engines comprising rules depen-
dent on facts, forms the PIM. Individual rule languages form the PSM, that can
be generated from the PIM, by mapping PIM and PSM meta-models. The tex-
tual rules in the syntax of the rule language can be generated by model-to-text
transformation from the PSM.

MDA thus provides an alternative to encoding rules by hand and offers the
possibility of switching to or maintaining multiple implementations of a rule base
on various platforms by mapping their PSMs to a common PIM.
8 Production Rule Representation, http://www.omg.org/spec/PRR/.

http://www.omg.org/spec/PRR/

Applying MDA to Rule and Data Generation for Compliance Checking 247

In the next few subsections, we discuss the choice of modeling languages for
each layer of our MDA.

Choice of CIM and PIM. We need a language for domain experts to specify
rules using domain terminology, as the CIM. SBVR was devised by OMG as a
standard for capturing the vocabulary used by a business domain, definitions
and relations between terms, and business rules governing the domain. SBVR is
a fact-oriented modeling language [15,16], that captures rules as compositions
of facts. This is the same conceptual model as that used by all rule engines,
making SBVR the natural choice of model. Figure 2 shows the layers of a fact-
oriented model, where the SBVR meta-model makes up the meta-knowledge
layer. An SBVR model of regulation rules created by instantiating this meta-
model constitutes the knowledge layer, while enterprise data forms the ground
facts.

OMG provides a MOF-compliant meta-model for SBVR, and also a con-
trolled natural language notation for specifying the model, called SBVR Struc-
tured English (SE)9. SBVR SE is a restricted subset of natural language, with
a well defined set of keywords that connect phrases denoting concepts and their
relations. We use SBVR SE for the CIM, since it is a structured, yet near-
natural language notation in which the vocabulary and rules for any domain can
be specified, fulfilling the criteria for a CIM.

Since SE is intended as a means to populate the SBVR model, its elements
have a direct correspondence with the SBVR meta-model. A translation scheme
from SE to an SBVR model can thus be worked out. It therefore follows that
we use SBVR as the PIM. SBVR SE and SBVR model have often been clubbed
in literature and classified as a CIM [39]. We choose to treat SE as a CIM
notation for the aforementioned reasons, and the SBVR model as a PIM since it
captures structure and behaviour of domain entities using a specific meta-model.
A concept model captures the structure, while rules using logical formulations
built upon the concept model encode the behaviour. The SBVR meta-model
subset we use is described in detail in the next section.

SBVR Meta-Model. We use a subset of the OMG SBVR meta-model10,
shown in Fig. 5, for capturing regulation rules. The meta-model comprises three
sections, as shown in the figure.

1. Meaning Vocabulary: This is the meta-model for capturing structure or
the body of concepts. Noun concepts denote entities, while verb concepts, also
called fact types, signify relations. Fact types take the form role verb role,
where role denotes a noun concept. General concepts and concept types spe-
cialize concepts and help create concept hierarchies. Attributes of a concept
are captured as characteristics.

9 Semantics of Business Vocabulary and Business Rules: Annex A: SBVR Structured
English, http://www.omg.org/spec/SBVR/1.2/.

10 Semantics of Business Vocabulary and Business Rules, http://www.omg.org/spec/
SBVR/1.2/.

http://www.omg.org/spec/SBVR/1.2/
http://www.omg.org/spec/SBVR/1.2/
http://www.omg.org/spec/SBVR/1.2/

248 D. Kholkar et al.

Meaning

Concept

Noun concept Fact Type/ Verb concept

Characteris c

incorporates

Logical Formula on

Modal Formula on

Obliga on Formula on

Logical Opera on

logicalOperand
isBasedOn

embeds

Proposi on

General Concept

Concept Type

isMeantBy

Legend Meaning vocabulary Logical Formula on of
Seman cs vocabulary Rule vocabulary

Rule

Defini onal Rule Role

Verb Concept Role

Logical Nega on Binary Logical Opera on

Conjunc on

Disjunc on

Implica on

Atomic Formula on

Role Binding

rolebinding

role

rolebinding

antecedent
consequent

Fig. 5. SBVR meta-model [9].

2. Logical Formulation of Semantics Vocabulary: This section comprises
logical formulations of fact types. Compound logical formulations e.g. con-
junctions, implications, negations are composed of atomic formulations. Each
atomic formulation is based on a fact type from the body of concepts.

3. Rule Vocabulary: This section specifies rules, based on logical formulations.
We use definitional rules to denote necessity formulations, and operative rules
to denote obligations. A rule inherits from Proposition, that is meant by a
logical formulation that is a formal expression of the rule in terms of fact
types.

SBVR thus provides a comprehensive meta-model for capturing the semantics
of rules as logical formulations over fact types and concepts. The next subsection
takes stock of other existing general-purpose rule languages.

Why SBVR? There are several general-purpose rule languages and notations
in addition to SBVR, such as Production Rule Representation (PRR), RuleML,
SWRL, W3C RIF. SWRL, RuleML and W3C RIF are especially designed for
capturing ontologies for the semantic web. SWRL combines the capabilities of
RuleML and OWL. PRR has been explicitly devised to create a generic repre-
sentation of rules that addresses all types of production rule systems.

We choose SBVR as PIM because of (a) its semantic fact-oriented model
that captures the dependence hierarchy of rules on fact types and concepts,
crucial for inferencing, and (b) its multi-layer modeling capability, supported by
its MOF-compliant meta-model, that allows multiple layers of instantiation. We
choose SBVR over other languages for its inherent mapping to SE. Any other
rule language as PIM would require designing the CIM-PIM mapping from SE.

The expressiveness of SBVR is sufficient to capture a generic platform-
independent representation of rules. The SBVR meta-model, being a FOM, maps
directly to the common conceptual model of rule languages such as DR-Prolog
and PRS such as Drools, although they have different platform-specific models.

Applying MDA to Rule and Data Generation for Compliance Checking 249

SBVR captures both structure and behavior in a single notation, whereas
when PRR is used to capture rules, structure needs to be defined using UML
class models. The next subsection describes platform-specific models for rules.

Fig. 6. Model-driven architecture for rule base generation.

Choice of PSM. As mentioned earlier, DR-Prolog and Drools are rule defini-
tion languages representative of two different classes of rule systems, viz. back-
ward chaining rule engine and production rule system respectively. We select
DR-Prolog as the rule language for our architecture. Its language meta-model
therefore forms our PSM.

The rule definition meta-model of DR-Prolog maps directly to the SBVR
meta-model, since both are fact-oriented models. We create the PIM-PSM map
between SBVR and DR-Prolog meta-models and use it for transformation of the
PIM instance to PSM instance. We then translate the PSM instance to rules in
DR-Prolog syntax.

The resultant architecture for rule base generation is depicted in Fig. 6. MDA
also allows multiple PIM-PSM layers to be used, with each PSM becoming the
PIM for the next layer. E.g. if we choose a PRS as our rule platform, it was
possible to use SBVR as PIM and PRR as a PSM, since PRR captures the
model for the PRS class of systems. The PRR model then becomes the PIM for
a Drools PSM.

In the next section we describe our architecture for extraction of enterprise
data, followed by the detailed method for using the architecture.

3.2 MDA for Enterprise Data Extraction

The SBVR PIM of regulation rules created in the rule generation architecture
described above is used as the basis for data extraction. The SBVR model is a
fact-oriented KB that captures rules and their dependence on fact types.

The fact types on which rules are based denote the propositions whose truth
value must be determined in order to evaluate whether the rule holds. This set of

250 D. Kholkar et al.

Fig. 7. Model-driven architecture for enterprise data extraction.

fact types therefore constitutes the necessary and sufficient model of information
needed from the enterprise, for determining compliance. This is actually the
conceptual data model of the regulation, as we illustrate in the case study section.
Building a fact-oriented KB of the regulation thus addresses the second goal of
the regulation KB. Building an FOM is in fact, a way to get the conceptual
model for any problem space, from unstructured information.

The enterprise provides data as ground facts corresponding to this conceptual
model. These are checked for compliance to the rules by a reasoning engine,
addressing the first goal of the regulation KB. For instance, in the simplistic rule
about customer account, the fact types customer holds account, and account has
balance denote the model of information needed to check compliance to the rule.
The enterprise has to provide ground facts for these fact types, such as Cust001
holds Acct101, Cust002 holds Acct102, Acct101 has Rs 2000, as data.

Our model-driven architecture for data extraction comprises several layers
of models and model transformations to arrive from regulation NL text to the
enterprise data, depicted in Fig. 7. The first two model layers are the SE CIM
and SBVR PIM described earlier. The model layers in this architecture are listed
below.

1. Regulation rules expressed in SE (CIM)
2. Rule model in SBVR (PIM)
3. Conceptual data model of regulation, extracted from the SBVR rule model

(PIM)
4. Enterprise physical data model (PSM).

Our overall architecture, a union of the individual architectures for rule base
creation and data extraction, is shown in Fig. 8. The SBVR PIM of rules is
central to generation of both rules and data, and therefore forms the pivotal
model of the overall architecture. Transformations from one model layer to the
next are described in the next section, as part of our method for using this
architecture for automated generation of rules and data.

Applying MDA to Rule and Data Generation for Compliance Checking 251

Fig. 8. Overall model-driven architecture for rule and data generation.

4 Method for Using the MDA for Rule and Data
Generation

4.1 Rule Base Generation Using SBVR

We create our regulation rule base in the DR-Prolog language, in an automated
manner from the SBVR model of rules. We first create the CIM and PIM of
regulation rules using SBVR. The constructs of the SBVR PIM are then mapped
to constructs of DR-Prolog, which is the PSM. This PIM-PSM mapping is used
for transformation from SBVR to DR-Prolog.

Creation of CIM and PIM of Regulation Rules in SBVR. We use the
Eclipse Modeling Framework (EMF)11 model-to-model and model-to text con-
version tools to import the MOF-compliant SBVR meta-model supplied on the
OMG SBVR website to EMF Ecore format and to generate code for an SBVR
editor.

We build the SBVR model of regulation rules in the following steps

1. Domain experts mark in the NL regulation text, the statements representing
rules to be checked, definitions of terms used in the rules, and data descrip-
tions relevant to the rules.

2. Domain experts then write each NL rule statement in the controlled natural
language SBVR SE. This is the CIM of the regulation. SBVR SE is written
using a restricted English vocabulary, defined in the OMG SBVR specifica-
tion12 and specific font styles, viz. the term font for designating noun concepts,
general concepts, concept types and roles; Name font for individual concepts

11 IBM Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/.
12 Semantics of Business Vocabulary and Business Rules: Annex A: SBVR Structured

English, http://www.omg.org/spec/SBVR/1.2/.

http://www.eclipse.org/modeling/emf/
http://www.omg.org/spec/SBVR/1.2/

252 D. Kholkar et al.

or names; verb font for designations of fact types; and keyword font for other
words in definitions and statements. SBVR SE rule statements for the rules
in our case study are illustrated in the next section.

3. Rules in regulation text are expressed in terms of concepts at a high level
of abstraction. High-level concepts and fact types from regulation rules are
explicated using propositions obtained from definitions or data descriptions
within the regulation text, or knowledge from domain experts, in terms of
more basic concepts and fact types. This process is iteratively followed until
no further explication of concepts is possible [9].

4. We mapped the SE meta-model to the SBVR meta-model. However, we create
the SBVR PIM corresponding to the captured SE statements manually using
the SBVR editor, since automation of the CIM-PIM translation from SE to
SBVR model is ongoing work, its detailed description is therefore not included
in this paper.

The next section deals with transformation of rules from the SBVR PIM to the
target rule language DR-Prolog.

Translation from PIM to PSM: SBVR to DR-Prolog. The SBVR meta-
model has almost a one-to-one correspondence with the conceptual model of
DR-Prolog. We create the PIM-PSM map between SBVR and DR-Prolog meta-
models, by mapping their elements. E.g. A rule is defined as element of guidance
in SBVR, and maps to defeasible rule in DR-Prolog, implication maps to impli-
cation rule, atomic formulation maps to predicate. The entire PIM-PSM map
for DR-Prolog has not been included here for want of space.

A custom program generates the DR-Prolog PSM from the SBVR PIM in
accordance with this PIM-PSM map. From the DR-Prolog PSM, another pro-
gram generates rules in textual format in the corresponding DR-Prolog syntax.

In the next few sections, we describe the method for extraction of enterprise
data relevant to the modeled rules.

4.2 Extraction of Enterprise Data

The first step is extraction of the conceptual data model from the SBVR model
of regulation rules.

Extraction of Conceptual Data Model of Regulation. The leaf-level fact
types and concepts from the SBVR rule model constitute the conceptual model
of regulation data, as described earlier. The conceptual data model defines the
data expected from the enterprise for checking compliance.

The meta-model for concepts and fact types in the SBVR model, is the
section shown in blue in Fig. 5, except for the entity Proposition. Instances of
this meta-model represent the concepts used in the regulation KB. Concepts at
the leaf level represent the conceptual model of data expected from the enterprise
[9]. We use this conceptual model to retrieve enterprise data as described in the
next subsection.

Applying MDA to Rule and Data Generation for Compliance Checking 253

Fig. 9. Query translation in the EDI tool [9].

Retrieval of Enterprise Data. In industry practice of compliance, compliance
experts, operations, and systems experts are required to analyze regulation text,
interpret it in the context of enterprise processes, and identify the enterprise data
mapping for a regulation. Data relevant to a regulation is typically distributed
across several enterprise systems, with no enterprise-level view of data. Data
integration is needed in order to create a common conceptual view of enterprise
data. Extraction of data for compliance checking thus poses a schema integration
problem, and we tackle it as such [9].

We use an in-house enterprise data integration (EDI) tool [18] for schema
integration. It allows mapping of multiple physical database schemas to a single
conceptual schema. It also facilitates queries to be written on the conceptual
schema that are translated to queries on the enterprise physical database schemas
using the mapping.

Using our approach, the conceptual data model of regulation obtained earlier
becomes the conceptual schema that needs to be mapped to enterprise data. This
conceptual schema is imported into the EDI tool. Domain experts then map it
to the distributed physical database schemas (PSM) of the enterprise. This is a
PIM-PSM mapping. Tables and columns of the PIM are mapped to tables and
columns of the PSM.

We then generate queries on the conceptual data model, in an automated
manner, for retrieval of requisite data corresponding to each concept and fact
type in the conceptual model. These are translated by the EDI tool to queries
on enterprise physical tables using the above PIM-PSM mapping, as depicted in
Fig. 9.

As shown in Fig. 9, the translated queries on execution fetch the required data
to be checked for compliance. We provide a one-time PSM-PSM map between
enterprise physical data model i.e. tables, columns, and datatypes, and DR-
Prolog fact meta-model, i.e. facts, attributes, and datatypes. A fact generator
program transforms the fetched enterprise data into ground facts in DR-Prolog.

254 D. Kholkar et al.

We thus obtain the requisite data EMdata to check for compliance to regu-
lation rules R using model mappings and automated transformations. In the
next section, we illustrate our approach using a case study of the MiFID-2
regulation13.

5 Illustrative Case Study

The MiFID-2 (Markets in Financial Instruments Directive) regulation lays down
obligations on financial institutions regarding the types of transactions that must
be included/excluded in reporting trades to the regulatory body. We illustrate
here the relevant excerpt from the original regulation text and the chain of
models created for the regulation rules.

Regulation Text. The original regulation text containing inclusion and exclu-
sion rules for transactions is shown below.

Meaning of transaction

1. For the purposes of Article 26 of Regulation (EU) No. 600/2014, the con-
clusion of an acquisition or disposal of a financial instrument referred to in
Article 26(2) of Regulation (EU) No. 600/2014 shall constitute a transaction.

2. An acquisition referred to in paragraph 1 shall include:
(a) a purchase of a financial instrument;
(b) entering into a derivative contract in a financial instrument.

3. A disposal referred to in paragraph 1 shall include:
(a) sale of a financial instrument;
(b) closing out of a derivative contract in a financial instrument.

..
4. A transaction for the purposes of Article 26 of Regulation (EU) No. 600/2014

shall not include:
(a) a securities financing transaction as defined in Regulation [Securities

Financing Transactions]
(b) a contract arising exclusively for clearing or settlement purposes;
(c) an acquisition or disposal that is solely a result of custodial activity;

The next sub-section illustrates the CIM created by writing the above natural-
language regulation rules in Structured English.

CIM of Regulation Rules in SE. The inclusion and exclusion rules from the
regulation text are encoded in SBVR SE as below.

Rule Inclusion: It is obligatory that transaction is included in MiFID report-
ing if the transaction is an acquisition or a disposal.

13 MiFID-2: http://ec.europa.eu/finance/securities/isd/mifid2/index en.htm.

http://ec.europa.eu/finance/securities/isd/mifid2/index_en.htm

Applying MDA to Rule and Data Generation for Compliance Checking 255

Fig. 10. SBVR model of MiFID-2 rules.

Rule Exclusion: It is obligatory that transaction is excluded from MiFID
reporting if the transaction is a securities financing transaction or clearing or
settlement contract or an acquisition or disposal arising from custodial activity.

The keywords It is obligatory that denote the obligation modality of the rule.
Rule Inclusion is built upon fact types transaction is included in MiFID report-
ing, transaction is an acquisition, and transaction is a disposal. Transaction,
acquisition, and disposal are concepts; is included in MiFID reporting is a char-
acteristic of a transaction.

Acquisition and disposal are high-level concepts defined in terms of other
concepts, e.g. purchase and sale. These definitions are captured as definitional
rules as follows

Acquisition is a purchase or entering a derivative contract.
Disposal is a sale or closing a derivative contract.
Purchase is further explicated by domain experts in terms of propositions on

elements such as buyer and seller defined in the data description section in the
regulation, as well as concepts such as trade type from their own knowledge of
the domain.

Purchase is a transaction with trade type equal to Buy and transaction has
buyer and transaction trades instrument and instrument is equities or bonds.

The next section shows the SBVR model constructed from these SE rules.

PIM of Rules in SBVR. The SBVR model corresponding to the above SE
rules is created using the SBVR editor, and shown in Fig. 10. This PIM of rules is
programmatically translated to a DR-Prolog model of MiFID-2 rules using the
SBVR-DR-Prolog PIM-PSM mapping. From the DR-Prolog model, MiFID-2
rules in DR-Prolog syntax are generated, illustrated in the next sub-section.

256 D. Kholkar et al.

Translated Regulation Rules in DR-Prolog. The inclusion and exclusion
rules in DR-Prolog syntax generated from the SBVR model illustrated in Fig. 10
are shown below.
defeasible (rule inclusion, obligation, includeInMiFIDReporting (TransRef),
[reportableTransaction(TransRef)]).
defeasible (rule exclusion, obligation, excludeInMiFIDReporting(TransRef),
[exclusionTransaction(TransRef)]).

Since the antecedent reportableTransaction of the inclusion rule is a dis-
junction of acquisition and disposal, the implications or simple DR-Prolog rules
specifying this relation follow.
fact (reportableTransaction(TransRef)):- fact (acquisition(TransRef)).
fact (reportableTransaction(TransRef)):- fact (disposal(TransRef)).

Definitional rules get translated as simple DR-Prolog rules, as
fact (acquisition(TransRef)):- fact (purchase(TransRef)).
fact (acquisition(TransRef)):- fact (enteringDerivativeContractInFI(TransRef)).

The generic SBVR-to-DR-Prolog meta-model mapping and translator can
thus be used to translate any SBVR model of rules to a rule base in DR-Prolog
in an automated manner.

The SBVR model for the entire set of SBVR SE statements for the regulation
constitutes the source from which the conceptual model of the regulation is
extracted. The conceptual model of our MiFID-2 regulation case study is shown
in the next subsection.

Extracted Conceptual Data Model. The conceptual data model of the
MiFID-2 regulation comprises leaf-level concepts and fact types from all of
the defined rules, such as the concepts transaction and trade type, and facts
trade type equal to Buy, and transaction has buyer from the definition of
purchase.

The conceptual model automatically extracted from the SBVR rule model is
shown in the upper half of Fig. 11. The list of characteristics within each concept
is an illustrative subset, the exhaustive list not shown due to space constraints.
Mapping of this conceptual model to the bank’s physical data model is illustrated
in the subsection below.

Enterprise Data Extraction. The enterprise physical schema comprises sev-
eral sub-schemas from component sub-systems, such as Deal and Securities
sub-systems seen in Fig. 11. Domain experts perform the mapping of concepts
from the MiFID-2 regulation conceptual schema to the bank’s physical database
schema.

The Transaction concept from the regulation schema maps to the Trans and
Deal tables from the enterprise Deal sub-system database, while Instrument
maps to the Security Master table from the Securities sub-system. Buyer, Seller
and Executing Firm entities from the conceptual schema map to the Client
Master table of the enterprise database. Individual characteristics of concepts

Applying MDA to Rule and Data Generation for Compliance Checking 257

Fig. 11. Conceptual to physical data mapping in EDI [9].

such as transaction are mapped to columns of corresponding tables, in this case
Trans and Deal.

Two of the sample queries we generate automatically, for retrieving data for
Transaction and Instrument tables in the conceptual schema, are shown here.
Queries for fact types that relate concepts mapping to different tables are trans-
lated as joins, such as query 2 below, corresponding to the fact type transaction
trades instrument.

(1) SELECT ∗ FROM Transaction ;
(2) SELECT ∗ FROM Instrument i , Transaction t

where i . InstrumentID = t . InstrumentID ;

These queries are translated by the EDI tool into queries on correspond-
ing enterprise tables (1) Trans and Deal, and (2) Securities respectively. The
translated query corresponding to query (1) is shown below

SELECT t1 . TransID ,
t1 . TradeType ,
t1 . InstActionCode ,
t1 . TrdDateAndTime ,
t1 . TrdCap ,
t1 . TradeQty ,
t1 . QuanCcy ,
t1 . TradePrice ,

258 D. Kholkar et al.

t1 . PriceCurrency ,
t1 . TransNetAmount ,
t2 . transType ,
t2 . PTSTransactionCode ,
t1 . Venue ,
t2 . SecId ,
t2 . BuyerRefNum ,
t2 . SellerRefNum

FROM DealSchema . Deal t1 , TradeSchema . Trans t2
WHERE t1 . TransID = t2 . TransID

The translated query, on execution, transforms data from Trans and Deal enter-
prise tables (PSM) into data corresponding to the transaction concept from the
regulation conceptual data model (PIM). The retrieved data (PIM) is trans-
formed by our fact generator into DR-Prolog transaction ground fact model
(PSM) and from there into DR-Prolog ground facts in text format by PSM-to-
text transformation.

The fact schema for each concept comprises its characteristics. E.g.
the fact schema for transaction is fact(transaction(TransRef, TradingVenue,
TransIdCode, TradeType, ReportingStatus, TradingDateTime, TradingCap, Qty,
QtyCcy, Price, PriceCcy, NetAmt)).

The schema for each fact type, e.g. transaction trades instrument com-
prises the fact type, with concept names replaced by their unique key
fields, viz. TransRef for transaction and InstrumentID for instrument, i.e.
trades(TransRef, InstrumentID).

The listing of two sample sets of ground facts, for a purchase and a
closing a derivative contract transaction is shown below.

/∗ Set 1 : Purchase t r a n s a c t i o n ∗/
f a c t (t r a n s a c t i o n (’ 1010000023TATA ’ , ’ ’ , ’ Buy ’ , ’NEWT’ , ’

2015−11−06T09 : 16 : 36 : 1 43232 ’ , ’MTCH’ , 2500 , , 150 , ’ INR ’ ,
375000)) .

f a c t (i n s t r umen t (’ INE467B01029 ’ , ’ESXXXX ’)) .
f a c t (c u r r e n c y (’ INR ’ , , ’ A c t i v e ’)) .
f a c t (t radedAt (’ 1010000023TATA ’ , ’XXXX ’)) .
f a c t (t r a d e s (’ 1010000023TATA ’ , ’ INE467B01029 ’)) .

/∗ Set 2 : C l o s i n g out o f D e r i v a t i v e Cont rac t ∗/
f a c t (t r a n s a c t i o n (’ 000CMEC000 ’ , ’AB4 ’ , ’ S e l l ’ , ’NEWT’ , ’

2015−11−06T09 : 11 : 36 : 1 43232 ’ , ’DEAL ’ , 5 , , 75 . 43 , ’GBP ’ ,
377150)) .

f a c t (h a s S e l l e r (’ 000CMEC000 ’ , ’AFXS5XCH7N0Y05NIXW17 ’)) .
f a c t (h a sUnde r l y i n g I n s t r umen t (’ 000CMEC000 ’ , ’ GB0008706128 ’)) .
f a c t (i n s t r umen t (’ GB0008706128 ’ , ’FFICNX ’)) .
f a c t (c u r r e n c y (’GBP ’ , , ’ I n a c t i v e ’)) .

We thus complete the process of (a) conversion of rules from MiFID-2 regulation
NL text into rules in DR-Prolog language, and (b) discovering the conceptual
model of the MiFID-2 regulation from regulation text, and mapping it to the

Applying MDA to Rule and Data Generation for Compliance Checking 259

physical data model of the bank, as well as automated extraction of relevant
data from the bank’s databases in the form of facts, for checking compliance to
the regulation.

The next section discusses related work.

6 Related Work

Compliance checking approaches in literature [2–8] use formal representations of
regulation rules. In all of these, experts need to directly code rules in the rule
language. Most formal compliance checking approaches check business process
models for compliance against regulations [2,3,5,6]. Various approaches have
been developed for relating regulations to enterprise business processes such as
constructing an execution trace as in [19], finding paths in process structure tree
as in [20], or labels placed manually on a business property specification language
diagram as in [21]. Labels from business processes are presumed to map to labels
used in the formal models of rules.

A system for defeasible logic representation of regulations and compliance
checking is presented in [8] that we use as the compliance engine in our work. In
our earlier works, vocabulary mapping has been proposed to address the problem
of semantic disparity between regulations and enterprise [22,23]. Generation of
NL proof explanations of (non-) compliance, and handling regulatory change
have been described in [24] and [25] respectively, while an initial framework for
compliance has been introduced in [26].

Other work that makes use of models in the compliance context are a model
that enables traceability of delegation of obligations from regulations and their
refinement into software requirements given by [27], and a language for modeling
norms and their inter-relations and analysis of various compliance alternatives
in [28,29] using goal-oriented analysis. Ontologies are suggested in [30] to tackle
semantic disparity. A conceptual model of the regulatory compliance manage-
ment process and activities involved is used as basis to survey and rank business
process compliance management frameworks in [31]. We address some of the
recommendations from this work such as making compliance requirement spec-
ification possible for business users and extending use of logic to the business
context, through the use of CNL and SBVR for capturing rules.

Another classification of compliance checking approaches based on the gran-
ularity of checks, i.e., whether business processes, tasks, attributes or pure data
is checked, and finally whether checking takes place by making use of an infer-
ence engine and/or queries to models of enterprise information is presented in
[4]. Existing business process compliance management approaches are surveyed
for generalizability and applicability in [32], reporting that available frameworks
support only a single model specification, do not check entire regulations but only
excerpts, and lack evaluation. Although we have described mapping to enterprise
physical databases for run-time compliance in this paper, our approach can be
applied to a data model sourced from the enterprise’s business processes, tool
repositories, or indeed any other source.

260 D. Kholkar et al.

Several approaches propose SBVR for encoding rules, such as semi-
automated approaches to generate SBVR from natural language descriptions
[33–35], expression of anti-money laundering rules in SBVR [36], and capture
of legal rules in [37], for precise capture and revealing inconsistencies. Require-
ments for translation from SBVR to Formal Contract Logic (FCL), a proprietary
defeasible logic language are defined in [38]. The source SBVR and desired target
FCL specification are given, however, the mapping or transformation between
the two specifications is not given.

A model-driven rule generation approach has been proposed in [39], that sug-
gests using a combination of MDA and Ontology Definition Metamodel (ODM)
for generating rules. Use of SBVR as CIM and the authors’ own proprietary gen-
eral purpose rule language as PIM is proposed, but the language or its mapping
to SBVR or PSMs has not been worked out.

7 Conclusion and Future Work

MDA has typically been applied for code generation in technical problem
spaces. We explored its application to a business problem space, viz. regulatory
compliance.

We demonstrated that use of fact-oriented modeling enables (a) building a
regulation model from unstructured, natural language text, by stating available
information as facts, (b) identifying the conceptual model of the regulation, and
(c) mapping conceptual models at different levels of abstraction on the regulation
and enterprise side in order to arrive at relevant enterprise data, through our
worked-out approach and the illustrative case study.

Use of MDA provides another great benefit of traceability from computation-
independent regulation rules to their formal specification and related enterprise
data, through each intermediate model layer.

Separation of concerns helped break the model-building task into distinct
parts, automatically defining a process for creating the model, involving the
appropriate stakeholder at each level. Domain experts were able to give the
requirement i.e. rules in a Structured English CIM. Modelers were able to further
specify structure of rules in terms of hierarchies of logical formulations in an
SBVR PIM. A one-time mapping to platform-specific constructs, in our case,
DR-Prolog rule language, was provided by IT experts. The rule base code was
then automatically generated using the generic mappings.

Use of MDA thus meant the rule base no longer needed to be manually
encoded by IT teams, but could be specified by domain experts in controlled
natural language. MDA made the task of model-building manageable, and also
scales to large code bases by automated code generation from model mappings.

The SBVR model serves as a general-purpose PIM for rules, that can be
used to map to and generate rule implementations on multiple PSMs for rule
languages such as DR-Prolog and Drools. Creating the meta-model map for
Drools and automated generation of the rule base using this mapping is part of
ongoing work, as is automated translation of the SBVR SE CIM to SBVR PIM.

Applying MDA to Rule and Data Generation for Compliance Checking 261

Our model-based generators described in this work were custom-written pro-
grams. We plan to implement specification-based translation using model-to-
model and model-to-text transformation tools in order to gain further produc-
tivity and maintainability benefits of MDA.

The success of model-based techniques depends upon the quality of models
built. We are working on automated population and correctness checking of
models at build-time using natural-language processing and machine learning
techniques.

References

1. Thomson Reuters: State of regulatory reform 2016 - a special report (2016)
2. Governatori, G., Rotolo, A.: A conceptually rich model of business process com-

pliance. In: APCCM 2010, pp. 3–12 (2010)
3. Awad, A., Weidlich, M., Weske, M.: Consistency checking of compliance rules.

In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010. LNBIP, vol. 47, pp. 106–118.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-12814-1 10

4. El Kharbili, M., de Medeiros, A.K.A., Stein, S., van der Aalst, W.M.P.: Business
process compliance checking: current state and future challenges. In: Loos, P.,
Nuttgens, M., Turowski, K., Werth, D. (eds.) MobIS. LNI, vol. 141, pp. 107–113
(2008)

5. Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting regulatory com-
pliance for business process models through semantic annotations. In: Ardagna,
D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 5–17. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00328-8 2

6. Governatori, G.: Representing business contracts in RuleML. Int. J. Cooper. Inf.
Syst. 14(2–3), 181–216 (2005)

7. Governatori, G., Rotolo, A.: A conceptually rich model of business process com-
pliance. In: APCCM 2010, pp. 3–12 (2013)

8. Dimaresis, N.: A system for modal and deontic defeasible reasoning. Int. J. Cooper.
Inf. Syst. 14(2–3), 181–216 (2007)

9. Kholkar, D., Sunkle, S., Kulkarni, V.: From natural-language regulations to enter-
prise data using knowledge representation and model transformations. In: Proceed-
ings of the 11th International Joint Conference on Software Technologies (ICSOFT
2016), vol. 2: ICSOFT-PT, Lisbon, Portugal, 24–26 July, pp. 60–71 (2016)

10. English, S., Hammond, S.: Cost of Compliance 2014. Thomson Reuters Accelus,
London (2014)

11. Kleppe, A., Warmer, J., Bast, W.: MDA Explained - The Model Driven
Architecture: Practice and Promise. Addison Wesley Object Technology Series.
Addison-Wesley, Boston (2003)

12. Kulkarni, V., Reddy, S.: Separation of concerns in model-driven development. IEEE
Softw. 20(5), 64–69 (2003)

13. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning.
Elsevier, Amsterdam (2004)

14. Smith, B.C.: Reflection and Semantics in a Procedural Language. Massachusetts
Institute of Technology, Cambridge (1982)

15. Nijssen, G.: SBVR: semantics for business. Bus. Rules J. 8(10) (2007). http://
www.brcommunity.com/a2007/b367.html

http://dx.doi.org/10.1007/978-3-642-12814-1_10
http://dx.doi.org/10.1007/978-3-642-00328-8_2
http://www.brcommunity.com/a2007/b367.html
http://www.brcommunity.com/a2007/b367.html

262 D. Kholkar et al.

16. Halpin, T.: Fact oriented modeling - past, present and future. In: Krogstie,
J., Opdahl, A.L., Brinkkemper, S. (eds.) Conceptual Modelling in Informa-
tion Systems Engineering, pp. 19–38. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72677-7 2

17. Alhir, S.S.: Understanding the model driven architecture. Methods and tools
(2003). http://www.methodsandtools.com/archive/archive.php?id=5

18. Reddy, S.: A model driven approach to enterprise data integration. In: COMAD
2010, p. 202 (2010)

19. Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for busi-
ness process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75183-0 12

20. Awad, A., Smirnov, S., Weske, M.: Resolution of compliance violation in business
process models: a planning-based approach. In: Meersman, R., Dillon, T., Herrero,
P. (eds.) OTM 2009. LNCS, vol. 5870, pp. 6–23. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-05148-7 4

21. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business
process models. IBM Syst. J. 46(2), 335–362 (2007)

22. Sunkle, S., Kholkar, D., Kulkarni, V.: Solving semantic disparity and explanation
problems in regulatory compliance - a research-in-progress report with design sci-
ence research perspective. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S.,
Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 326–341. Springer, Cham (2015).
doi:10.1007/978-3-319-19237-6 21

23. Sunkle, S., Kholkar, D., Kulkarni, V.: Toward better mapping between regulations
and operations of enterprises using vocabularies and semantic similarity. CSIMQ
5, 39–60 (2015)

24. Sunkle, S., Kholkar, D., Kulkarni, V.: Explanation of proofs of regulatory (non-
)compliance using semantic vocabularies. In: Bassiliades, N., Gottlob, G., Sadri,
F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 388–403.
Springer, Cham (2015). doi:10.1007/978-3-319-21542-6 25

25. Sunkle, S., Kholkar, D., Kulkarni, V.: Model-driven regulatory compliance: a case
study of know your customer regulations. In: MoDELS 2015, pp. 436–445 (2015)

26. Sunkle, S., Kholkar, D., Kulkarni, V.: Toward (semi-)automated end-to-end model-
driven compliance framework. In: ModSym+SAAAS@ISEC 2016, pp. 33–38 (2016)

27. Breaux, T.D., Anton, A.I., Spafford, E.H.: A distributed requirements management
framework for legal compliance and accountability. Comput. Secur. 28(1–2), 8–17
(2009)

28. Ingolfo, S., Siena, A., Susi, A., Perini, A., Mylopoulos, J.: Modeling laws with
Nomos 2. In: Sixth International Workshop on Requirements Engineering and Law
(RELAW), pp. 69–71, 16 July 2013

29. Ingolfo, S., Jureta, I., Siena, A., Perini, A., Susi, A.: Nòmos 3: legal compliance
of roles and requirements. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.)
ER 2014. LNCS, vol. 8824, pp. 275–288. Springer, Cham (2014). doi:10.1007/
978-3-319-12206-9 22

30. El Kharbili, M., Stein, S., Markovic, I., Pulvermüller, E.: Towards a framework for
semantic business process compliance management. The impact of governance, risk,
and compliance on information systems (GRCIS). CEUR Workshop Proceedings,
Montpellier, France, 17 June 2008, vol. 339, pp. 1–15 (2008)

http://dx.doi.org/10.1007/978-3-540-72677-7_2
http://dx.doi.org/10.1007/978-3-540-72677-7_2
http://www.methodsandtools.com/archive/archive.php?id=5
http://dx.doi.org/10.1007/978-3-540-75183-0_12
http://dx.doi.org/10.1007/978-3-540-75183-0_12
http://dx.doi.org/10.1007/978-3-642-05148-7_4
http://dx.doi.org/10.1007/978-3-642-05148-7_4
http://dx.doi.org/10.1007/978-3-319-19237-6_21
http://dx.doi.org/10.1007/978-3-319-21542-6_25
http://dx.doi.org/10.1007/978-3-319-12206-9_22
http://dx.doi.org/10.1007/978-3-319-12206-9_22

Applying MDA to Rule and Data Generation for Compliance Checking 263

31. El Kharbili, M.: Business process regulatory compliance management solution
frameworks: a comparative evaluation. In: Ghose, A., Ferrarotti, F. (eds.) Asia-
Pacific Conference on Conceptual Modelling (APCCM 2012), CRPIT, Melbourne,
Australia, vol. 130, pp. 23–32. ACS (2012)

32. Becker, J., Delfmann, P., Eggert, M., Schwittay, S.: Generalizability and applica-
bility of model-based business process compliance-checking approaches - a state-
of-the-art analysis and research roadmap. BuR Bus. Res. J. 5(2), 221–247 (2012)

33. Bajwa, I.S., Lee, M.G., Bordbar, B.: SBVR business rules generation from natural
language specification. In: AAAI Spring Symposium: AI for Business Agility, pp.
2–8. AIII (2011)

34. Lévy, F., Nazarenko, A.: Formalization of natural language regulations through
SBVR structured English. In: Morgenstern, L., Stefaneas, P., Lévy, F., Wyner, A.,
Paschke, A. (eds.) RuleML 2013. LNCS, vol. 8035, pp. 19–33. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39617-5 5

35. Njonko, P.B.F., El Abed, W.: From natural language business requirements to
executable models via SBVR. In: 2012 International Conference on Systems and
Informatics (ICSAI). IEEE (2012)

36. Abi-Lahoud, E., Butler, T., Chapin, D., Hall, J.: Interpreting regulations with
SBVR. In: Fodor, P., Roman, D., Anicic, D., Wyner, A., Palmirani, M., Sottara,
D., Lévy, F. (eds.) Joint Proceedings of the 7th International Rule Challenge,
The Special Track on Human Language Technology and the 3rd RuleML Doctoral
Consortium, Seattle, USA, 11–13 July 2013. CEUR Workshop Proceedings, vol.
1004 (2013). CEUR-WS.org

37. Johnsen, A.S., Berre, A.J.R.: A bridge between legislator and technologist -
formalization in SBVR for improved quality and understanding of legal rules.
In: International Workshop on Business Models, Business Rules and Ontologies,
Bressanone, Brixen, Italy (2010)

38. Kamada, A., Governatori, G., Sadiq, S.: Transformation of SBVR compliant busi-
ness rules to executable FCL rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S.
(eds.) RuleML 2010. LNCS, vol. 6403, pp. 153–161. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16289-3 14

39. Diouf, M., Maabout, S., Musumbu, K.: Merging model driven architecture and
semantic web for business rules generation. In: Proceedings of the First Interna-
tional Conference on Web Reasoning and Rule Systems, Innsbruck, Austria, 7–8
June 2007, pp. 118–132 (2007)

40. Bauer, E.: The Business Rules Approach (2009). http://is.uni-paderborn.
de/fileadmin/Informatik/AG-Engels/Lehre/WS0809/SE/Sonstiges/Seminar/
Version1.0/Seminar.NAQ.Eduard.Bauer.v1.0.pdf

http://dx.doi.org/10.1007/978-3-642-39617-5_5
http://ceur-ws.org/
http://dx.doi.org/10.1007/978-3-642-16289-3_14
http://is.uni-paderborn.de/fileadmin/Informatik/AG-Engels/Lehre/WS0809/SE/Sonstiges/Seminar/Version1.0/Seminar.NAQ.Eduard.Bauer.v1.0.pdf
http://is.uni-paderborn.de/fileadmin/Informatik/AG-Engels/Lehre/WS0809/SE/Sonstiges/Seminar/Version1.0/Seminar.NAQ.Eduard.Bauer.v1.0.pdf
http://is.uni-paderborn.de/fileadmin/Informatik/AG-Engels/Lehre/WS0809/SE/Sonstiges/Seminar/Version1.0/Seminar.NAQ.Eduard.Bauer.v1.0.pdf

Software System Theory of the Forbidden
Within Discrete Design

Iaakov Exman(&)

Software Engineering Department,
The Jerusalem College of Engineering – JCE - Azrieli, Jerusalem, Israel

iaakov@jce.ac.il

Abstract. Many “theoretical” frameworks have been proposed for software
systems design with a plethora of techniques, scopes and degrees of sophisti-
cation. However, a clear delineation of the forbidden in software design terms is
almost universally absent in all these frameworks. This absence is surprising, as
other engineering disciplines obviously display forbidden regions. This paper
claims that an acceptable software design theory should clearly demarcate the
forbidden in contrast to the possible. Algebra is argued to be the mathematical
field appropriate to determine boundaries of forbidden regions. To this end, a
spectral approach is demonstrated, in which matrix eigenvectors play a central
role. Such boundaries of forbidden regions are illustrated by a case study.

Keywords: Software theory � Forbidden regions � Forbidden domains �
Boundary � Algebra � Eigenvectors � Models � Discrete software design �
Hierarchical software systems

1 Introduction

Forbidden regions surrounding possible solutions to engineering problems are ubiq-
uitous in mature engineering disciplines and their underlying basic sciences. A central
claim of this work is that Software Engineering deserves such a theory implying a
definition and delineation of forbidden regions or domains. This is true in particular for
software embedded in larger systems, which without forbidden domain restrictions may
cause critical failures and endanger human life.

An aeronautical engineering example is a case that really happened above the
Atlantic Ocean, of an airplane flying at high altitude that inadvertently entered a
weather storm area. The pilots should have tried to either totally avoid the well-known
storm area, or once inside that area to escape the storm from below, gaining speed
through the airplane descent. Instead the inexperienced pilots, tried to climb above the
storm causing an increasing loss of speed. The final outcome was the free fall of the
airplane in the middle of the ocean. This is just one example that there are clearly
forbidden maneuvers for any given aircraft – dictated by aerodynamics theory – that
may result in total loss of control with unfortunate consequences.

Another example, this one in civil engineering, is the famous Tower of Pisa. The
tower was obviously planned to be vertical, with a nice view of the surrounding area.
Along time, it gradually became inclined. Without reinforcements, it would continue to

© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 264–283, 2017.
DOI: 10.1007/978-3-319-62569-0_13

increase its angle relative to the vertical axis, and finally fall. The statics theory, an old
branch of physics, states the laws of the relevant forbidden region. Roughly one says
that, the tower cannot be more inclined than some angle, in which the projection of the
tower center of mass passes a threshold distance of the building ground basis.

There are uncountable cases of forbidden regions in science and technology. We
shall, later on, motivate forbidden regions in software, by two examples of physics.

1.1 Models of the Possible are not a Theory

We wish to emphasize, early in this paper, that models of the possible are not a theory;
therefore they do not produce forbidden regions. The widely used UML (Unified
Modeling Language) diagrams [25] are an example of software design models and not
a theory. They can be indefinitely modified at will by software engineers while
developing a software system. They impose no restrictions, and do not highlight design
problems, since they do not imply any design quality criteria.

The same occurs with code in a programming language, say Java or Python. These
languages are below a suitable level of abstraction to generate software design criteria.
Thus, the currently used compilers help in eliminating language syntax bugs, but
otherwise allow indefinite program variations.

1.2 Forbidden Domains are Essential for a Software Theory

The main thrust of this paper – which is an update and extension of the paper by Exman
[11] – is the claim that forbidden regions or domains are essential for a Software
Theory. This is based on the following assumptions:

• Hierarchical software system composition problem – a theory of software com-
position should solve the design problem of a hierarchical software system, through
increasingly simpler subsystems, down to indivisible components;

• Existence of forbidden region boundaries – these boundaries should restrict com-
position variability, for pragmatic reasons, which limit the search effort in design
space, and for more fundamental reasons, such as keeping conceptual integrity,
facilitating system development, comprehension and maintenance.

• Formal algebraic criteria – representing software systems by matrices, enables the
full power of linear algebra formalism, obtaining boundaries determined by quality
of design criteria, viz. suitable eigenvectors of those matrices.

1.3 Related Work

This concise literature review focuses into two topics, forbidden regions and linear
algebra. It omits non-software references, such as “forbidden transitions” in pure
physical systems.

Software System Theory of the Forbidden Within Discrete Design 265

a- Forbidden Regions

The notions of forbidden regions or forbidden domains have appeared in several
contexts in the scientific literature, with differing meanings. The common idea of all the
contexts is the existence of a problem sub-space where a solution cannot be found. We
provide here just a limited sample of papers specifically referring to algorithms in
embedded and/or pure software systems.

Aneja and Parlar [2] describe transportation-related algorithms for optimal single
facility location problems with forbidden regions. These regions are those were loca-
tion is not permitted, but one can travel through them, such as a lake. Wu et al. [27]
estimate answer sizes for XML queries by excluding forbidden regions and assuming
some distribution over the remainder of a two-dimensional diagram.

A whole area of embedded systems referring to forbidden regions is that dealing
with robots. Abbot et al. [1] discuss ways of preventing robot manipulators to enter
forbidden regions of a workspace. Payandeh and Stanisic [17] state that in order to train
a novice operator of a robotic manipulator, one may define “forbidden regions virtual
fixtures” (FRVF); when an operator moves the manipulator in these regions, a
graphical clue can be generated, a force feedback can be generated or an embedded
command in the FRVF can maintain the robot at a safe configuration.

Devadas and Aydin [4] discuss real-time dynamic power management in which
they explicitly enforce device sleep intervals, the so-called forbidden regions. The goal
is to enhance energy savings. This is done by time-demand analysis, which determines
duration and frequency of forbidden regions to preserve the temporal correctness of all
the tasks. They show that the problem of generating feasible schedules for preemptive
periodic real-time tasks in which all device sleep intervals are longer than the device
break-even times, is NP-Hard in the strong sense.

b- Linear Algebra

Matrices of several types have been used to analyze software design, in which an
essential feature is a spectral approach using matrix eigenvectors, delimiting “forbidden
regions”. For comparisons about the applicability of the referred matrices to software
design, we refer the reader to e.g. Exman [8] and Exman and Sakhnini [9].

Besides the Modularity Matrix one finds the Laplacian matrix [26], see e.g. Exman
and Sakhnini [9], the Design Structure Matrix (DSM), see e.g. Sullivan et al. [24], and
the affinity matrix, see e.g. the work by Li and Guo [15].

1.4 Organization of the Paper

The remainder of the paper is organized as follows. Section 2 deals with forbidden
domains in physical systems, to motivate the later sections which refer to software
systems. Section 3 introduces the software algebraic theory that we use. Section 4
describes a generic design algorithm dealing with forbidden regions. In Sect. 5, we
discuss a case study, focusing on a design pattern, to illustrate the theory and the idea of
forbidden regions. A discussion in Sect. 6 ends the paper.

266 I. Exman

2 Sources of Forbidden Domains: Physical Metaphors

In this section we deal with sources of forbidden domains within two physical realms.
These serve as metaphors motivating the software theory to be introduced in the next
section. One metaphor refers to transverse standing waves generated with a Slinky toy.
The other refers to wave-functions of the so-called “particle in a box”.

2.1 The 1st Physical Metaphor: Standing Waves in a Slinky

Slinky is a toy made of a pre-compressed helical spring – cf. e.g. Slinky [20, 21]. It has
been used for concrete and intuitive demonstrations of properties of physical waves.
Here we focus on transverse waves.

Let us imagine the following experiment. A slinky is stretched horizontally on the
floor – or on a table – by two persons, grasping its end-points. If both persons move
their hands laterally, in parallel to the floor (see the arrows in Fig. 1), but perpendic-
ularly to the slinky axis, each person generates transverse waves travelling towards the
other person. In Fig. 1 a stretched slinky depicts an S due to the schematic grasping
hands lateral motion.

Fig. 1. Slinky transverse wave – two schematic hands move laterally a slinky, the helical spring.
The motion, in the direction shown by the arrows, is perpendicular to the slinky axis. The hands’
oscillation back and forth generates a transverse wave with an S form.

Software System Theory of the Forbidden Within Discrete Design 267

Once the hands’ motions of both persons are synchronized, standing waves are
obtained. Standing waves divide the slinky in an integer number of equal parts,
delimited by the nodes (see Fig. 2). These nodes are fixed in space and do not oscillate,
despite the fact that overall, the slinky is oscillating as a whole. Oscillation modes are
characterized by mode numbers, i.e. the number of sinusoidal half-waves of the
vibration, explained in Fig. 2. Thus, we state the limitations imposed on slinky motions
and the oscillation modes forbidden by the physical nature of the motions:

• Boundaries on slinky behavior – besides the material and geometry of the slinky
itself, the nature of the boundaries, be they fixed walls or hands in motion, is the
most significant limitation of behavior;

• Forbidden slinky oscillation modes – Standing waves can be obtained only for
integer mode numbers; fractional mode numbers are forbidden by the destructive
interference of waves travelling in opposite directions.

The slinky toy is very intuitive and its demonstration is easily reproduced. Dynamic
views of oscillating standing waves can be seen in a graphical simulation – as shown
by the standing wave in [22] – and in a video – see e.g. standing waves on a slinky
in [23].

Fig. 2. Transverse standing waves in a slinky bounded by its end-points – the dashed lines show
the amplitude of wave oscillation in each slinky point. Three permitted wave modes are shown:
1- The 1st fundamental (lowest) wave, the mode number is 1 and it has no nodes; 2- The 2nd wave
mode number is 2, because it has two half-waves with a node in between; its continuous (blue)
line is a full sinusoidal wave since it has zero vibration at the left-most point, goes up before the
node, goes down after the node and returns to zero at the right-most point; 3- The 3rd wave mode
number is 3 and is divided by two nodes. Fractional mode numbers are forbidden (see text).
Figure adapted from Ref. [11]. (Color figure online)

268 I. Exman

2.2 The 2nd Physical Metaphor: Wave-Functions of a Particle in a Box

Our 2nd metaphor, the particle in a box, is a gradual intermediate transition from the
slinky physical metaphor (in the previous Subsect. 2.1), to the software theory to be
described in the next Sect. 3. The two physical metaphors have in common the same
“wave” solutions, as seen below. This 2nd metaphor and the software theory in Sect. 3
have in common that solutions are obtained by means of eigenvectors, either from an
eigenvalue equation here, or from the eigenvectors of a matrix in the software theory.

This 2nd metaphor demands deeper physics knowledge to fully understand its
details. But this should not discourage a reader which is not familiar with this spe-
cialized knowledge. The reader may skip the details; they are not essential to under-
stand the overall meaning of this example. For a gradual elementary introduction to the
subject, the reader may look at [18].

The “particle in a box” is a simple quantum mechanics’ problem – see e.g. Messiah
[16]. The particle has mass m. The so-to-speak box is one-dimensional!, has finite
length ‘, and zero potential. The particle is confined and cannot escape the two
bounding walls with infinite potential.

The problem to be solved is an eigenvalue problem. In such a problem, when a
matrix or operator H multiplies an eigenvector vk one obtains back the same eigen-
vector multiplied by a constant, the respective eigenvalue kk. This has the form:

H � vk ¼ kk � vk ð1Þ

Specifically this is the Schrödinger equation in which H is the Hamiltonian operator,
and the kth eigenvector vk fits the eigenvalue kk, standing for an energy value. As the
potential inside the box is null, the particle Hamiltonian reduces just to a Laplacian.
Some solutions of this problem, the wave functions, are seen in Fig. 3.

Fig. 3. Wave functions of the particle in a one-dimensional box – these waves are indexed by
integers, seen in the above diagram. Just three of the possible solutions are shown in this figure.
Intermediate energy values are forbidden. Note that their form is identical to the slinky waves of
Fig. 2. Figure adapted from Ref. [11].

Software System Theory of the Forbidden Within Discrete Design 269

The meaning of the wave functions of the particle in a box problem is certainly
different from the slinky transverse standing waves, but their form (seen in Fig. 3) is
identical to the slinky waves (in Fig. 2) for similar reasons. Also here the wave
functions vanish in the confining walls.

The conclusions from this 2nd metaphor are analogous to the slinky ones:

• Boundaries of behavior of a Particle in a box – besides the mass of the particle
itself the boundaries’ nature, i.e. the infinite potential in the fixed walls and the box
length ‘, is the most important behavior limitation;

• Forbidden energy values – Wave functions, the solutions to the eigenvalue prob-
lem, have discrete energy values, indexed by integers; other energy values are
forbidden.

2.3 Common Features of Both Physical Metaphors

The two physical metaphors described in this section have very different underlying
physical systems. A slinky is a real macroscopic toy made of metal or plastic materials,
obeying classical mechanics, which can be hand held, stretched and oscillated. A par-
ticle in a box is a microscopic system obeying quantum mechanics, and rather serves as
a thought experiment useful to demonstrate the simplest quantum system enclosed
between walls.

Nonetheless, there are some striking similarities between these two kinds of sys-
tems. These common features are abstracted from the conclusions we extracted from
each of them:

• Boundaries on behavior – the nature of the boundaries of these systems, either
fixed walls or hands in motion, have a significant influence on the system behavior.
For instance, a particle confined by finite (instead of an infinite) potential has a very
different behavior.

• Forbidden non-solutions – The actual solution waves obtained are discrete and can
only be indexed by integer numbers. For instance, fractional number indices are
forbidden by the system constraints.

We shall compare these characteristics with those of software systems design in the
next sections. It turns out that software systems also have clear similarities to these
physical systems.

3 A General Software Theory of the Forbidden

A general Software Theory of the Forbidden is presented in this section in two parts: a
set of basic axioms and mechanisms to delimit forbidden domains from algebraic
structures which describe design sub-spaces for the desired software system.

270 I. Exman

3.1 Basic Axioms

The starting point of our software theory is a couple of basic axioms formulated in the
two next text-boxes and explained in the paragraphs following the axioms.

Axiom 1 – Bounded Design Space

The design space of any particular software system is
composed of a discrete and finite number of components.

The Design Space of a software system, in terms of numbers of components, is
larger than the actual final design of the desired software system. The former contains
all the potential components for that system. On the other hand, the final output design
of a certain software system is obtained by the search results within the Design Space
limited by the boundaries of the forbidden domains. Components are used here in the
generic sense of Sect. 1.2. They are either subsystems in a given hierarchical level or
the smallest indivisible parts of the system.

Axiom 2 – Hierarchical Design Sub-spaces

The design space of any particular software system is
hierarchical, with each design sub-space corresponding to an
abstraction level of the hierarchy. Adjacent sub-spaces are
related by collapsing/expanding operations.

Any particular software system is assumed to be composed as a hierarchy of
abstraction levels. One goes up in the hierarchy by collapsing sub-systems into a higher
system level. One goes down the hierarchy by expanding a higher system level into
sub-systems in the lower level, recursively until one reaches the lowest indivisible
components. Likewise, the Design Space of a software system is hierarchical, with
sub-spaces corresponding to the abstraction levels.

These axioms are needed for two purposes:

a. Design Space Bounded size – to assure that the search process for the final Soft-
ware System output design is efficient;

b. Software System Comprehensibility – comprehensibility is a far reaching demand
from the Software System design. It concerns system development, maintenance,
improvement and fundamental principles, as conceptual integrity – see Brooks [3],
Jackson [14], and Exman [12].

The two axioms are needed for design efficiency, since just discreteness and
finiteness of design space, in the 1st axiom, are not enough to guarantee a small enough
space for efficiency. The 2nd axiom is necessary, as we still envision the design process

Software System Theory of the Forbidden Within Discrete Design 271

as not fully automatic. Automated computation is alternated with human intervention,
justifying the importance of comprehensibility.

3.2 Algebraic Structures and Forbidden Software Compositions

Design Sub-Spaces and the final Software System design at a certain hierarchical
abstraction level are both represented by an algebraic structure. Typically such alge-
braic structure is a matrix – say the Modularity Matrix, see e.g. Exman [7] – or a
Laplacian Matrix – see e.g. Exman and Sakhnini [9]. The algebraic structure may also
be a graph obtained from a matrix, for instance the algebraic structure of a Modularity
Lattice – see e.g. Exman and Speicher [10] – or a bipartite graph which originates and
is intimately linked to the Laplacian Matrix. In this paper we focus on matrices.

The physical metaphors of Sect. 2 are clearly suggestive of our software theory of
the forbidden. Its most important characteristics are as follows:

a. Boundaries around a software system and its modules – the Software System
boundaries idea is ubiquitous in object oriented software, and known as encapsu-
lation. An outer boundary separates the software system from its environment. The
inner boundaries separate system modules from each other.

b. Forbidden compositions are delimited by matrix Eigenvectors – the above referred
boundaries imply forbidden regions. Eigenvectors fitting certain eigenvalues of the
chosen matrices delimit forbidden compositions. One still needs conjunction with a
formal definition of cohesion – see e.g. Exman [8] and Exman and Sakhnini [9].
The final design discrete components are determined by suitable elements of the
relevant eigenvectors.

c. Outliers in forbidden regions eliminated by redesign – outlier matrix elements in
forbidden regions point out to undesirable couplings between modules. These
should be eliminated by software system redesign, usually done by human inter-
vention of software engineers.

These characteristics are put together in a software system design algorithm, capable to
deal with forbidden regions. This algorithm is presented in the next section, in pseudo-
code format.

4 Generic Design Algorithm with Forbidden Regions

In this section we present our algorithm with boundaries capable of excluding for-
bidden regions. This is a generic algorithm displayed in pseudo-code. In order to design
an actual software system, one must first choose a specific matrix type, say Modularity
Matrix or Laplacian matrix. Then, suitable specific procedures should be applied to
select eigenvalues and get modules from their respective eigenvectors.

The generic algorithm consists of four phases:

a. Initialize a matrix and a cohesion threshold;
b. Search Loop calculating eigenvalues and corresponding eigenvectors, to obtain

modules;

272 I. Exman

c. Check modules’ cohesion whether they comply with the threshold;
d. Redesign if indicated by outliers.

The generic design algorithm is shown in the next text-box.

Generic Design Algorithm – with Forbidden Regions

Init:
Design Sub-Space = obtain suitable matrix;
Set lower cohesion threshold;

Search Loop – obtain modules:
While (there are low cohesion modules)

Do {
Obtain matrix eigenvalues/eigenvectors;
Select suitable eigenvalues;
Pick corresponding eigenvectors;
Get modules from eigenvector elements;
Calculate modules’ cohesion;
Forbidden boundary – cohesion check:
If (module cohesion < threshold)

{split module;
Repeat while loop}

 Else
End While}

Forbidden region redesign:
If (outlier left)

{Redesign matrix as needed;}

Cohesion is calculated by the inverse of the sparsity of a module (which is itself a
sub-matrix). The sparsity is the ratio of zero-valued matrix elements to the total number
of matrix elements in the matrix or sub-matrix. A typical sparsity threshold is 50%.
Modules should have high-cohesion (low sparsity). The environment, i.e. matrix ele-
ments outside modules, should display low cohesion (high sparsity).

5 Case Study: Boundaries of the Forbidden

In this section we describe the well-known Command design pattern, given in the GoF
(so-called “Gang of Four”) book by Gamma et al. [13] as a case study. The main goal
here is to illustrate the boundaries of the forbidden. The design pattern is first presented
in terms of the UML class diagram. Next, we demonstrate the Generic Design Algo-
rithm of Sect. 4, in a series of steps, starting with the chosen Modularity Matrix – see
Exman [7]. We could as well choose a Laplacian Matrix – see Exman and Sakhnini [9].
The specific steps, following the algorithm are:

Software System Theory of the Forbidden Within Discrete Design 273

a. Obtain a matrix – we choose the Modularity Matrix to represent the design pattern;
such a matrix is symmetrized and weighted by means of an affinity;

b. Get eigenvalues/eigenvectors – use the suitable approach for the chosen matrix; for
a Modularity Matrix the eigenvectors are listed in decreasing order of their
respective eigenvalues; then one takes the highest eigenvectors that completely span
the matrix size;

c. Obtain the module sizes – from the respective eigenvector positive elements;
d. Illustrate the case of an outlier – by intentionally adding an arbitrary matrix element

coupling two modules; this shows how one deals with elements in the forbidden
region;

e. Collapse sub-systems – to illustrate the hierarchy of the Software System levels.

5.1 The Command Design Pattern – Its Class Diagram

The goal of the Command design pattern is to enable abstraction of commands, say in a
text editor application. It decouples an object that invokes an action, by clicking a Save
menu-item, from another object that actually performs the file saving action. Moreover,
the Command pattern enables generic features such as Undo and Redo, independently
of whether the specific action is a saving or printing a file.

Figure 4 shows a class diagram of the Command design pattern. It is similar to the
Command class diagram of this pattern in the GoF book (see Gamma et al. [13],
p. 233). The Command pattern in this class diagram has the following classes:

• An invoker, say a menu-item or button, to be clicked in order to activate execution
of a command;

• An abstract Command which characterizes the pattern;
• A Concrete Command class inheriting the abstract Command to actually execute a

specific command;
• A Receiver, which represents an abstraction of a document file.
• A client, which in fact does not belong specifically to this design pattern.

Fig. 4. Command Design pattern UML Class Diagram – the invoker, a menu-item or button,
once clicked triggers commands execution. The Concrete-Command inherits the abstract
Command class (both with a beige color) and actually executes an action on the Receiver (a
document). Figure adapted from Ref. [11]. (Color figure online)

274 I. Exman

Design patterns, declared as reusable software architectural units, could be expected
to have well-defined standard forms. But any such standard does not exist.

The Command section of the GoF book (Gamma et al. [13]) displays no less than
four different class diagrams of this pattern, besides the pattern generic diagram similar
to Fig. 4. The situation is even worse when considering the Internet literature on design
patterns and their implementations in a variety of programming languages.

As was stated in Sect. 1.1, UML allows indefinite variability for any software
system. It is a flexible design model, not a theory with forbidden regions. Therefore, the
next logical step is to translate the Command class diagram into a Modularity Matrix,
enabling a theory which limits forbidden regions.

5.2 Boundaries by the Modularity Matrix

A Modularity Matrix (see Exman [5–7]) was chosen for the Command pattern case
study linking structors (generalizing classes) to provided functionals (generalizing
methods). The standard Modularity Matrix, by the Linear Software Models is square
and block-diagonal. The Command pattern Modularity Matrix displayed in Fig. 5 is
indeed square and block-diagonal.

A Modularity Matrix, containing only the system structors and functionals,
establishes a boundary between the software system and its environment. The diagonal
blocks also set well-defined boundaries among modules.

Fig. 5. Command Design pattern Modularity Matrix – it is square and block diagonal with 6
Structors (columns) and Functionals (rows). Diagonal blocks (blue background) are modules:
Top-Left = essential Command pattern roles, with structors S1, S2 and functionals F1, F2
designations (again marked by beige color); Middle = generic classes; Bottom-Right = Receiver.
Zero-valued elements outside the modules are omitted for simplicity. Figure adapted from Ref.
[11]. (Color figure online)

Software System Theory of the Forbidden Within Discrete Design 275

5.3 Eigenvectors Delimit the Forbidden Regions

A spectral approach applied to the Modularity Matrix has been developed [8] to find
the software system module sizes and eventual outliers, based upon the matrix
eigenvectors and eigenvalues. The approach is formally described by an eigenvalue
equation, entirely analogous to Eq. (1) in Subsect. 2.2:

M � vk ¼ kk � vkZ ð2Þ

M is a symmetrized and weighted Modularity Matrix; vk stands for the kth eigenvector
of M; the eigenvector vk fits to its eigenvalue kk. Symmetrizing and weighting details
by an affinity expression are not essential to understand the arguments and conclusions
of this paper. More details can be found in the paper by Exman [8].

The Command pattern Modularity Matrix eigenvectors and eigenvalues are shown
in Fig. 6. The eigenvalues are sorted in decreasing order. One can easily verify that the
positive eigenvector elements in the first three eigenvectors span the whole matrix.
These eigenvector elements correspond to the module sizes shown in Fig. 5. The
elements of these eigenvectors have only zero-valued or positive values, in contrast to
the remaining eigenvectors.

Had we chosen a Laplacian Matrix (see Exman and Sakhnini [9]) instead of the
Modularity Matrix to solve our case study, the generic eigenvalue Eq. (2) would still be
valid. On the other hand, the specific eigenvalues and eigenvectors would be different,
as well as their meaning and the way to obtain the module sizes. These Matrix specifics
are not essential for the understanding the results of this paper. The generic approach,

Fig. 6. Command pattern eigenvectors/eigenvalues – the three first eigenvectors fitting the first
three eigenvalues – to the left of the red vertical separator – span the Modularity matrix modules.
Positive eigenvector elements (blue background) obtain the matrix module sizes in Fig. 5. Here
the module sizes fit the eigenvalues’ order. Figure adapted from Ref. [11]. (Color figure online)

276 I. Exman

viz. the fact that eigenvectors delimit the boundaries of the forbidden regions, is the
important message.

5.4 Redesign to Eliminate Forbidden Outliers

The treatment of existing outliers can be illustrated by intentionally adding a 1-valued
matrix element to the block diagonal matrix of the Command pattern in Fig. 5 as
follows. The outcome matrix in Fig. 7 has an added element, in row F2 and column S3,
which indeed is an outlier. The latter element couples the upper-left module (over-
lapped by row F2) with the middle module (overlapped by column S3), while itself
being outside the borders of both these modules.

The outlier in Fig. 7 is revealed by the Forbidden boundary – cohesion check
within our Generic Design Algorithm (in Sect. 4) as follows:

1. The eigenvector module size – it fits a large module of size 5 * 5 which is the result
of coupling of the upper-left module of size 2 * 2 with the middle module of size
3 * 3;

2. The cohesion of the large module – is too low, as it has a total of 16 zero-valued
elements, 5 inside the coupled modules and 11 in the forbidden regions of the
environment of these modules, viz. in rows F3 to F5 below the upper-left module
and in columns S3 to S5 above the middle module. Its sparsity is then calculated as
16/25 = 0.64, which is higher than the threshold of 50%. Thus this larger coupled
module must be split.

Fig. 7. Command pattern Modularity Matrix with outlier – this is the matrix in Fig. 5, with an
added outlier element in row F2 and column S3 (with dark blue hatched background).
Zero-valued matrix elements outside the modules are omitted for clarity. Figure adapted from
Ref. [11]. (Color figure online)

Software System Theory of the Forbidden Within Discrete Design 277

Our Generic Design Algorithm determines that outliers – 1-valued matrix elements
in forbidden matrix regions – i.e. outside the diagonal modules, should be eliminated
and the matrix redesigned.

5.5 Hierarchical Sub-spaces of the Command Design Pattern

We finally illustrate the meaning of the Hierarchical Design Sub-Spaces of Axiom 2 in
Subsect. 3.1. The modules of the Modularity Matrix of the Command design pattern, in
Fig. 5, have its structors and functionals explicitly shown. Each of these three modules
may be collapsed into the next higher level of the hierarchy for this system, to obtain
the Modularity Matrix in Fig. 8. This is a 3 * 3 matrix. Expanding this higher level
matrix into the next lower level, obtains back the matrix in Fig. 5.

Performing one further collapsing operation into the highest level of the Command
pattern hierarchy, one obtains the Modularity matrix in Fig. 9, which is a 1 * 1 matrix.

The whole hierarchy of the Command design pattern, viz. the upper-level system,
the next level sub-systems and the lower-level sub-sub-systems, is shown in Fig. 10, to

Fig. 8. Collapsed high-level Modularity Matrix of the Command Design pattern – modules of
Fig. 5 were collapsed to single matrix elements: Top-Left = essential Command pattern roles;
Middle = generic classes; Bottom-Right = Receiver of the action. Zero-valued matrix elements
are omitted for clarity. Figure adapted from Ref. [11].

Fig. 9. Collapsed highest-level Modularity Matrix of the Command Design pattern – modules
of Fig. 8 were collapsed into a single matrix element.

278 I. Exman

illustrate the idea of a hierarchical software system. Note that this is the final designed
system. The Hierarchical Design Sub-Spaces have the same pyramidal structure, in
which each abstraction level corresponds to a sub-space, which in turn is represented
by one Modularity Matrix.

6 Discussion

This paper has shown, motivated by physical systems’ metaphors, that generic formal
quality criteria for software system design are provided by Linear Algebra, within the
theory of Linear Software Systems. Here we discuss the nature of such criteria and why
they are essential.

6.1 The Theoretical Importance of Forbidden Regions

The idea of focusing on Forbidden Regions is somewhat surprising, since apparently
one would most probably prefer an emphasis on positive rather than negative design
criteria. But the purpose of real theories is to simultaneously provide positive and
negative criteria. When one says that some decisions are desirable, one is concomi-
tantly saying that other decisions are undesirable.

Fig. 10. Hierarchical System of Command Design pattern – the three Modularity Matrices in the
Command design pattern hierarchy. Top-Left: fully collapsed system; Middle: collapsed
sub-systems; Bottom-right: fully expanded sub-sub-systems to the resolution of Fig. 5.

Software System Theory of the Forbidden Within Discrete Design 279

Positive criteria declare that some design space regions lead to desirable properties
of a software system, such as modularity.

What is the theoretical importance of Forbidden Regions?
Their importance is to call the attention of software engineers to design problems,

say undesirable coupling between software modules, which must be solved. Thus,
Forbidden Regions are clear signals that the design process is still not fully
accomplished.

6.2 Formalization of the Design of Artificial Systems

In principle one could refute the validity of the physical metaphors, since there is no
special reason to assume that physical systems and software systems behave analo-
gously. One must provide further arguments with this respect.

A first argument is the existence of a common body of knowledge covering both
natural and artificial systems, which justifies similar treatment of both kinds of systems.
An example, referring to the science of aerodynamics, is that designed artificial sys-
tems, be it an airplane or the software embedded in its computers, behave to a large
extent like natural systems. Citing Herbert Simon from his book The Sciences of the
Artificial [19] (in p. 7): “Given an airplane, or given a bird, we can analyze them by the
methods of natural science without any particular attention to purpose or adaptation…”.

A second argument is the hierarchical structure which is common to social systems,
natural systems and software systems. Referring to software systems, we find it so
important for this paper, that we explicitly stated hierarchy in Axiom 2, and in the
explanations surrounding this axiom in Subsect. 3.1. Again citing Herbert Simon’s
book [19] (in p. 184): “…my central theme is that complexity frequently takes the form
of hierarchy and that hierarchic systems have some common properties independent of
their specific content.” This is further and thoroughly discussed by Simon in Chap. 8
“The Architecture of Complexity: Hierarchic Systems” of the same book.

The issue of the validity of physical metaphors for software systems is much
deeper, but space limitations of this paper prevent us to embark in the broader dis-
cussion that this issue deserves.

6.3 Why Eigenvectors?

Eigenvectors are important for dimensionality reduction. Specifically, in the context of
software engineering, as shown in Sect. 5.3 of this paper, they enable modularity in a
software system represented by a Modularity Matrix, or alternatively by a Laplacian
matrix, in each of the abstraction levels of the hierarchical software structure.

Eigenvectors reduce and simplify the set of vectors describing a software system.
Accordingly, the corresponding modules have the effect of reducing a large software
system to a smaller set of sub-systems that are easier to comprehend.

Formally, software system modularity implies lack of dependence among different
modules. In terms of Modularity matrices – e.g. the matrix in Fig. 5 – modules are

280 I. Exman

mutually independent since each module is composed by a set of structors and func-
tionals which is disjoint to the sets of structors and functionals of all other modules.

Modules exactly reflect the eigenvectors’ mutual orthogonality. Eigenvectors – e.g.
the first three in Fig. 6 in Subsect. 5.3 – have zero-valued pairwise scalar products. The
same is true for any structor from a given module: it is orthogonal to structors
belonging to any other modules of the same Modularity Matrix. Mutatis mutandis, any
functional from a given module is mutually orthogonal to any functional belonging to
other modules of the same Modularity matrix.

6.4 Search Efficiency Issues

The 1st axiom on the Software System Design Space in Subsect. 3.1 of this paper, tells
that the Design Space is discrete and finite. It does not guarantee that the Design Space
is small. Search in the Design Space could still take a long time.

The 2nd axiom in Subsect. 3.1 – demanding a hierarchical Design Space for a
software system – is the basis of an intuitive argument for the claim that, while the
overall Design Space for the whole system may not be small, the Design Sub-Space for
each subsystem in any level in the Design Space hierarchy is expected to be of bounded
size.

For instance, looking at each abstraction level of our case study – the Command
Design pattern shown in Fig. 10 – one sees that the maximal size of each module is
bounded by a 3 * 3 matrix. In general, one expects for a multi-level hierarchy of a large
system, that in each abstraction level the subsystem matrix size is bounded by a small
integer. In other words, design space search in each module is efficient for all hierarchy
levels.

6.5 Main Contribution

This paper claims that real software system theories need to be of practical use for
software design. Such theories should provide formal design quality criteria, supporting
system modularity. Concomitantly these theories should point out to forbidden system
compositions, signaling undesired modules’ coupling in need of software system
redesign.

References

1. Abbot, J.J., Marayong, P., Okamura, A.M.: Haptic virtual fixtures for robot-assisted
manipulation. In: Thrun, S., Brooks, R., Durrant-Whyte, H. (eds.) Robotics Research.
Springer Tracts in Advanced Robotics, vol. 28, pp. 49–64. Springer, Berlin (2007). doi:10.
1007/978-3-540-48113-3_5

2. Aneja, Y.P., Parlar, M.: Algorithms for weber facility location in the presence of forbidden
regions and/or barriers to travel. Transp. Sci. 28(1), 70–76 (1994). doi:10.1287/trsc.28.1.70

Software System Theory of the Forbidden Within Discrete Design 281

http://dx.doi.org/10.1007/978-3-540-48113-3_5
http://dx.doi.org/10.1007/978-3-540-48113-3_5
http://dx.doi.org/10.1287/trsc.28.1.70

3. Brooks, F.P.: The Mythical Man-Month - Essays in Software Engineering – Anniversary.
Addison-Wesley, Boston (1995)

4. Devadas, V., Aydin, H.: Real-time dynamic power management through device forbidden
regions. In: Proceeding IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 34–44 (2008). doi:10.1109/RTAS.2008.21

5. Exman, I.: Linear software models, extended abstract. In: Jacobson, I., Goedicke, M.,
Johnson, P. (eds.) Proceeding. GTSE 2012, SEMAT Workshop on a General Theory of
Software Engineering, pp. 23–24. KTH Royal Institute of Technology, Stockholm (2012)

6. Exman, I.: Linear Software Models, GTSE 2012, SEMATWorkshop on a General Theory of
Software Engineering. KTH Royal Institute of Technology, Stockholm (2012). Video
presentation of Ref. [5]: http://www.youtube.com/watch?v=EJfzArH8-ls

7. Exman, I.: Linear software models: standard modularity highlights residual coupling. Int.
J. Softw. Eng. Knowl. Eng. 24(2), 183–210 (2014). doi:10.1142/S0218194014500089

8. Exman, I.: Linear software models: decoupled modules from modularity matrix eigenvec-
tors. Int. J. Softw. Eng. Knowl. Eng. 25(8), 1395–1426 (2015). doi:10.1142/
S0218194015500308

9. Exman, I., Sakhnini, R.: Linear software models: modularity analysis by the Laplacian
matrix. In: Proceeding 11th International Joint Conference on Software Technologies,
ICSOFT-PT, vol. 2, pp. 100–108, Lisbon, Portugal (2016). doi:10.5220/0005985601000108

10. Exman, I., Speicher, D.: Linear software models: equivalence of modularity matrix to its
modularity lattice. In: Proceeding 10th ICSOFT International Joint Conference on Software
Technologies, Colmar, France, pp. 109–116 (2015). doi:10.5220/0005557701090116

11. Exman, I.: Software theory of the forbidden in a discrete design space. In: Proceeding 11th
International Joint Conference on Software Technologies, ICSOFT-PT, vol. 2, pp. 131–137.
Lisbon, Portugal, SciTePress (2016a). doi:10.5220/0006004601310137

12. Exman, I.: The modularity matrix as a source of software conceptual integrity. In:
Proceeding SKY 2016 - 7th International Workshop on Software Knowledge, Porto,
Portugal, pp. 27–35. SciTePress (2016b)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley, Boston
(1995)

14. Jackson, D.: Conceptual design of software: a research agenda. CSAIL Technical report,
MIT-CSAIL-TR-2013-020 (2013). http://dspace.mit.edu/bitstream/handle/1721.1/79826/
MIT-CSAIL-TR-2013-020.pdf?sequence=2

15. Li, X.-Y., Guo, L.: Constructing affinity matrix in spectral clustering based on neighbor
propagation. Neurocomputing 97, 125–130 (2012). doi:10.1016/j.neucom.2012.06.023

16. Messiah, A.: Quantum Mechanics, vol. I. North-Holland Publishing Co., Amsterdam (1961).
Chap. III, Reprinted by Dover Publications (2014)

17. Payandeh, S., Stanisic, Z.: On application of virtual fixtures as an aid for telemanipulation
and training. In: Proceeding HAPTICS 2002 10th Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems, pp. 18–23 (2002). doi:10.1109/HAPTIC.
2002.998936

18. Particle in a Box. https://en.wikipedia.org/wiki/Particle_in_a_box
19. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)
20. Slinky (2016a). https://en.wikipedia.org/wiki/Slinky
21. Slinky, Wave Phase changes at fixed end (2016b). http://hyperphysics.phy-astr.gsu.edu/

hbase/sound/slinkv.html#c1
22. Standing wave (2016a). https://upload.wikimedia.org/wikipedia/commons/7/7d/ Standing_

wave_2.gif
23. Standing wave, Standing waves on a Slinky (2016b). http://hyperphysics.phy-astr.gsu.edu/

hbase/sound/slnksw.html#c1

282 I. Exman

http://dx.doi.org/10.1109/RTAS.2008.21
http://www.youtube.com/watch%3fv%3dEJfzArH8-ls
http://dx.doi.org/10.1142/S0218194014500089
http://dx.doi.org/10.1142/S0218194015500308
http://dx.doi.org/10.1142/S0218194015500308
http://dx.doi.org/10.5220/0005985601000108
http://dx.doi.org/10.5220/0005557701090116
http://dx.doi.org/10.5220/0006004601310137
http://dspace.mit.edu/bitstream/handle/1721.1/79826/MIT-CSAIL-TR-2013-020.pdf%3fsequence%3d2
http://dspace.mit.edu/bitstream/handle/1721.1/79826/MIT-CSAIL-TR-2013-020.pdf%3fsequence%3d2
http://dx.doi.org/10.1016/j.neucom.2012.06.023
http://dx.doi.org/10.1109/HAPTIC.2002.998936
http://dx.doi.org/10.1109/HAPTIC.2002.998936
https://en.wikipedia.org/wiki/Particle_in_a_box
https://en.wikipedia.org/wiki/Slinky
http://hyperphysics.phy-astr.gsu.edu/hbase/sound/slinkv.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/sound/slinkv.html#c1
https://upload.wikimedia.org/wikipedia/commons/7/7d/
http://hyperphysics.phy-astr.gsu.edu/hbase/sound/slnksw.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/sound/slnksw.html#c1

24. Sullivan, K.J., Griswold, W.G., Cai, Y., Hallen, B.: The structure and value of modularity in
software design. In: Proceeding ESEC/FSE 8th European Software Engineering Conference
and 9th SIGSOFT International Symposium Foundations Software Engineering, pp. 99–108.
ACM (2001). doi:10.1145/503209.503224

25. UML, Specification, OMG (Object Management Group) (2015). http://www.omg.org/spec/
UML/

26. Weisstein, E.W.: Laplacian Matrix, From Mathworld–A Wolfram Web Resource (2016).
http://mathworld.wolfram.com/LaplacianMatrix.html

27. Wu, Y., Patel, J.M., Jagadish, H.V.: Estimating answer sizes for XML queries. In:
Jensen, C.S. et al. (ed.) EDBT 2002. LNCS, vol. 2287, pp. 590–608. Springer, Heidelberg
(2002). doi:10.1007/3-540-45876-X_37

Software System Theory of the Forbidden Within Discrete Design 283

http://dx.doi.org/10.1145/503209.503224
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://mathworld.wolfram.com/LaplacianMatrix.html
http://dx.doi.org/10.1007/3-540-45876-X_37

Enabling Legacy Applications
for Multi-tenancy Without Reengineering

Uwe Hohenstein(&) and Preeti Koka

Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81730 Munich,
Germany

{Uwe.Hohenstein,Preeti.K}@siemens.com

Abstract. Multi-tenancy is an architectural style to share resources amongst
several tenants. It is an important facet of Cloud Computing and often considered
a key element to make Software-as-a-Service (SaaS) profitable. Indeed, SaaS
providers adopt multi-tenancy to optimize resource usage and to save operational
costs. While literature often discusses how to develop new, green-field software
with multi-tenancy, this paper focuses on adding multi-tenancy to existing,
brown-field software. This is particularly relevant in the context of Cloud
migration where legacy software should be moved into the Cloud. The major
contribution of this paper is to present an approach to leave the application’s
source code untouched, i.e., to add some new components in order to enable the
application for multi-tenancy. To this end, we apply the aspect-oriented language
AspectJ in an industrial case study to evaluate what can be achieved with such an
approach as well as to enumerate the benefits and drawbacks in detail. In a
nutshell, the approach is appropriate to handle REST applications and/or backend
services. The following important facets of multi-tenancy can be achieved:
Tenant management; tenant-specific authentication and data isolation among
multiple tenants for various database servers and strategies; tenant-specific cus-
tomization by modifying existing behavior, particularly, removing functionality
but also to introduce new functionality; and as a by-product, to monitor all
tenants’ activities as a prerequisite for a tenant-specific billing.

Keywords: Multi-tenancy � Cloud migration � Aspect-orientation � AspectJ �
Industrial application � Case study

1 Introduction

The NIST definition [21] defines Cloud computing as “a model for enabling ubiqui-
tous, convenient, on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider
interaction”. Software-as-a-Service (SaaS) is thereby one service model besides
Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS). SaaS is a delivery
model that enables customers, the so-called tenants, to lease and use services without
buying a software license and setting up a local installation [17]. Moreover, tenants pay
only for what they use to what extent according to the pay-as-you-go principle.

© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 284–308, 2017.
DOI: 10.1007/978-3-319-62569-0_14

The goal of SaaS providers is to save operational cost in order to be competitive by
means of an efficient utilization of hardware and software resources and improved ease
of maintenance [3]. This let SaaS providers usually adopt a multi-tenant architecture
[5]. Multi-tenancy is a software architecture principle that lets several tenants share a
common infrastructure. It is widely agreed that a well-economical SaaS application has
to pursue a multi-tenant architecture.

Since software is more and more becoming an on-demand service drawn from the
Cloud, industries are interested in offering SaaS to enter new businesses. Having a huge
amount of legacy applications, there is a strong interest in moving these applications
into the cloud first for entering SaaS business while preserving investments. As a side
effect, applications can also benefit from features such as elasticity and pay-as-you-go.
But industries have the challenge to convert legacy applications into multi-tenant SaaS
without spending too much time and effort on refactoring [4].

Several papers such as [3, 29] discuss multi-tenant architectures with pros and cons
according to what is shared by the tenants: the topmost web frontend, middle tier
application servers, the underlying database. Others, e.g., [1], define further degrees of
sharing and categorize migration types to cloud-enable applications.

Striving for multi-tenancy, the SaaS provider has to balance between easy imple-
mentation and saving operational costs by efficient resource utilization. The simplest
approach to make an application multi-tenant with lowest development effort is a
virtualization approach [14]. This approach let each tenant obtain a virtual machine
(VM) containing an application server, the application and a DB server. The ease of
this approach is paid by a higher consumption of resources and higher costs especially
in public clouds where each VM (one for each tenant) has to be paid. Even on premises
more equipment than necessary has to be provided. Moreover, each tenant requires a
database server license or additional costs for using a database as a Cloud service.

At the other edge of the scale, fully efficient multi-tenancy [5] let all the tenants
share all resources: one Tomcat, one application, and one database server amongst all
tenants. However, a significant re-engineering of applications is required to set up a
fully multi-tenant application, thus leading to high development costs [23].

Recent technologies facilitate further approaches. Particularly, container tech-
nologies enable another approach to make application deployments multi-tenant, lying
in between the previous two extremes. This implementation involves deploying the
application stack (application server, application and database server) on a separate
container for each tenant. Containers such as Docker are more light-weight than virtual
machines, but still produce more load and thus require more resources than fully
efficient multi-tenancy. As an advantage, tenant-specific customizations become easier
since each container can be equipped with a different software variant.

In fact, SaaS applications have to be customizable or configurable to fulfil the varying
functional requirements of individual tenants [14]; customers want to add or modify
specific features. From the SaaS provider’s view, various degrees of feature sets could be
offered with different prices, especially a “freemium” version with a reduced function set.
Several papers such as [2, 9] recognize tenant customization as one important require-
ment and challenge, and [17] states that it is not trivial to adapt the business logic and data
to the requirements of the different tenants. Most work on customization focuses on
product-line approaches [26] to offer variability. Using aspect-oriented programming
(AOP) is sometimes proposed to achieve configurability, e.g., by [29, 34].

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 285

In this paper, we also apply AOP, however, at a broader scope to migrate existing
applications into fully multi-tenant SaaS applications. We investigate how to benefit
from the aspect-oriented language AspectJ [16] in this context. We have a clear idea in
mind: To add multi-tenancy to existing applications without any reengineering and
without explicitly modifying the source code. To explore our idea, we use an existing
industrial application that was originally not developed for a multi-tenant environment
and serves users of exactly one tenant. More precise, each tenant obtains one dedicated
application instance deployed on a Tomcat application server and using an Oracle
database on premise so far. That is, the application is managed per tenant similar to
traditional application service providers. We then elaborate upon the feasibility to
realize the AOP idea thereby illustrating the major advantages of our migration
approach. Hence, this paper takes a practical view on Cloud migration and presents a
low-effort approach for offering legacy applications as multi-tenant SaaS in a Cloud.

In a nutshell, it is possible to achieve tenant isolation, to modify existing behavior in
a tenant-specific manner, to introduce new services for specific tenants, and to monitor
requests per tenant for billing purposes. Enabling such multi-tenancy facets is achieved
without explicitly touching source code or building a new application; only a restart of
Tomcat is required after having deployed some additional components. Hence, we
obtain a simple and cheap mechanism by only adding components to existing appli-
cations – without any further reengineering and refactoring of source code.

The motivation for our work is manifold. The approach is a first step to let existing
applications become Cloud-ready and to enable entering the SaaS business fast and
easily. Such a first trial can explore SaaS business opportunities, maybe offering reduced
functionality, and to expand business to a larger customer base with low expenses.
Being easily applicable to other applications, our solution reduces time-to-market and
saves development effort. And finally, free demo versions of existing applications can be
made publicly available in a Cloud as a teaser. Since no profit can be directly made in
that case, we benefit from small investments in development.

This paper is an extended version of [10] where we have already outlined the basic
ideas for the previously mentioned software running in Tomcat and using an Oracle
database. Here, we extend the mechanism to cover other database servers and further
data isolation strategies according to [6].

The remainder of this paper is structured as follows. Section 2 presents related
research and deduces the necessity for this work. Before discussing the migration
approach in depth, we give in Sect. 3 a short introduction into the aspect-oriented
AspectJ language, as far as it is necessary to understand how we applied
AspectJ. Section 4 introduces the application, which we used in a concrete industrial
study to prove effectiveness, in its original single-tenant form. We present our approach
to migrate to a multi-tenant Cloud application with low programming effort in detail by
discussing the components that implement important facets of multi-tenancy such as
tenant isolation and customization. In Sect. 5, we elaborate upon the flexibility of the
AspectJ approach to cover other database servers and further data isolation strategies in
addition to our previous work [10]. Section 6 presents an evaluation of the AspectJ
approach with regard to implementation effort, modularity, and adaptability. Moreover,
the lessons learned are discussed. Finally, the conclusions summarize the discussion and
presents future ideas.

286 U. Hohenstein and P. Koka

2 Related Work

A lot of recent research focuses on migrating legacy applications into the cloud, e.g.,
suggesting checklists and methodologies to perform migrations. For example, ARTIST
[24] provides methods, techniques, and tools to guide companies in moving applica-
tions into the cloud in three phases pre-migration, migration, and post-migration. The
approach attempts to better support the complex, time-consuming, and expensive tasks
during migration.

Decisions to migrate existing services to the cloud can be complicated as the
benefits, risks, and costs of using the Cloud are complex. [11] states that a migration
should also consider organizational and socio-technical factors. Their Cloud Adoption
Toolkit offers a collection of tools for decision support and helps to identify relevant
concerns and match them to appropriate technologies. A particular cost modeling tool
can be used to compare the cost of different cloud providers and deployment options.
A case study presents in detail this tool.

Binz et al. [4] discuss vendor lock-in as a major difficulty for migrating existing
applications into and between different clouds. The CMotion framework models
entities and their dependencies as a basis for supporting migration. Anyway, adapters
have to be implemented manually.

This work in the area of cloud migration is quite general and does not address the
integration of multi-tenancy into legacy applications. Indeed, our approach combines
migrating applications to the Cloud with adding multi-tenancy to legacy applications.

In fact, the specific topic of multi-tenancy is often considered as a challenge in
research. Several papers, for example [6] and [15], describe the possible variants of
multi-tenancy. Momm and Krebs [23] consider approaches to reduce resource con-
sumption and discuss some cost aspects of sharing. Wang et al. [33] make recom-
mendations on the best multi-tenant variant to use based on the number of tenants, the
number of users per tenant, and the amount of data per tenant. Guo et al. [9] discuss the
implementation principles for application-level multi-tenancy and explore different
approaches to improve isolation of security, performance, availability, and adminis-
tration. Fehling et al. [8] come up with prospects for the optimization of multi-tenancy
by distributing the tenants with respect to Quality of Service.

Bezemer et al. [2] present an architectural approach for reengineering applications to
enable multi-tenancy in software services. The discussion especially considers a
multi-tenancy reengineering of workflow and UI configuration. A specific multi-tenancy
reengineering pattern takes into account a multi-tenant database, tenant-specific
authentication, and configuration. This reengineering pattern is applied to an existing
single-tenant application in a case study. However, the reengineering effort was rela-
tively little due to a well-designed and layered architecture. In an additional work [3],
they manually transform the ScrewTurn wiki case to a multi-tenant application and
encounter security, data protection, data isolation, configurability, performance isolation
of tenants, and scalability issues for tenants from different continents, as the core
challenges. Unfortunately, the authors do not solve all the previously mentioned issues.
Beside implementation effort, they consider the recurrence of maintenance tasks such as
patches or software updates as another driver for operational cost.

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 287

In contrast to this general work on strategies and their impact on resource con-
sumption, our approach tackles the problem of adding multi-tenancy by avoiding
reengineering efforts.

Further research considers tenant-specific customizations as an important require-
ment for multi-tenancy, e.g., case studies such as [15, 18] which try to configure
multi-tenant applications for tenants. The elements of an application that need to be
customized are graphical user interface, business logic, service selection and config-
uration, and data [30]. Customization could be performed in two ways [29]: A
source-code based approach allows customizing SaaS applications by integrating new
tenant-specific source code. Such an approach has been pursued by [13, 35]. In spite of
giving tenants more flexibility in the customization process, this approach has several
disadvantages. At first, each tenant must know the implementation details of the SaaS
application. Then, security regulations of the application might be violated if tenants
are able to integrate source code. Since all the tenant-specific extensions have to be
retained, software upgrades become more complicated for the SaaS provider. [32]
considers source code based approaches as too complex.

An alternative composition-based approach let SaaS applications be customized by
composing variants. An application template contains customization points [20], i.e.,
unspecified parts, which can be configured by selecting predefined components from a
provided set [19, 22, 25].

Adopting work from the area of product-line engineering, Pohl et al. [26] point out
four key concerns to be addressed for customization: modeling customization points
and variations, describing relationships among variations, validating customzations
performed by tenants, and dis-/associating variations from/to customization points
during runtime.

Shahin et al. [29] tackle all these concerns and propose the Orthogonal Variability
Modeling (OVM) to model customization points and variations and to describe the
relationships among variations. Tenants’ customizations are validated by a
Metagraph-based algorithm. An aspect-oriented extension of the Business Process
Execution Language (BPEL) is used to associate and disassociate variations to/from
customization points at run-time. The approach is illustrated by a Travel Agency
example.

Three of the above concerns are dealt with by [20]. They also use Metagraphs to
model customization points, variants, and their relationships. Moreover, they propose
an algorithm to validate customizations made by tenants. [30, 31] handle only the
modeling of customization points and variants using an ontology-based customization
framework with OVM. Tenants are guided through the customization process to avoid
unpredictable customizations.

Walraven et al. [32] investigate middleware component models with respect to
offering software variations to different tenants and come to the conclusion that support
is too inflexible. Using Google AppEngine, they propose a multi-tenancy support layer
that combines dependency injection with middleware support. They evaluate opera-
tional expenses and flexibility for an online booking scenario. The approach requires
that dedicated customization points are inserted into the code for applying cus-
tomization. Similarly, Wang and Zheng [34] apply aspect-orientation in a case study,
but still rely on preparing the software architecture accordingly.

288 U. Hohenstein and P. Koka

In spite of providing interesting insights in multi-tenancy and configurability, all
this research starts from green-field or need to insert customization points in the
existing application. In contrast, our approach leaves the original application unchan-
ged. To our knowledge, there is also no work combining an approach to migrate
applications to the Cloud with adding multi-tenancy for a legacy application by
avoiding major code changes.

3 Aspect-Oriented Programming in AspectJ

Aspect-orientation (AO) is a paradigm that helps to develop software in a modular
manner [12]. AO provides systematic means for effectively modularizing crosscutting
concerns (CCCs). CCCs are those functionalities that are typically spread across sev-
eral places in the source code and often lead to lower programming productivity, lower
degree of code reuse, and poor traceability and quality [7]. Special aspect-oriented
languages offer advanced concepts to modularize CCCs and to avoid the well-known
symptoms of non-modularization such as code tangling and code scattering.

Our approach relies on the AspectJ language [16]. AspectJ is an extension of the
Java language introducing a new concept of aspect to Java. An aspect changes the
dynamic structure of a program by intercepting certain points of the program flow, the
so-called join points. Join points can be method and constructor calls or executions,
field accesses, and exceptions etc. Pointcuts syntactically specify those join points in
the flow by means of a signature expression. The actions to be taken before and/or after
the join points are defined by advices.

AspectJ, as presented in [16], is a language of its own, in fact, an extension of Java.
Hence, it requires a dedicated AspectJ compiler. Usually, the AJDT plug-in will be
installed in Eclipse. However, an AspectJ compiler requires changes in the build
process, which is often not desired, so for us: We do not want to re-compile the existing
application. Then, using Java annotations is an alternative. The following is an example
for a simple aspect with annotations:

@Aspect class MyAspect {
@Before("execution(* MyClass*.get*(..))")
public void myAdvice() {
do something in Java before specified join points

} }

An annotation @Aspect lets the Java class MyAspect become an aspect. The
method myAdvice is a @Before advice that adds Java logic before those joinpoints
that are captured by the pointcut. The pointcut is specified within @Before as a string:
Any execution of any method starting with get, having any parameters and any return
type, belonging to a class starting with MyClass. Wildcards can be used to determine
several methods of several classes. A star “*” in names denotes any character
sequence; “*” used as a type stands for any type. Parameter types can be fixed with

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 289

data types or left open (..). Similarly, @After and @Around advices can be used to
execute an advice after or around join points, resp. An aspect can also declare attributes
and methods; it can also extend another aspect.

This is only a very brief overview of AspectJ. Concrete examples will be discussed
in the successive section. It is important to note that this is pure Java code that runs
with any Java compiler. So-called load-time weaving (LTW) lets the advices be woven
into the code whenever a class is loaded by the class loader.

4 Adding Multi-tenancy to Existing Applications

In this paper, we use an existing industrial Java application that provides customers a
REST service in the travel management domain. The application runs in a Tomcat
application server and uses an Oracle database (DB) for storing data at the backend.
Currently, the application is shipped as a single-tenant application to individual cus-
tomers and deployed at the customer site. Thus, each customer obtains a full appli-
cation stack consisting of Tomcat, the application, and an Oracle database server.

The intention is to deploy this application in a public cloud thereby enabling it for
multi-tenancy. This means that Tomcat, the application and the database have to be
shared amongst several tenants. Further details about the application are subject to
confidentiality and irrelevant for the message of this paper.

4.1 Tomcat and Oracle Basics

Tomcat and Oracle have some specific concepts the understanding of which is nec-
essary for the remainder of this paper. Tomcat provides several forms of user
authentication, a form-based for Web application, basic authentication for REST ser-
vices etc. Having enabled authentication, Tomcat shields the application by asking for a
user and a password. User, passwords, and user roles are stored for each application in
a configurable “user/roles store” like an XML file, a relational DB, a JDNI store etc.
When a user logs in to an application, the Tomcat container checks that store for valid
credentials. The application can also restrict functionality to users with specific roles.
The legacy application we use in our case study applies Tomcat’s basic authentication.
To this end, a dedicated schema Auth(entication) in Oracle contains the
user/roles tables. The connect string with a specific user/password is part of the Tomcat
configuration file.

In Oracle, each user requires a password to login; the user obtains an associated DB
schema with the same name. Every user can create the same set of tables with the same
statement – in his schema. Thus, an Oracle user/schema corresponds to a tenant
“database”. Schemas are isolated from each other. To access data in another schema
(i.e., of another user), tables can be prefixed by a schema name. However, the owner of
the foreign schema must explicitly grant access to the user. In the following, we use the
notion schema.table to refer to a table in a specific schema.

A database instance is the Oracle notion of a database server. Such an instance has
exactly one database being associated. A JDBC driver connects to that database.

290 U. Hohenstein and P. Koka

4.2 Tenant and User Management

The major concern of this paper is to enable an existing Tomcat application for
multi-tenancy, i.e., to share the Tomcat application server, the application, and the
Oracle database instance amongst tenants. According to [2], one important prerequisite
for multi-tenancy is an appropriate tenant/user management. In particular, the following
workflow should be supported:

1. Tenants must be given a possibility to register for using the application.
2. A SaaS administrator should be able to approve or deny the tenant for using the

application depending on whether a contract about payment details has been set up
between the SaaS provider and the tenant.

3. If the SaaS provider has approved a tenant, the tenant obtains a dedicated database.
Moreover, the tenant is allowed to register its users.

4. All the registered tenants’ users should be able to use the application.

4.3 Initial DB Setup for Multi-tenancy

The original application keeps its data in a database schema. Indeed, there might be
several, however, we collapse them to one referred to as Appl. We assume another
schema, referred to as Auth, which contains the Tomcat authentication tables Users
and User_Roles with Tomcat users with their roles. Tomcat accesses these tables to
check the password for any login to the application during authentication. Only Tomcat
users in the Users table can authenticate.

During an initial database setup, the Users table in the Auth schema is extended
with a column tenant to keep the association between a user and the tenant s/he
belongs to. Moreover, a new Oracle user/schema Admin is created that is exclusively
used by the SaaS administrator to keep information about tenants. The setup also
creates a new table Tenants in this schema to keep registered tenants with their
administrators and a UserMonitoring table for monitoring purposes (cf. Sect. 4.7).

The newly introduced tenant administration service (cf. Sect. 4.4) requires a SaaS
administrator to perform tenant management. To this end, a new Tomcat user SaaS
with a new role SaaS is added to the Users and User_Roles tables.

Finally, an SQL script createApplicationTables.sql is required to create
all the application’s tables in any new tenant schema.

All these steps do not affect the existing application, but only require some SQL
scripts to be executed.

4.4 Tenant Administration Service

New services are required for tenant administration purposes, especially for registering
tenants and users, to support the workflow in Subsect. 4.2. The existing application
source code is not affected. Hence, we implemented a new REST server to provide
corresponding functionality:

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 291

1. POST TenantService allows a tenant to register for using the application.
Everybody is allowed to invoke this service. The request payload has to specify a
name for the tenant and an administrator by name and password. Name and
password are required to let a tenant register users in Step 3. This information is stored
in a table Admin.Tenants(name, admin, password, approved, …).

2. can be used by the SaaS
administrator to enable or disable access for the request body contains
{“approve”:Yes} or {“approve”:No} accordingly. Only the SaaS admin-
istrator is allowed to invoke the service. To this end, we set up a new organizational
Tomcat role SaaS which allows the administrator to manage tenants. If the SaaS
administrator approves TenantA, then approved=1 is set for TenantA in the
Admin.Tenants table; the record for TenantA’s admin is copied from Admin.
Tenants (cf. Step 1) to the Auth.Users table. Moreover, the tenant adminis-
trator obtains a new Tomcat role TAdmin in the Auth.User_Roles table. This
role allows him to register tenant’s users for the application. The approved tenant
obtains an Oracle user and schema TenantA, i.e., a database to keep the tenant’s
application data isolated. Finally, all the application tables are created in the new
schema by executing the SQL script createApplicationTables.sql in
schema TenantA.

3. lets the tenant administrator
for create a user to make a user known to the application. The invoker
requires the TAdmin Tomcat role for Tomcat authentication. The request payload
specifies the name of the user and a password, which both are inserted to the Auth.
Users table. Furthermore, the user obtains one or more roles, which enables him to
use the application with the above credentials. The association of a user to his tenant
is stored in the tenant column of the Auth.Users table. Table 1 shows the
contents of the Users and User_Roles tables after the administrator AdminA
for TenantA has registered UserA1 and UserA2; an explanation describes when
each record has been added.

4. The users UserA1 and UserA2 of TenantA are then able to login to the application
and to use it.

Table 1. Database contents for authentication (adopted from [10]).

Wugtu wugtapcog wugtarcuu vgpcpv

… existing users … NULL

SaaS SaaS NULL in 4.3
AdminA PwA TenantA Step 2
UserA1 PwA1 TenantA Step 3
UserA2 PwA2 TenantA Step 3

WugtaTqngu wugtapcog tqngapcog
… existing users … existing roles
SaaS SaaS in 4.3
AdminA TAdmin Step 2
UserA1 User Step 3
UserA2 User Step 3

292 U. Hohenstein and P. Koka

These services can simply be deployed as a new application in Tomcat in order to
become immediately effective. Services rely on the following Tomcat roles giving
privileges to the various types of users:

• A new SaaS role for the administrator of the SaaS applications to perform
administrative tasks such as tenant approval;

• a new TAdmin role for a tenant administrator to enable registering tenant’s users;
• User for the users of the application: Indeed, there may be several with specific

privileges. For the ease of discussion, we collapse them to one User schema.

4.5 Data Isolation

Tenants and their users are now known to Tomcat and allowed to access the application
since Tomcat authenticates against the Auth.User/UserRoles tables. However,
all these users access the same application and use the original tables in the Appl
schema. Hence, there is no effective data isolation between different tenants as
requested by [9]. To achieve data isolation, a user’s data must be stored in the tenant’s
schema (i.e., database). This means that every database access of a logged-in user must
be re-directed to the correct tenant schema. In fact, AspectJ comes here into play since
it enables intercepting every user authentication without explicitly modifying, recom-
piling, or rebuilding the original application. Then, the user can be determined and the
corresponding TenantX for the user derived. The following code sketches a corre-
sponding AspectJ aspect:

@Aspect rwdnke encuu MTE {
@Around(

"execution(* com.siemens.app.ExistingAppl.svc*(..))
&& !within(com.siemens.aspects.MTE)")

rwdnke Object interceptRequests
(ProceedingJoinPoint jp) {

(1) determine user from HTTPRequest and
derive role & tenant (from Users table);

(2) store user/tenant/role for later usage;

(3) switch acces to tenant database;

tgvwtp jp.proceed(jp.getArgs()); /* call original
logic of svc* method */

} }

We do not use the AspectJ language and its compiler because we do not want to
change the build process. Instead, we rely on pure Java with AspectJ annotations and
load-time weaving. The annotation @Aspect let the Java class MTE (Multite-
nancyEnabler) become an aspect. The method interceptRequests is
annotated with @Around and defines an advice to be executed at join points. These
join points are specified by a pointcut string within the @Around annotation. The
advice intercepts any execution of methods starting with svc… belonging to the class

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 293

ExistingAppl (i.e., the basic REST service) with any parameters (..) and
returning any type (*). We could also specify several method signatures individually
and combine them with ‘‖’ (logical OR) without wildcards.

The @Around method interceptRequests implements the logic to be exe-
cuted at each join point, i.e., any execution of a svc… method specified by the
pointcut, and replaces the original behavior with its body. The parameter jp of type
ProceedingJoinPoint is used to execute the original logic at the join points in
the advice by means of jp.proceed(). Furthermore, jp also gives access to the
context of invocation such as the parameter values (jp.getArgs()) and the sig-
nature of the concrete svc… method (jp.getSignature()). Since the method is
implicitly invoked by jp.proceed() inside the aspect, an endless loop will occur.
This is avoided by adding !within(MTE) in the pointcut to not intercept any
invocation that occurs within the aspect itself.

Please note only the pointcut “execution(* com.siemens.app. Exist-
ingAppl.svc*(..)” of advice interceptRequests depends on the applica-
tion code. This pointcut specifies what methods or services are intercepted, here of
class ExistingAppl that implements the REST service.

One open point now is how to get the user name from Tomcat authentication (cf.
(1) in the code above). Unfortunately, there are several ways to pass the authentication
context to the application, and it is unknown what mechanism has been used in the
original application. For instance, the application can declare a HttpServletRe-
quest req variable. Such a variable declaration can be annotated with @Context in
a service class which let the value be injected by the Tomcat container. The
HttpServletRequest can then be used to derive authentication information, e.g.,
by req.getUserPrincipal().getName(). Another way is to specify an
additional @Context HttpServletRequest parameter in a service method.
Besides not knowing the used mechanism, even a global variable req is usually
private and not accessible from an external aspect.

Investigating the behavior of Tomcat, we noticed that Tomcat invokes for
authentication in any case a _handleRequest method of a class WebApplica-
tionImpl. Thus, a @Before advice in the MTE aspect can intercept the method
execution in order to extract the HttpRequest and then the user name:

@Before("execution
(* com.sun.jersey.server.impl.application
.WebApplicationImpl._handleRequest(..))
&& this(w) && !within(com.siemens.aspects.MTE)")

rwdnke xqkf getUserInfo(JoinPoint jp,
WebApplicationImpl w) {

String user = w.getThreadLocalHttpContext()
.getRequest().getUserPrincipal().getName();

determine role and tenant for user;
}

294 U. Hohenstein and P. Koka

Please note AspectJ is able to intercept JARs, even of 3rd party tools like Tomcat
without having the source available!

The clause this(w) binds the variable w to the called object of type
WebApplicationImpl. The method getThreadLocalHttpContext() is
used to get the request-local HttpContext, which is then used to derive the
HttpRequestContext and the Principal of the user who has logged in. The
tenant to whom the user belongs can be determined by using the Auth.Users table.

The user and tenant information has to be passed to the interceptRequests
advice. This is simply possible since information can be shared amongst several
advices within the same aspect. Hence, the getUserInfo advice can store the user
information in a variable within the MTE aspect, which is the used by the inter-
ceptRequests advice in the sense of Laddad’s wormhole pattern [16].

Please note this advice is only specific to Tomcat but is independent of the appli-
cation. Any other application server will require slight modifications of this advice.

Finally, we have to take care of tenant isolation. Using another advice within MTE,
we intercept every access to a database Connection and re-direct access to the tenant
schema. For JDBC accesses, the advice looks as follows:

@Around("call(java.sql.Connection
java.sql.DriverManager.getConnection(..)

&& !within(com.siemens.aspects.MTE)")
public Object interceptGetConnection

(final ProceedingJoinPoint jp) {
get the user and tenant (stored locally in MTE);
Connection con = (Connection) jp.proceed(jp.getArgs());

// original logic gets connection
Statement stmt = con.createStatement();
// switch to tenant’s database/schema:
stmt.execute("SET SCHEMA '" + tenant + "'");
return con;

}

Every successive database operation will use the tenant schema, i.e., database.
Indeed, an@After advice would have been sufficient here. However,@Around is more
flexible to handle other databases with different concepts such as an explicit database
name in the URL. Section 5 will dive into the details and will also illustrate how to
implement other strategies such as sharing the original tables between several tenants.

4.6 Customization

Several papers like [29] emphasize the importance of tenant-specific customizations of
an application for business, thereby considering customization as a major challenge of
multi-tenancy. Again, AspectJ can be used to give an application a tenant-specific
behavior without explicitly touching the source code. To this end, each tenant-specific
behavior requires one dedicated aspect, e.g., TenantAModifier for TenantA, which

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 295

defines the specific tenant behavior. Since the logic of the aspect is technically applied
to the overall application, the aspect must determine the expected tenant and only apply
the logic to that tenant. That is why the aspect has to implement an interface
GenericModifier, which demands for a method getTenantName(); it should
return the tenant name of the modifier, i.e., “TenantA” for aspect TenantAModifier.
Using getTenantName(), an advice can then compare the calling tenant with the
expected one and modify the logic only for that tenant:

if (nameOfCallingTenant.equals(getTenantName()) {
… modify logic …

} else { // don’t modify behavior
return jp.proceed(jp.getArgs()); // original logic

}

An @Around advice can define pointcuts where to modify logic. Inside the advice,
the original call can be ignored by omitting jp.proceed(). Hence, functionality can
be disabled, for example, by returning an empty result, a result masked out with stars
‘*’, or an HTTP code 403 (FORBIDDEN) in case of REST services. Similarly, the
original logic can be modified or extended. Especially information to be returned can
be changed by using the original logic.

Adding new REST services offering additional functionality that is not part of the
original application is more complicated since the logic will be implemented in a
different class. We have to use static introduction to this end in the following manner:

@Aspect rwdnke encuu TenantAModifier
korngogpvu GenericModifier {

@DeclareParents(
defaultImpl=com.siemens.newfunc.NewFunction.class,
value="com.siemens.app.ExistingAppl")

rwdnke com.siemens.nf.NewFunctionIF mix;
}

Then, a new GET service /newFunctionality, can be implemented in the
class NewFunction.

@Path("newFunctionality")
rwdnke encuu NewFunction korngogpvu NewFunctionIF {
@GET rwdnke Response svcNewGetOperation(...) { ... }

}

The new logic implemented in svcNewGetOperation becomes available in
class ExistingAppl (implementing the original REST service) because Exist-
ingAppl inherits from the newly introduced superclass NewFunction – although its
definition is done in another class. This happens because @DeclareParents places a
new superclass NewFunction of interface NewFunctionIF on top of those classes

296 U. Hohenstein and P. Koka

that are specified by the value clause, here the single class ExistingAppl. The
interface NewFunctionIF is only required for enabling a syntactic cast from
ExistingAppl to NewFunction; the variable mix is of no further importance.

Thanks to AspectJ, the application itself does not have to be prepared or modified for
allowing intercepted code at the right place. The powerfulness certainly depends on the
power of the pointcut syntax and the context information available at the intercepted join
points. The approach suffers only if certain points in the code cannot be addressed by
pointcuts. Moreover, the application code has to be available to find appropriate join
points; the weaving itself does not require the source code and is satisfied with byte
code! This point is the major advantage of our approach: Other customization
approaches require special, prepared customization points, where to plug in tenant logic.
However, this would violate our goal not to touch the original application.

4.7 Monitoring

Every SaaS provider has to define a billing model for charging his tenants for using the
application. In turn, a SaaS provider has expenses for running the application, espe-
cially in a public cloud. Then, he has to pay for the all used resources. In fact, the
billing model must be appropriate to make profit. The investment covers both the
operational costs in a Cloud as well as the costs for developing an application or
SaaS-enabling it [23] and later maintenance [2].

Many proposed billing models for SaaS are post-paid. Tenants receive a bill and
pays for usage periodically. Hence, the SaaS provider has to monitor and aggregate the
consumption costs for each tenant [27] for billing purposes. If a SaaS provider charges
his tenants by a fixed rate per month or based upon other factors such as the number of
users (registered or in parallel), then it is important to throttle exhaustive usage by a
single tenant because the SaaS providers’ revenue will be reduced or even lost
otherwise.

Consequently, it is necessary to monitor and log the activities of all tenants’ users
and the costs they produce. As [28] discusses, such a tracking is the task of the SaaS
providers. The support given by underlying Cloud platforms is only rudimentary and
not detailed enough to determine the costs for resources for each tenant individually.

To enable a tenant-specific monitoring, we have added the following table to the
Admin schema in order to track tenants’ user activities as shown in Table 2.

We again use AspectJ to intercept any user actions (maybe filtering out a few
relevant ones by a pointcut). To this end, we extend the interceptRequests
advice from Subsect. 4.5 to compute the elapsed time around jp.proceed():

Table 2. Table UserMonitoring.

id name tenant operation timestamp elapsed

1 UserA1 TenantA Operation1 2016-11-10 17:00:01 12 ms

2 UserA2 TenantA Operation2 2016-11-10 17:00:02 21 ms

3 UserB1 TenantB Operation2 2016-11-10 17:00:03 10 ms

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 297

long start = System.nanoTime();
Object o = jp.proceed(args);
double elapsed = (double) (System.nanoTime() - start);
createLogEntry(user, tenant, elapsed,

jp.getSignature().toShortString());

createLogEntry logs the elapsed time together with the signature of the
method, tenant, user etc. at a central place. Dedicated pointcuts can define what has to
be tracked; this might depend on the application. The table now gives an overview over
all user activities and forms the basis for several scenarios. Using the table, tenants can
be charged back for their consumed resources. Moreover, it is possible to check
profit-making, i.e., whether the chosen billing model for one/all tenant(s) is appropriate
to make profit. Also the (elapsed) execution times or the number of service requests for
each user or tenant can be accumulated; if thresholds are exceeded, further access is
throttled or rejected. Hence, a SaaS provider is able to timely react on frequent and
massively active tenants by throttling them before costs rise. Even further use cases can
be supported. For example, if a Service Level Agreement (SLA) specifies a maximum
number of concurrent users, a @Before advice is able to check the current number of
concurrent users for a tenant in the UserMonitoring table before executing a
service request. Similarly, if an SLA states a threshold for the number of registered
users, the Users table can be used to supervise the limit in the user registration
process. Finally, all the monitoring information might be used to implement
auto-scaling features that enable Cloud elasticity.

4.8 Configuration

AspectJ load-time weaving requires an additional configuration file aop.xml that
specifies what aspects (<aspects>)are active and what packages (<include …>)
should be intercepted by the aspect logic. The following content is an example:

<aspectj>
<aspects>
<aspect name="com.siemens.aspects.MTE"/>
<aspect name="com.siemens.aspects.TenantAModifier"/>
<aspect name="com.siemens.aspects.TenantBModifier"/>

</aspects>
<weaver> <include within="com.siemens.app.*"/>
</weaver>

</aspectj>

298 U. Hohenstein and P. Koka

5 Other Types of Database Servers and Isolation Strategies

We want to expand the scope of our investigation and discuss what has to be done to
apply the principle to other database servers beside Oracle and to other data isolation
strategies following Chong et al. [6]. This paper was one of the first to investigate
multi-tenant data architectures and distinguishes between “separate databases”, “shared
database, separate schemas”, and “shared database, shared schema” for an SQL Server.
This section follows this structure and also investigates PostgreSQL and SQL Server
databases as further candidates.

5.1 Separate Databases

Storing the tenant’s data in a separate database offers the highest degree of data iso-
lation. In principle, using a separate database server for each tenant is an even higher
isolation. For a strong isolation it is important to authenticate units for each tenant
individually. Hence, there is essentially no difference between using a separate database
server (i.e., an instance, containing several databases) and a database (within such a
database server) as far as individual privileges can be defined for the units.

Oracle has a notion of a “database”, but this is closely related to a database server,
named instance: Each instance can only be associated with one database. Hence, we
have to set up an instance for each tenant. An Oracle JDBC URL thus refers to the
instance as jdbc:oracle:thin:@<Host>:1521:<Instance>. This means
for multi-tenancy that we have to replace <Instance> in the URL with the
respective tenant’s instance name in order to switch from the existing instance to the
tenant one. To this end, the pointcut for the interceptGetConnection advice
from Subsect. 4.5 can still be used with minor changes of the advice:

@Around("call(java.sql.Connection java.sql.DriverManager
.getConnection(String, String, String))

&& args(url,usr,pw) && !within(com.siemens.aspects.MTE)")
public Object interceptGetConnection(ProceedingJoinPoint

jp, String url, String usr, String pw) {
get the user and tenant (stored in MTE);
url = exchange instance name with tenant name in URL;
usr = tenant; // provide credentials
pw = password; // for database connect
return jp.proceed(url,usr,pw);

}

PostgreSQL has both options, one DB server or one database for each tenant; the
URL jdbc:postgresql://<Host>:<Port>/<Database> specifies the host,
the database, and optionally the port number (if several PostgreSQL instances run on
the same host):. The tenant-specific substitutions can be done analogous to Oracle in
the interceptGetConnection advice using the same pointcut:

url = replace host or database with tenant name in URL;

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 299

The URL of the SQL Server resembles the PostgreSQL URL: jdbc:sqlser-
ver://<Host>\<ServerName>;databaseName=<Db>, i.e., server name and
database name can be specified in addition to the host name. Hence, it is possible to
change the DB server and/or database for corresponding tenants by a URL modifica-
tion. Again, the same pointcut can be used with slight modifications of the related
advice.

To sum up, only the advice has to be adapted to handle the different formats of
URLs while keeping the original pointcut.

Furthermore, the Tenant Administration Service must create a tenant-specific
database or server when a tenant has been approved. Here, the implementation depends
on DB-specific concepts and dialects. Moreover, a user for the tenant with a password
is required to provide database access in the MTE aspect. However, it is quite easy to
organize the syntactic variants in Java. For example, users are created in Oracle with

CREATE USER TenantA IDENTIFIED BY <Pw>;

while PostgreSQL requires

CREATE ROLE TenantA WITH LOGIN ENCRYPTED PASSWORD '<Pw>',
TEMPLATE applicationTables;

CREATE DATABASE TenantA WITH OWNER=TenantA;

and SQLServer a statement like
CREATE USER TenantA IDENTIFIED BY <Pw>;

In general, the database set up of the original application has to be understood, i.e.,
what databases and schemas are available, which tables are tenant-specific etc.
According to that, the creation of tables can be done during setup (cf. Subsect. 4.3) by
executing createApplicationTables.sql in the tenant instance. PostgreSQL
has a so-called template mechanism for handling the pre-creation of tables, views,
stored procedures etc. during database creation (see the statement above).

5.2 Separate Schemas

A schema is basically a special concept of some database servers. The idea of a schema
is to have a dedicated and isolated space within a database, e.g., one for each tenant. In
such a schema, the same set of tables etc. can be created. Sometimes, even individual
users and privileges can be specified for a schema.

In order to take care of data isolation, we can use the same pointcut inter-
ceptGetConnection as before in Subsect. 5.1 to intercept the request of a database
connection for all types of database systems. The corresponding advice does not need
to change the URL, but simply switches the schema by a statement that uses a
database-specific syntactic variant. That is, all tenants connect to the same database
setting the schema afterwards. How to use the Oracle schema for multi-tenancy has
already been demonstrated in the interceptGetConnection advice in Sect. 4.5:

SET SCHEMA TenantA;

300 U. Hohenstein and P. Koka

Furthermore, the Tenant Administration Service (cf. Sect. 4.4) has to create a
schema for each tenant:

CREATE USER TenantA IDENTIFIED BY <Pw>;

As already mentioned in Subsect. 4.1, each Oracle user possesses a schema with
the same name. Hence, there is no explicit schema definition.

PostgreSQL uses a different advice for the same pointcut due to a different syntax:
SET SEARCH_PATH TO "TenantA";

Again, the Tenant Administration Service has to create a tenant-specific schema,
when a tenant has been approved:

CREATE ROLE TenantA WITH LOGIN ENCRYPTED PASSWORD '<Pw>'
CREATE SCHEMA "TenantAschema" AUTHORIZATION TenantA

SQL Server has a different syntax to switch the schema, too:

ALTER USER TenantA WITH DEFAULT_SCHEMA = TenantAschema;

User and schema have to be created in the Tenant Administration Service:

CREATE USER TenantA ...;
CREATE SCHEMA TenantAschema AUTHORIZATION TenantA;

The creation of tables can be done during setup by executing createAppli-
cationTables.sql in the particular tenant schema.

Please note there is a strong danger of SQL injection in any case if a user can issue
SQL arbitrary statements: a user can switch to another tenant’s schema! Special pre-
vention is required to prevent SQL injection.

If a database server does not support a dedicated schema concept, all the
tenant-specific tables can be replicated in the same database by adding a tenant suffix:
<Table>_TenantA. However, more effort is required because all SQL statements
are affected due to changing table names in all queries. Furhermore, authentication with
user/password is lost compared to an explicit schema concept. The principles of the
next subsection can be applied to provide a smarter solution.

5.3 Shared Schemas

A third approach uses the same database and the same set of tables for all the customers.
Thus, each table contains the data of several tenants. This certainly requires a discrimi-
nator column in each tenant-specific table, the TenantId. As an immediate conse-
quence, every INSERT on such a table has to provide this TenantId, while queries
(including delete and updates) must filter for the tenant’s id by TenantId=<id>.

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 301

Indeed, this is the lowest level of data isolation, which requires the highest effort for
application development. Anyway, AspectJ is able to handle the new arising challenges
in a modular manner with general principles.

As a presumption, all tenant-specific tables must be known and handled. However,
the createApplicationTables.sql script can be maintained, since ALTER
TABLE statements can add the new TenantId column afterwards.

In contrast to the previous strategies, the Tenant Administration Service is not
affected by this isolation strategy as no tenant-specific database or schema is required.
In general, there is no dependency on the type of database server.

As already mentioned, all queries issued by the application have to be changed at
runtime to add a filter TenantId=<id > . The interception is not an issue and can be
done by pointcuts, e.g., for SQL queries executed by executeQuery in JDBC:

@Around("call(java.sql.ResultSet
java.sql.Statement.executeQuery(String))

&& !within(com.siemens.aspects.MultitenancyEnabler)")
rwdnke Object interceptExecute(ProceedingJoinPoint jp) {
String theQuery = (String)jp.getArgs()[0];
theQuery = "modified query";
tgvwtp jp.proceed(jp.getArgs());

}

The pointcut interceptGetConnection used in Subsects. 5.1 and 5.2 is no
longer necessary. The principle is easy, but disguises a lot of technical issues. For
example, let us assume the following original SQL query with two tenant-specific
tables Tab1 and Tab2:

SELECT *
FROM Tab1 t1 LEFT OUTER JOIN Tab2 t2 ON t1.id=t2.fk
WHERE t1.col1=10 OR t2.col2=20

Simply adding “AND TenantId = <id>” does not work since TenantId is
ambiguous due to the two tables with a TenantId column. Even an addition “AND
t1.TenantId=<id>AND t2.TenantId=<id>” is incorrect because of OR in the
WHERE clause, which changes the original semantics drastically. Obviously, brackets
are required around the OR condition. Next, LEFT OUTER JOINs must be treated
carefully. A condition “(t1.col1=10 OR t2.col2=20) AND t1.TenantI-
d=<id>AND t2.TenantId=<id>” returns wrong results in many database servers
as such a condition in the WHERE clause diminishes the outer join by implicitly forcing
a join. Finally, SELECT * has additional TenantId columns for which an existing
cursor is not prepared. In sum, the correct form is:

SELECT concrete columns without TenantId
FROM Tab1 t1 LEFT OUTER JOIN Tab2 t2 ON t1.id=t2.fk

AND t1.TenantId=<id>AND t2.TenantId=<id>
WHERE (t1.col1=10 OR t2.col2=20)
AND t1.TenantId=<id>

302 U. Hohenstein and P. Koka

This simple example already shows some important pitfalls. Further points to be
handled appropriately are inner queries with IN and EXISTS. Hence a lot query string
parsing and manipulation is required for queries, making the logic in the advice quite
complex. This has to be done for DELETE and UPDATE statements in the same
manner. Furthermore, INSERT statements have to be modified, too, because of the new
TenantId column. Here, the TenantId value has to be added to the VALUES
clause.

One nasty challenge are stored procedures. Again, it is easy to intercept the
invocation of stored procedures in JDBC. But the source code of those procedures is
not directly accessible because of being stored in the database. The solution we sug-
gested is as follows:

• Modify the code of all the stored procedures manually, i.e., modifying the SQL
statements according to the previous discussion (this does not require a
re-compilation of the application code);

• add a new parameter TenantId to each procedure in order to transport the tenant
information to the procedure;

• modify the procedure call by passing the TenantId as a parameter to the procedure
call during interception.

So far, the use of JDBC for database accesses has been discussed. Hence, the
question arises what happens if an object/relational (O/R) framework such as Hibernate
or EclipseLink is used. There are two general options:

• To intercept JDBC at a deeper level, i.e., inside the O/R framework or within a
connection pool. Please remember that AspectJ is able to intercept even 3rd party
libraries without having source code available. The pointcuts do not need to be
changed, however, the packages to be intercepted are specific to a particular
framework and must be listed in the aop.xml configuration file (cf. Subsect. 4.8).

• As an alternative, the higher O/R requests can be intercepted by pointcuts. Different
String modifications then become necessary for query languages such as JPQL of
the JPA standard. This is more complex since the new TenantId properties must be
added to the persistent Java classes to match the changed table structures with the
TenanId column. This might have an impact on the build process and/or Java code.

6 Evaluation

6.1 Modularity and Adaptability

Separation of concerns is one of the driving forces of aspect oriented programming.
Bringing in the notion of reuse without compromising the advantages of separation of
concerns is an important consideration for application development. The positive
impact of code reuse during application development and maintenance should not be
under-weighed.

The strategies to enable multi-tenancy follow the best practices of using AspectJ
and the individual concepts can be reused across other similar applications. All the

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 303

multi-tenancy logic is concentrated in classes to be added to the application’s WAR file
thereby adjusting the aop.xml configuration file accordingly. Moreover, tenant specific
logic is also clearly separated in particular classes. Only a restart of Tomcat is required
for the multi-tenancy configuration to take effect.

All the multi-tenancy components rely on simple mechanisms that can easily be
applied to other legacy Java applications to make them multi-tenant. Thus, develop-
ment cost can be reduced for other applications. Indeed, REST services are easier to
handle than applications with a graphical user interface since there are pure Java
methods annotated with @GET, @PUT etc., which are the entry points for functionality.
Anyway, background logic of other applications can be handled the same way.

The MTE aspect that takes care of tenant isolation mainly depends on tools, i.e., the
application server and the database server, especially the isolation strategy to apply.
This aspect has to be adapted if MTE should be applied to applications using JBoss
and/or MySQL, for instance. Sticking to the same technologies allows for an immediate
reuse of the MTE aspect. The pointcuts to intercept DB accesses rely on JDBC or an
object/relational framework and are not DB-specific. Hence, only switching the per-
sistence technology requires a modification of pointcuts.

However, the pointcut interceptRequests in MTE depends on the application
methods to be intercepted just as customization does; other applications require dif-
ferent pointcuts and/or advices.

Anyway, any adaption and modification is made in central components – outside
the original application. Reusability can be further enhanced. An abstract aspect can
implement an advice but leaves out the pointcut, while application-specific sub-aspects
reuse the general logic and only specify the concrete pointcuts.

6.2 Implementation Effort

Taking a look at the lines of code, the simplicity of the approach becomes obvious:

• The new Tenant Administration Service has about 400 lines of Java code;
• The aspect MTE consists of ca. 150 lines all together for the Oracle schema

approach, however, a shared-schema approach requires about 500 lines of code due
to a more complex logic;

• The effort for a customizing TenantXModifier aspect depends on what should be
modified. To give an impression, disabling functionality in a REST service requires
10 lines, a simple modification of service behavior 23 lines, and introducing a new
REST service about 60 lines.

6.3 Lessons Learned

The lack of comprehension and maintainability of aspect-orientation is often criticized.
Since we only have a small number of dedicated aspects serving a very special purpose
such as tenant isolation, customization, and monitoring, we did not detect any problems
in this respect. Indeed, the impact of multi-tenant aspects to behavior is clearly
arranged.

304 U. Hohenstein and P. Koka

As explained throughout the paper, we could benefit a lot from aspect-orientation to
achieve our goal to leave code untouched. Especially, the possibility to intercept
3-rd-party tools such as Tomcat and to exchange information between advices
according to the “Wormhole Pattern” [16] helped a lot.

However, we also recognized some limitations. The first idea was to have a Users
table in each tenant schema instead of global table. As a consequence, Tomcat
authentication has to use the corresponding tenant database. However, we failed to
intercept the start-up of Tomcat to bring in the logic. That is the reason why the
approach relies on the single Users table of the existing application.

6.4 Advantages

We achieve with our AspectJ approach the general advantages of full multi-tenancy
such as cost saving by sharing resources (hardware, application server, database etc.)
amongst tenants and reducing operational expenses (OPEX). But the major additional
advantage of our approach lies in the fact that the source code of the existing appli-
cation does not need to be touched explicitly.

In fact, Tenant Administration Service (cf. Sect. 4.4) is just a new service to be
deployed in the Tomcat application server as a WAR file. Tenant isolation is achieved
by adding a new MTE.class to the deployed application WAR. Additional files
TenantXModifier.class in the WAR provide a tenant-specific behavior for each
TenantX. Only a restart of Tomcat is required to apply the MTE aspect thanks to
AspectJ load-time weaving. Adding a new tenant class can even be done at runtime
without a restart by just deploying the TenantXModifier class and adjusting the aop.
xml file.

Hence, the approach offers a cost-efficient way to speed up time-to-market by
migrating existing applications quickly into SaaS-offerings. The approach also allows
for a flexible configuration, e.g., for various tenant isolation strategies (one DB for each
tenant, one schema for each tenant, or one single-table for all tenants).

7 Conclusions

While research has investigated many facets of multi-tenancy for designing and
implementing new applications, this paper focuses on migrating legacy single-tenant to
fully multi-tenant applications. This is an important and necessary step to offer an
existing application as Software-as-a-Service (SaaS).

There are a couple of approaches and methodologies that demonstrate how to
convert legacy applications into multi-tenant software. However, they require to
re-engineer the legacy source code to a large extent. In contrast, our approach consists
of simply adding components to the legacy application – without explicitly touching
the application’s source code.

We propose several components, being implemented as aspects in AspectJ, which
have to be added to an application’s WAR file. The major component for tenant
isolation depends only on technological choices such as application server, database

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 305

server, and the chosen data isolation strategy. Furthermore, tenant customization
depends on the application; pointcuts specify what to intercept in the application and
advices implement the customization.

In order to validate the approach, we used an existing industrial REST application
that runs in Tomcat and uses an Oracle database. In particular, we discuss how to
achieve three main concerns in detail:

• tenant isolation [5] for different strategies and database servers;
• tenant-specific customization of behavior;
• monitoring tenants’ user activities for billing purposes.

We elaborated upon how to benefit from the aspect-oriented language AspectJ in
order to achieve these points. We presented the AspectJ approach in detail and eval-
uated the approach with regard to modularity, adaptability, and implementation effort.
The effort to be spent for the overall principle requires only a few 100 lines of aspect
code. We also concluded with some lessons learnt. The approach can directly be
adapted to other Java applications, especially REST services.

In general, REST services are easier to handle than applications with a graphical
user interface since there is pure Java code without any parts in HTML or Javascript. In
order to evaluate the limits, our future work will consider applications with a graphical
user interface. First experiences show that the MTE (Multi-Tenancy Enabler) aspect
works well for achieving data isolation. Moreover, logic can be customized on a
per-tenant basis as far as no GUI is concerned. Further investigations are required to
evaluate customizing the UI.

Currently, applying the presented aspects to other applications requires some
copy&paste of code and an adjustment of pointcuts and advice logic. This is also true
for the MTE aspect which depends on technologies. Feature modelling tools might be
useful to generate the aspect code according to a domain-specific language that
describes the database server, data isolation strategy, and application server. Alterna-
tively or in addition, we think of providing a reusable aspect framework. The idea is to
have an aspect hierarchy that reflects technological choices. If for example an appli-
cation uses JBoss and SQLServer with a shared schema isolation approach, then an
application-specific sub-aspect has to derive from an Oracle_JBoss_SharedSchema
aspect. The sub-aspect itself only contains those parts that are specific to the appli-
cation, e.g., the database URL and pointcuts.

In case of too much load, several Tomcat instances have to be started with a load
balancer in front. Hence, migrating an application into the cloud is much more than just
adding multi-tenancy. Taking care of scalability issues and replacing software com-
ponents with Cloud services is also subject to future work.

References

1. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to adapt applications for the
Cloud environment - Challenges and solutions in migrating applications to the cloud.
Computing 95(6), 493–535 (2013)

306 U. Hohenstein and P. Koka

2. Bezemer, C., Zaidman, A. Platzbeecke, B. Hurkmans, T., Hart, A.: Enabling multitenancy:
an industrial experience report. In: Technical Report of Delft University of Technology,
TUD-SERG-2010-030 (2010)

3. Bezemer, C., Zaidman, A.: Challenges of reengineering into multitenant SaaS applications.
In: Technical Report of Delft University of Technology, TUD-SERG-2010-012 (2010)

4. Binz, T., Leymann, F., Schumm, D.: CMotion: a framework for migration of applications
into and between clouds. In: SOCA 2011, pp. 1–4 (2011)

5. Chong, F., Carraro, G.: Architecture strategies for catching the long tail (2006). https://msdn.
microsoft.com/en-us/library/aa479069.aspx. Accessed Nov 2016

6. Chong, F., Carraro, G., Wolter, R.: Multi-tenant data architecture (2006). http://msdn.
microsoft.com/en-us/library/aa479086.aspx. Accessed Nov 2016

7. Elrad, T., Filman, R., Bader, A. (eds.): Theme section on aspect-oriented programming.
CACM 44(10) (2001)

8. Fehling, C., Leymann, F., Mietzner, R.: A framework for optimized distribution of tenants in
cloud applications. In: IEEE 3rd International Conference on Cloud Computing (CLOUD),
pp. 252–259 (2010)

9. Guo, C., Sun, W., Huang, Y., Wang, Z., Gao, B.: A framework for native multi-tenancy
application development and management. In: CEC/EEE 2007: International Conference on
Enterprise Computing, E-Commerce Technology and International Conference on Enterprise
Computing, E-Commerce and E-Services, pp. 551–558 (2007)

10. Hohenstein, U., Koka, P.: An approach to add multi-tenancy to existing applications. In:
ICSOFT 2016, pp. 39–49 (2016)

11. Khajeh-Hosseini, A., Greenwood, D., Smith, J., Sommerville, I.: The cloud adoption toolkit:
supporting cloud adoption decisions in the enterprise. Softw. Pract. Exp. 42(4), 447–465
(2012)

12. Kiczales, G., et al.: Aspect-oriented programming. In: Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), Finland, pp. 230–242 (2007)

13. Kong, L., Li, Q., Zheng, X.: A novel model supporting customization sharing in SaaS
applications. In: International Conference on Multimedia Information Networking and
Security (MINES), pp. 225–229 (2010)

14. Krebs, R., Momm, C., Kounev, S.: Architectural concerns in multi-tenant SaaS applications.
In: CLOSER 2012, pp. 426–431 (2012)

15. Kwok, T., Nguyen, T., Lam, L.: A software as a service with multi-tenancy support for an
electronic contract management application. In: International Conference on Services
Computing (SCC), pp. 179–186 (2008)

16. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming, 2nd edn. Manning,
Greenwich (2009)

17. Lee, W., Choi, M.: A multi-tenant web application framework for SaaS. In: 2012 IEEE 5th
International Conference on Cloud Computing (CLOUD), pp. 970–971 (2012)

18. Lee, J., Kang, S., Hur, S.: Web-based development framework for customizing java-based
business logic of SaaS application. In: 14th International Conference on Advanced
Communication Technology (ICACT), pp. 1310–1313 (2012)

19. Li, Q., Liu, S., Pan, Y.: A cooperative construction approach for SaaS applications. In: 2012
IEEE 16th International Conference on Computer Supported Cooperative Work in Design
(CSCWD), pp. 398–403 (2012)

20. Lizhen, C., Haiyang, W., Lin, J., Pu, H.: Customization modeling based on metagraph for
multi-tenant applications. In: 5th International Conference on Pervasive Computing and
Applications (ICPCA), pp. 255–260 (2010)

Enabling Legacy Applications for Multi-Tenancy Without Reengineering 307

https://msdn.microsoft.com/en-us/library/aa479069.aspx
https://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://msdn.microsoft.com/en-us/library/aa479086.aspx

21. Mell, P., Grance, T.: The NIST definition of cloud computing. National Institute of
Standards and Technology, September 2011. http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf. Accessed Nov 2016

22. Moens, H., Truyen, E., Walraven, S., Joosen, W., Dhoedt, B., De Turck, F.: Developing and
managing customizable software as a service using feature model conversion. In: IEEE
Network Operations and Management Symposium (NOMS), pp. 1295–1302 (2012)

23. Momm, C., Krebs, R.: A qualitative discussion of different approaches for implementing
multi-tenant SaaS offerings. In: Proceeding Software Engineering 2011, pp. 139–150 (2011)

24. Orue-Echevarria, L., et al.: Cloudifying applications with ARTIST: a global modernization
approach to move applications onto the cloud. In: CLOSER 2014, pp. 737–745 (2014)

25. Park, J., Moon, M., Yeom, K.: Variability modeling to develop flexible service-oriented
applications. J. Syst. Sci. Syst. Eng. 20(2), 193–216 (2011)

26. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, New York (2005)

27. Ruiz-Agundez, I., Penya, Y., Bringas, P.: A flexible accounting model for cloud computing.
In: SRII 2011, pp. 277–284 (2011)

28. Schwanengel, A., Hohenstein, U.: Challenges with tenant-specific cost determination in
multi-tenant applications. In: 4th International Conference on Cloud Computing, Grids and
Virtualization 2013, pp. 36–42 (2013)

29. Shahin, A., Samir, A., Khamis, A.: An aspect-oriented approach for SaaS application
customization. In: 48th Conference on Statistics, Computer Science and Operations
Research 2013, Cairo University, Egypt, pp. 1–15 (2013)

30. Tsai, W., Shao, Q., Li, W.: OIC: ontology-based intelligent customization framework for
SaaS. In: IEEE International Conference on Service-Oriented Computing and Applications
(SOCA), pp. 1–8 (2010)

31. Tsai, W., Sun, X.: SaaS multi-tenant application customization. In: IEEE 7th International
Symposium on Service Oriented System Engineering (SOSE), pp. 1–12 (2013)

32. Walraven, S., Truyen, E., Joosen, W.: A middleware layer for flexible and cost-efficient
multi-tenant applications. In: Kon, F., Kermarrec, A.-M. (eds.) Middleware 2011. LNCS,
vol. 7049, pp. 370–389. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25821-3_19

33. Wang Z. et al.: A study and performance evaluation of the multi-tenant data tier design
pattern for service oriented computing. In: IEEE International Conference on eBusiness
Engineering, (ICEBE), pp. 94–101 (2008)

34. Wang, H., Zheng, Z.: Software architecture driven configurability of multi-tenant SaaS
application. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds.) WISM 2010. LNCS, vol. 6318,
pp. 418–424. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16515-3_52

35. Zhou, X., Yi, L., Liu, Y.: A collaborative requirement elicitation technique for SaaS
applications. In: 2011 IEEE International Conference on Service Operations, Logistics, and
Informatics (SOLI), pp. 83–88 (2011)

308 U. Hohenstein and P. Koka

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://dx.doi.org/10.1007/978-3-642-25821-3_19
http://dx.doi.org/10.1007/978-3-642-16515-3_52

An Incremental Approach to Testing AOP

André Restivo1(B), Ademar Aguiar1, and Ana Moreira2

1 Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
{arestivo,agguiar}@fe.up.pt

2 Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa,
Lisbon, Portugal
amm@fct.unl.pt

Abstract. Breaking down applications into smaller modules is a com-
mon way for software developers to cope with the increasing complexity
of their projects. A common barrier to this endeavor is the presence of
crosscutting concerns that prevent reusability and reduce comprehensi-
bility. The promise of AOP (Aspect-Oriented Programming) is that, by
using it, developers will be able to organize these crosscutting concerns
into their own units of modularity. However, AOP does not tackle the
problem of having tangled automatic tests. This paper presents a tech-
nique using incremental testing and invasive aspects to modify and adapt
tests, enabling the development of unit tests that are free of crosscut-
ting concerns and thus easier to reuse. Using a medium scale project,
we will show that without using this technique, due to the presence of
invasive aspects, some unit tests would have to be discarded or modified
to accommodate the changes made by them.

1 Introduction

Humans often struggle when asked to cope with complex problems; and develop-
ers are only human. So its natural that when working on large software projects,
developers need to simplify the problem by decomposing the larger problem into
several smaller and more manageable ones. We usually call these smaller pieces
of software modules.

In order to obtain as many benefits as possible from this kind of decompo-
sition, there are several characteristics that developers should aim to achieve.
Elements in the same module should be as related to each other as possible,
normally referred to as having high cohesion, and they should know as little as
possible about other modules, also known as having low coupling. This kind of
decomposition leads to modules that can be easily described, reused, replaced,
and tested in isolation.

Many of the characteristics of classical paradigms, like Object Oriented Pro-
gramming (OOP) with encapsulation and information hiding, are aimed at pro-
viding the framework for developers to achieve high quality decompositions.
However, these decompositions suffer from the tyranny of the dominant decom-
position [14] that states that when programs are modularized following any given

c© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 309–331, 2017.
DOI: 10.1007/978-3-319-62569-0 15

310 A. Restivo et al.

decomposition criteria, all the concerns that do not align with that criteria end
up tangled and scattered throughout several modules of the system. Aspect-
Oriented Programming (AOP) aims at encapsulating these crosscutting concerns
into separate units of modularity [8].

The way in which most AOP languages provide a way to isolate crosscutting
into their own separate modules is by allowing developers to specify set of points
in the execution flow (joinpoints), using a specific pointcut designator language,
that when reached cause the execution of other pieces of code (advices) that still
maintain access to the original execution context. These new modules are nor-
mally called aspects and are the counterpart to classes in OOP. This technique
effectively allows modules to change the behavior of other modules.

AOP is just one facet of something larger called Aspect-oriented software
development (AOSD). The objective of AOSD is that all stakeholders of a soft-
ware project should benefit from this higher concern isolation. Not only at the
code level, but also in the requirements [15] and design [3] phases.

By using aspects, developers are able to separate each concern into its own
unit of modularity. Having concerns untangled improves reusability as the code
of each module pertains only to a single concern. However, the actual code is
not the only artifact that can be reused between projects. Other artifacts, like
tests, suffer from the same entanglement problems. Not being able to reuse tests
is a major difficulty in the implementation of AOSD. In this paper, we argue
that due to the nature of aspects, some unit tests cannot be reused in different
contexts thus impeding module reusability. We also argue that testing modules
in isolation becomes harder when using AOP.

The technique [16] that we will present in the following sections, uses auto-
matic dependency detection and incremental compilation, together with some
Java annotations, allowing the coexistence of classical testing methodologies
together with AOP code while still keeping the code reusable. A support tool to
help developers implement this technique will also be described.

In Sect. 2, the problem we propose to tackle will be identified. Section 3
describes a technique, based on incremental testing, that aims at solving the
proposed problem. In Sect. 4 we discuss the advantages of trying different com-
pilation orders to extract more information from the testing process. Section 5
presents a Eclipse [5] based implementation of the technique. Our efforts to vali-
date the solution are presented in Sect. 6. Finally, Sects. 7 and 8 describe related
work and our conclusions.

2 The Problem

To better illustrate the problem we will start by presenting a very simple AspectJ
example.

Imagine we have a base class called Question that represents a multiple choice
question in an exam (see Listing 1.1 for a simplified sample of the class). Each
question is composed of several choices that can be added and retrieved from
the class.

An Incremental Approach to Testing AOP 311

Listing 1.1. Question Class.

1 package ques t i on ;
2 public class Question {
3 public void addChoice (S t r ing cho i c e) {
4 cho i c eL i s t . add (cho i c e) ;
5 }
6 public St r ing getChoice (int number) {
7 return cho i c eL i s t . get (number) ;
8 }
9 public boolean conta in s (S t r ing cho i c e) {

10 return cho i c eL i s t . conta in s (cho i c e) ;
11 }
12 /∗ . . . ∗/
13 }

This class is part of a larger module question that contains several tests. One
of these tests adds some choices to the question and verifies if they are present
and in the correct order (see Listing 1.2 for a simplified version of the test).

Listing 1.2. Question Test.

1 package ques t i on ;
2 public void t e s tCho i c e s () {
3 Question q = new Question (”Choose a c o l o r ?”) ;
4 q . addChoice (” blue ”) ;
5 q . addChoice (” red ”) ;
6 q . addChoice (” green ”) ;
7

8 a s s e r tEqua l s (” blue ” , q . getChoice (0)) ;
9 a s s e r tEqua l s (” red ” , q . getChoice (1)) ;

10 a s s e r tEqua l s (” green ” , q . getChoice (2)) ;
11 }

In order for the entire module to be considered as as single reusable artifact,
when the question module is reused in another project, it should also be possible
to reuse the test in that project without any modifications.

As our code does not contain any AOP code, and as long as the project we
are moving is also aspect free, moving it should not be a problem as in OOP
classes do not interfere with the inner working of other classes. This class and its
test would always work in the same way regardless of any other artifacts present
in the system. This would not be the case if aspects were present in one of the
two projects as we will show next.

Imagine that we add an aspect called RandomizeChoices, in a separate ran-
domize package, that changes the positions of the choices at random as they are
added (see Listing 1.3 for a small excerpt of this aspect). In this example, the
addChoice pointcut captures all calls to the addChoice method in the Question
class, not made inside this aspect, and the advice replaces that call with some
code that randomizes the position in which the choice is placed.

312 A. Restivo et al.

Listing 1.3. RandomizeChoices Aspect.

1 package randomize ;
2 public aspect RandomChoices {
3 pointcut addChoice (L i s t l i s t , S t r ing cho i c e) :
4 cflow (ca l l (void Question . addChoice (. .))) &&
5 ! within (Randomize) &&
6 target (l i s t) && args (cho i c e) &&
7 ca l l (boolean L i s t . add (. .)) ;
8

9 boolean around (L i s t l i s t , S t r ing cho i c e) :
10 addChoice (l i s t , cho i c e) {
11 int po s i t i o n = random . next Int (l i s t . s i z e () + 1) ;
12 l i s t . add (po s i t i on , cho i c e) ;
13 return true ;
14 }
15 }

Having this aspect in the system will make the testChoices test fail five times
out of six. This happens even without any changes to the code of the Question
class, the test or any code this class depends on.

In OOP, the problem of having code from outside a module influencing the
outcome of a test is solved by using mocks and stubs [6]. The difference is that,
when dealing with objects, only the code the module depends on can alter its
behavior. As we just saw, that is not the case when using aspects. In the next
paragraphs we will describe some naive solutions for this problem.

Moving the Test. One possible solution would be to move and change the
offending test from the question module to the randomize module. The test
would have to be changed so that it tests for the existence of the choice not by
looking for it in the expected position but by using the contains method (see
Listing 1.4). This would make the test run successfully when both modules are
present in the system but the test would not run in the absence of the randomize
module. Besides that, the original behavior of the question module, where choices
are kept in the same order in which they are introduced, would not be tested at
all in both scenarios.

Changing the Test. A similar alternative would be to change the test without
moving it to the randomize module. This way the test would be executed whether
the randomize module is present in the system or not. In this particular case,
as the changes introduced by the aspect are not very significant, the original
module could be tested with or without the aspect module present. In more
extreme cases that might not be possible. Besides that, the original behavior
would also never be tested. This alternative would also entangle two different
concerns as the test for one behavior is now part of a different module.

An Incremental Approach to Testing AOP 313

Listing 1.4. Modified Question Test.

1 package randomize ;
2 public void t e s tCho i c e s () {
3 Question q = new Question (”Choose a c o l o r ?”) ;
4 q . addChoice (” blue ”) ;
5 q . addChoice (” red ”) ;
6 q . addChoice (” green ”) ;
7

8 asse r tTrue (q . conta in s (” blue ”)) ;
9 asse r tTrue (q . conta in s (” red ”)) ;

10 asse r tTrue (q . conta in s (” green ”)) ;
11 }

Using Aspects to Change the Test. A more interesting approach would be
to use aspects to affect the behavior of the test. By adding a new aspect to the
randomize module, that changes the behavior of the original test, and imple-
ments a new test for the modified behavior, we would have the best of both
worlds. With this approach both tests would be able to coexist, however when
both modules are present, the original test would never be executed. Although
having some advantages, the problem with this approach is the same as in the
previous one. The difference is that the entangling now happens in the Random-
Choices module and the original test is never executed.

Using Aspects to Exclude the Test. A very similar alternative, with very
similar problems, would be to add an aspect in the aspect module, that would
remove the original test altogether and add a new test for the modified behavior.
This way the Question tests would work as planned when the module is used
in isolation and the randomize module would have a different test for its own
behavior. This might be the best of these naive approaches. It almost reaches
the desired result and it is easy to implement. The only major problem is that
the original test is not executed in a system where both modules are present.

None of these solutions gives us a scenario where modularity is preserved
in its entirety. However, we could summarize the principles of what would be a
good solution:

1. Obliviousness. Tests should only test the behavior of their own modules.
2. Completeness. All concerns should have their own tests and all tests should

run at least once in all contexts.
3. Correctness. When a module is reused in a different context, tests should

still work correctly.

The naive approaches presented all fail in at least one of these principles
as can be verified in Table 1. We can also verify that none of the approaches
follows the completeness principle as the composed system does not allow for
the original code to be tested in isolation.

In the next section, we will describe a technique based on incremental com-
pilation that allows the usage of unit tests without breaking modularity. For the

314 A. Restivo et al.

Table 1. Analysis of naive approaches.

Approach Obliviousness Completeness Correctness

Moving the test ✗ ✗ ✓

Changing the test ✗ ✗ ✗

Using aspects to change the test ✓ ✗ ✓

Using aspects to exclude the test ✓ ✗ ✓

sake of completeness, we will explore four different ideas that will converge into
our final proposition and we will explain how these compare to one another in
several different aspects.

3 Incremental Testing

The technique that we propose to solve the problems delineated in the previ-
ous section are based in an incremental testing solution. This solution is only
applicable if the original software is designed so that low-level modules do not
depend on higher level modules. Software systems should be built layer by layer,
with each layer adding more functionalities. If this is accomplished, then the
modules dependency graph is in fact a directed acyclic graph (DAG).

As all developers know, even in well-designed softwares, this is rarely the case.
Most software systems have at least a few circular dependencies and although
AOP can help in this matter, it is very difficult to remove all of these from
large software systems. In graph theory, these collection of nodes that form
circular dependencies are called strongly connected components, and although
they cannot be easily removed, they can be merged. We do this by considering
each strongly connected component in the graph as a super module (see Fig. 1).
In this way, we can consider that all software systems can be thought of as being
a DAG of module dependencies.

Fig. 1. Merging circular dependencies.

When the dependency graph of a project is derived, we can be sure that
we will have at least one low-level module, lets call it module A, that does not

An Incremental Approach to Testing AOP 315

depend upon any other module. As this module does not depend on any other
module, we can separate it from the rest of the code, compile it and test it in
isolation, shielding it from the potential influence of higher level aspects.

After testing this initial module (or even all modules that do not depend on
other modules), we can take another module that only depends on this module,
lets call it module B and test both of them together. Classic OOP unit testing
techniques like mocks and stubs can be used to prevent errors in the source code
of module A to influence the tests from module B. Integration tests can be used
to assure that any eventual residual errors in module A do not propagate into
the behavior of module B.

It is clear that the addition of this additional incremental compilation step
would not change or improve the results in a pure OOP project. However, if
module B contains AOP code, tests from module A can be influenced by aspects
on module B making them fail. All tests from module A have already been
run once in isolation, so all we need is to make sure that tests that fail under
the influence of aspects from module B are not run again. This process can be
repeated for every module in the system until all tests have run at least once.

The initial objective behind this approach [20], was to use tests in order to
detect unexpected interferences caused by aspects. Interactions happen when
a module containing invasive aspectual code changes the behavior of another
module, these interactions are called unexpected interferences when this happens
in unforeseen and undesirable ways.

When the source code is thoroughly tested, these interferences can be easily
detected using the described approach. However, there will be no apparent differ-
ence between an unexpected interference and an expected interaction. The devel-
oper must be able to differentiate between the two of them and act accordingly.
Interferences must be fixed and interactions must be dealt with; not because
they are wrong but because they impede the testing process as they pollute the
test results with false positives.

In order to remove these false positives and fix the testing process, the devel-
oper must be able to specify that changes introduced by expected interaction
are desirable. If this is done, the testing process can ignore any tests that fail
due to that interaction, but only after the test has been successfully executed
without the offending aspect. Our first proposal used code annotations to enable
the developer to specify these interactions but this initial idea slowly evolved
into a simpler solution. In the following sections, we will describe that evolution
and present the advantages and drawbacks of each new iteration.

3.1 Method-Test Approach

The first iteration in our approach was to consider tests as a certificate that
a certain concern was implemented correctly. Methods are what end up imple-
menting these concerns so there is a relation between methods and the tests for
the concerns that they implement. For every concern in the system, the devel-
oper should be able to create a test for it and place annotations in each method
that implements it with a reference to that test.

316 A. Restivo et al.

In this first iteration, the way in which the DAG of dependencies was
extracted from the source code was also based on annotations. The developer
had to declare for each method, the tests it depends on. Notice that developers
do not specify which methods the method depends on, but the tests that were
created to test that method. This means that every time an aspect is added to
the system, in our incremental testing process, and a previously tested test fails,
we can pinpoint which methods are affected by that interaction.

The final proposed annotation, allowed the developer to declare any expected
interactions. This annotation had to be placed on any advices, referencing the
tests they expected to break. Figure 2 contains a representation of the connec-
tions obtained by these annotations. Listing 1.5 represents a sample of the code
needed to implement this approach for the example we have been using.

Fig. 2. Method-test approach [16].

Listing 1.5. Method-Test Approach.

1 package ques t i on ;
2 public class Question {
3 @Adds(”QuestionTest . t e s tCho i c e s ”)
4 public void addChoice (S t r ing cho i c e) {
5 cho i c eL i s t . add (cho i c e) ;
6 }
7 @Adds(”QuestionTest . t e s tCho i c e s ”)
8 public St r ing getChoice (int number) {
9 return cho i c eL i s t . get (number) ;

10 }
11 }
12

13 /∗ In s i d e Question Test Su i t e ∗/
14 package ques t i on ;
15 public void t e s tCho i c e s () {
16 . . .
17 }
18

19 /∗ In s i d e Randomize Aspect ∗/
20 package randomize ;
21 public aspect RandomChoices {
22 . . .
23

24 @Removes(”QuestionTest . t e s tCho i c e s ”)

An Incremental Approach to Testing AOP 317

25 @Adds(”RandomizeTest . t e s tCho i c e s ”)
26 boolean around (L i s t l i s t , S t r ing cho i c e) :
27 addChoice (l i s t , cho i c e) {
28 . . .
29 }
30 }
31

32 /∗ In s i d e Randomize Test Su i t e ∗/
33 package randomize ;
34 public void t e s tCho i c e s () {
35 . . .
36 }

With these annotations in place, it would be possible to extract the DAG of
dependencies, using the requires and adds annotations, and only run the tests
not removed by subsequent advices by means of the removes annotation.

This initial approach had two major drawbacks, first the extensive use of
annotations imposes a lot of extra work on the developer, and secondly the rela-
tion between methods/advices and tests is artificial, making the whole process
awkward to use.

3.2 Concern-Test Approach

Our second iteration focused mainly on dealing with the artifial relation between
tests and methods by adding a new annotation that would represent a concern.
In this approach, each method has an annotation stating which concern it imple-
ments. These concerns can be derived from the requirements phase making faults
easier to trace.

In this solution, methods and advices no longer add, remove or depend on
tests but on concerns. To do this we just need to have an annotation applied to
each test with a reference to the concern it tests. Figure 3 shows the relationships

Fig. 3. Concern-test approach [16].

318 A. Restivo et al.

between the code artifacts derived from the annotations in the code. Listing
1.6 represents a sample of the code needed to implement this approach for the
example we have been using.

Listing 1.6. Concern-Test Approach.

1

2 package ques t i on ;
3 public class Question {
4 @Implements (” quest ionHasChoices ”)
5 public void addChoice (S t r ing cho i c e) {
6 cho i c eL i s t . add (cho i c e) ;
7 }
8 @Implements (” quest ionHasChoices ”)
9 public St r ing getChoice (int number) {

10 return cho i c eL i s t . get (number) ;
11 }
12 }
13

14 /∗ In s i d e Question Test Su i t e ∗/
15 package ques t i on ;
16 @Tests (”Question . quest ionHasChoices ”)
17 pub l i c void t e s tCho i c e s () { . . . } ;
18

19 /∗ In s i d e Randomize Aspect ∗/
20 package randomize ;
21 public aspect RandomChoices {
22 . . .
23

24 @Requires (”Question . quest ionHasChoices ”)
25 @Removes(”Question . quest ionHasChoices ”)
26 @Implements (”questionsAreRandom”)
27 boolean around (L i s t l i s t , S t r ing cho i c e) :
28 addChoice (l i s t , cho i c e) {
29 . . .
30 }
31 }
32

33 /∗ In s i d e Randomize Test Su i t e ∗/
34 package randomize ;
35 @Tests (”Randomize . questionsAreRandom”)
36 pub l i c void t e s tCho i c e s () {
37 . . .
38 }

To apply this second strategy, we start by selecting a module whose methods
do not depend on any concern from another module. We then run all tests defined
for concerns in that module. In each iteration we add a new module that only
requires concerns added by modules that have already been tested. Anytests,

An Incremental Approach to Testing AOP 319

from previously tested modules, that fail after a new module is added indicate
that there is an interaction between some concern implemented in that module
and the concern that the failing test is testing.

Having a richer set of metadata this approach allows us to better understand
which concerns are interacting with each other. Developers can therefore reason
more easily about the cause of the interaction and evaluate if it is expected or
if it is an unexpected interference.

3.3 Module-Test Approach

To reduce the extra work imposed on the developer, in this next iteration we
focused on removing most of the needed annotations.

As in other the previous iteration, we considered our modules as being defined
in the way the used language, in this case AspectJ, defined its own units of
modularity – Java packages. To prevent cases where the desired modules and
the language defined modules do not coincide, we added an optional annotation
so that each class/aspect could define to which module it belongs. This might
seem a step in the wrong direction but it will allow us to remove most of the
other annotations.

Tests defined inside a module are considered as being used to test some con-
cern of the module. In this approach we do not care about the particular concern
or method that is being tested. This removed the burden to add annotations for
each test. Besides that, instead of using annotations, all information about the
dependency between modules was now extracted directly from the source code
using code inspection.

The only mandatory annotations, are between tests and only when expected
interaction are detected. The replaces annotations identify cases where a test
represents a concern, developed as an invasive aspect, that changes the behavior
of another concern that is tested by the other test. Figure 4 shows the rela-
tionships between the code artifacts derived from the annotations in the code.
Listing 1.7 represents a sample of the code needed to implement this approach
for the example described in the beginning of this paper.

Fig. 4. Module-test approach [16].

320 A. Restivo et al.

Listing 1.7. Module-Test Approach.

1 package ques t i on ;
2 public class Question {
3 public void addChoice (S t r ing cho i c e) {
4 . . .
5 }
6 public St r ing getChoice (int number) {
7 . . .
8 }
9 }

10

11 /∗ In s i d e Question Test Su i t e ∗/
12 package ques t i on ;
13 public void t e s tCho i c e s () {
14 . . .
15 }
16

17 /∗ In s i d e Randomize Aspect ∗/
18 package randomize ;
19 public aspect RandomChoices {
20 . . .
21 boolean around (L i s t l i s t , S t r ing cho i c e) :
22 addChoice (l i s t , cho i c e) {
23 . . .
24 }
25 }
26

27 /∗ In s i d e Randomize Test Su i t e ∗/
28 package randomize ;
29 @Replaces (” ques t i on . QuestionTest . t e s tCho i c e s ”)
30 pub l i c void testRandomChoices () {
31 . . .
32 } ;

However, as the extra work imposed on the developer is drastically reduced,
so is the ammount of metadata about the relation between artifacts. When
interactions are detected we can still get information about which test failed
and which modules caused the interaction and this information should be enough
for the developer to identify the origin of the problem and act accordingly. We
believe that the trade-off between having less information and less repetitive
work is a very positive one as it made the technique usable.

3.4 Advice-Test Approach

The last iteration was an easy evolution from the previous one where the only
mandatory annotation was used to remove tests in the presence of expected
interactions. We considered replacing that last annotation with advices that
would disable the test. Listing 1.8 shows how that can be accomplished by simply
adding an around advice that does not call the original captured joinpoint from
the test.

An Incremental Approach to Testing AOP 321

Listing 1.8. Module-Test Approach.

1 pub l i c class Question {
2 public void addChoice (S t r ing cho i c e) { . . . }
3 public St r ing getChoice (int number) { . . . }
4 }
5

6 /∗ In s i d e Question Test Su i t e ∗/
7 public void t e s tCho i c e s () { . . . } ;
8

9 /∗ In s i d e Randomize Aspect ∗/
10 boolean around (L i s t l i s t , S t r ing cho i c e) :
11 addChoice (l i s t , cho i c e) {
12 . . .
13 }
14 void around () : t e s tCho i c e s () { /∗ do noth ing ∗/}
15

16 /∗ In s i d e Randomize Test Su i t e ∗/
17 public void testRandomChoices () { . . . } ;

Although this approach does not use any annotations, besides the optional
one that changes the way modules are defined as language constructs, the incre-
mental compilation process is still needed to ensure that disabled tests are run
at least once during testing.

3.5 The Process

The process used for all these approaches is, in its essence, the same:

1. Identify all modules, their tests and dependencies. This can be done using
annotations or code inspection.

2. Execute a strongly connected analysis of the dependency graph, agglomerating
modules involved in circular dependencies, thus transforming it into a DAG
of modules.

3. Execute a topological sort to determine in which order the modules must be
compiled.

4. For each module:
(a) Compile it together with the previously tested modules.
(b) Execute the tests defined for the features provided by this module.
(c) Execute the tests defined by previous modules not removed by other

modules.

When a test fails in step 4b, it means that the module being added to the
system has an error. This error can either be caused by a test not working
properly, an error in the code of this module, or even a problem related to errors
in the previously compiled modules that was not detected by the implemented
tests.

When a test fails in step 4c, it means we have encountered an interaction
between the code of the module being tested and one of the modules previously

322 A. Restivo et al.

compiled. Depending on the selected approach, the information given to the
developer can be different. If using the Concern-Test, it should be possible to
pinpoint the concern that is being interfered with. The other approaches would
only reveal the test being broken.

4 Compilation Order

Although AOP improves modularity, sometimes reasoning about interactions
between modules is not as easy as in OOP. This happens as reasonings about
the base code can become invalid once aspects from other modules are taken
into account.

When unit tests uncover faults, it is also important to be able to pinpoint
easily where the fault originated. In this section, we will explore how modular
testing can be used to reason about unexpected interactions that are the source
of faults.

By transforming our dependency graph into a directed acyclic graph and
then incrementally compiling and testing its modules using a topological sort
order, we might get not one compilation order but several ones as can be seen
in Fig. 5.

Fig. 5. Some possible compilation orders.

Using any one of those orders is enough to use our testing approach but we
can take advantage of this fact to extract even more information from the tests.

For example, in Fig. 6, we can compile incrementally the four modules in three
different ways: {C, B, A, D}, {C, B, D, A} or {C, D, B, A}. Let us imagine the
following scenario:

Fig. 6. Dependency example.

An Incremental Approach to Testing AOP 323

1. When testing using the order {C, B, A, D}, tests for module C, B and A pass
and when module D is added a test from itself fails. The only information we
can extract from this test is that something is wrong with the composition of
module D with the remaining modules.

2. When testing using the order {C, D, B, A}, tests for modules C, D and B
pass and when module A is added a test from module D fails. Using this order
there is some more information we can extract from the test. Not only is there
something wrong with module D but that something seems to be originating
from module A. As module A does not depend or interact with module D
directly, the developer could extrapolate that module A is changing something
in module B that is changing something in module C which is breaking module
D. The developer could then add some annotation to module A stating that
it broke module D.

3. We could easily confirm this problem by running the tests using the order {C,
B, D, A} and noticing that only when module A was added into the system
did module D break.

In Figs. 7 and 8 we can observe how we can extract two different informations
depending on the compilation order. In Fig. 7, when module D is added, we
cannot pinpoint if there is an interaction with another module. In Fig. 8, when
module A is added, module D fails its tests revealing an interaction between the
two modules.

Fig. 7. Module D is added after module A.

Fig. 8. Module A is added after module D.

To ensure the maximum amount of information is extracted from these tests,
the module where the test failed should be added as soon as possible to the

324 A. Restivo et al.

system. This allows us to deduce that if, at that time, a unit test fails, then the
problem lies in the added module as the only other modules added all passed
their tests.

On the other hand, if all tests still pass when the module is added, then the
fault is in a higher level module. One that is changing the behavior of the module
or the behavior of a module this module depends on.

Taking this into consideration, after discovering that module D, from the
previous example, has a test that fails. We should compile the modules incre-
mentally in the following order: C, D, B and A. The test that failed previously
will either fail when module D is added, uncovering a fault in that same module,
or when modules A and B are added, pointing to an interaction between one of
those modules and module D.

This means that, to extract the maximum amount of information from a
fault, the process should be prepared to re-execute the complete incremental
compilation approach, introducing the module that caused the fault as early as
possible.

The strategy that has been delineated throughout these last two sections can
be summarized in four clear steps:

– Develop Modules with Few or no Circular Dependencies. The main
objective of using AOP is to prevent crosscutting concerns from polluting the
code. This will help make the code more modular which will improve several
other aspects like reusability and maintainability. A code base where modules
have circular dependencies removes a lot of these advantages so it should be
already a top priority to have as few of these as possible. When using this
strategy, it becomes even more important to observe this principle as circular
dependencies prevent an incremental compilation strategy.

– Use Classic Unit Testing Techniques. Testing techniques for OOP code
have already been thoroughly discussed in the literature. We argued that they
are not enough for the AOP case, but they should be used as a starting point.
By using stubs and mocks, the developer can isolate each module from the
behavior of lower-level modules.

– Use Incremental Testing. In order to isolate tests from the behavior of
possible higher level modules containing invasive aspects, we should use an
incremental testing strategy. This strategy complements the use of classical
unit testing techniques by providing protection from higher level modules
without breaking the encapsulation within each module.

– Try Different Composition Orders. If a fault is detected, try different
composition orders in order to better pinpoint the origin of the fault. This
should be done only after a fault has been detected. The faulty module should
be added as soon as possible so that all possible interactions can be analyzed.

5 Implementation

During the course of the work, two different plugins were developed: DrUID
and Aida. Both are based on the usage of annotations throughout the code that

An Incremental Approach to Testing AOP 325

contain information about which interferences are expected. These tools were
implemented as Eclipse plugins.

AspectJ was chosen as the target language for several reasons. First, it is one
of the most used aspect-oriented languages. Secondly, as it is Java based, it can
be used with Eclipse, an IDE where plugin development is straightforward. With
Eclipse we also get two other important benefits in the form of the tools JDT and
AJD for Java and AspectJ languages respectively. They allow access to the source
code abstract syntax tree. Although the implementation is AspectJ oriented, the
technique we proposed is applicable to other aspect-oriented languages following
the same principles.

5.1 DrUID

DrUID (UID as in Unexpected Interference Detection) [17,21] was the first
attempt at creating a plugin to help developers follow the methodology being
explored throughout this paper. In order to accomplish this, the plugin allows
developers to define several characteristics about system artifacts using Java
annotations.

Several aids have been implemented to guide the developer in this process
in the form of Eclipse quick fixes and quick assists. Each time a file is saved
in Eclipse, the annotations are inspected and any errors are reported. Besides
that, a dependency graph is created and shown in a graphical form that allows
the developer to navigate through the code following the dependencies between
artifacts.

5.2 Aida

Aida [18] is an evolution of the DrUID tool, built from scratch, having the main
objective of removing most of the burden put on the developer to annotate his
code. It also has a bigger focus on the testing process. In this tool, we started by
removing the notion of annotating features manually. We did this by considering
each test as a feature. This means that the developer only needs to create test
cases for each individual behavior. Obviously, this also removed the need to
specify which test case tests what feature.

Using code inspection, we were also able to remove the need of specifying the
dependencies between features. At the cost of losing some of the details of the
dependency graph used in DrUID, with Aida we rely only on the dependencies
between modules. In the end, we were down to only two types of annotations:

– @TestFor. Used to indicate which module each test is testing.
– @ReplacesTest. Used to indicate that a test replaces another test. It also

indicates that if the module the test is related to is present in the system,
then the replaced test does not have to be run.

Modules are defined as being contained inside Java packages by default.
A third optional annotation (@Unit) can be used to alter this behavior. The

326 A. Restivo et al.

dependencies between modules are automatically calculated by using the infor-
mation provided by the JDT and AJDT Eclipse plugins.

With the dependency graph calculated, the test process is very similar to
that of DrUID. We start by extracting the dependency graph from the source
code, then we order the modules by sorting them topologically and test them
adding each module incrementally to the system.

After running the complete set of tests, Aida is capable of reporting, both
graphically and in text, on eventually detected errors and interferences. This
allows the developer to add @ReplaceTest annotations, when an interaction is
expected, or correct his code if the interaction was unexpected.

5.3 Current Issues

There are still some issues with the implementation of these tools. Aida has
been a major step forward as it removes most of the burden of declaring the
dependencies from the developer, but there are still a couple of issues.

The first problem is that not all dependencies can be detected. At the
moment, Aida is able to detect dependencies caused by: import declarations,
method and constructor calls, type declarations and advices. These encompass
most of the cases, but soft dependencies, like the ones created using reflection
are not detected.

The second problem is that every time the project is tested, all the tests have
to be run again. This problem is augmented by the fact that most tests are being
run several times. This problem could be mitigated by doing some code analysis
to figure which tests might have their results altered by the introduction of a
new module in the incremental compilation process.

6 Validation

To validate the approach we used it in several small sized projects and a medium
sized one. The characteristics that we were looking for in a candidate project were
that it had to be developed in AspectJ, it had to have few circular dependencies
between modules and it had to have a test framework.

Unfortunately, all the existing open source projects we considered fail in one
of these three aspects. For example, the two most used testbed projects for
AspectJ are AJHotDraw [13] and Health Watcher [7]. The first of these has an
architecture with a dependency graph so complicated that most of the code is
part of a mass of 14 different packages that depend on each other forming a
strongly connected component. The second one is a much cleaner project, but
unfortunately, there are no tests developed for it.

Having failed to elect a good and popular testbed where to run our testing
process, we ended up developing our own testbed. A simple school information
system [19] was implemented featuring personal information for students, teacher
and administrators, course information, class schedules, infrastructure informa-
tion and grading. Figure 9 shows the dependencies between the implemented
packages.

An Incremental Approach to Testing AOP 327

Fig. 9. School testbed packages.

After implementing the base packages, some packages containing aspects were
added to the system:

Authentication. Spectative aspect that adds a login and password attributes
to the Person class. Offers methods to login and logoff as well as a way to
verify who is logged in.

Attendance. Adds a list of students that attended a certain lecture and meth-
ods to manage that list.

Security. Invasive aspect that assures that the passwords are hashed using a
secure hashing algorithm. For this, it advises the methods that set and verify
passwords of the Authentication module.

Permission. Invasive aspect that verifies that the logged in user has permissions
to execute the command being executed. Advises almost every method in the
code in order to do this verification.

Logging. Spectative aspect that logs to a file important information. At the
moment only the creation of new objects and login attempts are logged. To
do this, it advises the object creation methods but does not change their
behavior.

Minimum Grade. Invasive aspect that adds the possibility of a course evalua-
tion having a minimum grade that the student must attain to pass the course.
Adds methods to define this minimum grade and advises the methods that
calculate the student final grade.

328 A. Restivo et al.

Each one of the packages in the system was thoroughly tested. The total
number of tests amounts to 55 with most of them belonging to the Permission
package. This happens as this package crosscuts the entire application and mod-
ifies the behavior of almost all methods by adding a permission system. This
makes it important to test if those methods are still working when the user
has permission to use them, and also if access is denied when the user has no
permission to use them.

By using Aida, interferences were easily spotted. Each time an invasive aspect
was added, a test broke somewhere. In the rare event where that did not happen,
it was due to an error in the implementation of the new aspect or a poorly written
test. By using the technique described in this document, we were able to test all
the packages of the system in isolation, without compromising modularity.

After testing the complete system, we tried to test smaller subsets of the sys-
tem where some packages were not considered. We counted 77 different possible
valid configurations with only some of the non-aspectual packages being used.
If we add the other four invasive packages, in any possible combination, we get
eight times more possibilities. Or a grand total of 616 configurations. We were
able to test all of these successfully, using Aida without having to add, remove
or change any of the tests.

7 Related Work

Katz [10] proposed the use of regression testing and regression verification as
tools that could help identifying harmful aspects. The idea behind this technique
is to use regression testing as normally and then weave each aspect into the
system and rerun all regression tests to see if they still pass. If an error is found,
either the error is corrected or the failing tests have to be replaced by new ones
specific for that particular aspect. This approach is similar to the one presented
in this paper but does not explore the possibility of adding the aspects in an
automatic and controled order or the extra information that can be extracted
by compiling the aspects in different orders. It also does not propose a wat of
dealing with intended interactions.

Ceccato et al. [4] proposed a technique to establish which tests had to be
rerun when incrementally adding aspects to a system. Combining this technique
with our approach could reduce the ammount of time needed to run the tests
as some tests would not have to be run twice if it can be proved that they will
yield the same result.

Balzarotti and Monga [2] claims that the interaction detection problem can
be solved by using a technique proposed in the early 80s, called program slic-
ing. Although totally automatic, this technique does not account for intended
interactions.

Havinga et al. [9] proposed a method based on modeling programs as graphs
and aspect introductions as graph transformation rules. Using these two models
it is then possible to detect conflicts caused by aspect introductions. Both graphs,
representing programs, and transformation rules, representing introductions, can

An Incremental Approach to Testing AOP 329

be automatically generated from source code. Although interesting, this app-
roach suffers the same problem of other automatic approaches to this problem,
as intentional interactions cannot be differentiated from unintentional ones.

Lagaisse et al. [12] proposed an extension to the Design by Contract paradigm
by allowing aspects to define what they expect of the system and how they will
change it. This will allow the detection of interactions by other aspects that
were weaved before, as well as the detection of interactions by aspects that are
bounded to be weaved later in the process.

It has been noticed by Kienzle et al. [11] that aspects can be defined as
entities that require services from a system, provide new services to that same
system and removes others. If there is some way of explicitly describing what
services are required by each aspect it would be possible to detect interactions
(for example, an aspect that removes a service needed by another aspect) and to
choose better weaving orders.

A state-based testing method for aspect-oriented software has been developed
by Silveira et al. [22]. According to the authors, this method provides class–
aspect and aspect–aspect faults detecting capabilities.

Assunção et al. [1] explored different ways to determine the order for inte-
gration and testing of aspects and classes. Two different strategies, incremental
and combined, for integration testing were evaluated.

8 Future Work and Conclusions

As with all research projects, a lot of possible ramifications of the work being
done have been collected. We will now present some of them as pointers as a
reference for future work.

The approach has been tested on several small projects created just for the
effect. These case studies are no substitute for testing on a full-fledged project.
Unfortunately, there was no opportunity for this to happen during the time
frame of this work but it would be interesting to see this work applied in the
real world.

The plugin developed during this work is nothing more than a crude proto-
type. We feel that it could be much improved by way of better auto-complete,
auto-correct and automatic suggestions.

We have shown that the approach has several performance issues that might
hinder its usage in larger projects. Using a smarter strategy to select the tests
that are needed to run after a certain code is modified, or even to select which
tests must be run after a certain aspect has been applied, would go a long way
into making the process faster. We argue that this could be accomplished, in a
future work, using code slicing.

As we argued before, this approach is very useful in situations where large
repositories of modules exist. SPLs are one such case. Introducing this idea into
the software product line research field would also be an interesting continuation
of this work.

The only problem addressed was that of unit tests and AOP, but there
are several other artifacts that suffer from the same problem. One example is

330 A. Restivo et al.

documentation. Be it technical documentation or user manuals, AOP still has
to address the issue of their modularity. We think the presented approach could
be easily ported to these other artifacts.

The only language in which this approach was tested was AspectJ. Other
aspect oriented programming languages exist, some of them with radically dif-
ferent approaches. It would be interesting to study how incremental compilation
could be used in those.

Testing is an important and integral part of the development process. Any
technique that hinders it or forces developers to write convoluted code to go
around the problem, will have an hard time being accepted by the community.

The main advantage of using AOP is that we can maintain our concerns
neatly inside their own units of modularity. This allows us to create beautiful
code where each module is auto-contained and can be easily reused. However,
in this paper, we have shown that tests will easily break this modularity when
invasive aspects are used. So we are faced with a dilemma: we can either have
a poorer testing process where some concerns are not tested in isolation, or we
can have modules that are harder to reuse because they are testing code that
pertains to other modules.

The proposed solution uses annotations so that developers can clearly mark
the changes introduced by their invasive aspects. With these annotations in
place, the whole project can be tested in an incremental process where modules
are added following a topological order based on their dependencies.

We do not argue that the proposed solution is usable in every situation, but
we have shown that it can be used in several different scenarios. We envision it
being used in software houses that have a large repository of modules that can
be combined in different ways in order to compose different software solutions.
Anyone that has tried to create such a system knows that crosscutting concerns
are a big issue.

Acknowledgements. We would like to thank FCT for the support provided through
scholarship SFRH/BD/32730/2006.

References

1. Assunção, W.K.G., Colanzi, T.E., Vergilio, S.R., Pozo, A.T.R.: Evaluating different
strategies for integration testing of aspect-oriented programs. J. Braz. Comput.
Soc. 20(1), 9 (2014). doi:10.1186/1678-4804-20-9

2. Balzarotti, D., Monga, M.: Using program slicing to analyze aspect-oriented com-
position. In: Proceedings of Foundations of Aspect-Oriented Languages Workshop
at AOSD (2004)

3. Baniassad, E., Clarke, S.: Finding aspects in requirements with theme/doc. In:
Tekinerdou gan, B., Moreira, A., Araújo, J., Clements, P. (eds.) Proceedings of
Early Aspects 2004 Workshop, March 2004

4. Ceccato, M., Tonella, P., Ricca, F.: Is AOP code easier to test than OOP code?
In: Workshop on Testing Aspect-Oriented Programs, International Conference on
Aspect-Oriented Software Development, Chicago, Illinois, March 2005

5. Eclipse Foundation: The eclipse foundation open source community website,
December 2010. http://www.eclipse.org/

http://dx.doi.org/10.1186/1678-4804-20-9
http://www.eclipse.org/

An Incremental Approach to Testing AOP 331

6. Fowler, M.: Mocks aren’t stubs (2007). http://martinfowler.com/articles/
mocksArentStubs.html

7. Greenwood, P., Garcia, A.F., Bartolomei, T., Soares, S., Borba, P., Rashid, A.:
On the design of an end-to-end aosd testbed for software stability. In: Proceedings
of the 1st International Workshop on Assessment of Aspect-Oriented Technologies
(ASAT 2007), Vancouver, Canada, Citeseer (2007)

8. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997). doi:10.
1007/BFb0053381

9. Havinga, W., Nagy, I., Bergmans, L., Aksit, M.: A graph-based approach to mod-
eling and detecting composition conflicts related to introductions. In: AOSD 2007:
Proceedings of the 6th International Conference on Aspect-Oriented Software
Development, pp. 85–95. ACM Press, New York (2007)

10. Katz, S., Israel, H.: Diagnosis of harmful aspects using regression verification. In:
FOAL: Foundations of Aspect-Oriented Languages, pp. 1–6 (2004)

11. Kienzle, J., Yu, Y., Xiong, J.: On composition and reuse of aspects. In: Software
Engineering Properties of Languages for Aspect Technologies (2003)

12. Lagaisse, B., Joosen, W., De Win, B.: Managing semantic interference with aspect
integration contracts. In: Software Engineering Properties of Languages and Aspect
Technologies (2004)

13. Marin, M., Moonen, L., van Deursen, A.: An integrated crosscutting concern migra-
tion strategy and its application to jhotdraw. Technical report., Delft University
of Technology Software Engineering Research Group (2007)

14. Tarr, P., Ossher, H., Harrison, W., Sutton, J.S.M.: N degrees of separation: multi-
dimensional separation of concerns. In: Proceedings of the 21st International Con-
ference on Software Engineering, ICSE 1999 (1999)

15. Rashid, A., Moreira, A., Araújo, J.: Modularization and composition of aspectual
requirements. In: Proceeding 2nd International Conference on Aspect-Oriented
Software Development (AOSD 2003) (2003)

16. Restivo, A., Aguiar, A., Moreira, A.: Incremental modular testing for AOP. In:
Proceedings of the 11th International Joint Conference on Software Technologies
(ICSOFT 2016): ICSOFT-PT. Lisbon, Portugal, 24–26 July 2016, vol. 2, pp. 50–59
(2016). http://dx.doi.org/10.5220/0005986600500059

17. Restivo, A.: DrUID: Unexpected interactions detection (2009). https://github.
com/arestivo/druid

18. Restivo, A.: Aida: Automatic interference detection for aspectj (2010). https://
github.com/arestivo/aida

19. Restivo, A.: School-aspectj-testbed (2014). https://github.com/arestivo/
School-AspectJ-Testbed

20. Restivo, A., Aguiar, A.: Disciplined composition of aspects using tests. In: Pro-
ceedings of the 2008 AOSD Workshop on Linking Aspect Technology and Evo-
lution, LATE 2008, New York, USA, pp. 8:1–8:5 (2008). http://doi.acm.org/10.
1145/1404953.1404961

21. Restivo, A., Aguiar, A.: DrUID – unexpected interactions detection. In: Demon-
stration at the Aspect Oriented Software Development Conference (AOSD 2009)
(2009)

22. Silveira, F.F., da Cunha, A.M., Lisbôa, M.L.: A state-based testing method
for detecting aspect composition faults. In: Murgante, B., et al. (eds.) ICCSA
2014. LNCS, vol. 8583, pp. 418–433. Springer, Cham (2014). doi:10.1007/
978-3-319-09156-3 30

http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.5220/0005986600500059
https://github.com/arestivo/druid
https://github.com/arestivo/druid
https://github.com/arestivo/aida
https://github.com/arestivo/aida
https://github.com/arestivo/School-AspectJ-Testbed
https://github.com/arestivo/School-AspectJ-Testbed
http://doi.acm.org/10.1145/1404953.1404961
http://doi.acm.org/10.1145/1404953.1404961
http://dx.doi.org/10.1007/978-3-319-09156-3_30
http://dx.doi.org/10.1007/978-3-319-09156-3_30

Facilitating Reuse of Control Software Through
Context Modelling Based on the Six-Variable

Model

Nelufar Ulfat-Bunyadi(B), Rene Meis, and Maritta Heisel

University of Duisburg-Essen, Duisburg, Germany
{nelufar.ulfat-bunyadi,rene.meis,maritta.heisel}@uni-due.de

Abstract. When control software is developed, the context of the soft-
ware is not predefined or given. At first, certain properties of objects in
the real world need to be monitored/controlled and developers decide
which sensors, actuators, other systems to use to monitor/control them,
i.e. they make contextual decisions. Frequently, it is not possible to mon-
itor/control exactly these real world properties. Instead, a different set
of properties is monitored/controlled whose values are related to the
real world properties. Existing approaches like the famous Four-Variable
Model call for documenting the monitored, controlled, input, and output
variables for a control software. Yet, they do not ask for documenting the
properties that have been of interest at first, before deciding which sen-
sors, actuators, other systems to use, i.e. the real world properties. This
results in problems when the control software shall later on be reused
in another context. The new context may, for example, comprise addi-
tional sensors. In this situation, it is hard for developers to decide which
input variables are still necessary and should somehow be monitored and
which ones not. To avoid such problems, we suggest a context modelling
method which is based on our extension of the Four-Variable Model,
the Six-Variable Model, and needs to be applied during requirements
engineering.

Keywords: Four-Variable Model · Context · Context modelling ·
Contextual decision · Satisfaction argument · Domain knowledge ·
Requirement · Specification

1 Introduction

Control software is typically connected to sensors and actuators in order to mon-
itor/control the environment [9]. The context of the control software comprises
the sensors and actuators it uses as well as the environment it monitors/controls
[6]. Context modelling refers to modelling/documenting this context.

When starting development of a control software, its context is not predefined
or given. At first, there are some objects in the real world which are relevant
for the control software because it needs to monitor/control certain properties

c© Springer International Publishing AG 2017
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, pp. 332–358, 2017.
DOI: 10.1007/978-3-319-62569-0 16

Facilitating Reuse of Control Software Through Context Modelling 333

of them. Consider, for example, Adaptive Cruise Control (ACC) software [13].
The main goal of an ACC is to maintain the driver’s desired speed while keeping
the safety distance to vehicles ahead. So, for the ACC software, the following
objects in the real world are relevant (among others). First, vehicles ahead are
relevant, because the ACC software needs to know their speed, distance, and
lane. Second, the ACC vehicle itself is relevant, because the ACC software needs
to know the ACC vehicle’s current speed and lane. Furthermore, the ACC soft-
ware controls/adapts the speed of the ACC vehicle. We call these properties that
are relevant for the control software in the real world the real world properties.

The developers of the control software then decide which sensors, actuators,
or other systems to use in order to monitor/control the real world properties.
Yet, frequently, it is not possible to monitor/control exactly those properties
one is interested in. Instead, other properties are monitored/controlled whose
values are related to the real world properties. For example, in case of the ACC
software, the lane of vehicles ahead is not directly monitored. Instead, the relative
position of vehicles ahead is determined. The calculation is done by the ACC
software based on the data provided by the long range radar (LRR) sensor
and ESP (Electronic Stability Program) sensors. The LRR sensor measures the
speed, distance, and lateral offset of vehicles ahead. The ESP sensors measure
wheel speed, yaw rate, lateral acceleration, and steering wheel angle of the ACC
vehicle. Based on the data from the ESP sensors, the ACC software calculates
the yaw rate corrected for offset. This value enables the ACC software to predict
the course (driving direction) of the ACC vehicle. Based on the lateral offset of
vehicles ahead (provided by the LRR sensor) and the predicted course of the
ACC vehicle, the ACC software calculates the course offset of vehicles ahead.
The course offset is the relative position of the vehicle ahead.

The Four-Variable Model [9] is a famous context modelling approach and
focusses on control systems. It was suggested in 1995 by Parnas and Madey. It
defines the content of software documentation (e.g. of a System Design Docu-
ment, of a Software Requirements Document). These documents are representa-
tions of certain mathematical relations among the following four types of vari-
ables: monitored, controlled, input, and ouptut variables. Monitored variables m
are environmental quantities the control software monitors through input devices
(e.g. sensors). Controlled variables c are environmental quantities the software
controls through output devices (e.g. actuators). Input variables i are data items
that the software needs as input and output variables o are quantities that the
software produces as output.

Existing approaches like the Four-Variable Model but also others (see Sect. 5),
mainly call for documenting these four variables (and the mathematical relations
among them). However, documenting these four variables is not sufficient if
software reuse is an issue, because then the real world properties which have been
relevant at first (before deciding which sensors, actuators, other systems to use)
are not documented. And this results in problems when the software shall later
on be reused in another slightly different context. Imagine, the ACC software
shall later be reused in another vehicle which is additionally equipped with a

334 N. Ulfat-Bunyadi et al.

Table 1. Input and monitored variables for ACC example (taken from [14]).

Sensor Input variable Monitored variable

LRR Speed, distance, lateral offset of
vehicles ahead

Speed, distance, relative position of
vehicles ahead

ESP Wheel speed, lateral acceleration,
yaw rate, steering wheel angle of
ACC vehicle

Course of ACC vehicle

stereo video sensor. This sensor provides information about the lane of vehicles
ahead and the lane of the ACC vehicle. The input and monitored variables of
the ACC software in its former context are given in Table 1. Yet, based on this
information, it is quite hard for developers to decide, which of these variables
still need to be monitored in the new context (i.e. with the additional sensor)
and which ones not.

Reuse of control software would be facilitated, if (i) input and output vari-
ables of the software were not only traceable to monitored/controlled variables
but also to the real world properties, i.e. the properties that were originally rel-
evant in the real world before the developers decided to constrain themselves
to certain sensors, actuators, other systems and (ii) if contextual decisions once
made by developers were traceable together with the options they had. We make
two contributions in this paper to achieve these two goals. First, we extend the
Four-Variable Model with two additional variables (to cover the real world prop-
erties) as well as further mathematical relations which need to be documented
among the resulting six variables. We call our model the Six-Variable Model. Sec-
ond, we suggest a context modelling method that is based on the Six-Variable
Model and ensures traceability of contextual decisions and the impact they have
on the context and the requirements of the control software that is developed.

The paper we present here is an extended version of our paper published in
[14] and is structured as follows. In Sect. 2, we describe some fundamentals which
provide the basis of our work. In Sect. 3, we introduce our Six-Variable Model.
Section 4 contains a description of our context modelling method which is based
on the Six-Variable Model and combines existing approaches. We discuss related
work in Sect. 5 and finally conclude our paper in Sect. 6.

2 Fundamentals

Satisfaction Argument . We use the terminology defined by Zave and Jackson [15]
and differentiate between system, machine, and environment. A system consists
of manual and automatic components. The machine is the computer-based arte-
fact of the system that is the target of software development. The environment is
a portion of the real world that is becoming the environment of the development
project because its current behaviour is unsatisfactory in some way. The machine

Facilitating Reuse of Control Software Through Context Modelling 335

will be inserted into the environment so that the behaviour of the environment
becomes satisfactory. The main issue of this distinction is that the problem to
be solved by software development is not about the machine. Rather, it is about
the effects that the machine produces in the environment.

There are indicative and optative statements about the environment. Indica-
tive statements describe the environment as it is without or in spite of the
machine. Optative statements describe the environment as we would like it to
be because of the machine. Based on this differentiation, requirements, domain
knowledge, and specification are defined as follows. A requirement is an opta-
tive statement, intended to express the desires of the customer concerning the
software development project. Domain knowledge or domain assumptions repre-
sent indicative statements intended to be relevant to the software development
project. The specification is an optative statement, intended to be directly imple-
mentable and to support satisfaction of the requirements. The relation between
the set of requirements (R), the set of domain knowledge/assumptions (K), and
the set of specifications (S) is defined by means of the satisfaction argument
given in Eq. 1. The satisfaction argument says that if a machine is developed
that satisfies S and is inserted into the environment as described by K, then the
set of requirements R is satisfied.

S,K � R (1)

Three Types of Domain Knowledge. Van Lamsweerde [7] considers three types
of domain knowledge: domain properties, domain hypotheses, and expectations.
Domain properties are descriptive statements about the environment and are
facts (e.g. physical laws). Domain hypotheses are also descriptive statements
about the environment, but are assumptions. Expectations are assumptions,
but they are prescriptive statements to be satisfied by environmental agents like
persons, sensors, actuators in the environment.

Problem Diagrams. Problem diagrams have been suggested by Jackson [6].
A problem diagram shows the machine, its environment, and the requirement to
be satisfied in the environment. The notation and an example are given in Fig. 1.
The machine is shown as machine domain on the left-hand side (here: ACC soft-
ware). The environment is shown in terms of so called problem domains (here:
ACC vehicle and driver). A problem domain represents any material or immater-
ial object in the environment, e.g. people, other systems, a physical representation
of data. The machine domain and the problem domains are connected by means of
interfaces. At these interfaces, phenomena (e.g. events, states, values) are shared.
Sharing means that one domain participating in the interface controls the phe-
nomena while the other one observes them. Therefore, not only the phenomena
are annotated at an interface but also the abbreviation of the domain controlling
the phenomena followed by an exclamation mark (e.g. ACCV!{current speed}).
On the right-hand side of the problem diagram, the requirement is shown (here:
“drive at desired speed”). It is connected to the problem domains by means of
two types of connections: a requirement reference and a constraining reference.

336 N. Ulfat-Bunyadi et al.

A requirement reference is used to express that the requirement refers somehow
to phenomena of the problem domain. The corresponding phenomena are anno-
tated at the requirement reference (e.g. D!{desired speed}). A constraining refer-
ence is used to express that the requirement not only refers to but even constrains
the phenomena of the problem domain. These phenomena are annotated at the
constraining reference (e.g. ACCV!{speed adapted}).

Legend:

ACC
so ware

ACC!{accelerate, decelerate}
ACC vehicle

Driver

ACCV!{speed adapted}

D!{desired speed}

Drive at
desired
speed

Machine
domain

Problem
domain

Interface

Requirement

Requirement
reference

Constraining
reference

D!{desired speed}

ACCV!{current speed}

Fig. 1. Example of a problem diagram.

3 Our Six-Variable Model

As explained in the introduction, we argue that documenting only the classical
four variables is insufficient if software reuse is an issue. The real world properties
need to be documented as well. Therefore, we extend the Four-Variable Model
with the following two variables:

– referenced variable r : environmental quantities that should originally be
observed or monitored in the real world and were therefore referenced in
the requirement

– desired variable d : environmental quantities that should originally be influ-
enced in the real world and that shall be as desired by the requirement

In Fig. 2, we have depicted the Six-Variable Model as a problem diagram. The
machine is a control machine. Sensors and actuators are used by the machine
to monitor/control the environmental domains W and Z. Jackson [6] calls the
sensors and actuators connection domains. A connection domain is a domain that
is interposed between the machine and a problem domain (the remote problem
domain then). There are reliable and unreliable connection domains. According
to Jackson, they shall only be modelled if they are unreliable. If they are reliable,
they can be omitted in the problem diagram. We will use the term connection
domain in the following as well.

Facilitating Reuse of Control Software Through Context Modelling 337

Control
machine

Environmental
domain W Require-

ment
Environmental

domain Z

SE!i

CM!o

Sensors
EW!m EW!r

Actuators EZ!dAC!c

Legend:
r: variables originally referenced by the requirement
d: variables that shall be as desired by the requirement
m: variables actually monitored by sensors
c: variables actually controlled by actuators
i: input variables
o: output variables

Sensors/actuators/other
systems connec ng

so ware-to-be to real world

Requirement
in real worldSo ware-to-be

Remote problem
domains

in real world

Fig. 2. Our Six-Variable Model (taken from [14]).

As regards the Six-Variable Model, there may be several connection domains
(i.e. a chain of sensors or a chain of actuators) between the machine and the
environmental domains W and Z, especially in embedded systems (see Fig. 3).
For an example, consider again the ACC system described above. The driver
may press the brake pedal to deactivate ACC. Yet the brake pedal is not directly
connected to the ACC. The brake pedal is connected to two sensors: a travel
sensor and a pressure sensor to measure the speed and force of the driver’s
command. These sensors are connected to the ESP and the ESP is connected to
the ACC. The existence of connection domains means that there are not only
six variables to be documented but even 6 + n variables. However, the method
we present in this paper is already designed to consider the case that there may
be more connection domains (see Sect. 4).

Control
machine

AC1

SE1
Environmental

domain W

Sensors, actuators, other systems connec ng
machine to real world

Requirement
in real worldSo ware-to-be

…

…

ACm

SEn
Require-

ment

Remote problem
domains in real world

Environmental
domain Z

SE1! {i}

CM! {o} ACm! {c}

EW! {m}

EZ! {d}

EW! {r}…

…

…

…

Fig. 3. Six-Variable Model with several connection domains.

As explained in the introduction, Parnas and Madey [9] define not only the
four variables (monitored, controlled, input, and output) but also the following
mathematical relations between them:

338 N. Ulfat-Bunyadi et al.

– NAT : indicative relation between m and c
– REQ : optative relation between m and c
– IN : indicative relation between m and i
– OUT : indicative relation between o and c
– SOF : optative relation between i and o.

On the one hand, the environment (i.e. nature and previously installed sys-
tems) places constraints on the values of the environmental quantities m and c.
These are described by NAT. On the other hand, the software-to-be is expected
to impose further constraints on them. These are described by REQ. IN describes
how sensors translate m to i. OUT describes how actuators translate o to c. SOF,
finally, describes how the software-to-be will/shall produce its output o from the
input i. The introduction of the two new variables r and d necessitates that the
following mathematical relations between the variables are described as well:

– INRW : indicative relation between r and m
– OUTRW : indicative relation between c and d
– NATRW : indicative relation between r and d
– REQRW : optative relation between r and d.

INRW describes how a referenced variable is related to a monitored one (e.g.
how lane of vehicles ahead is related to relative position of vehicles ahead). Note
that there does not necessarily need to be a 1-to-1 mapping between the vari-
ables. Actually, lane of vehicles ahead is not only related to relative position
of vehicles ahead but also to course of the ACC vehicle, since both are used
to estimate the lane of vehicles ahead. So, there may be a 1-to-n, n-to-1, or
n-to-m mapping between r and m variables. Similarly, OUTRW describes how
controlled variables are related to desired variables. Beyond that, there is an
indicative and an optative relation between the newly introduced r and d vari-
ables. These are documented by means of the relations NATRW and REQRW .
The mathematical relations between the six variables are depicted in Fig. 4. In
the Four-Variable Model, the variable at the requirement reference is m, the vari-
able at the constraining reference is c, and the set of requirements REQ refers
to m and constrains c. Yet, in our Six-Variable Model, the set of requirements
refers to r and constrains d. Instead of REQ and NAT, we need to document
REQRW and NATRW beside INRW , IN, SOF, OUT, and OUTRW .

According to Parnas and Madey, IN and OUT are indicative relations [9].
Yet, in our case, since we are not the developers of the sensors, actuators, and
other systems connecting the machine and the real world, IN and OUT as well
as INRW and OUTRW are optative. We want these relations to be true, but
they are not really facts. Rather, they are assumptions. In distributed develop-
ment, it is beneficial to make these assumptions explicit, because (i) we as the
developers of the machine become aware of them and (ii) we can discuss them
with the developers of the sensors, actuators, and other systems and, thus, let
them review our assumptions. Figure 5 makes the assumptions explicit. We adopt
van Lamsweerde’s differentiation between expectations and domain hypotheses
(introduced in Sect. 2).

Facilitating Reuse of Control Software Through Context Modelling 339

Sensors/actuators/other
systems

Requirement
in real worldSo ware-to-be Remote problem

domains in real world

i

o

r
m

d

Control
machine

Environmental
domain W

Environmental
domain Z

i

o

Sensors

Actuators c

IN

OUT

INRW

OUTRW

SOF NATRW REQRW

Fig. 4. Relations among the six variables (based on [14]).

First, there is a domain hypothesis DH about the domain W which says that
m actually reflects r. This is a hypothesis made by us (as the developers of the
machine) and it is a hypothesis because it has a descriptive statement. It has
to be valid but there is no environmental domain that we could make respon-
sible of satisfying this assumption. Therefore, it is no expectation. However,
we have expectations regarding the sensors (Exp-SE), actuators (Exp-AC), and
controlled domains (Exp-CD). The sensors have to ensure that i actually corre-
sponds to m. The actuators have to ensure that o actually results in c. And, the
controlled domains are responsible for ensuring that d is actually achieved by c.
Beside these assumptions, the machine has to satisfy SOF, i.e. it has to produce
o from i. If all the assumptions are valid and SOF is satisfied by the machine,
the real world requirement REQRW is satisfied (see satisfaction argument at the
bottom of Fig. 5).

DH: m
actually
reflects r

r m

Control
machine

Monitored
remote

domains
REQRW

i

o

Sensors m r

Actuators c
Controlled

remote
domains

d

Exp-SE: i
actually

corresponds
to m

i m

Exp-AC: o
actually

results in c

o
c Exp-CD: d is

actually
achieved by c

c d

SOF:
produce o

from i

o
i

Sa sfac on argument: DH, Exp-SE, SOF, Exp-AC, Exp-CD ├ REQRW

Fig. 5. Explicit assumptions (taken from [14]).

340 N. Ulfat-Bunyadi et al.

4 Our Context Modelling Method

In this section, we present our method that is based on the Six-Variable Model.
Since we use existing techniques in our method, we first introduce them. After-
wards, we present the method and explain its benefit.

4.1 Used Techniques

Problem Diagrams. For documenting the six variables, Jackson’s problem dia-
grams [6] are well suited because they allow for modelling the machine, the
environment, and the requirement in the real world. Furthermore, the six vari-
ables can also be modelled as phenomena at the different types of connections
between the domains. So, problem diagrams are a good means for modelling the
six variables. However, Jackson provides no guidance in documenting the “right”
six variables. This guidance is provided by our method (see Sect. 4.2). Although
we use problem diagrams, we do not proceed in the way suggested by Jackson
in his book [6]. Our method proceeds in another way.

For creating the problem diagrams, we used the UML4PF tool [4]. The benefit
of using this tool is that different other analyses can be performed on the models
that are created with this tool. In UML4PF, problem diagrams are shown as
UML class diagrams with corresponding stereotypes to express the semantics of
problem diagram model elements. For more details regarding the mapping of the
notations, see [4].

OVM and Selection Model. To document contextual decisions and options/
alternatives, we use the OVM (Orthogonal Variability Model) [11]. The OVM
was originally developed to capture the variation points and variants of a product
line together with their variability dependencies (mandatory, optional, alterna-
tive choice) as well as constraint dependencies (requires, excludes). The variants
can be related to a development artefact like a requirement or a diagram (or
a part of it) by means of so called artefact dependencies. The artefact (or the
part of it) is then defined as being variable. For documenting the choices that
are made, a selection model is created. We use the OVM to document the con-
textual decisions to be made, the options/alternatives that are selectable, and
dependencies among them. By means of artefact dependencies, we relate the
alternatives to variable elements of the AND/OR graph (see next paragraph).
To document the choices, we also use a selection model. The strength of the
OVM and the main reason for choosing this approach over others is that one is
able to relate a variant to an entire diagram, a diagram element, or even certain
sections of a diagram.

AND/OR Graph. For documenting the refinement or decomposition of require-
ments, we use an AND/OR graph (cf. e.g. [11]). The AND/OR graph is a
directed, acyclic graph. Its nodes represent requirements and the edges represent
AND/OR-decomposition relationships. A decomposition of a requirement into
a set of subrequirements is an AND-decomposition iff all subrequirements must

Facilitating Reuse of Control Software Through Context Modelling 341

be satisfied to satisfy the requirement. A decomposition of a requirement into a
set of subrequirements is an OR-decomposition iff satisfying one of the subre-
quirements is sufficient for satisfying the requirement. What needs to be docu-
mented in addition to the AND/OR graph, is the reasoning why each AND/OR-
decomposition is sufficient. We suggest documenting this information at least
informally in natural language.

Inter-model Relationships. The application of our method results in a number
of models which are interrelated. The variants in the OVM and in the selection
model need to be related to requirements in the AND/OR graph by means
of artefact dependencies. The relationships between requirements in the two
AND/OR graphs (the one containing all alternatives/options as well as the one
containing only the selected alternatives/options) and the problem diagrams or
domain knowledge diagrams (see next section) which show the corresponding
requirements/domain hypotheses/expectation need to be documented by means
of traceability relationships.

4.2 Method Steps

We applied our method to a real example, the ACC described in [13], and use
this example to illustrate the application of our method in the following. Fur-
thermore, we present validation conditions for each step of our method. These
conditions are supportive when applying our method. On the one hand, they
are rules that should be followed during creation of the documentation. On the
other hand, they can be checked after each step to validate whether the step has
been performed correctly. Figure 6 provides an overview of the method steps as
well as the input and output of each step.

ex
te

rn
al

in
pu

t
m

et
ho

d
st

ep
s

in
pu

t/

ou
tp

ut

Step 1:
Iden fy real

world objects

Step 2:
Decompose so w.

dev. problem

Step 3:
Iden fy op ons for

monitoring/controlling

Step 4:
Select op ons for

monitoring/controlling

Step 5: Make
expecta ons explicit

Essen al
context
diagram

AND/OR graph
with all

alterna ves

Reasonings Selec on
model

Domain
knowledge
diagrams

Essen al
problem
diagrams

OVM

Incarna on
problem
diagrams

Derived AND/OR
graph with

selected alterna ves

Domain
knowledge frames

Domain
exper se

Six-Variable
Model

Fig. 6. Overview of our context modelling method (based on [14]).

The method needs to be applied when starting development of a control
software, i.e. during requirements engineering. It supports documentation of the
requirements and the domain knowledge (i.e. information about the context).
We start in the real world and identify and document the real world variables

342 N. Ulfat-Bunyadi et al.

Control
machine

Remote
domains

r, d

Fig. 7. Information to be documented in an essential context diagram (taken from
[14]).

Table 2. Validation conditions for Step 1.

No. Validation condition

1-1 The essential context diagram (CD) contains one machine
domain

1-2 It contains at least one problem domain

1-3 It contains no designed domains

1-4 Problem domains in the essential CD are real world (RW)
problem domains, i.e. they are objects in the real world that
need to be monitored/controlled, provide input or receive output

1-5 The essential CD contains no connection domains, i.e. each RW
problem domain is connected to the machine domain by means
of an interface

1-6 At the interfaces in the essential CD only r and d variables are
annotated, i.e. properties of the RW objects that are
monitored/controlled or input from/output to the RW objects

1-7 In at least one interface, there are phenomena controlled by the
machine

(right-hand side in Fig. 3). From there, we progress towards the machine (left-
hand side in Fig. 3).

Step1: Identify Real World Objects. As a first step, the objects in the real world
that are relevant for the control software because it needs to monitor/control
certain properties of them (the real world variables) are identified. The objects
are modelled as problem domains in a so called essential context diagram (see
Fig. 7). In contrast to ordinary context diagrams (to be found in [6]), we focus
on the real world and abstract from any connection domains that might be in
between. Due to this reason, we call our context diagram essential. The machine
therein is the control software. It is connected to each problem domain by means
of an interface. At the interfaces, the corresponding real world variables (r and
d variables) that need to be shared between the domains are annotated. The
validation conditions for this step are given in Table 2.

Application Example. An essential context diagram for the ACC software is given
in Fig. 8. It shows three problem domains in the real world: the driver, vehicles
ahead, and the ACC vehicle. The driver is relevant in the real world because the
ACC software needs to know his/her desired speed as well as his/her desire to
(de-)activate the ACC. Vehicles ahead are relevant because the ACC software

Facilitating Reuse of Control Software Through Context Modelling 343

ACCV! {current speed, lane}

Fig. 8. Essential context diagram for the ACC software (based on [14]).

needs to know their speed, distance, and lane. Finally, the ACC vehicle is relevant
because its speed is controlled by the ACC software. So, shared phenomena are
accelerate and decelerate.

Step 2: Decompose the Software Development Problem. During this step, the
overall software development problem is decomposed into subproblems and, for
each subproblem, a problem diagram is created. The information to be docu-
mented in such a problem diagram is given in Fig. 9. We call these problem
diagrams essential problem diagrams, since we still focus on the real world and
abstract from any connection domains between machine and real world. An
essential problem diagram shows the machine (or more precisely the subma-
chine), the real world problem domains, the requirement, interfaces, requirement
references, and constraining references. Interfaces and references are annotated
with r and d variables.

Note that, during this step, the subrequirements are also formulated in a
solution-neutral way, i.e. without considering any sensors, actuators, or other
systems that could be used for monitoring/controlling. They focus on the real
world and the effects the software should have there. The decomposition of the
overall problem may be done in several steps, if necessary. The decomposition
relationships of the problems and thus the corresponding requirements are doc-
umented as an AND/OR graph. For each AND/OR decomposition of a require-
ment, the reasoning why the decomposition is sufficient is documented too. The
validation conditions for this step are given in Table 3.

Application Example. For the ACC software, the overall problem or requirement
to be satisfied is R-0: “Maintain desired speed keeping safety distance to vehicles
ahead”. We decompose it into the following subrequirements. The reasoning
explaining why this decomposition is sufficient is given as well.

Control
machine

Remote
domains

REQRW
r, d r, d

Fig. 9. Information to be documented in an essential problem diagram (taken
from [14]).

344 N. Ulfat-Bunyadi et al.

Table 3. Validation conditions for Step 2.

No. Validation condition

2-1 An essential problem diagram (PD) contains one machine domain

2-2 It may contain designed domains

2-3 Problem domains in an essential PD are RW problem domains

2-4 An essential PD contains no connection domains

2-5 At the connections (interfaces and references), only r and d variables
are annotated

2-6 An essential PD contains one requirement

2-7 The requirement shown in an essential PD is an essential requirement,
i.e. it is defined in a solution-neutral way and, thus, contains no details
regarding the solutions used for monitored/controlling of RW problem
domains

2-8 A problem domain in an essential PD is either also shown in the
essential CD, or it is part of a problem domain shown in the essential
CD, or it is a combination of several problem domains shown in the
essential CD

2-9 Each problem domain from the essential CD is either shown in at least
one essential PD, or it has been splitted and each part of it is shown in
at least one essential PD, or it has been combined with other problem
domains and the composite is shown in at least one essential PD

2-10 Each phenomenon from the essential CD is either shown in at least one
essential PD or its concretization is shown in an essential PD, or it is
splitted and each part of it is shown in at least one essential PD, or it
is combined with other phenomena and the composite is shown in at
least one essential PD

2-11 An interface in an essential PD is either also shown in the essential
CD, or it represents part of an interface shown in the essential CD, or
it represents a combination of interfaces shown in the essential CD, or
it represents a concretization of an interface shown in the essential CD

2-12 An interface in an essential CD is either also shown in at least one
essential PD, or it has been splitted and each part of it is shown in at
least one essential PD, or it has been combined with other interfaces
and the composite is shown in the essential PD, or it has been
concretized and its concretization is shown in at least one essential PD

2-13 The machines shown in all essential PDs are submachines of the
machine shown in the essential CD

2-14 An essential PD contains at least one constraining reference

2-15 In an essential PD, biddable domains may also be constrained by the
requirement. Causal domains, machine domain, and designed domains
may also be constrained

2-16 In at least one connection (interface or reference), there are
phenomena controlled by the machine

Facilitating Reuse of Control Software Through Context Modelling 345

Fig. 10. Essential problem diagrams for R-3 and R-5 (based on [14]).

R-1: Enable driver to activate ACC.
R-2: Enable driver to enter desired speed.
R-3: Identify vehicles ahead for tracking.
R-4: Adapt speed to desired speed keeping safety distance to vehicles ahead.
R-5: Display recorded desired speed to driver.
R-6: Enable driver to deactivate ACC.

The decomposition into R-1 to R-6 is sufficient because: R-1 ensures that
the ACC machine enters the “activated” state while R-6 ensures that the
ACC machine leaves this state. In the “activated” state, the machine is
able to satisfy R-2 to R-5 as follows. R-2 ensures that the driver may
enter a new desired speed if he wants to. Otherwise, the ACC machine
uses the currently stored desired speed. R-3 ensures that the ACC machine
detects vehicles ahead driving on the same lane. R-4 ensures that the ACC
machine not only drives at the desired speed but adapts the speed, if it
detects vehicles ahead. R-5 ensures that the driver is always informed about
the desired speed that is currently stored and used by the ACC machine.

In Fig. 10, the essential problem diagrams for R-3 and R-5 are shown. One
peculiarity in the problem diagram for R-3 is that we introduced a designed
domain called IVAS (identified vehicles ahead on same lane). IVAS is a so called
designed domain, i.e. a data store which is actually part of the machine. It is
modelled when a data store is shared by different problem diagrams. Based on

346 N. Ulfat-Bunyadi et al.

the information the machine gets, it decides whether detected vehicles ahead are
on the same lane or not. The ones that are on the same lane are stored in IVAS.

In the problem diagram for R-5, the real world domain is the driver. Here, we
have again a designed domain called desired speed. The recorded desired speed
is displayed to the driver so that s/he is informed about it. Therefore, the driver
is constrained – s/he needs to notice the information displayed to him/her.

Step 3: Identify Options for Monitoring/Controlling. For each essential problem
diagram from Step 2, connection domains are added. We call the resulting prob-
lem diagrams incarnation problem diagrams because they comprise a concrete
solution for monitoring/controlling. If there are different options for monitor-
ing/controlling a real world variable, separate incarnation problem diagrams for
each option need to be created. Figure 11 shows which information needs to be
documented in an incarnation problem diagram. The main difference is that
sensors and actuators are considered and, thus, the m, c, i, o variables are intro-
duced. If there are options for monitoring/controlling, a decision point with the
corresponding alternatives is also created in an OVM. Due to the new require-
ment decompositions, the AND/OR graph from Step 2 needs to be extended
and corresponding reasonings need to be created. The decision points and alter-
natives in the OVM are related to the corresponding variable elements of the
AND/OR graph by means of artefact dependencies. The validation conditions
for this step are given in Table 4.

Control
machine

Monitored
remote

domains
REQRW

i

o

Sensors m r

Actuators c
Controlled

remote
domains

d

Fig. 11. Information to be documented in an incarnation problem diagram (taken from
[14]).

Application Example. Examples of incarnation problem diagrams for R-3 are
given in Fig. 12. These are two possible incarnations for the essential requirement
R-3 (shown in Fig. 10). Alternative 2 represents the ACC system as described in
the introduction using ESP sensors and the long range radar to identify vehicles
ahead for tracking. In Alternative 1, in contrast, the long range radar is used
together with a stereo video sensor for the same purpose. In case of Alternative
1, the lane of vehicles ahead is identified precisely, while it is only estimated in
case of Alternative 2. The r and d variables (at the requirement reference and
the constraining reference) in the two incarnation diagrams are the same, while
the m, i, c, o variables at the interfaces are different.

Incarnation problem diagrams for R-5 are given in Fig. 13. There are two
alternatives for displaying the recorded desired speed: on the display in the

Facilitating Reuse of Control Software Through Context Modelling 347

Table 4. Validation conditions for Step 3.

No. Validation condition

3-1 An incarnation PD contains connection domains due to the considered
solutions for monitoring/controlling

3-2 An incarnation PD contains one machine domain and may contain
designed domains

3-3 Due to a considered solution, new RW problem domains and
phenomena may be introduced in an incarnation PD. They are new,
since they have not been part of the corresponding essential PD. This
is allowed, since the selection of a certain solution may necessitate the
consideration of RW problem domains that have not been relevant so
far, but whose properties need to be monitored/controlled if the
solution is selected

3-4 At the interfaces between machine and connection domains, only i and
o variables are annotated

3-5 At the interfaces between connection domains and RW problem
domains, only m and c variables are annotated

3-6 At the references between RW problem domains and requirement, only
r and d variables are annotated

3-7 The i variables in an incarnation PD must reflect the m variables given
therein

3-8 The m variables in an incarnation PD must reflect the r variables given
therein

3-9 The o variables in an incarnation PD must result in the c variables
given therein

3-10 The c variables in an incarnation PD must effect the d variables given
therein

3-11 An incarnation PD contains one requirement

3-12 For each essential requirement/PD, there is a at least one incarnation
requirement/PD. An incarnation requirement contributes to the
satisfaction of the corresponding essential requirement and is its
subrequirement

3-13 The requirement in an incarnation PD may be renamed (compared to
the corresponding essential requirement) to reflect the solution details
but it does not need to. The ID of an incarnation requirement (e.g.
R1-Alt1) is different than the ID of the essential requirement (e.g. R1)

3-14 All problem domains from the corresponding essential PD must be
present in the incarnation PD. A problem domain from the essential
PD may also be decomposed in the incarnation PD

3-15 Each problem domain from the essential PD is either shown in at least
one incarnation PD, or it has been splitted and each part of it is shown
in at least one incarnation PD, or it has been combined with other
problem domains and the composite is shown in at least one
incarnation PD

(continued)

348 N. Ulfat-Bunyadi et al.

Table 4. (continued)

No. Validation condition

3-16 Each phenomenon from the essential PD is either shown in at least one
incarnation PD, or its concretization is shown in an incarnation PD, or
it is splitted and each part of it is shown in at least one incarnation
PD, or it is combined with other phenomena and the composite is
shown in at least one incarnation PD

3-17 An interface in an essential PD is either also shown in at least one
incarnation PD, or it has been splitted and each part of it is shown in
at least one incarnation PD, or it has been combined with other
interfaces and the composite is shown in the incarnation PD, or it has
been concretized and its concretization is shown in at least one
essential PD

3-18 The machine shown in an incarnation PD is the same as the one that
is shown in the corresponding essential PD

3-19 An incarnation PD may contain designed domains

3-20 In an incarnation PD, there must be at least one constraining reference

3-21 Biddable domains may be constrained in an incarnation PD, just as
causal domains, machine domain, designed domains

3-22 In at least one interface/reference, there must be phenomena
controlled by the machine

centre console and on the head-up display. In both cases, the recorded desired
speed must first be transferred to the instrument cluster, because it is not only
responsible for displaying all hints, warning messages, and error messages on the
displays in the vehicle but also for prioritizing them. Therefore, the machine is
not directly connected to the two displays.

Step 4: Select Options for Monitoring/Controlling. For each decision point in
the OVM, one or (if possible and appropriate) several options are selected. The
choices are documented in a selection model. Based on the selection model, a
concrete model of the requirement decomposition is derived from the AND/OR
graph. The validation conditions for this step are given in Table 5.

Application Example. Figure 14 depicts the OVM for the ACC software with
the artefact dependencies (shown as dashed arrows) to the AND/OR graph. At
the first decision point in the OVM, one of the options must be selected. At the
second decision point, at most two options can be selected while at least one
must be selected. And at the third decision point, at most three options can
be selected while at least one must be selected. We do not show the selection
model here because it is similar to Fig. 14 except that in the selection model
the alternatives that are not selected are shown in grey while the selections
are emphasized. The following options are selected: R3-Alt2, R5-Alt1, R5-Alt2,
R6-Alt1, R6-Alt2, and R6-Alt3.

Facilitating Reuse of Control Software Through Context Modelling 349

Fig. 12. Incarnation problem diagrams for R-3 (taken from [14]).

Fig. 13. Incarnation problem diagrams for R-5.

350 N. Ulfat-Bunyadi et al.

Table 5. Validation conditions for Step 4.

No. Validation condition

4-1 All requirements shown in PDs are present in the AND/OR graph

4-2 Each PD is related by means of a traceability relationship to the
corresponding requirement in the AND/OR graph

4-3 At an OR-decomposition in the AND/OR graph, at least two
subrequirements must be existent

4-4 To each decomposition in the AND/OR graph, there is a reasoning

4-5 At each decision point in the OVM, at least one option must be
selectable

4-6 To each variant in the OVM, there must be an artefact dependency to
the corresponding requirement in the AND/OR graph

4-7 At each decision point in the selection model, there must be a selection

4-8 There is a derived AND/OR graph which is consistent with the
selections in the selection model

AND/OR graph
R-0

R-1 R-2 R-3 R-6

R3-Alt1
R3-Alt2

R1-Alt1 R2-Alt1

R-4 R-5

R5-Alt1
R5-Alt2

R6-Alt2

R6-Alt1 R6-Alt3

Identifying lane of
vehicles ahead

VPVP

V

Estimating
the lane

V

Using a
video sensor

OVM

Displaying desired
speed

VPVP

V

On head-
up display

V

In centre
console

Getting informed
about deactivation desire

VPVP

V

Brake pedal
pressed

V

Deactivate-
button

pressed

V
Accelerator

pedal
pressed

[1..1]

[1..2]

[1..3]

R4-Alt1

VP

<<Name>>

VP

<<Name>>

V
<<Name>>

Mandatory
variation point

Optional
variation point

Variant

Mandatory
variability

dependency

Optional
variability

dependency
Alternative

choice

[min…max]

Artefact
dependency

OR-decompostion AND-decompostion

Legend (OVM): Legend (AND/OR graph):

Fig. 14. OVM for the ACC software.

Facilitating Reuse of Control Software Through Context Modelling 351

Environmental
domain ZActuator

AC!c

Exp: d is
actually

achieved by
c

EZ!dAC!c

Frame OUTRW

Environmental
domain W

DH: m
actually
reflects r

EW!r EW!m

Control
machine

CM!o
Actuator

Exp: o
actually

results in c

CM!o AC!c

Frame INRW

Frame OUT

Environmental
domain WSensor

EW!m

Exp: i
actually

corresponds
to mSE!i EW!m

Frame IN

Control
machine

SE!i
Sensor

SOF:
produce o

from i
CM!o SE!i

Frame SOF

Domain Knowledge Frames

Fig. 15. Domain knowledge frames and Frame SOF (based on [14]).

Step 5: Make Expectations Explicit. During this step, we make the expectations
and domain hypotheses explicit. This is necessary, since the real world require-
ments REQRW are not solely satisfied by the control software. We need to make
the expectations and domain hypotheses explicit which need to be valid as well
in order to satisfy the real world requirements (see Sect. 3). Therefore, to each
incarnation problem diagram that has been selected in Step 4, the four domain
knowledge frames given in Fig. 15 are applied to make the domain hypotheses and
expectations explicit in so called domain knowledge diagrams. Domain knowl-
edge diagrams have already been introduced in [1]. However, the four domain
knowledge frames we present here are new.

Frame INRW is used to make domain hypotheses explicit (see also DH
in Fig. 5). Frame IN is used to make expectations to be satisfied by the sen-
sors/other systems explicit (see also Exp-SE in Fig. 5). Frame OUT is used to
make expectations to be satisfied by actuators/other systems explicit (see also
Exp-AC in Fig. 5). Frame OUTRW is used to make expectations to be satisfied
by controlled domains explicit (see also Exp-CD in Fig. 5). To make the software
requirements (SOF in Fig. 5) explicit which need to be satisfied by the machine,
Frame SOF given in Fig. 15 can be instantiated. In this way, a decomposition of
REQRW is achieved. Therefore, the derived AND/OR graph from Step 4 needs
to be extended with the requirement decompositions made in this step. Thus, the
satisfaction argument is also reflected in the AND/OR graph. The reasoning for
these decompositions need to be documented as well. The validation conditions
for this step are given in Table 6.

Application example. In Fig. 16, the diagrams are shown that are created during
decomposition of R3-Alt2. R3-Alt2 is satisfied, if D5, D6, D7, D8, and SofReq3
are satisfied (see satisfaction argument at the top of Fig. 16). Each one of these

352 N. Ulfat-Bunyadi et al.

Table 6. Validation conditions for Step 5.

No. Validation condition

5-1 For each connection domain, there is a domain knowledge
diagram (DKD)

5-2 Each expectation and domain hypothesis shown in a DKD is also
related by means of a traceability relationship to the
corresponding expectation/domain hypothesis in the derived
AND/OR graph

5-3 For each selected incarnation requirement in the derived
AND/OR graph, there is a corresponding software requirement

5-4 For each software requirement, there is a PD

5-5 A software requirement may directly refer to phenomena of the
machine or constrain them

5-6 To each decomposition in the derived AND/OR graph, there is a
reasoning

statements is shown in a separate diagram. The two domain knowledge diagrams
for D5 and D7 (domain hypotheses) have been created by instantiating Frame
INRW , while the diagrams for D6 and D8 (expectations) were created by instan-
tiating Frame IN. D6 is to be satisfied by the ESP sensors. D8 is to be satisfied
by the long range radar sensor. The problem diagram for SofReq3 results from
instantiating Frame SOF. SofReq3 is to be satisfied by the ACC machine Sub 3.

We applied Frame OUT, OUTRW , and SOF during decomposition of R5-
Alt1. R5-Alt1 is satisfied, if D13, D14, D15, and SofReq5 are satisfied (see satis-
faction argument at the top of Fig. 17). The two domain knowledge diagrams for
D13 and D14 have been created by instantiating Frame OUT, while the diagram
for D15 was created by instantiating Frame OUTRW . D13 is to be satisfied by the
instrument cluster, D14 by the display in the centre console, D15 by the driver,
and SofReq5 by the ACC machine Sub 5. Once that all expectations have been
made explicit, lists of expectations for each sensor, actuator, and other system
can be created in order to discuss them with the corresponding developers. The
decomposition of R3-Alt2 and R5-Alt1 is also reflected in the AND/OR graph
in Fig. 18.

4.3 Benefit

The documentation that is created when applying our method enables develop-
ers to analyse the impact of contextual changes systematically and to integrate
changes in a consistent manner. Assume, for example, that the ACC software
is actually reused later on in another vehicle that is additionally equipped with
a video sensor. The starting point for the analysis is SofReq3: “Identify vehi-
cles ahead on the same lane”. In the AND/OR graph shown in Fig. 18, we see
that SofReq3 is a subrequirement of the real world requirement R3-Alt2. In the

Facilitating Reuse of Control Software Through Context Modelling 353

selection model we would see that R3-Alt2 is related to a variant. There was a
decision point for identifying vehicles ahead and that a video sensor was even
considered as an alternative for realizing R3. As another example consider the
case in which other developers tell us that they are not able to provide an input
variable that we expected from them but a slightly different one. Based on the
documentation we have, we are able to trace back to which r this input variable
contributed and whether there are other alternatives to achieve r.

5 Related Work

Gunter et al. [5] differentiate between four types of phenomena: eh are environ-
mental phenomena hidden from the system, ev are environmental phenomena
visible to the system, sv are system phenomena visible to the environment, and
sh are system phenomena hidden from the environment. According to Gunter
et al., ev correspond to the monitored variables in the Four-Variable Model and
sv to the controlled variables. The sh phenomena contain the input and output
variables. However, according to Gunter et al., there are no eh phenomena in the
Four-Variable Model. eh corresponds to the r and d variables in our Six-Variable
Model. Yet, the benefit of our method is that we differentiate between the r and
d variables and provide guidance in identifying them.

There are three further approaches that extend the Four-Variable Model.
Yet, their extensions are directed towards the machine, while our extension is
directed towards the environment/real world (i.e. the opposite direction). Nev-
ertheless, we explain them shortly. First, Bharadwaj and Heitmeyer [2] suggest
to specify the required behaviour of the machine in terms of the following three
modules: an input device interface module, a device-independent module, and
an output device interface module. The input device interface module specifies
how the input variables provided by the sensors are to be used to compute esti-
mates of the monitored variables. The device-independent module specifies how
the estimated monitored variables are to be used to compute estimates of the
controlled variables. The output device interface module finally specifies how
the estimates of the controlled variables are used to compute the output vari-
ables that drive the actuators. Thus, the focus of this approach is mainly on the
machine and its input and output variables. The second approach is the one of
Miller and Tribble [8]. They propose an extension of the Four-Variable Model
that clarifies how system requirements can be allocated between hardware and
software. So, the focus of their extension is on the machine. The third approach
is the one of Patcas et al. [10]. They criticise that the Four-Variable Model does
not specify the software requirements, but bounds them by specifying the sys-
tem requirements and the input and output hardware interfaces of the system.
It is the software engineers task to develop a software that satisfies the system
requirements and hardware interfacing constraints. To ameliorate this situation,
the authors formalize the properties of acceptable system and software imple-
mentations and provide a necessary and sufficient condition for the existence
of an acceptable software implementation. Beyond that, the authors provide a

354 N. Ulfat-Bunyadi et al.

Fig. 16. Further decomposition of R3-Alt2.

Facilitating Reuse of Control Software Through Context Modelling 355

Fig. 17. Further decomposition of R5-Alt1.

356 N. Ulfat-Bunyadi et al.

AND/OR graph
R-0

R-1 R-2 R-3 R-6

R3-Alt2R1-Alt1

R2-Alt1

R-4 R-5

R5-Alt1 R5-Alt2

R6-Alt2R6-Alt1 R6-Alt3R4-Alt1

D5 D6 SofReq3D7 D8D1 SofReq1D2

D3 SofReq2D4 D9 D10 D11SofReq4 D12

D13 D14 D15SofReq5

D17 D18

D20 SofReq7 D21 D22D19 D23 D24

SofReq6 D16

SofReq8 SofReq9

Fig. 18. Extended AND/OR graph.

mathematical characterization of the software requirements in terms of their
weakest specification. Again, the focus of this work is on the machine and its
interfaces. Since the focus of these three approaches is on the machine, they can
theoretically be combined with our Six-Variable Model. We will analyse that in
future work.

Another work that is related to our context modelling method is van
Lamsweerde’s goal-oriented requirements engineering method [7]. He assumes
Jackson’s model of the world and the machine and suggests a goal-oriented
method.Multi-agent goals are refined (inAND-refinement trees) until the subgoals
can be assigned to single agents in the environment (then they are expectations)
or to agents in the system (then they are requirements). Leaf nodes may also be
domain hypotheses or domain properties. For the system agents, agent models are
created. For expectations, no further models are created. Van Lamsweerde’s work
has similarities with our context modelling method, since we use AND/OR graphs
and his differentiation between expectation and domain hypotheses. Yet, our con-
text modelling method is based on the Six-Variable Model, i.e. we document the
six variables, while he documents only the classical four variables. Furthermore,
he does not document contextual decisions and the options that were selectable.

6 Conclusion and Future Work

Control software is typically not directly connected to the real world where it
monitors/controls certain objects. In complex systems like cars and airplanes,
the connection is complex and there are a lot of sensors, actuators, other sys-
tems, and mechanical parts in between. Frequently, it is not possible to moni-
tor/control exactly the real world variables and instead other variables, whose
values are related to them, are monitored/controlled. Documenting only the
classical four variables for such a control software results in problems when the
software shall later on be reused in another, slightly different context, because it
is no more clear why each variable was relevant for the software, which variables

Facilitating Reuse of Control Software Through Context Modelling 357

can be replaced, and which ones need to remain as they are. The traceability to
the real world variables is missing. Furthermore, the contextual decisions once
made, i.e. the decision, which sensors, actuators, other systems to use for moni-
toring/controlling, are also not traceable any more. As a result, it is very hard
for developers to decide which variables are still necessary and which ones not in
the new context. To overcome these problems, we presented a context modelling
method that supports the documentation of the classical four variables and the
real world variables as well as the mathematical relations among them. Further-
more, our method supports documentation of contextual decisions and options
that were selectable so that decisions can be traced back and even considered
options can be reconsidered. This is especially important when the software shall
later be reused.

In future work, we plan to apply our method to further, more complex exam-
ples, also in other domains (e.g. a patient monitoring system as part of ambient
assisted living in the health domain). We also consider a comparative evalua-
tion with student groups to compare our Six-Variable Model with the approach
suggested by Gunter et al. [5].

References

1. Alebrahim, A., Heisel, M., Meis, R.: A structured approach for eliciting, model-
ing, and using quality-related domain knowledge. In: Murgante, B., et al. (eds.)
ICCSA 2014. LNCS, vol. 8583, pp. 370–386. Springer, Cham (2014). doi:10.1007/
978-3-319-09156-3 27

2. Bharadwaj, R., Heitmeyer, C.: Hardware/software co-design and co-validation
using the SCR method. IEEE International High Level Design Validation and
Test Workshop (1999)

3. Broy, M.: Challenges in automotive software engineering. In: Proceedings of the
28th International Conference on Software Engineering (ICSE 2006), pp. 33–42.
ACM (2006)

4. Cote, I., Hatebur, D., Heisel, M., Schmidt, H.: UML4PF – a tool for problem-
oriented requirements analysis. In: Proceedings of RE 2011, pp. 349–350. IEEE
Computer Society (2011)

5. Gunter, C., Gunter, E., Jackson, M., Zave, P.: A reference model for requirements
and specifications. IEEE Softw. 17(3), 37–43 (2000)

6. Jackson, M.: Problem Frames - Analyzing and Structuring Software Development
Problems. ACM Press, New York (2001)

7. van Lamsweerde, A.: Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley, Hoboken (2009)

8. Miller, S.P., Tribble, A.C.: Extending the four-variable model to bridge the system-
software gap. In: Proceedings of DASC 2001 (Digital Avionics Systems Conference)
(2001)

9. Parnas, D., Madey, J.: Functional documents for computer systems. Sci. Comput.
Program. 25(1), 41–61 (1995)

10. Patcas, L., Lawford, M., Maibaum, T.: From system requirements to software
requirements in the four-variable model. In: Proceedings of AVoCS 2013 (Auto-
mated Verification of Critical Systems) (2013)

http://dx.doi.org/10.1007/978-3-319-09156-3_27
http://dx.doi.org/10.1007/978-3-319-09156-3_27

358 N. Ulfat-Bunyadi et al.

11. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques.
Springer, Heidelberg (2010)

12. Pretschner, A., Broy, M., Krueger, I., Stauner, T.: Software Engineering for Auto-
motive Systems: a roadmap. In: Proceedings of Future of Software Engineering,
pp. 55–71. IEEE Compurter Society (2007)

13. Robert Bosch GmbH: ACC Adaptive Cruise Control. The Bosch Yellow Jackets
(2003)

14. Ulfat-Bunyadi, N., Meis, R., Heisel, M.: The six-variable model - context mod-
elling enabling systematic reuse of control software. In: Proceedings of ICSOFT-PT
2016 (11th International Joint Conference on Software Technologies), pp. 15–26.
SciTePress (2016)

15. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6(1), 1–30 (1997)

Correction to: CRMPSoC: New Solution
for Feasible Reconfigurable MPSoC

Imen Khemaissia, Olfa Mosbahi, Mohamed Khalgui, and Zhiwu Li

Correction to:
Chapter “CRMPSoC: New Solution for Feasible
Reconfigurable MPSoC” in: E. Cabello et al. (Eds.):
Software Technologies, CCIS 743,
https://doi.org/10.1007/978-3-319-62569-0_9

The original version of the chapter “CRMPSoC: New Solution for Feasible Recon-
figurable MPSoC”, starting on p.175 was revised. An affiliation has been added. The
original chapter was corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-319-62569-0_9

© Springer International Publishing AG 2019
E. Cabello et al. (Eds.): ICSOFT 2016, CCIS 743, p. C1, 2017.
https://doi.org/10.1007/978-3-319-62569-0_17

https://doi.org/10.1007/978-3-319-62569-0_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-62569-0_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-62569-0_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-62569-0_17&domain=pdf
https://doi.org/10.1007/978-3-319-62569-0_9

Author Index

Abdallah, Riadh Ben 153
Aguiar, Ademar 309
Albassam, Emad 108

Buchmann, Thomas 201

Carlsson, Mats 68

de Lara, Juan 221

Exman, Iaakov 264

Faria, João Pascoal 88

Garmendia, Antonio 221
Ghribi, Ines 153
Gomaa, Hassan 108
Gordon, Taylor 132
Gotlieb, Arnaud 68
Greiner, Sandra 201
Guerra, Esther 221

Heisel, Maritta 332
Hohenstein, Uwe 284

Iqbal, Junaid 45

Kassahun, Ayalew 3
Khalgui, Mohamed 22, 153, 175
Khemaissia, Imen 175
Kholkar, Deepali 239

Koka, Preeti 284
Kulkarni, Vinay 239

Lakhdhar, Wafa 22
Li, Zhiwu 175
Lima, Bruno 88
Lucas, Wendy 132

Marijan, Dusica 68
Meis, Rene 332
Menascé, Daniel A. 108
Moreira, Ana 309
Mosbahi, Olfa 175
Mzid, Rania 22

Platzner, Marco 153

Restivo, André 309

Siavashi, Faezeh 45
Sunkle, Sagar 239

Tekinerdogan, Bedir 3
Treves, Nicolas 22
Truscan, Dragos 45

Ulfat-Bunyadi, Nelufar 332

Vain, Jüri 45
Vaquero-Melchor, Diego 221

	Preface
	Organization
	Contents
	Software Engineering and Applications
	Collaboration Viewpoint for Modeling Cross-Organizational Business Concerns
	Abstract
	1 Introduction
	2 Background
	2.1 Software Architecture
	2.2 BPM
	2.3 Workflow Patterns

	3 Illustrative Case and Problem Statement
	3.1 Case: Transparency in Food Supply Chains
	3.2 Problem Statement

	4 Collaboration Viewpoint
	4.1 Method for Applying the Viewpoint

	5 Applying the Collaboration Viewpoint
	6 Related Work
	7 Conclusion
	References

	A New Approach for Automatic Development of Reconfigurable Real-Time Systems
	1 Introduction
	2 Related Works
	2.1 Real-Time Scheduling
	2.2 Reconfiguration of Real-Time System
	2.3 Code Generation

	3 System Formalization
	4 Proposed Approach
	4.1 Motivation and Definitions
	4.2 Task Generator
	4.3 Task Model Optimization
	4.4 Code Generator

	5 Case Study
	5.1 CCAS Presentation
	5.2 CCAS Initial Task Model
	5.3 CCAS Optimized Task Model
	5.4 Code Generation
	5.5 Performance Evaluation

	6 Conclusion
	References

	Testing Web Services with Model-Based Mutation
	1 Introduction
	2 Background
	2.1 Uppaal Timed Automata (UTA)
	2.2 Online Model-Based Testing
	2.3 Specification Mutation Analysis

	3 Method
	3.1 Design and Conformance Testing
	3.2 Mutation Generation
	3.3 Selecting Valid Mutants
	3.4 Detecting and Removing Equivalent Mutants
	3.5 Mutation Testing
	3.6 Result Analysis
	3.7 Tool Support

	4 Experiment
	4.1 Case Study
	4.2 Model
	4.3 Generating Valid Mutants
	4.4 Detecting and Removing Equivalent Mutants
	4.5 Mutation Testing
	4.6 Results Analysis

	5 Analysis of Experimental Results
	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusions and Future Work
	References

	Software Product Line Test Suite Reduction with Constraint Optimization
	1 Introduction
	1.1 Context
	1.2 Existing Results
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Feature-Based Test Suite Reduction
	2.2 Global Constraints

	3 Feature-Based Test Suite Reduction Through Global Constraints
	3.1 Constraint Optimization Models for FTSR
	3.2 Search Heuristics
	3.3 A FTSR-Dedicated Heuristic

	4 Implementation and Results
	4.1 Comparison of the Various CP Models
	4.2 Comparison of the Reduction Rate
	4.3 Evaluation of FLOWER/C Against Other Approaches
	4.4 Evaluation on Set-Covering Instances

	5 Application in an Industrial Setting
	6 Related Work
	7 Conclusion
	References

	A Survey on Testing Distributed and Heterogeneous Systems: The State of the Practice
	1 Introduction
	2 Background
	2.1 Test Levels
	2.2 Test Harness
	2.3 Testing Methods
	2.4 Test Automation

	3 Research Method and Scope
	3.1 Goal
	3.2 Survey Distribution and Sampling
	3.3 Survey Organization

	4 Results
	4.1 Participants Characterization
	4.2 Company Characterization
	4.3 Distributed and Heterogeneous Systems Testing
	4.4 Multivariate Analysis

	5 Discussion
	5.1 Relevance of Respondents
	5.2 RQ1: How Relevant Are DHS in the Software Testing Practice?
	5.3 RQ2: What Are the Most Important Features to Be Tested in DHS?
	5.4 RQ3: What Is the Current Status of Test Automation and Tool Sourcing for Testing DHS?
	5.5 RQ4: What Are the Most Desired Features in Test Automation Solutions for DHS?

	6 Case Based Analysis of Test Automation Obstacles
	6.1 Case A
	6.2 Case B
	6.3 Case C
	6.4 Synthesis

	7 Related Work
	8 Conclusions
	References

	Model-Based Recovery and Adaptation Connectors: Design and Experimentation
	Abstract
	1 Introduction
	2 Key Concepts
	3 Recovery and Adaptation Connectors
	3.1 Design of RAC
	3.2 Service Request Manager
	3.3 Service Response Manager
	3.4 Connector Control State Machine
	3.5 Service Request Coordinator STM

	4 Handling Adaptation and Recovery of Stateful Services
	5 Recovery and Adaptation Patterns
	5.1 Asynchronous Message Communication with Callback
	5.2 Service Registration
	5.3 Broker Handle
	5.4 Service-Oriented Architectures

	6 Validation
	6.1 Service Failure Scenario
	6.2 Service Adaptation Scenario
	6.3 Coordinator Recovery Scenario
	6.4 Coordinator Adaptation Scenario

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

	Supporting Visual Data Exploration via Interactive Constraints
	Abstract
	1 Introduction
	2 Related Work
	3 Applying and Manipulating Constraints
	3.1 Interface Components
	3.2 Constraint Specification Example

	4 Application Examples
	4.1 Flow Map
	4.2 Plot of Sales Data
	4.3 Scatterplot of Patient Data

	5 Conclusions
	References

	I-Codesign: A Codesign Methodology for Reconfigurable Embedded Systems
	1 Introduction
	2 State of the Art
	3 Formalization
	3.1 System Model
	3.2 Problem Statement

	4 I-Codesign Methodology
	4.1 HW/SW Partitioning
	4.2 Multiprocessor Scheduling with Precedence Constraint
	4.3 Controller Generation

	5 Case Study
	5.1 Functional Partitioning
	5.2 Hierarchical Partitioning
	5.3 Kernighan-Lin Optimization
	5.4 Scheduling Simulation Results
	5.5 Controller Generation
	5.6 Evaluation

	6 Simulations
	6.1 Simulation Methodology
	6.2 Simulation Results

	7 Conclusion
	References

	CRMPSoC: New Solution for Feasible Reconfigurable MPSoC
	1 Introduction
	2 Background
	2.1 MPSoC and NoC Characteristics
	2.2 Reconfigurable MPSoC
	2.3 Low-Power Solutions on MPSoC
	2.4 Real-Time Scheduling

	3 Reconfigurable MPSoC RMPSoC
	3.1 Formalization of RMPSoC
	3.2 Case Study: Stratix III FPGA

	4 New Middleware for the Feasible Reconfigurable MPSoC
	4.1 OS Feasibility
	4.2 NoC Feasibility

	5 Experimentation
	5.1 Localization of the Middleware
	5.2 Implementation of the Communication Protocol
	5.3 Simulations

	6 Conclusion
	References

	Software Paradigm Trends
	Bidirectional Model Transformations Using a Handcrafted Triple Graph Transformation System
	1 Introduction
	2 Background
	2.1 Model Transformations
	2.2 Graph Transformations
	2.3 Triple Graph Transformation System

	3 Round-Trip Engineering of UML Class Models and Java Source Code
	3.1 Approach
	3.2 The Xtend Programming Language

	4 The TGTS for Bidirectional Incremental Transformations
	4.1 Metamodels
	4.2 Round-Trip Example
	4.3 The Transformation System

	5 Lessons Learned
	5.1 Implementation Effort
	5.2 Redundancy of the Rule Set
	5.3 Cognitive Complexity
	5.4 Level of Abstraction

	6 Related Work
	7 Conclusion and Future Work
	References

	Domain-Specific Modelling Using Mobile Devices
	1 Introduction
	2 Scenarios for Mobile Modelling
	2.1 Multi-device Modelling
	2.2 Mobile Collaborative Modelling
	2.3 Context-Based Modelling
	2.4 Requirements for Mobile Domain-Specific Modelling

	3 Architecture
	4 Tool Support
	4.1 The Desktop Client
	4.2 The Server
	4.3 The iOS Client

	5 Related Work
	6 Conclusions
	References

	Applying MDA to Rule and Data Generation for Compliance Checking
	1 Introduction
	2 Our Solution Approach
	2.1 Knowledge Representation
	2.2 Fact-Oriented Modeling
	2.3 MDA

	3 MDA Applied to Rule and Data Generation for Compliance Checking
	3.1 MDA for Rule Base Generation
	3.2 MDA for Enterprise Data Extraction

	4 Method for Using the MDA for Rule and Data Generation
	4.1 Rule Base Generation Using SBVR
	4.2 Extraction of Enterprise Data

	5 Illustrative Case Study
	6 Related Work
	7 Conclusion and Future Work
	References

	Software System Theory of the Forbidden Within Discrete Design
	Abstract
	1 Introduction
	1.1 Models of the Possible are not a Theory
	1.2 Forbidden Domains are Essential for a Software Theory
	1.3 Related Work
	1.4 Organization of the Paper

	2 Sources of Forbidden Domains: Physical Metaphors
	2.1 The 1st Physical Metaphor: Standing Waves in a Slinky
	2.2 The 2nd Physical Metaphor: Wave-Functions of a Particle in a Box
	2.3 Common Features of Both Physical Metaphors

	3 A General Software Theory of the Forbidden
	3.1 Basic Axioms
	3.2 Algebraic Structures and Forbidden Software Compositions

	4 Generic Design Algorithm with Forbidden Regions
	5 Case Study: Boundaries of the Forbidden
	5.1 The Command Design Pattern – Its Class Diagram
	5.2 Boundaries by the Modularity Matrix
	5.3 Eigenvectors Delimit the Forbidden Regions
	5.4 Redesign to Eliminate Forbidden Outliers
	5.5 Hierarchical Sub-spaces of the Command Design Pattern

	6 Discussion
	6.1 The Theoretical Importance of Forbidden Regions
	6.2 Formalization of the Design of Artificial Systems
	6.3 Why Eigenvectors?
	6.4 Search Efficiency Issues
	6.5 Main Contribution

	References

	Enabling Legacy Applications for Multi-tenancy Without Reengineering
	Abstract
	1 Introduction
	2 Related Work
	3 Aspect-Oriented Programming in AspectJ
	4 Adding Multi-tenancy to Existing Applications
	4.1 Tomcat and Oracle Basics
	4.2 Tenant and User Management
	4.3 Initial DB Setup for Multi-tenancy
	4.4 Tenant Administration Service
	4.5 Data Isolation
	4.6 Customization
	4.7 Monitoring
	4.8 Configuration

	5 Other Types of Database Servers and Isolation Strategies
	5.1 Separate Databases
	5.2 Separate Schemas
	5.3 Shared Schemas

	6 Evaluation
	6.1 Modularity and Adaptability
	6.2 Implementation Effort
	6.3 Lessons Learned
	6.4 Advantages

	7 Conclusions
	References

	An Incremental Approach to Testing AOP
	1 Introduction
	2 The Problem
	3 Incremental Testing
	3.1 Method-Test Approach
	3.2 Concern-Test Approach
	3.3 Module-Test Approach
	3.4 Advice-Test Approach
	3.5 The Process

	4 Compilation Order
	5 Implementation
	5.1 DrUID
	5.2 Aida
	5.3 Current Issues

	6 Validation
	7 Related Work
	8 Future Work and Conclusions
	References

	Facilitating Reuse of Control Software Through Context Modelling Based on the Six-Variable Model
	1 Introduction
	2 Fundamentals
	3 Our Six-Variable Model
	4 Our Context Modelling Method
	4.1 Used Techniques
	4.2 Method Steps
	4.3 Benefit

	5 Related Work
	6 Conclusion and Future Work
	References

	Correction to: CRMPSoC: New Solution for Feasible Reconfigurable MPSoC
	Correction to: Chapter “CRMPSoC: New Solution for Feasible Reconfigurable MPSoC” in: E. Cabello et al. (Eds.): Software Technologies, CCIS 743, https://doi.org/10.1007/978-3-319-62569-0_9

	Author Index

