
Chapter 7
Literature-Based Discovery

Abstract Literature-Based Discovery (LBD) refers to a range of approaches that
take a body of scientific literature as the input, apply a series of computational,
manual, or a hybrid processes, and finally generate hypotheses that are potentially
novel and meaningful for further investigations. This chapter introduces the origin
of LBD, its major landmark studies, available tools, and resources. In particular, we
explain the design and application of PKD4J to illustrate the principles and analytic
decisions one typically needs to make. We highlight the recent developments in this
area and outline remaining challenges.

Swanson’s Pioneering Work

Swanson’s work on Raynaud disease/fish-oil discovery exemplified the problem of
mining undiscovered public knowledge from biomedical literature (Swanson
1986a). According to Swanson (1986a, b). LBD (a.k.a. UDPK) can be public, yet
undiscovered, if independently created fragments of knowledge and information are
logically related but never retrieved, interpreted, and studied together. In other
words, when considered together, two complementary and non-interactive literature
sets of articles (independently created fragments of knowledge) can reveal useful
information of scientific interest not apparent in either of the two sets alone
(Swanson 1986a, b).

Swanson formalizes the procedure to discover UPK from biomedical literatures
as follows: Consider two separate literature sets, CL and AL, where the documents
in CL discuss concept C and documents in AL discuss concept A. Both of these two
literature sets discuss their relationship with some intermediate concepts B (also
called bridge concepts). However, their possible connection via the concepts B is
not discussed together in any of these two literature sets as shown in Fig. 7.1.

Swanson’s UPK (or ABC) model can be described as the process to induce “A
implies C”, which is derived from both “A implies B” and “B implies C”; the
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derived knowledge or relationship “A implies C” is not conclusive but hypothetical.
For example, Swanson tried to uncover novel suggestions for what (B) causes
Raynaud disease (C) or what (B) are the symptoms of the disease, and what
(A) might treat the disease as shown in Fig. 7.1. Through analyzing the document
set that discusses Raynaud disease he found that Raynaud disease (C) is a peripheral
circulatory disorder aggravated by high platelet aggregation (B), high blood vis-
cosity (B) and vasoconstriction (B). Then he searched these three concepts
(B) against MEDLINE to collect a document set relevant to them. With the analysis
on the document set he found out those articles show the ingestion of fish oils
(A) can reduce these phenomena (B); however, no single article from both docu-
ment sets mentions Raynaud disease (C) and fish oils (A) together. Putting these
two separate literatures together, Swanson hypothesized that fish oils (A) may be
beneficial to people suffering from Raynaud disease (C). This hypothesis that
Raynaud disease might be treated by fish oil was hidden in the biomedical literature
until Swanson uncovered through literature-based discovery. This novel hypothesis
was later clinically confirmed by DiGiacomo et al. (1989). Later on, Swanson used
the same approach to uncover 11 connections of migraine and magnesium
(Swanson 1988).

One of the drawbacks of Swanson’s method is that the method requires large
amount of manual intervention and very strong domain knowledge, especially in
the process of qualifying the intermediate concepts that Swanson names the “B”
concepts. In order to reduce dependence on domain knowledge and human inter-
vention and to automate the whole process as much as possible, several approaches
have been developed to automate this discovery process based on Swanson’s
method (Lindsay and Gordon 1999; Pratt and Yetisgen-Yildiz 2003; Srinivasan
2004; Weeber et al. 2003). They have not only successfully replicated the Raynaud

Fig. 7.1 Swanson’s UPK model—the connection of fish oils and Raynaud disease
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disease-fish-oil and migraine-magnesium discoveries, but also discovered new
treatments for other diseases such as thalidomide (Weeber et al. 2003).

These research works have produced valuable insights into new hypothesis. On
the other hand, substantial manual intervention is required to reduce the number of
possible connections. We describe a fully automated approach for mining undis-
covered public knowledge from biomedical literature. Our approach replaces ad hoc
manual pruning with semantic knowledge from biomedical ontologies. We use
semantic information to manage and filter the sizable branching factor in the
potential connections among a huge number of medical concepts.

To efficiently find novel hypotheses efficiently and effectively from a huge
search space of possible connections among the biomedical concepts, we need to
first solve the problem of ambiguous biomedical terms. We utilize biomedical
ontologies, namely UMLS and MeSH for this purpose. Our method requires
minimal human intervention. Unlike other approaches (Hristovski et al. 2001; Pratt
and Yetisgen-Yildiz 2003; Srinivasan 2004), our method only requires the user to
specify the possible semantic relationships between the starting concept and the
to-be-discovered target concepts rather than possible semantic types of the target
concepts and the bridge concepts. Our method utilizes semantic knowledge (e.g.,
semantic types, semantic relations and semantic hierarchy) on bridge concepts and
the target concepts to filter out irrelevant concepts and meaningless connections
between concepts. Since there could be many plausible relationships between the
bridge concepts and the target concepts, our method uses semantic relations to filter
those relationships to identify desirable ones.

Major Trends of LBD

Swanson’s pioneering work provides the framework on which almost all subse-
quent research in LBD is based (Cameron et al. 2013, Cohen et al. 2010, Malhotra
et al. 2013, Spangler et al. 2014). The initial approach proposed by Swanson
requires a laborious, time-intensive, manual process. The follow-up studies
attempted to overcome these challenges by developing processes to make LBD
easier and faster to perform and more automatic overall. Those studies proposed
different techniques for concept extraction, computation of results, and sizes and
types of input data. In LBD, human experts continue to play a significant role. New
systems essentially follow Swanson’s ABC model of discovery.

A recent trend in LBD is that more works has focused specifically on, and
provided advancements in, automation of the LBD process. Using more advanced
Natural Language Processing (NLP) techniques while at the same time exploiting
metadata (e.g., from UMLS) has led to a reduction in the role of human experts
(Wilkowski et al. 2011). Another trend is to use more advanced methods to capture
important correlations between concepts. Hristovski et al. (2001) and Pratt and
Yetisgen-Yildiz (2003) used an unsupervised machine learning algorithm (associ-
ation rule mining) along with support and confidence metrics. In contrast,
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Wren et al. (2004) used statistical techniques to distinguish significant correlations.
A related trend is the application of visualization. van der Eijk et al. (2004) differs
from other work by giving a visual output directly to the user without the inter-
mediate steps requiring human expert guidance. Overall, reducing reliance on
human experts by increasing the degree of automation is an important recent trend
in LBD research. The development of web-based visualization such as D3.js1 and
Brat2 makes visualization of LBD scalable and accessible via web. The example of
visualization with a PubMed sentence by Brat is shown in Fig. 7.2.

LBD Systems

We outline the design and functionality of three examples of LBD systems, namely
the ArrowSmith developed in late 1990s, the BITOLA systems in mid 2000s, and
the more recent Hypothesis Generator in 2015.

ArrowSmith

ArrowSmith is the very first LBD tool introduced by Swanson and Smalheiser
(1997), which is publicly avaliable.3 ArrowSmith provides a two-mode discovery
method. The simple PubMed search function is available for the users to input two
PubMed queries in order to define the two sets of articles A and C (Fig. 7.3).

To retrieve MEDLINE records corresponding to user queries in a fast mode, a
local MEDLINE database was created. When a query is entered, the article ID
numbers are downloaded from PubMed and the full MEDLINE records are
retrieved from the local database, including a tokenized result of each article title
after stopwords were removed. If articles are not found in the local database, then
they are downloaded from PubMed as XML files, processed and stored in the local
database. B-terms and their feature values are computed in a parallel mode by
processing the sets of tokenized titles in chunks, and merging the results later on
when each process is done. B-term features were pre-computed and stored in the
term database for fast look-up.

Fig. 7.2 An example of Brat visualization of entity and relation

1https://d3js.org/.
2http://brat.nlplab.org/features.html.
3http://arrowsmith.psych.uic.edu.
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For instance, if we choose “Raynaud’s disease” as the A-literature term and
“Fish Oil” as the C-literature term, ArrowSmith returns the list of B terms after
couple of minutes’ execution time. With “Raynaud’s disease” and “Fish oil” as A
and C, ArrowSmith generates a total of 7093 B-terms that do not appear in both A
and C literature (six articles that appeared in both A and C were excluded in the
resulting b-term list). The list of B-terms is shown in the inner box of Fig. 7.4,
which is sorted in order of predicted relevance score of a B-term that indicates a
biological significance between the AB and BC literatures.

We can filter out the resulting B-term list by semantic types provided in UMLS.
For instance, if we want to restrict the B-terms to the two semantic types, Activities
& Behaviors and Anatomy, you can simply select the check box next to those two
types once you click on “Restrict by semantic categories” button. It will result in the
730 B-terms that passed the filtering criteria (Fig. 7.5). Before clicking the button,
you may want to scroll down the list to see if there are any non-highlighted B-terms
that you want to keep. Use Ctrl to select additional B-terms.

Fig. 7.3 The homepage of ArrowSmith
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BITOLA

BITOLA is an web-based LBD system that has been around for about a decade
(Hristovski et al. 2003), which is publicly available at.4 The purpose of BITOLA is
to help the biomedical researchers make new discoveries by discovering potentially
new relations between biomedical concepts. The set of concepts contains MeSH
and human genes from HUGO. BITOLA provides two discovery options: closed
and open.

Open discovery allows the input of a single concept, then categories for
first-order relatives of that concept, then categories for relatives of those first order
concepts. Discovery algorithm for discovering new relations between medical
concepts consists of the following five steps (Hristovski et al. 2001):

Fig. 7.4 The resulting B-term list for “Raynaud disease” and “Fish oil”

4http://arnika.mf.uni-lj.si/pls/bitola2/bitola.
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1. Given a starting concept of interest X
2. Find all concepts Y such that there is an association rule X ! Y
3. Find all concepts Y such that there is an association rule Y ! Z
4. Eliminate those Z for which an association X ! Z already exists
5. The remaining concepts Z are candidates for an new relation between X and Z.

Because in MEDLINE each concept can be associated with many other con-
cepts, the possible number of X ! Z combinations can be extremely large. In order
to deal this combinatorial problem, BITOLA applies filtering (limiting) and
ordering functions to the discovery algorithm. The related concepts can be limited
by the semantic type to which they belong and final possibility for limiting the
number of related concepts or false related concepts is by setting thresholds on the
support and confidence measures of the association rules. The main goal of the
ordering is to present best candidates first to make human review as easy as possible
(Hristovski et al. 2001).

For example, if Magnesium is the interest of search, type Magnesium and click
on Find Starting Concept X in the BITOLA system, which will return a list of terms
relevant to the query. As shown in Fig. 7.6, the query found 13 terms.

From the generated list, choose the very top one Magnesium, and BITOLA will
fill in CUI (C0024467), the semantic type, and the chromosomal location auto-
matically (if exists). Click on the button Find Related Zs, BITOLA will generate the

Fig. 7.5 Filtered B-terms
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results, containing concept name, semantic type, frequency, confidence level, dis-
covery, and chromosomal location (see Fig. 7.7).

Once a list of related concepts Zs is displayed, click the button Find Intermediate
Ys, which will generate a list of substance terms that have been linked to
Magnesium in some articles. See Fig. 7.8.

From this list of related concepts Ys, selecting the term Potassium with the
semantic type of Pharmacologic Substance and clicking on the button Display
Medline docs (X and Y) will display the two articles in PubMed about both
Magnesium (X) and Potassium (Y). The user can explore other links, or re-run the
query with other categories, so as to explore domains and chemicals that are linked
to both Magnesium and Potassium.

In addition to the Closed Discovery option of BITOLA, the Open Discovery
option of BITOLA allows the users to expand their inquiry into one node basis
discovery. The Open Discovery option works quite similarly as the Closed
Discovery one. The only difference is the structure. With closed discovery the user
nominates X and Z then search for Y (limiting categories, if desired). With open

Fig. 7.6 The search results for the query magnesium
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discovery, the user nominates X, then search for Y (limiting categories, if desired),
then search for Z (limiting categories, if desired).

Hypothesis Generator

Hypothesis Generator is a recently developed LBD system that is based on PKDE4J
(Song et al. 2015) for entity and relation extraction (Baek et al. 2017). Hypothesis
Generator was originally developed to examine how lactosylceramide is associated
with arterial stiffness. However, due to the flexibility of the system, hypothesis
generator can serve as the general LBD system.

A brief instruction for hypothesis generator is as follows. First, the user types in
one or more search terms, for example, “Raynaud disease” (Fig. 7.9).

The search function is backed by the Apache Lucene information retrieval
system. Hypothesis generator indexed the 2015 version of MEDLINE records with

Fig. 7.7 The results of the related concepts Z to “Magnesium”
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Lucene. The search term is highlighted in either the title or the abstract field (see
Fig. 7.10).

PubMed ID for each result will be shown on the left and a direct link to the
article is given on the right. The user can choose the number of PubMed records to
be included for generating the paths.

On the search result page, the user can choose the number of PubMed records to
extract entities from. This step is necessary since the current version of hypothesis
generator extracts entities on the fly. In the future, extraction of entities will be done
offline and stored in the database. If that is in place, this step will be eliminated.
Once the number of records is chosen, you can click on the “generate paths” button,
which will result in the follow result (Fig. 7.11).

The left panel shows the list of extracted entities and you can pick any two
entities that you are interested into see the relation between two. Type in the entities
that you want to conduct path analysis from the list of entity names. The left will be

Fig. 7.8 The list of related concepts Y to the target term “Magnesium”

Fig. 7.9 The search homepage of the hypothesis generator
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the ‘A-term’ and the right will be the ‘C-term’ of your path. The user can choose the
number of path you want to analysis as shown. For instance, if “Raynaud
Phenomenon” is chosen as the A-term and “Patients” as the C-term, then the ‘Path
Analysis’ will generate the results as shown in Fig. 7.12.

Fig. 7.10 The search result page for the query “Raynaud disease”

Fig. 7.11 The results of extracted entities (left) and the path analysis start page (right)

Fig. 7.12 The path analysis result
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For “Raynaud Phenomenon” and “Patients” as A and C, respectively, the system
returns four paths. The relation type between the entities is shown in the paren-
thesis. Importance of each path is determined by the overall semantic relatedness
score. The overall relatedness score is computed by the average of a Phenomenon
and Scleroderma. Pair 2 is Scleroderma and Systemic Scleroderma. Pair 3 is
Systemic Scleroderma and Antibodies. Pair 4 is Antibodies and Patients. The
relation type between Systemic Scleroderma and Antibodies is CAUSES. The
relation type between Scleroderma and Systemic Scleroderma is IS-A. The relation
type between Systemic Scleroderma and Antibodies is TREATS. The relation type
between Antibodies and Patients is LOCATION_OF.

PKD4J: A Scalable and Flexible Engine

PKDE4J stands for Public Knowledge Discovery Engine for Java, is a scalable,
flexible text mining system for public knowledge discovery (Song et al. 2015). The
main task of PKDE4J is to extract entities and their relations from the unstructured
text. PKDE4J extends Stanford CoreNLP written in Java (Manning et al. 2014).
PKDE4J addresses the information overload problem that modern text mining
systems promise to solve by automating the process of understanding the relevant
parts of the scientific literature. Key tasks pertinent to the information overloading
problem include increasing the efficiency of searching for information, facilitating
the creation of large-scale models of the relationships of biomedical entities, and
allowing for automated inference of new information as well as hypothesis gen-
eration to guide biomedical research.

Design Principle

The primary design principle is to make PKDE4J as scalable and flexible as pos-
sible. Song et al. (2015) used the pipeline architecture for developing
PKDE4J. Unlike other text mining systems for LBD, PKDE4J is a configuration
based system so that various different combinations of text processing components
are readily enabled for different tasks. For example, for the problem of drug-disease
interaction, we can use SIDER (http://sideeffects.embl.de/) for drug dictionary and
KEGG (http://www.genome.jp/kegg/disease/) for disease dictionary. Another layer
of flexibility is that entities can be extracted either by exact or approximate match.
On top of the exact matching based entity extraction, bio entity can be extracted
either by approximate matching-based, supervised-learning only, or a mixture of
supervised-learning and dictionary. PKDE4J overcomes the problems of the
dictionary-based approach by applying regular expression rules and N-gram to
extract entities. Second, PKDE4J is a flexible extraction system that can be applied
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to different extraction tasks such as multi-class entity extraction, Protein-Protein
Interaction (PPI), trigger extraction, etc.

Most of the current approaches are focused heavily on a specific application to
solve a specific kind of problem. PKDE4J is designed to address the aforemen-
tioned issue by developing an extensible rule engine based on dependency parsing
for relation extraction. It provides a rule configuration file that contains 17 rules to
identify whether relation exists in a sentence and determine its relation type. Since a
relation extraction task requires an unique set of extraction rules, one single opti-
mized prediction model is only effective in a certain condition. For instance, a
different model is required for the task of whether a sentence contains relation or not
from the task of event extraction. In such scenario, supervised learning may not be
the best option since for each task, a different classification model needs to be built.
Thus, a flexible, plug-and-play module for a rule engine is the best option for
different extraction tasks in an efficient manner.

Architecture

PKDE4J consists of four major components. The overall architecture of PKDE4J
illustrates the connections between these components (Fig. 7.13).

The first component is preprocessing of input text. PKDE4J supports a verity of
text formats, which includes PubMed in XML, PubMed Central in XML,
ClincalTrials.gov in XML, and text data in CSV. The second component is entity
extraction, including dictionary-based, supervised learning-based, a combination of
dictionary with ontology like UMLS, and a combination of supervised
learning-based with UMLS. The third component is relation extraction, which is
based on a dependency tree-based rules. The fourth component is the storage and
retrieval of the results from the entity and relation extraction components. The
results are stored in a relational database in the format that can be used for
visualization.

Fig. 7.13 The overall architecture of PKDE4J. Source Song et al. (2015)
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Preprocessing

The preprocessing component covers various text processing tasks. The first one is
tokenization. PKDE4J uses the Penn Treebank 3 (PTB) tokenization implemented
in Stanford CoreNLP. PTBTokenizer is based on JFlex for an efficient, fast, and
deterministic tokenization.

The second preprocessing task is sentence boundary detection. PKDE4J uses a
Maximum Entropy model trained with the GENIA corpus for sentence splitting.

The third task is Part-Of-Speech (POS) tagging. PKDE4J uses the Stanford POS
tagging algorithm for this task. The Stanford POS tagging algorithm is based on a
flexible statistical CRF model.

The fourth task is lemmatization aided by Stanford CoreNLP. The fifth task is
normalization of tokens. Token normalization is required since text contains various
non-alphanumeric characters which may hinder the quality of entity extraction. The
sixth task is n-gram matching. PKDE4J adopts the Apache Lucene ShingleWrapper
algorithm, which constructs n-gram tokens from a token stream. The seventh task is
approximate string matching. Approximate string matching may be needed when
input text contains many spelling variations for the same entity name. PKDE4J
extends the Soft-TFIDF algorithm that is a hybrid similarity measure introduced by
Cohen et al. (2003).

Entity Extraction

Figure 7.14 shows the overall architecture of entity extraction component that
consists of several steps. Step 1 is to load dictionaries. Dictionary loading is
required when you choose the dictionary-based approach for entity extraction over
other approaches. Depending on the target entities to be extracted, a list of

Fig. 7.14 Entity extraction component. An extended version of Song et al. (2015)
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dictionaries are determined. Step 2 is preprocessing, which was described in the
preprocessing component. Step 3 is entity annotation where the entity matching
takes place between tokenized n-grams and dictionary entries. In entity annotation,
there are four different options: (1) dictionary only, (2) a combination of dictionary
with ontology, (3) supervised learning only, and (4) a combination of supervised
learning with ontology. Step 4 is post-matching. For further improvement of
extraction quality, PKDE4J uses the regular expressions to match the entities that
are not found by dictionary. The regular expression rules define cascaded patterns
over token sequences, which provides a flexible extension of the traditional regular
expression language defined over strings.

Relation Extraction

The relation extraction component relies heavily on a set of dependency parsing
based rules. Dependency parse trees provide a useful structure for the sentences by
annotating edges with dependency types, e.g. subject, auxiliary, modifier.
Dependency parse trees embed various information of dependencies within sen-
tences, i.e. between words that are far apart in a sentence. The relation extraction
module consists largely of three steps (See Fig. 7.15).

Step 1 is loading couple of dictionaries that contain biologically meaning verbs
such as up-regulate, down-regulate, simptomize, etc. and nominalized terms like
expression. Biologically meaningful verbs are classified into several categories and
each category may have a few types (Table 7.1). The relation extraction component
detects biologically meaningful verbs from sentences and map them to either cat-
egories or types, depending on the configuration setting.

Fig. 7.15 Relation extraction component. Source Song et al. (2015)
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Step 3 applies a set of relation rules to parsed dependency trees. After prepro-
cessing, PKDE4J traverses the resulting dependency tree in postorder to find the
relation triplets by using predefined set of relation rules for a dependency tree. In
PKDE4J, each rule is called a strategy, which echoes the strategy design pattern
adopted from Object-oriented system development. A strategy design pattern is
particularly useful for creating objects which represent various strategies and a
context object whose behavior varies as per its strategy object. In PKDE4J, a
strategy represents a dependency tree-based relation rule. By applying a predefined
set of strategies to each sentence, PKDE4J applies 17 predefined rules to the
sentence, which generates a set of relation features such as relation type, tense, and
negation for any given two entities located in the sentence (See Table 7.2).

Storing the Results of Extraction

At the last stage of pipeline, PKDE4J generates two major outputs. The first output
is the extracted entities and the second output is the extracted relations. These
outputs are stored in the relational database for further analysis. Table 7.3 shows
the example of extracted entities. The example is a simplified version of output that
only show PMID, entity name, entity type, and sentence where the entity is located

Table 7.1 Classification of the biologically meaningful verb list

Category Type Verb example

Positive Increase Activate, promote, stimulate

Transmit Transport, link

Substitute Replace

Negative Decrease Inactivate, inhibit, block, arrest

Remove Breakbond, release, omit

Neutral Contain Embed, include, constitute

Modify Reconstitute, mutate, oxidize

Method Bleach, precipitate, coprecipitate

Report Prove, suggest, compare

Plain Plain Acquire, underlie, fix

Table 7.2 A list of strategies that characterize relation between two entities

① Verb in dependency path
② No verb in dependency path
③ Detect nominalization
④ Weak nominalization
⑤ Negation
⑥ Tense (active/passive)
⑦ Contain clause
⑧ Clause distance
⑨ Negation clause

⑩ Number entities between entities
⑪ Entities in between
⑫ Surface distance
⑬ Entity counts
⑭ Same head
⑮ Entity order
⑯ Full tree path
⑰ Path length
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in. In addition to those four attributes, there are other attributes available such as
beginning and ending position of entity as the results of entity extraction.

The second output is the relation extraction result shown in Table 7.4. The
output consists of PMID, relation type, left entity name, left entity type, right entity
name, right entity type, verb, voice, negation, and sentence where two entities are
located in.

Table 7.3 Example of output of extracted entities

PMID Entity Type Sentence

28482223 Phentolamine DRUG Phentolamine is one of the most representative
nonselective aadrenoreceptor blocking agents,
which have been proved to be owned various
pharmacological actions

28482223 protein FOOD With the aid of multiple biophysical techniques, this
scenario was to detailed explore the potential
biorecognition between phentolamine and the
hemeprotein in the cytosol of erythrocytes, and the
influences of dynamic characters of protein during
the bioreaction

28482223 protein FOOD Biorecognition can induce fairly structural
transformation (selfregulation) of protein
conformation

Table 7.4 Example of output of extracted relations

Field Value 1 Value 2

PMID 8447197 27983686

Relation
Type

PLAIN RESULT_OF

Entity 1 Alcohol Dairy

Entity 1
Type

FOOD FOOD

Entity 2 Alcoholic Drink

Entity 2
Type

FOOD FOOD

Verb Play Containing

Tense ACTIVE ACTIVE

Negation POSITIVE POSITIVE

Sentence Many variables, aside from the amount
and duration of alcohol consumption,
play a role in the development and
progression of alcoholic liver disease
(ALD)

In a placebo controlled, randomized,
crossover study, 35 healthy males
received either six placebo gelatin
capsules consumed with 200 mL of
water, six capsules with 800 mg
polyphenols derived from red wine
and grape extracts, or the same dose of
polyphenols incorporated into 200 mL
of either pasteurized dairy drink, soy
drink (both containing 3.4% proteins)
or fruit flavored protein free drink
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Recent Developments and Remaining Challenges

Recently, LBD research has paid attention to deep learning as an effort to improve
the quality of discovery. Rather et al. (2017) applied a word embedding technique
called Word2Vec to the LBD problem. They used the MRDEF subset of UMLS
Metathesaurus to train the Word2Vec model and reported a 23% overlap between
their approach and MRREL. Deep learning has also been applied to the task of
phenotyping (Che et al. 2015) used to identify patient subgroups based on indi-
vidual clinical markers. Žitnik et al. (2013) conducted a study on non-negative
matrix factorization techniques for fusing various molecular data to uncover
disease-disease associations and show that available domain knowledge can help
reconstruct known and obtain novel associations. Despite the recent interests in
deep learning, it is still premature. More advanced studies of the applications of
deep learning to the LBD problems are needed to evaluate how deep learning can
advance LBD research.

There are several remaining challenges in LBD. The first challenge is how to
implement a comprehensive procedure to obtain manually labeled samples.
Although state-of-the-art machine learning methods have been utilized to automate
the process, current approaches still observe degraded performance in the face of
limited availability of labeled samples that are manually annotated by medical
experts. Another major challenge is the convergence of multi-disciplinary teams
that are pertinent to LBD. Although collaboration among researchers from various
different fields is prevalent in LBD, it is often observed that development is sep-
arated from evaluation and end-usage of the tool developed. The third challenge is
the standardization of evaluation. Evaluation in LBD is often ad hoc based and no
general guidelines are established for LBD researchers to follow. Although there is
a movement of standardization such as PubAnnotation,5 we still need to put much
effort into setting up the guidelines for LBD research.
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