
Chapter 6
Text Mining with Unstructured Text

Abstract This chapter introduces computational techniques that enable us to
extract concepts, relations, and other patterns from text documents, and from sci-
entific publications in particular. After targets of interest have been extracted and
annotated, text mining techniques can be applied to identify higher-order patterns
and trends that may not be obvious from individual documents. The basic concepts
and the general procedure for applying these tools to the study of scientific pub-
lications are explained with illustrative applications.

Natural Language Processing

The ultimate goal of Natural Language Processing (NLP) is to capture meaning
from an input of words (sentences, paragraphs, pages, etc.) in the form of a
structured output (which varies greatly depending on the application) so that further
analytics can be applied to the output of NLP.

There are a variety of approaches for NLP, which can be classified into three
approaches: symbolic, statistical, and hybrid. The symbolic approach to NLP is
based on human-developed rules and lexicons, which is based on a set of accepted
rules of speech within a given language that are materialized and recorded by
linguistic experts for computer systems to follow. The statistical approach is based
on observable and recurring examples of linguistic phenomena. Models based on
statistics recognize recurring themes by mathematical analysis of large text corpora.
The system can develop its own linguistic rules that it will use to analyze future
input and/or the generation of language output by identifying trends in large
samples of text. The hybrid approach is a combination of the symbolic and sta-
tistical approaches. This approach starts with generally accepted rules of language
and tailors them to specific applications from input derived from statistical
inference.

© Springer International Publishing AG 2017
C. Chen and M. Song, Representing Scientific Knowledge,
https://doi.org/10.1007/978-3-319-62543-0_6

223

Modeling and Analytic Tools

There are many open source as well as commercial NLP tools. In Table 6.1, we
only listed some of well-known, open source tools that are pertinent to the objec-
tives of this book.

Table 6.1 A list of well-known, open source NLP tools

Tool Description Platform

Stanford’s
CoreNLP

A pipeline framework of tools for processing English,
Chinese, and Spanish. Includes tools for tokenization
(splitting of text into words), part of speech tagging, grammar
parsing (identifying things like noun and verb phrases),
named entity recognition, sentiment analysis, and more.
There are several spin-off projects based on Stanford’s
CoreNLP
http://nlp.stanford.edu/software/corenlp.shtml

Java

GATE and
Apache UIMA

GATE combined with UIMA provides a placeholder for
building complex NLP workflows which need to integrate
several different processing steps. In these cases, a framework
like GATE or UIMA is a good option for standardizing and
abstracting much of the repetitive work that goes into
building a complex NLP application
https://gate.ac.uk/

Java

Natural
language toolkit

Similar to the Stanford CoreNLP, it includes capabilities for
tokenizing, parsing, and identifying named entities as well as
many more features
http://www.nltk.org/

Python

Apache Lucene
and Solr

While originally targeted at solving Information Retrieval
problems, Lucene and Solr contain a number of powerful
tools for working with text ranging from advanced string
manipulation utilities to powerful and flexible tokenization
libraries to blazing fast libraries for working with finite state
automatons
http://lucene.apache.org/

Java

Apache
OpenNLP

Using a different underlying approach than Stanford’s
CoreNLP, the OpenNLP project is an Apache-licensed suite
of tools to do tasks like tokenization, part of speech tagging,
parsing, and named entity recognition. While not necessarily
state of the art anymore in its approach, it remains a solid
choice that is easy to get up and running
http://opennlp.apache.org/

Java

ScalaNLP ScalaNLP is the umbrella project for several libraries,
including Breeze and Epic. Breeze is a set of libraries for
machine learning and numerical computing. Epic is a
high-performance statistical parser and structured prediction
library
http://www.scalanlp.org/

Scala

(continued)

224 6 Text Mining with Unstructured Text

http://nlp.stanford.edu/software/corenlp.shtml
https://gate.ac.uk/
http://www.nltk.org/
http://lucene.apache.org/
http://opennlp.apache.org/
http://www.scalanlp.org/

Information Extraction

Information extraction (IE) is a research topic to automatically extract target
information from unstructured text. IE is involved in two major tasks: entity
extraction and relation extraction. Extracting entities such as people, organizations,
locations, times, dates, prices, etc. from unstructured text. Entities are objects that
often the major nouns in texts. Extracting relations is associated with identifying the
relation between two entities. Example relation types are located in, employed by,
part of, and is associated with.

Extracting Entities from Text

Extracting entities is mainly studied in the field of Named Entity Extraction
(NEE) or Named Entity Recognition (NER). The NER problem is a tagging task,
similar to part-of speech (POS) tagging. Thus, if entity extraction is carried out by a
supervised learning approach, the task is typically uses sequence classifiers like

Table 6.1 (continued)

Tool Description Platform

Snowball Snowball is a string processing language designed for
creating stemming algorithms for use in Information Retrieval
in many different languages including English, French,
Spanish, Portuguese, Italian, Romanian, German, Dutch,
Swedish, Norwegian, and Danish
http://snowball.tartarus.org

Java
C

Deeplearning4j Deeplearning4j is designed to be used in a big scale setting in
business environments, rather than as a research tool. It is a
Java-based, industry-focused, commercially supported,
distributed deep-learning framework
https://deeplearning4j.org/

Java

Torch Torch is written in Lua, and used at NYU, Facebook AI lab
and Google DeepMind. It claims to provide a MATLAB-like
environment for machine learning algorithms. Lua is easily to
be integrated with C so within a few hours’ work, any C or
C ++ library can become a Lua library.” With Lua written in
pure ANSI C, it can be easily compiled for arbitrary targets
http://torch.ch/

Lua

TensorFlow TensorFlow is an open source library for numerical
computation using data flow graphs (which is all that a Neural
Network really is). Originally developed by the researchers
on the Google Brain Team within Google’s Machine
Intelligence research organization, the library has since been
open sourced and made available to the general public
https://www.tensorflow.org/

Python

Information Extraction 225

http://snowball.tartarus.org
https://deeplearning4j.org/
http://torch.ch/
https://www.tensorflow.org/

Hidden Markov Models (HMMs) or Conditional Random Fields (CRFs). In that
case, features used to train classifier usually include words, POS tags, word shapes,
orthographic features, gazetteers, etc.

With the huge amount of accessible biomedical literature nowadays, extracting
entities from the literature has been receiving more and attention. Entity extraction
from biomedical literature can be used to automatically extract useful biomedical
information, particularly those key concepts dealing with genes, proteins, diseases
and associations among them. The information extracted from biomedical literature
has notable potential to automate database construction in biomedicine, with
minimal human effort. Entity extraction can also be useful in other areas. Query
suggestion, for instance, is another important application area, where concepts can
be output as correction suggestions for misspelled queries. Entities are also widely
used for text categorization tasks. Most of text categorization techniques are based
on word and/or phrase analysis of the text. It has been shown that concept-based
text categorization can help improve the precision of clustering documents by topic.
Also entity extraction is important and useful in areas like automatic text sum-
marization, information retrieval, question answering, and so forth.

There are various approaches to handle the entity extraction problem. Most of
them are based on statistical features such as word counting, inverse document
frequency (IDF) as well as semantic features. Attempting to automatically extract
useful biomedical information from web accessible biomedical literature, particu-
larly the key concepts dealing with genes, proteins, drugs and diseases and asso-
ciations among these concepts, Fu et al. (2002) developed a system called VCGS
(Vocabulary Cluster Generating Systems) that automatically extracts and determi-
nes associations among tokens from biomedical literature. They used three local
databases to validate tokens extracted that are gene names or protein fragments.
Both statistical and semantic features were used for token extraction. They pro-
posed a clustering algorithm to identify specific groups of tokens, collectively
represented as centroids, which are different from each other in terms of their
separation as individual clusters. Similarly, Shehata et al. (2007) exploited the
semantic structure at both sentence and document level. Their model combined the
selected statistical features and the conceptual ontological graph representation that
they built. Majoros et al. (2003) proposed a method of improving the quality of
automatically extracted noun phrases by employing prior knowledge during the
hidden Markov model (HMM) training procedure for the part-of-speech tagger.
They modified the basic Markov model tagger with states corresponding to
part-of-speech tags and an alphabet of symbols corresponding to individual words.

External ontologies and thesauri are also widely used for concept extraction
tasks in biomedical domain. Rindflesch et al. (2000) developed a system that
extracts information about drugs and genes relevant to cancer from the biomedical
literature. Two external ontologies were used to build their system: the MEDLINE
database of biomedical citations and abstractions and the Unified Medical
Language System (UMLS), which provides syntactic and semantic information
about the terms identified in the biomedical abstracts. Zhou et al. (2006) introduced
an approximate dictionary lookup technique to capture significant words rather than

226 6 Text Mining with Unstructured Text

all words in a concept name. They also used UMLS as the dictionary to train the
significance score of each word to biological concepts containing that word. A set
of simple rules were applied to identify the boundary of a concept candidate and
their experimental results show that their approach can dramatically improve the
extraction recall while maintaining the precision.

Given unstructured text, the goal of a NER tool is to tag the sequence of words
denoting a target entity type. For instance, the below example show the results of
NER tagging. For the task of extracting four types of entities such as ORG, LOC,
PER, MISC, the below examples shows that a NER classifier tags the words or
phrases predicted to be an entity (Fig. 6.1).

Extracting Entities from Biomedical Literature

To demonstrate the process of entity extraction, we use our concept extraction
system, which is publicly available at http://informatics.yonsei.ac.kr/tsmm/
uncertainty_book/ConceptExtraction.zip.

First, we start with a parsing procedure using biomedical Named Entity
Recognition (NER) software to extract key entities from the input text. In particular,
we utilize Lingpipe’s NER API and a statistical model trained on the Genia corpus.
In addition, we use a biomedical domain ontology to map the extracted entities into
concepts. We choose the Unified Medical Language System (UMLS) installed on
our server as a MySQL database of biomedical concepts and relationships between
them. UMLS offers a semantic network that allows retrieving higher level semantic
types of a ‘is-a’ link nature. Since such semantic types are usually general enough
for humans to interpret, we will use them in the final stages of the algorithm to
extract meaningful concept descriptions from text documents.

The mapping is based on matching entities to corresponding concept strings used
as concept labels in the database. We only use exact string matching because most
named entity strings are defined exactly the same way as concept labels in the
database. Although this leads to a lower recall, the precision remains very high. The
number of concepts matched is usually sufficient for building a good graph rep-
resentation of a document.

Fig. 6.1 An example of entity extraction results for location, organization, and person

Information Extraction 227

http://informatics.yonsei.ac.kr/tsmm/uncertainty_book/ConceptExtraction.zip
http://informatics.yonsei.ac.kr/tsmm/uncertainty_book/ConceptExtraction.zip

After mapping the extracted entities, the next step is to build concept graphs.
Nodes in a graph represent concepts in a document. Edges represent their rela-
tionships. For each concept node, we search for additional related nodes so as to
enhance the concept extraction process later on. We query the UMLS database,
resultant concepts are added as new nodes to the graph unless they already exist, in
which case we add the relation only.

During this process, some concepts might occur repeatedly as commonly related
concepts. We keep track of the occurrence count and use it later on in a weighting
scheme. At this point, graphs include many concept nodes that may or may not be
related to one another. Within the same graph, the domain similarity of concepts
varies since a single graph may include more than one general idea from the text.
We then group similar concepts using the k-Medoids method to compact a group of
concepts into the most representative one for the final extraction phase.

k-Medoids is a variant of the popular k-Means clustering algorithm. The main
difference is that in k-Medoids, the center chosen for each cluster is one of the
existing data elements in the set as opposed to finding a mean value for each cluster.
We divide each graph into k clusters, where k is chosen so that it matches to either
the number of author-provided keyword labels or the number of the top labels
generated by the KEA package (http://www.nzdl.org/Kea).

Initially, concepts are added to the clusters randomly. In the following steps, the
algorithm tries to find a better medoid candidate for each cluster based on concept
weights. The weights are calculated for each concept based on (1) the average
distance to all other nodes in the cluster and (2) the concept occurrence count
mentioned earlier. The distance between two concepts is a compound value based
on their text similarity and the relationship between them. Next, the distance
between each node and the medoid of each cluster is calculated. If a node is closer
to another cluster other than the one it currently belongs to, it will be placed in the
new cluster. This process is repeated until all medoids in the graph are fixed. The
process is summarized as follows:

1. Apply NER to extract biomedical named entities
2. Map entities to UMLS concepts using string matching and add concept weights
3. Add related nodes (parents and synonyms)
4. Use k-Medoids to group the top k concepts and extract the medoids

• Node Distance is calculated based on text similarity and on relationships
• Concept occurrence frequency is also used in the medoid calculation score

Supposed the sample text from a text file called input.txt contains the following
sentences:

The occurrence of subsequent neoplasms has direct impact on the quantity and quality of
life in cancer survivors. We have expanded our analysis of these events in the Childhood
Cancer Survivor Study (CCSS) to better understand the occurrence of these events as the
survivor population ages.

228 6 Text Mining with Unstructured Text

http://www.nzdl.org/Kea

Use the following command to extract named entities from the text. In addition,
the graph object is generated in the concept extraction project directory for
visualization.

java -Xms64m -Xmx12550m -cp .:./bin:./lib/* ce.Main4.

The extracted named entities are listed as follows:

processing input.txt
named entitiy: subsequent neoplasms(subsequent neoplasms)
named entitiy: cancer survivors(cancer survivors)
named entitiy: Childhood Cancer Survivor Study(Childhood Cancer Survivor
Study)
adding related…
Concept: childhood cancer survivor study
named entitiy: CCSS(CCSS)
adding related…
Concept: ccss
named entitiy: survivor population(survivor population)
named entitiy: neoplasms(neoplasms).

Extracting Relations from Text

An important step to understand human natural language automatically is relation
extraction. If we can turn unstructured text into structured by annotating semantic
information in a programmatic way, knowledge buried in the sheer volume and
heterogeneity of data can be available to create new values for humanity. The
reliable, accurate relation extraction is not a trivial task.

Examples of relations are person-affiliation and organization-location. Existing
named entities recognizers (NER) (e.g., Bikel et al. 1999; Finkel et al. 2005) can
automatically label data with high accuracy. However, the computer needs to know
how to recognize a piece of text having a semantic property of interest in order to
make a correct annotation. Thus, extracting semantic relations between entities in
natural language text is an important step towards natural language understanding
applications.

A relation is defined in the form of a tuple t = (e1, e2, …, en) where the ei are
entities in a pre-defined relation r within document D. Most relation extraction
systems focus on extracting binary relations. Examples of binary relations include
located-in (CMU, Pittsburgh), father-of (Manuel Blum, Avrim Blum). It is also
possible to go to higher-order relations as well. For example, in the sentence “At
codons 12, the occurrence of point mutations from G to T were observed” exists a
4-ary biomedical relation. The biomedical relationship between a type of variation,

Information Extraction 229

its location, and the corresponding state change from an initial-state to an
altered-state can be extracted as point mutation(codon, 12, G, T).

Depending on the domain that relation extraction is applied to, the list of relation
types will be determined. For example, in relation extraction for the news articles,
the following would be an example of relation types (Table 6.2).

Another example of relation types is from the Automatic Content Extraction
(ACE) program held in 2003. The goal of the program is to develop technology to
automatically infer from human language data the entities being mentioned, the
relations among these entities that are directly expressed, and the events in which
these entities are involved. Data sources include audio and image data in addition to
pure text, and Arabic and Chinese in addition to English. One of the tasks offered
by ACE 2003 was relation extraction called the relation detection and characteri-
zation task (RDC). This task requires detection and characterization of relations
between (pairs of) entities. There are four general types of relations, some of which
are further sub-divided, yielding a total of 24 types/subtypes of relations:

ROLE: relates a person to an organization or a geopolitical entity
subtypes: member, owner, affiliate, client, citizen
PART: generalized containment
subtypes: subsidiary, physical part-of, set membership
AT: permanent and transient locations
subtypes: located, based-in, residence
SOCIAL: social relations among persons
subtypes: parent, sibling, spouse, grandparent, associate.

To discover the hidden knowledge from the unstructured text, NLP techniques
were adopted to reveal the relation extraction patterns, which splits the sentences
into word or presents syntactic structures (Zhou and He 2008; Bui et al. 2010). Bui
et al. (2010) extract the drug-mutation relation from PubMed abstract by applying a
rule-based approach. To extract the relation, they justify the two rules. The first rule
is <keyword, relation keyword> pattern which is mostly common in sentences. The
second rule is <relation, keyword1, keyword2> which calculates the distance and
number of occurrences in the phrase. Also, Koike et al. (2005) present an extraction
method from the biomedical text by using a shallow parser. NLP helps to assign
Gene Ontology ID to PubMed abstracts and then they use shallow parsing

Table 6.2 The sample relation types in the news domain

Relations Examples Types

Affiliations Personal
organizational
artifactual

Married to, mother of, spokesman
for, president of, owns, invented,
produces

PER ! PER
PER ! ORG (PER|
ORG) ! ART

Geospatial Proximity
directional

Near, on outskirts, southeast of LOC ! LOC
LOC ! LOC

Part-of Organizational
political

A unit of, parent of annexed,
acquired

ORG ! ORG
GPE ! GPE

230 6 Text Mining with Unstructured Text

approaches to break down and analyze the sentences. After parsing the sentences,
they extract ACTOR-OBJECT relation from the sentence structure. Huang et al.
(2006) propose a new approach, a hybrid method using shallow parsing and pattern
matching, to extract relation between two proteins from biomedical literature. They
use rule-based shallow parsing that defines heads of each chunk and processes
appositive and coordinative structures. The result indicates that pattern matching is
remarkably improved with shallow parsing.

Several researches adopted feature based approaches to extract the relation on
the biomedical text. To extract the relation on Protein-Protein Interaction (PPI),
Song et al. (2011) propose the relation extraction technique called PPISpotter which
is a combination of active learning and semi-supervised SVM techniques. They
extract features from MEDLINE records by using NLP techniques. Chowdhury
et al. (2011) extract the relation on drug—drug interaction (DDI). They employ the
feature-based method which uses different the feature selection technique compared
to Song et al.’s study (2011). Their features are word features, morpho-syntactic
features, trigger words, and negation. Using SVM classifier with selected features,
they evaluate their performance of DDI extraction.

Many researches employ different feature based approaches to Protein-Protein
interaction extraction including Song et al.’s study (2011). Lin et al. (2011) extract
the PPI relation by using a multiple kernels learning based approach which
ensembles the feature-based kernel, tree kernel and graph kernel. Furthermore, they
propose a lexical feature-based technique which considers not only bag of word
features but also n-gram features. Yang et al. (2010) propose a BioPPISVMExtractor
to extract PPI from the biomedical literature which is based on SVM classifier. They
select various features including word features, keyword features, protein names
distance feature and link path features. Also, Chen et al. (2011) propose PPIEor to
extract PPI pairs from the biological literature. They use SVM classifier to extract
features based on clause parsing output. Features they use include word feature,
distance feature and location feature.

There are a set of common steps that are involved in relation extraction in
biomedical literatures. Figure 6.2 illustrates how the task of relation extraction can
be carried out in a common scenario.

For binary classification of relation where only true and false labels exist, the
feature set for relation extraction are generated by the following three techniques:
Named Entity Recognition, Shallow Parsing, and Negation. Of course, other types
of features may be used, but for the simplicity reason, we used those three repre-
sentative features for the tutorials.

Named Entity Recognition

The Named Entity Recognition (NER) technique automatically extracts pre-defined
Named Entities (NEs) like gene, protein, and cell in text. It tags each word whether
it is located in the starting or ending position, or outside the target entity. Most

Information Extraction 231

corpora for relation extraction provide NE annotations that have information about
target entities in a given text. We extract NEs by using a LingPipe tool introduced
earlier in this chapter.

Shallow Parsing

Shallow parsing, also known as text chunking, splits sentence into phrases, such as
Noun Phrase (NP), Verb Phrase (VP), Prepositional Phrase (PP), and Adverb
Phrase (ADVP). This shallow parsing result gives us an important clue to extract
relation in that relation of between entities is usually expressed in [entity1…verb…
entity2] structure in a sentence. We apply shallow parsing to all sentences by the
Apache OpenNLP toolkit (https://opennlp.apache.org/).

Negation

The negation technique examines whether a sentence is negated or not by finding
negation terms (‘neither’, ‘not’, etc.) and a negation scope. In relation extraction,
negation terms change the relation judgment in an opposite direction. We use
NegEx (Chen et al. 2011) toolkit for negation detection.

We combine a rule-based approach with a machine learning (ML) based
approach in order to efficient relation extraction. In particular, the hybrid framework
consists of the rule-based feature selection and the ML-based classification
algorithm.

Fig. 6.2 An architecture of a
typical supervised relation
extraction system

232 6 Text Mining with Unstructured Text

https://opennlp.apache.org/

Feature Construction from Defined Rules

In a rule-based approach, rules are constructed by combination of complex factors
such as sentence structure, relation keyword, distance of between entities, gram-
matical relation and so on. Since those factors appear differently along with rela-
tionship type, it can be treated as variables for statistical algorithm. Those factors
are the clue that predicted the difference to differ between relationships involving
sentence and the others. Our approach is to choose features that represent the key
clue for extracting relation in a rule-based approach.

For relation extraction, we used seven features using relation keyword, negation,
distance of between two entities, location, order of entities and relation keyword
etc. The seven features are as follows:

1. Predicate: a main verb that is located inside or nearest two entities. It must be
found in the BioVerb list

2. Predicate POS: part-of-speech of predicate
3. Number of left words: the number of words in the left side of the first

appearance of a named entity in a sentence
4. Number of right words: the number of words in the right side of the last

appearance of a named entity in a sentence
5. Number of words in between entities: the number of words in the first left

named entity and the extreme right named entity in a sentence.
6. Negation: sentence is negated or not
7. LinkPath: link path between two named entities exists or not.

ML-Based Classification

The pattern matching method finds a sentence in accordance with the predefined
patterns. It could give more accurate results if patterns are precisely articulated.
However, at the same time, it is very difficult to detect matches due to wide
variations. Hence, we apply a machine learning algorithm for relation extraction
with the rule-based feature set. We treated relation extraction as binary classifica-
tion task. A sentence is classified depending on whether relation between entities
exists or not. We use the WEKA toolkit for classification algorithms.

Given the following input,

11218788 Larsen J, Arnberg A, Brosen K: [Tramadol and oxazepam. Ugeskr Laeger.
2001 Jan 22; 163(4):458-60. Effect on pulmonary function in elderly patients with chronic
obstructive lung disease]. Many patients with chronic obstructive pulmonary disease
(COPD) suffer from osteoporotic pain as a result of glucocorticoid treatment and nervous
symptoms partly related to their lung disease. There seems to be some reluctance to treat
these patients with an opioid or benzodiazepine. Upon request, the Drug Information Centre
in Odense made an extensive literature search on the subject. No documentation was found
that tramadol additionally depresses the respiration in patients with COPD, nor has

Information Extraction 233

oxazepam in clinically relevant doses been found to exacerbate their lung disease. The
clinical effect is subject to large interindividual variability, and the use of these drugs
should, to a greater extent, rest on experience with the individual patient. There seems to be
no reason to maintain a priori this rigoristic reluctance to use tramadol and/or oxazepam in
patients with COPD.

The following results are produced:
ID 11218788 ANSWER N LEFT ENTITY tramadol RIGHT ENTITY COPD
The above report means that no relation between tramadol and COPD is pre-

dicted. For readers who are interested in reproducing the procedure, download the
tool at http://informatics.yonsei.ac.kr/tsmm/uncertainty_book/RE.zip. Once you
download and un-compress it, change to RE and run the following command:

java -Xms64m -Xmx15550m -cp .:./bin:./lib/* evaluation. PolyDrugGeneEvaluation

Well-Known Relation Extraction Tools

There are several tools that do relation extractions including PKDE4J, OpenIE,
Stanford CoreNLP OpenIE, GATE, etc. PKDE4J will be explained in the next
chapter. Here a well-accepted relation extraction tool, OpenIE, will be described.

Open IE

Open IE, standing for the Open Information Extraction (Open IE) system, was
developed by the Etzioni’s group at University of Washington. Open IE takes
natural language sentences as an input and extracts relations in text. For example,
consider the following sentence:

The U.S. president George W. Bush gave his speech on Friday to hundred thousands of
people.

There are many binary relations in this sentence that can be expressed as a triple
(A, B, C) where A and B are arguments, and C is the relation between those
arguments. Since Open IE is not aligned with an ontology like WordNet, the
extracted relation is a phrase of text. The following list shows binary relations
extracted from the sentence above:

1. (George W. Bush, is the president of, the U.S.)
2. (George W. Bush, gave, his speech)
3. (George W. Bush, gave his speech, on Friday)
4. (George W. Bush gave his speech, to hundred thousands of people).

234 6 Text Mining with Unstructured Text

http://informatics.yonsei.ac.kr/tsmm/uncertainty_book/RE.zip

The first result above is a “noun-mediated extraction”, because the extraction has
a relation phrase is described by the noun “president”. The above results show that
an n-ary extraction represents them in an informative way. Here is a possible list of
the n-ary relations in the sentence:

(George W. Bush, is the president of, the U.S.)
(George W. Bush, gave, [his speech, on Friday, to hundred thousands of people])

To use the Open IE system, first install the system by typing the following
command in the UNIX like prompt: sbt compile. Open IE uses Java 7 SDK and the
sbt build system. The sbt command makes downloading dependencies and com-
piling very simple. The sbt command results in the jar file called
“openie-assembly.jar” that contains all required dependent libraries. Once the jar
file for Open IE is ready, execute the following command:

java -jar openie-assembly.jar.

The Open IE system takes one sentence per line unless the argument “–split” is
specified. If the argument “–split” is presented, the input text will be split into
sentences. Input can be fed into Open IE either as a file (an option first argument) or
in an interactive mode where you type sentences interactively. Results will be
written to the console unless a second option argument is specified for an output
file.

Open IE takes a number of command line arguments. All of available arguments
are displayed if you run java -jar openie-assembly.jar–usage. There are several
interesting arguments. The first argument is “–binary” that generates the triple
output. The second argument is “–split” that partitions the input text into sentences.
The third argument is “–ignore-errors” that allows for Open IE to continue to
execute even if an exception is encountered. Regarding the output format, There are
two formats: simple and column. The argument “–format simple” enables to make
ease of reading whereas a columnated format is used for machine processing.

Extracting Semantic Predications with SemRep

SemRep, standing for Semantic Knowledge Representation, is an automatic pro-
gram that extracts semantic predications (subject-predicate-object triples) from
biomedical free text (Rindflesch and Fiszman 2003). SemRep was developed at
developed at National Library of Medicine. SemRep uses MetaMap to map noun
phrases to UMLS concepts. Through its rule-based summarization system, it maps
the syntactic elements to semantic network predicates. About 36.7 millions of
sentences extracted from titles and abstracts of PubMed generate the predication
analysis. SemRep detects about 12.7 millions of unique predicate instances and 58
unique predicate types (Aronson 2001).

Well-Known Relation Extraction Tools 235

Semantic predications are extracted based on the UMLS knowledge sources
where subject and object are UMLS Metathesaurus concepts and the predicate to a
relation type in the UMLS Semantic Network. SemRep extracts a wide range of
predicates including (1) clinical medicine such as TREATS, DIAGNOSES, and
PROCESS_OF, (2) substance interactions such as INTERACTS_WITH, INHIBITS,
and STIMULATES, (3) genetic etiology of disease such as ASSOCIATED_WITH
and CAUSES, and pharmacogenomics such as AFFECTS, AUGMENTS, and
DISRUPTS. SemRep can be run interactively or in batch mode using the SKR
Scheduler. SemRep program is also available as a stand-alone program on Linux
platform.

For example, given the input text:

dexamethasone is a potent inducer of multidrug resistance associated protein expression in
rat hepatocytes

SemRep generates three semantic predications as follows:

• Dexamethasone STIMULATES Multidrug Resistence—Associated Proteins
• Multidrug Resistance—Associated Proteins PART_OF Rats
• Hepatocytes PART_OF Rat

SemRep is part of the SKR project that maintains a database of 84.6 million
SemRep predications extracted from all MEDLINE citations (Hristovski et al.
2006). SKR stands for Semantic Knowledge Representation which is available at
https://skr.nlm.nih.gov/. The SemRep database supports the Semantic MEDLINE
Web application, which integrates PubMed search, SemRep predications, automatic
summarization, and data visualization. The goal of the application is to assist users
to manage the results of PubMed searches. Output is visualized as an informative
graph with links to the original MEDLINE citations. Convenient access is also
provided to additional relevant knowledge resources, such as Entrez Gene, the
Genetics Home Reference, and UMLS Metathesaurus.

As a tool designed for automatic identification of semantic predication from
biomedical literature, SemRep operates by applying a set of linguistic rules to
sentences found in MEDLINE abstracts. Semantic relations identified by SemRep
(Ahlers et al. 2007; Hristovski et al. 2006) have been used in literature-based
discovery (LBD) (Wilkowski et al. 2011), among many other approaches to mining
information from biomedical literature. Biomedical articles on which SemRep is
designed to operate contain explicit and implicit mentions of relationships between
various medical concepts. For example a TREATS relation between a medication
and a disorder may be found in a single sentence in a MEDLINE citation containing
the following text: “Metamorphosia associated with topiramate for migraine
prevention.”

One example of using SemRep for semantic predications is creating RDF triples.
It would be interesting to observe whether semantic predications can be leveraged
to create network representations (will leverage the OWL-NETS abstraction to
create networks containing only the mechanisms of interest). Supposed that we take

236 6 Text Mining with Unstructured Text

https://skr.nlm.nih.gov/

drug repurposing such as Rapamycin, Tamoxifen as a use scenario. There was a
previous effort that SemRep was converted into RDF.1

The following words and phrases can be used to search for Tamoxifen for
Repurposing in PubMed: Tamoxifen (C0039286), Bipolar Disorder (C0005586),
Manic (C0338831), Protein Kinase C (C0033634), Protein Kinase C Inhibitor
(C1514555). RDF “schema” for the SemRep predications consists of the following
three:

1. UMLS CUI, relationship, UMLS CUI—annotation triple
2. UMLS CUI, rdfs:label, <preferred term>—label triple
3. UMLS CUI, umls:semtype, <semantic type>—semantic type triple

An example for the SemRep annotation is as follows:
Protein Kinase C Inhibitor TREATS Bipolar Disorder

umls:C1514555 umls: TREATS umls:C0005586
umls:C1514555 rdfs: label “Protein Kinase C Inhibitor”
umls:C0005586 rdfs:label “Bipolar Disorder”
umls:C1514555 umls: semtype “mobd”
umls:C0005586 umls: semtype “phsu”
(mobd = Mental or Behavioral Dysfunction)
(phsu = “Pharmacologic Substance”)

The transformation of the SemRep tables into triples results in the following
tables (Tables 6.3, 6.4, 6.5 snd 6.6).

Table 6.3 Concept table

CONCEPT_ID CUI TYPE PREFERRED_NAME GHR OMIM

1844 C0003873 META Rheumatoid Arthritis NULL 180300:604302

1276072 215 ENTREZ ABCD1 NULL NULL

Table 6.4 CONCEPT_SEMTYPE table

CONCEPT_SEMTYPE_ID CONCEPT_ID SEMTYPE NOVEL

2628 1844 dsyn Y

1481123 1276072 gngm Y

Table 6.5 PREDICATION table

PREDICATION_ID PREDICATE TYPE

87120 PROCESS_OF semrep

1https://github.com/OHDSI/KnowledgeBase/tree/master/LAERTES/SemMED.

Well-Known Relation Extraction Tools 237

https://github.com/OHDSI/KnowledgeBase/tree/master/LAERTES/SemMED

The example query for the concept table would look like “column = CUI

With prefix umls: if TYPE = META
With prefix e.g if TYPE = ENTREZ
(ignore other types)

For label: object column = PREFERRED_NAME (literal)”
The example query for the concept_semtype table would look like “Subject
column = CONCEPT_ID

With prefix umls: or e.g.: depending on what was assigned in the CONCEPT
table
For semantic type: column = SEMTYPE (literal)”
For a given PREDICATION_ID
Subject = PREDICATION_ARGUMENT.CONCEPT_SEMTYPE_ID (where
TYPE = S)
Predicate = PREDICATION.PREDICATE
Object = PREDICATION_ARGUMENT.CONCEPT_SEMTYPE_ID (where
TYPE = O)

Given these transformed semantic predications, we are now able to visualize a
RDF graph like Fig. 6.3.

Fig. 6.3 A resulting RDF graph for drug reposition

Table 6.6 PREDICATION_ARGUMENT table

PREDICATION_ARGUMENT_ID PREDICATION_ID CONCEPT_SEMTYPE_ID TYPE

176604 87120 2628 S

176605 87120 21437 O

238 6 Text Mining with Unstructured Text

Topic Modeling

Topic modeling methods are known to be useful for analyzing and summarizing
large scale textual data in an unsupervised manner. Topic modeling have been
applied in various different data sources including biomedical data, images, videos,
and social media (Blei 2012). The goal of topic modeling is to group sets of words
which are co-occurred within texts as topics by giving high probability for the
words under same topics. The prominent feature of topic modeling lies in its ability
not to require any training datasets which normally demand tremendous manual
efforts of annotating or labeling and make quality of output heavily depend on
training datasets.

Among the topic modeling algorithms, Latent Dirichlet Allocation (LDA) is the
simplest and most well-accepted algorithm. LDA is a generative model (e.g., Naïve
Bayes) which is a full probabilistic model of all the variables. In generative
modeling, data is derived from a generative process which defines a joint proba-
bility distribution of observed and hidden variables. It contrasts to discriminative
model (e.g., linear regression) which only models the conditional probability of
unobserved variables on the observed variables. In LDA, the observed variables are
words in the documents, and the hidden variables are topics. It follows the
assumption that authors first decide a number of topics for an article, then pick up
words related to these topics to write the article. In LDA, all documents in the
corpus have the same set of topics, but each document has different portions of
those topics (Blei 2012).

The basic assumption of LDA is that one document contains multiple topics and
each of those requires specific words to describe them. For example, a paper,
entitled “Artificial Intelligence in Biomedical Literatures”, discussed the application
of artificial intelligence algorithms to discover hidden associations between bio-
logical entities. Words such as neural network, autoencoder, neuron are from the
topic of artificial intelligence; disease, gene, and protein are used to describe the
biomedical topic; bioinformatics, genomics, cheminformatics are used for the topic
of computer applications in biology.

Topic modeling algorithms aim to capture topics from a corpus automatically by
using words observed in documents to infer the hidden topic structure (e.g., doc-
ument topic distribution, and word topic distribution). The number of topics is
usually decided by perplexity and can be heuristically set between 20 and 300 (Blei
2012). Topics are represented by distributions of words in the entire collection.
Each document is generated by selecting a distribution over the topics. For each
word, a topic assignment is chosen. In addition, the word from the corresponding
topic is chosen.

The perplexity is often used to measure how a probability distribution fits a set of
data. The perplexity is the inverse of the geometric mean per-word likelihood and is
used to evaluate the models. A lower perplexity means a better model (Blei et al.
2003). The inference mechanics in topic models are independent of languages and
contents. They capture the statistical structure of using language to represent

Topic Modeling 239

thematic content. LDA approximates its posterior distribution by using inference
(e.g., Gibbs sampling) or optimization (e.g., variational methods). The detailed
explanations of how to run LDA with Mallet are provided in the later section.

Latent Semantic Indexing

Latent Semantic Indexing (LSI) tries to overcome the problems of lexical matching
by using statistically derived conceptual indices instead of individual words for
retrieval (Deerwester et al. 1990). LSI assumes that there is some underlying or
latent structure in word usage that is partially obscured by variability in word
choice. A truncated singular value decomposition (SVD) is used to estimate the
structure in word usage across documents. Retrieval is then performed using the
database of singular values and vectors obtained from the truncated SVD.
Performance data shows that these statistically derived vectors are more robust
indicators of meaning than individual terms.

The SVD projection is computed by decomposing the document-by-term matrix
At� d into the product of three matrices, Tt� n; Sn� n; Dd� n:

At� d ¼ Tt� nSn� nðDd� nÞT

where t is the number of terms, d is the number of documents, n = min(t, d), T and
D have orthonormal columns, i.e.,

TTT ¼ DTD ¼ I;

rank Að Þ ¼ r;

S ¼ diag r1; r2; . . .; rnð Þ; ri [0 for 1� i� r; rj ¼ 0 for j� rþ 1:

We can view SVD as a method for rotating the axes of the n-dimensional space
such that the first axis runs along the direction of largest variation among the
documents, the second dimension runs along the direction with the second largest
variation and so forth. The matrices T and D represent terms and documents in this
new space. The diagonal matrix S contains the singular values of A in descending
order. The ith singular value indicates the amount of variation along the ith axis.

By restricting the matrixes T, S and D to their first k\n rows, one obtains three
truncated matrices Tt� k; Sk� k; ðDd�kÞT : Their product Â is the best square
approximation of A by a matrix of rank k in the sense defined in the equation
jjD ¼ A� Â2jj

Ât� k ¼ Tt� kSk� k Dd� kð ÞT

240 6 Text Mining with Unstructured Text

Choosing the number of dimensions (k) for Â is an interesting problem. While a
reduction in k can remove much of the noise, keeping too few dimensions or factors
may lose important information. As discussed in (Deerwester et al. 1990) using a
test database of medical abstracts, LSI’s performance improved considerably after
10 or 20 dimensions, peaked between 70 and 100 dimensions, and then began to
diminish slowly. This pattern of performance—initial large increases and slowly
decreases—is observed with other datasets as well. Eventually the performance
becomes the same as standard vector methods because, with k = n factors, Â is the
same as the original term by document matrix A. The fact that LSI works well with
a relatively small (compared to the number of unique terms) number of dimensions
or factors k shows that these dimensions are, in fact, capturing a major portion of
the meaningful structure (Berry et al. 1995).
There are several open source packages available for LSI, including

1. Text Mining Library for Latent Semantic Analysis at http://tml-java.
sourceforge.net/

2. Weka at http://weka.sourceforge.net
3. airhead-research (a.k.a. s-space) at https://code.google.com/archive/p/airhead-

research/

Out of these three packages, airhead-research is used for describing how LSI can
be used due to its simplicity and robustness compared to the other two packages.
airhead-research was developed in Java and provides an API. Thus, the provided
LSI functionalities in airhead-research can be used in two ways: (1) API and
(2) command line.

To use airhead-research, download and uncompress its Java package.
airhead-research supports a variety of options. For instance, the argument “-n” or “–
dimensions <int>” sets how many dimensions to use for the LSA vectors. Another
basic option is “-p” or “–preprocess <class name>”, which specifies an instance of a
transform class to use in preprocessing the word-document matrix compiled by
LSA prior to computing the SVD. More advanced options include “-S” or “–
svdAlgorithm”, which specifies manually a particular SVD algorithm should be
used internally. Valid options are SVDLIBC, MATLAB, OCTAVE, JAMA and
COLT. Since LSA will select the fastest algorithm available, use this option only
when it is necessary.

Depending on the number of options to be used, several combinations of options
can be used. For example, in order to remove stop words from the corpus while
processing, the following command can be used:

java -Xmx8g -jar lsa.jar -d corpus.txt -F exclude=stopwords.txt my-lsa-output-no-stopwords.sspace.

To generates a 500-dimension LSA space, use the following command:

java -Xmx8g -jar lsa.jar -d corpus.txt -n 500 my-lsa-output-500dim.sspace.

Topic Modeling 241

http://tml-java.sourceforge.net/
http://tml-java.sourceforge.net/
http://weka.sourceforge.net
https://code.google.com/archive/p/airhead-research/
https://code.google.com/archive/p/airhead-research/

To generates an LSA space with known compound words, use the following
command:

java -Xmx8g -jar lsa.jar -d corpus.txt -C my-list-of-ngrams.txt my-lsa-output-with-ngrams.sspace

Once the LSI model is built, the user can query the model with a term of interest.
For instance, for the query “farm,” the LSI model returns a list of related terms
(Table 6.7).

Latent Dirichlet Allocation (LDA)

As described in the topic modeling section, LDA is a type of generative, proba-
bilistic model for the latent topic layer (Blei et al. 2003). For a document d, a
multinomial distribution hd over topics is sampled from a Dirichlet distribution with
parameter a. For each word wdi, a topic zdi is chosen from the topic distribution.
A word wdi is generated from a topic-specific multinomial distribution /zdi . The
probability of generating a word w from a document d is:

P wjd; h;/ð Þ ¼
X

z2T
Pðwjz;/zÞPðzjd; hdÞ

Therefore, the likelihood of a document collection D is defined as:

P Z;W jH;Uð Þ ¼
Y

d2D

Y

z2T
hndzdz �

Y

z2T

Y

v2V
/nzv
zv

where ndz is the number of times that a topic z has been associated with a document
d, and nzv is the number of times that a word wv has been generated by a topic z. The
model can be explained as: to write a paper, an author first decides what topics and

Table 6.7 The list of related terms to “farm”

Term Relevance score

Hay 0.64

Farmer 0.87

Farming 0.78

Farmland 0.72

Landowner 0.67

Cattle 0.66

Homestead 0.65

Agricultural 0.65

242 6 Text Mining with Unstructured Text

then uses words that have a high probability of being associated with these topics to
write the article.

For the tutorial of how to do topic modeling, we introduce Mallet that was
developed by McCullum and his team at University of Massachusetts Amherst.
Mallet is a Java-based tool that provides various techniques including statistical
natural language processing, document classification, clustering, topic modeling,
information extraction, and other machine learning applications to text.

To use Mallet for topic modeling, download it at http://mallet.cs.umass.edu/
download.php. The latest version is 2.0.8. Once MALLET has been downloaded
and installed, the next step is to import text files into MALLET’s internal format.
The following instructions assume that the documents to be used as input to the
topic model are in separate files, in a directory that contains no other files. For
detailed information on how to import data in MALLET, we refer the reader to
instructions available at http://mallet.cs.umass.edu/import.php.

Once the MALLET package is successfully installed, it is ready to use. Simply
change to the MALLET directory and run the following command:

bin/mallet import-dir --input data/topic-input --output topic-input.mallet --keep-
sequence --remove-stopwords

The input data is assumed to be under the MALLET packgage’s data sub
directory called “topic-input.” To learn more about options available in MALLET,
use the argument “–help”. To build a topic model, use the train-topics command,
assuming that documents are formatted properly for MALLET. For example, the
following command will create 100 topics and save the trained topic model, again,
assuming that the MALLET instance object has already been created with the input
data:

bin/mallet train-topics --input topic-input.mallet --num-topics 100 --output-state topic-state.gz

If you want to know more about available options in MALLET, use the
option-help to get a complete list of options for the train-topics command. There are
several options that are frequently used when you run Mallet for topic modeling
(See Table 6.8).

You may download the sample input file from http://informatics.yonsei.ac.kr/
tsmm/uncertainty_book/ISI_Abstract_original.txt and generate the same results as
shown in Table 6.9. The following command includes several options such as the
number of topics (10), the number of iterations (1000), applying the stopword list to
create the MALLET instance object. The “keep-sequence” option in the command
denotes that the input text is converted into a sequence of features, and it is normal
that topic modeling in MALLET assumes that the input is converted to a feature
sequence.

Topic Modeling 243

http://mallet.cs.umass.edu/download.php
http://mallet.cs.umass.edu/download.php
http://mallet.cs.umass.edu/import.php
http://informatics.yonsei.ac.kr/tsmm/uncertainty_book/ISI_Abstract_original.txt
http://informatics.yonsei.ac.kr/tsmm/uncertainty_book/ISI_Abstract_original.txt

bin/mallet import-dir --input ISI_Abstract_original.txt --output topic-input.mallet
--num-topics 10 --num-iterations 1000 --keep-sequence --remove-stopwords

Table 6.8 The list of core options available in MALLET

Option Description

–input [FILE] Use this option to specify the MALLET collection file you created
in the previous step

–num-topics
[NUMBER]

The number of topics to use. The best number depends on what
you are looking for in the model. The default (10) will provide a
broad overview of the contents of the corpus. The number of topics
should depend to some degree on the size of the collection, but 200
to 400 will produce reasonably fine-grained results

–num-iterations
[NUMBER]

The number of sampling iterations should be a tradeoff between the
time taken to complete sampling and the quality of the topic model

–optimize-interval
[NUMBER]

This option turns on hyperparameter optimization, which allows
the model to better fit the data by allowing some topics to be more
prominent than others. Optimization every 10 iterations is
reasonable

–optimize-burn-in
[NUMBER]

The number of iterations before hyperparameter optimization
begins. Default is twice the optimize interval

–output-model
[FILENAME]

This option specifies a file to write a serialized MALLET topic
trainer object. This type of output is appropriate for pausing and
restarting training, but does not produce data that can easily be
analyzed

–output-state
[FILENAME]

Similar to output-model, this option outputs a compressed text file
containing the words in the corpus with their topic assignments.
This file format can easily be parsed and used by non-Java-based
software. Note that the state file will be GZipped, so it is helpful to
provide a filename that ends in.gz

–output-doc-topics
[FILENAME]

This option specifies a file to write the topic composition of
documents. See the–help options for parameters related to this file

–output-topic-keys
[FILENAME]

This file contains a “key” consisting of the top k words for each
topic (where k is defined by the–num-top-words option). This
output can be useful for checking that the model is working as well
as displaying results of the model. In addition, this file reports the
Dirichlet parameter of each topic. If hyperparamter optimization is
turned on, this number will be roughly proportional to the overall
portion of the collection assigned to a given topic

–inferencer-filename
[FILENAME]

Create a topic inference tool based on the current, trained model.
Use the MALLET command bin/mallet infer-topics–help to get
information on using topic inference

244 6 Text Mining with Unstructured Text

Semantic Networks and Ontology

A semantic network is a propositional knowledge structure consisting of a set of
nodes that are selectively connected to each other by links labeled by the rela-
tionship between each pair of connected nodes (Stillings et al. 1987). Semantic
networks as a representation of knowledge have been in use in artificial intelligence
(AI) research in a number of different areas. Some of the first uses of the
nodes-and-links formulation were in the work of Collins and Quillian (1969), where
the networks acted as models of associative memory. Their work centers on how
natural language is understood and how the meanings of words can be captured in a
machine.

Building a semantic network was previously done manually, which requires
experts to put a significant amount of time and effort. Therefore, automatic con-
struction of a semantic network was a recent, focal point of the semantic web
community (Harrington 2009; Harrington and Wojtinnek 2011). One of the recent
efforts for automatic construction of a semantic network is a hybrid set of classi-
fication systems based on weakly, distant or semi-supervised learning systems.
These systems require a smaller set of training material that focuses on either two
independent categories or utilizes two different classification methods. After the

Table 6.9 The number of topics and top terms generated by LDA

Topic
no.

Top terms

0 Cell cells tissue study engineering differentiation bone potential nanofiber
regeneration factors culture scaffolds critical scaffold mechanical control stem
increase

1 Structure based technology polymer design fabricated carbon band high
performance size circuit interconnect materials capacity electrical interconnects
significantly improved

2 Graphene surface growth electronics epitaxial electronic material electron use layer
magnetic layers high scattering chemical multilayer demonstrated surfaces landau

3 New formation effects vascular important known cells elsevier shown number
factor development reserved rights sod network reduced vegf role

4 Energy power zno applications piezoelectric potential voltage output approach
mechanical low cmos flexible area current density thin reduce crystal

5 Used results function different data show large small including webs elements
delivery indicate application aligned electrospun activity direct resistance

6 Model using paper process well proposed mems structures parameters present
simple fabrication response range presented linear stochastic mode nonlinear

7 Method time two order zoning system efficiency found optimization algorithm
significant provides higher optical films experimental compared study air

8 Properties effect solar using devices temperature carrier charge morphology doping
silicon transport film interface than transfer provide bulk device

9 Expression complex gene novel rna changes essential hsp genes stress specific
functional cmr rnai species cofactors redox predicted patterns

Semantic Networks and Ontology 245

intermediate classifiers are run on non-annotated documents, the results are ana-
lyzed and the documents that best represent of the categories are added to the
training data to improve the classifier. This process is repeated until some prede-
fined condition is met (Aggarwal and Zhai 2012). While words contain a lot of
information about the document under inspection, they also create a high-level of
dimensionality and ambiguity. Different words can be used to describe the same
meaning (synonyms), for example earth and dirt. Using both words as separate
terms in a VSM creates a high-level of dimensionality. We can use natural language
processing (NLP) techniques to recognize and consolidate synonyms to reduce
dimensionality but a second problem arises. Some words, like earth, have multiple
meanings (polysemy) (Aggarwal and Zhai 2012) and these meanings can be
domain dependent. It is in these cases that information extraction techniques such as
concept hierarchies can be used to determine appropriate meaning (Feldman and
Dagan 1995).

Concept hierarchies are created through analyzing the relationships of tokens
found in a document. Relationships can be defined manually, based on token
distributions, or specified through background knowledge. Zheng et al. (2009)
defined a concept as a set of words, usually noun phrases, which have semantic
relationships. Feldman and Sanger (2007) emphasize that a concept hierarchy can
be used to describe a document which contains one or more concept nodes going
from a more generalized meaning to more specific meaning. Representing a doc-
ument as a set of concepts, or concept signature, provides a richer representation
which, when used with clustering techniques, makes the resulting index scheme
more useful (Zheng et al. 2009). The explosive growth in digital content empha-
sizes the need to develop automated management (organizational) and access
(discovery) tools to support the processing of digital content for information access
systems. Organization of this generally unstructured content requires one to identify
the scope, concepts, and purpose of the resource and then analyze the relationships
of the concepts to provide an overall understanding of the document (Tseng et al.
2007).

Early text classification schemes were built on labor intensive training sets that
were used to model the predefined categories to be identified and required sufficient
text in the document being classified to ensure good accuracy (Zelikovitz and Hirsh
2000). Due to these challenges research started to explore the use of background
knowledge, that is, domain-specific heuristics that can be used as constraints to
reduce the ambiguity of natural languages and help in the feature selection process.
Taxonomies, controlled vocabularies, and ontologies are various types of formal-
ized specification that provide a conceptualization of a domain of interest (Gruber
1995). It is generally agreed that a controlled vocabulary is the most basic form of
background knowledge. It can be used for keyword or concept identification.
Taxonomies take controlled vocabularies and identify relationships between con-
cepts, such as an “is-a” relation that is used to identify synonyms of terms.
Ontologies are the most complex of the three specifications and add on to tax-
onomies additional domain specific rules. An ontology contains a shared, controlled

246 6 Text Mining with Unstructured Text

vocabulary which models a specific domain with the definition of concepts and
their properties and relations.

WordNet

WordNet is considered by most an implementation of the general English language
ontology (Miller et al. 1990). It identifies words and word phrases, includes mor-
phological and semantic relationships, and identifies a hierarchy of relationships
(hypernym and hyponym). It has been used in query expansion (Hsu et al. 2008),
text classification (Elberrichi et al. 2008), and text clustering (Hotho et al. 2003).
Using WordNet’s background knowledge, text documents are analyzed for con-
cepts based on relationships between terms. Common linguistic relationships are
antonyms (opposite meaning), synonyms (similar meaning), hypernyms (“IS-A”
generalization of a term), hyponyms (more specific meaning of a term), holonyms
(“PART-OF” relationship), and meronyms (“HAS-A” relationship). These rela-
tionships are shown in Fig. 6.4.

Hypernym relationships form a directional “IS-A” connection between two
terms that moves from a specific meaning to a more generalized one (“Earth IS-A
planet”). Many studies have been performed to automatically extract these rela-
tionships from unstructured text, such as in (Snow et al. 2004). Unlike hypernyms,
terms which are synonyms can replace each other and still hold a similar meaning.
For example, “sunshine” and “sunlight” terms may be used interchangeably in a
sentence without significant loss of meaning. Meronyms are a bit more complex.
Girju et al. (2006) defined six types of meronyms which WordNet consolidates
three categories; member-of (faculty HAS-A professor), stuff-of (tree HAS-A
wood), and part-of (solar system HAS-A sun). Additionally, Girju et al. identifies
the part-of category as the most prominently used while Miller et al. (1990) indicate
meronym transitivity may be optional as one moves away from the original
relationship. For example, “Earth HAS-A moon” but the “plant HAS-A moon”
relationship is optional (not all planets have moons).

Fig. 6.4 Concept map using natural language relationships

Semantic Networks and Ontology 247

WordNet has been used in numerous document-clustering experiments. Some of
the earliest uses of WordNet in text categorization supported techniques to address
effectively the classification of low frequency categories (Rodriguez et al. 1997).
Green (1999) used WordNet’s hypernym and hyponym links to build lexical chains
to analyze the similarity between information in different paragraphs. Hotho et al.
(2003) showed utilizing background knowledge (i.e., relationships) between terms
improved document-clustering. Hung and Wermter (2004) present three text vector
representations, two of which used hypernym as concepts to improve classification
accuracy. Zheng et al. (2009) used WordNet relationships with noun phrases to
analyze clustering improvements. Wang and Taylor (2007) used WordNet to
capture hypernym relations in short text documents creating clusters of concepts
called concept forests to represent a document. Elberrichi et al. (2008) used
WordNet to create a concept vector format they compared to traditional
bag-of-word vector representation. Except for Zheng et al. (2009), all these methods
use single term analysis (using synonyms) and calculate term frequency from
hypernyms. In fact, many of the papers listed suggest using more than one rela-
tionship as a future area research.

Accurately identifying concepts for categorization purposes is fraught with
time-consuming manual analysis by content experts and librarians. A digital library
catalog/index must represent the digital content and reflect the expectations of its
users. Automating this process requires new techniques in concept extraction to
analyze any size document and capture main concepts based on the appropriate
domain. In this paper, we describe an extension to existing natural language and
machine-learning techniques to improve the accuracy of extracting concepts from
small text based resources and grouping them appropriately.

The selection of terms is a critical first step in concept generation. Terms with
multiple meanings (polysemy) create ambiguity, while a term that is similar (syn-
onyms) to others or have a degree of generalization (hypernym) can strengthen the
importance of a concept. For these reasons, term frequency calculations often use
hypernym and synonym information once ambiguity is resolved. We also use this
approach in our algorithm but the novelty of our approach is the inclusion of
meronyms. The choice of meronyms comes from the idea of finding mechanisms to
improve frequency measures for significant terms in short text documents without
over constraining larger documents. Some meronyms studies have been conducted
as outlined by Yang and Callan (2009). Basu et al. (2001) developed a set of
measures for different lexical relationships, including meronyms to identify the
average semantic difference (i.e., the weight of an edge between two terms).
Meronyms were given the same weight as hypernyms in this study. Girju et al.
(2006) suggest techniques for identifying meronyms for the specific use of incor-
porating them into taxonomies so they may be used in concept extraction. Zheng
et al. (2009) used meronyms as the relationship to support clustering and found it to
be not as good as hypernyms and holonyms. The novelty of our study examines the
effects of weighing meronyms differently than synonyms or hypernyms when
incorporating them into a frequency count for text characterization.

248 6 Text Mining with Unstructured Text

In addition to a general English ontology, domain specific ones exist. In the
realm of education, there are many used to define guidelines for knowledge goals.
Strand Map Benchmarks is a representation of the AAAS’ Project 2061, a “state-
ment of what all students should know and be able to do in science, mathematics,
and technology by the end of grades 2, 5, 8, and 12.” … “It provides educators with
sequences of specific learning goals they can use to design a core curriculum”.

The basic statistics of WordNet 3.0 are provided as follows (Table 6.10–6.11):
By and large, WordNet can be used in two ways. First approach is use WordNet

online. WordNet is accessible online at http://wordnetweb.princeton.edu/perl/
webwn. Once you type in a query and choose options for displaying results,
WordNet returns the matched results (Fig. 6.5).

The second option is to download and install WordNet to a local machine.
Depending on the operating system, you need to download different version. The
most recent Windows version of WordNet is 2.1, released in March 2005. Yes, it
has been a long time. For the Unix or Linux OS, version 3.0 is available for
download, which was released in December, 2006. However, database files are
updated to the version 3.1 and can substitute for the 3.0 files on the Unix or
Linux OS.

Regarding database files, the following standoff files provide further semantic
information to supplement the WordNet 3.0:

• Semantically annotated gloss corpus
• Evocation database
• Morphosemantic Links (Semantic relations between morphologically related

nouns and verbs)
• Teleological Links (an encoding of typical activity for which artifact was

intended)

Table 6.10 Number of POS, words, Synsets, and sense pairs

POS Unique strings Synsets Total word-sense pairs

Noun 117798 82115 146312

Verb 11529 13767 25047

Adjective 21479 18156 30002

Adverb 4481 3621 5580

Totals 155287 117659 206941

Table 6.11 Polysemy information

POS Monosemous words and senses Polysemous words Polysemous senses

Noun 101863 15935 44449

Verb 6277 5252 18770

Adjective 16503 4976 14399

Adverb 3748 733 1832

Totals 128391 26896 79450

Semantic Networks and Ontology 249

http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn

• “Core” WordNet (5000 more frequently used word senses)
• Logical Forms (logical forms for glosses)

WordNet can be utilized with NLTK, the Python based text mining tool.
WordNet is a NLTK corpus reader, and it is imported with the following import
statement:

>>> from nltk.corpus import wordnet

To examine a word with the NLTK WordNet module, we can use the NLTK
function called synsets(). This function has an optional pos argument which lets you
constrain the part of speech of the word:

>>> wn.synsets('dog') # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
[Synset('dog.n.01'), Synset('frump.n.01'), Synset('dog.n.03'), Synset('cad.n.01'),
Synset('frank.n.02'), Synset('pawl.n.01'), Synset('andiron.n.01'), Synset('chase.v.01')]
>>> wn.synsets('dog', pos=wn.VERB)
[Synset('chase.v.01')]

Fig. 6.5 The homepage of WordNet search

250 6 Text Mining with Unstructured Text

BabelNet

BabelNet is a very large multilingual encyclopedic dictionary and semantic network
(Navigli and Ponzetto 2012). It integrates the largest multilingual Web encyclo-
pedia with the most popular computational lexicon of English such as WordNet,
other lexical resources such as Wiktionary, OmegaWiki, Wikidata, and the Open
Multilingual WordNet. The integration is performed by an automatic linking
algorithm and by filling in lexical gaps with the aid of machine translation algo-
rithms. The result is an encyclopedic dictionary that provides Babel synsets
including concepts and named entities lexicalized in many languages and connected
with large amounts of semantic relations.

BabelNet’s current version is 3.7, which includes many feature such as
FrameNet (lexical units), more than 2500 Babel synsets identified as key concepts,
mappings with several versions of WordNet integrated, more than 2.6 million Babel
synsets labeled with domains, more than 625 million new senses, 6.4 million
surface forms for Babel synsets, and 3.5 million YAGO external links (Table 6.12).
BabelNet also provides both Java and HTTP RESTful APIs.2

BabelNet can be utilized in two ways. The first method is to use the web
interface of BabelNet. The second method is to use Java API or REST API. For the
REST API, one can query BabelNet through an HTTP interface that returns JSON.
The user can append the key parameter to the HTTP requests as shown in the
examples below. To obtain an API key please read the page. All requests must be
executed using the GET method and they should include Accept-Encoding: gzip as
the header in order to obtain compressed content. The example of a REST API is as
follows:

Table 6.12 Statistics of BabelNet 3.7

1971744856 Total number of RDF triples

745859932 Total number of Babel senses

380239084 Total number of lexico-semantic relations

40709194 Total number of glosses (textual definitions)

13801844 Total number of Babel synsets

10767833 Total number of images

7735448 Total number of named entities

6393568 Total number of other forms

6066396 Total number of concepts

2948668 Total number of Babel synsets with at least one picture

2675385 Total number of Babel synsets with at least one domain

743296 Total number of compounds

271 The number of languages

2http://babelnet.org/download.

Semantic Networks and Ontology 251

http://babelnet.org/download

https://babelnet.io/v4/getVersion?key={key}.

where the {key} denotes the API key obtained after signing up to BabelNet.
Another example is to retrieve the IDs of the Babel synsets (concepts) denoted by a
given word:

https://babelnet.io/v4/getSynsetIds?word={word}&langs={lang}&key={key}.

In this example, there are seven options that can be added to the REST API
(Table 6.13).

The results of the ID retrieval REST API are shown in Table 6.14.
Another example of to retrieve the senses of a given word from BabelNet using

the REST API. Table 6.15 shows a list of options.

Table 6.13 Options available for ID retrieval in BabelNet API

Name Description

word The word you want to search for

langs The language of the word. Accepts multiple values

filterLangs The languages in which the data are to be retrieved. Default value is the search
language and accepts not more than 3 languages except the search language

pos Returns only the synsets containing this part of speech (NOUN, VERB, etc.).
Accepts only a single value

source Returns only the synsets containing these sources (WIKT, WIKIDATA, etc.).
Accepts multiple values

normalizer Enables normalized search

key API key obtained after signing up to BabelNet

Table 6.14 The results of the ID retrieval REST API

[
{“id”:“bn:15409009n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:00046063n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:03345344n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:00055685n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:01204395n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:02131227n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:02799103n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:15586454n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:00088150v”,“pos”:“VERB”,“source”:“BABELNET”},
{“id”:“bn:00355636n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:00090750v”,“pos”:“VERB”,“source”:“BABELNET”},
{“id”:“bn:00071669n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:02363694n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:01610649n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:03783607n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:01683382n”,“pos”:“NOUN”,“source”:“BABELNET”},
{“id”:“bn:15010220n”,“pos”:“NOUN”,“source”:“BABELNET”}]

252 6 Text Mining with Unstructured Text

https://babelnet.io/v4/getVersion%3fkey%3d%7bkey%7d
https://babelnet.io/v4/getSynsetIds%3fword%3d%7bword%7d%26langs%3d%7blang%7d%26key%3d%7bkey%7d
https://babelnet.io/v4/getSynsetIds%3fword%3d%7bword%7d%26langs%3d%7blang%7d%26key%3d%7bkey%7d

https://babelnet.io/v4/getSenses?word={word}&lang={lang}&key={key}.

The results of the word sense retrieval REST API are shown as follows.

[
{

"lemma":"Simians_in_Chinese_poetry",
"simpleLemma":"Simians_in_Chinese_poetry",
"source":"WIKIRED",
"sensekey":"",
"sensenumber":0,
"frequency":1,
"position":1,
"language":"EN",
"pos":"NOUN",
"synsetID":{"id":"bn:15409009n","pos":"NOUN","source":"BABELNET"},
"translationInfo":"",
"pronunciations":{"audios":[],"transcriptions":[]},
"bKeyConcept":false

},
{

"lemma":"Simians_(Chinese_poetry)",
"simpleLemma":"Simians",
"source":"WIKI",
"sensekey":"",
"sensenumber":0,
"frequency":10,
"position":1,
"language":"EN",
"pos":"NOUN",
"synsetID":{"id":"bn:15409009n","pos":"NOUN","source":"BABELNET"},
"translationInfo":"",
"pronunciations":{"audios":[],"transcriptions":[]},
"freebaseId":"0_frc72",
"YAGOURL":"Simians_(Chinese_poetry)",
"bKeyConcept":false

},
 …

]

Table 6.15 Options available for word sense retrieval of BabelNet API

Name Description

word The word you want to search for

lang The language of the word. Required

filterLangs The languages in which the data are to be retrieved. Default value is the search
language and accepts not more than 3 languages except the search language.
Example

pos Returns only the synsets containing this part of speech (NOUN, VERB, etc.).
Accepts only a single value

source Returns only the synsets containing these sources (WIKT, WIKIDATA, etc.).
Accepts multiple values

normalizer Enables normalized search

key API key obtained after signing up to BabelNet

Semantic Networks and Ontology 253

https://babelnet.io/v4/getSenses%3fword%3d%7bword%7d%26lang%3d%7blang%7d%26key%3d%7bkey%7d.

Deep Learning

Deep Learning is a subfield of machine learning concerned with algorithms inspired
by the structure and function of the brain called artificial neural networks. An
artificial intelligence function that imitates the workings of the human brain in
processing data and creating patterns for use in decision making. Deep learning is a
subset of machine learning in Artificial Intelligence (AI) that has networks which
are capable of learning unsupervised from data that is unstructured or unlabeled.

One of the most common AI techniques used for processing Big Data is
Machine Learning. Machine learning is a self-adaptive algorithm that gets better
and better analysis and patterns with experience or with new added data. If a digital
payments company wanted to detect the occurrence of or potential for fraud in its
system, it could employ machine learning tools for this purpose. The computational
algorithm built into a computer model will process all transactions happening on the
digital platform, find patterns in the data set, and point out any anomaly detected by
the pattern.

Deep learning, a subset of machine learning, utilizes a hierarchical level of
artificial neural networks to carry out the process of machine learning. The artificial
neural networks are built like the human brain, with neuron nodes connected
together like a web. While traditional programs build analysis with data in a linear
way, the hierarchical function of deep learning systems enables machines to process
data with a non-linear approach. A traditional approach to detecting fraud or money
laundering might rely on the amount of transaction that ensues, while a deep
learning non-linear technique to weeding out a fraudulent transaction would include
time, geographic location, IP address, type of retailer, and any other feature that is
likely to make up a fraudulent activity. The first layer of the neural network pro-
cesses a raw data input like the amount of the transaction and passes it on to the
next layer as output. The second layer processes the previous layer’s information by
including additional information like the user’s IP address and passes on its result.
The next layer takes the second layer’s information and includes raw data like
geographic location and makes the machine’s pattern even better. This continues
across all levels of the neuron network until the best and output is determined.

Recently, deep learning approaches have obtained very high performance across
many different NLP tasks. These models can often be trained with a single
end-to-end model and do not require traditional, task-specific feature engineering.
There several good reasons for using deep learning for NLP problems. First is that it
is quite suitable for learning representation. Hand crafting features is
time-consuming. The features are often both over-specified and incomplete. The
work has to be done again for each task/domain, etc. We must move beyond
handcrafted features and simple ML. Humans develop representations for learning
and reasoning. Our computers should do the same. Deep learning provides a way of
doing this. Second, Current NLP systems are incredibly fragile because of their
atomic symbol representations. Distributed representation enabled by deep learning
based NLP can relax this problem. Learned word representations help enormously

254 6 Text Mining with Unstructured Text

in NLP. They provide a powerful similarity model for words. Distributional simi-
larity based word clusters greatly help most applications.

Distributed representations can do even better by representing more dimensions
of similarity. Distributed representations deal with the curse of dimensionality.
Generalizing locally (e.g., nearest neighbors) requires representative examples for
all relevant variations. Classic solutions: Manual feature design, assuming a smooth
target function (e.g., linear models), Kernel methods (linear in terms of kernel based
on data points). Neural networks parameterize and learn a “similarity” kernel.
Third, deep learning is suitable for unsupervised feature and weight learning.
Today, most practical, good NLP& ML methods require labeled training data (i.e.,
supervised learning). But almost all data is unlabeled. Most information must be
acquired unsupervised. Fortunately, a good model of observed data can really help
you learn classification decisions. Despite prior investigation and understanding of
many of the algorithmic techniques before 2006, training deep architectures was
unsuccessful. But since then, faster machines and more data help DL more than
other algorithms. New methods for unsupervised pre-training have been developed
(Restricted Boltzmann Machines = RBMs, autoencoders, contrastive estimation,
etc.). More efficient parameter estimation methods. Better understanding of model
regularization.

Word Embeddings

Word embeddings are one of the most well accepted deep learning algorithms that
has been applied to NLP, which the original concept was introduced by Bengio
et al. (2003). Word embedding algorithms are one of the best options to gain
intuition about why deep learning is effective. Let’s discuss the basic notion of
word embeddings.

A word embedding W:words ! Rn is a parameterized function mapping words
in some language to high-dimensional vectors (perhaps 200 to 500 dimensions). For
example, we might find:

Wð00cat00Þ ¼ ð0:2; �0:4; 0:7; . . .Þ
Wð00mat00Þ ¼ ð0:0; 0:6; �0:1; . . .Þ

Typically, the function is a lookup table, parameterized by a matrix, h, with a
row for each word: Wh(wn) = hn. W is initialized to have random vectors for each
word. It learns to have meaningful vectors, which can be used for advanced NLP
tasks such as sentiment analysis or information retrieval. For example, one task we
might train a network for is predicting whether a 5 g (sequence of five words) is
valid. We can generate a number of 5 g from Wikipedia (e.g., “cat sat on the mat”)
and then make half of them invalid by switching a word with a random word (e.g.,
“cat sat song the mat”), since that will almost certainly make our 5 g nonsensical.

Deep Learning 255

The model we train will run each word in the 5 g through W to get a vector
representing it and feed those into another ‘module’ called R which tries to predict
if the 5 g is valid or invalid, and it will result in the following:

RðWð00cat00Þ;Wð00sat00Þ;Wð00on00Þ;Wð00the00Þ;Wð00mat00ÞÞ ¼ 1

RðWð00cat00Þ;Wð00sat00Þ;Wð00song00Þ;Wð00the00Þ;Wð00mat00ÞÞ ¼ 0

In order to predict these values accurately, the network needs to learn good
parameters for both W and R. Although it could be helpful in detecting grammatical
errors in text, but what is interesting is to learn W. One way to understand the word
embedding space is to visualize them with t-SNE, a sophisticated technique for
visualizing high-dimensional data. Figure 6.6 shows the results of t-SNE with the
word2vec model built on the news articles related to companies producing platform
software and hardware.

This visualization of words helps us make sense of word associations. Similar
words are close together. Another way to get at this is to look at which words are
closest in the embedding to a given word. Again, the words tend to be quite similar.
Figure 6.7 below shows how the similar words to the word “IBM” changed over
time.

It may be adequate for a network to make words with similar meanings have
similar vectors. If a word is replaced with a synonym (e.g., “a few people sing
well” ! “a couple people sing well”), the meaning of the sentence still remains the
same. Thus, we may say that even if the input sentence has changed a lot, ifW maps
synonyms (like “few” and “couple”) close together, from R’s perspective not much
changes are made. This implies many important points. There is the enormous
number of possible 5 g whereas we have a comparatively small number of data

Fig. 6.6 t-SNE visualizations of word embeddings

256 6 Text Mining with Unstructured Text

points to try to learn from. Similar words being close together allows us to gen-
eralize from one sentence to a class of similar sentences. This does not just switch a
word for a synonym, but rather switch a word for a word in a similar class (e.g.,
“the wall is blue” ! “the wall is red”). Further, we can change multiple words
(e.g., “the wall is blue” ! “the ceiling is red”). This is a benefit that W provides.

Word embeddings also allow us to generalize to new combinations of words.
You’ve seen all the words that you understand before, but you haven’t seen all the
sentences that you understand before. So too with neural networks. Word embed-
ding models can automatically organize concepts and learn implicitly the rela-
tionships between them, as during the training we did not provide any supervised
information about what a capital city means.

Word embeddings exhibit an even more remarkable property: analogies between
words seem to be encoded in the difference vectors between words. For example,
there seems to be a constant male-female difference vector:

Wð00woman00Þ �Wð00man00Þ ’ Wð00aunt00Þ �Wð00uncle00Þ
Wð00woman00Þ �Wð00man00Þ ’ Wð00queen00Þ �Wð00king00Þ

Gender pronouns mean that switching a word can make a sentence grammati-
cally incorrect. For instance, supposed that there are sentences like “she is the aunt”
and “he is the uncle.” (Similarly, “he is the King” but “she is the Queen.” If one
sees “she is the uncle,” the most likely explanation is a grammatical error. If words
are being randomly switched half the time, it seems pretty likely that happened
here.

Mikolov et al. (2013) points out that the word embeddings learn to encode
gender in a consistent way. Depending on the datasets that word embedding models

Fig. 6.7 Similar words associated with the word “IBM” over time

Deep Learning 257

like word2vec is built upon, there’s probably a gender dimension. Same thing for
singular vs plural.

HistWords is an interesting collection of tools and datasets for analyzing lan-
guage change using word embeddings for historical text.3 The semantic evolution
of more than 30,000 words across four languages was modeled by historical word
vectors. HistWords is maintained by a group of researchers at Stanford University,
William L. Hamilton, Jure Leskovec, and Dan Jurafsky (2016). They found that the
meanings of more frequently used words tend to be more stable over time than less
frequently used words and that the meanings of polysemous, those words with
multiple meanings, change at faster rates than others (see Fig. 6.8).

It’s important to appreciate that all of these properties of W are side effects. This
seems to be a great strength of neural networks: they learn better ways to represent
data, automatically. Representing data well, in turn, seems to be essential to success
at many machine learning problems. Word embeddings are just a particularly useful
example of learning a representation.

There are several word embedding models that are publicly available. The most
popular one is the Google news word2vec model.4 The name of the model is called
GoogleNews-vectors-negative300.bin.gz. Google published pre-trained vectors
trained on part of Google News dataset (about 100 billion words). The model
contains 300-dimensional vectors for 3 million words and phrases. The phrases
were obtained using a simple data-driven approach described by Mikolov et al.
(2013).

To use the word2vec program provided by Google, download it with svn
checkout from http://word2vec.googlecode.com/svn/trunk/. Then compile word2-
vec with ‘make’ from a Linux terminal window or linux emulator like cygwin, and
then run the demo scripts: ./demo-word.sh and. /demo-phrases.sh.

Fig. 6.8 The shift of meanings of words in HistWords. Source Hamilton et al. (2016)

3https://nlp.stanford.edu/projects/histwords/.
4https://code.google.com/archive/p/word2vec/.

258 6 Text Mining with Unstructured Text

http://word2vec.googlecode.com/svn/trunk/
https://nlp.stanford.edu/projects/histwords/
https://code.google.com/archive/p/word2vec/

Summary

Extracting entities and their relations from unstructured text is essential for text
mining, topic modeling, constructing ontological structures, and deep learning.
Resources such as WordNet and BabelNet play an instrumental role in a wide
variety of applications. Deep learning, especially advances such as word2vec, has
revitalized the interest in text analysis and document understanding. As demon-
strated by the wide adoption of word2vec and distributional paradigms, the series of
technical advances from LSI, LDA, to word2vec will continue to grow. With
increasingly powerful and intuitive tools, one can tackle more challenging problems
at a larger scale. In terms of Shneider’s four-stage evolution model, quantitative
studies of science as a field are likely to benefit profoundly from the stream of text
modeling techniques.

References

Aggarwal CC, Zhai C (2012). Mining text data. Springer
Ahlers CB, Fiszman M, Demner-Fushman D, Lang F, Rindflesh TC (2007). Extracting semantic

predication from MEDLINE citations for pharmacogenomics. In: Pacific symposium on
biocomputing, pp 209–220

Aronson AR (2001) Effective mapping of biomedical text to the UMLS Metathesaurus: the
MetaMap program. In: AMIA annual symposium proceedings, pp 17–21

Basu S, Mooney RJ, Pasupuleti K, Ghosh, J (2001) Evaluating the novelty of text-mined rules
using lexical knowledge. In: Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM San Francisco, California,
pp 233–238

Bengio Y, Ducharme R, Vincent P, Jauv C (2003) A neural probabilistic language model. J Mach
Learn Res 3:1137–1155

Berry MW, Dumais ST, O’Brian GW (1995) Using linear algebra for intelligent information
retrieval. SIAM Rev 37(4):573–595

Bikel DM, Schwartz RL, Weischedel RM (1999) An algorithm that learns what’s in a name. Mach
Learn 34:211–231

Blei DM (2012) Probablisitic topic models. Commun ACM 55(4):77–84. doi:10.1145/2133806.
2133826

Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. JMLR 3:993–1022
Bui QC, Nualláin BÓ, Boucher CA, Sloot PM (2010) Extracting causal relations on HIV drug

resistance from literature. BMC Bioinform 11(1):101
Chen Y, Liu F, Manderick B (2011) Extract protein-protein interactions from the literature using

support vector machines with feature selection, biomedical engineering, trends, research and
technologies. In: Olsztynska S (ed). ISBN: 978-953-307-514-3

Chowdhury MFM, Abacha AB, Lavelli A, Zweigenbaum P (2011) Two different machine learning
techniques for drug-drug interaction extraction. In: Challenge task on drug-drug interaction
extraction, pp 19–26

Collins AM, Quillian MR (1969) Retrieval time from semantic memory. J Verbal Learn Verbal
Behav 8:240–247

Deerwester S, Dumais ST, Landauer TK, Furnas GW, Harshman RA (1990) Indexing by latent
semantic analysis. J Am Soc Info Sci 41(6):391–407

Summary 259

http://dx.doi.org/10.1145/2133806.2133826
http://dx.doi.org/10.1145/2133806.2133826

Elberrichi Z, Rahmoun A, Bentaalah MA (2008) Using WordNet for text categorization. Int Arab J
Info Technol 5(1):16–24

Feldman R, Dagan I (1995) Knowledge discovery in textual databases (KDT). KDD
Feldman R, Sanger J (2007) The text mining handbook: advanced approaches in analyzing

unstructured data. Cambridge University Press, Cambridge, UK
Finkel JR, Grenager T, and Manning C (2005) Incorporating non-local information into

information extraction systems by gibbs sampling. In: ACL ’05, proceedings of the 43rd annual
meeting on association for computational linguistics, Association for Computational
Linguistics Morristown, NJ, USA, pp 363–370

Fu Y, Bauer T, Mostafa J, Palakal M, Mukhopadhyay S (2002) Concept extraction and association
from Cancer literature. Eleventh international conference info knowledge management
(CIKM2002)/Fourth ACM interenational workshop web info data management (ACM
WIDM 2002). McLean, VA, USA, pp 100–103

Girju R, Badulescu A, Moldovan D (2006) Automatic discovery of part-whole relations. Comput
Linguist 32(1):83–135

Green SJ (1999) Building Hypertext Links By Computing Semantic Similarity. IEEE Trans Knowl
Data Eng 11(5):713–730

Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing?
Int J Hum Comput Stud 43(5):907–928

Hamilton WL, Leskovec J, Jurfsky D (2016) Diachronic word embeddings reveal statistical laws
of semantic change. In: Proceedings of the 54th annual meeting of the association for
computational linguistics, Berlin, Germany, August 7–12, 2016, Association for
Computational Linguistics, pp 1489–1501. http://aclweb.org/anthology/P16-1141

Harrington B (2009) ASKNet: automatically creating semantic knowledge networks from natural
language Text, Ph.D. thesis, University of Oxford

Harrington B, Wojtinnek PR (2011) Creating a standardized markup language for semantic
networks. In: Proceedings of the 5th ieee international conference on semantic computing

Hotho A, Staab S, Gerd S (2003) Wordnet improves text document clustering. In: Proceedings of
the SIGIR 2003 semantic web workshop of the 26th annual international ACM SIGIR
conference, Toronto, CA

Hristovski D, Friedman C, Rindflesch TC, Peterlin B (2006) Exploiting semantic relations for
literature-based discovery. AMIA Annu Symp Proc 2006:349–353

Hsu MH, Tsai MF, Chen HH (2008) Combining WordNet and ConceptNet for automatic query
expansion: a learning approach. In: Proceedings of the 4th asia information retrieval conference
on information retrieval technology, Springer Harbin, China, pp 213–224

Huang M, Zhu X, Li M (2006) A hybrid method for relation extraction from biomedical literature.
Int J Med Informatics 75(6):443–455

Hung C, Wermter S (2004) Neural network based document clustering using WordNet ontologies.
Int J Hybrid Intell Syst 1(3–4):127–142

Koike A, Niwa Y, Takagi T (2005) Automatic extraction of gene/protein biological functions from
biomedical text. Bioinformatics 21(7):1227–1236

Lin H, Yang Z, Li Y (2011). Protein-protein interactions extraction from biomedical literatures.
biomedical engineering, trends, research and technologies. In: Olsztynska S (ed). ISBN:
978-953-307-514-3

Majoros WH, Subramanian GM, Yandell MD (2003) Identification of key concepts in biomedical
literature using a modified Markov heuristic. Bioinformatics 19(3):402–407

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words
and phrases and their compositionality. In: Advances in neural information processing systems,
pp 3111–3119

Miller GA, Beckwith R, Fellbaum C, Gross D, Miller K (1990) WordNet: an on-line lexical
database. Int J Lexicogr 3(4):235–244

Navigli R, Ponzetto SP (2012) BabelNet: The automatic construction, evaluation and application
of a wide-coverage multilingual semantic network. Artif Intell 193:217–250

260 6 Text Mining with Unstructured Text

http://aclweb.org/anthology/P16-1141

Rindflesch TC, Fiszman M (2003) The interaction of domain knowledge and linguistic structure in
natural language processing: interpreting hypernymic propositions in biomedical text.
J Biomed Inform 36(6):462–477

Rindflesch TC, Tanabe L, Weinstein JN, Hunter L (2000) EDGAR: extraction of drugs, genes and
relations from the biomedical literature. Pac Symp Biocomput pp 517–528

Rodriguez MDB, Gomez-Hidalgo JG, Diaz-Agudo B (1997) Using WordNet to complement
training information in text categorization. In: Milkov R, Nicolov N, Nikolov N (ed) Second
international conference on recent advances in natural language processing (RANLP), John
Benjamins Publishing, Stanford CA USA

Shehata S, Karray F, Kamel M (2007) A concept-based model for enhancing text categorization,
KDD

Snow R, Jurafsky D, Ng AY (2004) Learning syntactic patterns for automatic hypernym
discovery. In: Advances in neural information processing systems (NIPS 2004), Vancouver,
British Columbia

Song M, Yu HJ, Han WS (2011) Combining active learning and semi-supervised learning
techniques to extract protein interaction sentences. BMC Bioinform 12(Suppl):12

Stillings NA, Feinstein MH, Garfield JL, Rissland EL, Rosenbaum DA, Weisler SE, Baker-Ward
L (1987) Cognitive science: an introduction. MIT Press, Cambridge, MA

Tseng YH, Lin CJ, Lin YI (2007) Text mining techniques for patent analysis. Inf Process Manage
43(5):1216–1247

Wang JZ, Taylor W (2007) Concept forest: a new ontology-assisted text document similarity
measurement method. In: Proceedings of the IEEE/WIC/ACM international conference on web
intelligence, IEEE Computer Society, pp 395–401

Wilkowski B, Fiszman M, Miller CM, Hristovski D, Arabandi S, Rosemblat G, Rindflesh TC
(2011). Graph-based methods for discovery browsing with semantic predications. In: AMIA
Annual Symposium Proceedings, pp 1514–1523

Yang H Callan J (2009) A metric-based framework for automatic taxonomy induction. In:
Proceedings of the joint conference of the 47th annual meeting of the acl and the 4th
international joint conference on natural language processing of the AFNLP, vol 1. Suntec,
Singapore, Association for Computational Linguistics, pp 271–279

Yang Z, Lin H, Li Y (2010) BioPPISVMExtractor: a protein–protein interaction extractor for
biomedical literature using SVM and rich feature sets. J Biomed Inform 43(1):88–96

Zelikovitz S, Hirsh H (2000) Improving short text classification using unlabeled background
knowledge to assess document similarity. In: Proceedings of the seventeenth international
conference on machine learning

Zheng HT, Kang BY, Kim HG (2009) Exploiting noun phrases and semantic relationships for text
document clustering. Inf Sci 179(13):2249–2262

Zhou D, He Y (2008) Extracting interactions between proteins from the literature. J Biomed
Inform 41(2):393–407

Zhou X, Zhang X, Hu X (2006) Maxmatcher: biological concept extraction using approximate
dictionary lookup. In: PRICAI 2006 Aug 9-11, pp 1145–1149

References 261

	6 Text Mining with Unstructured Text
	Abstract
	Natural Language Processing
	Modeling and Analytic Tools

	Information Extraction
	Extracting Entities from Text
	Extracting Entities from Biomedical Literature
	Extracting Relations from Text
	Named Entity Recognition
	Shallow Parsing
	Negation
	Feature Construction from Defined Rules
	ML-Based Classification

	Well-Known Relation Extraction Tools
	Open IE
	Extracting Semantic Predications with SemRep

	Topic Modeling
	Latent Semantic Indexing
	Latent Dirichlet Allocation (LDA)

	Semantic Networks and Ontology
	WordNet
	BabelNet

	Deep Learning
	Word Embeddings

	Summary
	References

