
Chapter 4
Measuring Scholarly Impact

Abstract The ability to measure scholarly impact, ranging from individual sci-
entists to an institution of researchers, is crucial to both research assessment and the
advance of science itself. In this chapter, we summarize an array of fundamental and
widely used concepts and computational methods for measuring scholarly impact as
well as identifying more generic properties such as semantic relatedness, burstness,
clumping, and centrality. Most of these common ideas are applicable to a wide
variety of needs as long as we can identify the profound issues that are in common
across distinct phenomena. Normalizations of metrics across scientific fields and the
year of publication are discussed with concrete examples.

Introduction

Quantitative measures of scholarly impact are rooted in the measurement of infor-
mation, uncertainty, proximity, novelty, rarity, connectivity, and other numerous
indicators of significance. Some of these indicators and domain independent,
whereas others are domain specific (Piffer 2012, Shwed and Bearman 2010).

The pragmatic question to many of these diverse metrics is whether and to what
extent we may learn something useful or something new from the input or signals
we receive, including text and other types of messages. The value of information is
that it brings changes to our knowledge or our belief. This property can be seen as
the fitness of information (Chen 2014). Information entropy (Shannon 1948) can be
seen as a measure of the potential of what we may learn. Equivalently, it can be
seen as a measure of the amount of uncertainty that can be resolved. For example, a
dialogue between a physician and a patient reduces the initial entropy as various
uncertainties are progressively narrowed down. An assumption that has been
commonly seen in the reasoning of many information metrics is that we are more
likely to learn something from a relatively rare event or word than from a common
one. We expect to find creative ideas in areas that have not been well studied. We
expect that boundary spanning may inspire extraordinary ideas.
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Another strategy is to measure the importance or saliency of something by
comparing it to a baseline. The strategy has been used in novelty detection,
intrusion detection, burst detection, measuring rarity, and identifying outliers. The
importance can be also measured in terms of connectivity, such as degree centrality,
betweenness centrality, or eigenvector centrality.

Semantic similarities are often measured with reference to an existing ontolog-
ical structure or a taxonomy. Ontology-based semantic similarity measures include
path-based such as Wu and Palmer (1994), information-content-based such as
Resnik (1995), feature-based such as Tversky (1977), and other types. WordNet is
one of the most popular resources of choice in defining semantic similarity
measures.

The ultimate utility of an indicator is to make easy and simple comparisons.
Normalization is essential when we need to assure different measurements are
comparable. The examples included in this chapter are representative and influential
because they are designed based on some of the most fundamental principles that
have been used in the design of a wide variety of indicators.

Information Metrics

Information Content

The concept of information content (IC) is used in a wide variety of many infor-
mation metrics as well as on its own. More importantly, the principles behind the
quantitative measure are applicable to a broad range of scenarios. The idea is to
measure how much we can learn from a source of information. When we receive a
message, the message may tell us nothing that we don’t already know. On the other
hand, a message may turn what we believe or what we think we know upside down!

Given a transmitted message m of information, its information content IC(m) is
defined as the negative of the log likelihood of the message.

IC mð Þ ¼ �log2 p mð Þ

As shown in Fig. 4.1, as the probability of an event increases, the value of IC
decreases. In particular, the IC value is the lowest for very common events, whereas
the IC values are larger for rare events.

Shannon entropy quantifies the information in a message as something that
would be new to the recipient of the message. If a message brings nothing new to
the recipient, then the message does not carry any information as far as the recipient
is concerned. Shannon entropy, or information entropy, is defined in terms of
information content across all the possible events of a random variable X:
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H Xð Þ ¼ �
Xn
i¼1

p xið Þlog p xið Þð Þ ¼
Xn
i¼1

p xið ÞIC xið Þ

The value of the term p(xi) � IC(xi) amplifies the small probability of a rare
event with a large IC value but suppresses the large probability of a common event
with a small IC value.

In general, we expect to learn a lot from rare events than a common event. Since
we probably haven’t experienced a rare event, it is likely that information associ-
ated with the rare event is new to our cognitive or belief system. Measuring
interestingness or a degree of surprise often adopts similar principles.

Consider a dataset of science mapping publications we used in a systematic
review (Chen 2017). The dataset contains 17,731 publications. These publications
are indexed by 56,159 distinct keywords. From the relative frequency of a keyword,
the information content of the keyword with respect to this particular dataset is
calculated as −log2(fk/fN). We can use the following MySQL query to generate
frequencies, relative frequencies, and information content of top 50 keywords to
illustrate the concept of IC.

SELECT count(*), count(*)/56159, -log2(count(*)/56159), keyword
FROM keywords 
WHERE project='sciencemapping17731' AND type!='sc' 
GROUP BY keyword 
ORDER BY count(*) DESC
LIMIT 50;

Table 4.1 list top 10 most common keywords. Keywords in this group have the
lowest IC values because they occurred most frequently. Indeed, in the context of
science mapping, keywords such as science, model, system, and impact do not tell
us anything new, in part because they are field-independent words and in part they
are almost applicable to any science mapping articles. Although keywords such as

Fig. 4.1 Information content of top 50 most common keywords in 17,731 science mapping
articles
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citation analysis and information visualization are field-dependent, their frequent
occurrences serve little more than reinforce what we already know.

Table 4.2, generated by the MySQL query below, illustrates the information
content scores of low-frequency keywords. In this dataset, keywords appear 10
times have a relevant frequency of 0.0002 and the information content of 12.4553.
The ICs of keywords appeared for 5 times have even higher ICs of 13.4553. The
ICs of 15.7773 are the highest possible for this particular dataset for keywords that
appeared only once. The highest possible value depends on the total number of
distinct keywords in the set.

Table 4.1 Information content of the most common keywords in a set of science mapping articles

Frequency (F) Relative F (RF) IC-log2(RF) Keyword

1506 0.0268 5.221 Citation analysis

1026 0.0183 5.774 Science

724 0.0129 6.277 Model

716 0.0127 6.293 Information visualization

714 0.0127 6.297 System

603 0.0107 6.541 Time-domain analysis

477 0.0085 6.879 Impact

475 0.0085 6.885 Network

471 0.0084 6.898 Bibliometrics

425 0.0076 7.046 Journal

Table 4.2 Information contents of low-frequency keywords

Frequency Relative frequency Information content Keyword

10 0.0002 12.4553 Latent semantic analysis

10 0.0002 12.4553 Explanation

10 0.0002 12.4553 Health policy

10 0.0002 12.4553 Randomized controlled trial

10 0.0002 12.4553 Nonlinear-system

5 0.0001 13.4553 Citation classic

5 0.0001 13.4553 Cross-section

5 0.0001 13.4553 Circuit modeling

5 0.0001 13.4553 Semantic network

5 0.0001 13.4553 Xylanase

1 0.0000 15.7773 Dysplastic nevus

1 0.0000 15.7773 Saturation time

1 0.0000 15.7773 Fiber-optics sensor

1 0.0000 15.7773 Ale metaanalysis

1 0.0000 15.7773 Terrorist

142 4 Measuring Scholarly Impact



SELECT * 
FROM (

SELECT 
count(*) AS c1, 
count(*)/56159 AS c2, 
-log2(count(*)/56159) AS c3, 
keyword AS c4 

FROM keywords 
WHERE project='sciencemapping17731' AND type!='sc' 
GROUP BY keyword 
ORDER BY count(*)

) AS a 
WHERE c1=10 
LIMIT 10;

Keywords such as latent semantic analysis and randomized controlled trial are
less informative as keywords such as citation classic and semantic network, which
in turn have lower information contents than dyplastic nevus, ale metaanalysis, and
terrorist (Table 4.2).

Year-by-Year Labels of a Cluster

The evolution of a cluster may demonstrate various subthemes over time. CiteSpace
supports a function to extract terms from each year’s publications to characterize
the nature of a cluster on a year-by-year basis (Fig. 4.2). The extraction is based on
the LSI technique. We can select extracted terms from multiple dimensions of the
latent semantic space so as to develop a good understanding of the major
subthemes.

Selecting Noun Phrases with LSI

Figure 4.3 reveals further details of the biological terrorism cluster by extracting
title terms from articles published in each year. Terms from the first two dimensions
of the LSI latent semantic space are inspected here. Changes in these terms over
time may give us additional insights into the evolution of the cluster.

The more detailed year-by-year terms are shown in Table 4.3. Top five terms for
the largest three dimensions of the latent semantic space are listed for each year
between 1999 and 2003, indicating that the cluster’s research fronts started in 1999.
The terms bioterrorism and biological terrorism appeared persistently in the first
four years of the 5-year period. It seems that it reached its peak in 2001 because
both the first and second dimensions are led by the semantically equivalent terms.
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Fig. 4.2 Generating year-by-year labels of a cluster in CiteSpace

Fig. 4.3 Year-by-year labels of the biological terrorism cluster
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Selecting Indexing Terms with LSI

Table 4.4 shows indexing terms extracted as the year-by-year labels for the bio-
logical terrorism cluster. Semantically equivalent terms such as biological warfare,
bioterrorism, and biological terrorism appeared in the 1st, 3rd, 4th, and 5th years of
the cluster. Terms such as disaster management, public health management, and
management clearly identified the primary motivation of the research behind this
cluster. Terms such as subway sarin attack, Tokyo subway, and Chernobyl disaster

Table 4.3 Year-by-year label terms of the biological terrorism cluster

Year Dimension 1 Dimension 2 Dimension 3

1999 Emergency Bioterrorism Chemical

Chemical warfare agents Threat Biological agents

Public health issues Biowarfare Psychiatric aspects

Hazmat Emergency physicians Domestic terrorism

Anthrax Reason Emergency physicians

2000 Sensitive
fluoroimmunoassays

Biological terrorism Tetanus toxin

Development Veterinary medicine Bind

Receptors States Identification

Using
ganglioside-bearing
liposomes

Bioterrorism Novel

Gangliosides Tetanus toxin Small molecule

2001 Bioterrorism Biological terrorism Emergency

Inhalational anthrax Threat Ethics

Clinical presentation New millennium Medical care

Following bioterrorism
exposure

Short-term safety
experience

Chemical

Surviving patients Public health Victims

2002 Bioterrorism Terrorism Food

Agents Chemical weapons Thought

Biological weapons Warfare Deployment locations

Bacterial pathogens Public health law Vulnerability

Terrorist attacks Common goods Terrorist attack

2003 Health care facility
decontamination

Medical emergency Report

Protective equipment Chemical terrorist attack Drexel university
emergency department

Recommendations Evaluations Terrorism preparedness
consensus panel

Personnel Teams Radiation disasters

Evaluations Terrorism preparedness
consensus panel

Children
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indicate the influence of these attacks or disasters on research in bioterrorism over
multiple years.

Semantic Relatedness

Two concepts are related if there is an incident or an event that involves both of
them. A bank and a robber can be related by a bank robbery instance. Relatedness is
a relation that connects two entities or abstract concepts. Association is commonly

Table 4.4 Year-by-year cluster labels extracted from indexing terms of the biological terrorism
cluster

Year Dimension 1 Dimension 2 Dimension 3

1999 Disaster management Nerve agent Mental health

Subway sarin attack Epidemiology Mass hysteria

Blast injury Tokyo subway Crisis support

Bomb explosion Experimental inhalation
anthrax

Longitudinal
perspective

Decontamination Biological warfare Organophosphate
pesticide

2000 Anthrax Outbreak Colorimetric detection

Virus Weapon Cholera toxin

Human volunteer Warfare Fluorescence

Protective antigen History Deactivation

Pneumonic Management Membrane receptor

2001 Public health
management

Bioterrorism Biological weapon

Biological warfare Warfare agent Bio terrorism
Contamination Biological terrorism Epidemics

Biologic weapon Biologic weapon Warfare agent

Infectious disease Identification Bioterrorism
2002 Bioterrorism Public health Biological terrorism

Inhalational anthrax Contamination Preparedness

Public health
management

Surveillance Mass destruction

States Escherichia coli Septic shock

Tuberculosis Transmission Subway sarin attack

2003 Disaster management Preparedness Hospital preparedness

Subway sarin attack Chernobyl disaster Chernobyl disaster

Hazardous materials
incident

Breast cancer Disaster management

Patient Atomic bomb survivor Bioterrorism
Breast cancer Risk factor Recommendation
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used to describe a relationship. A semantic relation is defined between two entities.
In natural language, a semantic relation is typically represented by a triple, namely,
the subject, the object, and the relation. In the statement JOHN TEACHES CALCULUS,
JOHN is the subject, CALCULUS is the object, and the verb TEACHES established the
connection. JOHN is a teacher and CALCULUS is a course. At a higher level of
abstraction, a teacher TEACHES a course. The two concepts of teacher and course are
semantically related.

Scientific articles routinely include a section on related work. Authors often
discuss previous studies that addressed the same problem in some ways, but they
are not considered as similar studies. They are related to each other because they
more or less addressed the same problem.

The similarity between two concepts implies that we are comparing the two
concepts in terms one or more attributes. Two smartphones may be similar because
of their appearance such as size or color or internal design such as apps or controls.

The concept of semantic similarity is typically defined based on an underlying
ontology or taxonomy, where concepts are organized to reflect their semantic
relations. Notable sources such as WordNet are widely used in related research.

Semantic relatedness between two concepts can be established in a given domain
ontology. If the two concepts can be connected with a path in the ontological
representation, then the semantic relatedness is evident.

Semantic similarity is a special case of semantic relatedness. Two semantically
related concepts may not be semantically similar, whereas two semantically similar
concepts must be semantically related. In the earlier example, a bank and a robber
are semantically related, but it does not make much sense if we say that they are
similar in terms of some attributes or aspects.

Resnik’s Semantic Similarity

The most influential work on measuring semantic similarities is the work by Resnik
(1995). His approach makes use of the IS-A semantic links in a taxonomy, namely
the WordNet, and measure the semantic similarity based on the information content
over the most relevant semantic structure. The results were very encouraging, with a
correlation of 0.79 to the upper bound of 0.90 of human subjects.

Given a taxonomy of concepts, the semantic similarity between two nodes in the
taxonomy can be estimated in many ways. Here we consider IS-A links only in the
taxonomy. The most straightforward way is to measure the distance between the
two concepts. The shorter the connecting path between them, the more similar the
two concepts are. If there are multiple paths, the length of the shortest path should
be used to represent the semantic similarity. In fact, this edge-counting approach
was proposed by Rada and Bicknell (1989). However, each link in a taxonomy is
usually considered to have a length of 1 unit. All the links have this property
regardless which part of the taxonomy they belong to. In a taxonomy like the
WordNet, the semantic strength of a link near to the top, i.e. the broadest possible
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term may differ considerably from the semantic strength of a link near to the bottom
of the taxonomy, where concepts are much more concrete and specific.

Intuitively, the edge-counting similarity is sensitive to the concepts’ positions in
the taxonomy. Such a sensitivity is not desirable because a similarity measure
should not depend on additional factors. Resnik offered an alternative method to
measure semantic similarity over a taxonomy of IS-A relations. His solution is
based on the notion of information content. His approach also makes uses
corpus-based statistics to estimate the probability of a concept. Connecting to the
underlying data source makes it possible to use the same taxonomy with multiple
contexts.

The semantic similarity between two concepts should reflect the extent to which
they share information. In the context of an IS-A taxonomy, concepts are linked by
IS-A relations. The extent to which two concepts share information is equivalent to
finding a concept that subsumes both concepts. In WordNet, COIN subsumes both
NICKEL and DIME. The semantic similarity between NICKEL and DIME is therefore
reflected by the concept of COIN. Since CASH subsumes COIN, CASH indirectly
subsumes both NICKEL and DIME as well. Both COIN and CASH are called subsumers
of NICKEL and DIME. Which subsumer, CASH or COIN, makes the best candidate to
represent the shared information content?

COIN is more specific than CASH. COIN has less irrelevant information than CASH.
For example, CASH subsumes BILL as well as COIN. The information about BILL is
irrelevant to the similarity between two COINs. Thus, the shared information content
should be represented by the subsumer that has the lowest position on the taxon-
omy. The lower a concept on the taxonomy, the more specific it is.

The criteria discussed so far are applicable to the edge-counting method as well.
The edge-counting method selects the shortest path that connects two concepts in
question, for example, NICKEL—COIN—DIME. If there is a longer path connecting
the two concepts, then the longer path includes broader concepts rather than nar-
rower concepts than the shortest path, for example, NICKEL—COIN—CASH—COIN—
DIME.

In order to avoid the unreliability issues with the edge-counting method, Resnik
introduced probabilities of concepts in measuring semantic similarities. For each
concept c in the underlying taxonomy, p(c) is the probability of encountering an
instance of the concept. A concept positioned higher up in the taxonomy should
have a higher probability than a concept positioned below it. If c1 IS-A c2 in the
taxonomy, e.g. DIME IS-A COIN, then p(c1) � p(c2). Thus, p(DIME) � p(COIN).
The root concept r of the taxonomy should have p(r) = 1.

The information content IC of a concept c is: −log2 p(c). Since the probability of
the broadest concept is 1, the lowest value of information content is 0. All other
values of information content would be positive. Theoretically, there is no upper
limit.

The semantic similarity between concepts c1 and c2 is the information content
shared by the two concepts, which is in turn represented by the information content
of the concepts that subsume the two concepts in the taxonomy
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sim c1; c2ð Þ ¼ maxc2S c1;c2ð Þ � log p cð Þð Þ

where S(c1, c2) is the set of concepts that subsume both c1 and c2. Since the
probability of a concept on the taxonomy is a monotonic along the IS-A links, the
information content of a parent concept is less than the information content of its
child concept, e.g. I(CASH) = −log p(CASH) � log p(COIN) = I(COIN). Thus, the
concept that reaches the maximum information content must be the subsumer that
has the lowest position in S(c1, c2), or equivalently, the most specific concept that
subsumes c1 and c2.

Resnik (1995) estimated the probability of a concept based on the Brown Corpus
of American English, which is a collection of 1 million words of various genres of
text, including news articles and scientific fictions. The occurrences of a word are
counted towards all its parent concepts as well as its own concept in the taxonomy
because an occurrence of DIME is also an occurrence of COIN and that of CASH. The
probability of a concept is then defined as the relative frequency of the corre-
sponding noun to the total number of nouns in the corpus.

Resnik validated his information content-based semantic similarity measure
based on the assumption that a good similarity measure should agree with similarity
ratings made by human subjects. Computational similarity measures should be
consistent with similarity ratings based on our intuitions. He replicated an experi-
ment designed by Miller and Charles. In Miller and Charles’ original experiment,
30 pairs of nouns were given to 38 undergraduate subjects to rate “similarity of
meaning” on a scale from 0, which means no similarity, to 4, which means perfect
synonymy. These nouns were selected based on a previous study so that various
degrees of similarity are covered by the set. Resnik gave the same 30 pairs of nouns
to 10 computer science students or postdocs at the University of Pennsylvania and
used exactly the same instructions. The average rating for each pair provides an
estimate of the semantic similarity of the pair as judged by human.

Resnik found a correlation of 0.96 between the mean ratings in his experiment
and in Miller and Charles’ one. In terms of correlations with human judgements in
Miller and Charles’ experiments, the new human ratings are the nearest
(r = 0.9015), followed by the information content (r = 0.7911), then by probability
(r = 0.6671), with the edge counting the lowest (r = 0.6645).

Resnik’s work is influential. Researchers have developed a number of variations
based on Resnik’s original work.

Other Measures of Semantic Similarity

WordNet Similarity for Java (WS4J)1 is a Java library developed by Hideki Shim
when he was a doctoral student at Carnegie Mellon University. It implements

1http://code.google.com/p/ws4j/.
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several algorithms to compute semantic relatedness or similarity algorithms based
on semantic relations in WordNet. An online demo is available at http://ws4jdemo.
appspot.com. It appears that the demo version is somewhat better than the Java
library. The examples below are based on the online version.

One can enter two words to the WS4J Demo and if they are found in WordNet,
then the demo will report eight types of similarity measures for the pair of words.
For instance, we can enter dime and nickel to the WS4J demo interface (Fig. 4.4).
Note that nickel has multiple meanings, or senses in WordNet. Its meaning as a coin
is the second sense.

WS4J Demo reports the structural details for each similarity, including common
subsumers of concepts in WordNet. Figure 4.5 illustrates information that can be
reconstructed from WS4J’s outputs. Information of the local structure is useful for
understanding basic concepts used in this group of algorithms. For instance, the
Lowest Common Subsumers (LCS) of dime and nickel is currency. The shortest
path connecting dime and nickel has a length of 3. Both dime and nickel have the
depths of 11. IC(c) is the information content of the concept c. Thus, the subsumer
coin has a lower information content, IC(coin) of 9.0577, than that of dime, which
has IC(dime) of 11.0726. In this example, using the third sense of the word nickel,
nickle3 in WordNet, WUP(dime, nickel2) = 0.9091 and RES(dime,
nickel2) = 9.0577.

Fig. 4.4 WS4J Demo at http://ws4jdemo.appspot.com
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Table 4.5 summarizes the algorithms for computing semantic similarities on
WordNet. When applicable, we give sim(dime, nickel) as a concrete example to
illustrate each algorithm.

Table 4.6 shows how various semantic similarity algorithms measure the
semantic relatedness of 30 pairs of words and how they are correlated with ratings
made by human subjects. The 30 pairs of words are the same set used by Miller and
Charles (1991) in their experiment. They obtained similarity ratings from 38 human
subjects on these pairs. Resnik duplicated the experiment in 1995 with 10 subjects.
We consider the average rating from the Miller and Charles’ experiment as the gold
standard for the comparison. The comparison simply aims to see which algorithm
behaves most like human raters.

Not surprisingly, human ratings in Resnik’s experiment in 1995 have a strong
correlation (r = 0.79) with human ratings obtained in Miller and Charles’s exper-
iment. This correlation is stronger than that from any of the computational algo-
rithms. The algorithm that is the nearest to human ratings in Miller and Charles’
experiment is the Resnik’s similarity (RES), with a correlation of 0.61. RES is

Fig. 4.5 The local structure of dime, nickel, and their LCS in WordNet and intermediate measures
used in semantic similarity algorithms
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Table 4.5 Semantic similarity algorithms with sim (dime, nickel) as an illustrative example

GS Reference Description

2904 Wu and Palmer (1994) WUP s1; s2ð Þ ¼ 2�dLCS:d
min

dlcs2dLCS
s1:d�dlcs:dð Þþ min

dlcs2dLCS
s2:d�dlcs:dð Þ

WUP dime; nickelð Þ ¼ 2�10
11þ 11 ¼ 0:9090

wheredLCS s1; s2ð Þ ¼ argmax
lcs2LCS

lcs:dð Þ
The Wu-Palmer similarity measures the semantic
relatedness of two synsets s1 and s2 in WordNet with
respect to the LCS—the least common subsumer of s1
and s2. For a synset s, s.d is its depth in WordNet
The range of the WUP is [0, 1]

3146 Jiang and Conrath (1997) JCN s1; s2ð Þ ¼ 1
IC s1ð Þþ IC s2ð Þ�2�IC LCS s1 ;s2ð Þð Þ

JCN dime; nickelð Þ ¼ 1
11:0726þ 11:7658�2�9:0577 ¼ 0:2117

The range of JCN is [0, +∞)

1891 Leacock and Chodorow
(1998)

LCH s1; s2ð Þ ¼ � ln length LCS s1 ;s2ð Þð Þ
2 MaxDepth nð Þð Þ

� �
LCH dime; nickelð Þ ¼ � ln 3

2�20
� � ¼ 2:5903

LCH is defined based on the shortest path between the
two synsets and scale the path length by the maximum
depth of the taxonomy
The range of JCN is [0, +∞)

4312 Lin (1998) LIN s1; s2ð Þ ¼ 2�IC LCS s1 ;s2ð Þð Þ
IC s1ð Þþ IC s2ð Þ

LIN dime; nickelð Þ ¼ 2�9:0577
11:0726þ 11:7658 ¼ 0:7932

Similar to JCN, but the range of LIN is scaled to [0, 1]

3602 Resnik (1995) RES s1; s2ð Þ ¼ ICðLCS s1; s2ð Þ
RES dime; nickelð Þ ¼ IC coinð Þ ¼ 9:0577
RES defined the similarity between two synsets to be the
information content of their lowest super-ordinate (most
specific common subsumer)
The range of RES is [0, +∞)

PATH Rada and Bicknell (1989) PATH s1; s2ð Þ ¼ 1
length shortestpath s1 ;s2ð Þð Þ

PATH dime; nickelð Þ ¼ 1
3 ¼ 0:3333

PATH counts the number of nodes along the shortest path
between the senses in the IS-A hierarchies of WordNet
The range of Path is [0, +∞)

854 Banerjee and Pedersen
(2002), Lesk (1986)

LESK s1; s2ð Þ ¼ sum dictionary definition overlapsð Þ
LESK dime; nickelð Þ ¼ 149:0
LESK computes the relatedness of two words in terms of
the extent to which their dictionary definitions
overlap. Banerjee and Pedersen (2002) extended this
notion to use WordNet as the dictionary for the word
definitions
The range of Path is [0, +∞)

1087 Hirst and St-Onge (1998) HSO s1; s2ð Þ ¼ 8� distance� change Of Direction
HSO dime; nickelð Þ ¼ 8� 2� 1 ¼ 5:0
HSO(s1, s2) = c − length(path(s1, s2)) − k * changes of
directions (s1, s2)
Links to be considered include 2 horizontal links, upward
links, downward links
The range of RES is [0,16]

The GS column is the citation count on Google Scholar as of July 21, 2017
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closely followed by WUP (r = 0.59). At the other end of the scale, JCN and LESK
yielded the lowest correlations with Miller and Charles. If we use human ratings in
Resnik’s 1995 experiment, RES and WUP would have a tie (r = 0.58).

To our knowledge the largest gold standard of human ratings of similarity is the
RG-65 test collection, containing similarity ratings of 65 pairs of words by 51
subjects on a scale of 0–4. The study was published in 1965 by Rubenstein and
Goodenough.2 Good enough!

The ACL wiki page lists a series of algorithms tested with the RG-65.
Algorithms are ranked by Spearman and Pearson correlation coefficients. The
highest correlation is achieved by an algorithm of Pilehvar and Navigli in 2015 with
the Spearson correlation of 0.92 and Pearson correlation of 0.91. Several algorithms
we have discussed earlier are included in the list, including HSO (0.813/0.732 by
Spearson/Pearson correlations), JCN (0.804/0.731), LIN (0.788/0.834), and RES
(0.731/0.800), and LSI (0.609/0.644).

In summary, as computational linguistics advances and a wide variety of
resources become accessible, measuring semantic similarities has become
increasingly powerful and reliable. For instance, estimating the probability of a
word with the large pool of documents on Google is much more reliable than
estimating it using a smaller collection of documents. The basic principles for
estimating the semantic relatedness of a pair of words have fostered a large number
of algorithms. Each of them has unique strengths.

Concentration

Burstness

The burstness of a variable X measures abrupt increases of the value of X over a
specific period of time. Although the majority of research on burstness has focused
on X as a scalar variable, the concept is intuitive enough to be expanded to a
variable of multiple dimensions. In the real world, tsunamis would be a good
example of a burst in a three dimensional space.

An Automaton

Kleinberg (2002) proposed a burst detection approach at the 8th ACM international
conference on Knowledge Discovery and Data Mining (KDD). He models bursts in
streams of text such as streams of email, publications, and speeches. The gap
between the consecutive arrivals of items or events in time measures the frequency

2https://aclweb.org/aclwiki/RG-65_Test_Collection_(State_of_the_art).
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of the events. A burst in a stream of email would be a period of time in which one
receives many emails with small gaps. In contrast, during a period without any burst
one would receive emails with much larger gaps. Such changes of frequencies are
common in everyday life, for instance, distances between cars in rush hours.

Kleinberg’s approach is to model the stream using an automaton that has an
infinite number of states. In each state of the automaton, events take place at a
particular rate. The automaton has states that characterize slow and fast rates of
emission, a signal, an email, or an event. Streams with different rates can exist in the
same system through state transitions. For instance, a slow-moving stream may be
interwoven with a fast-moving stream by transiting from the corresponding
slow-moving state to the state with a faster rate.

More formally, each stream is generated by an exponential distribution. Items in
a stream are emitted probabilistically based on the exponential distribution so that
the gap between one item and the next item follows the exponential density
function f(x) = ae−ax, where a is the rate of the arrival of the next item. If the
automaton has two states that are responsible for emitting items at two different
rates, low and high, then each state is modeled by its own exponential density
function with alow and ahigh, respectively. The state transition probability in the
automaton is p and it will remain in the same state with the probability of 1 −
p. Modeling the sequences with such an automaton is equivalent to determining the
conditional probability of a state sequence based on the exponential density func-
tions. The optimal sequence tends to minimize the number of state transitions; plus,
the sequences would conform well to the corresponding gaps. Transitions to a
high-frequency state will cost in proportional to a parameter gamma, but moving to
a low-frequency will incur no cost.

Kleinberg demonstrated a hierarchical structure of the emails he received. The
hierarchical structure revealed some bursts related to some intensive periods of
emails due to proposal writing activities. His 2002 paper also included an example
of 30 bursts detected from titles of all papers from two conferences between 1975
and 2001, namely SIGMOD and VLDB.

Burst Detection in CiteSpace

CiteSpace supports burst detection of several types of events, including citations to
references and occurrences of keywords and noun phrases. The user may fine-tune
the automaton by adjusting a few parameters of the automaton, including the
minimum duration of a burst episode, state transition costs (gamma), and the ratio
of the emission rates between states (Fig. 4.6).

Table 4.7 illustrates the burst durations of top 48 title terms with the strongest
bursts in terrorism research between 1990 and 2017. The term biological terrorism
has the strongest burst between 1996 and 2004. In terms of the automaton model,
the term belongs to the state that emits articles at the fastest rate. A group of burst
title terms are apparently related to the September 11 terrorist attacks in New York
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Fig. 4.6 The user can modify
the automaton by adjusting a
few parameters

Table 4.7 The burst durations of 48 title terms between 1990 and 2017 in terrorism research

Terms Strength Begin End 1990–2017

Biological
weapons

9.0056 1990 2003

Terrorist bombing 5.0276 1990 2000

Biological
terrorism

12.6472 1996 2004

Nuclear terrorism 6.0997 2001 2006

World trade center
attack

4.742 2001 2001

Public health 4.0079 2001 2003

New york city 9.3846 2002 2007

Islamic terrorism 8.0579 2002 2005

World trade center 5.1459 2002 2004

Mass destruction 4.7395 2002 2006

Military
commissions

4.6649 2002 2003

Terrorist attack 4.2836 2002 2005

New York 4.0418 2002 2006

11th terrorist
attacks

3.9182 2002 2006

Suicide terrorism 4.9632 2003 2010

Mental health 5.4509 2006 2010

Hurricane katrina 4.4913 2006 2010

Global war 4.8608 2007 2009

Southeast Asia 4.5094 2007 2009

World trade center
disaster

4.2206 2008 2011

Northern Ireland 3.4748 2009 2013

Intimate partner
violence

6.4243 2010 2017

(continued)
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City, notably world trade center attack, new york city, and world trade center. The
term world trade center disaster also has a burst between 2008 and 2011. Among
terms with a period of burst within the last three years, three of them with the
strongest bursts are associated with radical violent extremism, including islamic
state, armed conflict, and boko haram. Boko Haram, for instance, is Nigeria’s
militant Islamist group responsible for a series of bombings, assassinations and
abductions.

Figure 4.7 depicts the distributions of three title terms with the strongest bursts
between 1990 and 2017. The term biological terrorism has the strongest burst
between 1996 and 2004. The term Islamic state has the second strongest burst

Table 4.7 (continued)

Terms Strength Begin End 1990–2017

Economic growth 4.3858 2010 2013

State terrorism 4.0271 2010 2011

Systematic review 6.4222 2011 2017

Comparative
analysis

4.3312 2011 2014

Terrorist threats 4.1981 2011 2013

Public opinion 3.6887 2011 2015

Domestic terrorism 3.5188 2011 2017

Terrorist
organization

6.2394 2012 2017

Political violence 5.6434 2012 2014

Terrorist group 5.2063 2012 2015

Civil war 5.1036 2012 2017

Posttraumatic
stress symptoms

4.4322 2013 2017

Risk perception 4.2900 2013 2015

Social media 5.9780 2014 2017

Terrorism research 3.8617 2014 2014

Empirical analysis 3.5993 2014 2017

Lone wolf 3.4993 2014 2015

Islamic state 9.7410 2015 2017

Armed conflict 7.5456 2015 2017

Boko haram 7.1621 2015 2017

European Union 5.1440 2015 2017

Boston marathon
bombing

4.5943 2015 2017

National security 3.8458 2015 2017

Violent extremism 5.1387 2016 2017

Risk factor 4.6470 2016 2017

Terror attacks 3.6236 2016 2017
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between 2015 and 2017. The term New York City has the third strongest burst
between 2002 and 2007. The term New York City appeared later on in titles in 2010
and 2013, but they are not bursts.

Figure 4.8 shows a network visualization of the title terms in terrorism research
between 1990 and 2017. Publications on terrorism research in each year are selected

Fig. 4.7 The distributions of three title terms with the strongest bursts

Fig. 4.8 A cluster view of title terms in terrorism research (1990–2017). Term labels are
proportional to the strength of their burst. Labels starting with # are cluster labels, e.g. #0 terrorist
attacks
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to form the network. The selection is based on the g-index, which is an index that
quantifies scientific productivity. In fact, the g-index is an extension of the h-index
(Hirsch 2005) such that, unlike the h-index, it takes into account citations of these
publications. The g-index was proposed by Leo Egghe (2006). The g-index is
defined such that the most cited g articles have at least g2 citations.

Xg
i¼1

ci � g2

As a node selection criterion in CiteSpace, we modify the g-index with a con-
stant k. When k = 1, the modified g-index is the same as Egghe’s original g-index.
When k > 1, the modified g-index would select more articles than the g-index
because the actual citation count of an article is raised by k times.

k
Xg
i¼1

ci ¼
Xg
i¼1

k � ci � g2

Table 4.8 shows the selection process using the modified g-index. For instance,
in 1999, there are eight articles in our dataset on terrorism research. The g-index for
this group is 3, which means the three most cited articles together have 9 or more
citations. If we set k as 1, then the most cited three papers will be selected out of the
total of eight. If we would like to include more articles and set k to 20, then all eight
articles meet the condition, i.e. 20 times the total citations of the eight articles are no
less than 9 citations. As another example, our dataset includes 106 articles pub-
lished in 1999. The citations of these articles yielded a g-index of 4, i.e. the subtotal
of the four most cited articles is greater than or equal to 16. 25 articles become
qualified based on k of 20 instead of 1. As the third example, our dataset has 2957
articles published in 2016 on topics relevant to terrorism research. The g-index is
11. By using k of 20, CiteSpace selected title terms from 79 articles instead of 11.
Thus, using a k greater than 1 allows us to include more articles than using the
original g-index.

Figure 4.8 shows a cluster view visualization of a network of co-occurring title
terms between 1990 and 2017. The top level aggregates in the visualization are
clusters. The label of each cluster starts with the character #, for example, #0
terrorist attacks. The size of a title term is proportional to the strength of a burst
detected. The larger the node label size, the stronger a burst it has. Thus the one
with the strongest burst is the term with the largest font size—biological terrorism.
The second strongest burst is with Islamic state. The third one is with New York
City.

Burst detection is a very valuable technique. It helps us to focus on the important
development dynamically. It is also applicable to many types of events. In addition
to detect bursts in title words, we can also apply the technique to identify bursts in
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citations and bursts in institutions and individuals that are particularly active on
specific topics. Unlike many popular indices of scientific productivities such as the
h-index and the g-index, burst detection can tell us much more about the dynamics
of the underlying process so that one can better understand how the process pans
out. Burst detection can help us answer many specific questions: does an individual
researcher have a burst in terms of the number of articles he/she published? If so,
when did the most recent episode of burst begin? How long did the period of burst
last? Is the researcher still at a state with a high productivity?

Table 4.8 The number of articles selected by the g-index each year to construct the network of
title terms

Time slice g-index Articles Selected articles Links/all

1990–1990 g = 3, k = 20 8 8 3/3

1991–1991 g = 2, k = 20 12 12 8/8

1992–1992 g = 2, k = 20 15 15 14/14

1993–1993 g = 2, k = 20 11 11 5/5

1994–1994 g = 2, k = 20 21 21 23/23

1995–1995 g = 2, k = 20 21 21 11/11

1996–1996 g = 2, k = 20 42 21 6/6

1997–1997 g = 3, k = 20 68 22 4/4

1998–1998 g = 3, k = 20 49 22 7/7

1999–1999 g = 4, k = 20 106 25 4/4

2000–2000 g = 4, k = 20 95 27 5/5

2001–2001 g = 5, k = 20 163 35 5/5

2002–2002 g = 10, k = 20 895 65 37/37

2003–2003 g = 8, k = 20 1009 58 22/22

2004–2004 g = 9, k = 20 1197 64 35/35

2005–2005 g = 7, k = 20 1488 58 17/17

2006–2006 g = 9, k = 20 1595 66 18/18

2007–2007 g = 7, k = 20 1682 60 16/16

2008–2008 g = 9, k = 20 1717 66 20/20

2009–2009 g = 9, k = 20 1796 62 12/12

2010–2010 g = 7, k = 20 1830 57 17/17

2011–2011 g = 10, k = 20 2065 70 28/28

2012–2012 g = 7, k = 20 1848 59 7/7

2013–2013 g = 7, k = 20 1797 57 6/6

2014–2014 g = 8, k = 20 1800 59 21/21

2015–2015 g = 8, k = 20 2191 64 22/22

2016–2016 g = 11, k = 20 2957 79 28/28

2017–2017 g = 6, k = 20 931 46 10/10
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Log-Likelihood Ratio

Many commonly used statistical methods such as z-standard scores assume that the
data is normally distributed. When dealing with text analysis, however, it is most
likely that the normal distribution assumption is no longer valid, especially when
we focus on terms that represent emerging topics or novel concepts. Researchers
have shown that statistics based on the normal distribution assumption in such cases
often overestimate the occurrences of rare words and that much of the content
bearing words, technical jargons, and domain-specific terminologies in scientific
publications are rare in the pool of English words in general.

Ted Dunning is currently the Chief Application Architect at MapR. Nearly
25 years ago, in 1993, he wrote an influential paper on text analysis (Dunning
1993). In the paper, he demonstrated the advantages of log-likelihood ratio tests for
identifying relatively rare but significant patterns in text, for example surprising and
unexpected combinations of words. His article now has 2773 citations on Google
Scholar. With this amount of citations, the paper would be very close to the peak of
the Mount Kilimanjaro. As a reference the 2006 JASIST paper on CiteSpace (Chen
2006) now has 1716 citations on Google Scholar.

Likelihood Ratio

Parametric and nonparametric are two board classifications of statistical procedures.
One way to differentiate one from another is whether a statistical procedure relies
on any assumptions about a probability distribution from which the data were
drawn. The bottom line is whether a statistic procedure makes any use of such an
assumption. For instance, to calculate z-scores, or standard scores, we need to know
the mean and standard deviations of the underlying distribution of the data. The
mean and standard deviations only make sense if the data were normally dis-
tributed. Therefore, the statistical procedure regarding the z-scores is parametric. In
contrast, nonparametric tests are also called distribution free because they do not
rely on any assumptions about the underlying distributions.

Given outcomes k as a point in the space of observations K, a set of model
parameters x as a point in the parameter space X, the likelihood H x; kð Þ is the
probability P(k|x) that the outcome k would be observed given those parameter
values at x. H x; kð Þ is the notation used by Dunning in his 1993 article.

H x; kð Þ ¼ PðkjxÞ
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For example, the likelihood function for repeated Bernoulli trials can be defined
as follows:

H x; kð Þ ¼ H p; n;mð Þ ¼ pm 1� pð Þn�m n
m

� �

In this case, the parameter space X is the set of all the probabilities p, i.e. [0, 1],
whereas the subspace XH for the hypothesis that p = pH is a singleton set pHf g,
which is a subset of [0, 1].

The likelihood ratio k for a hypothesis is the ratio of two maxima of the like-
lihood function. One is the maximum value of the likelihood function over a
subspace XH on which the hypothesis applies. The other is the maximum value of
the likelihood function over the entire parameter space X.

k ¼
max
x2XH

H x; kð Þ
max
x2X

H x; kð Þ

For two binomial processes that are characterized by pi,mi, and ni for i = 1 and
2, the maxima are reached when p1 ¼ m1

n1
, p2 ¼ m2

n2
; and p ¼ m1 þm2

n1 þ n2
. Let

L p;m; nð Þ ¼ pm 1� pð Þn�m

The log-likelihood ratio can be computed as follows:

�2logk ¼ 2 log L p1;m1; n1ð Þþ log L p2;m2; n2ð Þ � log L p;m1; n1ð Þ � log L p;m1; n1ð Þð Þ

The value −2log k is asymptotically distributed as v2 with the difference
between the dimensions of X and XH as the degree of freedom. Thus the
log-likelihood ratio value is associated with a p-level, which indicates the statistical
significance of the observed event. The ‘oddness’ measures how special the
observation is.

Characterizing a Cluster

A major advantage of a likelihood ratio test helps us to identify events that are
particularly more common in a subspace of the parameter space than the entire
parameter space. A term that is particularly unique in one cluster but not in other
clusters would have a very high likelihood ratio on the subspace associated with the
matching cluster. For instance, the term post-traumatic stress disorder would stand
out in terms of its likelihood ratio to differentiate a cluster on this topic from other
topics in terrorism research.
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Table 4.9 lists two sets of title terms selected from the three largest clusters. One
set was selected by Latent Semantic Indexing (LSI) (Deerwester et al. 1990). The
other was selected by Log-Likelihood Ratio (LLR). Two numbers are shown next
to each term selected by LLR. The first number is the −2log k value of the

Table 4.9 Representative terms selected by LSI and Log-Likelihood Ratio Tests for the largest
three clusters in Project Demo 1 on terrorism research (1996–2003)

Cluster Label (LSI) Label (LLR)

0 Bioterrorism
Reason
Small molecule
Family physicians
Thought
Nation
Collaborative literature
Cure
Intentional poisoning
Bind|terrorism
Community-based model
Protecting rural communities
Large-scale quarantine
Following biological terrorism
Possible consequences
Medical technicians
Panic
Common goods
Predictions

Biological terrorism (8082.39, 1.0E-4)
Front line (5684.68, 1.0E-4)
New york city (5658.81, 1.0E-4)
Emergency physician (5400.81, 1.0E-4)
Blast over-pressure (4767.67, 1.0E-4)
Terrorist attack (4541.68, 1.0E-4)
11th terrorist attack (4210.69, 1.0E-4)
Posttraumatic stress disorder (3605.89, 1.0E-4)
Chemical terrorism (3438.99, 1.0E-4)
Biological weapon (3269.72, 1.0E-4)
Bioterrorism preparedness (3220.3, 1.0E-4)
Public health management (2887.06, 1.0E-4)
Overpressure-induced injury (2811.21, 1.0E-4)
Involving hemoglobin (2811.21, 1.0E-4)
Biochemical mechanism (2811.21, 1.0E-4)
Oklahoma city bombing (2792.14, 1.0E-4)
World trade center (2789.9, 1.0E-4)
Hospital preparedness (2768.94, 1.0E-4)
Medical response (2510.49, 1.0E-4)
Psychological sequelae (2417.99, 1.0E-4)

1 Terrorism
Mental health responses
UCH experience
Bomb blast
Biochemical mechanism
Blast lung injury
Oklahoma city bombing
Pulmonary blast injury
Explosion survivors
Sublethal blast overpressure| major
incidents
Proposal
Dissemination
Manchester bombing
Casualty profiles
Casualty profile
Construction
Hazmat
Suicidal deaths
Pathologic features

Blast over-pressure (18729.92, 1.0E-4)
Overpressure-induced injury (11125.44,
1.0E-4)
Involving hemoglobin (11125.44, 1.0E-4)
Biochemical mechanism (11125.44, 1.0E-4)
Conventional weapon threat (3893.35, 1.0E-4)
Medical consequence (3893.35, 1.0E-4)
Blast injury (3456.56, 1.0E-4)
Exercise performance (3281.15, 1.0E-4)
Sublethal blast overpressure (3281.15, 1.0E-4)
Food intake (3281.15, 1.0E-4)
Social consequence (2223.28, 1.0E-4)
Physical injury (1588, 1.0E-4)
Soho nail bomb (1575.04, 1.0E-4)
UCH experience (1575.04, 1.0E-4)
Terrorist bombing (1354.2, 1.0E-4)
Evolving threat (1329.12, 1.0E-4)
Biological terrorism (1316.57, 1.0E-4)
Terrorist attack (1076.2, 1.0E-4)
Open-air bombing (1074.82, 1.0E-4)

(continued)
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log-likelihood ratio. The larger this number is, the more special the term for the
current cluster. The second number is the statistical significance of the −2log k
value from a v2 distribution. It is the p-level of the term.

The strongest LLR terms in the largest cluster #0 include biological terrorism
(8082.39, 1.0E-4), front line (5684.68, 1.0E-4). The value 1.0E-4 is the statistical
significance of the LLR value 8082.39 and 5684.68 according to a v2 distribution.
The term biological terrorism is specific enough to give us a clear idea what the
cluster is about. In contrast, the term front line is more ambiguous. Similarly, on the
LSI list, terms such as reason, thought, and nature are usually too broad to be useful
even within the specific context of a co-citation cluster.

Table 4.9 shows terms short selected by LSI and LLR as candidates for cluster
labels. If the two lists match, then the decision would be easy. If they differ sub-
stantially, we need to investigate further. For the largest cluster (#0), it is relatively
easy because bioterrorism and biological terrorism are semantically equivalent. Terms
such as reason, thought, and front line are common onGoogle, suggesting that they are
not good candidates for cluster labels because they are too broad and ambiguous to be
informative. Although the LLR list includes 11th terrorist attack (LLR = 4210.69)
and Oklahoma City bombing (LLR = 2792.14), their log-likelihood ratios are much
lower than that of biological terrorism (LLR = 8082).

For the second largest cluster (#1), LSI identifies terms such as terrorism, mental
health responses and uch experience, whereas LLR identifies blast over-pressure
(LLR = 18,729.92), overpressure-induced injury (LLR = 11,125.44), and involving

Table 4.9 (continued)

Cluster Label (LSI) Label (LLR)

Confined-space explosion (1074.82, 1.0E-4)

2 September
Terrorist attacks
Negative changes
Following vicarious exposure
Exposure
New York city children
Posttraumatic stress reactions
Stress-related mental health
Israel
Coping behaviors|terrorism
OPM-sang experience
Risk assessment
Functional impairment
Supporting children
Youth
Television exposure
International relations
Oklahoma city
Warfare

Terrorist attack (9718.45, 1.0E-4)
New York city (8811.82, 1.0E-4)
11th terrorist attack (7733.12, 1.0E-4)
Biological terrorism (7130.79, 1.0E-4)
Posttraumatic stress disorder (6505.87, 1.0E-4)
World trade center (5195.7, 1.0E-4)
Psychological sequelae (4499.33, 1.0E-4)
Blast over-pressure (3850.16, 1.0E-4)
Biological weapon (3797.09, 1.0E-4)
New York (3233.08, 1.0E-4)
Front line (2935.05, 1.0E-4)
Emergency physician (2882.3, 1.0E-4)
Vulnerable population (2430.25, 1.0E-4)
Drug user (2430.25, 1.0E-4)
Bioterrorism preparedness (2339.45, 1.0E-4)
Overpressure-induced injury (2270.61, 1.0E-4)
Involving hemoglobin (2270.61, 1.0E-4)
Biochemical mechanism (2270.61, 1.0E-4)
Prior trauma (2247.83, 1.0E-4)
Posttraumatic stress symptom (2247.83,
1.0E-4)

Up to top 20 terms are selected for each cluster
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hemoglobin (LLR = 11,125.44). The LLR terms seem to suggest a theme on
physical injuries, but the LSI list includes mental health responses. Further down the
LSI list, there are terms related to physical injuries such as blast lung injury, pul-
monary blast injury, and sublethal blast overpressure.

For the third largest cluster (#2), the top three LLR terms are terrorist attack
(LLR = 9718.45), New York city (LLR = 8811.82), and 11th terrorist attack
(LLR = 7733.12). The LSI list is topped by terms such as September and terrorist
attacks. These terms strongly suggest that this cluster is about the September 11th
terrorist attacks in 2001 at the World Trade Center in New York.

More generally, it is useful to differentiate two kinds of words in text, depending
on their role in a sentence: function words or content-bearing words. Function
words organize different parts of a sentence together but they don’t mean anything
on their own. In contrast, content-bearing words are the ones that carry the meaning
of a sentence. A sentence would be meaningless without such contents.
Content-bearing words to a sentence would be similar to the wine to a bottle. An
earlier description of the distinction can be found in Charles Carpenter Fries’ work
(Fries 1952). Function words are also called structure words, whereas content
words are also called lexical words.

Function words include prepositions, pronouns, auxiliary verbs, conjunctions,
grammatical articles or particles. For instance, commonly seen function words
include the, a, her, however, and otherwise. Content words are those that are not
function words. Nouns, verbs, adjectives, and most adverbs are examples of content
words. 99.9% of words in English are content words.

The following example is based on Project Demo 1: Terrorism Research (1996–
2003) in CiteSpace. We first generated a network of co-cited references and then
divided the network into several clusters. Each cluster is resulted from the citations
made by a group of published articles. In order to understand what a cluster is
about, one may inspect whether there are common reasons for these articles to cite
the member references of the cluster together. CiteSpace implements a few func-
tions to label a cluster based on terms selected from citing articles’ titles, keywords,
abstracts, or any combinations of terms from these fields. Figure 4.9 shows several
clusters with automatically generated labels.

In addition to rank terms based on log-likelihood ratio tests with respect to their
roles in a subspace of the underlying model, log-likelihood ratio tests can also
measure associations between two terms so that one can generate an associative
network of concepts or terms extracted from text. CiteSpace supports a function to
compute the strengths of associations based on log-likelihood ratio tests (Fig. 4.10).

Similarities between terms can be measured in terms of how often they appear
together, i.e. co-occurrences, and how likely they appear given the fact that they are
published in the same journal. Figure 4.11 illustrates some of the interrelationships
between title terms from publications in the journal Scientometrics. The strength of
a link is based on a log-likelihood ratio test that compares the probability of
co-occurrences with probabilities of the entire parameter space, including other
scenarios in which only one of them appears or none of them appears. The
log-likelihood ratio (LLR) between terms publications and papers is 0.8390, which
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is relatively low because the two terms are semantically equivalent so they are less
likely to appear together. In contrast, the LLR between citation and impact is
8.1686 and the LLR between happiness and feelings is 10.6193. These relatively
higher LLRs suggest some special connections between citation and impact and
between happiness and feelings.

Entropy

Table 4.10 illustrates an approximate number of documents on Google that contain
a term. The higher the number of instances on Google, the higher the probability of
the term and the lower its information entropy is. For example, words such as ‘the’
and ‘a’ appeared most often on Google. Both are estimated to have appeared in
approximately 25,270,000,000 documents on Google. In contrast, terms such as
small molecule, bioterrorism, and posttraumatic stress disorder have much fewer

Fig. 4.9 Project Demo 1 in CiteSpace. Cluster labels are selected by LLR
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appearances, namely 22,100,000, 7,120,000, and 1,130,000, respectively. By the
same method, Gone with the Wind has 90,200,000 hits. CiteSpace has 47,600 hits.

The information entropy of a term can be seen as a measure of its associated
uncertainty. If we consider the appearance of a term as an event that transmits a
message, then observing a rare event taking place is more information than
observing a common event. Entropy is zero when we have nothing to learn from the
occurrence of an event. The entropy reaches its maximum when the uncertainty is
the highest, or, the occurrences of an event are completely random.

Figure 4.12 shows a plot of the information entropy of terms extracted from
articles on terrorism each year. As new vocabularies are introduced into the latent

Fig. 4.10 Compute statistical associations with log-likelihood ratio tests in CiteSpace

Fig. 4.11 Associations between title terms articles published in the Scientometrics
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semantic space, the information entropy would be higher in that year than before.
The uncertainty of the latent semantic space increases due to the appearance of the
additional terms. As shown in the plat, the largest increase is between 2001 and
2002 due to the September 11 terrorist attacks.

Table 4.10 The popularity
of a few terms on Google as
of July 26, 2017

Term Instances on Google

The 25,270,000,000

a 25,270,000,000

It 19,730,000,000

Thought 1,770,000,000

Reason 1,540,000,000

Front line 291,000,000

Terrorism 147,000,000

Gone with the Wind 90,200,000

Small molecule 22,100,000

Bioterrorism 7,120,000

Posttraumatic stress disorder 1,130,000

UCHa experience 627,000

Blast over-pressure 278,000

CiteSpace 47,600
aUCH = University City Hospital

Fig. 4.12 The information entropy of terms extracted from articles on terrorism each year
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Table 4.11 illustrates top 20 terms based on their information entropy (Shannon
1948). The entropy of a term is calculated based on its distribution over the years
between 1996 and 2003. The term explosion has the highest entropy. In other
words, it is the least informative term in the context of terrorism. The standard
deviation of the occurrences of a term can be used to measure the stability of a term.
For instance, the term casualties has a standard deviation of 3.204, reflecting an
uneven distribution of the term over the years. In comparison, the term explosion
has a standard deviation of 1.309, reflecting a relatively stable distribution over this
period of time.

Clumping Properties of Content-Bearing Words

Clumping was introduced in by Bookstein et al. (1998). They also introduced four
ways to measure and identify clumping terms. Clumping metrics can be applied to
an arbitrarily long text document or a chain of documents. The key assumption here
is that content-bearing terms are more likely to clump than non-content-bearing
ones. If non-content-bearing terms are randomly distributed throughout a text
document, then one may focus on terms that their distributions deviate from the
random distributions.

Condensation

The concept of clumping is similar to clustering except that clumping assumes a
sequential order as an internal structure between items. Thus clumping can be seen
as serial clustering of terms in text. The interest of studying clumping properties is
to see whether a term appears unusually close together. The spatial closeness
reminds us the temporal closeness associated with the topic of burst detection.

If we take sentences as units of observation, we would expect the number of
sentences containing a given term to be less than the total number of occurrences of
the term. If the term is clumping, the number of sentences containing the term
should be even fewer. The degree of such condensation can be measured by the
ratio of the actual number of sentences containing the term to the expected number
of sentences of the term if it is randomly distributed. In practice, the unit can be a
single sentence, a block of sentences, or a paragraph.

Given a term t, suppose the document to be analyzed has D units, N of them
contain t, and t occurs T times in total. The number of ways to have T occurrences
in D units is DT, i.e. for each of the T instances, select a unit from D. The next step
is to calculate the probability that exactly N units contain one or more instances of t.

There are
D
N

� �
ways to select the units with at least one hit. A Stirling number of
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the second kind is a partition of T terms into N classes. There are N! ways to order
the components of the partition. The probability p(N, T) is therefore:

p N; Tð Þ ¼
N!

D
N

� �
T
N

� 	
DT

The expected number of units containing t is as follows. See Bookstein et al.
(1998) for details.

EC1 ¼ D 1� 1� 1
D

� �T
" #

If N units contain term t, then N/Ec1 measures the strength of the condensation.
For a clumping term, this ratio would be less than 1. As we will see shortly, this is
the clumping measure implemented in CiteSpace.

The second condensation-based measurement is based on specific distributions
of terms over units. The probability that m occurrences of a term appear in any
given unit can be modeled by the binomial distribution:

p mð Þ ¼ T
m

� �
1
D

� �m

1� 1
D

� �T�m

Thus one can expect p(m)*D units to contain m occurrences.
The third measurement is the number of clumps. Here a clump is defined as a

consecutive chain of units containing the term. The probability of K clumps of the
term t is defined as follows. Again see Bookstein et al. (1998) for detailed
reasoning.

pK ¼
N � 1
K � 1

� �
D� Nþ 1

K

� �
D
N

� �

The expected number of clumps is defined by the following formula:

EL1 ¼ D� N þ 1ð ÞN
D

¼ N 1� N � 1
D

� �

The ratio K/EL1 measures linear-clustering clumping. Content-bearing terms are
terms the ratio of which is substantially less than one.

Finally, the fourth measure of clumping is based on gap length between marked
units. If N marked units are randomly distributed over D units of text, then the
probability that a randomly chosen unit not be marked is c = 1 − N/D.
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The probability of r blank units between two marked units is given approximately
by the geometric distribution.

Clumping Versus TF*IDF

Table 4.12 illustrates terms with strong condensation strengths (clumping) and top
terms identified by term frequency (TF) by inverse document frequency (IDF).
Perhaps more interestingly, these terms are associated with the largest co-citation
cluster—the one on biological terrorism. Terms that appear on both lists are
highlighted in the table.

The top clumping terms include radiation, virus, vaccine, plague, toxins, hem-
orrhagic, spores and toxin. These terms are clearly related to the central theme of
biological terrorism. These terms are domain-dependent terms. Removing or
ignoring the role of these terms will undermine the adequacy of a study. The
clumping list also includes some terms that are not as tightly connected to bio-
logical terrorism as the first type of terms. The second type of terms include food,
water, and protective. Yet another group of terms on the clumping list are domain
independent terms. One can expect to see these terms in publications on any
research topic, namely, evaluations, consensus, model, task, and final. The first
three types are domain dependent. The fourth, sixth, are eighth and domain
independent.

By applying the same classification heuristics to the list of terms ranked by their
TF*IDF scores, the TF*IDF list has fewer Type 1 terms than the clumping list (4
vs. 10), more Type 2 terms (12 vs. 4), and about the same number of Type 3 terms
(4 vs. 6).

Importance and Impact

Among the many types of importance metrics, two are particularly relevant to our
understand how scientific knowledge is organized and diffused: eigenvector cen-
trality and betweenness centrality. The eigenvector centrality is also called eigen-
centrality. Both of them measure the importance of a node in a network.

Degree Centrality and Eigenvector Centrality

The degree centrality of a node in a network is a simple measure of the node’s
importance in terms of how many nodes it connects to (Freeman 1977). Within the
same network, a person with a lot of friends will have a higher degree centrality
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than that of someone with fewer friends. Two people with the same number of
friends will have the same degree centrality.

More realistically, friends may have their own friends. If person A has a friend
who has many friends and person B has a friend who has no more friends, should A
and B have the same centrality? Unlike degree centrality, the eigenvector centrality
treats friends differently. Connecting to an important friend will increase your own
importance. As many have put it, it is about who you know, at least sometimes. In a
social network, having many friends is generally a good idea unless all your friends
are antisocial except with you.

The most famous member of the eigenvector centrality family is probably
Google’s PageRank. Recent research in neuroscience found that the eigenvector
centrality of a neuron in a neural network is correlated with its relative firing rate.3

The eigenvector centrality has been used to measure the prestige of a scientific
journal, notably, the SJR indicator developed by a group of researchers in Spain.

The original idea can be traced to the works of Leontief (1941) and that of
Seeley (1949) on reciprocal influence in social metric networks in 1949. The work
of Phillip Bonacich (1972) is also widely known in relevant literature. Here we use
Bonacich’s notation. Given a network, the ei centrality of node ni in a network
reflects the centralities of its neighboring nodes.

kei ¼
X
j

Rijej

Or, equivalently,

ke ¼ Re

where R is a matrix representation of the network. The diagonal values of R are
zeros, i.e. rij = 0. By definition, e is the an eigenvector of R and k is the corre-
sponding eigenvalue.

As illustrated in Fig. 4.13, the visualization on the right shows that Cluster #1 at
the top level (Level 0) has a concentration of nodes with high eigenvector centrality
scores. In the context of a co-citation network, a high eigenvector centrality node
means that it is co-cited with some well-connected references. The density of
Cluster #1 is considerably higher than the density of the network overall.

The visualization on the left is generated based on articles that cited references in
Cluster #1. Articles that did not cite any members of Cluster #1 are omitted from
this procedure. As a result, the new network not only preserves the essential

3Fletcher, Jack McKay and Wennekers, Thomas (2017). From Structure to Activity: Using
Centrality Measures to Predict Neuronal Activity. International Journal of Neural Systems. 0 (0):
1750013. doi:10.1142/S0129065717500137.
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structure of Cluster #1, but also reveals additional details. For instance, the new
network reveals that it does not find any references published in 1996, 2000, and
2002. Instead, it contains publications in 1997–1999, 2001, and 2003. Cluster #1 is
further divided into several clusters, including Level-1 clusters such as #0 major
incident, #1 sublethal blast overpressure, #12 biological terrorism, and #6 pediatric
trauma.

Two prominent nodes have strong betweenness centrality scores:
MALLONEE1996 and BURNS1993. The betweenness centrality of a node mea-
sures the extent to which the node is in the middle of two or more dense areas.
Suppose node v is connecting two sub-networks A and B. If the only way to reach
one of the sub-networks from the other one is to go through node v, then the
betweenness centrality of the node will reach the maximum possible level. The
more alternative paths there are to bypass the node, the lower its betweenness
centrality value will be.

The two nodes with strong betweenness centrality scores nicely illustrate the
meaning of betweenness centrality in the visualization. MALLONEE1996 plays a
central role in connecting at least three Level-1 clusters in three different colors.
Removing MALLONEE1996 from the network will effectively disconnect these
clusters because MALLONEE1996 is the only common node they share.
Furthermore, MALLONEE1996 connects a 2003 cluster—#6 pediatric trauma
(brown)—with clusters formed a few years ago (in blue and green years between
1997 and 1999), suggesting that in 2003 researchers revisited issues that had been
addressed in 1997–1999. Such visits and revisits to the same research topics may
explain the concentration of high eigenvector centrality nodes.

Figure 4.14 shows three displays of different metrics, namely, betweenness
centrality, PageRank, and eigenvector centrality. The distributions of these metrics
are different because they are designed to highlight different properties.

Betweenness centrality is effective in identifying critical information for
understanding interrelationship between two or more clusters. Eigenvector cen-
trality generalizes degree centrality by incorporating the importance of the

Fig. 4.13 High eigenvector centrality nodes are concentrated in Cluster #1 blast over-pressure.
Zooming into #1 at the next level reveals high betweenness centrality nodes such as Mallonee1996
and Burns1993
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neighbors. Eigenvector centrality implemented in CiteSpace follows Zafarani et al.
(2014).

Hirsch Index

Extrinsic factors are more common in the literature because of their relatively
longer history. The most widely known examples include the Hirsch-index (Hirsch
2005), or the h-index, and the journal impact factor. Both of them have been
extensively used and both have been subject to a wide variety of criticisms and
modifications.

The h-index was introduced as an indicator of the productivity of a scientist in
terms of all his/her N publications {ai} and corresponding citations {c(ai)}, where
i = 1, 2, …, h, …, N. For simplicity, assume the publications are sorted by their
citations in descending order. The magic number h is the largest number of top cited
h publications that have at least h citations, c(ai) � h, for the scientist.

h ¼ max
i
ðijc aið Þ� hÞ; where cðaiÞ� cðajÞ if i\j

Since the coverage of one’s publications varies from one source to another, one’s
h-index varies depends on whether the calculation is based on Google Scholar, the
Web of Science, Scopus, or anything else.

For instance, as of August 8, 2017, Loet Leydesdorff, an active and productive
researcher in scientometrics and several other fields, has a total of 36,474 citations
for his hundreds of publications that we can find on Google Scholar. His h-index on
Google Scholar is 86. By definition, among his numerous publications, 86 of them
have at least 86 citations. In fact, many of his publications have much higher
citations. In particular, two of his joint papers with Etzkowitz on a triple helix
model of university-industry-government relations have been cited 6357 and 3367
times, way above the h-index of 86. The h-index is very simple in that it tags the

Fig. 4.14 The size of a node represents its betweenness centrality (left), PageRank (middle), and
eigenvector centrality (right)
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productivity and the citations of a scientist with a single number. Broadly speaking,
the higher the h-index, the more likely the scientist has made influential contri-
butions to research.

On the other hand, the simplicity of the h-index also means that it does not
represent some of the important aspects of a scientist’s productivity or citations.
Considering the complexity of citation distributions in reality, it is unlikely that any
simplistic indicator can provide a comprehensive coverage of the underlying phe-
nomenon that is so complex and dynamic. Scientists with the same h-index can still
differ significantly before and after their the hth most cited publication. Scientists
may have significantly different research profiles and yet still have the same h-
index. For example, one researcher may have published exactly h papers and each
of them has received h citations, which would make his/her h-index to be
h. Another researcher may have published much more than h articles, say 10 times
of h, but has a small number k of exceedingly influential and highly cited papers,
k � h. As in with Loet Leydesdorff’s case, his highest single paper citation is
6357, which is about 74 times of his h-index of 86. Although from the skewed
distributions of citations we know that the former scenario is less likely to occur, the
diversity within the class of scientists with the same h-index tends to be too large to
be reliable for any evaluative purposes. After all, the h-index is biased towards
researchers who have a sustained productivity as well as a long-lasting scholarly
impact.

The g-Index

Many factors that influence citations may be used to normalize indicators such as
the h-index. The academic age t of a researcher can be defined as the number of
years since the first publication of a peer reviewed article, Hirsch proposed a
normalized h-index m, which is the ratio of h to t. The stability of the m-index has
been questioned, especially when the scientist is in his/her earlier career.

The h-index does not preserve any citation information about articles that are in
the group of articles above the h citation mark, nor does it tell us anything about the
size of the group below h. The h-index divides the publications of a scientist into
two groups. One contains articles that have at least h citations, whereas the other
contains articles that have fewer citations. Leo Egghe (2006) introduced the g-index
as an enhanced modification of the h-index by taking into account the citations of
the highly cited group. Similarly as in the h-index, the g-index divides the entire set
of articles published articles into two groups using a single number g such that the
top g highly cited articles as a whole have at least g2 citations.

Xg
i¼1

cðaiÞ� g2
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Alternatively, the g-index can be expressed in terms of the average citation of the
g top cited articles’ citations.

g�
Pg

i¼1 cðaiÞ
g

There are numerous ways one can normalize citation-based indicators such as
the h-index and the g-index. For example, Publish or Perish normalizes the h-index
by dividing the original citation counts by the number of co-authors first and then
calculates the h-index on the author-normalized citation counts. Given the skewed
citation distribution, instead of using the average of the g top cited articles’ cita-
tions, one may consider using the median of the g citations or define an indicator
G using a cumulative density function.

Other Measures

A key criterion of an indicator of scholarly impact of a scientific article should
reflect how many researchers it has reached and how many people’s thinking and
behaviors have been changed. Thus, the number of citations an article has received
or the number of citations a journal has received is commonly used measures. At
the global level, Fig. 4.15 shows a dual-map overlay visualization of a set of
publications on Terrorism research. There two maps in the visualization, hence it is
called a dual-map visualization (Chen and Leydesdorff 2014). The map on the left
is a set of citing journals organized according to their citing patterns, the map on the
right is a set of cited journals positioned according to how similar they are cited.
The curves represent citations from a citing journal on the left to a cited journal on
the right.

Figure 4.16 shows some of the salient referential connections between clusters
of citing and cited journals. For example, articles in this dataset frequently appeared
in journals relevant to psychology, education, and health. These articles frequently
cited references in similar types of journals. There are 17,276 such instances, which
is equivalent to a z-score of 8.423. The strong pathway is visualized as a thick line.
Some of the most cited journals are shown in Fig. 4.17.

Figure 4.18 depicts the distributions of citations by year of publication in
Scientometrics (2010–2014). As expected, these distributions are strongly skewed
towards the lower end of the citation scale. Most articles have zero or few citations,
although highly cited articles do exist.

Figure 4.19 depicts the average number of references per paper in Terrorism
(1982–2017). The thin solid line in green shows the average number of references
per paper of the article type with citations. The dash-and-dot line in green shows the
average number of references from articles without citations. Both lines are steadily
increasing over time and the solid green line has about 15 references more on
average. The thick solid line in blue represents the average number of references
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from review articles with citations, whereas the dashed line in blue represents the
average of references from review articles with no citations. Reviews with citations
have cited more references than reviews with no citations. We cannot draw con-
clusions on any possible causal relations between references and citations.
Although some journalists indeed attempted to make more shocking headlines by
claiming such relations, we believe one has to examine the nature of citations to
avoid picking up the wrong end of the stick. We refer to the number of references
and many similar types of indicators as extrinsic factors as opposed to intrinsic ones
when one aims to explain the scholarly impact (Chen 2012; Onodera and
Yoshikane 2015).

Fig. 4.15 A dual-map overlay visualization of the terrorism2017 dataset (N = 14,656 articles and
reviews)

Fig. 4.16 The main field-level citation paths include Psychology|Education|Health to Psychology|
Education|Social (z = 8.423, f = 17,276), Economics|Economic|Political ! Economics|
Economic|Political (z = 7.075, f = 14,602)
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Normalization of Metrics

We all know that, to be fair, we should avoid comparing apples with oranges.
Similarly, one should only pick on someone of his own size; otherwise, he would
be considered either a bully or a coward. In weightlifting, athletes are grouped by
their body mass. There are eight male divisions and eight female divisions. Men’s
weight classes include the 56 kg (123 lb) class, 62 kg (137 lb) class, and the
highest 105 kg and over class. Athletes compete with others in the same class. In
contrast, swimmers with longer arms have definite advantages over other

Fig. 4.17 Some of the most cited journals: 1. Journal of Conflict Resolution, 2. Journal of
Personality and Social Psychology, 3. Journal of Traumatic Stress, 4. Terrorism and Political
Violence, and 5. The American Journal of Psychiatry

Fig. 4.18 Distributions of citations by year of publication in Scientometrics (2010–2014)
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swimmers, but they compete regardless their height. Furthermore, there are four
different styles in Olympic swimming: breaststroke, butterfly, backstroke, and free
style. Different styles differ in their speed. One would expect it will take a swimmer
a longer time to complete 100 m in breaststroke than in butterfly. On the other hand,
we wouldn’t be surprised if an Olympian swimmer’s breaststroke is faster than a
high schooler’s freestyle. Given all these variabilities, we may still demand answers
to questions that may sound like comparing apples with oranges after all. Who is
the most powerful weightlifting athlete? Which swimmer’s world record is the most
remarkable?

Inevitably, scientists often find themselves in similar situations—others would
like to compare their performance as a scientist with other scientists’ performance,
for example, for recruiting, tenure and promotion, and prestigious awards. Strictly
speaking, every scientist is unique in numerous and fundamental ways such that
comparing scientists based on quantitative measures alone may be even more
ridiculous than comparing apples with oranges. In reality, the attraction of quan-
titative assessments is so strong that we will have to deal with a wide variety of
issues along this line of inquiry and practice.

Research indicators, or academic indicators, are numeric figures that can give us
a sense of something that maybe otherwise intangible. For example, a researcher’s
resume routinely includes the number of journal articles publishes, the number of
presentations made at international conferences, the total amount of research grants
secured, and the number of prestigious awards received. More recent years,
researchers include additional indicators such as the number of citations to their
publications in the Web of Science, the number of citations on Google Scholar, or
relatively more mysterious h-index.

In addition to the evaluation of individual researchers’ performance, their pro-
ductivity and their scholarly impact, groups of researchers, institutions, and nations
as well as journals and disciplines are subject to various evaluative assessments in a
growing number of countries. It is important to understand the basics of commonly

Fig. 4.19 Distributions of the average number of references per paper in Terrorism (1982–2017)
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used indicators of research productivity and scholarly impact, especially their
strengths and weaknesses.

Distributions of Citation Counts

The simplest indicator of a scientist’s productivity is perhaps the number of articles
he/she has published. Suppose one has published 400 articles and the other 200.
Then the former clearly has a higher productivity. However, here is the first twist,
what if we learn that the 400 publications together have received fewer citations
than the 200 publications? In terms of the utility, who is more effective? Should we
modify our assessment of the productivity based on the new information? Even if
they have received the same number of citations N, the citation per paper rate
(CPP) for the former is lower than the latter (N/400 < N/200). The efficiency of the
latter is twice of that of the former.

It has been long realized that different disciplines of science may have drastically
different citation rates. For example, mathematics is well known for its low citation
rate, whereas biomedicine has the reputation of a high citation rate. Thus, being
cited by 5 times may be not a big deal for a biomedical scientist, but it probably
means a lot more to a mathematician. The differences between mathematics and
biomedicine are probably much more profound than that between apples and
oranges!

The age of a publication is also a known factor that may significantly influence
the amount of citations. The diffusion of information takes time. The longer a
publication has been exposed to the scientific community, the more likely it will be
noticed and subsequently cited.

Normalization is a term that has been overloaded with multiple meanings. In our
context, the term normalization refers to a transformation process that aims to
eliminate or reduce the biases due to the heterogeneities between disciplines and
between different durations of disclosure. The central idea of normalization is
simple: how does the performance of our scientist compare with a typical scientist if
everything else remains to be equal? As it turns out, in most of the cases it may not
as straightforward as we wish to find our typical guy.

The distribution of citations is skewed. It means that the average number of
citations does not evenly divide the distribution. Rather, one side of the mean may
have a lot more instances than the other side. It would be nice and neat if citations
are normally distributed. Then we can measure how far away an observed value
from the average—the central tendency theory. We would be able to compare our
observed value with the average. We would be able to look up the probability of
observing a given value and we would be able to see how hard an achievement it
might be.

A reference set is the term used by some researchers to refer to the baseline
group to be taken into account. Once the performance of the reference set has been
taken into consideration, their bias can be minimized or eliminated. In the early
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years, the average of citations in a reference set was used in initial attempts to
normalize citations. However, it would work nicely only if citations follow a
normal distribution.

The skewness of citations, or the skewness of science, is discussed in detail by
Seglen (1992). First, the article age contributes to the skewness. The citedness of
scientific articles changes with their age. Citations usually peak in the third year
after the publication, then citations will decline steadily over time. The decline is
considered to do with the obsolescence of the content. Seglen concluded that
neither productivity nor citedness can adequately serve as general indicators of
scientific quality and that the skewness shown in these indicators are probably in
common in other indicators or potential indicators of scientific quality. After all, the
evidence is more than sufficient that a small number of scientists contributed a lion
share of the major advances of science.

Citation counts are a measure of utility rather than a direct measure of scientific
quality. Citations measure the degree of attention from the scientific community. In
this sense, citations measure the degree of perturbations to the complex system of
scientific beliefs held by scientists as a whole. Direct measurements of scientific
quality should characterize the core of scientific advances in terms of the novelty
and the potential of transformative change.

Cross-field normalization of citation counts is primarily motivated by the
inevitable fact that scientists from different fields of study are subject to quantitative
evaluation from time to time. The general idea is to identify the scientific field in
which a scientist should be evaluated so that the performance of the scientific field
can be used to serve as a baseline reference. Slightly different terminologies have
been used to refer to the baseline, including a reference standard or a reference set
of publications.

Ideally, if there is a readily available classification system of scientific publi-
cation, then it is probably a good idea to consider utilizing the existing classification
system. The most widely used such systems is the Subject Categories from the Web
of Science. Each article indexed in the Web of Science is assigned with one or more
subject category terms, for example, astronomy and astrophysics, artificial intelli-
gence, and psychology. The research of a computer scientist specialized in artificial
intelligence should be assessed in this particular context. Similarly, the research of a
psychologist should be evaluated with peer researchers in the same subject category
of psychology.

In an influential study published in PNAS, Radicchi et al. (2008) focused on the
normalization of the citation performance of single publications. Given an article a
in a particular field of research F, they considered the average number cmean of
citations received by all N articles b1, …, bN in the field F published in the same
year y, F(y = year(a)), as a normalized citation indicator cf with reference to the
particular field. Note that our notations may differ from those in Radicchi et al.’s
original paper.
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cf að Þ ¼ c að Þ
cmean

¼ c að ÞPN

i¼1
ci bið Þ

N

; where bi 2 F y ¼ year að Þð Þ

Radicchi et al. utilized the Subject Categories in the Web of Science as the
definition of a scientific field. They found the chance of having a particular value of
cf is the same across distinct fields determined by the subject categories for articles
published in the same year. More specifically, they found that the rescaled prob-
ability distribution cmeanP(c, cmean) of the relative indicator cf follows a lognormal
distribution with a variance r2 of 1.3. If a random variable X has a lognormal
distribution, then it means that ln(X) is normally distributed with l as the mean and
r as the standard deviation. More specifically, X = exp(l + rZ), where ln
(X) = l + rZ is normally distributed.

What is remarkable about the finding is that a wide variety of subject categories
such as allergy, astronomy & astrophysics, biology, mathematics, and tropical
medicine appear to have the same property.

A lognormal distribution is defined by the following probability density function
(PDF):

PDF xð Þ ¼ 1
x
� 1

r
ffiffiffiffiffiffi
2p

p e�
ðln x�lÞ2

2r2

where ln(x) follows a normal distribution, l is the mean, and r is the standard
deviation. In Radicchi et al.’s study, the equation r2 = −2l reduces the number of
fitting parameters to 1. A lognormal distribution with the same mean and the same
standard deviation as the one in Radicchi et al.’s paper is shown in Fig. 4.20.

The results obtained by Radicchi et al. is very strong because it suggests that the
rescaled lognormal distribution is independent of particular fields of study. On the
other hand, when Radicchi et al. experimented with the universal characteristics of
citation distributions across scientific fields, their study left out some common and

Fig. 4.20 A lognormal distribution
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potentially significant categories, notably the multidisciplinary sciences category,
which includes the most prestigious journals such as Science, Nature, and PNAS.
Furthermore, their calculations exclude uncited articles.

It is now generally agreed that citation counts from different fields should not be
directly compared with each other. To a lesser degree, it is also realized that one
should be very careful when comparing citations of articles published in different
years as well as publications of different types such as original research, review
papers, editorials, and letters. In fact, scientometricians have studied a large number
of factors that may influence how many citations research articles may get, when
they are likely to peak, and how soon they may begin to decay. In a 2012 article on
predictive effects of structural variations in a network of cited references, we dis-
tinguish factors as intrinsic and extrinsic. Intrinsic factors reflect the semantic and
structural characteristics of the underlying scientific activity, whereas extrinsic
factors do not have direct connections.

Examples of intrinsic indicators include structural variation metrics such as the
ones we developed in our study of predictive effects of structural variations on
citations. to measure the transformative potential of an article based on whether and
to what extent it introduces novel and potentially groundbreaking links. The
modularity change rate, for example, measures the degree to which a newly pub-
lished article alters the structure of the network of scientific knowledge in terms of
the change of modularity scores. Each newly published article brings us a set of
references it cites. This set of references casts new lights on the existing network of
scientific knowledge, which may be organized with cited references as nodes and
co-citation relations as connecting links. The newly casted sub-network may
introduce unprecedented links as well as reinforce existing ones with reference to
the baseline network. The modularity of a network measures the degree to which
the network is modularized. In other word, a network with a high modularity is
organized in terms of a number of rather self-contained sub-networks.
Interconnections between these sub-networks are minimal. In contrast, a network
with a low modularity involves a considerable number of interwoven sub-networks.

Influential Factors on Citations

Researchers have identified some of the major sources of the skewness of science.
Onodera and Yoshikane (2015), for example, published a study that systematically
investigated several factors affecting citation rates. Ludo Waltman (2016) reviewed
the literature on citation impact indicators, including a section on issues concerning
normalizing citation-based indicators. In Table 4.13, we group some of the most
commonly seen factors of citations in several broadly defined categories. Citation
counts may be influenced by various factors about the authors of an article,
including the productivity of the author, the academic age of the author, citations
the author has received so far, and how the author connects with others in the
academic network of collaborators.
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Quantitative measures such as the citations and the number of cited references
are relatively easy to handle. Factors that are of quality in nature are much more
challenging to define (Hicks et al. 2015, Zhu et al. 2015). For example, identifying
the scientific field that an article belongs too requires a substantial level of domain
knowledge even with existing taxonomies of a domain. The significance of research
questions requires a good understanding of a subject area, sometimes, more than
one. Developing indicators of quality is an ongoing and challenging research in its
own right (Ding et al. 2014, Wang et al. 2013).

Improvements of Impact Factors

The Journal Impact Factor is probably one of the most widely used and misused
indicators of scholarly impact. In its original form, given a journal J, its impact
factor IF(J) is defined as the ratio of the citations to the citable items published in
the previous two years c−1 and c−2 over the total number of citable items s−1 and s−2
within the same time frame.

Table 4.13 Factors that may influence citations of a scientific publication

Category Factors on citation counts

Author Productivity
Reputation, citedness
Gender
Discipline
Institution, Country
Academic age: the number of years since the publication of the first peer
reviewed article, the number of years since the first Ph.D. degree
Academic network: eigenvector centrality, betweenness centrality

Article Citations to date
Altmetrics: Downloads, Views, Tweets
Accessibility: Open access
Visibility: Journal Impact Factor
Co-authors: the number of co-authors, their diversity in author attributes
Document type: original research, review, letter, etc.
Extrinsic properties: the number of pages, the number of figures and equations
Exposure: Duration since its publication date
Language

References The number of cited references
The diversity of the references in terms of journals and disciplines
The novelty of co-cited references

Discipline The scientific field or fields to which the article belongs

Quality Significance of research questions
Rigor of methodology
Clarity of presentation
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IF Jð Þ ¼ c�1 þ c�2

s�1 þ s�2

The calculation of the impact factor over a two-year time span can be easily
extended to a 5-year span or an arbitrary k-year impact factor.

IFk Jð Þ ¼
P�1

i¼�k ciP�1
i¼�k si

Loet Leydesdorff is among the first to argue that the calculation should be done
in a different order (e.g., Leydesdorff 2012; Leydesdorff et al. 2011). Instead of
summing up the citations and citable items separately first and then taking the ratio,
a more reasonable calculation should take the average citation per citable items in
each year first and then calculate the average over the number of years.

NIFk Jð Þ ¼
P�1

i¼�k
ci
si

k

The new impact factor (NIF) then becomes a k-year moving average of the
annual citation rate. The original impact factor is the ratio of two averages, whereas
the NIF is the average of citation ratios. Which one is more appropriate? What
difference does it make? These questions are in fact part of a more profound debate
in cross-field normalization.

Earlier citation normalization such as the Crown Indicator are calculated as the
ratio of the mean of observed citation rates (OCR) over the mean of expected
citation rates (ECR), which resemble to the way the original IF is calculated.

Mean OCRð Þ
Mean ECRð Þ ¼

Pnobs
i¼1

ci
nobsPnexp

j¼1
Cj

nexp

where {ci} are observed citations and {Cj} are expected citations computed from a
reference set such as all the publications from a field, i.e. biology or mathematics. In
contrast, the more recently recommended citation normalization is the mean of the
ratio of OCR to ECR:

Mean
OCR
ECR

� �
¼

Pn
j¼1

cj
Cj

n

The Mean(OCR)/Mean(ECR) is a division of two means. Using the Mean(OCR/
ECR) has an advantage over the former—it comes with a standard deviation, which
is additional information that is not available from the division of two means.
Researchers have recognized the advantages of replacing the rate of averages with
the average of rates.
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The choice of using the mean of observed citation counts or the mean of the
expected citation counts has also been subject to criticisms on the ground that the
mean is no longer representative in a skewed distribution, which citation distri-
butions typically fall into this category. Instead, the median would be a better
choice. An ideal indicator should reflect the shape of the distribution and it should
provide a metric that is independent from fields of study, the age of the article, and
other major factors.

One of the most appealing indicators proposed in recent years is perhaps the
approach that ranks articles on a percentile scale. It is proposed by Leydesdorff
et al. (2011). The rank of an article is defined as the percentage of papers in the
reference set that have citations fewer than the citation of the paper. The percentile
is then rounded as an integer as the rank. Most cited 1% papers on the top of Mount
Kilimanjaro should belong to the 99 percentile class. Given an article a, the
probability that it belongs to the 99 percentile class is way below one in a million,
considering that the size of the Web of Science as the reference set is about 50
million, depending on particular subscriptions.

The rank of articles in the kth percentile class can be expressed as the cumulated
relative frequencies p(r) weighted by their corresponding rank r:

R kð Þ ¼ 1 	 p 1ð Þþ 2 	 p 2ð Þþ . . .þ k 	 p kð Þ ¼
Xk
r¼1

r 	 p rð Þ

where fr is the number of articles in the rth bin (there are 100 bins; one for each
percentile class), pr = fr/nr and nr ¼

P
i fi. The maximum weight is 100, which

appears in R(100). The minimum weight is 1. Leydesdorff et al. gave an example of
R(6) = 1*0.5 + 2*0.25 + 3*0.15 + 4*0.05 + 5*0.04 + 6*0.01 = 1.91.

Note that the range of R is not [0, 1]. One will need additional information to tell
whether 1.91 is large or small. A further improvement can scale the range to the unit
interval [0, 1] so that it is instantly clear about the position of 0.89 on a scale of [0,
1].

R kð Þ ¼
Pk

r¼1 r 	 p rð ÞP100
r¼1 r 	 p rð Þ

More generally, in addition to work with percentiles, one can extend it to an
arbitrary number of classes, for example, with 1000 bins or 100,000 bins, especially
when dealing with a large number of articles at the disciplinary level. The more
finer sliced bins we use, the more accurate the indicator tracks the underlying
distribution. This line of reasoning leads to an ideal indicator I in an integral form,
which suggests that when necessary, one can use finer grained bins to improve the
accuracy of the indicator with reference to the underlying distribution. Here the p(x)
is the probability density function.
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I cð Þ ¼ Zc

�1
p xð Þdx

The value of the cumulative density function at an arbitrary level of citation
count c is between 0 and 1. It reaches the maximum of 1 when the probabilities of
all sorts of scenarios are accounted for. In this way, the metric of quality is both
intuitive and field-independent. Questions concerning quantifying scientists’ per-
formance can be answered in terms of the cumulative probability of observing a
particular level of performance. If the performance of a mathematician has the
cumulative probability of 0.90, then we know that this is a better performance of a
molecular scientist with a cumulative probability of 0.80 in terms of scholarly
publications.

Furthermore, given an article with citations of c, the cumulative density function
will return a value between 0 and 1. The value can be considered as a rarity
measure. The rarer a citation frequency, the harder it is to achieve and thus the more
excellent it is.

In summary, cross-field normalization of citation-based indicators of scholarly
impact has produced many indicators. However, researchers continue to refine the
normalization procedures to reduce various biases that may be originated from the
delineation of disciplinary boundaries or from the way to estimate expected levels
of citation with reference to year of publication as well as relevant fields.
Researchers have identified a large number of potential factors (See Table 4.13).
We need to further develop our understanding of the magnitudes of the effects of
these factors and how they interact at multiple levels of granularity. Most nor-
malizations focus on a very small number of factors. It remains to be found to what
extent existing normalizations preserve the order of articles in terms of their relative
positions in their own crowd. Normalization should transform the values of apples
and oranges into numbers within [0, 1].

Science Mapping

In this section, we will illustrate some of the important concepts with a collection of
17,731 papers on science mapping. A systematic review of science mapping
published in 2017 is based on this dataset (Chen 2017). 17,721 of the 17,731
records are successfully loaded into a database. The following examples are based
on the 17,721 records (Fig. 4.21). The dataset contains 14,794 articles (83.48%),
1861 proceeding papers, 1034 review, and a few items of other types such as book
review, editorial, and book chapter. A copy of the dataset is downloadable from the
ResearchGate project of the book.
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Exploring the Science Mapping Dataset with CiteSpace’s
Database

We first loaded the dataset to a MySQL database on the localhost through an
interface provided by CiteSpace. We demonstrated the example with MySQL
queries such that interested readers can practice with their own datasets.

Table 4.14 illustrates the information stored in the Articles table of the wos
database regarding the 2006 publication on CiteSpace. Each record from the Web
of Science has a unique ID such as WOS:000234932600008. Similarly, a record
from Scopus can be converted to the same format. The Scopus ID contains the DOI
of the article, which appears to make the rest of the long string redundant. The
information from the two sources has some discrepancies, which are highlighted in
the table. For instance, the author name is Chen, Cm in the Web of Science, but
Chen, C in Scopus. The journal title is abbreviated slightly different. More inter-
estingly, citation counts differ substantially: 331 in the Web of Science and 503 in
Scopus. A quick inspection of citing articles’ sources reveals that many of the
Scopus records are from conferences such as ISSI 2007 (8 papers), 2009 (8), 2013
(4), and 2015(3). These conferences, to our best knowledge, are not included in the
Web of Science. This discrepancy in citation counts underlines practical issues one
should consider for mixing citation records from distinct sources.

Table 4.15 lists the index terms assigned to the article. The author of the article
did not provide any keywords. The index terms are algorithmically assigned as
so-called KeywordPlus in the Web of Science. The keywords assigned by Scopus
such as knowledge domain visualization and scientific literature are more accurate
than the keywords under the Web of Science. The nearest term from the Web of

Fig. 4.21 The number of records in the dataset of Science Mapping (1980–2017)
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Science is domain visualization. Other keywords on the list are more related to the
case studies included in the article than CiteSpace as a tool as the focus of the paper.

The type sc in the last two rows of the table stands for Subject Category (SC).
Two subject categories are assigned to the paper, namely Computer Science and
Information Science & Library Science. It is not surprising that many articles
published in the journal involve these two subject categories. In the Science
Mapping dataset, Computer Science is the second largest subject category, whereas
Information Science & Library Science is the third largest one.

Major Subject Categories in Science Mapping

In this section, we will explore several aspects of the Science Mapping with ref-
erence to the need for cross-field normalization and cross-time normalization.
Corresponding MySQL queries are included for interested readers to replicate the
results if they wish.

Table 4.14 Information stored in the Articles table of the wos database

Field Example from the Web of Science Example from Scopus (Format Converted)

id 433075 258910

uid WOS:000234932600008 Scopus:2-s2.0-33644531603&doi = 10.1002%
2fasi.20317

project sciencemapping17731 scopus651

author Chen, Cm Chen, C

title CiteSpace II: Detecting and
visualizing emerging trends and
transient patterns in scientific
literature

CiteSpace II: Detecting and visualizing
emerging trends and transient patterns in
scientific literature

abstract This article describes the latest
development ……

This article describes the latest development
……

source JOURNAL OF THE AMERICAN
SOCIETY FOR INFORMATION
SCIENCE AND TECHNOLOGY

Journal of the American Society for
Information Science and Technology

j9 J AM SOC INF SCI TEC J AM SOC INF SCI TECHNOL

volume 57 57

issue 3 3

nr 61 61

bp 359 359

ep 377 377

page 359–377 359–377

dt Article Article

doi 10.1002/asi.20317 10.1002/asi.20317

year 2006 2006

citations 331 503
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The number of records distributed per year in the dataset is shown in Fig. 4.21.
The volume steadily increases. In 2015 alone, there are 1396 publications in the
dataset. In 2000, the number of 510. The plot is generated in CiteSpace with the
following MySQL query.

SELECT year, count(year) 
FROM articles 
WHERE project='sciencemapping17731' 
GROUP BY year 
ORDER BY year

Science Mapping is a field of interdisciplinary research. The dataset involves
149 distinct Web of Science Subject Categories. The Subject Categories of each
record are stored in the keywords table. The following MySQL query finds the
number of distinct subject categories. Each subject category is considered as a field
of study. Researchers commonly identify the fields of study in terms of the Subject
Category classification system.

SELECT count(distinct(keyword)) 
FROM keywords 
WHERE project='sciencemapping17731' 
AND type='sc';

The top 10 largest subject categories in the science mapping dataset are shown in
Table 4.16. The largest subject category is Engineering, which has 4387 publica-
tions (24.8% of the entire dataset). The second largest one, Computer Science, has

Table 4.15 The same article is indexed differently in different sources

Web of Science Scopus

id Keyword Type id Keyword Type

2901483 Triassic mass extinction id 1223053 Knowledge domain
visualization

id

2901484 Domain visualization id 1223054 Scientific literature id

2901485 Terrorist attack id 1223055 Algorithm id

2901486 Science id 1223056 Computer programming
language

id

2901487 Paradigm id 1223057 Information retrieval id

2901488 Knowledge id 1223058 Information science id

2901489 Network id 1223059 Research id

2901490 City id 1223060 Natural sciences
computing

id

2901491 September-11 id

2901492 Technology id

2901493 Computer Science sc

2901494 Information Science &
Library Science

sc
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3467 publications. The third one, Information Science & Library, has 2075 pub-
lications.

SELECT count(*), count(*)/17721, keyword 
FROM keywords 
WHERE project='sciencemapping17731' 
AND type='sc'
GROUP BY keyword 
ORDER BY count(*) DESC limit 10;

One may not anticipate to see Engineering appearing as the largest subject
category in this dataset; after all, Science Mapping should be more closely related to
computer science and information science. The following query lists the top 20
most frequent keywords assigned to Engineering papers in this dataset.

SELECT count(*), k2.keyword 
FROM 

keywords AS k1, 
keywords AS k2 

WHERE 
k1.project='sciencemapping17731' AND 
k2.project='sciencemapping17731' 

AND k1.uid=k2.uid 
AND k1.type='sc' AND k2.type!='sc' 
AND k1.keyword='Engineering'
GROUP BY k2.keyword 
ORDER BY count(*) DESC
LIMIT 20;

As shown in Table 4.17, Engineering papers are related to time-domain analysis,
frequency-domain analysis, scattering, electromagnetic scattering, and information
visualization. Although information visualization is semantically connected to

Table 4.16 The number of articles distributed in subject categories

Publications % of 17,721 Keyword

4387 24.7559 Engineering

3467 19.5644 Computer Science

2075 11.7093 Information Science & Library Science

1080 6.0945 Physics

1076 6.0719 Business & Economics

708 3.9953 Environmental Sciences & Ecology

623 3.5156 Telecommunications

605 3.4140 Optics

599 3.3802 Science & Technology—Other Topics

538 3.0359 Materials Science
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Table 4.17 Top 20 keywords associated with papers from the Engineering subject category

Engineering Computer Science Information Science

Count
(*)

Keyword Count
(*)

Keyword Count
(*)

Keyword

488 Time-domain
analysis

635 Citation analysis 748 Citation analysis

268 Frequency-domain
analysis

594 Information
visualization

525 Science

258 Time domain
analysis

481 Science 217 Bibliometrics

255 System 234 Visualization 196 Journal
253 Frequency domain

analysis
223 Network 193 Impact

221 Model 198 Bibliometrics 170 Network
189 Design 191 System 166 Indicator
162 Simulation 189 Model 150 Citation
109 Algorithm 167 Impact 141 Publication
98 Scattering 157 Information 131 Information-science
91 Information

visualization
149 Journal 118 Co-word analysis

89 Identification 147 Indicator 114 Scientometrics

86 Performance 146 Design 112 Library

73 Stability 141 Citation 109 Information
71 Vibration 117 Pattern 108 Impact factor

70 Equation 116 Co-word analysis 104 Pattern
67 Domain analysis 115 Publication 100 Index

65 Dynamics 108 Visual analytics 95 h-index

62 Electromagnetic
scattering

99 Knowledge 93 Web

61 Wave 97 Information-science 90 Cocitation analysis

science mapping, the inclusion of papers on time-domain analysis and
frequency-domain analysis appears to be a side effect of the set of queries used to
retrieve the 17,731-record dataset from the Web of Science. In particular, domain
analysis is one of the sub-topics in Science Mapping. Apparently, domain analysis
is a term that is also used in Engineering for a completely different subject. When
using CiteSpace, our advice to how to handle such unanticipated and potentially
irrelevant topics is to proceed to the network analysis stage without attempting to
eliminate the potentially irrelevant records. There are at least two good reasons for
deferring any actions to eliminate any records prematurely:

The suspicious irrelevancy at this stage is based on our current knowledge. If we
conclude the irrelevancy without further investigation, we may lose the opportunity
to learn anything new from the process. After all, there may exist profound con-
nections that we are simply not aware of.

The best time to eliminate irrelevant data is probably after we have a chance to
inspect the resultant network model. It is much easier to identify an isolated
sub-network in a visualization of the network than try to determine the relevancy
from the dataset of such complexity.
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The top 20 keywords for Computer Science and Information Science are quite
consistent, including common ones such as citation analysis, science, bibliometrics,
impact, network, and indicator. Common keywords are highlighted in the table.
Unique keywords in Computer Science include information visualization, visual-
ization, design, and visual analytics, whereas unique keywords in Information
Science include scientometrics, h-index, and cocitation analysis.

Many publications are indexed with multiple subject categories. For example,
there are 455 publications in common between Engineering and Computer Science,
1556 shared publications between Computer Science and Information Science.
Interestingly, while Engineering, Physics, Telecommunications, Materials Science,
and Environmental Science and Technology overlap one another, Information
Science does not overlap with any of them within this dataset. To compute the
number of overlapping records between two subject categories, one can use the
following query by substituting K1.keyword and K2.keyword accordingly.

SELECT count(*) 
FROM 

keywords AS K1, 
keywords AS K2 

WHERE 
K1.project='sciencemapping17731' AND
K2.project='sciencemapping17731' 

AND K1.type='sc' AND K2.type='sc' 
AND K1.uid=K2.uid AND 

K1.keyword='Information Science & Library Science' 
AND

K2.keyword='Computer Science';

The total number of papers in Information Science & Library Science is 2075,
apart from 1556 papers that are jointly indexed as Computer Science papers, there
are only 519 papers that do not share the Computer Science category. This is an
indication of the role of computer science in Science Mapping.

Citation Distributions

Based on our earlier discussions, one would expect that citation rates are
field-dependent as well as time-variant. One would also expect that the number of
references cited by an article varies across distinct subject categories. Using the
query below, we can find that the average of citations of the dataset is 16.79, the
minimum citations is 0, and the maximum is 1547.

SELECT avg(citations), min(citations), max(citations) 
FROM articles 
WHERE project='sciencemapping17731';
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Figure 4.22 shows a log-log plot of the frequencies of citations per paper in
Science Mapping. Citation counts are log-transformed, so are the frequencies of
citations. Since log(citations) is not defined for zero citations, a common practice is
to add 1 to the citation count of each paper. As expected, papers with zero citations
are most common, whereas highly cited papers are increasingly unusual.

The total number of references cited by the 17,731 articles is 672,899, of which
508,564 are distinct. On average, each publication in the dataset has 37.95 refer-
ences. Publications in the dataset received a total of 297,529 citations across
publications indexed in the Web of Science. On average, each paper has a citation
count of 16.78.

In addition to the average over the entire dataset, to what extent does a particular
subject category differ from the overall dataset? Using the following query, we can
find the average number of citations and cited references specifically for a particular
subject category.

SELECT 
avg(citations), 
avg(nr),  
keywords.year 

FROM 
articles, 
keywords 

WHERE 
articles.project='sciencemapping17731' AND 
keywords.project='sciencemapping17731' AND
articles.uid=keywords.uid AND 
keywords.keyword='Computer Science' 

GROUP BY keywords.keyword, keywords.year;

Fig. 4.22 A log-log plot of the frequencies of citations per paper in Science Mapping (1980–
2017)
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The average number of citations per paper and the average of references per
paper of the largest four subject categories show that Engineering and Physics
papers have an average of citations per paper about 12, whereas Computer Science,
Information Science & Library Science papers have a citation count of 16.
Furthermore, for papers in Information Science & Library Science, they have 42
references on average (Table 4.18).

Figure 4.23 illustrates the differences between the four largest subject categories
in the science mapping dataset in terms of the average number of references per
paper and the average number of citations per paper. The curves in green plot the
average number of citations per paper, whereas those in red represent the average
number of references per paper. Overall, the red curves show an upward trend. It
means that the average number of references per paper is increasing over the years
regardless of subject categories. There are a few outliers of papers in Information
Science & Library Science. In 1999, Wilson CS for example published a paper that
cited 491 references. In 2004, Phillips LI cited 400 references in a single paper.
More recently, Guimaraes cited 346 references in a paper and Waltman cited 342.
These papers are review papers. Engineering and Physics papers in this dataset have
a lower average number of cited references per paper, whereas Computer Science
and Information Science have about 10–15 more references on average. The
average is steadily increasing for both groups of subject categories. The growth
rates are the same because the four lines are essentially parallel to one another.

The lines representing the average numbers of citations are more complex than
their reference counterparts, although they diminish towards the present time
because recently published papers are yet to receive their citations. Citations of
Engineering papers are relatively smooth over the years. In contrast, citations of
Information Science & Library Science fluctuated over time, but their citation
average is higher than that of Engineering. The earliest outliers include a 1981
paper by Howard White with 406 citations and a 1989 paper by Macroberts. Other
prominent papers include Callon, Small, and Chen from Information Science.
Papers by Holten, Shneiderman, and Bostock respectively are from the subject
category of Computer Science, more precisely, from information visualization and
visual analytics.

Table 4.18 The average number of citations per paper and that of references per paper are both
field-dependent

Subject category Papers Average
(Citations)

Average
(References)

Overall 17,721 16.7896 37.9718

Engineering 4387 12.3855 24.8849

Computer Science 3467 16.1554 39.5953

Information Science & Library
Science

2075 16.4308 42.1667

Physics 1080 12.0820 27.7991
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The following query searches for most highly cited papers in a particular year
from a specific subject category. Using it along with the plots such as the one
shown in Fig. 4.23, one can identify landmark works in Science Mapping as well as
general trends in terms of the average number of citations and the average number
of references.

SELECT 
citations, author, doi, k.keyword, a.year 

FROM 
articles AS a, keywords AS k 

WHERE 
a.project='sciencemapping17731' AND 
k.project='sciencemapping17731' AND
a.uid=k.uid AND 
(k.keyword='Engineering' OR k.keyword='Computer Science') AND 
(a.year=1981 OR a.year=1983 OR a.year=1984 OR a.year=1989) 

ORDER BY citations DESC LIMIT 30;

Fig. 4.23 Trends of the number of references and the number of citations of the four largest
subject categories
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Citation Normalization Over Time

Articles that are published earlier tend to have a higher number of citations on
average. In order to remove or reduce the biases due to how long a paper is
available to potential citers, the age of publication should be taken into account.

Figure 4.24 depicts the cumulative citation density function. For instance, given
an article published in 2000, the probability that the article has no more than 5
citations (s5) is much lower than the probability that a 2015 article. In other words,
a 2000 paper is more likely to get more than 5 citations than a 2015 paper. The
formula in the figure suggests how one may estimate a probability in terms of
relative frequencies. For example, c0 is the number of items that have a zero
citation, c1 is the number of papers with citation counts of 1, and so on. Thus i* ci is
the sub-total of the citations corresponding to ci. If there are c5 = 11 papers with
i = 5 citations each, these 11 papers collectively received 55 citations. If the entire
set of publications is allocated to 100 evenly divided bins, then this method is very
close to the percentile indicator proposed by Loet Leydesdorff and his coauthors.
Furthermore, our indicator has two additional advantages:

The percentile-based indicator is an approximation to the cumulative citation
density function in its integral form. Realizing its connection to the integral form,
one can easily improve the approximation by using an arbitrarily large number of
bins. In effect, we are taking the limit of the discrete sum of the citations over bins.
With a sufficiently large number of data points and a sufficiently large number of
bins, the estimate can be arbitrarily close to the integral value.

Our indicator is scaled to [0, 1], which makes it independent of its range and thus
easy to understand and compare with other fields. Instead of wondering where a
scientist with an indicator of 1.91 would be positioned on an irregular scale, The
unit range of [0, 1] simplifies the interpretation and comparison.

Figure 4.25 depicts the probabilities of articles published in a particular year
having c citations between 2000 and 2015 in Science Mapping. The citation
probability distributions of articles published in the first 11 years (2000–2010)
resemble to normal distributions with the highest probability is around p50, which
is the middle of the [0, 100] scale and near-to-zero probabilities towards both ends.
The probability curves of articles published in the recent five years (2011–2015) are
increasingly higher towards the lower end of the citation scale. It appears that, in
general, the peak of a citation distribution steadily shifts from left to right and the
overall distribution is stabilized approximately after five years of publication. We
suspect that the rate of the settlement is likely to be field-dependent.

In addition to the fluctuations of citation probability, we smooth the citation
probabilities with 5-year average citation probabilities between 2000 and 2015. As
shown in Fig. 4.26, the trends become more apparent—citation probability distri-
butions are gradually shifted from low-citation probabilities to average—and
higher-citation probabilities. The citation probability distribution of articles pub-
lished in the recent five years has a substantial weight on the left, i.e. the probability
of having few citations is relatively high. The two citation distributions of articles
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published more than five years ago overlap considerably with one another, sug-
gesting a relatively stable distribution. Normalizing citations over time is reason-
ably reliable for publications more than 5 years old. In contrast, citation
probabilities fluctuated considerably more with articles published less than 5 years
old. The key to citation normalization over time is to account these factors.

Fig. 4.24 Cumulative relative citations by year of publication

Fig. 4.25 Probabilities of articles published in each year having citations c in Science Mapping
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Summary

Citation-based indicators should be normalized in terms of the fields of study
involved, the year of publication. There are distinct advantages of utilizing standard
cumulative citation probability functions as opposed to the development of indi-
cators that may not share the universality in terms of their interpretability. More
importantly, the wide variety of indicators should be taken into account collectively
along with qualitative analyses of science to serve the purposes of research eval-
uation as well as learning the state of the art of scientific research.
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