
Chapter 3
Science Mapping Tools and Applications

Abstract We introduce the design and applications of a few influential science
mapping tools, namely CiteSpace, VOSviewer, and CitNetExplorer, such that one
can utilize these freely available tools to study a scientific domain of interest.
CiteSpace provides a variety of metrics and indicators concerning trends and pat-
terns in scientific literature. Many of these metrics are explained further with
illustrative examples from applications of CiteSpace. CiteSpace also includes
extensions that are particularly made to generate examples in the book. Three
examples of systematic scientometric reviews using CiteSpace are included to
illustrate relevant concepts and analytic functions.

Keeping Abreast of Scientific Frontiers

Keeping abreast of the development of a scientific domain is challenging for many
reasons. It is time-consuming to search and gather relevant information adequately.
There are numerous ways to describe the same topic, so it is challenging to come up
with a comprehensive list of keywords for a scientific domain. Furthermore, we are
most likely unfamiliar with the domain we plan to search for in the first place. How
do we maximize the coverage of our search with our limited knowledge of the
target?

One of the scenarios that we need to deal with has become less common because
we are more likely to find at least some relevant publications now than we were just
a few years ago. Imagine that we carefully formulated a search query, but our query
didn’t lead to any usual articles. In other words, it seems we have to revise our
initial query so that we can at least find something. Once we found relevant articles,
there are ways to expand the search and find more relevant publications.

An effective way to minimize the risk of missing anything important in a sci-
entific domain is to see the basis that other researchers have built on. Most likely we
can learn valuable information from others that we would probably never think of.
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Scholarly Publication

Researchers today find themselves with increasingly more options to publish their
work, ranging from the traditional peer-reviewed archival publications to
self-directed newsflash-like tweets. Although researchers now have many more
options than ever before, the essential process remains the same. Briefly speaking,
researchers come across a research question that they can do something about. Of
course, finding the right research question is currently also more of an art than
science. As we have seen in Hilmeier’s series of questions, a critical step in research
is to understand the status of the research question in a broad context chronolog-
ically and domain ontologically.

Scientific discoveries are made rarely in the order that makes the most logical
sense; otherwise, science would be reduced to a simple and straightforward logical
reasoning process. Scientists and researchers need to publish their work in order to
establish or maintain their intellectual impact in the scientific community. Novelty,
originality, interesting, and creativity are among the few criteria that are held
strongly in scholarly publication, especially through those venues guarded by
various forms of peer reviews. Along the line of novelty, reviewers commonly
criticize the lack of originally, the inadequacy of a claimed novelty, or an inade-
quately established connection to prior work by others in the field. The strongest
argument for a novelty is almost certain not the one that simply claims no one has
ever done it before or the equivalent cliché that we are the first who did so and so.

Sociologists have noticed that the easiest way to attract people’s attention is to
challenge the beliefs of your audience to the extent that they would be curious
enough to listen to what you have to say. On the other hand, going too far in this
direction may put off your audience altogether if it starts to sound ridiculous to their
current mindset. In fact, sociologists suggest a few strategic moves that may boost
the novelty of your next research question. For example, numerous theories were
proposed to explain what happened at the KT boundary that led to the extinction of
dinosaurs. The widely known theory was the one that focused on an asteroid impact
on the earth and its atmosphere. A competing theory suggested that it was the lava
from the insider of the earth rather than what from the sky. Similarly, after the
September 11 terrorist attacks, researchers realized that people may still develop
post-traumatic stress disorder (PTSD) symptoms even they were never near to a site
of trauma, which was previously believed to be impossible. Prior to the September
11 terrorist attacks, PTDS research suggests that a first-hand physical experience of
a trauma is essential for developing PTDS. However, researchers found that many
people who did not have direct experiences through the trauma because they are
thousands of miles away from New York.

The subjectivity of evidence means that the role of a piece of information as
evidence is subject to the mindset or the mental model of individuals. The same
piece of information can be used by different individuals to support different
arguments. As the rest of the universe seems to be redshifted from us, does it mean
we are at the center of the universe? As everyone can see the sun rises and sets, they
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may still come up with different interpretations concerning whether we are at the
center of the universe or the earth is orbiting around the sun.

In addition to the subjectivity of information, the uncertainty of the collective
knowledge of the scientific community is another fundamental concept that we
should bear in mind. We know from sociological perspectives of scientific change
that scientists are driven by their desire to establish and consolidate their recog-
nition and reputation in the scientific community or beyond. They seek to attract
attention from their peers with novel ideas and astounding findings. The most active
areas would be where we know little about the subject. Once we know more and
more about a subject area, the level of uncertainty is likely to reduce. Thus, the level
of uncertainty is an integral part of our knowledge of an area of research. Indeed,
the knowledge of the uncertainty of knowledge is a type of meta-knowledge, which
tells us the epistemological status of our knowledge. As we have seen in Shneider’s
evolutionary model of a scientific discipline, the meta-knowledge of a discipline
may tell us which stage of the evolution the discipline is going through (Shneider
2009). Is it still at the first stage when researchers in the specialty are trying to
conceptualize a new line of research? Is it at the stage when researchers are con-
centrated on building the right tools to augment their studies as Galileo was
building his telescope?

Citation-Based Analysis

There are many types of scientific publications. We will primarily focus on two of
them that are most likely to reveal relevant scientific knowledge of a domain:
articles that report original research and reviews of a research topic.

Each formally published scientific article typically consists of the following
components:

• A title and sometimes a subtitle.
• A list of authors and their affiliations.
• An abstract, structured or unstructured.
• A list of keywords assigned to the article by the authors.
• A list of keywords assigned to the article by indexing services such as the Web

of Science.
• The main body of the article, including text, figures, tables, equations, and other

materials.
• An acknowledgement to reviewers, researchers, or research funding or

sponsorship.
• A list of references cited in the article.

Terms such as noun phrases appeared in the title of an article can be used to
compute how often two terms appear within an article or even at the sentence level.
Such terms are called co-occurring terms. For example, the four terms highlighted
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in yellow in the title are co-occurring terms. Similarly, connections between terms
in the abstract can be established in terms of their co-occurrences too.

A citation is an instance in which an article explicitly refers to a previously
published article. Eugene Garfield conceived the idea of citation indexing, which
taps into association of ideas found in scientific publications (Garfield 1955). The
referred article is called a reference or a cited reference, for example, the citations to
(Price 1965; van Raan 2000; Abt 1998) in the example shown in Fig. 3.1. In a
scientific publication, especially in an original research article, references are cited
for specific reasons in connection to an argument of the article. The fact that these
references are cited by the same article means that they are co-cited references. In
other words, they are cited together. A co-citation relationship between two ref-
erences implies that, from the point of view of the author of the citing article, the
two references are related to one another through the content of the citing article.
For instance, one can infer from the text that the co-citation relation between (Price
1965) and (van Raan 2000) is probably because both of them are relevant to
properties of transient articles. There may be more instances in which these two
references are cited together in the same article later on. Multiple co-citation
instances of the same pair of references may strengthen their co-citation relation in
terms of the quantity. On the other hand, co-citations in different contexts may
increase the diversity of the nature of the co-citation relation.

Traditionally, co-citation relations are established based on the references listed
at the end of an article rather than based on an inspection of co-citation instances in
the body of the article. In other words, we know that (Price 1965; van Raan 2000)
are co-cited by the article because they are both included in the reference list of the

Fig. 3.1 The meta-data of a research article—a 2006 JASIST article on CiteSpace II (Chen 2006).
The article is the 2nd of the 10 Google Scholar classic papers in Library and Information Science
published in 2006
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article rather than we found the sentences that mentioned them on the same page.
The simplistic traditional approach is largely due to the accessibility of full text of
scientific publications in the mid 20th century when the now famous Science
Citation Index (SCI) was conceived by Eugene Garfield. Initial volumes of SCI
were themselves created on punch cards and printed on papers. It is not until recent
the access to full text articles is gradually taken for granted. As it becomes easier to
access the full text of scientific articles, one would wonder what we would miss by
deriving co-citation relations from the end-of-article reference list as opposed to
pinpoint co-citation instances directly in full text.

The 2006 JASIST paper on CiteSpace is 19-page long, including 18.5 pages of
text. The first citation is on the first page to (Price 1965) and the last citation is on
page 18 to (Smalheiser and Swanson 1998). Intuitively, the co-citation connection
between (Price 1965) and (van Raan 2000), both on the first page, is much more
meaningful than the co-citation connection between (Price 1965) and (Smalheiser
and Swanson 1998), which spans over 18 pages of text. It seems one should take
into account this type of distance between the locations of two references whenever
possible. In contrast, due to the limitation of data, co-citation relations in a tradi-
tional co-citation analysis cannot further differentiate their strengths within an
article. We investigated the effect of the proximity of co-citation locations in the full
text articles published in six bioinformatics journals and found that co-citations at
the sentence level provide a good approximation to the overall co-citation patterns
identified at the article level. It is therefore our recommendation that whenever
possible the proximity of co-citation locations should be taken into account,
preferably at the citation context level, which is commonly defined as a sentence
that contains a citation instance and one or two neighboring sentences before and
after the citation sentence.

The Metaphor of a Knowledge Space

An intuitive metaphor of the scientific knowledge is a knowledge space or the
universe of entities and relations and various aggregations at higher levels of
knowledge representation such as facts, rules, claims, hypotheses, speculations, and
other types of elements represented. Stars and quasars in the universe of knowledge
would represent concepts and their connections. Each published article would
introduce some changes into the existing universe of knowledge. For example, an
article may introduce new connections between existing concepts. A more inno-
vative article may introduce a set of new concepts and their relationships all at once.
The brightness of a star can indicate how active a concept is. A concept is more
active if the concept is being involved in more and more recently published articles.
In contrast, if a concept has not been mentioned for a long time, its brightness
would become dimmer. Interconnections between concepts can be introduced by an
article and subsequently reinforced by additional articles later on. Connections that
have not been actively discussed over a long period time may weaken their
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strengths. Newly published articles may alter the structure of the underlying
knowledge space by adding new concepts and new interrelations.

The universe metaphor is not the only one that is intuitive. For example, an
alternative metaphor is a neural network that models how human brains function
when we learn from a typically large amount of data. The astounding performance
of AlphaGo is one of the many impressive applications of artificial intelligence
techniques, especially the so-called deep learning techniques. Through deep
learning, multiple layers of interconnected neurons are adaptable to recognize
patterns at various levels of granularity. For example, tasks that are used to be very
challenging for computers but effortless for human beings such as recognizing a
human face or a handwriting now can be reliably done through deep learning
techniques. We will return to this exciting topic later in our book.

The universe metaphor has the advantage of visualization-congruence, which
means it comes natural to derive a visualization design that would fit nicely with
what users may expect from their understanding of the universe of astronomical
objects such as stars, galaxies, the Milky Way, and the Great Wall. We would
expect that many types of changes in the universe of knowledge are as visible and
observable as we have seen in the universe of astronomical objects.

We use an interactive visual analytic tool CiteSpace to demonstrate how to
generate a systematic review of a scientific field. A traditional systematic review of
a field is typically written by someone who has developed a substantial under-
standing of the field. A typical review article contains over 100 cited references.
A systematic review is valuable in the course of the development of a field. Derek
Price, a pioneer of the scientometric field, once estimated that a fast-growing field
probably needs to have a systematic review paper after every 50 original research
articles. Systematic reviews thus serve the role of summarizing what has been
achieved by the original research articles since the last review article. However, a
field may be too young to have a readily available systematic review. Existing
reviews may not give enough attention to the topics that we are particularly
interested in. In other words, it is quite possible that our best bet would be simply to
review the literature all by ourselves.
Doing the review by ourselves has several distinct advantages:

• We choose the depth and breadth of the topics to cover.
• We choose when it is the time to do it as we need it.
• We develop a deeper understanding of the topics and their connections along the

way.

The major challenge is the lack of the knowledge of the domain as a whole or
that of a few specific areas of the domain. On the other hand, this would be true to
any potential researchers who are planning to review the literature of a scientific
domain. Given the scale and the volume of today’s scientific literature, it is unlikely
for an individual to master the depth and breadth of a subject domain. Many new
research students face the challenge when they search for potential dissertation
topics. By any standard, it is a time-consuming task to sift through hundreds of
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hand-picked articles to identify some potential research questions. More impor-
tantly, identifying a research question cannot be done meaningfully without a good
understanding of what characterizes it in a broader context. In other words, the
amount of the effort required to articulate a research question properly is probably
about the same as, if not more than, the amount of the effort required to develop a
good understanding of a field. As we have seen in Heilmeier’s Catechism,
researchers need to figure out not only the status of their research problems in a
potentially boundless context but also how to articulate the status most effectively
to anyone who might concern.

Let’s assume that the analyst does not have any special training in the target
subject domain, which is most likely the case for many who need to find out more
about the domain in the first place. The first thing our analyst needs to find out
about the universe of knowledge is its structure or how the various galaxies are
organized in the space, how they are related to one another, how long they have
been there, what changes are taking place, and what one may expect to see in the
future. Within a specific galaxy, our analyst would be interested in stars that stand
out in one way or another. What is the brightest star? Which one has the greatest
mass? Which one is the most unstable one? Which one is on its way to collapse?
Which one is about to collide and merge with another one?

A visualization tool to our analyst is like a telescope to an astronomer or a GPS
to a driver. The resolution of a visualization tool is determined by the resolution of
the underlying data. A high-resolution GPS would be more useful for us to navigate
through a dense and complex road layout than a low-resolution GPS.
A high-resolution telescope would be more powerful for us to see finer structures of
astronomical objects than a less powerful telescope. The resolution of a visual-
ization of co-cited references in scientific publications can be measured in terms of
the number of pages or the distance between the locations of co-cited references.
Take the references cited in the 2006 JASIST article on CiteSpace (Chen 2006). In
a traditional co-citation analysis, the resolution is the same 18-pages to all the
co-cited references. The 18-page resolution is the maximum possible distance
between two references cited in the article. If the full text of the article is accessible,
then the resolution can be further improved by replacing the 18-page distance with
the actual distance between the locations of two citations. If two references are cited
multiple times in the same article, then the co-citation proximity can be defined
through several options. For example, we can use the minimum distance between
the locations of two citations. Alternatively, we can use the median distance to
represent the strength of the co-citation link.

CiteSpace: Visualizing and Analyzing a Knowledge Domain

CiteSpace is an interactive visual analytic tool written in Java (Chen 2004, 2006;
Chen et al. 2010). It is freely available. The motivation behind the development of
CiteSpace is to enable researchers to conduct a systematic review of a scientific
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field with little relevant domain knowledge or no prior knowledge of the domain at
all. It is suitable for a new research student to search for potential dissertation
topics, for an experienced researcher to keep abreast of the development of an
established field of study (Chen 2017), or for a scientist to explore emergent trends
in one or more research areas (Chen et al. 2012, 2014a, b).

CiteSpace is not intended to replace the role of conventional systematic reviews.
Rather, CiteSpace aims to provide a computational approach that can be easily
applied by the vast majority of researchers to meet their own needs. The procedure
is repeatable at practically no cost to the analyst so that the analyst can generate a
new review whenever necessary.

It is not our intention to use tools such as CiteSpace to eliminate the role of
domain expertise in interpreting the analytic results of a CiteSpace application. On
the contrary, we precious the value of domain expertise and we believe any domain
expertise is hard to come by. We want to provide a tool for areas where domain
expertise is not readily accessible or not available in a timely manner.

CiteSpace is probably the first computer application that is specifically designed
to support the visual analysis of scientific literature. The development of CiteSpace
has been particularly inspired by a number of pioneering software systems that have
been made freely available, notably Pajek for analyzing large networks (Batagelj
and Mrvar 1998), information visualization toolkits such as prefuse (Heer 2007),
software programs generously shared by Loet Leydesdorff. Many wonderful and
relatively new systems are made freely available, including VOSViewer (Van Eck
and Waltman 2010), CitNetExplorer (Van Eck and Waltman 2014), and Gephi.

CiteSpace is unique in several ways in comparison with other systems that also
take science citation data as the input. First of all, CiteSpace is designed to support
the analyst to obtain a good understanding of the development of a scientific
domain, or a knowledge domain. The unit of analysis is a subject domain, which
means all the landmark publications and articles that have played a critical role in
the holistic view of the knowledge domain as a complex adaptive system. With the
support of CiteSpace, our analyst should be able to develop a good sense of the
fundamental issues and major methods associated with the research domain.
Second, the focus on a domain of knowledge is reinforced by various visual
encoding that characterizes patterns and features with reference to underlying
theories of the development of a scientific domain. For example, a cluster of
co-cited references provides a representation of the intellectual base of a research
specialty. The nature of inter-cluster relationships is underlined by cited references
with strong betweenness centrality scores. The boundary-spanning or brokerage
implications of such references are supported by theories such as the Structural
Hole Theory (Burt 1992) and as a focal point in a paradigm shift from a Kuhnian
point of view. CiteSpace is designed in such a way that the search for critical
information of the development of a scientific field is turned to the visual search of
patterns and features that standout in an overview of the domain.

Figure 3.2 shows an overview of terrorism research (1996–2003). We will
explain the details shortly, but for now let us check what features would draw our
attention, assuming we know nothing about this research domain. What we can see
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effortlessly is a property called preattentativeness, which means they will get our
attention within the first 200 ms. It is the time required to redirect our attention.
This property is also called standout or popout. In the visualized network of cited
references, our attention is likely to be directed towards the few big circles in
purple. Then we could also notice some discs in red. Next we would probably
explore the surrounding areas of these focal points and perhaps read the text labels
in different colors and font sizes. At the highest level of granularity, we could see 3–
5 concentrations (clusters) in different colors. The legend above the visualization
indicates the navy blue color is associated with 1996 on the left and the orange
color is associated with 2003 on the right. The area in the orange color, with a label
“#2 terrorist attack,” must essentially correspond to the year 2003. In contrast, the
area in navy blue, labeled as “#1 blast over-pressure,” must be connected to the year
1996. Further inspections would reveal that purple circles seem to be positioned
between different areas such as NORTH CS (1999) between #2 terrorist attack and
#0 biological terrorism on the upper right region of the display, HOFFMAN B
(1998) between the mainland and the peninsula stretching into the west (#7 gov-
ernment coercion), and MALLONEE S (1995) linking the #0 biological terrorism
and #8 ocular injury in the lower right region.

As you can see, we are able to identify a small number of elements in the
research domain without referencing to any specific domain knowledge. Evidently
these elements must play some special roles in further understanding the research
domain. What makes these elements standout in the overview of the research
landscape is due to the co-citation patterns found in scientific articles written by
researchers in the scientific community. In other words, these patterns reflect
something profound shared by individual researchers because the emergence of a

Fig. 3.2 An overview of terrorism research (1996–2003)
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pattern requires the consensus, endorsements, and reinforcements of many
researchers.

Now we can identify some of the major characteristics of a knowledge domain.
It may consist of multiple inter-connected topic areas. The development of each of
these topic areas is likely to last for a period of time, which may have a variable
duration. The key to the inter-relationship between two topic areas is largely hold
by the brokerage node or nodes that connect the two topic areas. Our analyst can
reach this level of understanding of a knowledge domain through a visual
inspection that won’t take much longer than a few minutes, although our experience
shows that most of the users would eagerly dive into the juggles of specific ref-
erences before pondering the overall structure of the forest and the implications of
the structure on subsequent exploration of the domain’s landscape.

Ben Shneiderman, a pioneer in visual information seeking and human-computer
interaction in general, proposed a simple mantra that summarizes the strategy of
visual information retrieval for designers as well as for end users (Shneiderman
1996). Shneiderman’s mantra states “overview first, zoom and filter, then details on
demand.” The first step—overview first—is to form a hierarchical organization of a
domain and its topic areas. The entire research community behind the domain as a
whole can be considered as a single specialty. Each topic area corresponds to a
subset of the overarching specialty. Such subsets can be considered as distinct
specialties in their own rights. The best way to understand the nature of a specialty
is not only to see what topic it focuses on but also how it distinguishes itself from
specialties associated with its neighboring topic areas. In the terrorism research
(1996–2003) example, understanding that bioterrorism is a major concern in the
research domain is one thing, but a deeper understanding of practical implications
of bioterrorism on healthcare and the preparedness of emergency responders is a
significant step towards understanding what a research domain is really about.
Achieving an understanding at this strategic level brings numerous advantages to
our analyst in subsequent exploration of the knowledge domain. Once we have
established an organizing framework based on the writings of many active
researchers in the domain, one can easily categorize newly published research and
recognize in what sense the new research is novel. Answering Heilmeier’s ques-
tions is no longer as challenging as they seemed to be before our inspection of the
overview of the domain.

Visual Exploration of Scientific Literature

The general procedure of visually exploring the scientific literature of a knowledge
domain consists of several basic steps:

• collecting data
• configuring representation models
• generating interactive visualizations of the domain.
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Data Collection

The goal of the data collection step is simple: to collect data that can adequately and
accurately represent the domain in question. In practice, this is easier said than
done. First, we are probably not familiar with the domain of our choice. We may be
very interested in the domain, but we are probably not aware of various termi-
nologies or jargons that have been used in scientific writings to describe topics
relevant to the domain. Furthermore, concepts, theories, and practices may have
evolved over time. The best case scenario is when we are familiar with the
vocabulary of the domain, have an easy access to a domain ontology or thesaurus,
and have a domain expert on the team. In the toughest scenario we would have none
of them. In general, it is likely that we are somewhere in between. A common
strategy is to snowball the query-and-refinement process so that as we learn more
and more about the domain, we are better able to characterize what the represen-
tative data would look like.

More sophisticated search strategies are possible to improve the quality and
efficiency of data collection further. For example, if we are familiar with a theory of
the development of scientific knowledge, then we may derive a complex set of
queries such that we can cover various aspects of the target domain systematically.
In a recent example, we found it effective to organize our queries with reference to a
theory of the evolution of a scientific discipline. The theory was proposed by
Alexander Shneider. It is simple and intuitive. According to the theory, the evo-
lution of a scientific discipline goes through four distinct stages in sequence:
conceptualization, tool construction, tool application, and knowledge codification.
The conceptualization is the first stage of the evolution. New ideas are conceived,
although a lot of details remain unknown. The tool construction stage focuses on
developing instruments that would be necessary to investigate the research ques-
tions conceived at the conceptualization stage. The tool application stage is when
the application of enabling and augmentative techniques to the research questions
result in new discoveries and new knowledge. When we formulate a complex query
for relevant articles, we can include sub-queries that would cover specific aspects of
an evolving scientific domain. For example, we can use one query to specify the
basic concepts of the domain, use another query to specify the types of tools that are
particularly relevant to the domain, and yet another query to specify applications of
the research method.

Configuration of Representation Models

A key concept in CiteSpace is the time slicing technique. The idea is similar to the
concept of a sliding window. A long period of time can be time sliced into a series
of adjacent time slices. A snapshot of the domain knowledge can be represented by
scientific articles published within the corresponding time slice. A time slice can be
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a one-year window or a multi-year window. The primary effect of time slicing is to
enhance the impact of research in a particular year. Adjacent time slices can overlap
with each other. One of the effects of overlapping time slices is to smooth the
variations over time. Besides, it makes more sense to consider that articles pub-
lished in December and in January next year should belong to the same group as
well as articles published in June and July. The effect of allowing an overlapping
sliding window is a smoother transition of various patterns. The traditional network
analysis without time slicing is a special case when the width of the window
becomes the entire time interval. If we allow the duration of overlapping years to
vary from 0 to the entire time interval, then the traditional method is a special case
when the overlapping years become the entire duration of the time interval. In the
following examples, we use non-overlapping time slices for its simplicity.

The clarity of a network is typically affected by several factors. An excessive
number of links in a network would make it harder to differentiate salient patterns
from common linkages. There are many strategies for reducing the number of links.
Some of them make clear-cut decisions, whereas others follow sophisticated criteria
that take into account local structural properties or even global structural properties.

Link Selection

Removing weak ties from a network is a commonly adopted strategy. Weak ties are
often associated with a higher level of uncertainty, including underrepresented
connections. There are many ways to select the weak ties to remove and they tend
to impact the remaining network differently. The simplest way is to rank all the
links in a network by their strengths and remove links from the bottom of the list,
for example, by removing links with the strength below a cut-off threshold or by
removing the 20% of the links with the lowest strengths. The downside of this
approach is the risk of removing nodes that do not have strong links to survive.
Although one may argue that we do not lose much anyway considering those nodes
do not have strong ties with the rest of the network, weak ties may bring us valuable
and unanticipated information. According to a famous study entitled the strengths
of weak ties in social networks, the value of weak ties lies in their potential role in
informing us something that may be unexpected. From an information scientist’s
point of view, any information that surprises us is a learning opportunity because it
shows that our current belief, or our mental model, is inadequate, inconsistent, or
even totally invalid. Weak ties in a social network imply a connection between
people from different social circles. Information from different social circles is more
likely to bring us something new as opposed to information from the same circle of
friends.

According to sociologist Burt (1992), the potential value of the information flow
is not because the ties are weak; rather, it is because weak ties are more likely in the
position to connect different groups of individuals. The more broadly we are
exposed to different ideas, diverse perspectives, and alternative interpretations, the
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more likely we are able to come up with creative solutions and better handle a
complex situation. According to Burt, our positions in a social network are not
equal because the chance of seeing a diverse range of information flowing by is
different. The difference, according to Burt can have profound consequences
because one can translate such potential to a competitive edge.

We have learned at least two things from the above discussion: (1) we should
avoid removing weak ties simply because they are weak, and (2) some nodes are
worth our attention more than others because they may indicate where the com-
petitive edges are or where the creativity is. Let us see if we can meet the two
criteria simultaneously. Instead of dealing with all the links in a single list, take all
the nodes in the network and consider links that connect each node to the rest of the
network. This arrangement makes it possible to retain all the nodes while removing
relative weak ties from each node. Along this line of reasoning, we can come up
with additional methods to reduce the number of links but preserve global prop-
erties of the network. In CiteSpace, the user can tie the number of links proportional
to the number of nodes in the network. We know that the least number of links to
connect N nodes is N – 1 and the maximum number of links in a fully connected
undirected network is N*(N – 1)/2. Turning a network to a minimum spanning tree
will give us a network of N – 1 links. However, we have shown in our previous
research that using a minimum spanning tree to approximate the original network
has several drawbacks despite its advantages such as computationally simple and
efficient. Given a network, there may be multiple minimum spanning trees.
Arbitrarily picking one of them does not justify the validity of the resultant rep-
resentation. A more convincing solution is to retain all the minimum spanning trees
if we cannot justify selecting one of them only. This is indeed what Pathfinder
network scaling can offer.

Pathfinder network scaling is a link reduction technique that can impose a tri-
angle inequality condition across the entire network (Schvaneveldt 1990).
Pathfinder network scaling is able to retain the most salient paths in an associative
network. A network that satisfies the triangle inequality condition throughout the
network is called a Pathfinder network. Comparing with link reduction techniques
such as threshold-based methods, Pathfinder network scaling is theoretically sound.
Although initial implementations of Pathfinder network scaling are computationally
expensive, fast-algorithms have been developed, especially by a group of scien-
tometrics at the University of Granada. The Pathfinder network is the set union of
all the minimum spanning trees of the original network. Alternative paths con-
necting the same pair of source and target nodes are allowed simply because we do
not have reasons to discriminate them, just like our travelers can choose a cheaper
multi-city flight as well as a faster but more expensive non-stop flight between two
cities.

The length of a citation link from the source article published in year Ys to a
target article published in Yt provides information that could be useful for under-
standing the long-term impact of the target article. If we can afford to ignore
citations to target articles published long time ago, then we can remove such
citations from the network modeling steps. This parameter in CiteSpace is called
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Look Back Years (LBY). It is common to cut off by LBY at 5–8 years. Consistent
with the universe metaphor, we can choose to focus on our connections within a
radius of our choice.

Node Selection

The construction of a network may also impose restrictions on what kinds of
scientific publications would qualify to participate in the modeling process. In other
words, we need to decide what kinds of publications should contribute a repre-
sentation of the knowledge of a scientific domain. Why do we assume that we
should select a subset of publications to portrait the knowledge structure of a
scientific domain rather than including all of them in the process?

No matter what data sources we use it is very difficult, if not impossible, to
obtain a collection that we can truly claim to have a coverage of 100%. Both
Google Scholar and Elsevier have access to tens of millions of publications. The
Web of Science and Scopus are representative but not comprehensive.
Pragmatically, increasing the current coverage by 10% may cost extra 90% of
efforts and resources. More importantly, what can we learn from the extra 10%
coverage that we cannot possibly learn from what is currently covered? Besides, if
we are going to apply the same methodology to an extended coverage, what would
make the extra information standout and avoid becoming sidelined by the existing
high-profile features? Thus, it is more important to have the quality data than
aiming to collect the data that may cover everything. We need to be selective in data
collection as well as in analytic methodologies. As long as we bear in mind the
scope of our data sources, we do not have to perfect the dataset before starting
analyzing it. In fact, an iterative strategy is likely to work more effectively than
perfectionism that focuses on one step of the process alone because each step is a
learning process and an opportunity to refine our process.

The node selection process determines not only what is relevant in the sense of
information matched by information retrieval models but also evaluative indicators
such as citations and altmetrics. Evaluative indicators provide information regard-
ing the perceived value of an entity in the universe of knowledge. The value and the
relevant of a piece of information may not necessarily correlate. In other words, a
highly relevant piece of information may have little value to our analyst who is
constructing a systematic review of a domain. In terms of the value of a citation to a
publication, it is probably not so much how many times it has been cited so far;
rather, it probably matters a whole lot more if thought leaders in the research
domain or potentially relevant domains cited it. The widely known PageRank
algorithm follows the same principle—the significance of a webpage should be
recursively determined by the significance of pages that refer to the webpage. Along
this line of reasoning, we should pay more attention to what an article has to say if it
is written by a Nobel Prize Laureate, if it has been cited by Turing Award recipients
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or by others who have an established reputation in science and technology, or it has
been widely cited for reasons that remain unknown.

Citations and altmetric scores are valuable information on how fellow
researchers’ react upon a scientific publication. Broadly speaking, the more cita-
tions an article has received, the more likely that the article has generated an impact
on the research community. The more an article has been viewed and downloaded,
the more likely the article is interesting. Using citations as an indicator of research
impact is controversial. Some argued that since each citation instance may be
motivated differently, it may not make sense to add them up as if each of them is
equally accountable. Some argued even further that since some citations are sup-
portive, some are neutral, and some are even challenging the original work,
lumping these instances of different nature does not make any sense. Others have
questioned the assumption that each citation reflects something about the knowl-
edge of a domain because many mistakes or errors in citing a reference evidently
show that one cannot assume everyone reads what they cite. Furthermore,
researchers have found some citations even distorted the intended meaning of the
original source.

There are at least two ways out of these controversies. One is to further classify
the types of citations. The other is to clarify the significance of being cited. A good
example of the former is the Shepard’s Citation Signal in LexisNexis. For each
legal case, for example, Miranda v. Arizona, 384 U.S. 436, the Shepard’s Citation
Signal identifies the types of citations, i.e. signals, that the case has been cited,
including warning, questioned, caution, positive treatment, negative treatment, and
criticized by. As shown in Fig. 3.3, instances of citations, or citing decisions, are
classified into several types. For example, the Miranda v. Arizona (384 U.S. 436)
case has been cited in dissenting opinions of the U.S. Supreme Court in cases listed
as the items 21–23, i.e. Florida v. Powell, Montejo v. Louisiana, and Dickerson v.
United States. Classifications such as the Shepard’s Citation Signal are currently
rare in scientific literature. The Web of Science and Scopus do not currently provide
any citation information below the article level. In other words, we have no other
options except assuming the an article cites all its references uniformly even if we
know that this is not a good assumption to make. CiteSeer and Google Scholar are
probably the most widely known resources of scientific literature where one can
find contextual information of a citation. However, we are not aware of any
large-scale resources of scientific publications that enable users to search citations
by specific classifications of citations.

The latter way to reconcile much of the controversies or the uneasiness sur-
rounding the use of citation counts as an indicator of scholarly impact is to clarify
what we mean by impact. Many assume that the impact implies a positive outcome
and that one should rule out any negative impact. It is our view that the term
scholarly impact should include both positive and negative influences produced by
a scholarly contribution. A failure at one level of consideration can be valuable at
another level of thinking. Einstein once said the value of his research in his later
years is to stop another fool to make the same mistake. If we can learn from a
scientific publication either something to follow or something to avoid, it has a
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direct impact on our thinking. It has an impact! We should not narrowly limit the
meaning of impact to positive ones only.

As we can see, the process of selecting qualified sources is iterative in nature.
Initially, we may select publications with many citations already or publications
that have no citations yet but have been tweeted and retweeted a lot. At the next
level, after we analyze the selected publications, we may be able to apply
increasingly sophisticated selection criteria. For example, we may select publica-
tions that are known to have strong betweenness or eigenvector centrality scores in
the network we have analyzed. We may select articles that are known to have sharp
increases in their citation counts. We may also want to focus on articles that have
been cited by researchers from at least five specialties. Of course, we may want to
pay attention to articles that specifically criticized particular publications.

Interactive Visualizations

Vannevar Bush was the head of the U.S. Office of Scientific Research and
Development (OSRD) during the World War II. He envisaged how the mankind’s
knowledge can be collectively organized by association, the same way as how the
human memory works (Bush 1945). Highly connected information resources such
as the Internet and the Wikipedia are commonly considered as being inspired by
Vannevar Bush’s visionary MEMEX. Navigating in such a universe of knowledge

Fig. 3.3 Shepard’s analysis definitions
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is called trailblazing. The navigator forges trails that represent new connections. As
the metaphor of a universe of knowledge may imply, we need to make inter-galactic
travels and study information at different levels of granularity. We may be inter-
ested in specific causal relations between a virus and a disease. We may be inter-
ested in how similar methods are used in different disciplines of science. Interactive
visualization is an integral part of visual analytics. It enables us to explore or forage
information at various levels of granularity and trace connections across areas
where different perspectives may apply.

Ben Shneiderman’s mantra for visual information seeking should be very helpful
here. It is intuitive and simple to follow. In addition to the useful mantra, it is a good
idea for an analyst to get familiar with a few other theories concerning the process
of search and what we may expect to find. As people often say, you will only find
what you look for. The better we are theoretically prepared, the better position we
will be able to place ourselves to recognize potentially relevant patterns. Otherwise,
we may miss important clues even if they are right in front of us. We have discussed
a few theories of scientific change at the beginning of the book. We will frame our
interpretations with these theories and characterize what we would expect to see if
the theory is true.

Structural Variation Analysis

The structural variation theory considers the body of a scientific domain’s
knowledge as a complex adaptive system (Chen 2012, 2014). Its global structure
may be altered significantly by newly published articles, or by semantic predica-
tions conveyed by these articles. According to the theory, articles that have the
potential to trigger global changes are transformative in nature and they are the ones
that are most likely to influence the course of the further development of a scientific
field. How do we measure such potentials?

If we represent the domain knowledge as a network, then the modularity mea-
sure of the network can be very useful for us to assess the global structure of the
network. The modularity of a network is defined with reference to a partition of the
network. If we can divide the network into smaller components and minimize
inter-component connections, then the modularity quantifies the degree to which the
resultant components can be separated from one another. The modularity’s value
ranges from 0 to 1. The highest value of 1 means that the network is completely
modularized by the chosen partition. In contrast, the lowest modularity value of 0
means that these components are tightly coupled and one cannot separate them in
any meaningful way.

Figures 3.4 and 3.5 illustrate how the system adapts to the publication of the
groundbreaking paper by Watts and Strogatz (1998). The network was derived from
5135 articles published on small-world networks between 1990 and 2010. The
network of 205 references and 1164 co-citation links is divided into 12 clusters with
a modularity of 0.6537 and the mean silhouette of 0.811. The red lines are made by
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the top-15 articles measured by the centrality variation rate. Only major clusters’
labels are shown in the figure. Dashed lines in red are novel connections made by
Watts and Strogatz (1998) at the time of its publication. The article has the highest
scores in Cluster Linkage and CKL scores, 5.43 and 1.14, respectively. The figure
offers a visual confirmation that the article was indeed making boundary-spanning
connections. Recall that the data set was constructed by expanding the seed article
based on forward citation links. These boundary-spanning links provide empirical
evidence that the groundbreaking paper was connecting two groups of clusters. The
emergence of Cluster #8 complex network was the consequence of the impact.

In this view, a network is a system of interconnected blocks. The most funda-
mental changes for such systems would be changes that alter how existing blocks

Fig. 3.4 The structure of the system before the publication of the ground breaking paper by Watts
and Strogatz (1998)

Fig. 3.5 The structure of the system after the publication of Watts and Strogatz (1998)
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are connected as well as adding or eliminating participating blocks. Relatively
speaking, changes that are essentially limited to the internal state of a block would
not be considered as significant as changes that transform inter-block connections.
At the article level, each pair of co-occurring semantic predications introduced in
the article is potentially an agent of change or a perturbation signal. If the
co-occurring connection falls within a single block, then it may generate a local
impact without causing any global changes. In contrast, if the co-occurring con-
nection links two blocks in an innovative way or in a surprising or unanticipated
way, then it becomes likely that the new link may change not only the local
structure but also how the existing continents are organized. In other words, we
should particularly pay attention to the predications of the latter kind.

CiteSpace supports structural variable analysis. Given a set of scientific articles,
these articles are separated by the year of their publication. For each article pub-
lished in year Y, CiteSpace will compute all the changes introduced by the article
with reference to a network that represents the state of the knowledge prior to year
Y. The differences of the networks before and after the publication of the article are
used to quantify the likelihood that the article is altering the global structure of the
underlying network in a significant way.

Using MySQL Databases in CiteSpace

CiteSpace has a built-in interface with a MySQL database on your localhost. You
can upload your data to the database and interact with your data directly as you
would with any MySQL database. You can also interact with your data through
special-purpose functions provided in CiteSpace (Fig. 3.6).

For each dataset uploaded to MySQL, you can perform some text analysis
functions from the Data Processing Utilities interface. The text analysis functions
here are slightly different from the network of co-occurring terms in the main
interface of CiteSpace. The major difference is that functions here include a
selection step based on log-likelihood ratio tests. In theory, the resultant graph
visualization should represent the most important patterns of phrases.

VOSViewer and CitNetExplorer

VOSviewer is a popular science mapping software tool developed by Van Eck and
Waltman (2010) at the Centre for Science and Technology Studies (CWTS) in
Leiden, the Netherlands, for constructing and visualizing bibliometric networks.
These networks may include journals, researchers, or individual publications, and
they can be constructed based on co-citation, bibliographic coupling, or
co-authorship relations. VOSviewer also offers text mining functionality that can be
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used to construct and visualize co-occurrence networks of important terms extracted
from a body of scientific literature.

VOSviewer maintains a simple workflow from the data to visualization. It is
relatively straightforward to generate a visualization from bibliographic records
from the Web of Science, Scopus, and a few other sources. Figure 3.7 shows a
density map of references cited in the Science Mapping dataset. Comparing with
CiteSpace, a noticeable strength of VOSviewer is its nice and simplistic approach to
visualizing scientific publications. On the other hand, the strength in occasions may
become a weakness of VOSviewer if the analyst needs to conduct in-depth
investigations beyond the initial visualization. Perhaps more importantly, to our
knowledge, unlike CiteSpace, the visual design in VOSviewer is not driven by
theories of scientific change. For example, VOSviewer does not support concepts
such as intellectual turning points nor transformative potentials. Although
VOSviewer supports the notion of clusters, it does not provide cluster labels. As a
result, one has to rely heavily on the assistant of domain experts or on one’s own
domain knowledge when interpreting VOSviewer visualizations. In fact, the
development of CitNetExplorer (Van Eck and Waltman 2014), by the same team of

Fig. 3.6 An interface with MySQL in CiteSpace
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VOSviewer, is primarily motivated by the aim to strengthen the relatively weak
support of analytic functionality.

CitNetExplorer supports the visualization and exploration of direct citation
networks (Van Eck and Waltman 2014). In a direct citation network, a link pointing
from a node ni to a node nj represents that the article represented by ni cites the
article of nj. Figure 3.8 shows an example of a direct citation network of articles in
the Science Mapping dataset. Articles are arranged vertically based on the year of
their publication with the earliest year on the top of the visualization and the latest
year at the bottom. The directed citation link is shown vertically. The colors of
nodes indicate their clusters.

CitNetExplorer provides more functions for exploring a visualized network,
including the drill down function and the display of the shortest path between two
nodes. Figure 3.9 shows the resultant network of performing the drill down func-
tion on the Science Mapping network. The user can explore the shortest path
between two nodes.

There are an increasing number of computer software programs for analyzing
scientific publications. Many of them are freely available. Apart from CiteSpace,
VOSviewer, and CitNetExplorer, other widely known systems include HistCite,1

sci22 developed at Indiana University, the growing set of programs developed by

Fig. 3.7 A density map visualization in VOSViewer of references cited in the science mapping
dataset

1https://clarivate.com/products/web-of-science/.
2https://sci2.cns.iu.edu/user/index.php.

VOSViewer and CitNetExplorer 77

https://clarivate.com/products/web-of-science/
https://sci2.cns.iu.edu/user/index.php


Fig. 3.8 A direct citation network visualized in CitNetExplorer

Fig. 3.9 Drill down and the shortest path between two nodes in CitNetExplorer
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Loet Leydesdorff in Amsterdam,3 Alluvial Generator,4 KnowledgeMatrix Plus,5 to
name the few. A list of tools and resources is accessible from CiteSpace as well as
on the web.6

Terrorism Research (1996–2003)

Our first example of exploring the knowledge structure of a research domain is the
terrorism research (1996–2003). The source of the science citation data is the Web
of Science. The dataset comes with the release of CiteSpace as the Demo 1 project
for instructional purposes. Although everyone has probably heard of terrorists,
terrorist attacks, and terrorism, many may still have no clear idea what terrorism as
the subject of research may include. The lack of prior knowledge of the target
domain is probably an accurate description of most of the users of the visual
analytic procedure.

The data collection was based on a simple query in the Web of Science. If the
term terrorist or the term terrorism appears in the title, the abstract, or the keyword
list of an article, then the article is considered relevant and it will be included in the
dataset to be analyzed further. This type of search is called topic search in the Web
of Science. We used CiteSpace to visualize important patterns in the dataset so that
we can explore the visualization and learn about the subject domain. At the end of
the process, we should be able to obtain a good understanding of the domain in
terms of its overall structure, key groups of publications, and critical works in the
field.

Citation Bursts

A relatively simple but effective method is to identify publications in the domain
that have drawn attention of the research community at various stages of the
development. Burst detection is a reliable technique that enables us to accomplish
this task (Kleinberg 2002). Given a sequence of frequency values, a burst is an
abrupt elevation of the frequencies over a specific time interval. For example, the
number of cars crossing a bridge connecting New Jersey and Pennsylvania
everyday may experience bursts during rush hours and the number of cars crossing
the bridge every month may experience bursts during holidays. As we have dis-
cussed, citations received by scientific publications may provide the first-order

3http://www.leydesdorff.net/software.htm.
4http://www.mapequation.org/apps/AlluvialGenerator.html.
5http://mirian.kisti.re.kr/km/km_pop_en.jsp.
6http://cluster.cis.drexel.edu/*cchen/citespace/resources/.
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indicator of scholarly impact. In contrast, bursts of citations provide a higher-order
indicator of a scholarly impact in terms of the attention from the research com-
munity that is evidently above-and beyond the normally expected level. As a result,
publications with strong enough citation bursts during the course of the develop-
ment of the domain are valuable landmarks for us to navigate the domain further.

Figure 3.10 lists 24 references with the strongest citation bursts between 1996
and 2003. The simplistic diagrams on the right depict the duration of a burst event
in red. Overall, the periods of citation bursts drifted over time as new research
topics move to the center of the stage. For example, COOPER1983, the second one
on the list, has a strong citation burst weight of 5.916. Its citation burst lasted for
four years from 1996 till 1999. At this point, although we may not know the
specific role played by COOPER1983, we know that this article is evidently

Fig. 3.10 Articles with citation bursts in terrorism research (1996–2003)
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valuable, especially between 1996 and 1999. We can also tell from the simple
depiction that during the same period of time, no other article reached the same
level of citation bursts. If we want to invest our precious time on learning more
about the research domain, this article should be on our list of a few landmark
articles.

In addition to references with the strongest citation bursts, we should also pay
attention to references that have the longest duration of citation burst or have the
most recent periods of burst. Two of the references have the longest 5-year duration
of citation burst, namely KATE1989 and FRANZ1997. We also notice that two of
the three most recent bursts from 2001 were authored by INGLESBY in 1999 and
2000, respectively. This is an example of how to identify landmark articles without
any prior knowledge of the target domain. This method has a few distinct advan-
tages over using citation counts or altmetrics such as downloads. Usually citation
counts are only available as a sum that is accumulated over all the years since the
publication of an article. For example, the most cited publication in the Web of
Science, the one at the very top of Mount Kilimanjaro, has passed its citation peak
many years ago. Citation counts alone cannot tell us whether a highly cited article is
still at the center of everyone’s attention or its glory is really due to the credit it
earned in its golden age that has long gone. Knowing when an article is particularly
high performing in drawing the research community’s attention is more useful than
merely knowing that an article has a lot of citations.

More recent bibliographic records obtained from the Web of Science are likely
to include DOIs of cited references. For those references with DOIs, the user can
access the full text of a reference through its DOI link, which would be useful for
exploring the literature.

Timeline Visualization

CiteSpace supports a few types of visualization, including a cluster view, a timeline
view, and a timezone view. A cluster view depicts an overview of a network in a
node-and-link diagram. A timeline view still displays the nodes and links but
organizes them along multiple parallel timelines. A timeline visualization is intu-
itive. The analyst can obtain a good overview of the domain with a few simple
steps.

Figure 3.11 shows a timeline visualization of the terrorism research (1996–
2003). Each line from the left to the right represents a cluster of co-cited references,
which in turn reveals the work of a distinct specialty. CiteSpace supports several
other types of networks that can be derived from a set of bibliographic records.
Here we focus on networks of co-cited references. Studies of this type of networks
are called Document Co-Citation Analysis (DCA). Other types of studies include
Author Co-Citation Analysis (ACA) and Collaborative Network Analysis.

The timelines are arranged by their size from the largest downwards. The label
next to each cluster line summarizes the most likely context in which members of
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the corresponding cluster have been cited. The candidate words for the labels are
drawn from articles that cited the members of the cluster. For example, the largest
cluster #0 biological terrorism indicates that this cluster is essentially being cited by
articles relevant to the topic of biological terrorism.

Note that the citing topics and the cited topics may not be the same necessarily.
The difference is the one between the intellectual base and the reference front of the
corresponding specialty. In other words, each specialty has two interconnected
components: the intellectual base is where the specialty draws its inspiration from
and the research front is where the specialty disseminates its new contributions.
A good example is the cluster #2 terrorist attack. As we will see shortly, the
specialty focuses on the topic of Post Traumatic Stress Disorder (PTDS) in the
context of terrorism. The difference between its intellectual base and the research
front underlines the nature of the specialty. More specifically, the intellectual base is
essentially on PTDS prior to the September 11 terrorist attacks and the research
front is mostly produced after. A key difference is that the research front takes a
new turn by recognizing the possibility that was not on the radar of PTDS research,
namely, people may develop PTSD symptoms even if they have never been on a
trauma site physically.

The timeline visualization makes the life cycle of a specialty visible. For
example, cluster #1 blast over-pressure has the longest active time—the entire
duration of the observation. In contrast, the presence of cluster #6 counter terrorism
is much short lived. The timeline visualization also makes it easier to identify active
specialties—clusters with many items with circles in red—they have citation bursts.

The analyst can drill down by moving from one level of granularity to another.
There are several ways to drill down. CiteSpace allows the user to apply the same
analytic procedure repeatedly on a cluster of the network and then on a cluster of the
cluster. A research front at the top level may turn out to have finer structures at a

Fig. 3.11 A timeline visualization of the terrorism research (1996–2003)
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lower level. The user can inspect the titles of those articles that cited a particular
cluster and explore various aspects of the cluster. This can be done in CiteSpace with
the Cluster Explorer function. Unless we note otherwise, the labels of the clusters are
generated from the top 25% of the most cited citing articles for each cluster.

The largest cluster, #0 biological terrorism, has 61 cited references. It has a
silhouette value of 0.658. The silhouette value measures the homogeneity of a
cluster. Its value ranges between −1 and 1. The value 0.658 is strong enough to
make the cluster meaningful, especially as the largest cluster, although we may
expect to see higher silhouette values in some domains. The linkage between a
citing article and the cluster can be measured in terms of the extent it cited members
of the cluster. For cluster #0, there are six citing articles that each cited over 15% of
the member references of the cluster (Table 3.1). The one with the strongest
linkage, RICHARDS1999, cited 21% of them, is an article published in 1999
entitled “Emergency physicians and biological terrorism.” The title of each of the
six articles contains the term biological terrorism or bioterrorism, except
HAIL1999. The median year of publication is 1999.

Similarly, we can inspect citing articles from the research front of the second
largest cluster #1 blast over-pressure, containing 50 references. This cluster has a
silhouette value of 0.862, much higher than that of the largest cluster. The median
year of publication is 1985. We can also tell from the timeline view that overall this
seems to be an older cluster than the largest one. The top three citing articles are
shown in Table 3.2.

Two of them explicitly mentioned blast over-pressure. In fact, one mentioned
blast over-pressure and the other mentioned blast overpressure-induced injury.
Although the two semantically equivalent terms do not have the identical forms,
they are grouped together because of the references they cited. This is an additional
advantage of citation indexing, as opposed to approaches purely based on matching
words or lexical patterns.

The next cluster is #2 terrorist attack, containing 47 references and an even
higher silhouette value of 0.915. The median year of publication of the cluster is
1994. The first three strongest citing articles to this cluster all have the term terrorist
attacks in their titles (Table 3.3). In fact, they all contain the longer phrase
September 11th terrorist attacks in their titles. It is also clear that the central theme
is to do with PTSD after the September 11th terrorist attacks. Each of the three
articles has cited over 21% of the members.

In summary, by visualizing the citation patterns in articles published between
1996 and 2003, we have learned that the three most prominent areas of the research
domain are bioterrorism, injuries caused by blast over-pressure, and PTSD caused by
September 11th terrorist attacks. We have also found gateways that we could drill
down as further as we like. We can check where those landmark articles are located
and pinpoint articles that played critical roles in the course of the development of the
complex domain. As we have seen, we can reach this macroscopic level of under-
standing of a domain that we knew little about. This is largely due to the way we tap
into the domain expertise of numerous researchers through their publications. This
procedure is generic. It is applicable to a wide range of scientific disciplines.

Terrorism Research (1996–2003) 83



In the following example, we will look at the terrorism research again, but this
time over a wider window, especially containing articles published between 1980 and
2017. We would like to see where the three prominent topic areas are located in the
broader context. We would also like to see any major topic areas emerged since 2003.

Structural Variations

The goal of a structural variation analysis is to identify two types of links added to
the current network representation of a domain’s knowledge, namely, incremental
links and transformative links (Chen 2012). Incremental links are within the
boundary of a particular cluster, whereas transformative links connect different
clusters. Thus, incremental links do not change the structure of the system at the
cluster level, but transformative links do.

Table 3.1 Major citing articles of Cluster #0

Coverage Citing article

0.21 Richards, CF (1999) Emergency physicians and biological terrorism

0.20 Atlas, RM (1999) Combating the threat of biowarfare and bioterrorism

0.16 Inglesby, TV (1999) Anthrax as a biological weapon—medical and public health
management

0.16 Relman, DA (2001) Bioterrorism preparedness: what practitioners need to know

0.15 Dhawan, B (2001) Bioterrorism: a threat for which we are ill prepared

0.15 Hail, AS (1999) Comparison of noninvasive sampling sites for early detection of
bacillus anthracis spores from rhesus monkeys after aerosol exposure

Table 3.2 Major citing articles of Cluster #1

Coverage Citing article

0.58 Elsayed, NM (1997) Toxicology of blast over-pressure

0.24 Elsayed, NM (1997) A proposed biochemical mechanism involving hemoglobin
for blast overpressure-induced injury

0.04 Stein, M (1999) Medical consequences of terrorism—the conventional weapon
threat

Table 3.3 Major citing articles of Cluster #2

Coverage Citing articles

0.28 Galea, S (2002) Posttraumatic stress disorder in manhattan, New York City, after
the September 11th terrorist attacks

0.23 Vlahov, D (2002) Increased use of cigarettes, alcohol, and marijuana among
manhattan, New York, residents after the September 11th terrorist attacks

0.21 Galea, S (2002) Psychological sequelae of the September 11 terrorist attacks in
New York City
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Given a particular year Y, articles published in year Y will be examined against
the structure of the network representation of the domain’s knowledge over the last
three years prior to Y. We refer this network as the baseline network for year Y. The
analyst may choose the number of years prior to year Y to form the baseline network.
The longer the baseline network extends back in time, the more accurate the
structural variation measures would be because a network with a longer exposure
time is likely to capture more links than a network with a shorter exposure time.

Figure 3.12 shows the footprints of top 10 articles with the largest modularity
change rate. Dashed lines represent novel transformative links. Solid lines represent
existing lines. Transformative links mostly connect the largest three clusters,
namely, #0, #1, and #2.

Terrorism Research (1980–2017)

We used the same simplistic topic search in the Web of Science using broader terms
of terrorist OR terrorism and limited to two types of publications: articles of original
research and review articles. The new search found 14,656 relevant records. If one
prefers to obtain additional articles that didn’t use these topic search terms but may
be relevant otherwise, one option is to use the citation expansion strategy to include

Fig. 3.12 Structural variation by transformative link count
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articles that cite this set of records. We did not perform the citation expansion for
this particular case because it is adequate for our purpose to focus on the scope
defined by the topic search.

We used the g-index to select articles for each time slice between 1980 and
2017. In addition, these articles must have received two or more citations them-
selves. Since we are dealing with a timespan of 38 years, imposing this minimum
citation condition can filter out many publications that do not make sufficient
impact on the research domain. Admittedly, this condition is likely to be relatively
harsh for recently published articles, although the use of g-index may compensate
the citation distribution to an extent. One remedy is to conduct a separate study
using a lower threshold on articles published within the recent few years. We
limited the Look Back Years to 5, which means we will ignore citations to refer-
ences that are more than five years ago.

Figure 3.13 shows the cluster view visualization of the terrorism research (1980–
2017). It depicts the largest connected component of the network of 908 cited
references. The largest connected component contains 694 references (76% of the
entire network). Each cluster is shown with a polygon colored to indicate the median
of its citing articles’ publication years. In this visualization, clusters located near the
top are the oldest, whereas clusters near the bottom are the most recent ones.

Fig. 3.13 A cluster-view visualization of the terrorism research (1980–2017). Node selection by
g-index (k = 10)
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The oldest cluster in the visualization is #9 war trauma survivor. Cluster #1
biological weapon is the second oldest, containing two articles authored by
INGLESBY, which remind us the biological terrorism cluster identified in the
terrorism research (1996–2003). Moving downwards, the cluster #8 blast injury is
likely to be connected to the blast over-pressure cluster identified in the 1996–2003
study. The cluster #0 terrorist attack and references such as GALEA2002 indicate
that this is the PTSD cluster identified before.

Moving further down, we encounter clusters such as #2 suicide bombing, #3
domestic terrorism, #7 word trade center health, and #4 islamic state. Evidently,
many new topic areas emerged since 2003.

In Fig. 3.14, the network of the terrorism research in 1996–2003 is superim-
posed over the network in 1980–2017. This function is called a network overlay,
which highlights the relationship between a subnetwork and a larger network.

Fig. 3.14 A network overlay shows the 1996–2003 network in the context of the 1980–2017
network
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Fig. 3.15 A timeline visualization of terrorism research (1980–2017)

A new timeline visualization of the terrorism research (1980–2017) is shown in
Fig. 3.15. The lines in yellow are from the earlier network (1996–2003). The
timeline view shows a big picture of the terrorism research. The previously pre-
dominant topic areas such as bioterrorism and PTSD are no longer in active at this
level of granularity, although there may be publications that are excluded by our
selection criteria. In contrast, the two current lines of research are #3 transnational
terrorism and #4 islamic state.

Using the Cluster Explorer function in CiteSpace, we can inspect the major
clusters and see what the major topics are and how they may differ from their
counterparts in the earlier visualization. The previously third largest cluster on
PTSD now becomes the largest cluster of 127 references and an even higher sil-
houette value than before (0.962), which means that the specialty becomes more
specialized. The median year of the cluster is 2003. As we can tell from the timeline
view, the cluster remained to be active until about 2009. As shown in Table 3.4, the
top five citing articles of the largest cluster are clearly related to the September 11
terrorist attacks. The major theme of PTDS and mental health in general continues
the theme of the PTSD cluster identified in the previous study.

The second largest cluster #1 biological weapon has 116 member references with
a very high silhouette value of 0.972. The median age of the cluster is 1999. As
shown in the titles of the top five citing articles, this cluster is clearly about
bioterrorism and biological weapons (Table 3.5). We notice that ATLAS1999 also
appears in the biological terrorism cluster identified in the previous study. The
timeline of the cluster stopped at 2003. On the other hand, there are some connec-
tions between this cluster and a few other clusters, notably #2 terror attack and #6
domestic law enforcement. It is possible that topics concerning bioterrorism may
have transformed into research topics under other clusters. It is also possible, of
course, the topic of bioterrorism is no longer an active line of research.
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The third largest cluster #2 terror attack has 95 references and a silhouette value
of 0.835. This cluster is relatively younger than the first two clusters. Its median age
is 2004. The relatively low silhouette value is perhaps reflected on the lack of a
clear consensus among the top five citing articles’ titles (Table 3.6). On the other
hand, the timeline view shows that this cluster has connections with #3 transna-
tional terrorism and #5 terrorist resource.

The cluster #3 transnational terrorism is a currently active area of research. With
85 references, it has a silhouette value of 0.834 and an even younger median age of
2010. Along with cluster #4 islamic state, this cluster represents essentially the
current research focus of the terrorism research community. The titles of the top
citing articles suggest that research in this cluster is concerned with questions
concerning the causes of terrorism (Table 3.7).

Cluster #4 islamic state is the youngest one, containing 84 references with a
silhouette value of 0.891 and the median age of 2012. Four of the top five citing
articles of the cluster were published in 2016 (Table 3.8). The titles of the top 5
citing articles suggest that the cluster focuses on deeper reasons of terrorism.

Figure 3.16 shows a timeline visualization that is rendered with citation bursts in
red circles, which correspond to the duration of citation burst. Almost every ref-
erence in the visualization had a citation burst. We have not seen this degree of
citation burst in other domains we have analyzed. We will drill down one more
level deeper to characterize each cluster’s theme in more detail.

Table 3.4 Major citing articles of Cluster #0 in Terrorism Research (1980–2017)

Coverage Citing article

0.08 Boscarino, JA (2004) Mental health service use 1-year after the world trade center
disaster: implications for mental health care

0.06 Boscarino, JA (2004) Mental health service and medication use in New York City
after the September 11, 2001, terrorist attack

0.06 Adams, RE (2006) Alcohol use, mental health status and psychological
well-being 2 years after the world trade center attacks in New York City

0.06 Boscarino, JA (2004) Adverse reactions associated with studying persons recently
exposed to mass urban disaster

0.06 Pulcino, T (2003) Posttraumatic stress in women after the September 11 terrorist
attacks in New York City

Table 3.5 Major citing articles of Cluster #1 in Terrorism Research (1980–2017)

Coverage Citing articles

0.11 Atlas, RM (1999) Combating the threat of biowarfare and bioterrorism

0.09 Fidler, DP (1999) Facing the global challenges posed by biological weapons

0.09 Greenfield, RA (2002) Bacterial pathogens as biological weapons and agents of
bioterrorism

0.09 Klietmann, WF (2001) Bioterrorism: implications for the clinical microbiologist

0.08 Atlas, RM (2001) Bioterrorism before and after September 11
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Semantic Structures of Clusters

Titles of leading articles that cite a cluster and summarizing labels of a cluster
provide a top-level characterization of the predominant theme of the cluster.
Developing a deeper understanding of each cluster’s theme is possible if we can
construct an ontological structure of key concepts associated with the cluster.

The procedure consists of the following steps. First, we extract terms from
articles that cite members of clusters such that extracted terms are representative to

Table 3.6 Major citing articles of Cluster #2 in Terrorism Research (1980–2017)

Coverage Citing articles

0.17 Gould, ED (2010) Does terrorism work?

0.12 Rosendorff, BP (2010) Suicide terrorism and the backlash effect

0.07 Czinkota, MR (2010) Terrorism and international business: a research agenda

0.07 Fielding, D (2010) ‘An eye for an eye, a tooth for a tooth’: political violence and
counter-insurgency in egypt

0.07 Plumper, T (2010) The friend of my enemy is my enemy: international alliances
and international terrorism

Table 3.7 Major citing articles of Cluster #3 in Terrorism Research (1980–2017)

Coverage Citing articles

0.18 Gassebner, M (2011) Lock, stock, and barrel: a comprehensive assessment of the
determinants of terror

0.18 Krieger, T (2011) What causes terrorism?

0.11 Berrebi, C (2011) Earthquakes, hurricanes, and terrorism: do natural disasters
incite terror?

0.11 Chenoweth, E (2013) Terrorism and democracy

0.09 Freytag, A (2011) The origins of terrorism: cross-country estimates of
socio-economic determinants of terrorism

Table 3.8 Major citing articles of Cluster #4 in Terrorism Research (1980–2017)

Coverage Citing articles

0.07 Pearson, E (2016) The case of roshonara choudhry: implications for theory on
online radicalization, ISIS women, and the gendered Jihad

0.06 Horgan, J (2016) Actions speak louder than words: a behavioral analysis of 183
individuals convicted for terrorist offenses in the united states from 1995 to 2012

0.06 Schuurman, B (2016) Rationales for terrorist violence in homegrown Jihadist
groups: a case study from The Netherlands

0.05 Capellan, JA (2015) Lone wolf terrorist or deranged shooter? a study of
ideological active shooter events in the united states, 1970–2014

0.05 Cold, JW (2016) Extremism, religion and psychiatric morbidity in a
population-based sample of young men
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individual clusters. Terms may come from titles, abstracts, and/or keywords of
these articles. Next, the extracted representative terms are filtered by a given cluster
so that we will only retain terms that actually appeared in the cluster. Then,
co-occurrences of filtered terms within citing articles of the clusters are identified.
These co-occurrences are used as the input to the construction of a hierarchical
structure. Since co-occurring terms form a network, hierarchical relations between
terms can be derived based on the concept of m-reachability. A term with a higher
reachability is assigned to have a higher level position. The resultant hierarchical
structure is finally visualized as a concept tree. A concept tree is a hierarchically
organized set of concepts. Since our terms are representative of their own clusters,
the resultant concept tree serves as a proxy of an ontological representation of the
cluster’s content.

Figure 3.17 shows a closer view of the largest cluster #0. It primarily focuses on
PTSD resulted from the September 11 terrorist attacks in New York. Its member
references are published between 1997 and 2009. The largest circles belong to
SCHUSTER2001, GALEAS2002, and GALEAS2003. Figure 3.18 depicts the
concept tree of terms extracted from the abstracts of the articles that cited the
cluster. The root of the tree is on the left. The children of a term are placed on its
right-hand side. Nodes that do not have any children nodes are called leave nodes.
A path starting from a node to a leave node consists of all nodes along the way. The
length of a path is the number of these nodes. The longest path in the concept tree of
cluster #0 contains 5 nodes. In fact, three paths have the same length. They share
the first four concepts: mental health treatment ! terrorist attack ! mental health
status ! New York City, then the path splits into three more specific concepts:

Fig. 3.16 A timeline visualization of citation bursts
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representative sample, probable PTSD, and mental health service. We may consider
the longest path as the main path that characterizes the fundamental theme of a
cluster. The term main path in network analysis has a special meaning. We address
how to conduct a main path analysis in next section. Here we use the term main
path for its meaning in its intuitive sense.

The mental health branch is the largest one for the cluster. It echoes what we
have learned from the visualizations so far but now more specific contextual details
will be very valuable for us to strengthen our understanding of the specialty. For
example, the mental health dimension is particularly concerned with terrorist attack,
which is further connected to terms such as world trade center. The post-traumatic
stress disorder leads a branch of its own. Another branch is alcohol dependence,
which is also related to mental health. The concept tree further clarifies the
knowledge structure of the largest cluster in terrorism research.

Similarly, we obtained a concept tree for cluster #1 biological weapon, which
has three branches (see Fig. 3.19). The largest branch starts with biological weapon,
followed by civilian population, which leads to four leave nodes. Under the bio-
logical weapon node, we can see topics on bacillus anthracis, review article,
growing concern, and mass destruction. The second branch consists of bioterrorist
attack, bioterrorism preparedness, and public health.

Fig. 3.17 Cluster # New York City (1997–2009)

Fig. 3.18 A concept tree of cluster #0 based on terms extracted from the abstracts of its citing
articles, i.e. the research front
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The third largest cluster’s concept tree contains branches on suicide bombing,
game theoretical model, and three smaller branches (see Fig. 3.20). The suicide
bombing branch appears to focus on individual suicide bombing, whereas the game
theoretic model branch appears to focus on group dynamics and organizations of
terrorist groups. Given that the overall cluster is labeled as terror attack, these
branches further elaborate the research focus in these areas.

Recall that the two currently active specialties of research are associated with
clusters #3 transnational terrorism and #4 islamic state. In cluster #3, transnational
terrorism is a prominent concept, which leads to a few related concepts and a
branch of several levels deep (Fig. 3.21). Although the information is still patchy,
we can learn the most relevant vocabulary in the context of the cluster, including
advanced democracies and domestic terrorism. Some contradicting terms such as
democracies and nondemocratic countries appear to underline the role of democ-
racy or the lack of it in understanding transnational terrorism. Similarly, the contrast
between transnational terrorism and domestic terrorism can be observed in the
concept tree as well. Closely related terms such as international terrorism and
transnational terrorism invite further investigations on how these terms differ and
how they are related. We will illustrate shortly how we can address these questions
by exploring the actual contexts in which these concepts are discussed. We will
construct a full-fledged concept tree of terms identified in the abstracts of citing
articles. Furthermore, we can instantly reveal the instances of a given concept in
their original contexts. The current discussion is at a higher level of granularity than

Fig. 3.19 A concept tree of Cluster #1 biological weapon

Fig. 3.20 A concept tree of Cluster #2 terror attack
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the full-fledged concept-to-concept exploration. We will drill down to the next level
of granularity after our exploration at the current level. This is also a recommended
search strategy. Instead of diving into a specific area first, seek a good under-
standing of the system at one level of granularity at a time.

Cluster #4 Islamic state is another cluster that is still active. The concept tree
reveals some key concepts of this cluster such as religious extremism, psychiatric
morbidity, and far right extremist (Fig. 3.22). We will also drill down this cluster
deeper using a concept tree that is formed to reveal the concept-in-context details.

Figure 3.23 shows the timeline of cluster #7 WTC cough syndrome. Its publi-
cations range between 2006 and 2014. There are a few big and red circles, indi-
cating that they are not only highly cited but also have strong citation bursts,
namely, BRCKBILL2009, WISNIVESKY2011, and a 2013 publication of the
American Psychiatric Association.

As shown in Fig. 3.24, this cluster’s concept tree contains concepts concerning a
particular population such as wtc disaster worker and wtc exposed firefighter,
symptoms related concepts such as respiratory symptom, and PTSD related topics
such as baseline PTSD symptom count.

Fig. 3.21 A concept tree of Cluster #3 transnational terrorism based on terms extracted from
abstracts of citing articles to the cluster

Fig. 3.22 A concept tree of Cluster #4 islamic state

Fig. 3.23 Cluster #7—WTC cough syndrome
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Figure 3.25 shows part of an unfiltered concept tree of the WTC cough syn-
drome cluster. It retains terms that are not deemed to be unique to the cluster, but
the inclusion of such terms provides details that may be missing from the concept
tree based on filtered terms. The hierarchical relations are easy to understand. For
example, the New York city is the parent node of world trade center, which in turn
has children nodes such as firefighter, heart disease, occupational medicine and a
few other branches. Along the firefighter branch, the sub-branch of risk factor is
prominent with many children nodes such as PTSD. The firefighter branch also
includes a sub-branch of lung function with more specific terms such as nasal
epithelium and respiratory cilia. In parallel to the firefighter branch, the heart dis-
ease branch is also prominent due to the number of its children nodes on smoking
and mental illness. The contextual information provided by the concept tree is
valuable as we can better plan our search strategy and explore the knowledge
domain more effectively. Furthermore, the provision of such a concept tree serves
the role of an organizing framework so that we can organize various concepts
encountered in our search more easily, which tends to reduce the overall complexity
of the task.

Fig. 3.24 A concept tree of cluster #7 world trade center cough syndrome

Fig. 3.25 An unfiltered concept tree of the WTC cough syndrome cluster (#7)
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Concepts in Context

One way to learn about a subject domain is to explore how a concept is used in a
variety of contexts by researchers in this specialty. Although the concept tree shown
in Fig. 3.26 resembles those concept trees we have seen earlier, they differ in some
important ways. First of all, in this concept tree, children nodes represent attributes
of their parent node. For example, the concept of aid is divided into foreign aid and
military aid. In fact, children nodes are modifiers of their parent node in the original
text. If we organize the details in this way, we would be able to see the most
common features on the left and more specific features on the right, or further down
the tree structure. Secondly, the hierarchical relations differ in their semantics.
A parent-child hierarchical relation in the concept-in-context tree indicates that the
child node serves as a modifier of the parent node as in the aid-foreign example, the
term foreign modifies the term aid. In contrast, the parent-child hierarchical relation
in a concept tree in previous sections represents a broad-narrow relation as in New
York City ! World Trade Center.

We can interactively explore the original text not in the conventional way to read
the text in its original sequential order; instead, we can hop over the text and read
various contexts side by side. In the foreign aid example, as we hover over the
foreign-aid node with the mouse, a list of sentences will appear in a window. All
these sentences are about the concept foreign aid in the context of the transnational
terrorism cluster. We can see various topics concerning foreign aid, for example,
using foreign aid as a counterterrorism instrument and identifying sectors that have
been particularly effective as the target of foreign aid such as education and health.

A common theme in cluster #3 is that democracies tend to experience more
terrorism than dictatorships, autocracies, or other non-democracies (see Fig. 3.27).
Much of these discussions are revolving around the democracy-autocracy divide,
for example, newly established democracies are more vulnerable to terrorism than
established democracies (1) and democracies experience more terrorism than
non-democracies (2–4).

Fig. 3.26 The contexts of foreign aid in a concept-in-context tree of cluster #3 transnational
terrorism
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Radicalization is a key concept in cluster #4 (see Fig. 3.28). A common theme is
the process, or the pathways, of radicalization. Radicalization is not a new topic (1).
It is considered in connection with social and political influences as well as an
individual process (2–3). In addition to the term radicalization, the term radicali-
sation, in British spelling, is used in several articles particularly from the UK’s point
of view.

The above examples have illustrated that one can develop an understanding of a
scientific domain at multiple levels of granularity with a relatively low threshold of
prior knowledge of the domain. The strategic exploration is essentially a top-down
approach in the same spirit as Shneiderman’s visual information search mantra
advocates: overview first, zoom and filter, then details on demand. The key here is
that scholarly significant patterns can be represented as prominent visual cues. Once
we learn what the most common and critical patterns may look like, it usually takes
little domain knowledge to recognize visually salient cues, which will lead us to the
valuable information that we should concentrate on.

With little adjustments, we can transform the same methodology into a viable
analytic approach to the analysis of a scientific domain at a finer level of granularity
—semantic predications. Scientometric studies typically focus on structural and

Fig. 3.27 Sentences that mentioned the term democracies in abstracts of Cluster #3 transnational
terrorism

Fig. 3.28 Some of the contexts of radicalization in cluster # Islamic state
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dynamic patterns at the level of article or higher levels of granularity such as
journals and groups of journals. Analyzing a scientific domain in terms of its
semantic predications and their evolving patterns across disciplinary boundaries
enables us to address research questions directly.

Main Path Analysis

Representing the scientific literature of a knowledge domain as a network lends us
many analytic tools and methods to identify valuable patterns and trends. The main
path analysis is a method that can simplify a usually complex network to a small
number of paths that would characterize the major development of the underlying
domain. Early studies of main paths include (Hummon and Doreian 1989; Carley
et al. 1993; Batagelj 2003; Lucio-Arias and Leydesdorff 2008). More recent
examples of main path studies include (Liu and Lu 2012; Liu and Kuan 2015). Here
we illustrate how to perform a main path analysis of the terrorism research using a
combination of CiteSpace and Pajek. Pajek is a computer program for processing
large-scale networks, including visualizing a network and analyzing a network with
a wide variety of algorithms. Pajek is freely available and it is very powerful. It can
handle a network with millions of nodes (Batagelj and Mrvar 1998).

The procedure starts with the bibliographic data downloaded from the Web of
Science. The next step is to generate a directed citation network from the biblio-
graphic dataset. Each node in a directed citation network is an article. The article
can cite other articles in the network. The article itself can be cited by other articles
in the network as well. CiteSpace provides a function that takes the Web of Science
records as the input and generates a directed citation network in the Pajek’s .net
format. Then we can use Pajek to generate main paths, which are a sub-network.
First, open the directed citation network in Pajek (Fig. 3.29).

Next, retain the largest connected component of the network so that main paths
can be selected from the largest connected component. This requires two steps in
Pajek. First, identify the weakly connected components (Fig. 3.30). Then, select the
largest one to retain (Fig. 3.31). A strongly connected component in a directed
graph is defined as a sub-graph in which every node is reachable from every other
node. A weakly connected component is similarly defined, except that we will have
to ignore the directed links and consider them as undirected. For example, if we are
at the end of a one-way street, we can reach the beginning of the one-way street
only if we ignore the one-way restriction.

Pajek identified 243,964 components from the network of 330,662 article nodes.
Most of them are singleton components that contain one article only. The largest
connected component, cluster 2, contains 84,770 nodes, representing about 25% of
the original loosely connected network (Fig. 3.31). Cluster 2 is the largest con-
nected component to retain (Fig. 3.32).

98 3 Science Mapping Tools and Applications



Main path analysis requires the target network is a directed acyclic network. If
the largest connect component contains strongly connected components, such
strongly connected components would violate the acyclic condition. If a few articles
cite each other, they can be considered as a group. Thus the next step is to shrink
strongly connected components as shown in Fig. 3.33.

Fig. 3.29 Open the directed citation network in Pajek

Fig. 3.30 Retain the largest connected component of the network
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After removing loops from the remaining network (Fig. 3.34), we have obtained
an acyclic network. There are several ways to compute traversal weights in order to
identify main paths, including Search Path Count (SPC), Search Path Link Count
(SPLC), and Search Path Node Pair (SPNP) (Fig. 3.35). The next step is to extract
the main paths as a subgraph. The user has several options too. We illustrate an
option called Key-Route, which presents a combination of a number of significant
paths identified (Fig. 3.36).

Fig. 3.31 Identify the largest connected component to retain

Fig. 3.32 Extract the largest connected component by selecting cluster 2 to retain
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Fig. 3.33 Shrink strongly connected components

Fig. 3.34 Remove loops from the largest connected component

Fig. 3.35 Compute traversal weights along main paths
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Finally, the extracted main paths can be displayed by using a macro from Pajek
called LAYERS.MCR (Fig. 3.37). The resultant display of the main paths is shown
in Fig. 3.38. The user can refine the display further, for example, by applying a
community detection algorithm and color the nodes accordingly.

The main paths shown in Fig. 3.38 are arranged such that articles located at the
top of the diagram are published earlier than articles below them. In other words,
the top of the diagram is where the oldest publications are located. Therefore, the
group of nodes in yellow at the top would be considered as the pioneers of the
terrorism research. They are all cited by one node below them, GaleaS2002. We use
the first author’s last name, the initial, and the year of publication to identify the
node. If the node is a citing article in the dataset, we will include a keyword from
the article. In this case, the keyword posttraumatic stress disorder is selected from
the article GaleaS2002. Let us trace the main paths by following the vertical lines
that connect two nodes: the node at the higher end of the line is cited by the node at
the lower end of the line.

Fig. 3.36 Create the main paths by including multiple key routes, e.g. 1–10

Fig. 3.37 Use the LAYERS.MCR macro to draw the generated main paths
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GaleaS2002 leads to a chain of nodes in red, which means that these articles
cited GaleaS2002 on PTSD. The red group is identified by a community detection
algorithm. The first node of the group is VlahovD2002: alcohol drinking, followed
by three more articles that appear to be authored by Galea between 2002 and 2004
on mental health, disaster, and PTSD. These articles are likely to have multiple
authors, but in part due to the limitation of the data from the Web of Science, the
complete authorship is not readily available. Besides our focus here is mainly on the
course of evolution and less so on the authorship per se. The large node in the red
group is by Neria Y. published in 2006 on primary care. As suggested by the
common keywords, the red group is a line of research on mental health, especially
on PTSD in relation to the September 11 terrorist attacks. Neria’s 2006 article leads
to a chain of nodes in blue published between 2007 and 2010. PTSD remains to be
the most prominent keyword for this segment of the main path. The blue route ends
with three articles that all cited BergerR2012 on school-based intervention.

Fig. 3.38 Main paths derived from the direct citation network based on search path count (SPC)
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The second main path starts with a group of nodes in green on the right-hand
side of the diagram. More specifically, this main path begins with four articles
published in 2001 followed by WeintraubS2002, which converged the multiple
threads to a single-line path. The green segment of the path is characterized by
keywords such as economic globalization and transnational terrorism. Then the path
is split into two routes, which remained separated between 2006 and 2011. One
route contains keywords such as counterterrorism, determinants of terrorism, and
domestic terrorism. The other contains keywords such as transnational terrorism.
However, these routes became increasingly interwoven into each other through
articles such as GassebnerM2011 on causes of terrorism, EndersW2016 on ter-
rorism and poverty, and ChoiSW2015 on transnational terrorism.

The main path analysis of the terrorism research (1980–2017) depicts a big
picture that echoes what we have seen in the timeline views of co-cited references.
The main path on PTSD corresponds to the largest cluster in the co-citation net-
work, which is also clear that this line of research is no longer as active as before.
The second and more complex main path on domestic and transnational terrorism
corresponds to the two currently active clusters of co-cited references, which share a
higher-level goal to identify the causes of terrorism from economic, social, political,
and other dimensions. The questions to be answered are fundamentally significance
because eliminating the environment that breeds terrorism would be more effective
in a long run than focusing on dealing with aftermaths of terrorism alone.

Structural Variations

The structural variations of the structure of a domain’s knowledge can be detected
in terms of the changes of the modularity metric of the networks over time
(Fig. 3.39). For the terrorism research (1980–2017), the domain has the lowest
modularity in 2002. One interpretation would be that the overall connectivity of the
network was the strongest in 2002 and a profound common theme made it hard to
divide the network in 2002 into clearly separated parts. The predominant position of
the PTSD specialty after the September 11 terrorist attacks was evident in both
studies of the domain in 1996–2003 and 1980–2017. The September 11 terrorist
attacks are likely to be the reason behind the low modularity.

The structural variation analysis of the terrorism research (1980–2017) reveals
an interesting pattern: transformative links are all associated with the PTSD
research (cluster #0). Since this once predominant cluster stopped its growth before
2010, the structural variation analysis did not find transformative connections in the
two currently active lines of research on domestic terrorism and transnational ter-
rorism. The lack of transformative links after the PTSD research could be explained
as a sign of a period of normal science as in Kuhn’s paradigmatic theory or
Shneider’s evolution theory. Researchers in these specialties have a clearly estab-
lished conceptual framework to work with. It is less likely to observe transformative
links during this period of time.
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Structural variations measured by the distribution of betweenness centrality
reveal different patterns (Fig. 3.40). Earlier cross-cluster links were added between
Cluster #1 biological weapon and Cluster #9 war trauma survivor and between
Cluster #0 and Cluster #1. Articles identified with transformative potentials made

Fig. 3.39 The modularity of the baseline network changes over the years

Fig. 3.40 Structural variations measured by the relative entropy of the distributions of
betweenness centrality
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connections between Cluster #0 terrorist attack and Cluster #2 suicide bombing.
The latter cluster was relatively recent. The timeline view shows that Cluster #2 has
relatively strong connections with the two current clusters #3 and #4. None of the
structural variation connections were added after 2007.

Science Mapping

Science mapping is a generic process of domain analysis and visualization.
A science mapping study typically consists of several components, notably a body
of scientific literature, a set of scientometric and visual analytic tools, metrics and
indicators that can highlight potentially significant patterns and trends, and theories
of scientific change that can guide the exploration and interpretation of visualized
intellectual structures and dynamic patterns.

The Interplay Between Science and Theories of Science

Science mapping approaches typically aim to represent patterns and trends of the
development of science at macroscopic levels such as disciplines and fields over a
long period of time. Indeed, science mapping is a very promising combination of
the domain analysis method originated in information science and visual analytics
from computer science. In particular, science mapping provides a unique means to
verifying the validity of individual theories of scientific change. In return, each of
the macroscopic theories such as Kuhn’s paradigm shifts, Fuchs’ mutual depen-
dencies and competition, Shneider’s four-stage evolution provides a rich and yet
potentially biased perspective that may guide us to interpret how a scientific field is
unfolding in front of us.

Commonly used sources of scientific literature include the Web of Science,
Scopus, Google Scholar, and PubMed. Scientometric methods include author
co-citation analysis (ACA) (White and McCain 1998; Chen 1999), document
co-citation analysis (DCA) (Small 1973; Chen 2006), co-word analysis (Callon
et al. 1983), and many other variations. Visualization techniques include graph or
network visualization (Herman et al. 2000), visualizations of hierarchies or trees
(Johnson and Shneiderman 1991), visualizations of temporal structures (Morris
et al. 2003), geospatial visualizations, and coordinated views of multiple types of
visualizations. Metrics and indicators of research impact include citation counts
(Garfield 1955), the h-index (Hirsch 2005) and its numerous extensions, and a rich
set of altmetrics on social media (Thelwall et al. 2013).

Theories of scientific change include the paradigmatic views of scientific rev-
olutions, scientific advances driven by competitions, and evolutionary stages of a
scientific discipline. In order to conduct a science mapping study, researchers need
to develop a good understanding of each of the categories of skills and knowledge
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outlined above. Furthermore, each of these categories is a current and active
research area in its own right, for instance, the current research on finding the
optimal field normalization method and the debates over how various potentially
conflicting theories of scientific change may be utilized to reveal the underlying
mechanisms of how science advances.

The complexity of science mapping is shared by many research fields. We will
illustrate the process of a systematic review based on a series of visual analytic
functions implemented in CiteSpace (Chen 2004, 2006; Chen et al. 2010). We
demonstrate the steps of preparing a representative dataset, how to generate visu-
alizations that can guide our review, and how to identify salient patterns at various
levels of granularity.

Characterizing the Field of Study

The dataset to represent the research field is collected through multiple topic search
queries to the Web of Science. The rationale of the query construction is as follows.
First, we would like to ensure that currently widely used science mapping tools
such as VOSViewer, CiteSpace, HistCite, SciMAT, and Sci2 are covered by our
topic search query. The inclusion of software tools is based on the characterization
of Shneider’s second evolutionary stage. Thus, publications that mention any of
these software tools in their titles, abstracts, and/or keyword lists will be included.
This query generates 135 records as Set #1 (Fig. 3.41).

Second, since the goal of science mapping is to identify the intellectual structure
of a scientific domain, the second query focuses on the object of science mapping,
including topic terms such as intellectual structure, scientific change, research front,
invisible college, and domain analysis. This query is motivated by the first evo-
lutionary stage in Shneider’s evolution model. The query may also capture major
paradigms because these concepts are fundamental to the research. As we will see
later on, terms such as domain analysis may be ambiguous as they are also used in
other contexts that are irrelevant to science mapping. In practice, one should defer
the assessment of relevance until the analysis stage. This query produces 13,242
records as Set #2.

The third query focuses on scientometric and visual analytic techniques that are
potentially relevant to science mapping. Topic terms include science mapping,
knowledge domain visualization, information visualization, citation analysis,
co-citation analysis. Some of these techniques are enabling techniques developed
elsewhere in fields such as computer science. This query would capture the
development and application of these techniques. This query leads to 4772 records.

The queries #4–#10 aim to retrieve bibliographic records on the common data
sources for science mapping, including Scopus (6782 records), the Web of Science
(15,401 records), Google Scholar (5170 records), Pubmed (46,760 records), and
MEDLINE (61,405 records).
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The final dataset is Set #14, containing 17,731 bibliographic records of the types
of Article or Review in English (Fig. 3.42). This query formation strategy is generic
enough to be applicable to a science mapping study unless of course one has access
to the entire database.

Patents and research grants are other types of data sources one may consider, but
for this particular review, we are limited to the scientific literature indexed by the
Web of Science.

Visual Analysis of the Literature

We visualize and analyze the dataset with CiteSpace. CiteSpace takes a set of
bibliographic records as its input and models the intellectual structure of the
underlying domain in terms of a synthesized network based on a time series of
networks derived from each year’s publications. CiteSpace has been continuously
developed for more than a decade. CiteSpace supports several types of bibliometric
studies, including collaboration network analysis, co-word analysis, author
co-citation analysis, document co-citation analysis, text and geospatial visualiza-
tions. In this case, we focus on the document co-citation analysis within the period of
time between 1995 and 2016 (Fig. 3.43).

Fig. 3.41 Topic search queries used for data collection
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The Set #14 contains 16,250 records published in the range of 1980–2017.
These records collectively cited 515,026 references. The document co-citation
analysis function in CiteSpace constructs networks of cited references. Connections
between references represent co-citation strengths. CiteSpace uses a time slicing
technique to build a time series of network models over time and synthesize these
individual networks to form an overview network for the systematic review of the
relevant literature.

Fig. 3.42 The distribution of the bibliographic records in Set #14

Fig. 3.43 The main user interface of CiteSpace
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The synthesized network is divided into co-citation clusters of references. Citers
to these references are considered as the research fronts associated with these
clusters. Each cluster represents the intellectual base of the underlying specialty.
According to Shneider’s four stage model, the intellectual base of a specialty and
the corresponding research fronts provide valuable insights into the current stage of
the specialty as well as the intellectual milestones in the evolution of the specialty.

Our first step in the review is to make sense of the nature of major clusters and
characteristics that may inform us about the stage of the underlying specialties. In
this study, we consider a cluster as the embodiment of an underlying specialty.
Thus, science mapping consists of multiple specialties that contribute to various
aspects of the domain.

In each cluster, we focus on cluster members that are identified by structural and
temporal metrics of research impact and evolutionary significance. A commonly
used structural metric is the betweenness centrality of a node in a network. Studies
have shown that nodes with high betweenness centrality values tend to identify
boundary spanning potentials that may lead to transformative discoveries (Chen
et al. 2009). Burst detection is a computational technique that has been used to
identify abrupt changes of events and other types of information (Kleinberg 2002).
In CiteSpace, the sigma score of a node is a composite metric of the betweenness
centrality and the citation burstness of the node, i.e. the cited reference. CiteSpace
represents the strength of these metrics through the design of visual encoding such
that articles that are salient in terms of these metrics will be easy to see in the
visualizations. For example, the citation history of a node is depicted as a number of
tree rings and each tree ring represents the number of citations received in the
corresponding year of publication. If a citation burst is detected for a cited refer-
ence, the corresponding tree ring will be colored in red. Otherwise, tree rings will be
colored by a spectrum that ranges from cold colors such as blue to warm colors
such as orange.

The nature of a cluster is identified from the following aspects: a hierarchy of
key terms in articles that cite the cluster (Tibély et al. 2013), the prominent
members of the cluster as the intellectual milestones in its evolution and as the
intellectual base of the specialty, recurring themes in the citing articles to the cluster
to reflect the interrelationship between the intellectual base and the research fronts.
In particular, we will pay attention to indicators of the evolutionary stages of a
specialty such as the original conceptualization, research instruments, applications,
and routinization of the domain knowledge of the specialty.

In addition to the study of citation-based patterns, we will demonstrate the
concept of citation trajectories in the context of distinct clusters. According to the
theory of structural variation, the transformative potential of an article may be
reflected by the extent to which it varies the existing intellectual structure (Chen
2012). For example, if an article adds many inter-cluster links, it may alter the
overall structure. If the structural change is subsequently accepted and reinforced by
other researchers, then transformative changes of the knowledge become significant
in a socio-cognitive view of the domain.
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Visualizing the Field

A dual-map overlay of the science mapping literature represents the entire dataset in
the context of a global map of science generated from over 10,000 journals indexed
in the Web of Science (Chen and Leydesdorff 2014). The dual-map overlay in
Fig. 3.44 shows that science mapping papers are published in almost all major
disciplines. Publications in the discipline of information science (shown in the map
as curves in cyan) are built on top of at least four disciplines on the right-hand side
of the map.

A hierarchical visualization of index terms, i.e. keywords, is generated to rep-
resent the coverage of the dataset (Fig. 3.45). Five semantic types of nodes are
annotated in the visualized hierarchy:

What: a fundamental phenomenon of a specialty and the object of a study, for
example, the intellectual structure or the dynamics of a research field.
How: methodologies, procedures, and processes of science mapping, for example,
author co-citation analysis, bibliometric mapping, and co-citation analysis.
Abstraction: computational models of an underlying phenomenon identified from
the bibliographic data, representations such as Pathfinder networks, metrics and
indicators such as the h-index and the g-index.
Tools: computational techniques, algorithms and software tools for visualization
and ranking scholarly publications.
Data: data sources used by science mapping studies, for example, Scopus and
Google Scholar.

These semantic types will be also used to identify the evolutionary stage of a
specialty. For example, if a cluster contains several articles that report the devel-
opment of software tools, then the underlying specialty is considered as a specialty
that has reached at least Stage II. If the methodologies appear in a cluster of
knowledge domains external to information science, such as regenerative medicine

Fig. 3.44 A dual-map overlay of the science mapping literature
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and strategic management research, then we will consider the specialty has reached
Stage III—tools developed by the specialty are applied to other subject domains. In
the following analysis, we will use the terms in the hierarchy as the primary source
of our vocabulary to identify the role of the contributions made by a scientific
publication to a specialty.

Major milestones in the development of science mapping can be identified from
the list of references that have strong citation bursts between 1995 and 2016
(Fig. 3.46). References with strong values in the Strength column tend to be sig-
nificant milestones for the science mapping research. We label such references with
high-level concepts. For example, the first milestone paper in the study is a land-
mark ACA study of information science (White and McCain 1998). The next
milestone is a major collection of seminal papers in information visualization by

Fig. 3.45 A hierarchy of indexing terms derived from Set #14

112 3 Science Mapping Tools and Applications



Card et al. (1999). Other major milestones include visual analytics (Thomas and
Cook 2005), and the h-index (Hirsch 2005).

Landscape View

The landscape view in Fig. 3.47 is generated based on publications between 1995
and 2016. Top 100 most cited publications in each year are used to construct a
network of references cited in that year. Then individual networks are synthesized.
The synthesized network contains 3145 references. The network contains 603

Fig. 3.46 49 references with citation bursts of at least 5 years
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co-citation clusters. The three largest connected components include 1729 nodes,
which account for 54% of the entire network. The network has a modularity of
0.8925, which is considered as very high, suggesting that the specialties in science
mapping are clearly defined in terms of co-citation clusters. The average silhouette
score of 0.3678 is relative low mainly because of the numerous small clusters. The
major clusters that we will focus on in the review are sufficiently high.

The areas of different colors indicate the time when co-citation links in those
areas appeared for the first time. Areas in blue were generated earlier than areas in
green. Areas in yellow were generated after the green areas and so on. Each cluster
can be labeled by title terms, keywords, and abstract terms of citing articles to the
cluster. For example, the yellow-colored area at the upper right quadrant is labeled
as #3 information visualization, indicating that Cluster #3 is cited by articles on
information visualization. The largest node is the paper that introduces the h-index.
Other nodes with tree rings in red are references with citation bursts.

Fig. 3.47 A landscape view of the co-citation network, generated by top 100 per slice between
1995 and 2016 (LRF = 3, LBY = 8, and e = 1.0)
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Timeline View

A timeline visualization in CiteSpace depicts clusters along horizontal timelines
(Fig. 3.48). Each cluster is displayed from left to right. The legend of the publi-
cation time is shown on top of the view. The clusters are arranged vertically in the
descending order of their size. The largest cluster is shown at the top of the view.
The colored curves represent co-citation links added in the year of the corre-
sponding color. Large-sized nodes or nodes with red tree rings are of particular
interest because they are either highly cited or have citation bursts or both. Below
each timeline the three most cited references in a particular year are displayed. The
label of the most cited reference is placed at the lowest position. References pub-
lished in the same year are placed so that the less cited references are shifted to the
left. The new version of CiteSpace supports the function to generate labels of a
cluster year by year based on terms identified by Latent Semantic Indexing
(LSI) (Deerwester et al. 1990). The year-by-year labels can be displayed in a table
or above the corresponding timeline. Users may control the displays interactively.

Clusters are numbered from 0, i.e. Cluster #0 is the largest cluster and Cluster #1
is the second largest one. As shown in the timeline overview, the sustainability of a
specialty varies. Some clusters sustain a period over 20 years, whereas some
clusters are relatively short-lived. Some clusters remain active until the 2015, the
most recent year of publication for a cited reference in this study.

Fig. 3.48 A timeline visualization of the largest clusters of the total of 603 clusters
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As shown in Table 3.9, each of the largest five clusters has over 150 members.
The largest cluster’s homogeneity in terms of the silhouette score is slightly lower
than that of the smaller clusters. The largest cluster represents 4.5% of the refer-
ences from the entire network and 8.1% of the largest three connected components
of the network (LCCs). In this study, our review will primarily focus on the largest
five clusters.

The duration of a cluster is particularly interesting (see Table 3.10). The largest
cluster lasts 21 years and it is still active. Cluster #3 spans a 19-year period and also
remains to be active. In contrast, Cluster #6 on webometrics ends by 2006, but as
we will see, relevant research finds its way in new specialties, notably in the form of
altmetrics.

Major Specialties

In the following discussion, we will particularly focus on the five largest clusters.
A research programme, or a paradigm, in a field of research can be characterized by
its intellectual base and research fronts. The intellectual base is the collection of
scholarly works that have been cited by the corresponding research community,
whereas research fronts are the works that are inspired by the ones of the intellectual
base. A variety of research fronts may rise from a common intellectual base.

Cluster #0—Science Mapping

Cluster #0 is the largest cluster, containing 214 references across a 21-year period
from 1995 till 2015. The median year of all references in this cluster is 2006, but the
median year of the 20 most representative citing articles to this cluster is 2010. This
cluster’s silhouette value of 0.748 is the lowest among the major clusters, but this is
generally considered a relatively high level of homogeneity.

Table 3.9 The five largest clusters of co-cited references of the network of 3145 references

Cluster Size Mean
(Year)

Silhouette % of the
network

Accumulated
% of network

% of top
3 LCCs

Accumulated
% of LCCs

0 214 2006 0.748 4.5 4.5 8.1 8.1

1 209 1997 0.765 2.3 6.7 4.1 12.2

2 190 2009 0.845 3.3 10.0 6.0 18.2

3 160 2005 0.954 2.9 12.9 5.3 23.5

4 152 1992 0.890 1.7 14.6 3.0 26.5

The largest three connected components include 1729 of the references
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The primary focus of the large and currently active cluster is on the intellectual
structure of a scientific discipline, a field of research, or any sufficiently
self-contained domain of scientific inquiry. Key concepts identified from the titles
of citing articles to this cluster can be algorithmically organized according to
hierarchical relations derived from co-occurring concepts (Fig. 3.49). The largest
branch of a such hierarchy typically reflects the core concepts of scholarly publi-
cations produced by the specialty behind the cluster. For example, concepts such as
intellectual structure, co-citation analysis, co-authorship network underline the
primary interest of this specialty.

We can use a simple method to classify various terms into two broad categories:
domain-intrinsic or domain-extrinsic. Domain-intrinsic terms belong to the research
field that aims to advance the conceptual and methodological capabilities of science
mapping, for example, intellectual structure and co-citation analysis. In contrast,
domain-extrinsic terms belong to the domain to which science mapping techniques
are applied. In other words, they belong to the domain that is the object of a science
mapping study. For example, stem cell research per se may not directly influence
the advance of a specialty that is mainly concerned with how to identify the
intellectual structure of a research field from scientific literature. Information sci-
ence has a unique position. On the one hand, it is the discipline that hosts a
considerable number of fields relevant to science mapping. On the other hand, it is
the most frequent choice of a knowledge domain to test drive newly developed
techniques and methods.

The timeline visualization reveals three periods of its development (Fig. 3.50).
The first period is from 1995 to 2002. This period is relatively uneventful without
high-profile references in terms of citation counts or bursts. Two
visualization-centric domain analysis articles, Boyack2002 and Chen2002, pre-
luded the subsequent wave of high-impact studies appeared in the second period.
This period also features a social network analysis tool UCINET Borgatti2002.

The second period is from 2003 to 2010. Unlike the first period, the second
period is full of high impact contributions—large citation tree rings and periods of
citation bursts colored in red. Several types of high impact contributions appeared
in this period, notably

• literature reviews—Börner 2003
• software tools—CiteSpace (Chen 2004), CiteSpace II (Chen 2006),

CiteSpace III (Chen et al. 2010), VOSViewer (Van Eck and Waltman 2010)

Fig. 3.49 A hierarchy of key concepts selected from citing articles of Cluster #0 by log-likelihood
ratio test
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• science mapping applications—visualization of information science White
2003, mapping the backbone of science Boyack et al. 2005 and a global map of
science based on ISI subject categories Leydesdorff and Rafols 2009

• metrics and indicators—a critique on the use of Pearson’s correlation coeffi-
cients as co-citation similarities—a previously common practice in ACA studies
Ahlgren 2003

• applications to other domains—a bibliometric study of strategic management
research Ramos-Rodriguez 2004 and another ACA of strategic management
research Nerur 2008

The third period is from 2010 to 2015. Although no citation bursts were detected
so far in this period, the themes of this period sheds additional insights into the
more recent developmental status of the specialty. Most cited publications in this
period include a study of the cognitive structure of library and information science
—Milojević 2011 and a few studies that focus on domains with no apparent
overlaps with computer and information science, for example regenerative medicine
(Chen et al. 2012, 2014a, b) and strategic management—Vogel 2013.

A specialty may experience the initial conceptualization stage, the growth of
research capabilities through the flourish of research tools, the expansion stage when
researchers apply their methods to subject domains beyond the original research
problems, and the final stage of decay (Shneider 2009). The largest cluster is
dominated by an overwhelming number of tool-related references. As shown in
Fig. 3.51, the top 20 most cited members of the cluster include several software tools
such as CiteSpace, UCINET, VOSviewer, and global maps of science. If we follow
Shneider’s four-stage evolution model, the high concentration of software tools
seems to suggest that the specialty behind this cluster evidently reached the second
stage of its evolution by 2010. However, the several types of high-impact articles in
this cluster, especially in the second period, suggest a far more complex picture.

Fig. 3.50 High impact members of Cluster #0
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The cluster includes several author co-citation studies of disciplines and research
areas such as information science and strategic management. White 2003 revisits
the intellectual structure of information science. Instead of using multidimensional
scaling technique as they did in a previous study of the domain, the new study
applied the Pathfinder network scaling technique and demonstrated the advantages
of the technique. Pathfinder network scaling was first introduced to author
co-citation analysis in (Chen 1999). The studies of strategic management research
can be seen as applications outside the original specialty of author co-citation
analysis. Furthermore, as we can see here, the application of ACA to a new target
domain was made by researchers from the target domain several years after the
analytic procedure was developed in information science. The techniques evidently
spread to domains beyond information science. Fuchs’s theory explains the speed
of such diffusion in terms of the density of scientists’ social network. Information
travels faster in tightly coupled networks than loosely connected ones.

According to Shneider’s evolution model, the application of tools to a new target
should mark the beginning of the third stage. However, it seems we are seeing a
considerable overlap between the second stage and the third stage. On the one hand,
the development of new tools appears to be strengthening. There is no obvious sign
that this trend would slow down anytime soon. On the other hand, the application of
science mapping techniques to subject domains beyond information science appears
to be a gradual process. As new tools have been developed, their applications are
likely to follow. This particular example seems to suggest that techniques may be
transferred in waves and that the speed of transfer is influenced by the structure of
the networks of the researchers at the providing and the receiving ends.

Articles that cited members of the cluster convey additional information for us to
understand the dynamics of the specialty (Fig. 3.52). The top 20 citing articles
ranked by the bibliographic overlap with the cluster reveal similar types of con-
tributions, namely software tools and techniques (1, 2, 5, 8, 14), new methods (9,
11, 16, 19, 20), surveys and reviews (3, 10, 13), and applications of bibliometric
studies (6, 12, 17).

Fig. 3.51 Top 20 most cited references in the largest cluster
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The timeline visualization suggests that the specialty represented by the largest
cluster has cumulated sufficient research techniques and tools by the end of the third
period. It is likely that the specialty is ready for a larger scale of applications to
subject domains rather than information science. According to Shneider’s
four-stage model, this is also the stage in while researchers may encounter
anomalies that could lead to new discoveries and even the emergence of a new field.

At a more pragmatic level, one may monitor the further development of the
specialty by tracking research fronts that are building on the early stages of the
specialty. One can monitor emerging trends and patterns in terms of the major
dimensions in the latent semantic space spanned by each year’s publications con-
nected to this particular cluster. For example, the growing number of
domain-extrinsic terms such as nanotechnology, case study, and solar cell, suggest
an expansion of the research scope—a hallmark of a third-stage specialty.

In summary, taken all the characteristics into account, the specialty seems to
have a sustained second stage while clearly showing characteristics of the third
stage in terms of Shneider’s evolutionary model. Fuchs’ theory provides a frame-
work that one may pursue the diffusion of techniques from the origin of their
developers to their users. In particular, one may trace the paths of the diffusion in
the context of social networks of the researchers involved. Shneider’s theory pro-
vides the most concrete account of how a specialty develops. Fuchs’ theory pro-
vides the mid-range framework to embed the development of techniques in the
context of social networks. Kuhn’s theory seems to capture the dynamics at the
highest level of abstraction. It is more likely that one would find evidence of a
paradigm shift between distinct clusters than within the same cluster.

Cluster #1—Domain Analysis

Cluster #1 is the second largest cluster, containing 209 references that range a
17-year duration from 1990 to 2006. The cluster, or its underlying specialty, is

Fig. 3.52 Major citing articles to the largest cluster
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largely inactive with reference to the resolution of this study. This cluster is
dominated by representative terms such as information retrieval, domain analysis,
scholarly communication, and intellectual space (Fig. 3.53). Although information
retrieval is the root node in the hierarchy of key terms in this cluster, domain
analysis underlines the conceptual foundation of this cluster, as we will see shortly.

Two outstanding references from the timeline visualization of this cluster have
strong citation burstness (Fig. 3.54). One is a domain analysis of information sci-
ence (White and McCain 1998), in which the multidimensional scaling of an author
co-citation space was utilized to visualize the intellectual structure of the domain.
The other is a study of major approaches to domain analysis—Hjørland 2002. In
early 1990s, Hjørland developed a domain-analytic approach, also known as
sociological-epistemological approach or a socio-cognitive view, as a method-
ological alternative to the then methodological individualism and cognitive per-
spective towards information science that largely marginalized the social, historical,
and cultural roles in understanding a domain of scientific knowledge. Hjørland’s
another article published in 1997 on domain analysis is also a member of the
cluster.

The sigma score of a cited reference reflects its structural and temporal signif-
icance. In addition to the author co-citation analysis of information science (White
and McCain 1998), two more author co-citation studies are ranked highly by their
sigma scores, namely an author co-citation study of information retrieval—Ding
1999, and an author co-citation study of hypertext—Chen 1999 (Fig. 3.55).

The review article by White and McCain (1997) on visualization of literatures is
an important member of the cluster, whereas Tabah’s (1999) review of the study of
literature dynamics is a citing article to the cluster. Although the term domain

Fig. 3.53 A hierarchy of key concepts in Cluster #1

Fig. 3.54 Key members of Cluster #1
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analysis was not used consistently during the period of this cluster, the contribu-
tions consistently focus on holistic views of a knowledge domain. As Hjørland
argued, domain analysis serves a fundamental role in information science because
its goal is to understand the subject matter from a holistic view of sociological,
cognitive, historical, and epistemological dimensions.

Citing articles to Cluster #1 include some of the earliest attempts to integrate
information visualization techniques to the methodology of a domain analysis—
Börner 2003, Boyack 2002, Chen 2002 (Fig. 3.56). Interestingly, some of these
citing articles appear as cited references in Cluster #0. In other words, the downturn of
Cluster #1 does not mean that researchers lost their interest in the domain analysis
approaches. Rather, they shifted their focus to explore a new generation of domain
analysis with the support of a variety of computational and visualization techniques.
As a result, the specialty underline Cluster #0 continues the vision conceived in the
works of Cluster #1. The citers of Cluster #1 identify the group of researchers who
would be the core members of the specialty of the new generation of domain analysis.

Fig. 3.55 Key members of Cluster #1, sorted by sigma

Fig. 3.56 Citing articles to Cluster #1
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Author co-citation analysis (ACA) plays an instrumental role in the development
of the domain analysis specialty embodied in Cluster #1. It is not only a biblio-
metric method that has been adopted by researchers beyond information science,
but also a research instrument that helps to reveal challenges that the next gener-
ation of domain analysis must deal with.

In their 1998 ACA study of information science, White and McCain masterfully
demonstrated the power and the potential of what one may learn from a holistic
view of the intellectual landscape of a discipline. They utilized the multidimen-
sional scaling technique as a vehicle for visualization and tapped into their ency-
clopedic knowledge of the information science discipline in an intellectually rich
guided tour across the literature. In an attempt to enrich and enhance the conven-
tional methodology of ACA, Chen (1999) introduced the Pathfinder network
scaling technique. Using Pathfinder networks brings several advantages to the
methodology of ACA, including the ability to identify and preserve salient struc-
tural patterns and algorithmically derived visual cues to assist the navigation and
interpretation of resultant visualizations. White (2003) revisited the ACA study of
information science with Pathfinder network scaling. A fast algorithm to compute
Pathfinder networks is published in 2008 (Quirin et al. 2008).

The re-introduction of the network thinking opens up a wider variety of com-
putational techniques to an ACA study, notably network modeling and visualiza-
tion. Furthermore, technical advances resulted from the improvement of ACA have
been applied to a broader range of bibliometric studies, notably document
co-citation analysis (DCA). As we will see shortly, the adaptation of network
modeling and information visualization techniques in general results from a
Stage III specialty of information visualization and visual analytics.

Cluster #2—Research Evaluation

Cluster #2 is the third largest cluster with 190 cited references and a silhouette value
of 0.845, which is slightly higher than the previous two larger clusters #0 and #1,
suggesting a higher homogeneity. In other words, one would consider this specialty
a more specialized than the previously identified specialties. This cluster is active
over a 16-year period from 2000 till 2015. It represents an active specialty.

The overarching theme of the cluster is suggested by the two major branches
shown in the hierarchy of key terms of this cluster: the information visualization
branch and the much larger branch of research evaluation (Fig. 3.57). The infor-
mation visualization branch highlights the recurring themes of intellectual structure
and co-citation analysis. The research evaluation branch highlights numerous
concepts that are central to measuring scholarly impact, notably h-index, biblio-
metric ranking, bibliometric indicator, sub-field normalization, web indicator,
citation distribution, social media metrics, and alternative metrics.

The 6-year period from 2005 through 2010 is a highly active period of the
cluster (Fig. 3.58). The most prominent contributions in this period include the
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original article that introduces the now widely known h-index (Hirsch 2005), the
subsequent introduction of g-index as a refinement by taking citations into account
(Egghe 2006), a 2007 study that compares the impact of using the Web of Science,
Scopus, and Google Scholar on citation-based ranking—Meho 2007, a 2008 review
entitled “What do citation counts measure?”—Bornmann 2008, and a study of the
universality of citation distributions (Radicchi et al. 2008). These papers are also
among the top sigma ranked members of this cluster because of their structural
centrality as well as the strength of their citation burstness (Fig. 3.59).

The top 20 citing articles of the cluster reveal a considerable level of thematic
consistency (Fig. 3.60). The overarching theme of research evaluation is evidently
behind all these articles with popular title terms identified by latent semantic
indexing such as citation impact, scientific impact, impact measures, bibliometric
indicators, research evaluation, and web indicators.

Some of the more recent and highly cited members in Cluster #2 include a
comparative study of 11 altmetrics and counterpart articles matched in the Web of
Science (Thelwall et al. 2013) and the Leiden manifesto for research metrics (Hicks
et al. 2015).

Fig. 3.57 A hierarchy of key concepts in Cluster #2

Fig. 3.58 High impact members of Cluster #2
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Cluster #3—Information Visualization and Visual Analytics

Cluster #3 is the fourth largest cluster. Its duration ranges from 2004 through 2014.
The topic hierarchy has two branches: information visualization and heart rate
variability (Fig. 3.61). The heart rate variability does not belong to the domain
analysis in the context of information science. In fact, its inclusion in the original
results of the topic search was due to the ambiguity of the term domain analysis
across multiple disciplines. Pragmatically it is easier and more efficient to simply
skip an irrelevant branch than keep refining the original topic search query until all
noticeable irrelevant topics are eliminated. This is one of the fundamental chal-
lenges for information retrieval and this is where domain analysis has an instru-
mental role to play (Hjørland 2002).

Fig. 3.59 High impact members of Cluster #2

Fig. 3.60 Citing articles of Cluster #2
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The information visualization branch includes a mixture of information visual-
ization techniques such as fisheye view, group drawing, graph visualization, and
visual analytics and topics that are center to information science such as citation
analysis, information retrieval. The mixture is a sign of attempts to apply infor-
mation visualization and visual analytic techniques to bibliometric approaches to
the study of intellectual structure of a research domain. The vision of information
visualization is to identify insightful patterns from abstract information (Card et al.
1999). The subsequently emerged visual analytics emphasizes the critical and more
specific role of sense-making and analytic reasoning in accomplishing such goals
(Thomas and Cook 2005) (See Fig. 3.62).

High-impact contributions in Cluster #3 include the collection of seminal works
in information visualization—Card 1999, a survey of graph visualization techniques
—Herman 2000, Cytoscape—a widely used software tool for visualizing
biomolecular interaction networks—Shannon 2003, the ground breaking work of
visual analytics (Thomas and Cook 2005), Many Eyes—the popular web-based
visualization platform—Viégas 2007, and a framework of seven types of interaction
techniques in information visualization—Yi 2007 (Fig. 3.63).

In addition to the above high-impact contributions, this cluster features infor-
mation visualization tools such as the InfoVis toolkit—Fekete 2004, NodeTrix—
Henry 2007, Jigsaw—a visual analytic tool—Stasko 2008, and D3—Bostock 2011.
The most widely used information visualization tools such as Many Eyes and D3
became available between 2007 and 2011. Figure 3.64 shows a list of citing articles
of Cluster #3.

Fig. 3.61 A hierarchy of key concepts in Cluster #3

Fig. 3.62 High impact members of Cluster #3

Science Mapping 127



According to Shneider’s four stage model, the information visualization and
visual analytics specialty in the context of domain analysis and literature visual-
ization has demonstrated properties of a Stage IV specialty. For example, in the
most recent few years of the cluster, researchers reflect on empirical evaluations of
information visualization in various scenarios—Lam 2012, revisit taxonomic
organizations of abstract visualization tasks—Brehmer 2013, and synthesize and
codify domain knowledge in the forms of textbooks—Munzner 2014.

Trajectories of Citations Across Cluster Boundaries

Cluster analysis helps us to understand the major specialties associated with science
mapping. Now we turn our attention to the trajectories of several leading contrib-
utors in the landscape of these clusters. We are interested in what we may learn
from citation links made in publications of a scholar, especially those links bridging
distinct clusters.

Fig. 3.63 Key members of Cluster #3

Fig. 3.64 Citing articles of Cluster #3
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Trajectories of Prolific Authors

The first example is the citation trajectory of Howard White (Fig. 3.65 left). He is
the author of several seminal papers featured in several clusters. His citation tra-
jectories move across the citation landscape from the left to the center, ranging from
#4 decision support system (applications of ACA), #1 domain visualization (do-
main analysis), and #8 social work (another cluster of bibliometric studies).

The second example is the citation trajectory of Mike Thelwall (Fig. 3.65 right).
He is a prolific researcher who contributed to webometrics and altmetrics among
other areas of bibliometrics. An overlay of his citation trajectories on a citation
landscape view shows that his trajectories spanning clusters such as #6 university
websites (webometrics) and # google scholar (research evaluation).

In both examples of citation trajectories, we have observed that their citation
trajectories span across a wide area over the citation landscape. Monitoring the
movement of citation trajectories in such a way provides an intuitive insight into the
evolution of the underlying specialties and the context in which high-impact
researchers make their contributions.

Articles with Transformative Potentials

It is widely known that a major limitation of any citation-based indicators is their
reliance on citations accumulated over time. Thus, citation-based indicators are
likely to overlook newly published articles. An alternative method is to focus on the
extent to which a newly published article brings to the conceptual structure of the
knowledge domain of interest (Chen 2012). The idea is to identify the potential of
an article to make extraordinary or unexpected connections across distinct clusters.

Fig. 3.65 Novel co-citations made by 8 papers of White HD (left) and by 14 papers of
Thelwall M (right)
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According to theories of scientific discovery, many significant contributions are
resulted from boundary spanning ideas.

Table 3.11 lists three articles each year for the last five years. These articles have
the highest geometric mean of three structural variation variables generated by
CiteSpace. For example, in 2016, the highest score goes to the review of citation
impact indicators—Waltman 2016, followed by two bibliometric analyses—one
contrasts two closely related but distinct domains and the other studies the research
over a 20-year span. In 2015, two bibliometric studies followed by a review of
theory and practice in scientometrics (Mingers and Leydesdorff 2015).

Table 3.11 Potentially transformative papers published in recent years (2012–2016)

Year DM DCLw CKL Geometric
mean

GC Title References

2016 6.0541 0.0152 0.0251 0.1322 5 A review of the
literature on citation
impact indicators

Waltman
(2016)

2016 0.9235 0.0019 0.3407 0.0842 0 How are they different?
A quantitative domain
comparison of
information
visualization and data
visualization (2000–
2014)

Kim et al.
(2016)

2016 0.8207 0.0017 0.0640 0.0447 2 A bibliometric analysis
of 20 years of research
on software product
lines

Heradio
et al. (2016)

2015 1.7498 0.0073 0.0380 0.0786 0 Global ontology
research progress: A
bibliometric analysis

Zhu et al.
(2015)

2015 1.9873 0.0052 0.0397 0.0743 9 Bibliometric Methods
in Management and
Organization

Zupic
(2015)

2015 1.9906 0.0029 0.0238 0.0516 13 A review of theory and
practice in
scientometrics

Mingers and
Leydesdorff
(2015)

2014 1.6240 0.0087 0.0434 0.0850 3 Research dynamics:
Measuring the
continuity and
popularity of research
topics

Yan (2014)

2014 1.1837 0.0031 0.0463 0.0554 1 Making a Mark: A
computational and
visual analysis of one
researcher’s intellectual
domain

Skupin
(2014)

(continued)
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These highly ranked articles represent a few types of studies that may serve as
predictive indicators, namely review papers (Mingers and Leydesdorff 2015;
Waltman 2016), applications of bibliometric studies to specific domains, software
tools for science mapping (Cobo et al. 2011), new metrics and indicators (Li et al.
2013), and visual analytic studies of unconventional topics—retractions (Chen et al.
2013). Figure 3.66 shows the trajectories of three articles with high modularity
change rates.

The Emergence of a Specialty

The emergence of a specialty is determined by two factors: the intellectual base and
the research fronts associated with the intellectual base. The intellectual base is
what the specialty cites, whereas the research fronts are what the specialty is

Table 3.11 (continued)

Year DM DCLw CKL Geometric
mean

GC Title References

2014 0.4462 0.0024 0.0270 0.0307 12 The Knowledge Base
and Research Front of
Information Science
2006–2010: An Author
Co citation and
Bibliographic Coupling
Analysis

Zhao and
Strotmann
(2014)

2013 2.5398 0.0112 0.0643 0.1223 13 Analysis of
bibliometric indicators
for individual scholars
in a large data set

Radicchi
and
Castellano
(2013)

2013 1.0781 0.0065 0.2180 0.1152 6 A visual analytic study
of retracted articles in
scientific literature

Chen et al.
(2013)

2013 1.7978 0.0064 0.0542 0.0854 24 Quantitative evaluation
of alternative field
normalization
procedures

Li et al.
(2013)

2012 3.6274 0.0107 0.0811 0.1466 29 SciMAT: A new
science mapping
analysis software tool

Cobo et al.
(2011)

2012 3.4380 0.0248 0.0259 0.1302 15 A forward diversity
index

Carley and
Porter
(2012)

2012 1.0719 0.0032 0.0321 0.0479 11 Visualizing and
mapping the
intellectual structure of
information retrieval

Rorissa and
Yuan (2012)
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currently addressing. As we have seen, on the one hand, a research front may
remain in the same co-citation cluster as in the case of Cluster #2 Research
Evaluation. On the other hand, a research front may belong to a different specialty
and become the intellectual base of a new specialty as in the case of Cluster #
Domain Analysis and Cluster #0 Bibliometric Mapping.

The citation trajectories of a researcher’s publications and the positions of these
publications as cited references can be simultaneously shown by overlaying tra-
jectories (dashed lines for novel links or solid lines for existing links) and citing
papers as stars if they also appear in a co-citation cluster as cited references. For
example, the series of stars in the visualization shown in Fig. 3.67 tell us two
things: First, the author is connecting topics in two clusters (Cluster #0 Science
Mapping and Cluster 2 Research Evaluation) and second, the author belongs to the
specialty of science mapping.

The example in Fig. 3.68 illustrates the citation trajectories of Howard White’s
publications and their own positions in the timelines of clusters. His publications
appear in the early stage of the science mapping cluster (#0) and make novel
connections between science mapping and domain analysis (Cluster #1), domain
analysis (Cluster #1) and applications of ACA (Cluster #4), domain analysis
(Cluster #1) and webometrics (Cluster #6).

Fig. 3.66 Three examples of articles with high modularity change rates: (1) Waltman (2016),
(2) Zupic (2015), and (3) Zhu et al. (2015)
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The next example in Fig. 3.69 depicts the novel co-citation links made by a
review paper of informetrics (Bar-Ilan 2008). These novel links include
within-cluster links as well as between-cluster links. It should be easy to tell that the
scope of the review is essentially limited to research papers published about
6–7 years prior to the time of the review. Furthermore, we can see that the review
systematically emphasizes the diversity of topics instead of tracing to the origin of
any particular specialty.

Fig. 3.67 Stars indicate articles that are both cited and citing articles. Dashed lines indicate novel
co-citation links. Illustrated based on 15 papers of the author’s own publications

Fig. 3.68 Citation trajectories of Howard White’s publications and their own locations
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Summary

We present three examples of visually exploring the scientific literature of a field of
study. Our intention is twofold. First, our goal is to demonstrate the depth of a
systematic review that one can reach by applying a science mapping approach to
terrorism research and the science mapping domain itself. The first example of
terrorism research is based on publications between 1996 and 2003. The second
example of terrorism research is based on a much longer timespan between 1980
and 2017, with particular interests in how the visual analytic approach is sensitive
to the latent changes over the years. The third example is the science mapping field
itself.

In addition to the application of computational functions available in the
CiteSpace software, we also enrich the procedure of producing a systematic review
of a knowledge domain by incorporating evolutionary models of a scientific spe-
cialty—especially the four-stage model of a scientific discipline into the interpre-
tation of the identified specialties. Our interpretation not only identifies thematic
milestones of major streams of science mapping research, but also characterizes the
developmental stages of the underlying specialties and the dynamics of transitions
from one specialty to another.

Second, our goal is to provide a reliable historiographic survey of the science
mapping research. The survey identifies the major clusters in terms of their
high-impact members and citing articles that form new research fronts. We also
demonstrate new insights that one can intuitively obtain through an inspection of
citation trajectories and the positions of citing papers. The enhanced science
mapping procedure introduced in this article is applicable to the analysis of other
domains of interest. Researchers can utilize these visual analytic tools to perform
timely surveys of the literature as frequently as they wish and find relevant pub-
lications more effectively.

Fig. 3.69 Novel links made by a review paper of informetrics (Bar-Ilan 2008)
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