
Chapter 7
Local Navigation: Obstacle Avoidance

A mobile robot must navigate from one point to another in its environment. This
can be a simple task, for example, if a robot can follow an unobstructed line on the
floor of a warehouse (Sect. 3.4), but the task becomes more difficult in unknown and
complex environments like a rover exploring the surface of Mars or a submersible
exploring an undersea mountain range. Even a self-driving car which travels along
a road needs to cope with other cars, obstacles on the road, pedestrian crosswalks,
road construction, and so on.

The navigation of a self-driving car can be divided into two tasks: There is the
high-level task of finding a path between a starting position and a goal position.
Before the development of modern computer systems, finding a path required you to
study a map or to ask directions. Now there are smartphone applications which take
a starting position and a goal position and compute paths between the two positions.
If the application receives real-time data on traffic conditions, it can suggest which
path will get you to your goal in the shortest time. The path can be computed offline,
or, if you have a GPS system that can determine your current position, the path can
be found in real-time and updated to take changing conditions into account.

A self-driving car must also perform the lower-level task of adapting its behavior
to the environment: stopping for a pedestrian in a crosswalk, turning at intersections,
avoiding obstacles in the road, and so on. While high-level path finding can be done
once before the trip (or every few minutes), the low-level task of obstacle avoidance
must be performed frequently, because the car never knows when a pedestrian will
jump into the road or when the car it is following will suddenly brake.

Section7.1 looks at the low-level task of obstacle avoidance. Section7.2 shows
how a robot can recognize markings while following a line so that it knows when it
has reached its goal. Sections7.3–7.5 demonstrate a higher-level behavior: finding a
path without a map of the environment. This is done by analogy with a colony of ants
locating a food source and communicating its location to all members of the colony.
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7.1 Obstacle Avoidance

The algorithms presented so far have focused on detecting objects and moving
towards them. When a robot moves toward a goal it is likely to encounter additional
objects called obstacles that block the path and prevent the robot from reaching its
goal. We assume that the robot is able to detect if there is an unobstructed path to the
goal, for example, by detecting a light on the goal. This section describes three algo-
rithms for obstacle avoidance, where the obstacles are walls that block the robot’s
movement:

• A straightforward wall following algorithm, which unfortunately will not work if
there are multiple obstacles in the environment.

• An algorithm that can avoid multiple obstacles, but it must know the general
direction of the goal (perhaps from its GPS system). Unfortunately, some obstacles
can cause the robot to become trapped in a loop.

• The Pledge algorithm is a small modification of the second one that overcomes
this erroneous behavior.

The algorithms will use the abstract conditional expressions wall-ahead and wall-right,
which are true if there is a wall close to the front or to the right of the robot. The
first algorithm will also use the conditional expression corner-right which is true if
the robot is moving around an obstacle and senses a corner to its right. There are
several ways of implementing these expressions which we pursue in Activity 7.1.

Activity 7.1: Conditional expressions for wall following

• Implement the conditional expression wall-ahead using a horizontal proximity
or a touch sensor.

• Implement the conditional expression wall-right. This is easy to do with a
sensor mounted on the right of the robot, or with a rotating distance sensor.
If you have only a forward-facing proximity sensor, you can have the robot
turn slightly to the right, detect the wall, if any, and then turn back again.

• Implement the conditional expression corner-right. This can be implemented
as an extension of wall-right. When the value of wall-right changes from true
to false, make a short right turn and check if wall-right becomes true again.

7.1.1 Wall Following

Figure7.1 shows a robot performing wall following by maintaining its position so
that the wall is to its right (Algorithm 7.1). If a wall is detected ahead, the robot turns
left so that the wall is to its right. If a wall is detected to the right, the robot continues
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Goal

Fig. 7.1 Wall following

moving along thewall. If a corner is detected, the robot turns right to continuemoving
around the obstacle. At the same time, the robot continually searches for the goal
(black dot). When it detects the goal the robot moves directly towards it.

Algorithm 7.1: Simple wall following

1: while not-at-goal
2: if goal-detected
3: move towards goal
4: else if wall-ahead
5: turn left
6: else if corner-right
7: turn right
8: else if wall-right
9: move forward

10: else
11: move forward

Unfortunately, Algorithm 7.1 does not always work correctly. Figure7.2 shows
a configuration with two obstacles between the robot and the goal. The robot will
never detect the goal so it will move around the first obstacle indefinitely.

Activity 7.2: Simple wall following

• Implement Algorithm 7.1 and verify that it demonstrates the behaviors shown
in Figs. 7.1, 7.2.
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Goal

Fig. 7.2 Simple wall following doesn’t always enable the robot to reach the goal

Goal

Fig. 7.3 Wall following with direction

7.1.2 Wall Following with Direction

The problem with Algorithm 7.1 is that it is a local algorithm that only looks at its
immediate environment and does not take account of the fact that the higher-level
navigation algorithm knows roughly the direction the robot should take to reach the
goal. Figure7.3 shows the behavior of a robot that “knows” that the goal is somewhere
to its north so the robot moves at a heading of 0◦ relative to north. The wall following
algorithm is only used if the robot cannot move north.

Algorithm 7.2 is similar to the previous algorithm except for its preference to
move north if possible. It uses a variable heading to remember its current heading as
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it moves around the obstacle. When heading is again north (a multiple of 360◦), the
robot moves forward instead of looking for a corner.

Algorithm 7.2: Wall following

integer heading ← 0◦

1: while not-at-goal
2: if goal-detected
3: move towards goal
4: else if wall-ahead
5: turn left
6: heading ← heading + 90◦

7: else if corner-right
8: if heading = multiple of 360◦

9: move forward
10: else
11: turn right
12: heading ← heading − 90◦

13: else if wall-right
14: move forward
15: else
16: move forward

Unfortunately, the algorithm can fail when faced with a G-shaped obstacle
(Fig. 7.4). After making four left turns, its heading is 360◦ (also north, a multiple of
360◦) and it continues to move forward, encountering and following the wall again
and again.

Activity 7.3: Wall following with direction

• Implement the wall following algorithm with direction and verify that it
demonstrates the behavior shown in Fig. 7.4.

Goal

Fig. 7.4 Why wall following with direction doesn’t always work
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Goal

Fig. 7.5 Pledge algorithm for wall following

• Run the simple wall following algorithm (Algorithm 7.1) with a G-shaped
obstacle. What happens? Does this affect our claim that this algorithm is not
suitable for obstacle avoidance?

7.1.3 The Pledge Algorithm

The Pledge algorithm modifies line 8 of the wall following algorithm to:

if heading = 0◦

The robot moves forward only when its cumulative heading is equal to 0◦ and not
when it is moving north—a heading that is a multiple of 360◦. The robot now avoids
the “G”-shaped obstacle (Fig. 7.5): when its encounters the corner (black dot), it is
moving north, but its heading is 360◦ after four left turns. Although 360◦ is a multiple
of 360◦, it is not equal to 0◦. Therefore, the robot continues to follow the wall until
four right turns subtract 360 so that the total heading is 0◦.

Activity 7.4: Pledge algorithm

• Implement the Pledge algorithm and verify that it demonstrates the behavior
shown in Fig. 7.5.

7.2 Following a Line with a Code

Let us return to the task of finding a path to a goal. If the path is marked by a line
on the ground, line following algorithms (Sect. 3.4) can guide a robot within the

http://dx.doi.org/10.1007/978-3-319-62533-1_3
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right sensor output

Fig. 7.6 A robot following a line using its left sensor and reading a code with its right sensor

environment, but line following is not navigation. To navigate from one position
to another we also need a localization algorithm so that the robot knows when it
has reached its goals. We do not need a continuous localization algorithm like the
ones in Chap.8, we only need to know positions on the line that facilitate fulfilling
the task. This is similar to navigating when driving: you only need to know about
interchanges, intersections, major landmarks, and so on, in order to know where you
are. Between such positions you can just follow the road.

Navigationwithout continuous localization can be implemented by reading a code
placed on the floor next to the line. Figure7.6 shows a robot with two ground sensors:
the left one senses the line and the right one senses the code. Below the robot is a
graph of the signal returned by the right sensor.

Activity 7.5: Line following while reading a code

• Implement line following with code reading as shown in Fig. 7.6.
• Write a program that causes a robot to follow a path.
• Place marks that encode values next to the path. The robot should display
these values (using light, sound or a screen) when it moves over the codes.

Activity 7.6: Circular line following while reading a code

• Implement a clock using two robots, one for the minutes and one for the hours
(Fig. 7.7).

• An alternate implementationwould be to have the two robotsmove at different
speeds so that one completes a revolution in one hour and the other completes
a revolution in one day. Discuss the difference between the implementations.

http://dx.doi.org/10.1007/978-3-319-62533-1_8
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Fig. 7.7 A robotic clock: one robot indicates the hour and the other indicates the minute

7.3 Ants Searching for a Food Source

Let us now return to the high-level algorithm of finding a path. If there is a line and
a mechanism for localization like a code, the approach of the previous section can
be used. However, even if a line does not exist, a robot may be able to create its own
line. The interesting aspect of this method is that the robot does not need to know
its location in the environment, for example, using a GPS; instead, it uses landmarks
in the environment itself for navigation. The algorithm will be presented within the
real-world context of ants searching for food:

There exists a nest of ants. The ants search randomly for a source of food.
When an ant finds food it returns directly to the nest by using landmarks and
its memory of the path it took from the nest. During the return journey to the
nest with the food, the ant deposits chemicals called pheromones. As more and
more ants find the food source and return to the nest, the trail accumulates more
pheromones than the other areas that the ants visit. Eventually, the amount of
pheromones on the trail will be so strong that the ants can follow a direct path
from the nest to the food source.
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Light (nest)

Dark (food)

(a) (b)

Fig. 7.8 a The ants’ nest and the food source. b Pheromones create a trail

Figure7.8a shows the ants’ nest in the lower left corner represented as a light
that enables the ants to easily find their way back to the nest. The dark spot is
the food source. Figure7.8b shows three random trails that eventually discover the
food source; then the ants return directly to the nest, leaving three straight lines of
pheromones. This concentration can be subsequently used to find the food source
directly.

The ant-like behavior can be implemented by a robot. Assume that there is a fixed
area within which the robot can move. As in Fig. 7.8a there is a food source and a
nest. The food source will be represented by a dark spot that can be easily detected
by a ground sensor on the robot. The proximity sensors of the robot are used to detect
the walls of the area. Activity 7.7 suggests two methods of representing the nest that
depend on what additional sensors your robot has.

Activity 7.7: Locating the nest

• Implement a program that causes the robot to move to the nest no matter
where it is placed in the area.

• Accelerometers: Mount the area on a slope such that one corner, the nest, is
at the lowest point of the area.

• Light sensor: The nest is represented by a light source that can be detected by
the light sensor regardless of the position and heading of the robot. If the light
sensor is fixed and can detect light only from a certain direction, the robot
will have to rotate to locate the light source.

Simulate the pheromones by covering the area with a sheet of white paper and
attaching a black marker to the robot so that it draws a line wherever it moves. A



120 7 Local Navigation: Obstacle Avoidance

Fig. 7.9 A robot simulating pheromones of ants

ground sensor detects the marks in the area. Figure7.9 shows the lines resulting from
the behavior of a robot running the algorithm. Activity 7.8 asks you to explore the
ability of the robot to sense areas which have a high density of lines.

Activity 7.8: Sensing areas of high density

• In Sect. 3.4.3 we noted that sensors don’t sense a single geometrical point but
rather have an aperture that reads a relatively large area, perhaps even as much
as a square centimeter (Fig. 3.6). Experiment with your ground sensor to see
how the readings returned by the sensor depend on the width of the line. Can
you come to any conclusion about the optimal width of the marker? If it is
too thin the trail won’t be detected and if it is too thick the markings of the
random movement might be taken to be the trail.

• Represent the food source as a relatively large totally black spot and make
sure that it gives a minimal reading of the ground sensor.

• Figure7.9 shows that the trail between the food source and the nest has a high
density. Experiment with various numbers of lines and define an effective
threshold between the trail and areas of random motion outside the trail. See
if you can get the robot to make darker lines by varying its motion or by
moving back and forth along the trail.

http://dx.doi.org/10.1007/978-3-319-62533-1_3
http://dx.doi.org/10.1007/978-3-319-62533-1_3
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7.4 A Probabilistic Model of the Ants’ Behavior

Amodel is an abstraction of a system that shows how parameters impact phenomena.
Models are used, for example, to study traffic patterns in order to predict the effect
of new roads or traffic lights. To understand how the path from the nest to the food
is generated, this section presents a simplified model the behavior of the ants.

The fundamental characteristic of the ants’ behavior is that they do not have amap
of their environment, so they must move randomly in order to search for the food
source. Therefore, a model of their behavior must be probabilistic. Let us assume
that the environment is a rectangular area that is a grid of cells. Figure7.10 shows an
area split into 6 × 8 = 48 cells.

Coordinates in a grid of cells

Throughout the book, the coordinates of a cell in a grid are given as (row, column). Rows are
numbered from top to bottom and columns from left to right like matrices in mathematics,
however, the numbering starts from 0, as in the array data type in computer science.

Without any information on how ants choose their movements, we assume that
they can move in any direction with the same probability, so the probability p of an
ant being in any cell is 1 divided by the number of cells, here p = 1/48 = 0.021.

The probability that the ant is in the cell with the food source is p, the same as
for any other cell. According to our specification of the ant’s behavior, once it enters
this cell and identifies the cell as the food source, it returns directly to the nest. In
Fig. 7.10 the food source is in cell (3, 4), so an ant visiting that cell must return to the
nest at cell (0, 7), passing through cells (2, 5) and (1, 6). What is the probability that
the ant is in any of these three cells? There are two possibilities: either the ant is in the
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Fig. 7.10 Representation of the environment as a grid of cells
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Fig. 7.11 Probabilities for the location of the ant

cell because it randomly moved there with probability p, or the ant is there because
it moved to the food source randomly with probability p and then with probability 1
is moved towards the nest. Therefore, the total probability of being in any of those
cells is p+ p× 1 = p+ p = 2p.1 If our robot is drawing lines as it moves, the cells
on the diagonal should be twice as dark as the other cells.

Once the ant has reached the nest, it will move randomly again, that is, it will
select a random neighbor to move to. In general a cell has eight neighbors (above
and below, left and right, four on the diagonals), so the probability is p/8 that it will
be in any one of these neighbors. The nest, however, is in the corner with only three
neighbors, so the probability is p/3 that it will move to any one of them. Figure7.11
shows the probability of the location of the ant after finding the food source, returning
to the nest and making one additional random move. When implemented by a robot
with a marker, the cells with higher probability will become darker (Fig. 7.12).

What can we conclude from this model?

• Although the ants move randomly, their behavior of returning to the nest after
finding the food source causes the probability of being on the diagonal to be
higher than anywhere else in the environment.

• Since the ants drop pheromones (black marks) at every cell they visit, it follows
that the marks on the diagonal path between the food source and the nest will
be darker than the marks on other cells. Eventually, the markings on this path
will be sufficiently dark so that the robot can follow it to the food source without
performing a random exploration.

1After the probabilities are updated they must be normalized as explained in Appendix B.2. For
another example of normalization, see Sect. 8.4.

http://dx.doi.org/10.1007/978-3-319-62533-1_8
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Fig. 7.12 Probabilities for the location of a robot with a marker

• Since the robot visits the nest often, the cells in the immediate vicinity of the
nest will have a probability somewhere between the uniform probability and the
high probability of the trail. Therefore, it is important to emphasize the trail using
methods such as those explored in Activity 7.8.

7.5 A Finite State Machine for the Path Finding Algorithm

An FSM for path finding by the ants is shown in Fig. 7.13. To save space the labels of
the transitions use abbreviations which are explained in Table7.1. Here is a detailed
description of the behavior specified by this FSM in each state:

search: In this state the robot randomly searches for dark areas. It is the initial state
and the transition true � fwd specifies that initially (and unconditionally) the robot
is moving forwards and a timer is set to a random period. When the timer expires
(timeout), the robot makes random turn, moves forwards and resets the timer. This
random motion will continue until the robot encounters the wall of the area or a gray
marking on the surface of the area. If it encounters a wall it makes a random turn
away from the wall; we assume that the sensor faces directly ahead so the random
turn must be in some direction to the side or the rear of the robot. Once the robot has
detected a gray marking, it makes the transition to the follow state.
follow: The two self-transitions above and to the right of this state are transitions
that implement line following (Sect. 3.4). There are three other transitions: Should a
timeout occur without detecting gray, the robot is no longer following a line and must
return to the search state. If the robot encounters a wall, we want it to turn away,

http://dx.doi.org/10.1007/978-3-319-62533-1_3
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Fig. 7.13 State machine for drawing a path between a food source and a nest see Table7.1 for
explanations of the abbreviations

Table 7.1 Abbreviations in the state machine

Abbreviation Explanation

fwd Set motor forwards

fwd R/L Set motor forwards and to the right/left
fwd and fwd R/L also set the timer to a random period

Wall Wall detected

Timeout Timer period expired

Gray R/L/R&L Gray detected by right/left/both sensors

Nest front/R/L Nest detected in front/right/left

Black Black detected

Nest direction Direction from food to nest found or not found

Turn θ1– θ2 Turn randomly in the range θ1– θ2

Rotate The robot (or its sensor) rotates
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but first we ask it to make a full 360◦ turn to check if there is a gray marking in its
vicinity. Therefore, the transition includes the action turn 450–360. Since the nest is
next to a wall, this condition is also true when the robot returns to the nest. If the
robot senses a high-density marking (black), it concludes that it has reached the food
source and takes the transition to the state at food.
at food: Finally, the robot has discovered the food source. It must now return to the
nest. We specified that the nest can be detected (Activity 7.7), but the robot’s sensor
does not necessarily face the direction of the nest. Therefore, the robot (or its sensor)
must rotate until it finds the direction to the nest. When it does so, it turns towards
the nest and takes the transition to the state goto nest.
goto nest: This state is similar to the follow state in that the robot moves forward
towards the nest, turning right or left as needed to move in the direction of the nest.
When it reaches the nest it returns to the search state.

Look again at Fig. 7.9 which shows an actual experiment with a robot running
this algorithm. We see that there is a high density of lines between the nest and food
source, but there is also a relatively high density of lines in the vicinity of the nest,
not necessarily in the direction of the food source. This can cause to robot to return
to random searching instead of going directly to the food source.

7.6 Summary

The obstacle avoidance algorithms use wall following algorithms that have been
known since ancient times in the context of navigating a maze. When used for
obstacle avoidance, various anomalies can cause the algorithms to fail, in particular,
the G-shaped obstacle can trap a wall following algorithm. The Pledge algorithm
overcomes this difficulty.

A colony of ants can determine a path between their nest and a food sourcewithout
knowing their location and without a map by reinforcing random behavior that has
a positive outcome.

7.7 Further Reading

There is a large literature on mazes that can be found by following the references
in the Wikipedia article forMaze. The Pledge algorithm was discovered by 12-year-
old John Pledge; our presentation is based on [1, Chap. 4]. A project based on ants
following pheromones is described in [2].
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