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Abstract. The task of estimating the body mass from human skeletal
remains based on bone measurements is an important one in bioarchaeol-
ogy and forensic anthropology. Most of the current literature deals with
this problem through mathematical linear regression formulas applied to
various bones. In order to improve the existing results, two supervised
learning-based regression models are proposed, using artificial neural
networks and support vector machines, which are useful for express-
ing good (usually nonlinear) mappings between skeletal measurements
and body mass. Several experiments performed on an open source data
set show that the proposed applications of machine learning-based algo-
rithms lead to better results than the current state of the art. Thus, the
proposed methods are useful for producing good body mass estimations
from skeletal measurements.

Keywords: Bioarchaeology · Body mass estimation · Machine learn-
ing · Artificial neural networks · Support vector machines

1 Introduction

Body mass estimation from human skeletal remains represents a problem of
major importance in paleontological and archaeological research, since it can
provide useful information about past populations [21], such as their healthi-
ness, different social aspects, the influence of environmental factors and others.
Obtaining correct estimations for body mass from skeletons is also important in
forensic death investigations regarding unknown skeletal remains [18].

In the bioarchaeological literature it is agreed that postcranial measurements
have a direct relationship to the body size and produce the most accurate
estimates [3]. Estimation of the body mass from human skeletons represents
a challenge in forensic death investigations concerning unidentified remains [18].
A major problem in research related to body mass estimation is caused by a
lack of research collections. The current methods for estimating body mass from
the skeletons are: mechanical, morphometric [2] and a combination of biome-
chanical and morphometric methods [18]. The morphometric methods consist
of directly reconstructing the body size from the skeletal elements, while the
mechanical methods provide functional associations between skeletal elements
and body mass [2].
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In the machine learning literature, artificial neural networks [6,26] and sup-
port vector machines [12] are well known supervised learning models, with a
wide range of applications. They are adaptive systems that are able to learn
an input/output mapping (target function) from data. After the systems were
trained by receiving some examples for the target function, they will be able to
provide an approximation of the target output for new inputs.

In this paper, two machine learning-based regression models are used for
estimating the body mass from human skeletons, using bone measurements:
artificial neural networks and support vector machines. The experiments are
carried out on a publicly available database. The obtained results are compared
with the results of several body mass estimation regression formulas existing
in the bioarchaeological literature. The results obtained by the application of
machine learning models outperform the previous state of the art. Performed
experiments indicate a superior performance of the proposed models relative to
other similar approaches existing in the literature and highlight the efficiency of
using machine learning-based regression techniques for the problem of human
body mass estimation. To the best of the authors’ knowledge, the proposed
approaches are novel, since there are no existing machine learning approaches
to learn, in a supervised manner, to estimate body mass from human skeletons.

The remainder of the paper is structured as follows. Section 2 presents the
problem of archaeological body mass estimation and its relevance in bioarchae-
ology, as well as the fundamentals of the machine learning-based methods which
will be used in this paper. Section 3 introduces the machine learning-based meth-
ods for estimating the body mass from human skeletons that were applied.
Experiments on a publicly available data set are given in Sects. 4 and 5 con-
tains an analysis of the obtained results and comparisons with related work
from the literature. Section 6 provides the conclusions of the paper and indicates
several future research directions.

2 Background

This section starts by briefly presenting the body mass estimation problem,
emphasizing its relevance and importance within the archaeological research.
Then, the fundamentals of artificial neural networks and support vector machines
are presented.

2.1 Body Mass Estimation

Body mass estimation is a very important problem for modern archeology. It
can provide certain knowledge about past populations, such as indicators for
[21]: the past population’s health, the effects of different environmental factors
on past populations (e.g. subsistence strategy, climatic factors), social aspects
etc. The ability to obtain accurate body mass estimations from skeletons is also
essential in forensic death investigations concerning unidentified skeletal remains
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[18]. Consequently, it is essential for biaorchaeologists to develop and use body
mass estimation methods that are as accurate as possible.

However, designing an accurate method for solving this problem remains
a great challenge, because there are many factors which should be taken into
account [2]. Some decisions that are to be taken in this process [21]: which
are the most relevant skeletal measurements to use, which is the appropriate
statistical approach to apply, which should be the skeletal sample to use etc.

Most of the existing statistical methods for body mass estimation use lin-
ear regression formulas that usually consider one or a few bones measurements.
These formulas are usually developed on particular data sets, and it is question-
able whether or not they would perform well on previously unknown data.

Supervised machine learning-based models are therefore likely to be a good
alternative to existing methods for body mass estimation, since they can be
retrained on new data sets easily. Moreover, particular techniques to avoid the
overfitting problem can be used in order to develop models that show good
potential to generalize well on unseen data.

2.2 Artificial Neural Networks and Support Vector Machines

Artificial neural networks [15,25] are machine learning models with a wide appli-
cation area in domains like pattern recognition, speech recognition [27], predic-
tion [14], system identification and control. In structural similarity with biologi-
cal neural systems, artificial neural networks [17] consist of a set of interconnected
computational units, also referred to as neurons. One motivation for the distrib-
uted representation is to capture the parallelism expressed by natural neural
systems [17].

An artificial neural network (ANN) [1,20] is an adaptive system that learns
a function (an input/output map) from data. Adaptive means that the system
parameters are repeatedly adjusted during the training phase. After the training
phase, the Artificial Neural Network parameters are fixed and the system is used
to solve the problem at hand (the testing phase). The Artificial Neural Network
is built with a systematic step-by-step procedure to optimize a performance cri-
terion or to follow some implicit internal constraint, which is commonly referred
to as the learning rule.

In a supervised learning scenario, an input instance is presented to the neural
network together with the corresponding target response [13]. These input-
output pairs are often provided by an external supervisor. An error is repre-
sented by the difference between the desired response and the system’s output.
This error information is fed back to the network and the system parameters
are adjusted in a systematic manner (the learning rule). The process is repeated
until an acceptable performance is achieved.

Support Vector Machines were developed for classification by Cortes and
Vapnik [7], but they can be adapted for regression quite easily, resulting in the
so-called ε-support vector regression algorithm (SVR). The hyperparameter ε
controls the level to which the algorithm is allowed to make mistakes.
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Formula (1) describes the underlying SVR numerical optimization problem.
The following notations are used: xi is a training instance, yi is its target output,
b is a bias term, w is the weights vector being searched and C is a regularization
hyperparameter. The variables ξ−

i and ξ+i are used to make the learning feasible
by allowing for some degree of error [28].

minimize
1
2
‖w‖2 + C

m∑

i=1

(ξ−
i + ξ+i )

subject to

⎧
⎪⎨

⎪⎩

yi − (w · xi + b) ≤ ε + ξ−
i

(w · xi + b) − yi ≤ ε + ξ+i
ξ−
i , ξ+i ≥ 0

(1)

3 Machine Learning-Based Body Mass Estimation

This section introduces the proposed machine learning-based approaches (artifi-
cial neural networks and support vector machines) for estimating the body mass
of human skeletal remains, based on bone measurements.

Consider a data set of human skeletal remains denoted by H =
{h1, h2, . . . , hn} in which each instance hi represents a human skeleton. Each
skeleton is characterized by m features representing different bone measurements
which are relevant for the body mass estimation problem. The measurements are
numerical values and correspond to several significant bones in the body. Thus,
an instance hi may be viewed as an m-dimensional vector hi = (hi1, hi2, . . . , him)
where hij ∀1 ≤ i ≤ n represents the value of the j-th measurement applied to
the i-th skeleton. For each human remain hi, the body mass of the individual is
known and is denoted by bmi. No feature extraction or selection was performed.
The features were used as they appear in the data set from the archaeological
literature.

The ANN and SVM models are used as regressors for the body mass estima-
tion problem - they provide an estimation ei for the target body mass for each
individual hi from the data set H.

Before applying the machine learning-based methods, the data set is pre-
processed. First, the data is normalized using the Min-Max normalization
method. ANN and SVM models are known to be sensitive to data normalization,
requiring the values inputted to them to be of identical orders of magnitude in
order to be able to perform well.

After normalization, a statistically-based feature selection is applied in order
to determine how well the measurements are correlated with the target body
mass output. The dependencies between the features and the target body mass
are determined using the Pearson correlation coefficient [30]. A high Pearson
correlation implies that the two variables are linearly related, which makes linear
and non-linear learning models likely to perform well. A low Pearson correlation
means that a linear model will likely not perform well, but does not give any
information about non-linear models.
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Also as a data preprocessing step, a self organizing feature map (SOM) [29]
is used in order to obtain a two dimensional view of the data that will learned.
The trained SOM is visualized using the U-Matrix method [11]. The U-Matrix
values can be viewed as heights giving a U-Matrix landscape, with high places
encoding instances that are dissimilar while the instances falling in the same
valleys represent data that are similar. On the U-matrix, it is possible to observe
outliers, i.e. input instances that are isolated on the map. The visually observed
outliers are eliminated from the training data. This process is detailed in the
experimental part of the paper.

After the data preprocessing step, as in a supervised learning scenario, the
regression ANN and SVM models are trained during training and then tested
in order to evaluate the performance of the obtained models. These steps are
further detailed in their respective sections.

3.1 Training

The following sections present details about how the ANN and SVM models are
built during the training step.

The ANN Model. The ANN model’s capability to represent non-linear func-
tions is used in order to solve the weight estimation problem. The requirement
for the problem at hand is to design a model which uses the known measure-
ments as input features, processes them in its hidden layers and gives the results
corresponding to the estimation.

For the experiments, a feedforward neural network is built. It will be trained
using the backpropagation-momentum learning technique [24].

The ANN is composed of three layers: input, hidden and output. The input
layer is composed of ni (equal to the dimensionality of the input space) neurons.
A single hidden layer is used, the number nh of hidden neurons being computed
as nh =

⌈√
ni · no

⌉
. Bias neurons are also used in the input and hidden layers.

On the output layer, there is a single neuron corresponding to the weight output.
All hidden and output units use the sigmoid activation function.

During training phase, the squared error between the network output value
and the target value for the current training instance is computed. The error is
propagated backwards through the network, followed by the gradient computa-
tion [17]. All the weights are updated in order to reduce the observed error for
the current example.

In order to avoid the convergence to a local minimum, stochastic gradient
descent is used during training, for building the network. The idea behind this
variation [17] is to approximate the true gradient descent search by updating the
weights incrementally, following the calculation of the error for each individual
example.

The momentum technique is also added to the ANN model, in order to speed
up the convergence and to avoid local minimums [23].
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A validation subset consisting of [n/10] randomly chosen instances (n denotes
the number instances from the input data set) is extracted from the training data
set and used for optimizing the number of training iterations. Ten randomly
initialized ANNs are trained in parallel and at the end of the training, the ANN
that has the best performance on the validation set is kept. The obtained ANN
is then used for testing.

The SVM Model. The SVM model consists of ε-SVR with multiple choices
of kernels and a randomized hyperparameter search. A random search has been
shown to outperform classical grid searches for this problem [4]. The random
search consists of specifying either a probabilistic distribution for each hyperpa-
rameter or a discrete set of possible values. Then, for a given number of itera-
tions, random values are selected for each hyperparameter, according to the given
probability distributions or discrete sets of values. A model is constructed each
iteration, and evaluated using 10-fold cross validation. The best model returned
by the random search is then tested using Leave One Out cross validation, as
described below.

3.2 Testing

For evaluating the performance of both the ANN and SVM models, a leave-one
out cross-validation is used [31]. In the leave-one out (LOO) cross-validation on
a data set with n instances, the learning model is trained on n-1 instances and
then the obtained model is tested on the instance which was left out. This is
repeated n times, i.e. for each instance from the data set.

During the cross-validation process, the mean of absolute errors (MAE) is
computed using the Formula (2)

MAE =
1
n

n∑

i=1

|bmi − ei| (2)

In the above formula ei is the estimated body mass for the i-th test instance
(as provided by the ANN/SVM regressor), and bmi represents the real body
mass for the i-th test instance (known from the data set).

For the ANN, 20 LOO cross-validations will be performed, since the ran-
domness of several steps (weights initialization, the selection of the validation
set). As a preliminary step within a leave-one out cross-validation process, the
validation subset (see Sect. 3.1) will be extracted. The remaining subset will be
used for evaluating the model performance using LOO, as described above. The
MAE values reported for the 20 runs are averaged and a statistical analysis on
the obtained results is performed.

The SVM is tested using a single LOO cross-validation, since there is no
randomness in building the SVM regressor, thus the obtained results are always
the same. There is randomness in the initial shuffling of the data, but experiments
have shown that this did not influence the results in any significant manner. The
random search for the hyperparameters optimization is run for 200 iterations.
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4 Experimental Evaluation

In this section, an experimental evaluation of the proposed machine learning
models (described in Sect. 3) is provided on several case studies derived from an
open source archaeological data set. Original implementations were used for the
ANN and the SOM employed in the data preprocessing step. The scikit-learn
machine learning library was used for the SVM implementation [19].

4.1 Data Set and Case Studies

The data set considered in the experiments is an archaeological data set publicly
available at [10]. The database at [10] was developed through a research project
[9] and is a skeletal database composed of forensic cases to represent the ethnic
diversity and demographic structure of the United States population [10]. The
database contains 1009 human skeletons and 86 bones measurements represent-
ing: postcranial measurements (length, diameter, breadth, circumference, and
left and right, where appropriate) of the clavicle, scapula, humerus, radius, ulna,
sacrum, innominate, femur, tibia, fibula, and calcaneus [10]. Only the instances
for which the (forensic and/or cadaver) body mass was available were extracted
from this database.

An analysis of the bioarchaeological literature revealed 10 measurements
which are used for human body mass estimation and have a good correlation
with the body size (stature and/or body mass) [2]: (i) femoral head diameter (ii)
iliac breadth, femur bicondrial length (iii) clavicle, humerus, radius, ulna, femur,
tibia and fibula. From these measurements, the femural measurements seem to
produce the most accurate body mass estimations [2].

In case of two measurements for any of these bones (left and right), their
mean was used. If only one measurement existed in the database, it was used as
is. Instances containing missing bone measurements were not considered in any
of the case studies.

The following case studies are considered, with the aim of analyzing the
relevance of the previously mentioned measurements for the problem of body
mass estimation.

– The first case study consists of 200 instances characterized by 3 measure-
ments - (i) and (ii).

– The second case study consists of 146 instances characterized by 8 measure-
ments - (i) and (iii).

– The third case study consists of 135 instances characterized by all 10 mea-
surements - (i), (ii) and (iii).

4.2 Data Preprocessing

As mentioned in Sect. 3, before building the ANN and SVM models, the
training data is preprocessed. After normalizing the data using the Min-Max
normalization method, the Pearson correlation coefficients between the features
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Fig. 1. Pearson correlation and U-Matrix visualization.

(measurements) and the target weights are computed. Figure 1(a) illustrates the
correlations between the 10 measurements and the target output on the third data
set (case study).

Figure 1(a) shows that the first three features have the highest correlation
with the body mass. The femoral head diameter has the maximum correlation
with the body mass (0.5086), while the length of the tibia has a correlation of
only 0.3858 with the body mass. Analysing the correlations from Fig. 1(a) it is
expected that the best performance of the ANN and SVM models is on the first
case study (using only the first three measurements).

In order to determine possible outliers within the training data, a self orga-
nizing map is trained on the first data set (consisting of 200 instances). The
U-Matrix visualization of the trained SOM is depicted in Fig. 1(b). On the map
one can see four small regions (with boundaries outlined in white). The instances
from these regions may be viewed as possible outliers in the data set, since they
are isolated from the other instances. This way, 8 instances can be visually
identified as possible outliers. These instances are removed from the training
data sets.

4.3 Results

In this section, an experimental evaluation of the proposed application of ANN
and SVM machine learning regressors (described in Sect. 3) is provided on the
case studies described in Sect. 4.1.

For the ANN parameters, a learning rate of 0.3 momentum values of 0.2 were
used. These were chosen by using a classic grid search over several values lower
than 1, and choosing the values which consistently provided the best results.

For the random search of SVM hyperparameters, the uniform probability
distribution was used. The intervals or sets from which each hyperparameter is
drawn are as follows:
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– kernel: from the set {rbf, linear, sigmoid, poly} (i.e. RBF, linear, sigmoid,
polynomial kernels).

– ε: from [0, 1).
– γ: from [0, 1).
– b: from [0, 1).
– Polynomial degree for the polynomial kernel: from the set {1, 2, 3, 4, 5}.
– C: from [0, 1).

Note that not all hyperparameters apply to every kernel choice.
For the case studies considered for evaluation (Sect. 4.1), after preprocessing

the training data set as indicated in Sect. 4.2, the ANN and SVM regressors are
built through training (see Sect. 3.1).

For evaluating the performance of the trained ANN and SVM, 20 runs of
Leave One Out (LOO) cross-validation were used for the ANN model and a
single run for the SVM model, because the latter does not use any random
numbers, so its results will always be the same.

ANN Results. The MAE values along with the minimum, maximum, mean
value and standard deviation, obtained using the ANN, for each case study
performed, are given in Table 1. In this table, the MAE values are given in
kilograms.

Table 1. Results obtained using the ANN, considering all 20 LOO cross-validations.

Case study Mean (kg) Min (kg) Max (kg) Stdev (kg)

First case study 8.766 7.751 10.195 0.682

Second case study 9.593 8.301 11.259 0.77

Third case study 8.945 7.63 10.338 0.649

Table 1 indicates, as expected, that the best results were obtained for the
first case study, when only the first 3 measurements are used for characterizing
the skeletal remains. Figure 2 depicts the values for the MAE measure obtained
during the 20 runs of the LOO cross-validation process applied on the first case
study. The average of these values, as well as their standard deviations are also
indicated. The small values for the standard deviation reveal a good performance
of the proposed ANN model application.

SVM Results. The results obtained using the SVM are presented in Table 2.
The best values used for the hyperparameters (including the used kernel func-
tion) are depicted in the last column of the table.

As shown in Table 2, the SVM obtained a performance similar to the ANN:
the best performance on the first case study and the worst performance on the
second case study.
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Fig. 2. MAEs for the ANN on the first case study.

Table 2. Results obtained using the SVM.

Case study MAE (kg) Example best hyperparameters

First case study 8.4897 kernel: linear

ε: 0.027578797176389447

C: 0.641027338498186

Second case study 9.4918 kernel: linear

ε: 0.09576656837738184

C: 0.24862712124238084

Third case study 8.6843 kernel: polynomial

ε: 0.04798752786733451

C: 0.1465703832031966

degree: 2

γ: 0.7681948068876795

b: 0.42975272058542213

5 Discussion and Comparison to Related Work

In this section, an analysis is provided for the approaches introduced in Sect. 3
for body mass estimation from bone measurements. Then, a comparison with
similar approaches from the literature is conducted.

As shown in the experimental part of the paper, both the ANN and SVM
models have provided about the same performances for the body mass estimation
problem. The SVM slightly outperformed the ANN, with at most 0.28 MAE.
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The experimental values obtained for the (average) MAE considering all case
studies are summarized in Table 3. The last column from Table 3 contains the
MAE value (averaged over all LOO cross-validations). The best values, for each
case study, are highlighted.

Table 3. MAE values obtained using the ANN and the SVM models on the considered
case studies

Case study Model MAE (kg)

First case study ANN 8.766

SVM 8.4897

Second case study ANN 9.593

SVM 9.4918

Third case study ANN 8.945

SVM 8.6843

Table 3 shows that the best machine learning-based regressor for estimating
the human body mass from skeletal remains is the SVM, when only 3 measure-
ments (femoral head diameter, iliac breadth and femur bicondrial length) are used
for the skeletal elements. This is to be expected, since these three measurements
showed the highest correlation with the target body mass (Fig. 1(a)).

Analysing the results from Table 3 it can also be seen that the worst results
were obtained, for both ANN and SVM, on the second case study. Therefore, the
iliac breadth and femur bicondrial length are also important in estimating the
body mass and the measurements for the clavicle, humerus, radius, ulna, femur,
tibia and fibula do not improve the body mass estimation results.

It is worth mentioning that the outliers removal step performed during the
data preprocessing step has increased the performance of the ML regressor.
Table 4 illustrates the effect of removing the outliers from the training data
of the ANN. A significant reduction for the MAE value was obtained for the
third case study.

5.1 Comparison to Related Work

In the following, a brief review of the recent human body mass estimation liter-
ature is given, with the aim to compare the used ML regressors to the existing
related work. As far as the authors are aware, there are no existing machine
learning-based models (like the ANN and SVM models applied in this paper)
for the problem of body mass estimation from skeletal remains.

A comparison between several body mass estimation methods was conducted
by Auerbach and Ruff in [2] (2004). The authors proposed to test some exist-
ing methods on a great variety of subjects. They used skeletal remains of 1173
adult skeletons of different origins and body sizes, both males and females. Three
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Table 4. Comparative MAE values - with and without outliers removal using the
ANN.

Case study MAE reduction (%) Outliers removal MAE (kg)

First case study 19.39 Yes 8.766

No 10.874

Second case study 19.22 Yes 9.593

No 11.875

Third case study 25.68 Yes 8.945

No 12.036

femural head-based regression formulas were tested and compared on the con-
sidered skeletal sample: Ruff et al. [22] (1991), McHenry [16] (1991) and Grine
et al. [8] (1995). The authors concluded that for a very small body size range
(Pygmoids), the formula of McHenry (1992) can provide a good body mass esti-
mation. For very large body sizes, the formula of Grine et al. (1995) should be
used, whereas for the other samples the formula of Ruff (1991), or the average
of the three techniques would be the best approach.

Ruff et al. provided in [21] (2012) new body mass estimation equations that
are generally applicable to European Holocene adult skeletal samples. Body mass
estimation equations were based on femoral head breadth. 1145 skeletal speci-
mens were obtained from European museum collections, from time periods rang-
ing from Mesolithic to the 20th century [21]. On these data sets, the regression
formulas introduced in [21] provided better results than the previous formulas
from Ruff et al. [22] (1991), McHenry [16] (1991) and Grine et al. [8] (1995).

The data sets used in the previously mentioned papers are not publicly avail-
able, that is why an exact comparison of the approaches introduced in this
paper to the previously mentioned approaches cannot be performed. Since the
authors have not been able to find experiments in the literature related to body
mass estimation using the same data set as in this paper, the following com-
parison to related work was conducted. The regression formulas introduced in
Ruff et al. [8,16,21,22] were applied on the data sets used in this paper (all
three case studies) and the obtained MAE values were compared with the ones
provided by the ANN and SVM regression models. The results of the compar-
ison are given in Table 5. In this table, 95% confidence intervals [5] were used
for the obtained results. The comparison is graphically depicted, for all three
case studies, in Fig. 3. In this figure, the first two dashed bars correspond to the
ANN and SVM models used in this paper, while the other bars correspond to
the above mentioned four approaches from the literature. For the ANN, the 95%
confidence intervals of the average MAE are also illustrated.

In Table 5 and Fig. 3 it can be observed that the MAE values obtained by
the ANN and SVM methods are smaller than those obtained using regression
formulas from the literature. One can notice that for the ANN even the upper
limit of the 95% confidence interval of the mean MAE is below the MAE from the
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Fig. 3. Comparison to related work

literature. This is somehow predictable because the previously stated regression
formulas only use one measurement, the femoral head anterior-posterior breadth,
while the proposed approaches are using multiple measurements. This is the
best measure of the performance of the machine learning approach, since the
experiments are performed on the same data sets. Note that the ANN and SVM
models provided better results, even if the evaluation of the machine learning
based models was obtained using multiple cross-validation runs (in order to
avoid overfitting), whereas the formulas from the literature were obtained using
the entire data set. Another major advantage of the proposed approaches with
respect to the literature is that estimations are made without knowing the sex
characteristics, which is mainly used in the existing literature.

Table 5 shows that, considering both the approaches from the literature as
well as the ANN and SVN, the best performance was obtained on the first case
study.

It has to be mentioned that most of the researchers from the bioarchaeological
fields develop regression formulas for body mass estimation based on a data set
which is also used for testing the developed formulas, without using a testing
set independent from the training data and without using any type of cross-
validation. This may lead to overfitting, as for the regression formulae from the
literature which provided good performances on the data they were trained on
(about 4–5 MAE), but when applied on an unseen test data (our case studies)
they provide large MAE values (see Sect. 4.3). It is likely that the methods from
the body mass estimation literature would provide larger errors under the testing
methodology used for the proposed machine learning applications.
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Table 5. Comparison between the machine learning approaches and similar related
work. 95% confidence intervals are used for the ANN results.

Approach First case study
MAE (kg)

Second case
study MAE (kg)

Third case study
MAE (kg)

ANN
Implementation

8.766 ± 0.299 9.593 ± 0.338 8.9452 ± 0.284

SVM
Implementation

8.4897 9.4918 8.6843

Ruff et al. (2012) [21] 10.115 11.43 11.202

Ruff et al. (1991) [22] 10.476 11.556 11.359

Mc Henry (1992) [16] 10.176 11.514 11.324

Grine et al. (1995) [8] 10.609 11.656 11.431

The main advantage of the machine learning approaches proposed in this
paper over the simple mathematical ones is that the machine learning models can
be retrained on new data, and they are able to generalize well if specific methods
for avoiding overfitting are used, like the ones described in Sect. 3.1. Moreover,
it can be computationally costly to develop mathematical formulas on new data
sets, which will likely not generalize well anyway. Instead, a machine learning
regressor (like ANN or SVM) can easily learn from new data sets, resulting in
learning models that are able to perform well on unseen data having the same
features as the training one.

6 Conclusions and Future Work

Two supervised learning regression models were applied for estimating the body
mass from human skeletal remains based on bone measurements. The idea to
apply machine learning for the body size estimation problem is a novel one.
Several case studies were conducted on a publicly available data set from the
bioarchaeological literature. The obtained results outperformed classical statis-
tical methods for body size estimation, which makes the proposed approaches
useful for the field of bioarchaeology.

Further work will be done in order to improve the data preprocessing step of
learning, by automatically detecting and removing the outliers from the train-
ing data set. Since the archaeological data sets usually contain missing mea-
surements, methods for dealing with these missing values will be investigated.
Applying other machine learning-based regression models for the body mass esti-
mation problem, like radial basis function networks and k-nearest neighbors, is
also a direction of interest for the authors.

Acknowledgment. This work was supported by a grant of the Romanian National
Authority for Scientific Research, CNCS–UEFISCDI, project number PN-II-RU-TE-
2014-4-0082.



Supervised Learning Techniques for Body Mass Estimation 85

References

1. Arora, P., Srivastava, S., Singhal, S.: Analysis of gait flow image and gait Gaussian
image using extension neural network for gait recognition. Int. J. Rough Sets Data
Anal. 3(2), 45–64 (2016)

2. Auerbach, B., Ruff, C.: Human body mass estimation: a comparison of “mor-
phometric” and “mechanical” methods. Am. J. Phys. Anthropol. 125(4), 331–342
(2004)

3. Ruff, R.B.: Body mass prediction from skeletal frame size in elite athletes. Am. J.
Phys. Anthropol. 113(4), 507–517 (2000)

4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

5. Brown, L.D., Cai, T.T., Dasgupta, A.: Interval estimation for a binomial propor-
tion. Statistical Science 16, 101–133 (2001)

6. Chatterjee, S., Sarkar, S., Hore, S., Dey, N., Ashour, A.S., Balas, V.E.: Particle
swarm optimization trained neural network for structural failure prediction of mul-
tistoried RC buildings. Neural Comput. Appl. 1–12 (2016)

7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

8. Grine, F., Jungers, W., Tobias, P., Pearson, O.: Fossil homo femur from berg aukas,
northern namibia. Am. J. Phys. Anthropol. 26, 67–78 (1995)

9. Jantz, R.J., Moore-Jansen, P.H.: Database for Forensic Anthropology in the
United States, 1962–1991 (ICPSRversion) (1998). University of Tennessee, Dept.
of Anthropology, Knoxville, TN [producer] (1998). Inter-university Consortium for
Political and Social Research, Ann Arbor, MI (2000)

10. Jantz, R.J., Moore-Jansen, P.H.: Database for Forensic Anthropology in the United
States, 1962-1991 (ICPSR). University of Tennessee, Department of Anthropology
(2000). http://www.icpsr.umich.edu/icpsrweb/NACJD/studies/2581

11. Kaski, S., Kohonen, T.: Exploratory data analysis by the self-organizing map:
structures of welfare and poverty in the world. In: Neural Networks in Financial
Engineering. Proceedings of the Third International Conference on Neural Net-
works in the Capital Markets, pp. 498–507. World Scientific (1996)

12. Kriti Virmani, J., Dey, N., Kumar, V.: PCA-PNN and PCA-SVM based CAD
systems for breast density classification. In: Hassanien, A.E., Grosan, C., Fahmy
Tolba, M. (eds.) Applications of Intelligent Optimization in Biology and Medicine,
pp. 159–180. Springer International Publishing, Cham (2016)
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