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Abstract. In this chapter, the mathematical modelling of an assumed
modes method modelled two-link flexible manipulator moving in a hori-
zontal plane is derived using singular perturbation. The system dynam-
ics is divided into slow subsystem and fast subsystem. Considering
the separated dynamics, a composite controller is designed for tracking
the desired joint angle and tip deflection suppression. A linear matrix
inequality based sliding mode control (LMI-SMC) is proposed for the
slow subsystem and linear matrix inequality based state feedback con-
troller (LMI-SFC) is proposed for the fast subsystem. Simulation results
validate the effectiveness of the proposed control technique.

Keywords: LMI based SMC · LMI based SFC · Tracking control of a
two-link flexible manipulator · Vibration suppression

1 Introduction

With the advancement of technology, many manual works are replaced by robots
in the field of medicine, industries, military, aerospace and so on [1,2]. In the field
of robotics, many anthropomorphic manipulators are assigned to carry and move
objects in specialised sectors [3]. For faster operational speed and lesser energy
consumption, many rigid and bulky manipulators are replaced by flexible manip-
ulators [4]. In recent decades, flexible manipulators have acquired and received
much attention in modelling the dynamics and its control for completing the task
faster [5,6]. Many control methods are exploited to deal with payload variation
and modelling uncertainties [7]. Some problems are solved for controlling pay-
load variations at the free end [8]. Moreover, control of tip position of a flexible
manipulator using an adaptive model predictive approach is done in [9]. Some
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control approaches are reported for controlling a two-link flexible manipulator
(TLFM) like backstepping [10], SMC techniques [11,12], fuzzy logic control [13],
etc. However, many challenges like high non-linearity, uncertainties and elastic
deformations are hardly overcome [14].

Reference [15] discussed the control problems by applying singular perturba-
tion and applied to flexible manipulators. In [16], it is shown that the frequen-
cies of the elastic deflections are much more higher than the rigid counterparts
and hence a flexible manipulator system can be divided into two parts. A slow
subsystem and a fast subsystem. References [17,18] adopted computed torque
method for controlling the slow subsystem and pole placement for controlling
the fast subsystem. Variable structure control is used for the slow subsystem and
Lyapunov based control, virtual force control are designed for the fast subsys-
tem in [19,20], respectively. However, the choice of the controller parameters in
the above reported papers are user dependent. Hence, there is a wider scope to
improve this issue where the control parameters are computed through a process
which is feasible and optimal.

In this chapter, we propose a robust control technique which includes Linear
Matrix Inequality (LMI) with Sliding Mode Control (SMC) for the slow subsys-
tem and LMI with state feedback strategy for the fast subsystem. The simulation
results are shown where the desired trajectories are tracked and deflections are
suppressed properly.

The rest of the paper is organised as follows: Sect. 2 describes the mathe-
matical modelling of a two-link flexible manipulator. Model decomposition by
singular perturbation is given in Sect. 3. Designing of a controller, and results
and discussion are given in Sects. 4 and 5, respectively. Finally, Sect. 6 describes
the conclusions of this paper.

Fig. 1. Schematic diagram of a planar two-link flexible manipulator.
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2 Mathematical Modelling of a Two-Link Flexible
Manipulator

Considering a TLFM is rotated in a horizontal plane by two motors, let (X0, Y0)
represents the generalised coordinate frame in Fig. 1. (Xi, Yi) be the inertial
frame and (X̂i, Ŷi) be the moving frame associated with the ith link of the rigid
body. A payload of mass Mp is attached at the tip of the manipulator. θi is the
joint angle made by each ith link. The total displacement made by the flexible
manipulator is given as

yi = θili + ui (1)

where ui is the elastic deflection. li is the length of ith link. The elastic deflection
is given as

ui(x, t) =
n∑

j=1

ηij(t)ξij(x) (2)

where ηij(t) is the jth modes and ξij(x) is the jth mode shape of the ith link.
Thus, the generalised Lagrangian co-ordinate can be given as q = [θT

i , ηT
ij(t)].

The dynamic equation of a TLFM based on Lagrange’s assumed modes method
[21] can be written as

N(θij , ηij)
(

θ̈i

η̈ij

)
+ h(θ, θ̇, ηij , η̇ij) + K

(
θi

ηij

)
+ D

(
θ̇i

η̇ij

)
=

(
I
0

)
τ (3)

which can be further simplified as

N(q)q̈ + h(q, q̇) + Kq + Dq̇ =
(

I
0

)
τ (4)

where q = [θ1, θ2, η11, η12, η21, η22]T = [θT ηT ]T , N(q) is the inertia matrix,
h(q, q̇) is the centrifugal and coriolis force, K is the positive definite stiffness
matrix, D is the positive definite damping matrix and τ is the joint torque. All
the matrices are of approximate dimensions and two modes are considered here.

3 Model Decomposition by Singular Perturbation

Considering only the first two modes of a link of a TLFM, the dynamic model
can be written as

N

(
θ̈
η̈

)
+

(
hs(θ, θ̇, η, η̇)
hf (θ, θ̇, η, η̇)

)
+

(
D1θ̇
D2η̇

)
+

(
K1θ
K2η

)
=

(
I
0

)
τ (5)

where θ = [θ1 θ2]T is the joint angle, η = [ηT
1 ηT

2 ]T , ηi = [ηi1 ηi2]T is the modes
of the ith link and i = 1, 2. The mass matrix is a positive definite and its inverse
is written as

N−1 = B =
(

B11 B12

B21 B22

)
=

(
Ms MT

sf

Msf Mf

)−1

(6)
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where Ms = (B11 − B12B
−1
22 B21)−1, B11 ∈ R2X2, B12 ∈ R2X4, B21 ∈ R4X2,

B22 ∈ R4X4 and K1 = 0. We can rewrite (5) as

θ̈ = −B11(D1θ̇ + hs + K1θ) − B12(D2η̇ + hf + K2η) + B11τ (7)

η̈ij = −B21(D1θ̇ + hs + K1θ) − B22(D2η̇ + hf + K2η) + B21τ (8)

For a singular perturbation, we define a new state variables η = εδ and Ks = εK2

and ε is the perturbation parameter. 1
ε is the smallest value of the stiffness

constant matrix K. The singularly perturbed model of a TLFM, given in (7)
and (8), can be described as

θ̈ = −B11(D1θ̇ + hs) − B12(D2εδ̇ + hf + Ksδ) + B11τ (9)

η̈ = −B21(D1θ̇ + hs) − B22(D2εδ̇ + hf + Ksδ) + B21τ (10)

With the composite control strategy, the total torque can be divided as

τ = τs + τf (11)

where τs and τf are the torques for the slow and fast subsystems, respectively.
For identifying the slow subsystem, we set ε = 0 in (10) and is obtained as

δ̄ = −K−1
s B̄−1

22 (B̄21D̄1
˙̄θ + B̄21h̄s + B̄22h̄f − B̄21τs) (12)

where overbar indicates the value of the variable when ε = 0.
Applying two-time scale perturbation technique, the slow and the fast subsys-
tems can be obtained. The slow subsystem is described as

¨̄θ = (B̄11 − B̄12B̄
−1
22 B̄21)(−D̄1

˙̄θ − h̄s + τs) (13)

Using (6), the slow subsystem can be written as

¨̄θ = M̄−1
s (−D̄1

˙̄θ − h̄s + τs) (14)

In order to derive a boundary layer correction, a fast time scale, γ = t√
ε

and
boundary layer correction terms x1 = δ − δ̄ and x2 =

√
εδ is defined.

The fast subsystem is described as

ẋf = Afxf + Bfτf (15)

where Af =
(

0 I
−B̄22Ks 0

)
; Bf =

(
0

B̄21

)
; xf =

(
x1

x2

)

which corresponds to the linear system parameters of the slow subsystem.
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4 Designing of Controller

The dynamics of the slow subsystem of a TLFM, given in (14) can be written
in state space form as

ẇ = A(w)w + B(w)u + d(t) (16)

where w = [θ̄T ˙̄θT ] = [wT
1 wT

2 ]T , w1 = θ̄, w2 = ˙̄θ, u = τs, d = [0T dT
l ]T ∈ R4X1.

A(w) =
(

0 I
0 −M−1

s D1

)
, B(w) =

(
0

−M−1
s

)
(17)

Here, the system matrix A(w) and input matrix B(w) are written as

A(w) =
(

A11 A12

A21 A22

)
, B(w) =

(
0

B2

)
(18)

where A11 = 02X2, A12 = I2X2, A21 = 02X2, A22 = −M−1
s D1 ∈ R2X2, B2 =

−M−1
s ∈ R2X2.
Now, the state space model of (16) can be written as

ẇ1 = A11w1 + A12w2 (19)

ẇ2 = A21w1 + A22w2 + B2u + dl (20)

where dl is the matched uncertainties and is bounded as |dl(t)| = |ḋl(t)| ≤ ll

4.1 LMI Based SMC for Slow Subsystem

Here, a normal SMC using LMI is designed for the trajectory tracking of the
slow subsystem of a TLFM. Consider the wdi ∈ R2X1 be the desired trajectories,
then trajectories tracking error dynamics is defined as

{
e1 = w1 − wd1

e2 = w2 − wd2

(21)

where wd1 = [θ1d θ2d]T , wd2 = [θ̇1d θ̇2d]T .

Assumption 1. Consider the wdi is consistent with the plant system matrix.
Let the dynamics of the desired trajectories wdi is continuous and is excited by
uw. It is described as:

ẇd1 = A11wd1 + A12wd2 (22)

ẇd2 = A21wd1 + A22wd2 + uw (23)

Now, the normal sliding surface is defined as

s(e) = e2 + λe1 (24)
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where λ > 0 is the constant matrix which is determined here using LMI toolbox.
The necessary condition for the existence of sliding surface is s(e) = 0, the
equivalent sliding mode dynamics is described as

e2 = −λe1 (25)

Using (18), (19), (22) and (23), the equivalent sliding mode dynamics for e1 is
described as

ė1 = (A11 − A12λ)e1 (26)

Theorem 1. Suppose, there exist matrices β,X, Y > 0 with appropriate dimen-
sions and satisfy the following LMI:

Q =
(

A11X − A12Y + XAT
11 − Y T AT

12 X
X −α

)
< 0 (27)

Then, the error dynamics (26) is asymptotically stable. The value of λ can be
obtained as λ = Y X−1.

Proof. Considering a Lyapunov function candidate as
{

V1(e1) = eT
1 Re1V̇1(e1) = eT

1 Rė1 + ėT
1 Re1 (28)

where R is positive definite matrix. Using (26), (28) can be written as

V̇1(e1) = eT
1 [R(A11 − A12λ) + (A11 − A12λ)T R]e1 (29)

Suppose the following inequality holds

R(A11 − A12λ) + (A11 − A12λ)T R ≤ −α−1 (30)

then
V̇1 ≤ eT

1 (−α−1)e1
≤ −(μmin(α−1))‖e1‖2

(31)

where μmin is the minimum eigenvalue of α−1. The Lyapunov function (31) can
be simplified as

V̇1 ≤ −γV1(e1) (32)

where γ = (μmin(α−1)/μmax(R)). Since α is the positive definite matrix, the
quantity γ is the positive scalar. Now, consider X = R−1and pre multiplying
and post multiplying X in (30) we get

A11X − A12λX + XAT
11 − AT

12(λX)T ≤ −XαX−1 (33)

Considering Y = λX in (33) and using Shur complement [22], the LMI in (28) is
satisfied. Thus, the equivalent sliding mode error dynamics (26) is asymptotically
stable if the LMI (27) is feasible.
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The existence of the manipulator dynamics (16) on the sliding surface (34) is
achieved using the following Theorem2.

Theorem 2. Consider, the sliding surface defined in (24) and suppose the value
of λ is determined using LMI in (27), and if the control torque input for the slow
subsystem of TLFM dynamics (16) is defined as

τs = MsPs + hs + D1
˙̄θ − ρtanh(s) (34)

where Ps = −cse2 + z̈d, tanh is the tan hyperbolic function and ρ is the positive
gain. Then, the trajectories of the flexible manipulator dynamics converge to the
sliding surface (24) in finite time and remain on it.

Proof. Consider another Lyapunov function candidate as

V2(s) =
1
2
ssT (35)

Taking the derivative (35) and using (24), it can be written as

V̇2(s) = − η√
2

≤ −ηV
1
2
3 (36)

where η > 0 and ρ = λll + η√
2
. Hence, the joint trajectories of the flexible

manipulator (3) follow the desired trajectories using the control input torque
proposed in (34).

4.2 LMI Based State Feedback Controller (SFC) for Fast Subsystem

Here, in this section an LMI based state feedback controller (SFC) is designed
for regulating the fast subsystem dynamics of the TLFM to zero. Suppose the
matrices Af and Bf in (15) are controllable then a suitable state feedback based
controller can be designed as below.

τf = −kxf (37)

where k ∈ R2X8 is the positive definite matrix and its value is determined using
the feasible solution of a LMI obtained from Theorem3.

Theorem 3. Suppose there exist matrices P, S > 0 with appropriate dimensions
and following LMI is satisfied:

{
P > 0
AfP − BfS + PAT

f − ST BT
f < 0

(38)

Then, the fast subsystem is asymptotically stable along the equilibrium trajectory
x̄ defined in (12). The value of k in (37) can be obtained as k = SP−1.
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Proof. Suppose there exist a positive definite matrix P which satisfies the fol-
lowing inequality

AcP + PAT
c < 0 (39)

where Ac = (Af − Bfk) is the closed loop state matrix of (15). The inequality
(38) can be written as

(Af − Bfk)P + P (Af − Bfk)T < 0 (40)

Now, consider a positive definite matrix S which is described as S = kP ,
then (40) can be modified as

AfP − BfS + PAT
f − ST BT

f (41)

Thus, using (41), the LMI in (38) can be obtained. In (41) two matrices P and
S are unknown whose value can be obtained from the feasible solution of LMI
defined in (38). The gain of the SFC input k can be obtained as k = SP−1.

5 Results and Discussion

The proposed control technique with singular perturbation modelling method is
validated on a TLFM. The parameters of the manipulator are given in Table 1.
All the simulations are solved using ode-45 solver in MATLAB-14a simulation
environment with fixed step size of 0.001. The desired trajectories for both the
joints are considered as:

θ1d =
π

4
− 7

6
e− 3

2 t +
7
19

e−2t (42)
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Fig. 2. Joint trajectory tracking: (a) Link-1 and (b) Link-2.
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Fig. 3. Modes of the respective link: (a) Mode-1 of the link-1 (b) Mode-2 of the link-1
(c) Mode-1 of the link-2 (d) Mode-2 of the link-2.
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Fig. 4. Tip deflection of the links: (a) Link-1 (b) Link-2.

Table 1. The parameters of the physical system of TLFM.

Parameter Link-1 Link-2

Length 0.201(m) 0.2(m)

Density 0.9059(kg/m) 0.3072(kg/m)

Link Moment of Inertia 0.17043(kg/m2) 0.0064387(kg/m2)

Inertia of Link w.r.t joints 0.00249(kg/m2) 0.0008416(kg/m2)

Gear ratio 100 50

Maximum Rotation (±90,±90)deg (±90,±90)deg

Drive Torque Constant 0.119(Nm/A) 0.0234(Nm/A)
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Fig. 5. Sliding surfaces of the slow subsystem: (a) Link-1 (b) Link-2.
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Fig. 6. Required torque of the slow subsystem: (a) Link-1 (b) Link-2.

θ2d =
π

6
− 7

5
e− 3

2 t +
7
11

e−2t (43)

The initial conditions for simulating the manipulator dynamics are given as
q = (0.05, 0, 0, 0, 0, 0, 0, 0)T . The external disturbance d(t) added to the manip-
ulator is d(t) = [0.1sin(πq) sin(πq̇)]T . The value of different constants obtained
from the LMI is given below:

λ =
(

11.8095 0
0 11.8095

)

k =
(−0.164 14.081 30.513 49.255 3.045 −0.405 0.222 −4.960

0.166 −2.133 −4.816 −10.295 −0.505 −0.565 −0.277 0.713

)
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Fig. 7. Required torque of the fast subsystem: (a) Link-1 (b) Link-2.
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Fig. 8. Composite control torque inputs of the flexible manipulator: (a) Link-1 (b)
Link-2.

The other constants used for simulating SMC of the slow subsystem are
ρ1 = 10, ρ2 = 10. These parameter values are chosen by trial and error to
maintain a good tracking performance and low control input. Figure 2 shows the
joint trajectory tracking of links. It is seen that manipulator track the desired
trajectories properly within a small time of 2 s for both the links. The obtained
two modes of each link are shown in Fig. 3. The tip deflection in Fig. 4 is the
combination of the modes with its mode shapes. It is seen in Fig. 4 that the tip
deflection of the first link and the second link is suppressed within 0.05mm and
0.005mm, respectively. The proposed sliding surfaces for the slow subsystem are
shown in Fig. 5. Figures 6 and 7 show the proposed control inputs for the slow
subsystem dynamics and fast subsystem dynamics, respectively. The composite
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control inputs which is the combination of slow and fast subsystems control
inputs are shown in Fig. 8. It is apparent from the Fig. 8 that the maximum
torque requirement for the first link and second link are in bound of [−35, 10]Nm
and [−15, 1]Nm, respectively.

6 Conclusions

The dynamics of a TLFM is obtained using assumed modes method and sepa-
rated into slow and fast subsystems describing the rigid and flexible dynamics
using singular perturbation technique in this chapter. A composite control for
tracking the desired trajectories and tip deflection suppression is proposed for
a two-link flexible manipulator. A linear matrix inequality based sliding mode
control is designed for tracking the control problem of slow subsystem in order
to remove the uncertainties due to nonlinear structure. In addition, a linear
matrix inequality based state feedback control is designed for regulating the
control problem of fast subsystem. The effectiveness of the proposed control
technique is validated in simulation environment in the presence of an exter-
nal disturbance. Simulation results reflect that the objectives of the chapter are
successfully achieved.
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