
A Comparative Study for Ontology
and Software Design Patterns

Zaheer Ahmed, Muhammad Arif(&), Muhammad Sami Ullah,
Adeel Ahmed, and Muhammad Jabbar

Department of Computer Science, University of Gujrat, Gujrat, Pakistan
{zaheer,m.arif,msamiullah,adeel.ahmed,

jabbar.ahmed}@uog.edu.pk

Abstract. Ontology design patterns have been extended from software design
patterns for knowledge acquirement in semantic web. The main concern of
ontology design patterns is to how concepts, relations and axioms are estab-
lished in a ontology using ontological elements. Ontology design pattern pro-
vide the solution of quality modeling for ontologies. In user prospective the
presentation of ODP play a central role for the reusability of ontologies. This
research determine the improvement areas in the presentation of content ODPs.
Improvement in presentation can ultimately improve the understandability of a
pattern from user perspective. Our objective is to analyze the template of dif-
ferent software engineering patterns (SEP) and ODP. On the basis of this
analysis we suggest possible changes in current template and pattern presenta-
tion. It also includes determining the most important information about patterns
which can help an ontology engineer in selecting an appropriate pattern. Pre-
sentation of design patterns is related to issues such as reuse, guidance and
communication. Our main goal is to evaluate the current patterns presentation.
The evaluation is focused on the analysis of current patterns. The ontology
design pattern templates were compared with existing templates of other pat-
terns for determine the improvement areas. The template of an ODP consists of
many parts, the first question is to identify the most important and vital infor-
mation concerning the design patterns. This information would help an ontology
engineer to select an appropriate design pattern for the required ontology. The
second question is about the users who work with ontology design patterns.
Generally, users are divided into two categories; novice and expert ontology
engineers. Novice users are the end-users who use design patterns to implement
in the ontologies. Expert ontology engineers are those who actually develop
ontology design patterns. Each category of user has its own information
requirement regarding design patterns.

Keywords: Ontology design pattern � Templates � Content ontology design
pattern � Software engineering pattern

1 Introduction

ODPs are semantic patterns that provide quality modeling solutions for ontologies.
ODPs play an important role in learning and teaching ontology engineering [1]. They
facilitate the automatic and semi-automatic ontologies construction and provide a base

© Springer International Publishing AG 2018
V.E. Balas et al. (eds.), Soft Computing Applications, Advances in Intelligent
Systems and Computing 633, DOI 10.1007/978-3-319-62521-8_19



for creating ontologies in different domains [2]. In user prospective the reusability of
ontology depends on presentation of ODP. So far only a small catalogue of patterns
exist which is available online at the ontology design pattern portal. In this portal,
ODPs are described using a template with a set of headings that should be filled out
when entering a new pattern. The template defines a standard way for constructing new
patterns. There are possibilities to discuss modeling issues, review and suggest changes
in patterns [4].

In computer and information science ontology is defined as a “formal, explicit
specification of a shared conceptualization” [3]. One of the main problem areas is
reusability of ontologies. The existing ontologies are available at online ontology
repositories which provide guidelines to ontology users. Due to unfamiliar logical
structure the existing ontologies provide limited support. Must be learned the good
practices form literature. This problem is solved by implementing common solution as
we learn in software engineering [4]. The patterns facilitate and to some extent auto-
mate the construction of ontologies. The development of patterns in the ontology field
is very popular as that in software engineering. The patterns are defined for reuse and
aim at facilitating the construction process very much like the way it is done in software
engineering or architectural planning of buildings [5]. The purpose of design patterns is
to solve the design problems. The patterns provide a useful way for handling the
problems of reusability in a development process. In SE the common practices to build
software through design and architecture patterns. This practice also follow in ontology
engineering [2].

Ontology design patterns provide modeling solutions of ontologies design prob-
lems. They provide a base for creating ontologies in different domains. Patterns are also
used for evaluation of ontologies [4]. Ontology design patterns (ODPs) are of several
types. They are divided into 6 families; Content patterns, Structural Patterns, Presen-
tation patterns, Correspondence Patterns, Lexico-Syntactic Patterns and Reasoning
Patterns [6]. This thesis deals with the presentation of content ontology design pattern.
It describes the design issues of the presentation of ontology design patterns. There
may be certain information that an ontology user need to understand a pattern but it is
not available in the description, our next task will be to examine the missing infor-
mation in the current ontology design pattern templates. Finally, based on the results of
above questions, we will made suggestions for the potential improvement in the current
templates of ODP presentation.

2 Related Work

Knowledge reuse is common way to improve the quality of work artifacts. Pattern is a
common way to improve reusability. There are other ways to support reusability, i.e. in
object oriented programming the concept of program components related to the
reusability of design. To achieve reusability, number of design technique available in
object oriented software development model for more reusable building block. An
obstacle for reuse methodologies is the lack of motivation among developers. Before

230 Z. Ahmed et al.



starting the process, the developer needs to establish a reuse library which requires
extra efforts. Reuse process is divided in to two steps Design for reuse and Design by
reuse.

To expedite design by reuse, first the design for reuse process must be established
[5, 7].

Reusability is applied at different levels. In software engineering, reusability can be
applied at following three levels [5]:

Requirements Reuse: It deals with the models of the domain or the generic model of
the requirement domain.

Design Reuse: It deals with the models, data structures and algorithms.

Software Component Reuse: It deals with reuse of software classes and editable
source code.

The development process of ontology is time consuming and more effort required
form developer. Reuse of an ontology from an ontological engineering perspective can
be hard. This is even more when there are large ontologies to be reused [8].

Ontology Library: For ontologies to be grouped and organized so that they may be
reused further and for ontology integration, maintenance, mapping and versioning, an
important tool known as ontology library systems was developed. These systems must
fulfill all ontological reuse needs and must be easily accessible [9].

Ontology Matching: Ontology matching is a process of judging correspondence
between semantically related ontologies, solving the problem of semantic heterogeneity
and can be used in ontology merging, query answering, data translation etc. So
ontology matching facilitates interoperability between matched ontologies [10].

A pattern is something re-occurring that can be applied from one time to another
and also from one application to another. These concepts are in use in our daily life and
also in our professional life. We use old solution as patterns. We search patterns in our
surroundings that can be useful. In reuse the pattern are best practices that provide the
good design [5, 11].

Currently in the computer science field the most common and popular patterns are
software patterns. Most of the software development projects, where applying func-
tional or object oriented design are conducted using patterns. The patterns are used for
increasing reusability, product quality and for managing complexity of the system
development process. According to the phase of the development process where they
are used these patterns are divided into different kinds [5].

The most common categories are the following:

• Analysis Patterns [5, 12].
• Architecture Patterns [5, 13].
• Design Patterns (see [11, 14–17]).
• Programming Language Idioms (see [3, 13]).

A Comparative Study for Ontology and Software Design Patterns 231



Analysis patterns are used to describe the conceptual structures of business pro-
cesses for the different types of business domains like how to transform these processes
into software [3, 12, 18].

An overall structuring principle is used while constructing a viable software
architecture. Architectural patterns are considered as templates for solid software
architectures [3].

Design pattern describe the common solution of overall design problem in certain
context through the depiction object and class communication. Design pattern provide
the description of participation classes, their instance, their roles and interaction, dis-
tribution of responsibility. One object oriented design problem address by the certain
design pattern that also provided sample code to describe the partial solution of the
problem [14].

The lowest level of patterns is represented by idioms. The implementation of
particular design issue is dealt with by the idioms. The aspects of both, the design and
implementation, are treated by them [13].

2.1 Problem Statement

The ontology design patterns (ODPs) have divided in grouped of six different families:
Structural ODPs, Content ODPs, Reasoning ODPs, Presentation ODPs, Correspon-
dence ODPs and Lexico Syntactic ODPs [6].

Graphically the types of patterns are represented as (Fig. 1):

In this paper, our focus of research will be the Content ODPs. The comparison of
ODPs is limited to software patterns and data model patterns because these are the most
used and well known patterns. There are many ontology languages available for
development but we will only focus on OWL ontologies [19].

Codesolution: Ontology Design patterns

Reasoning ODP Structural ODP Content ODP Lexio-Syntatic ODP Presentation ODP Correspondence ODP

Architecture ODP Logical ODP Name ODP Annotation ODP Reengineering 
ODP Aligment ODP

LogicalMacro 
ODP

Transformation 
ODP

SchemaReengineering 
ODP

Refactoring ODP

Fig. 1. Group of ontology design pattern [19]

232 Z. Ahmed et al.



This research guide the improvement areas in the presentation of content ODPs.
Improvement in presentation can ultimately improve the understandability of a pattern
from user perspective. The focus of research is to analyze different content ODPs and
provide some possible recommendation in current templates of the ODP presentation.
It also includes determining the most important information about patterns which can
help an ontology engineer in selecting an appropriate pattern.

Presentation of design patterns is related to issues such as reuse, guidance and
communication. Our main goal is to evaluate the current patterns presentation. The
evaluation is focused on the analysis of current patterns.

The template of an ontology design pattern consists of many parts, the first
question is to identify the most important and vital information concerning the design
patterns. This information would help an ontology engineer to select an appropriate
design pattern for the required ontology. The second question is about the users who
work with ontology design patterns. There may be certain information that an ontology
user need to understand a pattern but it is not available in the description, our next task
will be to examine the missing information in the current ontology design pattern
templates.

3 Methodologies

There are many types of patterns but we have limited our comparison to those of
software engineering and data models patterns, since these are the well know and
common use patterns.

Software patterns have been compared to ontologies by Devedzic in one of his
article [16] where the author argued that there is a significant overlap between the two
concepts and that it is the aim, while generality and practical usage of these concepts
differ. The concepts of patterns and ontologies have some common goals, e.g. sharing
and reusing of knowledge. Both these concepts necessitate hierarchies of concepts,
relationships, vocabularies and constraints. Moreover, both of them can be seen as
using an object-oriented paradigm [3].

First, we analyze what current templates exist in other fields and then compare them
to ontology design pattern templates to analyze the difference. In our study, evaluation
was done on the results of the evaluation of different patterns. Templates of the patterns
were compared to identify the difference and similarities in their presentation. Each part
of the templates was studied with respect to its objective and the content provided in
that part [19].

A template of a pattern is a standard way of representing a pattern. In a broad sense,
a pattern template has four important elements. These elements are: Name, Problem,
Solution and Consequences [3, 11, 19].

The different kinds of pattern templates are given below with their description.

A Comparative Study for Ontology and Software Design Patterns 233



3.1 Design Pattern Template

This template proposed by Guarino [11] in their book “Design pattern Element of
Reusable Object-Oriented Software” [11]. Table 1 shows the different parts of the
template and their description (Table 2).

Table 1. Design pattern template [11, 19]

Design pattern template
Elements Description

Pattern name and
classification

Name is a short summary of the pattern. There are several DP, we
need a way to classified them in a family. The section classification
refers these families of design pattern

Intent It is a brief description that explain the following. How the design
pattern work? What is the main goal of the pattern and what are the
particular design issues or problem solve by the pattern

Also known as Another name of the pattern, If the pattern has other name
Motivation It has a scenario that describes a design problem and explain the

class and object structures in the pattern describe the problem
solution. The problem solution will facilitate you to understand the
more abstract description of the pattern

Applicability This section discus the situations in which the design pattern
applicable

Structure It illustrates a detailed specification of the structural aspects of the
pattern. It includes a graphical representation of the classes in the
pattern using the notation of OMT (Object Modeling Technique).
This section also has interaction diagrams to illustrate sequences of
requests and collaboration diagram for description of collaboration
between objects

Participants This section describes the different parts of the pattern and their
relation. In design pattern the participants are classes and/or objects

Collaborations This section describes how the participants collaborate to carry out
their responsibilities

Implementation Implementation gives guidelines for implementing the pattern. It
gives hints and techniques which one should be aware before
implementing the pattern. For example if there are language specific
issues

Sample code Sample code is a code fragment that illustrates how you might
implement the pattern in a programming language

Known uses Known Uses is the examples of the use of the pattern in real
systems. It includes a minimum of two examples from different
domains

Related patterns Related patterns are described, i.e. what are the closely related
patterns to this given pattern? What are important differences? With
which other patterns should this one be used?

234 Z. Ahmed et al.



Table 2. Builder design pattern [19]

Builder design pattern
Elements Description

Pattern Name and
Classification

Builder, creational patterns

Intent To split the construction of the complex object from its
representation so that[same construction process can create different
representations

Also Known As
Motivation Fig. 2
Applicability When the builder pattern are used

• The algorithm for creating a complex object should be independent
of the parts that make up the object and how they’re assembled

• The construction process must allow different representations for
the object that’s constructed

Structure Fig. 3
Participants Builder, ConcreteBuilder, Director, Product
Collaborations The given interaction diagram describe how Builder and Director

cooperate with a client
Fig. 4

Implementation Fig. 5
Sample code /Abstract Builder

class abstract class TextConverter{
abstract void convertCharacter(char c);
abstract void convertParagraph();

}
.
.
.
.

public static void main(String args[]){
Client client = new Client();
Document doc = new Document();
client.createASCIIText(doc);
system.out.println(“This is an example of Builder

Pattern”);
}

}
Known uses The RTF converter application is from ET++. Its text

building block uses a builder to process text stored in the
RTF format

Related patterns Abstract factory

A Comparative Study for Ontology and Software Design Patterns 235



Fig. 2. Builder design pattern

Fig. 3. Builder design pattern

Fig. 4. Sequence diagram

236 Z. Ahmed et al.



3.2 Analysis Pattern Templates

Given below is the Analysis Pattern template described by Fernandez and Liu in their
article “The Account Analysis Pattern” [20]. This template is also described in the book
“Pattern-Oriented Software Architecture” [21] (Tables 3 and 4).

Fig. 5. Class diagram

Table 3. Analysis pattern template [19, 21]

Analysis pattern template
Elements Description

Pattern name It describes the name for referring to the pattern and also other names if the
pattern has another name

Intent It is a short statement that answers many questions like what does that
design pattern do?
What is the main goal of the pattern and what are the particular design
issues or problems solved by the pattern

Example Provides a real world example, which shows an existing problem and
exemplifies the need of the pattern

Context The section context is a fundamental component of a pattern. It provides an
indication of the applicability of a pattern

Problem It defines the recurring problem that is solved by the general solution.
Problem is a fundamental component of a pattern because it is the reason
for the pattern. The problem which is addressed by the pattern is described
in this section

Solution The solution details the participating entities in the solution, the
collaborations between them and their behavior

Example resolved Example Resolved gives the solution of the given example
Know uses Know Uses is the example of the use of the pattern in a real system. It

includes a minimum of two examples from different domains
Consequeses It details the benefits that a pattern can offer and any possible restrictions
Related patterns Related patterns are described what are the closely related patterns to this

given pattern? What are important differences? With which other patterns
should this one be used?

A Comparative Study for Ontology and Software Design Patterns 237



Table 4. Account analysis pattern [19, 22]

Account analysis pattern template
Elements Description

Pattern name Account Analysis Pattern
Intent The Account pattern keeps track of accounts of customers in institutions.

These customers can perform transactions of different types against the
accounts

Example Consider a banking institution, where customers have accounts of different
types, e.g., checking, savings, loan, mortgage, etc. For the convenience of
their customers, the bank may have several branches or offices located in
different places

Content There are many institutions, e.g., banks, libraries, clubs, and others, that
need to provide their customers or members with convenient ways to handle
financial obligations, charge meals, buy articles, reserve and use materials,
etc.

Problem Without the concept of account users need to carry large amounts of cash,
may have trouble reserving items to buy or borrow, and would have serious
problems sending funds to remote places

Solution Start from class Account and add relevant entities; in this case customers,
cards, and transactions. Build an institution hierarchy describing the
branches of the institution and relate accounts to the branches
Fig. 6

Example
resolved

An example for Bank accounts is shown in Figure. The classes contained in
the model include Bank, BranchOffice, Account, CheckingAccount,
Customer, BankCard, TransactionSet (TXSet), and Transaction, with their
obvious meanings. Class TXSet collects all the transactions for a user on his
account for a given period of time. There are, of course, other types of
accounts
Fig. 7

Know uses The following are examples of uses of this pattern:
• Banks, where customers have financial accounts of different types
• Libraries, where patrons can borrow books and tapes
• Manufacturing accounts, where materials are charged

Consequneses The pattern has the following advantages:
• It is clear that this model provides an effective description of the needs and
can be used to drive the design and implementation of the software system.
Not using a similar model would result in code that is hard to extend and
probably incorrect

• One can easily add other use cases: freeze account and activate/deactivate
account

The liabilities of this pattern come from the fact that to limit the size of the
pattern and to make it more generic we have left out:
Different types of customers. Each variety of customers could be handled in a
special way.

Related
patterns

Accountability pattern

238 Z. Ahmed et al.



3.3 Architecture Pattern Templates

This template was described by Ayodele Oluyomi in his article “Patterns and Protocols
for Agent-Oriented Software Development” for the Agent internal Architecture-
Structure Patterns [22] (Table 5).

Example
The pattern description has been slightly abbreviated for readability issues (Table 6).

Fig. 6. Class diagram

Fig. 7. Class diagram

A Comparative Study for Ontology and Software Design Patterns 239



Table 5. Architecture pattern template [19, 21]

Architecture Pattern Template
Elements Description

Name A brief summary of the pattern
Problem It defines the problem which a pattern can solve
Context Different kinds the circumstances in which a pattern can be applied
Forces It contains description of various forces and constraints that can affect the

desired objectives
Solution This section describes the different part of the pattern and their relation
Known uses Know Uses are examples of the use of the pattern in real system. We include

minimum two examples from different domains
Result
context

This section description of possible effects on the initial context when the
solution is applied and also the resulting advantages and disadvantages

Related
pattern

Related patterns are described; What are the closely related patterns to this
given pattern? What are important differences? With which other patterns
should this one be used?

Table 6. Agent as delegate pattern [19, 22]

Elements Description

Name Agent as delegate
Classification Multiagent system architecture-definitional
Problem How should the role of a user be converted to an agent or agents in an agent

based system while maintaining confidentiality of user information?
Context A user role carries out activities in a system where confidentiality of user

information is critical
Forces Goals: to achieve optimum performance and maximize gains by taking

decisions based on outcome of activities carried out
Responsibilities: the responsibilities of this role involve carrying out both non
trivial operational tasks and making concluding decisions based on the
execution of the tasks carried out. User specific information is used in making
the decisions. However, the user information should not be included in the
execution of the operational tasks for security and confidentiality reasons

Solution This pattern describes an approach for translating a role into agents. It
prescribes translating a complex user with sensitive data into two types of
agents which are User Agent and Task Agents. The pattern specifies the
relationship and control that should exist between these two types of agents

Known uses Know Uses section mentions the use of the pattern in various scenarios. It
includes minimum two examples from different domains

Result
context

The interaction between the assistant agent and the task agents has to be
analyzed, modeled and implemented
Adaptation/Integration: a user role can be translated into more than one
assistant agents depending on the complexity and volume of the user
information and decision making process

Related
pattern

Agent as mediator

240 Z. Ahmed et al.



3.4 Data Model Patterns

Data Model Patterns help modelers to develop quality models by standardizing com-
mon and well-tested solutions for reuse [3]. The objective of data model pattern is to
explain a starting point for data modelers [23].

A data model pattern can be implemented by adding additional attribute to any
entity in a model or by adding a new entity or a relationship to an existing model.
David Hay presented a Universal Data Model in [24]. It is a theoretical model which
explains the basic principles of a data model pattern. See Fig. 8:

In [38], Hay mentioned conventions for building data models. These conventions
are guidelines for creating new patterns. They help in establishing a framework which
data modelers can follow to reuse data model patterns. The modeling conventions are
divided into three levels; Syntactic Conventions, Positional Conventions and Semantic
Conventions [19].

Syntactic Conventions: This is the first type of conventions of modeling and deals
with the symbols to be used. In the process of syntactic convention evaluation, the
crucial point to remember is that there are two audiences in data modeling. The first
audience is that community of users which use the models and their descriptions for the
verifying whether or not the environment and requirements are actually understood by
the analysts. The set of systems designers is the second audience. They make use of the
rules of business as implied by the models to be the basis on which their design of
computer systems is based [25].

Positional Conventions: This is the second type of Data modeling convention and
dictates how entities of a model are laid out. They are concerned with the organization
of elements and the overall structure of a model [25].

Semantic Conventions: Semantic conventions are those conventions that address the
question of how can the meaning of a model be conveyed. These conventions help to
represent common business scenarios in a standard way [25].

Fig. 8. Universal data model [19, 23]

A Comparative Study for Ontology and Software Design Patterns 241



3.5 Template of Content Ontology Design Patterns

Ontology design patterns are similar to software design patterns. The core idea of
describing software design patterns is to use a template and collect them by means of a
catalogue. In order to describe ODPs we can use a similar approach as used in software
engineering but the difference is that, the template used for the presentation has been
optimize for the web and defined in an OWL annotation schema. It is the same used on
the semantic web portal http://www.ontologydesignpatterns.org. This part contains a
template of Content ODPs which is composed of the following information fields,
defined in the annotation schema [2, 5, 26] (Table 7):

Table 7. Content ontology design pattern template [2, 5, 19]

Elements Description

Name It contains the name of the pattern. The names of patterns should be
descriptive and unique names that help in identifying and referring to
the patterns

Submitted by This part of the template includes author names. In the portal it gives
the link to the author page

Also known as It gives the alternative names for the ODP, since it might be possible
that the pattern has some other name but this part is not compulsory

Intent This part of the template describes the goal of the ODP. Intent is a
description of the goal behind the pattern and the reason for using it

Domain This part of the template concerned with the area, domain and where
the ODP is applicable

Competency question It contains a list of competency questions expressed in natural
language that are covered by the pattern. A competency question is a
classical way of capturing a use case. A competency question is a
simple query which an ontology engineer can submit to knowledge
base to perform a certain task

Solution description It describes how the given pattern provides the solution to a design
problem in a certain context

Reusable OWL
Building Block

It is a reusable representation of the pattern. This part is basically the
implementation of the design pattern. It contains the URI of the OWL
implementation of the content pattern, i.e. the reusable component
available for download

Consequences: This part of the template contains a description of the benefits and/or
possible trade-offs when using the ODPs

Scenarios Giving examples or scenarios where the given pattern implemented
Known uses This part of the template gives examples of real ontologies where the

ODP is used. This part of template is the example of real usages of
the pattern

Other references This part of the template contains references to resources (e.g. papers,
theories, and blogs) that are related to the knowledge encoded in the
ODPs

(continued)

242 Z. Ahmed et al.

http://www.ontologydesignpatterns.org


Example
(See Table 8).

Table 7. (continued)

Elements Description

Examples This field contains a link of an example owl file which is reusable.
The example owl file presents a possible scenario which may
sometime also include a UML diagram of classes and their
relationships

Extracted from Contains the URI (if any) of the ontology from which the pattern has
been extracted

Reengineered from It contains the name of the reference ontology which has been used
reused in the pattern

Has components This field refers to components of the Content ODP which are in turn
ODPs themselves

Specialization of This part of the template refers to ontology elements or ODPs. The
specialization relation between ontology elements of ODPs consists
of creating subclass of some ODP class and/or sub properties of some
ODP properties

Related ODP This part contains the names of the patterns which related to the
current pattern based on generalization, specialization or
composition. It also mentions other patterns that are used in
corporation with the current pattern

Elements This part of the template describes the elements (classes and
properties) included in the ODP, and their role within the ODP

Diagram representation This part of the template depicts a graphical representation of the
ODP

Additional information In Additional information authors provided that informatuion which
is not avalible in the rest of the template

Table 8. Classification pattern [4, 19]

Elements Description

Name Classification
Submitted by ValentinaPresutti
Also known as
Intent To represent the relations between concepts (roles, task, parameters)

and entities (person, events, values), which concepts can be assigned
to. To formalize the application (e.g. tagging) of informal knowledge
organization systems such as lexica, thesauri, subject directories,
folksonomies, etc., where concepts are first-order elements

Domain General
Competency question • What concept is assigned to this entity?

• Which category does this entity belong to?

(continued)

A Comparative Study for Ontology and Software Design Patterns 243



Table 8. (continued)

Elements Description

Solution description
Reusable OWL
Building Block

http://www.ontologydesignpatterns.org/cp/owl/classification.owl

Consequences: It is possible to make assertions about e.g., categories, types, roles,
which are typically considered at the meta-level of an ontology.
Instances of Concept reify such elements, which are therefore put in
the ordinary domain of an ontology. It is not possible to parametrize
the classification over different dimensions e.g., time, space, etc.

Scenarios Mac OSX 10.5 is classified as an operating system in the
Fujitsu-Siemens product catalog

Known uses
Web references
Other references
Examples
Extracted from http://www.loa-cnr.it/ontologies/DUL.owl
Reengineered from
Has components
Specialization of
Related ODP
Elements • Concept (owl:Class). A concept is a Social Object.

The classifies relation relates concepts to entities at some time
• Entity (owl:Class). Anything: real, possible, or imaginary, which
some modeller wants to talk about for some purpose

• classifies (owl:ObjectProperty). A relation between a Concept and
an Entity, e.g. the Role ‘student’ classifies a Person ‘John’

• is classified by (owl:ObjectProperty). A relation between
a Concept and an Entity, e.g. ‘John is considered a typical rude
man’; your last concert constitutes the achievement of a lifetime;
‘20-year-old means she’s mature enough’

Diagram representation Fig. 9
Additional information

Fig. 9. Class diagram

244 Z. Ahmed et al.

http://www.ontologydesignpatterns.org/cp/owl/classification.owl
http://www.loa-cnr.it/ontologies/DUL.owl


4 Study Analysis and Results

The work starts with the literature review. Our first task was to study the current
patterns that exist in other fields and compare them to ontology design patterns’
templates to analyze the difference.

4.1 Comparison of Pattern Templates

The basic knowledge of problems is in software engineering modeled by conceptual
models that are known as Analysis patterns. The patterns could be illustrated using a
UML notation [3]. For Example the Analysis Pattern is implemented by using a UML
Class diagram, Sequence Diagram and State Diagram which were described in section.
Looking at an example of an analysis pattern, one can easily gauge the above rela-
tionship between ontologies and Software Patterns, and other patterns used in Com-
puter Science. This similarity is evident even in, for example, graphical representations
of an Analysis Pattern and an ontology pattern [3].

4.2 Comparison of Templates of Software Patterns and Content ODPs

This comparison is between the templates of software patterns and content ontology
design patterns. We have described the elements of both software pattern templates and
content ODPs in this chapter in Sects. 3.1 to 3.5, which provide us with a good starting
point for comparison. There are several types of software patterns that are available and
several techniques to present them but we selected Analysis Patterns, Architecture
Patterns and Design Patterns. The template of a pattern is a standard way of repre-
senting a pattern. In a broad sense, a pattern template has four essential elements. These
elements are: Name, Problem, Solution and Consequences as describe in Sect. 3.

This comparison is based on similarities and differences between the Content ODP
template and software pattern templates. We compare each element of the ODP tem-
plate with software pattern templates. Comparison is based on the names, content and
the overall presentation of the template.

The parts described in Table 9 are considered as basic parts of a pattern. The
description of these parts is stated. The table shows how these basic parts are described
in software patterns and ODP templates.

Context: In Software Patterns, the section context describes the situations where the
given pattern is applied. Every pattern has a context based on its application area. In
content ODPS, context is defined in the form of domains and scenarios where the
pattern is applicable.

Problem: For Analysis Patterns, Design Patterns and Architectural Patterns, the sec-
tion Problem or Motivation describes the problem that can be solved by implementing
these patterns. In analysis patterns, the section problem describes some generic use
cases. In Design Patterns, some of the patterns use scenarios for giving more
description of patterns. Such description should be able to clarify the details of the
problem. In ODPs, the Problem is described by Competency Questions. Competency
Questions consists of a list of competency questions expressed in natural language that

A Comparative Study for Ontology and Software Design Patterns 245



are covered by the pattern. The section Competency Question describes the problem
which is to be solved by the ODP. Competency questions are the requirements that an
ontology should fulfill.

Solution: In Analysis Patterns, Architecture Patterns and Design Patterns, the section
Solution gives a fundamental solution principle to be used in the pattern for solving a
problem. In Analysis Patterns, the solution is described by using UML diagram and
also a brief description of different parts of the pattern is given. In Design Pattern, the
sections structure, participants and collaboration describe the solution. The section
Structure is a graphical representation of the classes in the pattern which use the
notation of the object modeling technique (OMT). It also uses interaction diagrams to
illustrate the sequence and collaboration between the objects. The section participants
give a detailed description of the classes and objects and their responsibilities. The
section collaboration describes how the participants collaborate to carry out their
responsibilities. In Architecture pattern, the section solution gives the description, using
text and a graphical representation, as to how we can achieve the intended goals and
objectives. It also describes the variants and specializations of the solution. It gives the
description of people and computing actors and their collaboration. In ODPs, the
section solution consists of four parts: OWL Building Block, Elements, Solution
description and Graphical Representation. The section Solution description describes
how a given pattern can solve the problem in the context. The section OWL Building
Block contains an OWL ontology with reusable classes and reusable properties. The
section Elements briefly describes Classes and Properties of the pattern implementation
and the role of these classes and properties within the ODP. The Graphical represen-
tation gives a visual presentation of the pattern classes and their relations.

5Consequence: In both software patterns and content ODPs, the section consequence
describes the possible benefits and limitations on the solution after using the pattern.
What are the results of using the pattern? In some ODPs it is more about unexpected
consequences and limitations.

Table 9. Representing basic elements of other patterns [19]

Pattern type Context Problem Solution Consequence Example

Ontology
design
pattern

Domain Competency
question

OWL Building Block,
Element, Solution
description and
Graphical
Representation

Consequence Scenario,
Example
(OWL
file)

Analysis
pattern

Context Problem Solution Consequence Example,
example
resolved

Design
pattern

Applicability Motivation Structure, Participant
Collaboration,
implementation and
sample code

Not provided Sample
code

Architecture
pattern

Context Problem Solution Not provided Not
provided

246 Z. Ahmed et al.



Example: For Analysis Patterns, Design Patterns and Architecture Patterns, the section
Example gives the real world example, which shows the existence of problems and
needs for the patterns. For Analysis Patterns and Design Patterns the section example
consists of two parts. In the first part the problem and in second part the implemen-
tation. In content ODPs, example is given in the form of a scenario and an example
OWL file which is the OWL implementation of the scenario.

Table 10 describes the common elements of the template of content ontology
design patterns and software patterns (analysis patterns, design patterns and architec-
ture patterns). These elements are described in the background chapter with details in
Sect. 2.3.2. The section motivation of design pattern is similar to the section problem of
other software patterns.

In Table 10 the vertical line had different columns that shows the label of different
pattern. The horizontal line shows the template heading and symbol X describes the
presence of common element.

The template of content ODPs has developed by following the template of software
design patterns. The comparison of both patterns reveals that both patterns have a lot of
similarities and the current template of content ODPs includes all the elements of
software patterns except ‘forces’. Forces define constraints and problems that can affect
the solution. In content ODPs, only the benefits and/or possible trade-offs when using
the ODPs on the initial problem are mentioned. Apart from the software patterns, the
content ODPs has some additional parts which have been added according to the
pattern requirements.

Unique Sections: Content ODPs have some unique sections, which are not described
in other Software Pattern Templates. These sections are: EXTRACTED FROM,
REENGINEERING FROM and HAS COMPONENTS, as mentioned in the back-
ground chapter in Sect. 2.5.

4.3 Comparison of Data Model Patterns and Ontology Design Patterns

Data model patterns and ODPs are different to each other because data model patterns
are presented only in graphical form while ODPs have much more detailed graphical
and textual description. While content ODPs have an official catalogue where users can
select from a list of patterns, there is no official catalogue for data model patterns.

Table 10. Representing common elements of other patterns [19]

Template
heading

Ontology design
pattern

Analysis
pattern

Design
pattern

Architecture
pattern

Name � � � �
Known uses � � � �
Intent � � � �
Consequences � � �
Also known as � �
Classification � �

A Comparative Study for Ontology and Software Design Patterns 247



The template of an ODP has a description of different parts of the pattern which is
presented in the graphical and textual form. To implement an ODP, an ontology
engineer has to study the description to understand a pattern. A data model pattern is
presented in the form of an UML diagram. The diagram is built by following con-
ventions which are a set of rules. These conventions standardize a data model hence
makes it easier for a data modeler to reuse a pattern.

The reusability of both patterns depends on different factors. Content ODPs can
also be used directly as they are, just like data models, although they are usu-
ally specialized but this depends on their generality. In data model patterns, it is up to
the data modeler to decide whether to use a real model to make some minor adjust-
ments or to use a completely abstract model of a problem.

The similarities of data model patterns and ODPs lie in the graphical representation
of a problem. Also as we saw in Table 11, different parts of both patterns can be
mapped to each other hence knowledge from data model patterns can be translated into
ODPs. The use of conventions in data model patterns makes it easier to understand the
diagram. These conventions and practices can be translated into guidelines for creating
more uniform diagrammatic notations for ODPs.

Overall, the comparison of software patterns and data model patterns with content
ODPs shows that there are a lot of similarities in the templates of software patterns and
content ODPs. The difference lies in the presentation of the content. The graphical
representation of content ODPs can be made uniform by defining conventions as it is
done in data model patterns.

In an experiment, the knowledge from data model patterns was translated into
ontology design patterns by mapping the parts using the KAON tool [2]. Table 11
shows the mapping between the different parts. The above mapping shows that the
knowledge stored in the data model patterns can be translated into ODPs. This
knowledge can be reused to create new ODPs from existing data model patterns.

5 Conclusions

The purpose of this study was to improve the presentation of content ontology design
patterns. This research is part of an effort to solve the larger problem of engineering
high quality ontologies. One possible solution to this problem is to introduce reuse in
ontology engineering which can standardize the ontology development process and

Table 11. Mapping of elements of data model pattern and ontology design pattern [19, 22]

Data model pattern Ontology design pattern

Entity Concept
Attribute Relation to “attribute”
Subtype/supertype Subsumption hierarchy
Relationships Relations
Mutually exclusive sets Disjoint concepts

248 Z. Ahmed et al.



reduce the time and effort involved in it. ODPs are considered best practice to achieve
this objective. To encourage the use of ODPs for ontology development, their pre-
sentation must be explicit and precise.

Suggestions are based on the comparison of the different patterns with the ontology
design patterns. Based on the literature review, we propose following improvements in
the current template for content ODP:

The Graphical Representation should have a more uniform diagrammatic notation.
This can be done by defining standards or conventions which ontology engineers can
follow while creating patterns. As guidance, the conventions used in data model pat-
terns can be studied to define similar conventions for content ODPs. Also, namespaces
provided in the Graphical Representation section should be made explicit in the
Additional Information section.

Scenarios should be more explicit. While scenarios presented in the General
Description section are simple, they can be more complex in general. Further, the
scenario section should describe the binding from concrete elements to the pattern
elements. At ODP portal, scenarios of several patterns are missing. They must be
included in each pattern because they were considered as important parts. Software
patterns include the implementation section with the solution of complex problem.
Implementation help user to understand the pattern.

This research is part of an effort to solve the larger problem of engineering high
quality ontologies. One possible solution to this problem is to introduce reuse in
ontology engineering which can standardize the ontology development process and
reduce the time and effort involved in it. ODPs are considered best practice to achieve
this objective. To encourage the use of ODPs for ontology development, their pre-
sentation must be explicit and precise.

6 Future Works

This study will be improved through experiment. Determine how well the current ODP
template supports the understanding and usage of Content ODPs. To get experts
opinions on the current structure of the Ontology design pattern template. There may be
certain information that an ontology user need to understand a pattern but it is not
available in the description. This research will improve by examine the missing
information in the current ontology design pattern templates.

References

1. Uschold, M., Gruninger, M.: Ontologies and semantics for seamless connectivity.
ACM SIGMOD Record 33(4), 58–64 (2004)

2. Blomqvist, E.: Fully automatic construction of enterprise ontologies using design patterns:
initial method and first experiences. In: OTM Confederated International Conferences On the
Move to Meaningful Internet Systems. Springer (2005)

3. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5
(2), 199–220 (1993)

A Comparative Study for Ontology and Software Design Patterns 249



4. Presutti, V., Gangemi, A.: Content ontology design patterns as practical building blocks for
web ontologies. In: International Conference on Conceptual Modeling. Springer (2008)

5. Blomqvist, E.: State of the Art: Patterns in Ontology Engineering (2004)
6. Gangemi, A., Presutti, V.: Ontology design patterns. In: Handbook on Ontologies, pp. 221–

243. Springer (2009)
7. Pree, W.: Meta patterns—a means for capturing the essentials of reusable object-oriented

design. In: European Conference on Object-Oriented Programming. Springer (1994)
8. Doran, P.: Ontology reuse via ontology modularisation. In: KnowledgeWeb Ph.D.

Symposium. Citeseer (2006)
9. Prabhu, V., Kumara, S., Kamath, M.: Scalable Enterprise Systems: An Introduction to

Recent Advances, vol. 3. Springer Science & Business Media, New York (2012)
10. Rebstock, M., Janina, F., Paulheim, H.: Ontologies-Based Business Integration. Springer

Science & Business Media, Heidelberg (2008)
11. Guarino, N.: Semantic matching: formal ontological distinctions for information organiza-

tion, extraction, and integration. In: Information Extraction a Multidisciplinary Approach to
an Emerging Information Technology, pp. 139–170. Springer (1997)

12. Fernandez, E.B., Yuan, X.: An analysis pattern for reservation and use of reusable entities.
In: Proceedings of PLoP (1999)

13. Buschmann, F., et al.: Pattern-oriented software architecture: a system of patterns (1996).
Part II, 2001

14. Kampffmeyer, H., Zschaler, S.: Finding the pattern you need: the design pattern intent
ontology. In: International Conference on Model Driven Engineering Languages and
Systems. Springer (2007)

15. Cooper, J.W.: The Design Patterns Java Companion, vol. 218. Addison-Wesley, Upper
Saddle River (1998)

16. Devedzic, V.: Ontologies: borrowing from software patterns. Intelligence 10(3), 14–24
(1999)

17. Gamma, E.: Design Patterns: Elements of Reusable Object-Oriented Software. Pearson
Education India, Delhi (1995)

18. Fernandez, E.B.: Building systems using analysis patterns. In: Proceedings of the Third
International Workshop on Software Architecture. ACM (1998)

19. Lodhi, S., Ahmed, Z.: Content Ontology Design Pattern Presentation (2011)
20. Fernandez, E.B., Liu, Y.: The account analysis pattern. In: EuroPLoP (2002)
21. Buschmann, F., et al.: Pattern-Oriented System Architecture: A System of Patterns, pp. 99–

122. Wiley, Chichester (1996)
22. Oluyomi, A.O.: Patterns and protocols for agent-oriented software development (2006)
23. Silverston, L., Inmon, W.H., Graziano, K.: The Data Model Resource Book: A Library of

Logical Data Models and Data Warehouse Designs. Wiley, Hoboken (1997)
24. Hay, D.: Data Model Patterns Conventions of Thought. Dorset House, New York (1996)
25. Hay, D.C.: A comparison of data modeling techniques (1999)
26. Gangemi, A.: Ontology design patterns for semantic web content. In: International Semantic

Web Conference. Springer (2005)

250 Z. Ahmed et al.


	A Comparative Study for Ontology and Software Design Patterns
	Abstract
	1 Introduction
	2 Related Work
	2.1 Problem Statement

	3 Methodologies
	3.1 Design Pattern Template
	3.2 Analysis Pattern Templates
	3.3 Architecture Pattern Templates
	3.4 Data Model Patterns
	3.5 Template of Content Ontology Design Patterns

	4 Study Analysis and Results
	4.1 Comparison of Pattern Templates
	4.2 Comparison of Templates of Software Patterns and Content ODPs
	4.3 Comparison of Data Model Patterns and Ontology Design Patterns

	5 Conclusions
	6 Future Works
	References


