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12.1  Introduction

Follicular cell-derived thyroid carcinomas con-
stitute a biological continuum progressing from 
the highly curable DTC to the much more aggres-
sive, and almost always fatal, undifferentiated, or 
anaplastic thyroid carcinoma (ATC) [1]. Poorly 
differentiated thyroid carcinoma (PDTC) and 
aggressive variants of DTC, such as tall cell and 
columnar cell, frequently serve as intermediates 
in this progression model of dedifferentiation [2]. 
In fact, the gradual loss of typical papillary and 
follicular growth patterns and the simultaneous 
appearance of a solid growth pattern, with 
increased mitoses, necrosis, and nuclear pleo-
morphism, are frequently observed in aggressive 
thyroid carcinomas. Otherwise, residual foci of 
differentiated carcinoma may be frequently 
detected in aggressive tumor forms [3]. While 

radioactive iodine (I-131) is an effective treat-
ment in thyroid cancers exhibiting a differenti-
ated phenotype, there is a large body of 
information demonstrating that patients whose 
metastases concentrate 131I have a higher survival 
rate and thus a better prognosis than patients with 
131I-refractory metastases [4]. Dedifferentiation 
of thyroid cancer may consist of loss of expres-
sion of the TSH receptor, natrium-iodide sym-
porter (NIS), and loss of thyroglobulin (Tg) 
production and radioiodine cannot be longer 
employed for monitoring and treatment. In turn, 
this subset of tumors frequently shows avid 
18F-fluorodeoxyglucose (FDG) uptake in 
positron- emission tomography/computed tomog-
raphy scans (FDG-PET/CT) [5]. These iodine- 
negative/FDG-positive tumors have a poor 
survival, and, consequently, alternative treatment 
options are required which may include observa-
tion, additional surgery, external beam radiation, 
interventional radiology (i.e., radio-frequency 
ablation), or systemic treatments [6].

Chemotherapy has shown limited success at 
best, while tyrosine kinase inhibitors (TKIs) have 
been introduced and tested in recent clinical tri-
als. The DECISION trial using sorafenib showed 
a significant improvement in progression-free 
survival (PFS) of 10.8 months (vs. 5.8 months in 
the placebo group) [7]. In the SELECT trial, len-
vatinib could demonstrate significantly increased 
PFS in patients with progressive radioiodine- 
refractory DTC. In comparison to sorafenib, 
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 lenvatinib even represented the most active agent 
with a better tumor response rate and an improved 
PFS of 18.3 months [8].

Based on these results, both drugs have been 
approved by the FDA for the treatment of locally 
recurrent or metastatic, progressive DTC that no 
longer responds to radioactive iodine treatment.

In order to assess effectiveness of TKI treat-
ment, morphologic tumor measurement based on 
computed tomography is routinely used to moni-
tor patients. Both Tg biosynthesis and secretion 
are partially retained in dedifferentiating DTC 
cells. However, the synthesis and secretion rate is 
reduced (i.e., poor Tg secretors) in comparison to 
normal thyrocytes and well-differentiated cancer 
cells. Consequently, a large dedifferentiated 
tumor mass could be associated to low levels of 
circulating Tg, and, consequently, the role of 
serum Tg is rather limited in this scenario.

In a recent study on a small cohort of iodine- 
refractory patients with progressive disease 
undergoing treatment with lenvatinib, serum Tg 
fluctuations were frequently detected but do not 
necessarily reflect morphologic tumor altera-
tions, especially shortly after lenvatinib dose 
reductions. However, whereas patients with con-
trolled disease presented with oscillating tumor 
markers after an initial nadir without morpho-
logic tumor progression, patients with true pro-
gression demonstrated a continuous rise in serum 
Tg [9]. Other authors also reported a decrease of 
Tg levels in most patients receiving TKIs, but 
neither baseline Tg nor Tg changes consistently 
correlated with the degree or duration of objec-
tive response [10].

A progressive dedifferentiation may be also 
observed in medullary thyroid carcinoma (MTC) 
cells, translating in a more aggressive tumor 
behavior especially in some of the patients with 
locally advanced or metastatic disease. As dis-
cussed in other sections of the present book, 
serum calcitonin (CT) and carcinoembryonic 
antigen (CEA) levels are related to tumor bur-
den, though production of these markers may 
differ between tumors (i.e., tumors with low 
expression of calcitonin and higher production 
of CEA may be more aggressive) [11]. 
Nowadays, tyrosine kinase inhibitors (TKIs), 

especially vandetanib, have been recommended 
as first-line therapy in the case of aggressive 
metastatic MTC patients based on phase II and 
phase III trials in MTC patients that reported 
higher objective response rates compared with 
cytotoxic chemotherapy [12].

Indeed, no strict correlation has yet been 
reported between early changes in CT and CEA 
levels, and response to TKI and even paradoxi-
cal increase in biomarkers was observed in 
responders [13].

Overall, currently available results suggest 
that the mechanisms leading to tumor control and 
tumor marker Tg, CT, and CEA secretion are 
likely dissociated in the setting of TKI adminis-
tration in patients with advanced radioiodine- 
refractory DTC and advanced MTC as well. As 
previously remarked, changes in serum Tg, CT, 
and CEA should always be confirmed by imaging 
in the setting of TKI treatment of advanced DTC 
and MTC, respectively. However, conventional 
imaging criteria (i.e., RECIST) may also have 
their own limitations when determining the 
effects of TKIs on tumor volume [14]. Therefore, 
new circulating biomarkers are warranted to help 
identify patients most likely to benefit from these 
therapies. Recently, among a series of candidate 
tumor markers, carbohydrate antigen 19-9 (CA 
19-9) and cytokeratin fragments 19 (Cyfra 21.1) 
emerged as potentially useful prognostic predic-
tors in both advanced DTC (CA 19-9 and Cyfra 
21.1) and MTC (CA 19-9), respectively. Biology 
and physiopathology, assay methods and labora-
tory pitfalls, current clinical data, and potential 
applications of such tumor markers will be 
addressed in following sections.

12.2  Carbohydrate Antigen 19-9 
(CA 19-9)

Mucins (MUCs) are heavily glycosylated, high 
molecular weight glycoproteins with an aber-
rant expression profile in various malignancies. 
So far 19 mucin genes have been described; 
eight of them are now well-characterized (i.e., 
MUC1-4, MUC5B, MUC5AC, MUC6, and 
MUC7. MUC8, MUC9, MUC11, and MUC12 
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have also been  partially sequenced, but their 
characterization is yet to be completed, MUC13 
was identified as a cell surface mucin expressed 
by epithelial cells as well as hematopoietic 
cells, and MUC16 was characterized from a 
partial cDNA sequence encoding a mucin that 
has long been known as the ovarian cancer 
marker CA125) [15]. Mucins are synthesized 
either as membrane-bound or as secreted gly-
coproteins by epithelial cells in the lungs, 
stomach, intestines, eyes, and several other 
organs. Under normal circumstances, they line 
the apical surface of epithelial cells and protect 
the body from infection by pathogen binding to 
oligosaccharides in the extracellular domain, 
preventing the pathogen from reaching the cell 
surface [16]. In addition, their involvement in 
the renewal and differentiation of the epithe-
lium, modulation of cell adhesion, as well as 
cell signaling has also been proposed. Of rele-
vance, alterations in the expression and in the 
structure of mucins have been reported in both 
preneoplastic and neoplastic lesions [17]. 
Mucin 1, cell surface- associated (MUC1) or 
polymorphic epithelial mucin (PEM), is a 
mucin encoded by the MUC1 gene in humans. 
MUC1 is extensively O-linked glycosylated in 
its extracellular domain. MUC1 is overex-
pressed in colon, breast, ovarian, lung, and 
pancreatic cancer cells, and its associated gly-
cans are shorter than those of nontumor- 
associated MUC1 [18]. Indeed, mucins were 
proved to be involved in dedifferentiation of 
tumor tissues and to promote resistance to 
treatments (Fig. 12.1).

In fact, the heavy glycosylation in the extra-
cellular domain of MUC1 creates a highly 
hydrophilic region which prevents the drugs 
from reaching their targets and allows cancer 
cells which produce a large amount of MUC1 to 
concentrate growth factors near their receptors, 
increasing receptor activity and the growth of 
cancer cells. MUC1 cytoplasmic tail has been 
also shown to bind p53 and to increase expres-
sion of Bcl-xL preventing both p53- and mito-
chondrial cytochrome c-mediated apoptosis. 
Additionally, MUC1 may prevent the interaction 
of immune cells with receptors on the cancer cell 
surface through steric hindrance. Finally, 
increased expression of MUC1 promotes cancer 
cell invasion through beta-catenin, resulting in 
the initiation of epithelial-mesenchymal transi-
tion which promotes the formation of metasta-
ses. The most commonly used clinical tests for 
mucins as tumor markers are serum-based 
immunoassays for blood group-related antigens 
and glycoproteins like CA 125, CA 15-3, CA 
242, and CA 19-9. The CA 19-9 or carbohydrate 
antigen sialyl-Lewis is a frequently used tumor 
marker for cancers of the digestive tract. 
Although the maximum tissue expression of CA 
19-9 occurs in pancreatic cancer, this antigen is 
not tissue specific, because it has been demon-
strated in cancers involving other organs, such as 
the stomach, lung, colon, breast, ovary, and 
uterus [19]. Increase of this antigen expression 
in tissues and blood depends on the tumor-
related hypoxia that, in turn, induces the tran-
scription of several glycogenes involved in 
sialyl-Lewis a synthesis and is associated with a 
greater probability of the patient developing 
hematogenous metastasis. It has recently been 
reported that there is another form of the mole-
cule, named disialyl-Lewis a, that is predomi-
nantly expressed in nonmalignant epithelial 
cells, connected to two sialic acid molecules. 
This molecule normally helps to maintain 
immune homeostasis of the gastrointestinal 
mucosa. In the early stages of carcinogenesis, 
inhibition of the sialyl-transferase gene causes a 
partial synthesis because of the incomplete con-
nection of the second residue of sialic acid and 
the resulting accumulation of monosialyl Lewis 
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Fig. 12.1 Expression and release of CA 19-9 in cancer 
progression. Galli C et al. CA 19-9: handle with care Clin 
Chem Lab Med 2013;51(7):1369–1383 (permission 
obtained)
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in cancer cells [20]. Although it was character-
ized almost three decades ago, according to the 
current international guidelines, based on avail-
able evidence, CA 19-9 is still the most com-
monly used serum tumor marker for the 
monitoring of pancreatic cancer: the levels 
should fall when the tumor is treated, and they 
may rise again if the disease recurs [21]. Thus 
far, the lack of specificity does not support its 
use for the diagnosis of the early forms of pan-
creatic cancer [20, 22], and its potential applica-
tions for the differential diagnosis are still 
debated. In fact, its sensitivity (70–80%) and 
specificity (68–91%) are not considered suffi-
cient [21, 23]. Positive findings may occur in 
several situations other than malignant neoplasia 
such as patients with inflammatory processes 
(chronic and acute pancreatitis, cholangitis, and 
liver cirrhosis), characterized by high concentra-
tions of CA 19-9 [24], which decrease to normal 
values after appropriate treatment. In these cases, 
the positivity is common for almost all methods. 
The increases of CA 19-9 in patients with benign 
disease are quite unavoidable, and the only cur-
rent analytical approach to better define the 
nature of such elevations could be the assess-
ment of the relationship between sialyl-Lewis a 
and disialyl-Lewis a, which is not elevated in 
malignant disease [25]. In addition, the finding 
of elevated CA 19-9 levels in healthy subjects 
for whom this test should not be ordered may 
have important implications from a psychologi-
cal point of view with the requirement of many 
diagnostic tests to be performed [26, 27].

The dependence of tissue expression and circu-
lating levels of sialyl-Lewis a on the Lewis blood 
group influences the sensitivity of testing for CA 
19-9. In fact, false-negative results will always be 
found in subjects with Lewis a- negative genotype, 
representing 5–10% of the Caucasian population, 
whereas no data on other races are available [21]. 
Recently, it has been reported that low or medium 
(higher than 100 kU/L) levels of CA 19-9 may be 
found in some patients with Lewis a-negative gen-
otype and suffering from advanced pancreatic can-
cer [28]. It was probably due to the situation of 
homozygosity for the secretory gene and overpro-
duction of glycan precursors [29].

12.3  Measurement of Circulating 
CA 19-9

A commercial assay for CA 19-9 was developed 
in 1983 [30]. Radioimmunoassays were first 
used for the determination of CA 19-9 in the 
blood and other biological fluids, but they were 
quickly replaced by immunoassays (IMAs) [20] 
(Table 12.1).

Almost all of the IMAs for the quantitative 
detection of CA 19-9 utilize a sandwich assay 
format and depend on the use of the monoclonal 
antibody 1116-NS-19-9, named Centocor, that 
recognizes a sialylated lacto-N-fucopentaose II 
epitope occurring on the mucin, and it is related 
to the Lewis a blood group [20, 31] (Fig. 12.2).

The original hybridoma secreting the mono-
clonal antibody 1116-NS-19-9 was developed by 
immunizing mice with the SW1116 human can-
cer cells. The minimal structure recognized by 
this antibody is the terminal tetrasaccharide of 
the CA 19-9 antigen. Removal of the fucose resi-
due or the sialic acid moiety cancels or decreases 
the antigen-antibody interaction [32, 33].

The interpretation of CA 19-9 results is often 
altered by nonspecific elevations both in diseased 
and healthy subjects, either because of associate 
morbidity (see above) or IMA interference, lead-
ing to misdiagnosis and further unnecessary and 
expensive examinations [33, 34].

In particular, similarly to other IMAs, also for 
the CA 19-9, different studies in the literature 
have reported cases of interference due to rheu-
matoid factor and heterophilic antibodies. The 
latter were responsible for 44.4% of the discrep-
ancies observed between two automated IMAs 
for CA 19-9 as reported by Passerini et al. in a 
recent paper [33, 35, 36].

Rheumatoid factor and heterophilic antibodies 
are endogenous autoantibodies found in serum/
plasma, mainly of IgM class, that can bind to 
immunoglobulins (preferably IgG) of other spe-
cies. Thus, they usually affect the “sandwich” 
assay by bridging the capture and detection anti-
bodies causing an increased signal and conse-
quently a falsely elevated measured concentration 
[37]. A nonlinear response to dilution is sugges-
tive of antibody interference. However, it must be 
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noted that a nonlinear response can also result 
from the hook effect or cross-reactivity. Moreover, 
nonlinear dilution, with increased recovery of the 
antigen, is common in IMAs for mucins. This is 
probably due to a variety of factors (i.e., the 
inherent property of mucins to aggregate and dis-
aggregate into a range of molecules species, the 
presence of anti-carbohydrates, and of other not 
well-known matrix-related effects, etc.) [32]. 
Therefore, it has been suggested that nonlinear 
response to dilution may not be an appropriate 
method to detect interference [32, 38].

All in all, the laboratory should be aware of 
IMA interference and should apply a systematic 
approach in the investigation of such phenome-
non: first, the repetition of the analysis to confirm 
the result and then, if possible, the use of an alter-
native IMA to inquire about the discrepancy. Of 
course, the close interaction between the labora-
tory and the physicians is essential [36, 39].

An additional important limitation of CA 19-9 
determination is the particular sensitivity of the 
assay to viral and bacterial neuraminidases result-
ing in false negatives. Thus, samples should be 
carefully prepared to avoid bacterial contamina-
tion [32].

The interpretation of CA 19-9 results is also 
made difficult by the inter-method discrepancy 
showing significant CA 19-9 disparities in the 
same individual samples. In fact, the studies per-
formed in the last decade focusing on this issue 
reported similar data and reached analogous con-

clusions: the recent automation of IMAs has cer-
tainly improved the assay imprecision but has also 
helped to impair the concordance between the 
results obtained with different methods [40–46].

Another relevant aspect related to the CA 19-9 
analytical specificity and the recurrent inter- 
method discrepancy is the concept of threshold/
cutoff. Undoubtedly, the cutoff for CA 19-9 
depends on the background: no values can be 
suggested to strictly distinguish between benign 
and malignant disease. Moreover, the upper ref-
erence limit is usually established at the 95th or 
97.5th percentile in a healthy reference sample, 
not representing the “real-life” sample that will 
be tested for this biomarker. Finally, it would be 
important considering ethnic diversities in the 
reference population [41, 42]. All in all, the 
authors concluded their papers on this issue sug-
gesting the use of the same method for the moni-
toring of patients with cancer and inviting 
laboratories to indicate in the report the name of 
the method employed [20]. Taken into consider-
ation the aforementioned aspects, the scientific 
societies and the manufacturers should work 
together in order to improve CA 19-9 harmoniza-
tion, making available an international reference 
material and following existing programs for 
method assessment and correction of bias, as was 
the case with other IMAs. In fact, the differences 
between methods are attributable to numerous 
variables involved in IMAs such as assay tech-
nology, reaction kinetics, incubation times, 
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 dilution, and, overall, the use of different anti-
bodies [20, 44]. With regard to this last point, 
Partyka et al. [47] have recently demonstrated the 
improvement of cancer detection by using the 
antibody with broader specificity beyond the 
sialyl-Lewis a antigen, suggesting that the addi-
tional glycans were also elevated in a cancer- 
specific manner. All in all, Partyka’s analysis was 
useful for understanding the factors that may fur-
ther improve upon the CA 19-9 assay, suggesting 
that the use of different antibodies can lead to a 
better sensitivity in patients with malignant neo-
plasia without an elevation of reactivity in non-
malignant disease.

12.4  CA 19-9 and Thyroid Cancer

The natural history of medullary thyroid cancer 
(MTC) varies from rapid progression and survival 
over a few years to a very slow progression, or sta-
ble disease, that extends for decades. Overall, the 
prognosis of MTC patients is related to the extent of 
the disease at the time of diagnosis (i.e., median 
5-year survival rate is 50% in the presence of distant 
metastases). As discussed in other section of the 
present book, calcitonin and procalcitonin are very 
sensitive and specific serum marker for the diagno-
sis of MTC, and carcinoembryonic antigen (CEA) 
is also employed while monitoring MTC patients. 
In 2011, Milman and colleagues [48] described the 
case of a 56-year-old woman with multiple endo-
crine neoplasia 2B syndrome presented with exten-
sive metastatic spread of MTC to the lungs and 
liver, 47 years after the original diagnosis. The 
patient’s calcitonin level decreased from 2950 to 
261 pg/mL over a 20-year period. The serum CEA 
level was elevated at 6800 ng/mL; serum CA 19-9 
and CA 125 tumor markers were also measured and 
found to be significantly elevated, at 39,334 U/mL 
and 96.2 U/mL, respectively. Immunostaining of 
the metastatic MTC tissue showed patchy staining 
for calcitonin, strongly positive staining for CEA 
and CA 19-9, and weakly positive staining for CA 
125. Basing on this picture, they postulated that 
high serum levels of CA 19-9 could be considered a 
marker of MTC dedifferentiation and disease 
aggressiveness. Two years later, Elisei and col-

leagues [49] reported the peculiar case of a young 
patient with MEN 2A who rapidly died from 
aggressive MTC 10 months after initial diagnosis. 
Her CA 19-9 increased up to >10,000 IU/mL, and 
immunohistochemistry of the thyroid nodule was 
performed at the autopsy and demonstrated positive 
staining for CT and CA 19-9 in the primary tumor. 
Then, the same group measured CA 19-9 in 100 
advanced structural recurrent/persistent MTC 
patients and in 100 MTC patients cured or with bio-
chemical but structural disease [50]. Sixteen percent 
of patients with advanced diseases had high CA 
19-9 and concomitantly higher levels of CEA and 
CT compared with the group with normal CA 19-9 
levels. None of patients with controlled disease had 
high CA 19-9 levels; moreover, among patients 
with advanced disease those with high CA 19-9 lev-
els showed a higher mortality rate than patients with 
normal CA 19-9 serum levels. Overall, these results 
demonstrated that increased CA 19-9 levels in 
serum is an adverse prognostic factor in patients 
with advanced MTC and identifies those cases with 
a higher risk of short-term mortality. Recently, 
Milman and colleagues [51] evaluated whether pos-
itive CA 19-9 staining of primary MTC tissue pre-
dicts metastatic potential. Among specimens from 
16 patients, 63% stained positive for CA 19-9; 
indeed, all specimens from patients with advanced 
(i.e., stage IV) MTC stained positive for CA 19-9, 
compared to only 40% of cases with stages I to 
III. Importantly, 100% of the primary specimen 
with associated metastatic spread over time stained 
positive for CA 19-9. As a consequence, a negative 
CA 19-9 staining excludes a stage IV MTC with a 
100% negative predictive value.

Similarly, serum CA 19-9 levels were reported 
to be elevated in some cases of anaplastic thyroid 
carcinoma and in papillary thyroid carcinomas 
with poor differentiated features, aggressive 
tumor behavior, and a worse prognosis [52].

12.5  Cytokeratin Fragment 19 
(Cyfra 21.1)

The cytoskeleton of eukaryotic cells is respon-
sible for the mechanical integrity of the cell 
and is a critical participant in several cellular 

L. Giovanella et al.



183

processes, such as cell division, motility, and 
cell/cell contact. It is composed of three dif-
ferent types of distinct filamentous structures: 
microfilaments, intermediate filaments (IF), and 
microtubules [53].

The IF protein family includes several hun-
dred of different members. In turn, these are clas-
sified basing on structural similarities. 
Intermediate filament types I and II constitute the 
cytokeratins (acidic and basic proteins, respec-
tively). The type III group includes desmin, 
vimentin, and glial fibrillary acidic proteins; type 
IV includes the neurofilament proteins (NF-L, 
NF-M, and NF-H) and internexin, while type V 
proteins are known as nuclear lamins, exclusive 
to the cell nuclei. The remaining IF proteins, 
sometimes called type VI, include filensin and 
phakinin [54].

The expression of cytokeratins varies with 
epithelial cell type, extent of differentiation, and 
development of the tissue. During the transfor-
mation of normal cells into malignant cells, the 
cytokeratin patterns are usually maintained, and 
this property has enabled cytokeratins to be 
applied as tumor markers [55, 56]. In the cyto-
skeleton, cytokeratins demonstrate poor solubil-
ity, but when present in the circulation, 
cytokeratins are detected either as partially 
degraded single protein fragments, as small com-
plexes, or as large polymeric protein complexes, 
while intact, nondegraded, cytokeratins have not 
yet been detected in the bloodstream. The release 
of soluble cytokeratin fragments into the circula-
tion involves multiple pathways including pro-
teolytic degradation of cytokeratins in dying 
cells, abnormal mitosis, spillover of monomeric 
cytokeratin polypeptides from proliferating cells, 
apoptosis, and neoangiogenesis. Upon release 
from the tumor cells, cytokeratins can be detected 
in blood as well as in other body fluids. In nor-
mal, apparently healthy individuals, the level of 
cytokeratins in the circulation is low. However, 
levels rise significantly in patients with epithelial 
cell-associated carcinomas. Stratified squamous 
epithelia express mostly cytokeratins 1–6 and 
9–17, while cytokeratins 7, 8, and 18–20 are 
identified in simple epithelia. Of the latter, cyto-
keratins 8, 18, and 19 are the most abundant ones 

in malignancy [57]. The most widely applied 
cytokeratin tests use the monoclonal-based assay 
tissue polypeptide antigen (TPA), cytokeratin 
fragment 19 (Cyfra 21.1), and tissue polypeptide- 
specific antigen (TPS). TPA (tissue polypeptide 
antigen) measures cytokeratins 8, 18, and 19 in 
serum samples [58] and is an example of a broad- 
spectrum cytokeratin assay demonstrating high 
sensitivity in cancer patients with various epithe-
lial cell-associated carcinomas such as breast 
cancer, colorectal cancer, lung cancer, head and 
neck cancer, and bladder cancer [59–63].

The TPS is a specific cytokeratin-based assay, 
which detects a defined epitope structure on 
human cytokeratin 18 using the M3 monoclonal 
antibody. It was evaluated and proposed in vari-
ous epithelial cell-associated carcinomas such as 
breast cancer, ovarian cancer, prostate cancer, 
and gastrointestinal cancer [64–66]. Finally, an 
assay measuring soluble cytokeratin 19 frag-
ments in the circulation, Cyfra 21.1, exemplifies 
a monospecific cytokeratin assay [67]. Unlike the 
majority of epitopes, detectable by useful tumor 
markers such as CEA, CA 15-3, and CA 19-9, 
which are glycoproteins, Cyfra 21.1 is unique in 
the fact that its epitope is a polypeptide, probably 
released as a result of cell death [68].

Most reports in the literature have focused on 
the clinical use of Cyfra 21.1 in lung cancer and 
in head and neck cancer [69–71]. Although based 
on detection of the same type of proteins in 
serum, the individual cytokeratin immunoassays 
may give different profiles of reactivity likely due 
to the different detector antibodies employed and 
the different release of cytokeratin fragments into 
the circulation from one cytokeratin to another. 
All in all, as with most tumor markers, the cyto-
keratin assays are not interchangeable.

12.6  Measurement of Circulating 
Cyfra 21.1

Five decades ago, for the first time, two IMAs for 
the measurement of Cyfra 21.1 were introduced: 
a two-site sandwich immunoenzymometric assay 
(IEMA) and a two-site sandwich immunoradio-
metric assay (IRMA), respectively [68, 72].
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These methods used two mouse monoclonal 
antibodies (KS 19-1 and BM 19-21) directed 
against two different epitopes of a fragment of 
cytokeratin 19, which is referred to as serum 
Cyfra 21.1. The target sites of the two monoclo-
nal antibodies lie within amino acids 346–367 for 
BM 19.21 and 311–335 for KS 19.1: both epi-
topes are located in C-terminal helical domain 
of the molecule. These monoclonal antibod-
ies were obtained by immunization against the 
MCF-7, a breast cancer cell line. Afterward, a 
large number of other automated methods have 
been developed, including monoplex immunoas-
says, electrochemiluminescence immunoassay 
(ECLIA) [73–78], chemiluminescent micropar-
ticle immunoassay (CMIA) [79, 80], heteroge-
neous chemiluminescent immunoassay (CLIA) 
[81], chemiluminescent enzyme immunoassay 
(CLEIA) [45, 82, 83], and luminescent proxim-
ity oxygen channeling immunoassay (LOCI) 
[84], and multiplex immunoassays, addressed 
laser bead immunoassay (ALBIA) [85] and lat-
eral flow immunoassay (LFIA) [86]. All these 
recent automated methods are based on the same 
principle of the first IMAs; in particular, they 
are heterogeneous and noncompetitive, “two-
step” sandwich, automated or automatable, and 
characterized by the use of two monoclonal 
antibodies: the first with acceptor function (KS 
19.1), prevalently coated of a solid phase (para-
magnetic microparticles, iron beads, streptavi-
din-coated microparticles, magnetic microbeads 
coated with anti-FITC, beads coated with fluoro-
phores, nitrocellulose membranes, etc.) and the 
second (BM 19.21), with tracer function, coated 
to fluorophores (europium cryptate, phyco-
erythrin) or luminescent molecules (acridinium 
esters, alkaline phosphatase-spiroadamantyl-
methoxy- phosphoryloxy-phenyl-dioxetane, 
ruthenium derivatives, N-(aminobutil)-N-(ethyl)-
isoluminol, phthalocyanine-olefin, etc.) or 
enzymes (alkaline phosphatase, etc.). In addition, 
these methods show good analytical performances 
in terms of sensitivity (the LoD is in general very 
low, ranging from 0.01 to 0.20 μg/L), specific-
ity (no critical pre-analytical phases, no interfer-
ences with other analytes, Hook effect at very 
high concentrations, etc.), precision (intra- assay 

<3.0% and inter-assay <6.0%), and accuracy 
(good correlation between different methods). 
For the aforementioned reasons, the upper refer-
ence limits are quite similar between methods, 
ranging from 1.5 to 5.4 μg/L (Table 12.2).

12.7  Cyfra 21.1 and Thyroid 
Cancer

The cytokeratin 19 (CK19) is an acidic protein 
that is part of the cytoskeleton of epithelial cells. 
Tissue CK19 is highly expressed in DTC, mainly 
those with papillary histotype (PTC) [87]. 
Increased preoperative Cyfra 21.1 levels were 
found in patients with localized aggressive histo-
types of primary epithelial thyroid cancers, while 
they are usually normal in patients with primary 
and metastatic classical DTC histotypes [88]. 
More recently, it was demonstrated that patients 
with 131I-refractory DTC metastases had signifi-
cantly higher serum Cyfra 21.1 levels than 
patients with 131I-avid ones. Such differences 
argue that 131I-refractory thyroid cancer cells (i.e., 
dedifferentiated cells) are likely the source of the 
increased serum Cyfra 21.1 [89]. No data are cur-
rently available on the relationship between 
serum and tissue Cyfra 21.1 expression in DTC; 
however, increased serum Cyfra 21.1 levels were 
previously reported in patients with primary 
aggressive thyroid carcinomas despite low or 
absent CK19 immunostaining in corresponding 
tumor tissues [90]. Previous studies in human 
lung and liver cancer cell lines showed that 
among CK19-producing cells, only those with 
caspase-3 (an enzyme involved in apoptosis phe-
nomena) expression induced high Cyfra 21.1 lev-
els in culture supernatants [91–93]. Indeed, 
serum caspase-3 enzyme activity is detectable in 
patients with metastatic131I-refractory thyroid 
cancer [94].

Globally, thyroid tumors with high prolifera-
tion rate, diffuse apoptosis, and necrosis are 
likely to release Cyfra 21.1 via caspase-3 action. 
The fast processing of CK19 molecules may 
explain the coexistence of a negative tissue 
CK19 staining with high levels of CK19-soluble 
fragments in serum of patients with such 
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 aggressive thyroid tumors [89, 90, 95]. Vice 
versa, low proliferation rate and absent of apop-
tosis phenomena explain low serum levels of 
Cyfra 21.1 in patients with classical DTC [88, 
90]. Interestingly, high Cyfra 21.1 levels were 
found in131I- refractory patients even after exclu-
sion of those patients with primary aggressive 
thyroid carcinomas. This is in line with previous 
reported differences between primary differenti-
ated thyroid carcinomas and their metastases at 
the genetic level, as the number of chromosomal 
abnormalities increases as thyroid carcinomas 
progress [96]. Then, although the majority of 
primary thyroid carcinomas leading to 
131I-refractory disease were aggressive follicular 
and papillary histotypes, primarily well-differ-
entiated tumors may be also responsible for 
131I-resistance and increased Cyfra 21.1 levels. 
As previously remarked, serum Tg measurement 
and RECIST assessment have their own limita-
tions when determining the effects of TKIs. 
Therefore, new circulating biomarkers are war-
ranted to help identify patients most likely to 
benefit from these therapies. Even if prospective 
randomized studies will be designed to indepen-
dently validate its predictive and/or prognostic, 
serum Cyfra 21.1 may serve as a marker for 
recurrent 131I-refractory thyroid cancer and is an 
important potential monitoring tool for alterna-
tive treatment approaches.
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