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Chapter 4
Autoimmune Addison’s Disease: Genetic 
Aetiology and Pathophysiology

Agnieszka Pazderska, Simon H. Pearce, and Anna Louise Mitchell

�Introduction

Autoimmune Addison’s disease (AAD) is a rare endocrine disorder with a reported 
prevalence of 100–210 cases per million in Caucasian populations [1–4]. Like other 
autoimmune diseases, it is more prevalent amongst women, with a female-to-male 
ratio of 1.3–3.5:1 [1], with the exception of individuals younger than 30 years of age 
where there is no gender difference [5]. AAD is most commonly diagnosed in indi-
viduals between their third and fifth decades of life. In European countries, the 
disease has a reported incidence of 4.7–6.2 per million per year. Both prevalence 
and incidence of AAD have been increasing in recent years raising the possibility 
that, as yet undefined, environmental factors may play a role in the pathophysiology 
of the disease [5, 6].

Historically, tuberculous adrenalitis was a frequent cause of primary adrenal 
insufficiency [7] and remains a problem in developing countries, but in recent 
decades, autoimmunity has become the commonest aetiology in developed coun-
tries [8–10], reflecting an increase generally in autoimmune conditions in the popu-
lation. AAD results from destruction of the adrenal cortex by an aberrant immune 
response. It accounts for over 80% of cases [9–11]. Other causes of primary adrenal 
insufficiency can be categorised into three distinct groups: impaired steroidogene-
sis, defects in adrenal gland development and adrenal cortex destruction by other 
disease processes (Box 4.1).
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Box 4.1 Causes of primary adrenal insufficiency

Impaired steroidogenesis

•	 Congenital adrenal hyperplasia (CYP21, CYP11B1, HSD3B2 and CYP17 
mutations)

•	 Familial glucocorticoid deficiency due to mutations in genes involved in 
DNA replication and mitochondrial redox homeostasis (MCM4, NNT, 
TXNRD2, PRDX3, GPX1) [12, 13]

•	 Smith-Lemli-Opitz syndrome (DHCR7 mutations) [14]
•	 Lipoid adrenal hyperplasia due to steroidogenic acute regulatory protein 

(StAR gene) and CYP11A1 mutations [13]
•	 Drug induced (mitotane, ketoconazole, metyrapone, etomidate, 

aminoglutethimide)

Adrenal gland dysgenesis or hypoplasia

•	 DAX1 mutation
•	 SF1 mutation
•	 ACTH receptor pathway defects (MC2R and MRAP mutations) [13]

Adrenal destruction

•	 Autoimmunity
•	 Infection, e.g. tuberculosis
•	 Haemorrhage
•	 Adrenal metastases
•	 Primary adrenal lymphoma
•	 Sarcoidosis
•	 Amyloidosis
•	 Drug induced (mitotane)
•	 Adrenoleukodystrophy (ABCD1 gene mutations)

A number of observations support strong heritability of AAD; these include con-
cordance of AAD in mono- and dizygotic twins [15–17] and clustering of AAD 
within families [18, 19]. In addition, AAD is frequently observed in association 
with other autoimmune conditions in the context of autoimmune polyglandular syn-
drome type 2 (APS2). APS2 is defined as AAD coexisting with autoimmune thyroid 
disease and/or type 1 diabetes and/or another autoimmune condition such as vitiligo 
or pernicious anaemia and is present in 50–65% of individuals with primary adrenal 
insufficiency [20–22].

Although it has been long recognised that AAD is a highly heritable disorder, the 
rarity and complexity of this condition make its investigation challenging [23].
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�Pathogenesis of AAD

AAD is characterised by selective destruction of steroid hormone-producing cells in 
the adrenal cortex by T-cell-mediated inflammation (adrenalitis). The steroidogenic 
enzymes become the autoantigens against which an autoimmune response is gener-
ated. In the disease process, all three hormone-producing cell layers, the zona fas-
ciculata, zona reticularis and zona glomerulosa, are gradually destroyed. The 
primary autoantigen in AAD is the 21-hydroxylase (21-OH) enzyme, and circulat-
ing 21-OH autoantibodies can be detected in approximately 85% of subjects with 
AAD. They may occur years prior to the development of clinically significant ste-
roid deficiency [24, 25]. The other targets of the autoimmune process include the 
17-alpha-hydroxylase enzyme and the cholesterol side-chain cleavage enzyme [26, 
27]. Autoantibodies directed against the two latter enzymes are more commonly 
associated with AAD occurring in the context of autoimmune polyglandular syn-
dromes [27, 28]. Steroid 21-OH autoantibodies are predominantly of the IgG1 iso-
type and target the carboxy terminal of the enzyme [29]. While the detection of 
these antibodies can be used to cement the diagnosis of AAD in an individual with 
adrenal insufficiency, their role in the pathogenesis of the disease remains unclear. 
Although in vitro studies have demonstrated that these antibodies inhibit enzymatic 
activity of the 21-OH enzyme by preventing its interaction with cytochrome P450 
oxidoreductase, these findings have not been corroborated in vivo [30]. The pres-
ence of such antibodies in some individuals with no detectable reduction in steroid 
concentration would argue against such an interaction [31]. In addition, 21-OH anti-
bodies can cross the placenta as IgG antibodies; however, there have been no reports 
of transient hypoadrenalism in offspring born to AAD mothers. This suggests that 
the presence of adrenal antibodies in the serum alone is insufficient to cause autoim-
mune adrenal insufficiency [32]. In keeping with this is the intracellular location of 
the steroidogenic enzymes in intact cells, precluding their direct interaction with 
circulating autoantibodies. Recently, it has been shown that 21-OH-specific CD4 
and CD8 T cells are abundant in AAD subjects many years after diagnosis and their 
immunoactivation generates persistent cytolytic T-cell populations, with the poten-
tial to destroy 21-OH-expressing cells [33]. Interestingly, T-cell immune responses 
in AAD subjects cluster around just a few 21-OH immunodominant antigenic deter-
minants: HLA-B8-restricted epitope 21-OH431-438, HLA-A2-restricted epitope at 
position 21-OH342-350 and HLA-DRB1*0401 restricted epitope at position 
21-OH342-361 [33–35].

In AAD, like in other organ-specific autoimmune disorders, three stages can be 
identified: potential, preclinical and clinical. In the potential phase, adrenal autoan-
tibodies are present, but adrenal steroidogenesis is normal and no clinical features 
of the disease can be found. It appears that adrenal autoantibodies are very rare in 
the general population. In a number of population studies including apparently 
healthy individuals, approximately 32,000 people were tested, and 21-OH 
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autoantibodies were detected in only 430 individuals, giving a prevalence of 13 in 
100,000 [36]. Subjects with positive 21-OH antibodies have an approximately 20% 
cumulative risk of developing clinically apparent AAD [37]. The reported positive 
predictive value of adrenal antibodies for development of clinically apparent AAD 
varies from 0 to 90% [38–40]. These huge discrepancies can be partly explained by 
varying follow-up duration and differences in the populations recruited. It appears 
that the highest risk for development of AAD in the presence of adrenal autoanti-
bodies occurs in paediatric populations; the reported cumulative risk ranges from 20 
to 100% [40–43]. The very high risk of development of AAD in children reported in 
some studies is due to the inclusion of subjects with APS1 syndrome, which in itself 
is associated with a prevalence of AAD of up to 90%. Amongst adult individuals, 
higher titres of autoantibodies are associated with higher risk for development of 
AAD, and these individuals progress more rapidly than those with low titres [44]. 
However, individual responses to an ongoing autoimmune process vary hugely as 
illustrated by a case study of a woman with a 9-year history of hyperpigmentation, 
elevated ACTH concentrations and high 21-OH antibody titres but a normal cortisol 
response to administration of synthetic ACTH [45]. In addition, some individuals 
shown to have 21-OH antibodies revert to being antibody negative [37]. A study by 
Baker et al. suggests that this variability in controlling the autoimmune response 
might have a genetic basis with the HLA-B15 haplotype conferring protection from 
progression to AAD in antibody-positive individuals [46].

In the subclinical phase, adrenal function gradually becomes impaired, but this is 
not sufficient to produce overt clinical manifestations of the disease. The first bio-
chemical evidence of impaired steroidogenesis in the adrenal cortex appears to be 
increased ACTH concentration followed by raised plasma renin activity, accompa-
nied by normal or low plasma aldosterone concentration [47]. However, one group 
has reported that abnormalities in the plasma renin-aldosterone axis occur first [25]. 
The discrepancies in these observations could be related to different dietary habits, 
salt intake in particular, and/or treatment with medications influencing renin such as 
ACE inhibitors or angiotensin receptor blockers in the populations studied. Finally 
basal and/or stimulated cortisol concentration becomes abnormal (<550 nmol/l after 
250 μg of tetracosactide—Synacthen administration). Overall it appears that the 
zona glomerulosa is the adrenal cell subtype that is most sensitive to autoimmune 
destruction. We postulate that this may be due to a lack of protective high 
glucocorticoid concentrations in the zona glomerulosa, which are present in the 
zona fasciculata, that can potentially inhibit local immune responses.

Finally, in the clinical phase of the disease, symptoms and signs develop; these 
include hyperpigmentation, fatigue, weight loss, hypotension and salt craving. This 
usually occurs when at least 90% of the functioning adrenocortical cells have been 
destroyed [48]. However, it appears that progression to the clinical phase, even in 
individuals with evidence of organ-specific autoimmunity and impaired steroido-
genesis, is not inevitable. This is illustrated by four case reports. Three patients 
achieved spontaneous partial remission in established AAD [49–51], and one patient 
achieved long-term remission of subclinical AAD following high-dose glucocorti-
coid therapy for another condition [52].
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�Genetic Basis of APS1 Syndrome

AAD can occur in the context of a rare, monogenic syndrome known as autoim-
mune polyglandular syndrome type 1 (APS1) also referred to as autoimmune 
polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). The syndrome 
is characterised by at least two out of the following: AAD, hypoparathyroidism and 
mucocutaneous candidiasis [53]. These conditions usually become apparent in a 
specific order: fungal infection of the skin, nails and mucous membranes occurs 
typically in infancy, followed by hypoparathyroidism in early childhood and adre-
nal insufficiency predominantly in teenagers and young adults. Other APS1-
associated conditions include premature gonadal failure, type 1 diabetes mellitus, 
hypothyroidism, alopecia, vitiligo, pernicious anaemia, autoimmune hepatitis, 
hypoplasia of the dental enamel and nail dystrophy [54–56]. Intrestingly, Graves’ 
disease is very rare in the context of APS1. The syndrome is inherited in an autoso-
mal recessive fashion and results from mutations in the autoimmune regulator 
(AIRE) gene localised on chromosome 21q22. The product of the AIRE gene is 
predominantly expressed in the thymus and concerns development and maintenance 
of self-tolerance [57]. Over 60 pathogenic mutations in the AIRE gene have been 
described; the majority of these result in a truncated protein product [58]. In keep-
ing with recessive inheritance, affected individuals can be either homozygous for an 
identical mutation or can be compound heterozygotes. There are reports of genotype-
phenotype correlations [59]. The APS type 1 syndrome is most prevalent in Iranian 
Jewish (1:9000), Sardinian (1 in 14,000), Finnish (1 in 25,000) and Norwegian (1 in 
90,000) populations [59–62]. Recently, families with dominant inheritance of a 
milder APS1 phenotype have been described owing to heterozygous AIRE muta-
tions that inactivate the normal AIRE allele (dominant-negative mutation) [63]. 
Affected individuals have a heterogeneous presentation with later onset and lower 
penetrance compared to the classical APS1 syndrome. Dominant-negative AIRE 
mutations are associated with various forms of organ-specific autoimmunity; in par-
ticular, vitiligo and pernicious anaemia are commonly present.

�Genetic Basis of Human Non-APS1 AAD

Unlike APS1, isolated AAD and AAD in the context of APS2 are not inherited in a 
Mendelian fashion. Their pathogenesis is thought to be due to a complex interplay 
between genetic and environmental factors. The genetic basis for the disease is com-
plex and involves multiple genetic susceptibility variants. It appears that no single 
susceptibility variant is sufficient to cause the disease and a “critical” genetic load is 
required to initiate the pathogenic process. A sibling recurrence risk ratio (the ratio 
of risk of disease manifestation, given that one sibling is affected, compared with 
the disease prevalence in the general population) in non-APS1 AAD is approxi-
mately 160–210, considerably higher to that seen in type 1 diabetes or Graves’ dis-
ease, which have sibling recurrence risk ratios of 15 and 10, respectively [64, 65]. 
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This suggests a very strong genetic influence in the pathophysiology of AAD. In 
addition, the clustering of autoimmune conditions with AAD in the context of APS2 
suggests that there are common susceptibility loci for these disorders.

�Molecular Genetic Studies

A number of candidate gene case-control studies have been conducted in cohorts of 
patients with AAD. The number of AAD cases in the cohorts studied is significantly 
smaller than in the genetic studies carried out in other autoimmune disorders such 
as type 1 diabetes or autoimmune thyroid disease because of the relative rarity of 
this condition. Candidate genes are selected based on underlying biological plausi-
bility (they are either implicated in an associated autoimmune disease such as auto-
immune thyroid disease or type 1 diabetes, or they are associated with rare, 
monogenic variants of the disease, such as APS1). To date, a number of susceptibil-
ity variants to AAD have been identified (Table 4.1). However, with the exception 
of MHC locus (in particular, DRB1), the susceptibility variants discovered thus far 
contribute only a small amount towards an individual’s overall genetic susceptibil-
ity to AAD.

Autoimmunity is thought to arise as a result of aberrant responses within both the 
adaptive and innate immune systems. The adaptive immune system refers to antigen-
specific immune responses involving antigen recognition and processing, forming 
“immune memory”, and concerns its key cells—lymphocytes. Innate immunity 
refers to non-specific defence mechanisms against pathogens occurring within 
hours of an antigen’s appearance and comprises a number of cell types. Amongst 
the functions of the innate immune system are pathogen recognition, production of 
cytokines and chemokines leading to immune cell recruitment, complement cas-
cade activation and activation of the adaptive immune system via antigen presenta-
tion. In patients with AAD, similarly to other autoimmune diseases, aberrant 
responses in both innate and adaptive immunity are implicated. However, the 
majority of susceptibility loci identified to date encode proteins involved in antigen 
presentation and T-cell activation.

�MHC Risk Alleles

The major histocompatibility complex (MHC) in humans, the human leukocyte 
antigen (HLA) complex, is located on chromosome 6p21 and comprises multiple 
genes involved in immune processes. Amongst those are HLA class I (HLA-A, 
HLA-B and HLA-C) and HLA class II (HLA-DRB1, HLA-DQB1, HLA-DQA1, 
HLA-DPB1 and HLA-DPA1) genes which encode antigen-presenting molecules 
and are the most important determinants of polygenic autoimmune disease risk. 
HLA proteins are expressed on the surface of antigen-presenting cells and display 
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Table 4.1  Case-control studies of candidate genes in patients with non-APS1 AAD

Gene or marker Population
Number of 
patients

Odds 
ratio P value

MHC loci
HLA-B*08 Norway [66] 414 2.6 4 × 10−11

HLA-DR3-DQ2 Norway [67] 94 3.6 <10−7

HLA-DR3-DQ2 Finland, Russia, Estonia 
[68]

69 14.5 <0.0001

HLA-DR4-DQ8*0404 Norway [67] 94 NR <10−5

HLA-DR4-DQ8*0401 <10−4

HLA-DRB1*0301 Norway [66] 414 22.13 6 × 10−20

HLA-DRB1*0404
Other loci
MICA*5.1 Italy [69] 28 6.52 0.0015

USA [70] 46 22.5 <10−5

Norway [66] 414 1.78 0.0003
CYP21Adel Finland [71] 12 25.0 NR
CYP21 L10, R102, 
A494

Finland [72] 12 8.9 NR

CLEC16A 
(rs12917716)

Norway [73] 332 0.72 0.0004
UK [73] 210 1.06 0.71
Combined [73] 542 0.81 0.006

CYP27B1-126C > A 
(rs4646536)

Germany [74] 124 1.18 0.006 (genotype)

0.3354 (allele)
UK [75] 104 1.71 0.003
6 European cohorts [76] 1955 0.9 0.03

VDR Fok1 (exon2) Germany [77] 95 NR 0.0351 (genotype)
0.3390 (allele)

FCRL3 (rs7528684) UK [78] 200 1.61 0.0001
PTPN22 (rs2476601) UK [79] 104 1.69 0.031

Germany [80] 121 1.03 0.9878
Norway [81] 302 1.39 0.016
UK [82] 251 1.63 0.008
Poland [82] 87 1.84 0.010

CTLA4 A > G (exon 1) UK [83] 90 1.64 0.008
Norway, UK, Germany, 
Spain and Italy [84]

1002 1.37 0.002

CTLA4 J030G > A UK [85] 40 1.9 0.02
Norway [85] 94 1.4 0.04
Combined [85] 134 1.5 0.03

NLRP1 (rs12150220) Norway [86] 333 1.25 0.007
Poland [87] 101 1.5 0.015

PD-L1 (rs1411262) UK [88] 315 1.33 0.032
Norway [88] 342 1.34 0.026
Combined [88] 657 1.32 3.03 × 10−3

(continued)
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peptides (both self and non-self) for recognition by T cells. Aberrant activation of T 
cells in response to self-antigens leads to development of autoimmune disease 
(Fig. 4.1). Although the exact immunopathology of AAD remains to be established, 
it has been shown that MHC II molecule expression on adrenocortical cells is highly 
upregulated in the active phase of the disease [93].

Similar to other autoimmune conditions, the challenge in finding causal variants 
within the MHC for AAD lies in the fact that this region contains the largest number 
of polymorphisms in the entire genome [94] and that there is strong and extensive 

Table 4.1  (continued)

Gene or marker Population
Number of 
patients

Odds 
ratio P value

STAT4 (rs4274624)
 � (rs10931481)

6 European cohorts [76] 1955 1.27 <0.0001
1262 1.23 0.0007

GATA3 6 European cohorts [76] 1955 0.9 0.03
NFκB1 (rs10026278)
 � (rs230532)
 � (rs4698861)

UK [76] 309 0.69 0.0034
0.65 0.00041
0.63 0.00017

Il-23A Italy [76] 280 2.37 0.0028
GPR174 (rs3827440) UK [89] 286 1.34 0.03
Il-2 (rs3136534) Poland [90] 223 0.71 0.003
BACH2 (rs3757247) UK [91] 358 1.44 1.4 × 10−6

Norway 317 1.41 0.0015
NFATC1 (rs754093) Norway [92] 384 NR 0.48

Sweden [92] 367 NR 0.033 (genotype)
0.07 (allele)

UK [92] 346 NR 0.15
Combined [92] 1097 NR 0.02

MHC class II
moleculePeptide

CD4+ T cell
APC

CD4

TCR α

TCR β

Fig. 4.1  Schematic representation of antigen presentation by MHC class II molecules to CD4+ T 
cell. The antigen-MHC complex is recognised by the T-cell receptor. CD4 is a co-receptor that 
binds to a non-polymorphic region of the MHC and assists in T-cell activation. APC, antigen-
presenting cell; TCR, T-cell receptor
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LD amongst alleles throughout this locus [95]. A number of variants within the 
MHC class II genes are associated with several autoimmune conditions. In particu-
lar, a strong association between autoimmunity and allelic variability in HLA-DR 
and DQ molecules, which present exogenous antigens for recognition by CD4+ 
helper (Th) cells, exists. Allelic polymorphism at these loci results in variant pro-
teins that allow self-peptides to enter the antigen-binding groove more readily. The 
association between HLA class II molecules and AAD has been recognised for 
three decades [96]: in a seminal study by Maclaren and co-workers, susceptibility to 
AAD was linked to HLA-DR3 and HLA-DR4 alleles. Subsequently, these findings 
were replicated in a number of AAD cohorts [66, 67, 71, 97, 98]. A particularly 
high-risk genotype for AAD has been identified as DR3-DQ2/DR4-DQ8 [67]. To 
date, the HLA class II alleles DRB1*0301 and DRB1*0404 have been shown to 
confer the highest risk for AAD with odds ratios (OR) of 2.9 and 3.3, respectively 
[66]. An especially large risk increment occurs in compound heterozygotes possess-
ing both these haplotypes (OR = 22). The DRB1 alleles occur in strong linkage 
disequilibrium (LD) with other alleles associated with AAD: DQB1*02 and 
DQB1*0302 (OR 1.8 and 1.5, respectively) [66]. In addition, a number of haplo-
types conferring protection from AAD have been also discovered: DRB1*0401-DQ8 
[67] and DRB1*0403 [99]. Thus far, none of the susceptibility loci identified are 
specific to AAD with the possible exception of HLA-DRB1*0404. The possible 
explanation for this is that peptides from 21-OH might bind particularly well and be 
presented to autoreactive T cells by this HLA class II molecule [35].

Polymorphisms in the CYP21A2 (cytochrome P450, family 21, subfamily A, 
polypeptide 2) gene, which encodes the 21-OH enzyme and is located within 
MHC class III region, have been associated with AAD. CYP21A2 is 600 kb away 
from the HLA-DRB1 locus; therefore, the association of its polymorphisms and 
AAD has been attributed to long-range LD with MHC class II alleles [72]. A 
recent study confirmed that no specific variants of CYP21A2 are associated with 
AAD. Instead, CYP21A2 polymorphisms are in LD with the high-risk haplotype 
HLA-DRB1 locus and do not contribute to the disease susceptibility independently 
[100].

The genes that appear to be independently associated with AAD susceptibility 
include HLA-B (OR 2.6 for HLA-B*08) and MHC class I-related chain A (MICA) 
(OR 1.8 for MICA*5.1) [66]. Homozygosity for the MICA*5.1 allele in the pres-
ence of the high-risk HLA genotype DR3-DQ2/DR4.4-DQ8 confers extreme risk 
for AAD development [101].

�Non-MHC Risk Alleles

The CIITA gene encodes a protein functioning as a HLA class II transactivator, the 
master control factor for MHC class II expression. Mutations in CIITA result in a 
severe monogenic immunodeficiency disease known as bare lymphocyte syndrome. 
Allelic variability in this gene has been associated with conditions such as 
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rheumatoid arthritis [102], systemic lupus erythematosus [103] and coeliac disease 
[104], amongst others. Polymorphisms in the promoter, as well as in intron 3, of this 
gene have been reported to be associated with AAD susceptibility [73, 105] 
Although the mechanism by which these polymorphisms confer disease susceptibil-
ity remains unknown, it has been hypothesised that they could influence the levels 
of tissue selectivity of HLA class II expression (Fig. 4.2).

�T-Cell Proliferation, Differentiation and Activation Genes

Activation of T lymphocytes, the key cells of the adaptive immune system, requires 
simultaneous engagement of the T-cell receptor by MHC class II peptides and 
costimulatory molecules. The cytotoxic T-lymphocyte-associated antigen 4 
(CTLA4) gene located on chromosome 2q33 encodes CD152, a costimulatory mol-
ecule which acts as a vital negative regulator of T-cell activation and proliferation 
[106]. CTLA4 competes with costimulator CD28 for binding to B7 on antigen-
presenting cells. The critical role of this molecule is demonstrated in CTLA4 knock-
out mice which die prematurely, at an age of 2–3  weeks, due to severe 
lymphoproliferation, lymphocytic infiltration and destruction of major organs [107]. 
In humans, mutations in the CTLA4 gene result in an immune dysregulation syn-
drome [108]. CTLA4 gene polymorphisms have been linked with susceptibility to a 
number of autoimmune diseases including autoimmune thyroid disease [109, 110], 

MICA MHC

1

PTPN22

CIITA NLRP1 NFATC1 PD-L1 GPR174

STAT4 CTLA4 NFκB1 BACH2 PDL1 GATA3

13 14 15 16 17 18 19 20 21 22 X Y

2 3 4 5 6 7 8 9 10 11 12

Fig. 4.2  Schematic representation of genes associated with autoimmune Addison’s disease that 
are implicated in T-cell proliferation and activation
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type 1 diabetes mellitus [111, 112], rheumatoid arthritis [113] and coeliac disease 
[114]. The association between CTLA4 gene variants and AAD has been reported in 
a number of studies in different European populations [83–85, 115, 116]. The most 
commonly described CTLA4 polymorphisms in AAD populations are non-
synonymous polymorphism in exon 1 region of CTLA4 gene +49 A → G (Ala17Thr) 
[83, 84, 115], (AT)n dinucleotide repeat polymorphism within the 3′ untranslated 
region [116] and G or A alleles of the JO30 SNP downstream of this gene [85]. 
Polymorphisms in the latter are postulated to be the causative variants affecting the 
relative amount of the soluble and membrane-bound CTLA4 and therefore enabling 
CD28 to access more of its ligand, resulting in T-cell activation [117]. In contrast to 
this hypothesis, a number of studies have demonstrated that individuals with auto-
immune conditions have, in fact, increased serum levels of soluble CTLA4 isoforms 
[118, 119] suggesting that the complexity of CTLA4-CD28 interaction and signal-
ling is incompletely understood. Another mechanism of negative immune regula-
tion by CTLA4-positive cells is the ability of CTLA4 to capture and degrade CD80 
and CD86 (ligands shared with the stimulatory receptor CD28) from antigen-
presenting cells [120].

Another key autoimmunity gene, PTPN22 on chromosome 1p13, encodes a tyro-
sine phosphatase which is a crucial regulator of immune homeostasis, inhibiting 
T-cell receptor (TCR) signalling. The association of a missense SNP (1858C > T) in 
PTPN22, encoding an arginine to tryptophan substitution at amino acid 620, has been 
identified in type 1 diabetes [121], rheumatoid arthritis [122], systemic lupus erythe-
matosus [123] and Graves’ disease [79]. For a number of autoimmune diseases, this 
allelic variant ranks as the most important non-MHC single gene contributor to dis-
ease susceptibility. A number of studies have implicated this variant in susceptibility 
to AAD [79, 81, 82]. The functional effect of 1858 C > T polymorphism has not been 
fully elucidated. Some studies suggest that this variant results in increased suppres-
sion of TCR signalling [124, 125], while others suggest the opposite [126, 127]. One 
study suggested that proteolytic binding and cleavage of Arg620Trp is increased with 
consequent reduction in LYP levels in T and B cells leading to lymphocyte and den-
dritic cell hyperresponsiveness and autoimmunity [127].

Programmed death ligand-1 (PD-L1, CD274, B7-H1) is a costimulatory mole-
cule binding the PD-1 moiety of T cells, leading to downregulation of cytokine 
production and T-cell activation, thereby inducing immune tolerance. PD-L1 vari-
ants have been implicated in susceptibility to AAD, although the effect on risk is 
very modest (OR 1.34 for the allele with the strongest association) [88].

Interleukin-2 (Il-2) and its receptor are important determinants of the immune 
response. Il-2 is a potent T-cell growth stimulator and influences T-cell differentia-
tion, in particular formation of the regulatory T cell (Treg) lineage. Treg cells are cru-
cial in maintaining self-tolerance due to their ability to suppress autoreactive T cells 
which escape negative selection in the thymus. IL2RA gene encodes the alpha sub-
unit (CD25) of the IL2 receptor, a unique subunit conferring high affinity to IL2. 
Polymorphic variants of IL2 (4q27) and IL2RA (10p15.1) genes have been associ-
ated with type 1 diabetes and rheumatoid arthritis [128–130]. The C minor allele in 
IL2 conferred protection from AAD in a Polish cohort. However, there was no 
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association found between IL2 polymorphisms and Norwegian patients with AAD 
[73]. Similarly, an association between IL2RA polymorphisms and susceptibility to 
AAD was found in Norwegian subjects, but this finding has not been replicated in 
British or Polish series [73, 90]. Although there is known genetic heterogeneity 
between various AAD populations, the association between AAD and IL2 or IL2RA 
needs further replication in larger cohorts.

STAT4 (signal transducer and activator of transcription 4) on chromosome 2q32 
encodes a transcription factor which is implicated in Th-1 and Th-17 differentiation 
and activation. Polymorphisms of STAT4 have been shown to be associated with 
rheumatoid arthritis [131–133], systemic lupus erythematosus [122] and type 1 dia-
betes [134]. A meta-analysis by Mitchell et  al. revealed a significant association 
between STAT4 polymorphisms and AAD in European populations [76]. The allelic 
variability identified in AAD maps to intron 3 of the STAT4 gene and is in moderate-
to-strong linkage disequilibrium with STAT4 polymorphisms identified in the other 
autoimmune conditions. The exact mechanism by which polymorphisms in this 
gene lead to autoimmune disease remains unknown.

The GATA3 gene on chromosome 10p14 encodes a C2C2-type zinc finger transcrip-
tion factor which regulates a number of steps in T-cell development and differentiation. 
In particular, this transcription factor has been shown to be the Th2 lineage master regu-
lator [135] and could therefore contribute to T-cell dysregulation present in autoimmune 
disease. A recent meta-analysis demonstrated an association between GATA3 polymor-
phisms and AAD in European cohorts [76]. The minor G allele at rs3802604 was pro-
tective for AAD (OR 0.9). This finding is, however, in contrast to the known association 
of the same allele with susceptibility to rheumatoid arthritis [136] possibly reflecting 
immunopathogenic differences between these two conditions.

The BACH2 gene on chromosome 6q15 plays a vital role in CD4+ T-cell differen-
tiation; in particular it is crucial in the formation of Treg, which are the key cells in 
maintaining immune tolerance. Polymorphisms at the BACH2 locus have been asso-
ciated with type 1 diabetes, generalised vitiligo, autoimmune thyroid disease, 
Crohn’s disease and coeliac disease [137–141]. Recently, an association between 
the minor T allele at rs3757247 in the BACH2 locus and susceptibility to AAD was 
described in UK and Norwegian cohorts [91].

The first linkage study in multiplex AAD families implicated regions on chromo-
somes 6 (corresponding to the HLA region), 7, 9 and 18 in the susceptibility to AAD 
[92]. A follow-on study, looking at 64 SNPs underlying the linkage peaks on chro-
mosomes 9 and 18 conducted in case-control cohorts from the UK, Norway and 
Sweden, revealed nominal association with three independent SNPs in chromosome 
18 and AAD.  One of these encodes a non-synonymous variant (pCys751Gly) in 
exon 9 of the NFATC1 (nuclear factor of activated T cells, cytoplasmic, calcineurin-
dependent 1) gene. Upon T-cell activation, family members of NFAT translocate to 
the nucleus where they can activate target genes and as such play a central role in 
gene transcription during the immune response [142]. NFATC1 has been shown to 
play a role in the regulation of PD-1 expression, a cell surface receptor functioning 
as an immune checkpoint and reducing T-cell activation [143].

The GPR174 (G protein-coupled receptor 174) gene at Xq21.2 consists of one exon 
encoding a protein which belongs to the G protein-coupled receptor superfamily and is 
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involved in immune cell signal transduction. Recently a lysophosphatidylserine 
(LysoPS) was found to be a ligand for GPR174, and the interaction between the two has 
been shown to stimulate an increase in the intracellular cyclic adenosine monophosphate 
(cAMP) [144]. cAMP has been previously demonstrated to be a potent negative regula-
tor of T-cell immune function [145]. These findings offer a plausible link between 
GPR174 polymorphisms and autoimmunity. Polymorphisms in GPR174 have been 
found to be associated with Graves’ disease [146] [147]. A serine to proline non-synon-
ymous variant in GPR174 has been associated with AAD [89]. The localisation of 
GPR174 on chromosome X and its role in AAD autoimmunity are particularly interest-
ing given the gender bias observed in this disorder, although it is unlikely that a single 
gene is responsible for the higher susceptibility of females to develop AAD (Fig. 4.3).

�Genes Implicated in B Lymphocyte and Antigen-Presenting Cell 
Proliferation and Activation

Vitamin D has been recognised for its effects on the immune system. On a molecu-
lar level, the active form of vitamin D, 1,25-dihydroxyvitamin D, leads to reduced 
expression of HLA class II molecules on endocrine cells and inhibits T-cell prolif-
eration [148, 149]. 1,25-Dihydroxyvitamin D is also implicated in innate immunity 

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15

CLEC16A NLRP1

VDRFCRL3

16 17 18 19 20 21 22 X Y

Fig. 4.3  Schematic representation of genes found to be associated with autoimmune Addison’s 
disease which are implicated in proliferation and activation of B cells and antigen-presenting cells
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by inhibiting differentiation of dendritic cells which are potent antigen-presenting 
cells [150]. Polymorphisms in the vitamin D receptor (VDR) gene, located on chro-
mosome 12q12-14, have been studied in a number of autoimmune conditions 
including type 1 diabetes and autoimmune thyroid disease with conflicting results 
[151–154]. Although specific genotypes in VDR have been associated with AAD 
risk in a relatively small German cohort, no such association was found for an indi-
vidual VDR allele [77]. Additional studies are required to confirm VDR as a suscep-
tibility locus for AAD. In contrast to this, a promoter polymorphism in the CYP27B1 
gene (−1260C > A) has been shown to be associated with AAD in two independent 
cohorts [74, 75]. More recently, an intronic SNP, rs4646536, in CYP27B1, was 
associated with AAD in a large meta-analysis of several European cohorts [76]. 
CYP27B1 hydroxylase catalyses the conversion of 25-hydroxyvitamin D to its 
active form, 1,25-dihydroxyvitamin D.  A promoter polymorphism in CYP27B1 
might affect enzyme transcription and thus the rate of final hydroxylation of 
1,25-dihydroxyvitamin D.

The Fc receptor-like 3 gene (FCRL3) located on chromosome 1q21 encodes an 
orphan cell surface receptor belonging to the immunoglobulin receptor superfamily, 
expressed predominantly on B lymphocytes. A polymorphism in the FCRL3 pro-
moter region (FCRL3_3*C) has been implicated in susceptibility to rheumatoid 
arthritis, autoimmune thyroid disease and systemic lupus erythematosus in Asian 
cohorts [155]. Contrary to the findings in other autoimmune conditions, a study of 
a UK AAD cohort found that the FCRL3_3*C variant confers protection from the 
disease [78]. The allele most associated with disease risk in this cohort was found to 
be FCRL3_3*T (OR = 1.61). Based on functional studies of this locus, FCRL3_3*T 
is predicted to result in lower promoter activity. Such contradictory findings for one 
haplotype conferring both protection and disease susceptibility in different popula-
tions illustrate the complexity of the genetic underpinning of polygenic autoim-
mune diseases including AAD.

NLRP1 (nuclear localisation leucine-rich-repeat protein 1) is a regulator of the 
innate immune response. NLRP1 belongs to the NOD-like receptor family and par-
ticipates in recognising microbial products, such as lipopolysaccharide, and assem-
bly of inflammasomes, cytoplasmic protein complexes mediating pro-inflammatory 
responses via cytokine activation [156]. Polymorphisms of the NLRP gene have been 
reported to confer risk for a number of autoimmune conditions including vitiligo 
[157], type 1 diabetes [86], coeliac disease [158] and rheumatoid arthritis [159]. A 
coding variant of NLRP1 (Leu155His) has been associated with AAD in two 
European cohorts [86, 87]. Surprisingly, different alleles were found to confer risk of 
AAD in Polish (minor allele A) and Norwegian (major allele T) populations.

The CLEC16A (C-type lectin domain family 16) gene encodes a protein of 
unknown function but which is almost exclusively expressed in immune cells such as 
dendritic cells, B lymphocytes and natural killer cells. This makes it a plausible sus-
ceptibility gene for autoimmunity. A polymorphism in the CLEC16A gene (intronic 
SNP rs12917716) was found to be associated with AAD in a Norwegian cohort with 
an OR of 0.71. Comparable effects of CLEC16A SNPs were previously demonstrated 
in cohorts of subjects with type 1 diabetes (OR 0.65 to 0.83) [160, 161].
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�Processes Affecting Gene Expression

Gene expression can be altered by both common copy number variation (CNV) and 
epigenetic modification such as DNA methylation. As a result, different phenotypes 
can develop despite similar genetic profiles.

CNV in the human genome has been recently identified as a source of genetic 
diversity and has been shown to influence disease susceptibility [162]. Recently, 
CNVs in two genes, UGT2B28 and ADAM3A, have been found to be associated 
with AAD [163]. However, the mechanism by which this association confers sus-
ceptibility to the disease remains unknown.

Abnormal DNA methylation is commonly observed in autoimmune disorders. It 
has been suggested that hypermethylation (addition of methyl groups to oligonucle-
otides by DNA methyltransferases) of promoter regions silences genes, whereas 
intronic hypermethylation is involved in gene activation. DNA methylation has 
been shown to be one of the mechanisms involved in transcriptional control of genes 
such as FOXP3, Interferon Gamma and AIRE which in turn influence T-cell differ-
entiation and function. A recent study identified multiple hypomethylated gene pro-
moter regions in DNA isolated from CD4 T cells from AAD subjects [164]. A 
multitude of differently methylated regions have been localised in genes implicated 
in immune modulation and autoimmunity suggesting that this epigenetic modifica-
tion plays a role in the immunopathogenesis of this disease. This is likely to be an 
area of research going forward.

�Genetics of Canine Addison’s Disease

Autoimmune hypocortisolism is highly prevalent in a number of dog breeds includ-
ing collies, poodles, terriers and retrievers. Canine hypoadrenalism shares some 
susceptibility loci with human AAD including MHC (DLA, dog leucocyte antigen), 
PTPN22, NLRP1 and AIRE [165]. In addition, allelic variability in IL-16 and GC 
has also been implicated in canine Addison’s disease. Similar to humans, most of 
the allelic variability associated with the increased risk pertains to genes implicated 
in T-cell receptor pathways.

�Environmental Factors in Pathophysiology of AAD

We have recently suggested a potential seasonal periodicity, with excess risk for 
development of AAD in individuals born in winter months and a protective effect 
when born in summer. Exposure to seasonal viral infection in the perinatal period 
and vitamin D exposure related to UVB radiation intensity are the postulated envi-
ronmental factors underpinning this association [166].
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Another interesting concept is that of physical or psychological stress as a trigger 
of autoimmune processes. In fact, many retrospective studies have found that a high 
proportion of patients with various autoimmune conditions reported emotional 
stress prior to disease onset [167]. However, data pertaining to the role of stress in 
the pathophysiology of AAD are lacking.

�Summary

Our current concept of AAD aetiopathogenesis is that it results from an interplay 
between as yet unidentified environmental factors and genetic susceptibility loci. 
The susceptibility genes discovered to date encode proteins that are involved in the 
activation and regulation of antigen-specific T cells; however, these have only a 
modest effect in terms of disease risk contribution and are commonly associated 
with other autoimmune disorders. Further work is required to gain a better under-
standing of the genetic architecture of this interesting autoimmune condition.
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