
Chapter 3
Hill Equation: From 1 to 2 Degrees
of Freedom

M. Joaquin Collado

Abstract After the introduction, in the first part of the chapter, we review some
properties of the scalar Hill equation, a second-order linear ordinary differential
equation with periodic coefficients. In the second part, we extend and compare the
vectorial Hill equation; most of the results are confined to the case of two degrees of
freedom (DOF). In both cases, we describe the equations with parameters (α, β), the
zones of instability in the α − β plane are called Arnold Tongues. We graphically
illustrate the properties wherever it is possible with the aid of the Arnold Tongues.

3.1 Introduction

Hill equation (3.10) was introduced by George Hill in the 1870s, but it was not
published until 1886 in [28]. It is a linear second-order ordinary differential equation
with a periodic function, originally an even function, to describe the variations in
the lunar orbit. It matched so well with the data available in those days, that of
immediately gained wide diffusion. In the lapse between the results that Hill got and
the date of publication, the Floquet Theorem [20] was published. Nowadays, any
study of Hill equation is based on Floquet’s result. More than half a century later,
the Nobel prize winner Piotr Kapitsa [32] used the newer Theory of Perturbations
to find a condition in which the upper equilibrium point of a pendulum1 may be
stabilized varying periodically its suspension point. In detail, if the suspension point
of a pendulumofmass M and length L , variates periodically as z = A cosωt , then the
upper equilibrium point becomes stable if Aω >

√
2gL , where g = 9.81m/s2, is the

acceleration of the gravity. The pendulum with periodic variation of its suspension
point is called Kapitsa’s Pendulum. After this result was published, some authors
reported that Stephenson [46] had obtained earlier a similar result, in opinion of the

1When the pendulum is assumed a mass M hanging of rigid massless rod.
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author this is partially true, because Stephenson’s paper claims that it is possible,
but he did not express any condition. In 1928, van der Pol and Strutt2 [47] published
the first Arnold Tongues,3 they claimed belong to the Mathieu equation (Eq.3.10,
when q (t) = cos t), but actually they reproduced the Arnold Tongues diagram for
the Meissner Equation (Eq.3.10, when q (t) = sign (cos t)).

Even more interesting is that there exist a seven-century tradition at the Cathedral
of Santiago of Compostela, since then they have experienced a Kapitsa’s Pendu-
lum with a large censer (O Botafumeiro), which reaches approximately ±82◦, in 17
cycles and it takes approximately 80 s to achieve the maximum excursion [42]. This
effect is contained in Kapitsa’s result, because when the condition Aω >

√
2gL is

satisfied, simultaneously the upper equilibrium becomes stable and the lower equi-
librium becomes unstable, as in the Botafumeiro. Around 1940 the Romantic era for
Hill equation ended. Late 1940s until 1960s, two prominent Russian academicians
Krein and Yakubovich, established the foundation of linear Hamiltonian with peri-
odic coefficients; we mention two celebrated references, [34, 48]. Other important
contributions were made by Gelfand–Lidskii [24], Starzhinskii [45], Bolotin [6],
Atkinson [4], and Eastham [19]; above all of them, it was Lyapunov himself, who
contributed approximately half of his Ph.D. Thesis to the problem of stability of
Linear Periodic Systems [35]. Relations, only for the scalar case with the Sturm–
Liouville Theory, appear inAtkinson [4], Eastham [19], Yakubovich and Starzhinskii
[48], and the excellent book of Marchenko [37]; a recent reference is [10]. A recent
application of parametric resonance in the roll effect of ships appeared in [21]. Two
excellent surveys are Champneys [11] or Seyranian [43]; encyclopedic and very
deep results related to the spectrum of Hill’s equation were presented by McKean
and Moerbeke [38].

The Direct Problem refers to: Given a Hill equation, find the spectral bands or
Arnold Tongues associated; this paper deals onlywith this case. The Inverse Problem,
consists in: Given the spectral data, to recover the equation which has the given
spectrum. The inverse problem of the Sturm–Liouville problem related to the scalar
Hill equation was solved in the 1960s by Gelfand and Levitan [23] and others. But,
it was Borg [7] who defined the problem and gave the first key results. Atkinson [4]
and Eastham [19] gave interesting results. In the opinion of the author, the inverse
problem associated with the vectorial Hill equation is far from being solved, because
it is not equivalent to a vectorial Sturm–Liouville (SL) Problem, although some early
attempts are found in [26] and more recently in [5]. In physics literature, they name
to the Hill equation, the 1-dimensional Schrödinger equation with periodic potential.

This chapter is organized as follows: the first section is an introduction and histor-
ical overview, in Sect. 3.2 we present mathematical preliminaries particularly con-
cerningmatrices, Sect. 3.3 is dedicated to survey the results for scalarHill equation, in

2More well known as Lord Rayleigh, more correctly Baron Rayleigh because Baron is a higher
novelty title than Lord.
3The name Arnold Tongues was introduced after [2].
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Sect. 3.4 we present the 2-DOF Hill equation or vectorial Hill equation, the objective
of Sect. 3.5 gives a set of open problems and different possible generalizations, finally
in Sect. 3.6 we present some conclusions.

3.2 Preliminaries

In this section, we present the main background required subsequently, namely
Floquet Theory, which gives us the basic property of the solutions of a linear ordinary
differential equations with periodic coefficients. Then we review the Hamiltonian
systems, and the associated Hamiltonian and symplectic matrices with their main
properties.

3.2.1 Floquet Theory

Given a linear system described as a set of first-order linear ordinary differential
equations with periodic coefficients, as:

•
x = A(t)x (3.1)

where A (t) is an n × n matrix whose components are piecewise continuous, and
periodic with minimum period T ; i.e., A (t + T ) = A (t) for all t; for the sake of
brevity we will say that A (t) is T -periodic. The solutions of (3.1) may be expressed
in terms of the state transition matrix4 Φ (t, t0), which has the following basic prop-
erties, see [8] or [12]:

(a) Φ (t, t) = In ∀t ∈ R

(b) [Φ (t, t0)]
−1 = Φ (t0, t)

(c) Φ (t2, t0) = Φ (t2, t1) Φ (t1, t0) ∀t0, t1, t2 ∈ R,

(d) ∂
∂t Φ (t, t0) = A (t)Φ (t, t0), and

(e) ∀ x (t0) = x0 ∈ R
n , the solution of (3.1) is x (t) = Φ (t, t0) x0.

Using the state transition matrix previously reviewed, Floquet Theory [8] asserts:

Theorem 3.1 (Floquet) Given the periodic linear system (3.1), its state transition
matrix satisfies:

Φ (t, t0) = P−1 (t) eR(t−t0) P(t0), (3.2)

4Matriciant in the russian literature [1]. Also denominated as Cauchy Matrix or Normalized Fun-
damental Matrix.
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where P (t + T ) = P (t) is an n × n periodic matrix of the same period T of the
system (3.1), and R is a constant n × n matrix, not necessarily real even if (3.1) is
real.5

If we make t0 = 0 in (3.2) and by property (a), we get P−1 (0) = In , then we get
the most well-known version:

Corollary 3.1 (Floquet Theorem) Given the system (3.1), for t0 = 0 its state tran-
sition matrix satisfies:

Φ (t, 0) = P−1 (t) eRt (3.3)

where P (t + T ) = P (t) is an n × n periodic matrix of the same period as the system
(3.1), and R is a constant n × n matrix.

Now if we evaluate (3.3) at t = T , taking into account that P (t) is T -periodic,
P (T ) = In, then

M = Φ (T, 0) = eRT . (3.4)

The last constant matrix is particularly important, it is called Monodromy Matrix
and will be designated by M .

Remark 3.1 TheMonodromymatrix defined by (3.4) is dependent of the initial time
t0; but not its spectrum.Let us designate Mt0 = Φ (T + t0, t0), then using (3.2) for t =
T + t0, Φ (T + t0, t0) = P−1 (T + t0) eRT P(t0) = P−1 (t0) eRT P(t0) = P−1 (t0)
M P(t0). This shows that Φ (T + t0, t0) = Mt0 and M are similar. As long as our
use of the Monodromy matrix is reduced to its spectrum, there is no difference to
use M or Mt0 .

Two consequences of the Floquet Theorem are of great importance: Reducibility
and Stability.

I.- Reducibility

Given a system
•
x = A (t) x , if we make the following change of coordinates

z (t) = T (t) x (t), where the square n × n matrix T (t) satisfies:

(i) T (t) is differentiable and invertible ∀t, and

(ii) The matrices T (t) ,
•
T (t) , and T −1 (t) are all bounded

Then the Transformation matrix T (t) is called a Lyapunov Transformation.6

Roughly speaking, the system in coordinates x or z, keep their stability property if,
T (t) the matrix which relates x and z is a Lyapunov Transformation. For properties
of Lyapunov Transformations see [1, 8, 22].

5The necessary and sufficient condition for R to be real is that the real negative eigenvalues of
Φ (T, 0), be of algebraic multiplicity even [1].
6This transformation was introduced by Lyapunov himself [35], other reference is [8].
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Definition 3.1 A time-varying linear system (not necessarily periodic)
•
x = A (t) x ,

is said to be ‘reducible,’ if there exists a linear time-varyingLyapunovTransformation
T (t) such that z (t) = T (t) x (t)

•
z =

[
T −1 (t) A (t) T (t) + T −1 (t)

•
T (t)

]
z (3.5)

where

[
T −1 (t) A (t) T (t) + T −1 (t)

•
T (t)

]
= R a constant matrix

Any system (3.1) T -periodic is reducible, the result is expressed formally in the
next theorem. All the symbols refer to the factorization given in (3.3).

Theorem 3.2 Given a T -periodic linear system
•
x = A (t) x, the change of coordi-

nates z (t) = P−1 (t) x (t) transforms the system into a linear time-invariant system:

•
z = Rz. (3.6)

Remark 3.2 It follows that for linear periodic systems, there is a linear periodic
transformation, which transforms the original periodic time-varying system into a
linear time-invariant system. Unfortunately this result, while very useful for analysis,
it is not so for synthesis; because one requires the solution in order to perform this
change of coordinates.

II.- Stability

Recall the stability definition in the sense of Lyapunov [35] (or contemporary
reference [33]):

Definition 3.2 The zero solution of
•
x = A (t) x

(a) Stable, if ∀ ε > 0, ∃ δ > 0 such that ‖x (t0)‖ < δ =⇒ ‖x (t)‖ < ε ∀ t ≥ t0
(b) Asymptotically stable if the zero solution is stable and lim

t→∞x (t) = 0.

In our system (3.1)
•
x = A (t) x, for t ≥ 0, t may be expressed as: t = kT + τ , k a

non-negative integer and τ ∈ [0, T ); then the solution satisfies t0 = 0 and x(0) = x0:

x(t) = Φ(t, 0)x0

= Φ(kT + τ, 0)x0

= Φ(kT + τ, kT )Φ
(

kT , (k − 1) T
)

Φ
(

kT , (k − 1) T
)

· · ·Φ
(

T , 0
)

x0

= Φ (τ, 0) Φ (T, 0) Φ (T, 0) · · · Φ (T, 0)︸ ︷︷ ︸
k times

x0

= Φ (τ, 0) Mk x0
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from the last step, we can conclude that

(a) Asymptotic Stability: x(t) → 0 if only if σ (M) ⊂ ◦
D1 � {z ∈ C : |z| < 1}

(b) Stability: x(t) remains bounded ∀ t ≥ 0 iff σ (M) ⊂ D1 � {z ∈ C : |z| ≤ 1} and
if λ ∈ σ (M) and |λ| = 1, λ is a simple root of the minimal polynomial of M .

Remark 3.3 Notice that both properties, reducibility, and stability, for linear
T -periodic systems could be obtained thanks to the Floquet factorization (3.3).

3.2.2 Hamiltonian Systems

Given a differentiable function H (q, p), called a Hamiltonian function, which
depends on vectors q and p, which satisfies the equations:

•
q =

(
∂H (q, p)

∂p

)T

•
p = −

(
∂H (q, p)

∂q

)T
(3.7)

is called a Hamiltonian System, also called in Russian literature Canonical System.
The Hamiltonian function represents the energy of the system and for the case in
which this function H (q, p) does not depend explicitly of time, this quantity being
preserved along the solutions of (3.7); when this property holds the system is called
Conservative. This guarantees that the system (3.7) has a first integral, [3, 14, 39].
The Hamiltonian systems (3.7) are always of even order, say 2n if q, p ∈ R

n . For
further properties see [3, 39].

We shall consider Hamiltonian functions that are also function of time, i.e.,
H (t, q, p), in this case the Hamiltonian system is no longer conservative. Also
we shall only regard linear Hamiltonian systems, then the Hamiltonian function is a
quadratic homogeneous form, i.e.,

H (t, q, p) =
[

q
p

]T

H (t)

[
q
p

]
(3.8)

where H (t) is a 2n × 2n symmetric matrix, in this case the Hamiltonian System
(3.7) may be expressed as:

d

dt

[
q
p

]
= J H (t)

[
q
p

]
(3.9)

where J =
[

0 In

−In 0

]
. Notice that J−1 = J T = −J and J 2 = −I2n .
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Finally, if the linearHamiltonian system is T -periodic, then H (t + T ) = H (t) =
H T (t). We are going to assume this relation to hold from now on.

Definition 3.3 ([39]) An even-order matrix A ∈ R
2n×2n is called Hamiltonian

Matrix, if A = J H , where H is a symmetric matrix; equivalently J A + AT J = 0

From J A + AT J = 0, we get A = J−1
(−AT

)
J , i.e., A is similar to−AT there-

fore they have the same spectrum:

σ (A) = σ
(−AT

) = σ (−A) .

We have proven the key property of constant Hamiltonian matrices, that is, its
spectrum is symmetric with respect to the imaginary axis.

Theorem 3.3 Let A ∈ R
2n×2n be a Hamiltonian matrix, then if λ ∈ σ (A)=⇒ −λ ∈

σ (A).7 Equivalently, the characteristic polynomial of a Hamiltonian matrix has only
even powers or it is an even polynomial.

Remark 3.4 Notice also that, the trace of a Hamiltonian matrix is always zero.

Hamiltonian matrices are closely related to another kind of matrices, the sym-
plectic ones.

Definition 3.4 ([39]) An even-order real matrix M ∈ R
2n×2n is called a Symplectic

Matrix, if MT J M = J .

The determinant of a symplectic matrix is +1, moreover the set of symplectic
matrices of a given order form a Group [39]. The key property of constant sym-
plectic matrices is that its spectrum is symmetric with respect to the unit circle, it
may be easily proven, from the definition and the fact that a symplectic matrix is
always invertible, then MT = J M−1 J−1, i.e., σ

(
MT

) = σ
(
M−1

) = σ (M) =⇒ if
λ ∈ σ (M) then λ−1 ∈ σ (M). Let us express this fact formally in the next theorem:

Theorem 3.4 Let M ∈ R
2n×2n be a symplectic matrix, then if λ ∈ σ (A) =⇒ λ−1 ∈

σ (A) . Equivalently, the characteristic polynomial of a Symplectic matrix is self-
reciprocal [39] or palindromic [31], i.e., pM (λ) = λ2n pM

(
λ−1

)
.

The property that relates Hamiltonian matrices with symplectic ones in a given
Hamiltonian system is:

Theorem 3.5 Let
d

dt

[
q
p

]
= J H (t)

[
q
p

]
for some H (t) = H T (t) be a linear

time-varying8 Hamiltonian system, then its state transition matrix is a symplectic
matrix.

7Given a square matrix A, by σ (A) we denote its spectrum, i.e., the set of all the eigenvalues.
8Not necessarily periodic.
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Remark 3.5 A linear time-invariant Hamiltonian system can not be asymptotically
stable, because of the symmetry of its eigenvalues; this property goes to all the
Hamiltonian Systems time-invariant or not; and linear or not.

Remark 3.6 Hamiltonian systems enjoy another important property: For arbitrary
2n-dimensional system 2n − 1 independent first integrals are required in order to
arrive at a first-order 1-dimensional ODE, which may be integrated by quadratures
to finally integrate the whole system. The Liouville Theorem ensures that a 2n-
dimensional Hamiltonian system is integrated if we know only n independent first
integrals [3, 39]; only half of the work!

3.3 Hill Equation: The Scalar Case

In this section, we are going to present the main properties of scalar Hill’s equation,
namely

• •
y + [α + βq (t)] y = 0 (3.10)

where q (t) is T -periodic.9 The parameter α represents the square of the natural
frequency for β = 0; the parameter β is the amplitude of the parametric excitation,
and the periodic function q (t) is called the excitation function. For comparison
reasons, we are going to use three different excitation functions: (a) q (t) = cos t ,
in this case the equation is called Mathieu equation; (b) q (t) = sign (cos t), in this
case the equation is called Meissner equation, and (c) q (t) = cos t + cos 2t , which
was used originally by Lyapunov [35].

Notice that a linear second-order differential equation with periodic coefficients:

• •
z + a(t)

•
z + b(t)z = 0 (3.11)

wherea(t) andb(t) areT -periodic,maybe always transformedwith y = e− 1
2

∫
a(τdτ)z,

into (3.10), therefore there is no loss of generality to consider with respect to (3.10).
Note also that this is not a Lyapunov Transformation in general [27].

If we define the 2-dimensional vector x �
[

y
•
y

]
, the Eq. (3.10) may be rewritten

as

•
x =

[
0 1

−α − βq (t) 0

]
x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
0 1

−1 0

]
︸ ︷︷ ︸

J

[
α + βq (t) 0

0 1

]
︸ ︷︷ ︸

H(t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

x (3.12)

9We will assume through the paper that q (t) is piecewise continuous, integrable in [0, T ] and of
zero average, i.e.,

∫ T
0 q (t) dt = 0.
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where J is as in Eq. (3.9) for n = 1, and H (t + T ) = H (t) = H T (t), satisfies
the condition for linear Hamiltonian systems. Then the state transition matrix of
Hill’s equation in the format (3.12) is a Symplectic matrix for all t . Therefore its
Monodromy matrix M is also a symplectic matrix. The characteristic polynomial
pM (μ) of the Monodromy Matrix M is of the form:

pM (μ) = μ2 − tr (M) μ + 1 (3.13)

Definition 3.5 The eigenvalues of theMonodromymatrix M , equivalently the roots
of its characteristic polynomial pM (μ), are called multipliers of (3.12) or (3.10),
denoted byμ. For Hamiltonian systems are symmetric with respect to the unit circle.

Definition 3.6 Associated to every multiplier μ, there exist (an infinite) numbers
called characteristic exponents λ related to a multiplier by μ = eλT .

The roots of pM (μ) or the multipliers of (3.10) are:

μ1,2 =
[
tr (M) ±

√
tr2 (M) − 4

]
/2 (3.14)

• If tr2 (M) < 4 the multipliers are complex conjugates and their modulus is∣∣μ1,2

∣∣2 = tr2 (M)

4
+ 4 − tr2 (M)

4
= 1. The two eigenvalues are different, which

implies that the minimal and the characteristic polynomials of M are the same.
This case corresponds to a stable system.

• If tr2 (M) > 4, the multipliers are real and reciprocal, μ1 =
[
tr (M)+√

tr2 (M) − 4
]
/2 andμ2 =

[
tr (M) − √

tr2 (M) − 4
]
/2.Obviouslyμ1 + μ2 =

tr (M) and μ1μ2 = 1, so μ2 = μ−1
1 . If one of the multipliers, say μ1 > 1, then

this case corresponds to instability.

• If tr2 (M) = 4 the multipliers are real and equal to +1 if tr (M) = +2, or the
multipliers are equal to −1 if tr (M) = −2. In this case, Hill equation is stable
if only if M is a diagonal matrix or scalar matrix, otherwise the Hill equation is
unstable.10

The boundaries between stability-instability correspond to this last case, i.e., when
|tr (M)| = 2. It is clear that M depends on the parameters α, β. It is customary
to define [36]11 φ (α, β) � tr (M) . Hochstadt [29] was the first to recognize the
important properties of φ (α, β).

10When the multipliers are ±1 and the Monodromy matrix is diagonal, and we say that there is a
point ofCoexistence, because there are two linearly independent periodic solutions of Hill equation;
T -periodic for multipliers +1, and 2T -periodic for the multipliers equal to −1.
11In Magnus [36] the function that we call φ (α, β), is denoted as Δ (λ), because λ is used instead
of our α, and the parameter β is not used in the cited work.
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Theorem 3.6 (Hochstadt) The function φ (α, β) for any β constant, is an entire
function of order 1

2 . The functions φ (α, β) ± 2 = 0 have an infinite number of roots.
For any β0, and for α0 sufficiently negative, φ (α0, β0) is positive, therefore increasing
α appears the first root for the equation φ (α, β) − 2 = 0, which corresponds to a
double multiplier at +1, and from there appear two roots (not necessarily different)
at −1, then two roots +1, up to infinity.

Due to the Hochstadt Theorem, there are two infinite sequences:

λ0, λ1, λ2, λ3, λ4, λ5, . . .

λ1, λ2, λ3, λ4, λ5, . . .

(3.15)

The first sequence corresponds to roots of φ (α, β) + 2 = 0, and the second
sequence corresponds to φ (α, β) − 2 = 0. Moreover they interlace as:

λ0, λ1, λ2, λ1, λ2, λ3, λ4, λ3, λ4, λ5, λ6, . . . (3.16)

This fact is illustrated in Fig. 3.1

Remark 3.7 Notice that for the values in which φ (α, β0) ∈ [−2, 2] the multipliers
lie on the unit circle, and for the values in which |φ (α, β0)| > 2 the multipliers are
both positive or both negative, and one the reciprocal of the other. Also if for some
value of α = α1 both multipliers lie on −1, and increasing this value up to the point
α = α2 for which both multipliers lie on+1; the path of the multiplier from the point
−1 to +1 should be through arcs on the unit circle, they can not go from −1 to +1

Fig. 3.1 For a constant β = 1, φ (α, 1) = tr (M) which is only function of α. For those values in
which |φ (α, 1)| > 2, are projected on α-axis and correspond to the unstable regions
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on the real line, because at 0 the non-singularity of the Monodromy matrix would
be violated. This property goes to any degree of freedom as long as the system is
Hamiltonian. Moreover, even in the non-Hamiltonian case the Monodromy matrix
is always nonsingular, because it is the state transition matrix, evaluated at the end
of a period.

3.3.1 Multipliers of Hamiltonian Systems

Given in general a linear Hamiltonian system:

•
x = J H (t) x (3.17)

where J was defined in (3.9) and H (t) ∈ R
2n×2n is a real symmetric matrix. Due

to the fact that a Hamiltonian system cannot exhibit asymptotic stability, then the
accepted definition for weak stability of a Hamiltonian system is that all the solutions
be bounded in (−∞,+∞). The following definition is also required:

Definition 3.7 The Hamiltonian system (3.17) is strongly stable if it is stable
(bounded) and there exists an ε > 0, such that for all H̃ (t) 2n × 2n symmetric
matrices, while

∥∥H̃ (t) − H (t)
∥∥ < ε, all the Hamiltonian systems

•
x = J H̃ (t) x

are stable.

The condition of strong stability for Hamiltonian Systems was formulated more
than 50 years ago, the sufficiency by Krein [34], and the necessity by Gelfand and
Lidskii [24]; another definition is required for an indefinite inner product associated
to the symplectic geometry of the Hamiltonian System [48].

Definition 3.8 Given an even-order real vector space of dimension 2n, and the
standard inner product (x, y) � yT x, and given any Hermitian nonsingular matrix
H ∈ R2n×2n, it is possible to define the indefinite inner product as 〈x, y〉 � (Gx, y) .

We are going to use H = i J .12

For any multiplier on the unit circle μ, its associated eigenvector vμ is such that〈
vμ, vμ

〉 �= 0, if
〈
vμ, vμ

〉
> 0, μ is called Multiplier of the First Kind; if

〈
vμ, vμ

〉
< 0,

μ is called Multiplier of the Second Kind [48]. If |μ| �= 1,
〈
vμ, vμ

〉 = 0, but if we
extend the definition of Multiplier of first kind for μ : |μ| < 1; and Multiplier of the
second kind for thoseμ : |μ| > 1. Then all the multipliers are of first or second kind,

12Recall that given any skew-hermitian matrix J , then (i J ) is an hermitian matrix. [22, 48].



54 M. Joaquin Collado

and moreover, for a Hamiltonian system of dimensions 2n, n multipliers are of first
kind and the remaining n multipliers are of second kind.13

Remark 3.8 The key property due to Krein is that the multipliers including their kind
are continuous functions with respect to variations in the Hamiltonian functions, in
our case the symmetric Matrix H (t), [34, 48].

Due to the last remark, if two multipliers coincide on the unit circle and both
are of the same kind, they cannot leave the unit circle, because they would violate
continuity of the kind of multipliers.

Finally, to formulate the Gelfand–Lidskii–Krein Theorem, we require this last
definition:

Definition 3.9 A multiplier μ with algebraic multiplicity r, is said to be definite of
first or second kind, if 〈q, q〉 is of the same sign for all q in the eigenspace associated
to μ.

Theorem 3.7 (Krein–Gelfand–Lidskii) The linear periodic Hamiltonian system
•
x = J H (t) x is strongly stable iff all the multipliers lie on the unit circle and
those with algebraic multiplicity greater than one are definite or all are of the same
kind.

3.3.2 Arnold’s Tongues

If we mark in the α − β plane the points of instability, which correspond to
|tr (M)| > 2 with some color, and leave blank the points of stability which corre-
spond to |tr (M)| < 2; this diagram is called Ince-Strutt diagram. Figure3.2 shows
the Ince-Strutt diagram for the Mathieu equation.

Remark 3.9 We have to emphasize that the Ince-Strutt diagramwas obtained numer-
ically, i.e., gridding 1000 points in each of the chosen intervals for α ∈ [−1, 10] and
β ∈ [0, 10]. Then integrating the differential equation in the time interval [0, 2π ]
with the initial conditions

[
1 0

]T
, we get the solution x1 (t) , similarly for initial

condition
[
0 1

]T
we get another solution x2 (t) on each one of the grid points; finally

the Monodromy matrix is M = [
x1 (2π) x2 (2π)

]
.

13Equivalently, if we increase the Hamiltonian, i.e., H̃ (t) − H (t) > 0, and μ was an isolated
multiplier on the unit circle associated to H (t), when H (t) is increased to H̃ (t) , μ moves on
the unit circle to μ̃; if arg μ̃ > argμ, the multiplier μ is said to be a Multiplier of the First Kind,
contrarily, i.e., arg μ̃ < argμ, the multiplier μ is a Multiplier of the Second Kind [48].
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Fig. 3.2 Arnold Tongues for the Mathieu equation. Boundaries of the blue zones correspond to a
2π -periodic solution, red zones correspond to 4π -periodic solution

3.3.3 Meissner Equation

The exceptional cases in which an analytic solution of the scalar Hill equations may
be obtained [40] are: (a) q (t) a train of impulses, (b) q (t) piecewise constant, (c) q (t)
piecewise linear and d) q (t) elliptic functions14. The case b) for q (t) = sign (cos t),
which corresponds to theMeissnerEquation, is particularly simple. It is easy to get the
Monodromymatrix analytically, full details are in [44, pp. 276–278]. For α > β ≥ 0,
we have

M =(
cos

(√
α − βπ

) 1
(
√

α−β)
sin

(√
α − βπ

)
− (√

α − β
)
sin

(√
α − βπ

)
cos

(√
α − βπ

)
)

•

•
(

cos
(√

α + βπ
) 1

(
√

α+β)
sin

(√
α + βπ

)
− (√

α + β
)
sin

(√
α + βπ

)
cos

(√
α + βπ

)
)

=

⎛
⎝ cosπ

√
α + β cosπ

√
α − β − (

sin π
√

α + β sin π
√

α − β
) √

α+β√
α−β

− (
sin π

√
α + β cosπ

√
α − β

)√
α + β − (

cosπ
√

α + β sin π
√

α − β
)√

α − β

1√
α+β

(
sin π

√
α + β

) (
cosπ

√
α − β

) + 1√
α−β

(
cosπ

√
α + β

) (
sin π

√
α − β

)
(
cosπ

√
α + β

) (
cosπ

√
α − β

) −
√

α−β√
α+β

(
sin π

√
α + β

) (
sin π

√
α − β

)
⎞
⎠

14In the case that the periodic function q (t) is an elliptic function, called Lamé Equation.
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and its trace is

tr (M) = 2 cos
(
π

√
α + β

)
cos

(
π

√
α − β

)−
[√

α−β√
α+β

+
√

α+β√
α−β

] (
sin

(
π

√
α + β

)
sin

(
π

√
α − β

))

then the condition |tr (M)| = 2, reduces to:
∣∣∣2 cos (π√

α + β
)
cos

(
π

√
α − β

)−
[√

α−β√
α+β

+
√

α+β√
α−β

] (
sin

(
π

√
α + β

)
sin

(
π

√
α − β

))∣∣∣ = 2

If we make β = 0 in this last expression |tr (M)| = 2, in order to know the points
at which the Arnold Tongues are born, we get∣∣∣2 [

cos
(
π

√
α
)
cos

(
π

√
α
)] − 2

[
sin

(
π

√
α
)
sin

(
π

√
α
)]∣∣∣ = 2

�∣∣∣2 cos (2π√
α
)∣∣∣ = 2

�
2π

√
α = kπ

which finally leads us to α = k2

4
for k = 0, 1, 2, . . .

It is customary to assign a number to each Arnold Tongue according to the rule:

kth Arnold Tongue touches the α-axis at
k2

4
. We may also say that in the boundaries

of even-order Arnold’s Tongues there is at least one T -periodic solution, similarly,
in the boundaries of odd-order Arnold’s Tongues there is at least one 2T -periodic
solution.

Figure3.3 shows the Meissner equation, i.e., the Hill equation for q (t) = sign
(cos t).

Remark 3.10 Notice in the Ince-Strutt diagram for the Meissner equation, starting
from the 3rd Arnold Tongue, the appearance of zero-length intervals in the α direc-
tions; these points are called Coexistence, and correspond a parameters in which all
the solutions are T -periodic if they belong to an even-order tongue, or 2T -periodic
if they belong to an odd-order tongue. Notice also that coexistence points are excep-
tional ones.15

15Chulaevsky [13] justifies the fact that coexistence points are exceptional ones, because: ... ‘From
a topological point of view the scalar matrices, which correspond to coexistence points, form a
subvariety in the variety of 2 × 2 Jordan Cells.’
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Fig. 3.3 Arnold Tongues for theMeissner equation. Notice the coexistence point approx at α ≈ 2.5
and β ≈ 1.5

If we introduce the notation

T ongue (i) � {(α, β) : (α, β) belongs to the i th Arnold Tongue},
in the above notation we include their boundaries. We may express compactly the
next fundamental property:

Remark 3.11 (Non-intersecting) All the Arnold Tongues are non-intersecting, i.e.,
T ongue (i) ∩ T ongue ( j) = φ, ∀ i �= j.

3.3.4 Critical Lines

The following question arises: What happen when we analyze in large intervals [9]
of (α, β)? In Fig. 3.4 we show the same diagram for Meissner equation, but now in
the intervals α ∈ [0, 120] and β ∈ [0, 120] .

Wemay observe from Fig. 3.4 that below 45◦ the region is ‘essentially stable’ and
above this line is ‘essentially unstable’: this line was designated by Broer [9] as the
‘critical line’, and it is independent of the function q (t) used, as long as q (t) is of

zero average and (‖q (t)‖2 �
[∫ T

0 |q (t)|2 dt
]1/2 = ‖cos t‖2.
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Fig. 3.4 Arnold Tongues for the Meissner equation at a larger scale, notice that above 45◦ almost
everything is unstable

3.3.5 Forced Hill Equation

In [41] the T -periodically forced Hill equation was analyzed, i.e.,

• •
y + [α + βq (t)] y = f (t) , where f (t + T ) = f (t) . (3.18)

It is known [36], that in the stable regions there exists kT -periodic solutions, for
k ≥ 3, of the homogeneous equation (3.18 with f (t) = 0), for these values of (α, β)

there are two independent kT -periodic solutions. Figure3.5 shows these kT -periodic
lines for k = 3, 5, 9, and 14.

When we apply a forced periodic term f (t + T ) = f (t), of the same period T
as the exciting function q (t) . In [41], we prove that if f (t) contains a kT -periodic
harmonic, then the corresponding kT -periodic line becomes unstable, due to linear
resonance.

3.3.6 Open-Loop Stabilization of Hill Equation

The last point considered for the scalar Hill equations is: Given a Hill equation

for some set of parameters (α0, β0) : • •
y + [α0 + β0q (t)] y = 0, where q (t) is a T

-periodic function. If the equation for these parameters is unstable, the following
problem is posed (Fig. 3.6):
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Fig. 3.5 Colored lines represent kT -periodic solutions in the homogeneous case, but also Linear
Resonance for the forced case

Fig. 3.6 Illustrates graphically the solution proposed to the problem of stabilization of a Hill
equation adding to q (t) another T-periodic function

Problem 3.1 There exists another T -periodic function r (t) such that the new Hill

equation
• •
y +

[
α0 + β0

(
q (t) + γ r (t)

)]
y = 0 is stable for the same set of para-

meters (α0, β0)? [16].

Solution 3.1 Suppose (α0, β0) is unstable, equivalently (α0, β0) ∈ T ongue (i) for
some i ≥ 1, add a T -periodic function r (t) to q (t) such that (α0, β0) ∈ T ongue
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(i + 1). This guarantees that if tr [M(α0, β0, q (t))] > 2, then tr [M(α0, β0, q (t)+
r (t))] < −2.16

Due to the continuity of tr [M(α0, β0, q (t))], if we perform the convex combi-
nation of q (t) and r (t), i.e., q (t) → q (t) + γ r (t) , for some γ ∈ [0, 1],

tr
[
M(α0, β0, q (t) + γ r (t))

]∣∣
γ=0 > 2 and similarly

tr
[
M(α0, β0, q (t) + γ r (t))

]∣∣
γ=1 < −2, =⇒

∃ γ0 ∈ (0, 1) : tr
[
M(α0, β0, q (t) + γ r (t))

]∣∣
γ=γ0

= 0, which corresponds to a
stable system.

Notice that the previous solution rests heavily on Remark 11 (Non-Intersecting).

3.4 Hill Equation: Two Degrees of Freedom Case

In the 2 degrees of freedom case, y (t) ∈ R
2

• •
y + [αA + βBq (t)] y = 0. (3.19)

Notice, that we have included matrices A, B ∈ R
2×2, and we keep our two-

parameter (α, β) in order to make some comparisons with the 1-DOF case.

Similarly to the 1-DOF case, if we define x =
[

y
•
y

]
∈ R

4, we may express (3.19)

in state space as:

•
x =

[
0 I2

−αA − βBq (t) 0

]
x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
0 I2

−I2 0

]
︸ ︷︷ ︸

J

[
αA + βBq (t) 0

0 I2

]
︸ ︷︷ ︸

H(t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

x . (3.20)

In order to the system described by (3.20) be a Hamiltonian (H (t) = H T (t)),
the restrictions: A = AT and B = BT should be satisfied.

Without loss of generality,wemay assumematrix A diagonalwith positive entries,
which represents the square of the two natural frequencies of the system without
parametric excitation.An early publication appears in [26],where the author analyzes
a pair of Mathieu equations coupled.

Now there are four multipliers, eigenvalues of the Monodromy matrix, they have
symmetry with respect to the real axis because we are treating real matrices, and
there is a symmetry with respect to the unit circle because the state transition matrix
is symplectic. Now there are three possibilities for multipliers to abandon the unit

16Here tr
[
M(α0, β0, q (t) + γ r (t))

]
refers to the trace of the Monodromy Matrix associated to

• •
y +

[
α0 + β0

(
q (t) + γ r (t)

)]
y = 0.
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Fig. 3.7 Points where multipliers for a 2-DOF Hamiltonian system may leave the unit circle. Note
that for leaving the unit circle at the points ±1, only two multipliers are required; but to leave the
unit circle at 1�θ , for θ �= 0 or π , the four multipliers should satisfy the configuration shown

circle, namely: (a) a pair of multipliers leaving at the point +1, (b) a pair leaving at
the point −1, and (c) two conjugate pairs leaving the unit circle at any point 1�θ ,
θ ∈ (0, π).17 The cases (a) and (b) already appear in the 1-DOF case; but (c) is a
new case for systems having at least 2-DOFs, and it is called Krein Collision of the
multipliers. Figure3.7 represents the three case above.

3.4.1 Reduction of the Characteristic Polynomial

Because of the symmetry of the characteristic polynomial of theMonodromyMatrix,
pM (μ) = μ4 − Aμ3 + Bμ2 − Aμ + 1, is a self-reciprocal polynomial,Howard and
MacKay [30] introduced a new variable ρ = μ + μ−1, in this variable the charac-
teristic polynomial of M reduces to degree 2, and is given by:

Q (ρ) = ρ2 − Aρ + B − 2 (3.21)

their corresponding eigenvalues are:

ρ1,2 = 1
2

[
A ± (

A2 − 4B + 8
)1/2]

(3.22)

17We use r�θ to represent a complex number with modulus r , and argument θ.
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Fig. 3.8 Regions of stability for the reduced polynomial in white. Red for some μ < −1; Green
for some μ > 1; Yellow for some μ < −1 and another μ̃ > 1; Pink for two multipliers < 1; Cyan
for two multipliers > 1. Blue for two multipliers not real outside the unit disk

and the eigenvalues of pM (μ) are recovery from:

μ = 1

2

[
ρ ± i

(
4 − ρ2)1/2] . (3.23)

Remark 3.12 The symmetry property inherited by the Hamiltonian nature allows to
reduce the order in the analysis to one half18

The transition boundaries defined when a multiplier leave the unit circle or equiv-
alently using (3.22) are given by two lines and a parabola:

(a) μ = +1 B = +2A − 2

(b) μ = −1 B = −2A − 2

(c) Krein collision B = A2/4 + 2.

(3.24)

Figure3.8 shows the relationships given in (3.24) indicating the typical multi-
plier positions. The reduced polynomial Q (ρ) = ρ2 − Aρ + B − 2, the white zone
represents parameters A, B which produces multipliers of pM (μ) = μ4 − Aμ3 +
Bμ2 − Aμ + 1 on the unit circle through formula (3.23). Colored regions correspond

18In [17] this property is extended to Hamiltonian systems with dissipation, strictly speaking this
class of systems is not longer Hamiltonian.
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Fig. 3.9 Zoom of the Fig. 3.8 for the point A there is at least one T -periodic and at least one 2T
-periodic solutions; for the point B there are at least two linearly independent 2T -periodic solutions;
and for the point C there are at least two linearly independent T -periodic solutions

to unstable zones, in the boundary B = +2A − 2 there is at least one T -periodic solu-
tion; in the boundary B = −2A − 2 there is at least one 2T -periodic solution; in the
parabola boundary B = A2/4 + 2 there are a couple of multipliers at some point of
the unit circle except±1, and have two periodic solutions of any frequency in general
(Fig. 3.9).

Remark 3.13 Figures3.10 and 3.11 use this same colors code.

Using this code of colors, Fig. 3.10 shows the Arnold Tongues for a 2-DOFs
Mathieu equation, and Fig. 3.11 shows the Arnold Tongues for a 2-DOFs Meissner
equation. For comparison reasons we chose the same matrices A and B.

For the Figs. 3.10 and 3.11 we use the following equation:

•
x =

[
0 I2

−αA − βBq (t) 0

]
x, (3.25)

with A =
[
1 0
0 2

]
and B =

[
1 −1

−1 2

]
and we have used q (t) = cos t for the

Fig. 3.10; and q (t) = sign (cos t) for the Fig. 3.11.
Zones of instability occur when some pair of multipliers coincide in the point +1

or −1 and after that they leave the unit circle, as in the scalar case, but there are
multipliers associated to each of the natural frequencies of the subsystems; therefore
there are two possible ways to leave at each of the points ±1, each one associ-
ated with the two subsystems, these Tongues are called Principal. But the true new
characteristic is that the multiplier now may leave the unit circle at any point 1�θ

for some θ ∈ (0, π) , these Krein Collision give unstable zones called Combination
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Fig. 3.10 Arnold Tongues for a 2-DOF Mathieu equation (3.25) with q (t) = cos t . Blue zones
correspond to Combination Arnold Tongues
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Fig. 3.11 Arnold Tongues for a 2-DOF Meissner equation (3.25) with q (t) = sign (cos t). Blue
zones correspond to Combination Arnold Tongues
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Fig. 3.12 This figure critical line for a 2-DOFs system, now the critical line is 33.6◦, arctan(2/3)

Arnold Tongues. There are two kinds of Combination Arnold Tongues: summing or
difference, see [48] for further information.

Remark 3.14 In the 2-DOF case, some comments are in order. First, there are Arnold
Tongues related to each of the natural frequencies of each subsystem. And of course,
the Arnold Tongues associated to each subsystem are non-overlapping. Nevertheless,
generically the Arnold Tongues for some rationally independent natural frequencies
are intersecting.

Remark 3.15 (Critical lines for 2-DOF) With respect to the critical line for Hill
equation of at least 2-DOFs, we claim that generically this critical line now form an
angle with the horizontal axis lower than 45◦, see Fig. 3.12 for the Lyapunov like
equation, i.e., q (t) = cos t + cos 2t [15].

Remark 3.16 (Forced 2-DOF Hill Equation) There is no chance to extend the prop-
erty obtained to simultaneously have parametric instability (Arnold Tongues) and
linear resonance in the same Ince-Strutt diagram as in Fig. 3.5.

Remark 3.17 (Open-loop stabilization) In general, it is not possible for 2-DOF sys-
tems to take advantage of the non-intersecting property because this property does
not exist in n-DOF for n ≥ 2. Nevertheless for very small values of β, we could
develop this idea, see Fig. 3.6.
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3.4.2 Computational Issues

The obvious algorithm to get theArnold Tongues is gridding and integrating for every
point (α, β) . This for a 1000 × 1000 gridding, could take of the order of 20h to run,
in aDell desktop PC Intel core 2 duo 2.8GHz 4GB ram and 980GPU’s. So, if we keep
this naive approach and use a parallel computation, then this algorithmcould decrease
its speed up to 2min for the same resolution. The use of the analytic boundaries of
the reduced polynomial (3.21) not only decreases the speed of computation, but also
gives better precision. For large scales such as those required for critical lines, it
is required to use symplectic integrators [25] in order to keep symplecticity of the
Monodromy matrix, which guarantees good precision.

3.5 Future Work

We are going to enumerate the possible extensions of the scalar and 2-DOF Hill
equation.

3.5.1 Generalizations of the Scalar Case

Given the scalar equation:

• •
y + [α + βq (t)] y = 0,

it always represents a Hamiltonian System, therefore the only generalization possible
is:

• Scalar I.- The function q (t) is no longer T -periodic, could be Quasi-Periodic or
Almost Periodic. Notice that in this case there is not a Floquet Theorem!19

A function q (t) is Quasi-Periodic, denoted q (t) ∈ Q P , if it is the sum of a
finite number of Periodic functions of frequency not rationally related; for instance
q (t) = sin t + sin π t.

Recall that a function q (t) is Periodic if it admits a Convergent Fourier Series of
the form:

q (t) =
∞∑

k=−∞
ρke j(kω0)t

19There is a reduced for of a Floquet theorem, no factorization is possible, but there is a reducibility
part.
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Remark 3.18 Notice that there exists a fundamental frequency ω0 and its harmonics
(kω0), rationally related.

A function q (t) isAlmost-Periodic, denoted q (t) ∈ AP , if it admits a Convergent
Generalized Fourier Series of the form:

q (t) =
∞∑

k=−∞
ρke j�k t

where the sequence {. . . , ρk, ρk+1, . . .} ∈ �2
20, this condition guarantees the conver-

gence.

3.5.2 Generalizations of the 2-DOFs

Given the 2-DOFs Hill equation expressed in state variables:

•
x =

[
0 I2

−αA − βBq (t) 0

]
x .

The following possible open problems are listed in increasing level of complexity:

• 2-DOFs I.- If we keep the function q (t) T -periodic, but matrix B is no longer
symmetric. It is possible to solve the problem, because we still may apply the
Stability consequence of the Floquet Theorem. But the Monodromy Matrix is no
longer symplectic. So the same condition for stability, all the multiplier lie on the
unit circle, there is no result for strong stability. It is unknown how the multiplier
leaves the unit circle.

• 2-DOFs II.- The function q (t) is no longer T -periodic, then q (t) ∈ Q P or
q (t) ∈ AP . Again, there is not a Floquet Theorem, there is noMonodromyMatrix,
therefore no analytic condition of the stability based on the multipliers, etc.

• 2-DOFs III.- The function q (t) is no longer T -periodic, but q (t) ∈ Q P or q (t) ∈
AP; and B is no longer symmetric. The resulting system is no longer Hamiltonian,
neither T -Periodic. None of the tools used are valid. Very scarce results exist in
this area.

• IV.- This item does not belong to n-DOFs Hamiltonian systems, if the dimension
of the state equation is odd (never is a Hamiltonian system), i.e.,

•
x = A (t) x, A (t) = A (t + T ) , x (t) ∈ R

2n+1

20A sequence {. . . , xk , xk+1 . . .} double infinite belongs to �2 if
∞∑

k=−∞
|xk |2 = M < ∞. See for

instance [18].
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the system is still periodic, we may apply the Floquet Theorem, but for stable or
bounded systems there is always a real multiplier at +1 or −1, it is unknown how
to leave the unit circle, etc.

A final comments about the relationship between Hill equation [36] and Sturm–
Liouville Theory [14]. In the scalar case if we write the standard SL Problem

Hill Equation rewritten as
• •
y + βq (t) y = −αy

with boundary conditions: (a) y(0) = y(T ) &
•
y (0) = •

y (T )

and the spectral parameter α, we recovery the T -Periodic boundaries of the Arnold
Tongues with the above Boundary Value Problem.

If we replace the boundary conditions by: (b) y(0) = −y(T ) &
•
y (0) = − •

y (T ),
we get as a solution the 2T -periodic boundaries of the Arnold Tongue [19] or [36].

Completely different is the 2-DOF case, becausewith the above boundaries condi-
tions (a) and (b) we recovery the boundaries of the principal Arnold Tongues, but the
boundaries of the Combination Arnold Tongues do not correspond to some specific
boundary condition.

3.6 Conclusions

We may summarize the differences explained in the previous exposition, in the fol-
lowing table:

Property 1-DOF 2-DOF
Multiplier leaving the unit
circle

only at +1 or −1 any 1�θ , θ ∈ [0, π ]

Arnold Tongues Not interesting for high excitation β generically
intersecting

Boundaries of the Arnold
Tongues

∃T -periodic or 2T -periodic
sols

a) May have T -periodic sol
b) May have 2T -periodic sol
c) May have T & 2T -periodic
sol
d) A periodic solution noncon-
mensurable with T

Combination Tongues NO YES
Critical Lines 45◦ less than 45◦
Equivalent with SL Problem YES NO
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