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To Dr. Alexander S. Poznyak on the occasion
of his seventieth birthday. He is an excellent
colleague, mentor and friend. We greatly
benefited from his persistent advice, criticism,
clear-thinking, constant availability, prompt
feedback and rigorous standards.



Preface

With enormous pleasure, we bring you this book of Control Theory to honor Prof.
Dr. Alexander S. Poznyak. Since Dr. Poznyak turned seventy this year, it is a good
occasion to celebrate his accomplishments in control theory. We requested chapters
from researches around the world. Dr. Poznyak is a relevant researcher and it is
fitting that we are able to bring out this book to honor him.

Dr. Poznyak interest in control theory stated from the beginning in his carrier
and he realized important and significant contributions. Dr. Poznyak was graduated
from Moscow Physical Technical Institute (MPhTI) in 1970. He earned Ph.D. and
Doctor Degrees from the Institute of Control Sciences of Russian Academy of
Sciences in 1978 and 1989, respectively. From 1973 to 1993, he served this
institute as researcher and leading researcher, and in 1993 he accepted a post of full
Professor (actually 3-F) at CINVESTAV of IPN in Mexico. He is Regular Member
of Mexican Academy of Sciences and System of National Investigators (SNI-
Investigador Nacional Emerito from 2014). During 8 years, he was the Head of the
Automatic Control Department. He is the Director of 42 Ph.D. thesis (37 in
Mexico). It is impossible to summarize in this shot foreword all of his accom-
plishments. He has published 10 books, more than 220 papers in scientific journals
and numerous papers for national and international conference proceedings. He has
delivered several invited speeches at various universities across the world as a well
as at many national and international conferences. He also serves as an Associate
Editor of diverse scientific journals, member of various national and international
scientific committees. He has also served as General Chairman program and
Chairman program of numerous scientific international conferences. Dr. Poznyak
was contemporary to very important people in the control arena, some of them were
among founders of control theory, the others made contributions in its chapters: Ya.
Z. Tzypkin, V.A. Yakubovich, V.G. Boltyanski, M.A. Krasnoselskii, V.I. Utkin, R.
Sh. Liptser, K. Furuta, V.G. Sragovich, V.L. Kharitonov, G.A. Leonov, A.L.
Fradkov, B.T. Polyak, V. Razvan, K. Najim, V.B. Kolmanovski, Yu.B. Shtessel, H.
Sira-Ramirez, S.K. Spurgeon, Yu. V. Orlov, A. Levant, A. Polyakov, L.M. Fridman
and many others.
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Dr. Poznyak personal qualities of commitment, integrity, leadership and initiate
leave lasting impression on his colleagues, students and friends, including those
who are honouring him with the following chapters. Much of the research presented
for the contributors in this book draw extensively too in their colleagueship and
friendship over the years with Dr. Poznyak, for which they remain deeply grateful.
It is in this spirit that we offer this book in honour of Prof. Dr. Alexander on his
seventieth birthday.

We wish Dr. Poznyak the best of health, wealth, happiness, prosperity and
success in all his endeavours, and we count on his contributions to control theory
for many years to come.

Mexico city, Mexico Dr. Julio B. Clempner
May 2017 Dr. Wen Yu
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Chapter 1
Dr. Alexander Semionovich Poznyak
Gorbatch: Biography

Alexander S. Poznyak

1.1 Current Position

Fig. 1.1 Dr. Alexander Semionovich Poznyak Gorbatch

Prof. Titular 3-F CINVESTAV-IPN.
Dept. Control Automático.
Institution: CINVESTAV-IPN, AP-14-740, México, Ciudad de México.
Tel: (+52 55) 5747-3741
FAX: (+52 55) 5747-7089
e-mail: apoznyak@ctrl.cinvestav.mx (Fig. 1.1)

A.S. Poznyak (B)
Department of Control Automático, CINVESTAV-IPN, AP-14-740, Ciudad de México, México
e-mail: apoznyak@ctrl.cinvestav.mx

© Springer International Publishing AG 2018
J.B. Clempner and W. Yu (eds.), New Perspectives and Applications of Modern
Control Theory, https://doi.org/10.1007/978-3-319-62464-8_1
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2 A.S. Poznyak

1.2 Resume

Alexander S. Poznyak (Alexander Semion Pozniak Gorbatch) was born on Decem-
ber 6 ,1946 in Moscow and graduated from Moscow Physical Technical Institute
(MPhTI) in 1970. He earned Ph.D. and Doctor Degrees from the Institute of Control
Sciences of Russian Academy of Sciences in 1978 and 1989, respectively. From
1973 up to 1993, he served this institute as researcher and leading researcher, and in
1993 he accepted a post of full professor (3-F) at CINVESTAV of IPN in Mexico.

For 8years he was the head of the Automatic Control Department. He is the
director of 41 PhD thesis’ (37 in Mexico). He has published more than 220 papers
in different international journals and 13 books.

He is Regular Member of Mexican Academy of Sciences and System of National
Investigators (SNI-Emerito from 2014). He is Fellow of IMA (Institute ofMathemat-
ics and Its Applications, EssexUK) andAssociated Editor of Oxford-IMA Journal on
Mathematical Control and Information, of Kybernetika (Chech Republic), Nonlinear
Analysis: Hybrid systems (IFAC) as well as Iberamerican Int. Journal on Computa-
tions and Systems.

He was also Associated Editor of CDC, ACC, and Member of Editorial Board of
IEEECSS. He is a member of the Evaluation Committee of SNI (Ministry of Science
and Technology) responsible for Engineering Science and Technology Foundation
in Mexico, and a member of Award Committee of Premium of Mexico on Science
and Technology. In 2014, he was invited by the USA Government to serve as the
member of NSF committee on Neuro Sciences and Artificial Intelligence.
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1.3 Photos from the Personal Archive of Prof. A.Poznyak

See Figs. 1.2, 1.3, 1.4, 1.5, 1.6 and 1.7.

(a) Alexander in 1949. (b) Seminar on Mechanics in MPhTI in
1980.

(c) July 2001: Lab.7 of Institute of Control Sciences of Russian Academy of Sciences.

Fig. 1.2 Photo album 1



4 A.S. Poznyak

(a) G.Arkhipova, A.Poznyak, B.Polyak, Ya.Tzypkin and S.Faina, Moscow, 1995.

(b) Z. and V. Kantorovich, V.Boltyanski and V.Kharitonov, Mexico, 1998.

Fig. 1.3 Photo album 2
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(a) A.Poznyak with his teacher
Academic Ya. Z. Tzypkin, February 1993.

(b) A. and T. Poznyak with V .Razvan. Bukharest,
Rumania, October 2010.

(c) V. Razvan, A. Poznyak, V. Kolmanovski and A. Rodkina. Atlanta, 2002.

(d) Ya. Z. Tzypkin and V. A. Yakubovich, Moscow 1995.

Fig. 1.4 Photo album 3



6 A.S. Poznyak

(a) Lecture in Yale University, May 2013. (b) A. Poznyak with the lecture “My life in Control”,
CINVESTAV, Mexico, December 2016.

(c) Academic A. Kurzhanskii, Prof. Yu B. Stessel, Prof. Leonid Fridman and Prof. A.Poznyak with
his students, CINVESTAV, Mexico, February 2006.

(d) West Verginia, USA, March 2008.

Fig. 1.5 Photo album 4
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(a) Huntsville, Alabama, USA. February
2004.

(b) Plenary lecture at VSS, Villanova, Spain,
2004.

(c) L. Fridman and Yu B. Stessel, Mexico, March 2006.

Fig. 1.6 Photo album 5
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(a) A. S. Poznyak and V. G. Boltyanski,
Ixtapa, December 2002.

(b) Alex Poznyak, Galina and Alexander
Nazin, Versalle, France, April, 2006.

(c) A. Poznyak and V. Utkin. Bohum, Germany, 2012.

Fig. 1.7 Photo album 6
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Chapter 2
Luenberger Observer Design for Uncertainty
Nonlinear Systems

Wen Yu

Abstract Most of the nonlinear observers require the nonlinear systems to beknown.
If the systems are partly unknown, model-free observers such as high-gain observers,
sliding mode observers, and neural observers, can be applied. However, the perfor-
mances of these observers are not satisfactory, for example, they are sensitive to
measurement noise and they can only estimate the derivative of the output. In this
chapter, we use the structure of Luenberger observers for partially unknown nonlin-
ear systems. Using a Riccati differential equation, we design a time-varying observer
gain such that the observer error is robustwith respect to bounded uncertainties. Com-
pared with the other robust nonlinear observers, this observer is simple and effective
with respect to the uncertainties in the nonlinear systems.

2.1 Introduction

The state observation problem is one of the essential points in modern control the-
ory. If the systems are linear, the well-known observers can be the Kalman filters
(stochastic noise cases) and Luenberger observers (deterministic cases) [11]. Since
the early 80s, many implementations in theory and practice focus on the observers
for nonlinear systems. Many nonlinear observers have been developed, such as Lie-
algebra-based observers [24], Luenberger-like observers [12], high-gain observers
[10], optimization-based observers [6], linearization approaches [25], stochastic sys-
tems [26], and reduced-order nonlinear observers [7], adaptive high-gain observers
[2], etc. A basic requirement of the above observers is the nonlinear systems that are
completely known [14]. The observers duplicate the nonlinear dynamics. There are
no internal and external uncertainties.

If the uncertainties in the nonlinear systems can be parameterized, the nonlinear
adaptive observers [20] can obtain the states. H∞ and L2 techniques are applied to
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construct the robust observers for linear systems in [3]. The results are extended to the
Lipschitz nonlinear systems in [15]. These robust observers are very complex, and
require the uncertainties to satisfy desired properties. If the uncertainties are struc-
tural, i.e., the uncertainties and disturbances are assumed to be bounded, nonlinear
model-free observers are needed [13]. High-gain observers are the most popular
model-free nonlinear observers, they are robust against model uncertainty and dis-
turbances [17]. However, they can only estimate the derivative of the output and are
sensitive to measurement noises. Sliding mode observers do not require estimate the
derivative of the output [27]. However, the measurement noise and disturbances case
chattering in the nonlinear observers [18]. Another model-free nonlinear observer
uses neural networks to approximate the unknown part and then to design an observer
[4]. However, the observation error is large, because the output has to be used for
neural approximation and observer estimation [16].

In this chapter, the nonlinear observer is also for unknown or partially unknown
nonlinear system. We use a Luenberger-like structure. Compared with the other
robust nonlinear observers, high-gain observer, sliding mode observer, and neural
observer, our Luenberger-like nonlinear observer is more simple. It can estimate not
only the derivative of the output. It is not sensitive to measurement noises. It does not
necessarily model the nonlinear system. Compared with the other Luenberger-like
nonlinear observers [1, 19], our observer do not need to copy the complete nonlinear
system for the observer design. They assume the nonlinear systems do not have any
uncertainties.

We assume both external disturbances (noises) and internal uncertainties (unmod-
eled dynamics) are bounded. The assumptions on the partly known nonlinear systems
are standard, such as Lipschitz and uniformly observability The gain of Luenberger
observer is specially selected to guarantee the property of robustness using a Riccati
differential equation. The stability of this robust nonlinear observer is proven. An
example demonstrates the effectiveness of this observer for the system containing
complex uncertain nonlinearities.

2.2 Robust Nonlinear Observer

We discuss a class of single input and single output nonlinear systems given by

ẋ = f (x) + g(x)ut + ξ1,t
yt = Cx + ξ2,t

(2.1)

where f (x) =

⎛
⎜⎜⎜⎝

x2
...

xn
ϕ0(x) + Δϕ(x)

⎞
⎟⎟⎟⎠, g(x, t) =

⎛
⎜⎜⎜⎝

g1(x1) + Δg1(x1)
g2(x1, x2) + Δg2(x1, x2)

...

gn(x1 · · · xn) + Δgn(x1 · · · xn)

⎞
⎟⎟⎟⎠ ,

x ∈ �n is the state vector of the system at time t ∈ R+ := {t : t ≥ 0} , ut ∈ � is a
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given control action, it is assumed to be bounded as |ut |2 ≤ u, yt ∈ � is the output
vector that is suggested to be measurable at each time t , f (·) and g(·) : �n+1 →
�n, are nonlinear functions describing the dynamic operator of the given system,
C = [1, 0 · · · 0], ξ1,t and ξ2,t are the vector functions presenting the external state
and output perturbations.

We assume that the nominal parts of nonlinear system F(x) and G(x) are known,

f (x) = F(x) + Δ f (x)
g(x) = G(x) + Δg(x)

(2.2)

where F(x) = [x2, . . . xn, ϕ0(x)] , G(x) = [g1(x1), . . . gn(x1 · · · xn)] , Δ f (x) =
[0, . . . 0,Δϕ(x)], and Δg(x) = [Δg1(x1), . . . Δgn(x1 · · · xn)] .

In this chapter, we use the following four assumptions to design a robust nonlinear
observer for the system (2.1).

A1. The perturbations ξ1,t and ξ2,t satisfy the following “bounded power” condition

lim sup
T→∞

1

T

T∫

0

∥∥ξi,t

∥∥2
Λξi

dt = Υi < ∞ , i = 1, 2 (2.3)

where Λξi = ΛT
ξi

> 0,
∥∥ξi,t

∥∥2
Λξi

= ξ T
i,t

Λξi ξi,t .

A2. The normal parts of the nonlinear system F(x, t) andG(x, t) are observable and
Lipschitz in a compact set U

∥∥FT (x1) − FT (x2)
∥∥

Λ f
≤ L f ‖x1 − x2‖Λ f x∥∥GT (x1) − GT (x2)

∥∥
Λg

≤ Lg ‖x1 − x2‖Λgx

(2.4)

where Λ f ∈ �n×n, Λ f x ∈ �n×n, Λg ∈ �m×m, Λgx ∈ �n×n are strictly positive-
definite matrices, or Lipschitz constant matrices. L f and Lg are Lipschitz constants.

A3. The unmodeled dynamics 	 f and 	g in (2.2) satisfy the “strip bounded” con-
ditions

	 f T (x)Λ	 f 	 f (x) ≤ C	 f + xT D	 f x
	gT (x)Λ	g	g(x) ≤ C	g + xT D	gx

(2.5)

where 0 < ΛT
	 f = Λ	 f ∈ �n×n, 0 < DT

	 f = D	 f ∈ �n×n, 0 < DT
	g = D	g ∈

�n×n are known constant matrices, C	 f and C	g are known positive constants char-
acterizing the behavior of the corresponding unmodeled dynamic mappings at the
point x = 0.

A4. There exist a stable matrix A0, strictly positive-defined matrices Q0 and Rt ,

such that the following matrix differential Riccati equation
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.

Pt + Pt A0 + AT
0 Pt + Pt Rt Pt + Q0 = 0 (2.6)

has strictly positive solution Pt .
The assumption A1 requires the noises or unknown disturbances are bounded.

This is a basic assumption for the analysis of nonlinear systems [9]. Otherwise, the
nonlinear systems are flooded with the noises.

The assumption A2 comes from the fact that a nonlinear system is uniformly
observable for any input if and only if it can be presented as the observer form (2.1),
see Theorem2 of [10]. The nominal parts are also Lipschitz, as

F(x + 	x) = F(x) + ∇T F(x)	x + v f

G(x + 	x) = G(x) + ∇T G(x)	x + vg
(2.7)

where the vector vg can be estimated as
∥∥v f

∥∥ ≤ 2L f ‖	x‖ ,
∥∥vg

∥∥ ≤ 2Lg ‖	x‖ .

The “strip bounded” condition A3 is more general than the bounded unmod-
eled dynamic [10] and the sector condition [5]. If the unmodeled dynamics are
bounded, DΔ f = DΔg = 0. If the unmodeled dynamics satisfy sector conditions,
C	 f = C	g = 0.

A special case of A4 is the following differential Riccati equation with constant
A0, R0, and Q0

.

P
′
t + P ′

t A0 + AT
0 P

′
t + P ′

t R0P
′
t + Q0 = 0 (2.8)

Equation (2.8) has a positive solution P ′
t , if the pair (A0, R

1/2
0 ) is controllable and

the pair (Q1/2
0 , A0) is observable. The detailed proof of it can be found in [22]. This

is an extend of the matrix Riccati equation

AT P + PA + PRP + Q = 0 (2.9)

Equation (2.9) has a positive solution P , if the pair (A, R1/2) is controllable, the pair
(Q1/2, A) is observable. The controllability and observability conditions for A, R,
and Q are equivalent to the following local frequency condition [22]

AT R−1A − Q ≥ 0 (2.10)

Lemma2.1 in the next section shows that if the uncertainties are not very large, i.e.,
the condition (2.16) is satisfied, we can use condition (2.10) for (2.6). Thismeans that
it is not difficult to select a Hurwitz matrix A and Q such that (2.10) is established.
So (2.10) and (2.16) are the conditions for A4.

The robust observer is selected as Luenberger’s form [11],

d

dt
x̂ = F (̂x) + G (̂x)ut + Kt [yt − Cx̂] (2.11)
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where Kt ∈ �n×m is the gain matrix. The observer uses only the available informa-
tion: the nominal nonlinear mappings F(·), G(.), and C , and the online measure-
ment yt .

The observer error is defined as

Δt = x̂ − x

The object of robust observer is to find a Kt such that following performance index

J (Kt ) = lim sup
T→∞

1

T

T∫

0

ΔT
t QΔt dt (2.12)

is minimized. J (Kt ) is the average of the observer error, ‖Δt‖2Q = ΔT
t QΔt . Here

the strictly positive constant matrix Q is a given to present different physical nature.
If Kt in the observer (2.11) is a constant matrix, (2.11) becomes the well-known

high-gain observer [10]. It has the following property

‖Δt‖ ≤ k(θ)exp

(
−θ

3
t

)
‖x0 − x̂0‖ , (2.13)

where x0 and x̂0 are initial states, θ is big enough positive constants, k(θ) is a positive
function related to observer gain. It means that the observation error is asymptotically
stable uniformly on initial conditions. This property requires the perturbations in A1
be zero, and the unmodeled dynamics 	 f and 	g in A3 also be zero. In order to
deal with these uncertainties, in this chapter, we use a time-variant gain Kt , which
is designed in the next section.

2.3 Stability of the Robust Nonlinear Observer

The following lemma guarantees that the assumption A4 is correct.

Lemma 2.1 Consider the following two matrix differential Riccati equations: Ric-
cati differential equationwith time-varyingparameter andalgebraicRiccati equation

Ṗ1(t) + AT
1 (t)P1(t) + P1(t)A1(t) − P1(t)R1(t)P1(t) + Q1(t) = 0

AT
2 P2 + P2A2 − P2R2P2 + Q2 = 0

(2.14)

with initial condition

P1(0) > P2 (2.15)
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the corresponding Hamiltonians are given by

H1,t =
[
Q1(t) A1(t)T

A1(t) −R1(t)

]
H2 =

[
Q2 AT

2
A2 −R2

]

If

H2 ≥ H1,t ≥ 0 (2.16)

and the pair (A2, R2) are stable, then

P1(t) ≥ P2 ≥ 0,∀t > 0 (2.17)

Proof Let us define et = P1(t) − P2. Using condition (2.16) and the definition H =[
H11 H12

H21 H22

]
, the Riccati equation (2.14) in the Hamiltonian form is

−Ṗ1(t) = [
I P1(t)

]
H1,t

[
I

P1(t)

]

0 = [
I P2

]
H2

[
I
P2

]

we derive:

−ėt = [
I et + P2

]
H1,t

[
I

et + P2

]

≤ [
I et + 0 P2(t)

]
H2

[
I

et
+ I

P2(t)

]

= (
AT
2 + P2R2

)
et + et (A2 − R2P2) − et R2et + Qt − Qt = Lt − Qt

where

Lt = (
AT
2 + P2R2

)
et + et (A2 − R2P2) − et R2et + Qt

Based on Theorem3 of [23], the term
(
AT
2 − P2R2

)
is stable when (A2, R2) is stable.

From (2.15), et=0 > 0.By Lemma1 of [23]), there exists Qt=0 > 0 such that Lt=0 =
0. This leads to

ėt ≥ Qt > 0.

The solution of the Riccati differential equation is a continuous function, if its time-
varying parameters are continuous. So we conclude that for time t > 0, there exists
a ε > 0 such that
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Qτ > 0 ∀τ ∈ [t, t + ε] .

As a result,

et+ε = et +
t+ε∫

t

·
eτdτ ≥ et +

t+ε∫

t

Qτdτ ≥ et + inf
τ
[λmin (Qt )] Iε > 0

that leads to

P1(τ ) > P2 ∀τ ∈ [0, 0 + ε]

Iterating this procedure for the next time interval [ε, 2ε] , we obtain the final result
(2.17).

This lemma shows that if we let A0 = A1(t), Q0 = Q1 (t) , R (t) = R1 (t) , then
(2.6) is (2.14). By Lemma2.1, the solution of (2.6) P (t) is not less than the solution
of

AT
2 P + PA2 + PR2P + Q2 = 0 (2.18)

providing than the initial condition of (2.6) is larger than that of (2.18). This means
the existence condition for A4 is always satisfied.

Now, we define Rt and Q0 in (2.6) as

Rt = R0 + βt
(
C+Λ(C+)T

) 1
2 × (

I + Π−1
) (
C+Λ(C+)T

) 1
2 βT

t
Q0 = (

2Λ f x + K1λmax(Λ∂ f )I
) + (

2uΛgx + uK2λmax(Λ∂g)I
) + Q

(2.19)

where R0 = Λ−1
f + Λ−1

g + Λ−1
ξ1

+ Λ−1
	 f + Λ−1

	g + Λ−1
∂ f + +Λ−1

∂g , Λ = Λ−1
ξ2

, K1 and
K2 are positive constants, u is the upper bound of control ut , the matrix βt ∈ �n×n

is defined as

βt = ∂

∂x
FT (̂x) + ∂

∂x
GT (̂x)ut − A0 (2.20)

C+ is the pseudoinverse matrix ofC in Moor–Penrose sense. A0 is a Hurwitz matrix.
The following theorem formulates the main result of the chapter. It also provides

the upper bound of the performance index (2.12).

Theorem 2.1 Given a class of nonlinear systemH satisfies the assumptionsA1–A4,
for any gain matrix Kt , the following upper bound of the performance index (2.12)
holds,

J (Kt ) ≤ J+(Kt ) = C + D + Υ1 + Υ2 + φ (Kt ) (2.21)
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where the constants Υ1, Υ2 are defined by A1, C = C	 f + C	g,

D = lim sup
T→∞

1
T

T∫
0
xT

(
D	 f + uD	g

)
xdt

φ (Kt ) = lim sup
T→∞

1
T

T∫
0

ΔT
t

(
XtΩ̂

1
2
t + Ω̂

− 1
2

t

) (
XtΩ̂

1
2
t + Ω̂

− 1
2

t

)T
Δt dt

(2.22)

Xt = Pt
(
βt − K̂tC

)
, Kt = K̂tCC+, Ω̂t = C+Λ

1
2 (I + Π)Λ

1
2 (C+)T + δ I, δ > 0.

Proof To start the proof, we need to derive the error dynamic. Taking into account
(2.1) and (2.11),

·
Δt = .

x̂ − ẋ
= F (̂x) + G (̂x)ut + Kt [yt − Cx̂]
−F(x) − G(x)ut − 	 f (x) − 	g(x)ut − ξ1,t

(2.23)

Let us denote

Ft = F(x,Δt , ut | Kt )

= F(x + Δt ) − F(x) + G(x + Δt )ut − G(x)ut − KtCΔt ,

	Ht = 	H(ξ1,t , ξ2,t ,	 f | Kt ) = Ktξ2,t − 	 f (·) − 	g(·)ut − ξ1,t .

(2.24)

The vector function Ft describes the dynamic of a nominal model and the function
	Ht corresponds to unmodeled dynamics and external disturbances. So

·
Δt = Ft + 	Ht

Define a Lyapunov like function as

Vt = ΔT
t PtΔt , PT

t = Pt > 0 (2.25)

Along with the trajectories of the differential equation (2.23), we derive

dVt

dt
= ∂Vt

∂Pt
+

(
∂Vt

∂Δt
,

.

Δt

)
= ΔT

t

·
PtΔt + 2ΔT

t Pt [Ft + 	Ht ] (2.26)

Using (2.4),

F(x + Δt ) − F(x) = ∂
∂x F

T (x)Δt + v f

G(x + Δt ) − G(x) = ∂
∂x G

T (x)Δt + vg
(2.27)

According to (2.7),

∥∥v f

∥∥
Λ f

≤ 2 ‖Δ‖Λ f x
,

∥∥vg
∥∥

Λg
≤ 2 ‖Δ‖Λgx

(2.28)
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Substitute (2.27) into (2.24),

Ft = ∂FT (x)
∂x Δt + v f + ∂GT (x)

∂x utΔt + utvg − KtCΔt

=
[

∂FT (x)
∂x + ∂GT (x)

∂x ut − KtC
]
Δt + v f + utvg

(2.29)

Because ΔT
t Ptv f is scalar, applying (2.28) and matrix inequality [16]

XTY + Y T X ≤ XTΛX + Y TΛ−1Y, (2.30)

where X ∈ �n×k , Y ∈ �n×k , Λ = ΛT > 0, Λ ∈ �n×n are any matrices. We obtain
the inequalities:

2ΔT
t Ptv f ≤ ΔT

t

(
PtΛ

−1
f Pt + 2Λ f x

)
Δt ,

2ΔT
t Ptvgut ≤ ΔT

t

(
PtΛ−1

g Pt + 2uΛgx
)
Δt ,

(2.31)

Using the assumptions A1 ,we have

−2ΔT
t Ptξ1,t ≤ ΔT

t PtΛ
−1
ξ1

PtΔt + ξ T
1,t ,Λξ1ξ1,t ,

2ΔT
t Pt Ktξ2,t ≤ ΔT

t Pt KtΛ
−1
ξ2 K

T
t PtΔt + ξ T

2,t ,Λξ2ξ2,t ,
(2.32)

Using the assumptions A3

−2ΔT
t Pt	 f ≤ ΔT

t PtΛ
−1
	 f PtΔt + C	 f + xT D	 f x

−2ΔT
t Pt	gut ≤ ΔT

t PtΛ
−1
	g PtΔt + uC	g + uxT D	gx

(2.33)

Let us denote

At = ∂FT (x)

∂x
+ ∂GT (x)

∂x
ut − KtC. (2.34)

Using the identity 2ΔT
t AtΔt = ΔT

t AtΔt + ΔT
t A

T
t Δt and adding and subtracting the

term ΔT
t QΔt

(
Q = QT > 0

)
in the right hand side of (2.26), we obtain

dVt

dt
≤ ΔT

t LtΔt + (
C	 f + uC	g

) + Υt + xT
(
D	 f + uD	g

)
x − ΔT

t QΔt

(2.35)

where Υt = ξ T
1,tΛξ1ξ1,t + ξ T

2,tΛξ2ξ2,t ,

Lt = Pt
(
Λ−1

f + Λ−1
g + Λ−1

ξ1
+ Λ−1

	g

)
Pt

+ ·
Pt + Pt At + AT

t Pt + Pt KtΛ
−1
ξ2

KT
t Pt + 2

(
Λ f x + uΛgx

) + Q,
(2.36)
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Choosing any Hurwitz matrix A0, we can rewrite (2.34) as follows:

At = A0 + ( ∂
∂x F

T (̂x) + ∂
∂x G

T (̂x)ut

−KtC − A0) + (
∂
∂x F

T (x) − ∂
∂x F

T (̂x)
) + (

∂
∂x G

T (x) − ∂
∂x G

T (̂x)
)
ut

(2.37)

Denote

Ât = ∂
∂x F

T (̂x) + ∂
∂x G

T (̂x)ut − KtC − A0

∂ ft = ∂
∂x F

T (x) − ∂
∂x F

T (̂x)

∂gt = ∂
∂x G

T (x)ut − ∂
∂x G

T (̂x)ut .

From (2.27), we know

∂ ft = (F(x + Δt ) − F(x)) − (F(x + 2Δt ) − F(x + Δt ))

Similar to (2.32), we deduce

2ΔT
t Pt∂ ft ≤ ΔT

t

(
PtΛ

−1
∂ f Pt + ∂ ftΛ∂ f ∂ f Tt

)
Δt ≤ ΔT

t

(
PtΛ

−1
∂ f Pt + K1λmax(Λ∂ f )I

)
Δt ,

2ΔT
t Pt∂gt ≤ ΔT

t

(
PtΛ

−1
∂g Pt + uK2λmax(Λ∂g)I

)
Δt ,

where K1 and K2 are positive constants. Substituting these inequalities into (2.36)
and using (2.37), we obtain

Lt ≤
( ·
Pt + Pt A0 + AT

0 Pt + Pt R0Pt + Q0

)
+ (

Pt KtΛKT
t Pt + Pt Ât + ÂT

t Pt
)

(2.38)

where the matrices R0, Q0, and Λ are defined in (2.19). If we select Kt have a
special structure Kt = K̂tCC+, using the pseudoinverse property CC+C = C, we
can present

Pt KtΛKT
t Pt + Pt Ât + ÂT

t Pt
= Pt

(
βt − K̂tC

) + (
βt − K̂tC

)T
Pt + Pt K̂tCGCT K̂t Pt

(2.39)

where

G = C+Λ(C+)T . (2.40)



2 Luenberger Observer Design for Uncertainty Nonlinear Systems 35

Using the definition of (2.22), the last term in (2.39) can be estimated as follows:

ΔT
t Pt K̂tCGCT K̂ T

t PtΔt =
∥∥∥G

1
2
t

(
K̂tC

)T
PtΔt

∥∥∥
2

=
∥∥∥G

1
2
t xΔt − G

1
2
t βt PtΔt

∥∥∥
2

≤ ΔT
t xG

1
2
t (I + Π)G

1
2
t x

TΔt + ΔT
t PtβtG

1
2
t

(
I + Π−1

)
G

1
2
t βT

t PtΔt

where Π is any positive matrix. Define

Φt = βtG
1
2
t

(
I + Π−1

)
G

1
2
t βT

t ,

The first term of (2.39) can be rewritten in the following equivalent form:

Pt KtΛKT
t Pt ≤ xΩt x

T + PtΦt Pt

Since Ωt ∈ �n×n and rank (Ωt ) = min {n,m}, when m < n the inverse matrix of
Ωt does not exist. We introduce the matrix

Ω̂t = Ωt + δ I, δ > 0

Equation (2.39) can be written as

Pt KtΛKT
t Pt + Pt Ât + ÂT

t Pt ≤ Xt + XT
t + XtΩt XT

t + PtΦt Pt

≤
(
xΩ̂

1
2
t + Ω̂

− 1
2

t

) (
xΩ̂

1
2
t + Ω̂

− 1
2

t

)T
− Ω̂−1

t − δXt XT
t + PtΦt Pt

≤
(
xΩ̂

1
2
t + Ω̂

− 1
2

t

) (
xΩ̂

1
2
t + Ω̂

− 1
2

t

)T
+ PtΦt Pt

Ifwe define Rt as in (2.19), using the definition (2.22),we transform (2.35) as follows:

dVt

dt
≤ ΔT

t L
′
tΔt + C + Υt + Dt − ΔT

t QΔt + ΔT
t γ̂tΔt (2.41)

where

L
′
t = ·

Pt + Pt A0 + AT
0 Pt + Pt Rt Pt + Q0

γ̂t =
(
xΩ̂

1
2
t + Ω̂

− 1
2

t

) (
xΩ̂

1
2
t + Ω̂

− 1
2

t

)T

According to the assumption A4, we conclude that L̂ t = 0. Integrating (2.41) within
the interval t ∈ [0, T ] and dividing both sides on T , we obtain:
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1
T

T∫
0

ΔT
t QΔt dt ≤ C + 1

T

T∫
0

Υt dt + 1
T

T∫
0
Dtdt + 1

T

T∫
0

ΔT
t γ̂tΔt − 1

T (VT − V0)

≤ C + 1
T

T∫
0

Υt dt + + 1
T

T∫
0
Dtdt + 1

T

T∫
0

ΔT
t γ̂tΔt − 1

T V0.

Taking the limit of T → ∞, we finally obtain (2.21), and

φ (Kt ) = lim sup
T→∞

1

T

T∫

0

ΔT
t γ̂tΔt dt

The following theorem provides the design process of the robust observer.

Theorem 2.2 If K̂t satisfies

Kt =
{
P−1
t

[
C+Λ

1
2 (I + Π)Λ

1
2 (C+)T + δ I

]−1 + βt

}
C+ (2.42)

the upper bound (2.12) is minimum

min
Kt

J = C + D + Υ1 + Υ2

Proof Since C, D, Υ1, Υ2, and φ
(
K̂t

)
are positive, to minimize (2.21), we must

choose

φ (Kt ) = 0, Xt = −Ω̂−1
t (2.43)

that leads to

Pt (βt − K̂tC) = − (Ωt + δ I )−1

In equivalent form,

K̂tC = βt + P−1
t (Ωt + δ I )−1 (2.44)

Using Kt = K̂tCC+, (2.42) is established.

If there are no any unmodeled dynamics
(
C = D = 0

)
and no any external dis-

turbances (Υ1 = Υ2 = 0) , the robust observer (2.11) with the optimal matrix gain
given by (2.42) guarantees “the stability in average”,

lim sup
T→∞

1

T

T∫

0

ΔT
t QΔt dt = 0.
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It is equivalent to the fact that

lim
t→∞ Δt = 0

The robust nonlinear observer (2.11) has Luenberger form. It is very simple.
The time-varying gain Kt is calculated by (2.42). Here C , Π, and Λ are constant
matrices, βt is calculated by the normal parts (2.20), Pt is obtained from the Riccati
differential equation (RDE) (2.6). This RDE has a time-varying matrix Rt . It is not
easy to discuss the existence conditions for P (t) . Lemma2.1 shows how to use
a time-invariant algebraic Riccati equation to decide the solution of a RDE with
time-varying parameters.

Now,we compare our observer (2.11)with the others. If the nonlinear system (2.1)
is known completely, and the perturbations ξ1,t and ξ2,t are zero, the model-based
nonlinear observer in Luenberger form is

d

dt
x̂ = f (x) + g(x)ut + Kt (yt − Cx̂)

If f (x) and g(x) are unknown or partly known as F (̂x) and G (̂x), the model-based
methods [2, 6, 7, 10, 12, 24–26] cannot be used.

The high-gain observer require the nonlinear system (2.1) can be transformed to

ẋi = xi−1, i = 1 · · · n − 1

ẋn = F(x) + G(x)u

y = x1

(2.45)

by a local diffeomorphism, here F(x) andG(x) are unknown. The high-gain observer
is [13, 17]

d
dt x̂i = x̂i−1 + αi

εi
(y − ŷ) i = 1 · · · n − 1

d
dt x̂n = αn

εn
(y − ŷ)

ŷ = x̂1

(2.46)

where αi > 0 are constant design parameters, ε is a small positive constant. Obvi-
ously, the observed states x̂i are derivative of the output in different degrees. From
(2.1), we can see that the high gain αn

εn
enlarges the measurement noise ξ2,t directly.

However, our Luenberger observer (2.11) uses time-varying gain Kt which only use
the upper bound Λ = Λ−1

ξ2
of the measurement noise in (2.19). The measurement

noise ξ2,t is filtered in the Luenberger observer (2.11).
If the nonlinear system (2.1) cannot be transformed into (2.45), or we do not want

to estimate the derivative of the output, the sliding mode observer can be applied
[8, 18]

d

dt
x̂ = F (̂x) + G (̂x)ut − KCT sign (yt − Cx̂) (2.47)
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where K > 0, is a big gain matrix. The measurement noises are included inside the
sign function, it causes chattering.

A smooth version model-free nonlinear observer is the neural observer [16]

d

dt
x̂ = F (̂x) + G (̂x)ut + W1,tσ(V1,t x̂) + W2,tφ(V2,t x̂)ut + K (yt − Cx̂) (2.48)

where W1,tσ(V1,t x̂) and W2,tφ(V2,t x̂) are neural networks to approximate the
unknown functions f (x) and g(x). The output error (yt − Cx̂) has to be used for
the observer (2.48) and the weights training as

Ẇ1,t = K1C
+ (yt − Cx̂) σ T

So the observer accuracy is low, compared with the other model-free observers.

2.4 Simulations

We consider a single-link robot rotating in a horizon plane. It is described as
[
ẋ1
ẋ2

]
=

[
x2
− sin(x1) + u

]
− 0.05

[
x1 cos(x1)
x2 sin(x2)

]
+

[
w1

w2

]

yt = x1 + w3

(2.49)

where w1, w2 are external state perturbations modeling square wave and saw-tooth
functions; w3 is an output perturbation with the “white noise” nature. We use a PD
control to force the system following the reference signal x1,d = sin t , x2,d = cos t ,
u = −5

(
x1 − x1,d

) − 10
(
x2 − x2,d

)
. The unmodeled dynamics are given by

Δ f (·)T = −0.05 [x1 cos(x1); x2 sin(x2)]

This example is similar to [21], but we consider a general case, i.e., there are bounded
unmodeled dynamics and external disturbances. Obviously the assumptions A1–A3
are satisfied. (2.49) is already the observer form (2.1). We construct the following
robust observer

[
d
dt x̂1
d
dt x̂2

]
=

[
x̂2
− sin(̂x1) + u

]
+ Kt (x1 − x̂1)

Kt =
{
P−1
t

[
C+Λ

1
2 (I + Π)Λ

1
2 (C+)T + δ I

]−1 + βt

}
C+

(2.50)

where the gain matrix Kt is computed according to (2.42), C = [1, 0] , βt =[
0 1

− cos(̂x1) 0

]
+

[
0 0
0 1

]
ut − A0. In order to satisfyA4,weselect A0 =

[−2 0
0 −2

]
,
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Fig. 2.1 Time evolution of
Pt
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Q =
[
0.2 0
0 0.2

]
, Λ = Π = I. So Q0 =

[
1.2 0
0 1.2

]
, R0 =

[
2.5 0
0 2.5

]
. To obtain

the solution of the differential Riccati Equation (2.6), we start from the initial con-

ditions P0 =
[
0.3 −0.01
−0.01 0.3

]
which is the solution of the corresponding algebraic

Riccati equation (
·
Pt = 0).The time evolution for the elements Pt is shown inFig. 2.1.

To illustrate the effectiveness of our observer, we compare the observer (RO)
(2.50) with the other four nonlinear observers: (1) mode-based nonlinear observer
in Luenberger form (LO) [12]; (2) model-free high-gain observer (HO) [17]; (3)
model-free sliding mode observer (SO) [8]; (4) model-free neural observer (NO)
[16]. They are

LO:

[
d
dt x̂1
d
dt x̂2

]
=

[
x̂2

− sin(̂x1) + u

]
+ 20 (x1 − x̂1)

HO:

[
d
dt x̂1
d
dt x̂2

]
=

[
x̂2
−1
0.001 (x1 − x̂1)

]

SO:

[
d
dt x̂1
d
dt x̂2

]
=

[
x̂2

− sin(̂x1) + u

]
+

[
0

−100sign (x1 − x̂1)

]

NO:

[
d
dt x̂1
d
dt x̂2

]
=

[
x̂2

− sin(̂x1) + u

]
+ W1,tσ (̂x) + W2,tφ(̂x)ut + 15 (x1 − x̂1)

Ẇ1,t = 10C+ (x1 − x̂1) σ T
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Fig. 2.2 The comparison results for x2

Fig. 2.3 Average of
observation errors
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The initial conditions are x1 (0) = 2, x2 (0) = 1, x̂1 (0) = 1, x̂2 (0) = 1. The com-

parison results are shown in Fig. 2.2. Defining performance indexes JT = 1
T

T∫
0
(x2 −

x̂2)dt , the average observation errors are shown in Fig. 2.3.
From the simulations of these five nonlinear observers, we obtain the following

conclusions:
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(1) In Fig. 2.2, our robust observers based on the Riccati differential equation
(RO) has similar instant observation error as the high-gain observer (HO) [17] and
the sliding mode observer (SO) [8]. These three observers are better than the mode-
based nonlinear Luenberger observer (LO) [12] and the neural observer (NO) [16],
although LO and NO are more smooth. The reason is LO and NO do not consider
uncertainties.

(2) In Fig. 2.3, for the average of observation error after a long time, RO is better
than HO and SO, because HO and SO are sensitive to the measurement noises w1

and w2.

(3) The structure of our observer RO is more simple than NO, and more complex
than HO and SO. However, our observer is much better than NO, HO, and SO.

2.5 Conclusion

In this chapter, we propose a novel robust observer for nonlinear uncertainty systems
with unmodeled dynamics and external perturbations. This observer has a simple
structure, being a Luenberger-like observer. Using a Riccati differential equation and
a time-varying observer gain, the stability of the observer is proven. The observer
proposed in this chapter can be considered as an alternative approach to the nonlinear
robust feedback control. Future work is to extend the results to multi-input andmulti-
output unknown nonlinear systems.
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Chapter 3
Hill Equation: From 1 to 2 Degrees
of Freedom

M. Joaquin Collado

Abstract After the introduction, in the first part of the chapter, we review some
properties of the scalar Hill equation, a second-order linear ordinary differential
equation with periodic coefficients. In the second part, we extend and compare the
vectorial Hill equation; most of the results are confined to the case of two degrees of
freedom (DOF). In both cases, we describe the equations with parameters (α, β), the
zones of instability in the α − β plane are called Arnold Tongues. We graphically
illustrate the properties wherever it is possible with the aid of the Arnold Tongues.

3.1 Introduction

Hill equation (3.10) was introduced by George Hill in the 1870s, but it was not
published until 1886 in [28]. It is a linear second-order ordinary differential equation
with a periodic function, originally an even function, to describe the variations in
the lunar orbit. It matched so well with the data available in those days, that of
immediately gained wide diffusion. In the lapse between the results that Hill got and
the date of publication, the Floquet Theorem [20] was published. Nowadays, any
study of Hill equation is based on Floquet’s result. More than half a century later,
the Nobel prize winner Piotr Kapitsa [32] used the newer Theory of Perturbations
to find a condition in which the upper equilibrium point of a pendulum1 may be
stabilized varying periodically its suspension point. In detail, if the suspension point
of a pendulumofmass M and length L , variates periodically as z = A cosωt , then the
upper equilibrium point becomes stable if Aω >

√
2gL , where g = 9.81m/s2, is the

acceleration of the gravity. The pendulum with periodic variation of its suspension
point is called Kapitsa’s Pendulum. After this result was published, some authors
reported that Stephenson [46] had obtained earlier a similar result, in opinion of the

1When the pendulum is assumed a mass M hanging of rigid massless rod.
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author this is partially true, because Stephenson’s paper claims that it is possible,
but he did not express any condition. In 1928, van der Pol and Strutt2 [47] published
the first Arnold Tongues,3 they claimed belong to the Mathieu equation (Eq.3.10,
when q (t) = cos t), but actually they reproduced the Arnold Tongues diagram for
the Meissner Equation (Eq.3.10, when q (t) = sign (cos t)).

Even more interesting is that there exist a seven-century tradition at the Cathedral
of Santiago of Compostela, since then they have experienced a Kapitsa’s Pendu-
lum with a large censer (O Botafumeiro), which reaches approximately ±82◦, in 17
cycles and it takes approximately 80 s to achieve the maximum excursion [42]. This
effect is contained in Kapitsa’s result, because when the condition Aω >

√
2gL is

satisfied, simultaneously the upper equilibrium becomes stable and the lower equi-
librium becomes unstable, as in the Botafumeiro. Around 1940 the Romantic era for
Hill equation ended. Late 1940s until 1960s, two prominent Russian academicians
Krein and Yakubovich, established the foundation of linear Hamiltonian with peri-
odic coefficients; we mention two celebrated references, [34, 48]. Other important
contributions were made by Gelfand–Lidskii [24], Starzhinskii [45], Bolotin [6],
Atkinson [4], and Eastham [19]; above all of them, it was Lyapunov himself, who
contributed approximately half of his Ph.D. Thesis to the problem of stability of
Linear Periodic Systems [35]. Relations, only for the scalar case with the Sturm–
Liouville Theory, appear inAtkinson [4], Eastham [19], Yakubovich and Starzhinskii
[48], and the excellent book of Marchenko [37]; a recent reference is [10]. A recent
application of parametric resonance in the roll effect of ships appeared in [21]. Two
excellent surveys are Champneys [11] or Seyranian [43]; encyclopedic and very
deep results related to the spectrum of Hill’s equation were presented by McKean
and Moerbeke [38].

The Direct Problem refers to: Given a Hill equation, find the spectral bands or
Arnold Tongues associated; this paper deals onlywith this case. The Inverse Problem,
consists in: Given the spectral data, to recover the equation which has the given
spectrum. The inverse problem of the Sturm–Liouville problem related to the scalar
Hill equation was solved in the 1960s by Gelfand and Levitan [23] and others. But,
it was Borg [7] who defined the problem and gave the first key results. Atkinson [4]
and Eastham [19] gave interesting results. In the opinion of the author, the inverse
problem associated with the vectorial Hill equation is far from being solved, because
it is not equivalent to a vectorial Sturm–Liouville (SL) Problem, although some early
attempts are found in [26] and more recently in [5]. In physics literature, they name
to the Hill equation, the 1-dimensional Schrödinger equation with periodic potential.

This chapter is organized as follows: the first section is an introduction and histor-
ical overview, in Sect. 3.2 we present mathematical preliminaries particularly con-
cerningmatrices, Sect. 3.3 is dedicated to survey the results for scalarHill equation, in

2More well known as Lord Rayleigh, more correctly Baron Rayleigh because Baron is a higher
novelty title than Lord.
3The name Arnold Tongues was introduced after [2].
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Sect. 3.4 we present the 2-DOF Hill equation or vectorial Hill equation, the objective
of Sect. 3.5 gives a set of open problems and different possible generalizations, finally
in Sect. 3.6 we present some conclusions.

3.2 Preliminaries

In this section, we present the main background required subsequently, namely
Floquet Theory, which gives us the basic property of the solutions of a linear ordinary
differential equations with periodic coefficients. Then we review the Hamiltonian
systems, and the associated Hamiltonian and symplectic matrices with their main
properties.

3.2.1 Floquet Theory

Given a linear system described as a set of first-order linear ordinary differential
equations with periodic coefficients, as:

•
x = A(t)x (3.1)

where A (t) is an n × n matrix whose components are piecewise continuous, and
periodic with minimum period T ; i.e., A (t + T ) = A (t) for all t; for the sake of
brevity we will say that A (t) is T -periodic. The solutions of (3.1) may be expressed
in terms of the state transition matrix4 Φ (t, t0), which has the following basic prop-
erties, see [8] or [12]:

(a) Φ (t, t) = In ∀t ∈ R

(b) [Φ (t, t0)]
−1 = Φ (t0, t)

(c) Φ (t2, t0) = Φ (t2, t1) Φ (t1, t0) ∀t0, t1, t2 ∈ R,

(d) ∂
∂t Φ (t, t0) = A (t)Φ (t, t0), and

(e) ∀ x (t0) = x0 ∈ R
n , the solution of (3.1) is x (t) = Φ (t, t0) x0.

Using the state transition matrix previously reviewed, Floquet Theory [8] asserts:

Theorem 3.1 (Floquet) Given the periodic linear system (3.1), its state transition
matrix satisfies:

Φ (t, t0) = P−1 (t) eR(t−t0) P(t0), (3.2)

4Matriciant in the russian literature [1]. Also denominated as Cauchy Matrix or Normalized Fun-
damental Matrix.
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where P (t + T ) = P (t) is an n × n periodic matrix of the same period T of the
system (3.1), and R is a constant n × n matrix, not necessarily real even if (3.1) is
real.5

If we make t0 = 0 in (3.2) and by property (a), we get P−1 (0) = In , then we get
the most well-known version:

Corollary 3.1 (Floquet Theorem) Given the system (3.1), for t0 = 0 its state tran-
sition matrix satisfies:

Φ (t, 0) = P−1 (t) eRt (3.3)

where P (t + T ) = P (t) is an n × n periodic matrix of the same period as the system
(3.1), and R is a constant n × n matrix.

Now if we evaluate (3.3) at t = T , taking into account that P (t) is T -periodic,
P (T ) = In, then

M = Φ (T, 0) = eRT . (3.4)

The last constant matrix is particularly important, it is called Monodromy Matrix
and will be designated by M .

Remark 3.1 TheMonodromymatrix defined by (3.4) is dependent of the initial time
t0; but not its spectrum.Let us designate Mt0 = Φ (T + t0, t0), then using (3.2) for t =
T + t0, Φ (T + t0, t0) = P−1 (T + t0) eRT P(t0) = P−1 (t0) eRT P(t0) = P−1 (t0)
M P(t0). This shows that Φ (T + t0, t0) = Mt0 and M are similar. As long as our
use of the Monodromy matrix is reduced to its spectrum, there is no difference to
use M or Mt0 .

Two consequences of the Floquet Theorem are of great importance: Reducibility
and Stability.

I.- Reducibility

Given a system
•
x = A (t) x , if we make the following change of coordinates

z (t) = T (t) x (t), where the square n × n matrix T (t) satisfies:

(i) T (t) is differentiable and invertible ∀t, and

(ii) The matrices T (t) ,
•
T (t) , and T −1 (t) are all bounded

Then the Transformation matrix T (t) is called a Lyapunov Transformation.6

Roughly speaking, the system in coordinates x or z, keep their stability property if,
T (t) the matrix which relates x and z is a Lyapunov Transformation. For properties
of Lyapunov Transformations see [1, 8, 22].

5The necessary and sufficient condition for R to be real is that the real negative eigenvalues of
Φ (T, 0), be of algebraic multiplicity even [1].
6This transformation was introduced by Lyapunov himself [35], other reference is [8].
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Definition 3.1 A time-varying linear system (not necessarily periodic)
•
x = A (t) x ,

is said to be ‘reducible,’ if there exists a linear time-varyingLyapunovTransformation
T (t) such that z (t) = T (t) x (t)

•
z =

[
T −1 (t) A (t) T (t) + T −1 (t)

•
T (t)

]
z (3.5)

where

[
T −1 (t) A (t) T (t) + T −1 (t)

•
T (t)

]
= R a constant matrix

Any system (3.1) T -periodic is reducible, the result is expressed formally in the
next theorem. All the symbols refer to the factorization given in (3.3).

Theorem 3.2 Given a T -periodic linear system
•
x = A (t) x, the change of coordi-

nates z (t) = P−1 (t) x (t) transforms the system into a linear time-invariant system:

•
z = Rz. (3.6)

Remark 3.2 It follows that for linear periodic systems, there is a linear periodic
transformation, which transforms the original periodic time-varying system into a
linear time-invariant system. Unfortunately this result, while very useful for analysis,
it is not so for synthesis; because one requires the solution in order to perform this
change of coordinates.

II.- Stability

Recall the stability definition in the sense of Lyapunov [35] (or contemporary
reference [33]):

Definition 3.2 The zero solution of
•
x = A (t) x

(a) Stable, if ∀ ε > 0, ∃ δ > 0 such that ‖x (t0)‖ < δ =⇒ ‖x (t)‖ < ε ∀ t ≥ t0
(b) Asymptotically stable if the zero solution is stable and lim

t→∞x (t) = 0.

In our system (3.1)
•
x = A (t) x, for t ≥ 0, t may be expressed as: t = kT + τ , k a

non-negative integer and τ ∈ [0, T ); then the solution satisfies t0 = 0 and x(0) = x0:

x(t) = Φ(t, 0)x0

= Φ(kT + τ, 0)x0

= Φ(kT + τ, kT )Φ
(

kT , (k − 1) T
)

Φ
(

kT , (k − 1) T
)

· · ·Φ
(

T , 0
)

x0

= Φ (τ, 0) Φ (T, 0) Φ (T, 0) · · · Φ (T, 0)︸ ︷︷ ︸
k times

x0

= Φ (τ, 0) Mk x0
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from the last step, we can conclude that

(a) Asymptotic Stability: x(t) → 0 if only if σ (M) ⊂ ◦
D1 � {z ∈ C : |z| < 1}

(b) Stability: x(t) remains bounded ∀ t ≥ 0 iff σ (M) ⊂ D1 � {z ∈ C : |z| ≤ 1} and
if λ ∈ σ (M) and |λ| = 1, λ is a simple root of the minimal polynomial of M .

Remark 3.3 Notice that both properties, reducibility, and stability, for linear
T -periodic systems could be obtained thanks to the Floquet factorization (3.3).

3.2.2 Hamiltonian Systems

Given a differentiable function H (q, p), called a Hamiltonian function, which
depends on vectors q and p, which satisfies the equations:

•
q =

(
∂H (q, p)

∂p

)T

•
p = −

(
∂H (q, p)

∂q

)T
(3.7)

is called a Hamiltonian System, also called in Russian literature Canonical System.
The Hamiltonian function represents the energy of the system and for the case in
which this function H (q, p) does not depend explicitly of time, this quantity being
preserved along the solutions of (3.7); when this property holds the system is called
Conservative. This guarantees that the system (3.7) has a first integral, [3, 14, 39].
The Hamiltonian systems (3.7) are always of even order, say 2n if q, p ∈ R

n . For
further properties see [3, 39].

We shall consider Hamiltonian functions that are also function of time, i.e.,
H (t, q, p), in this case the Hamiltonian system is no longer conservative. Also
we shall only regard linear Hamiltonian systems, then the Hamiltonian function is a
quadratic homogeneous form, i.e.,

H (t, q, p) =
[

q
p

]T

H (t)

[
q
p

]
(3.8)

where H (t) is a 2n × 2n symmetric matrix, in this case the Hamiltonian System
(3.7) may be expressed as:

d

dt

[
q
p

]
= J H (t)

[
q
p

]
(3.9)

where J =
[

0 In

−In 0

]
. Notice that J−1 = J T = −J and J 2 = −I2n .
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Finally, if the linearHamiltonian system is T -periodic, then H (t + T ) = H (t) =
H T (t). We are going to assume this relation to hold from now on.

Definition 3.3 ([39]) An even-order matrix A ∈ R
2n×2n is called Hamiltonian

Matrix, if A = J H , where H is a symmetric matrix; equivalently J A + AT J = 0

From J A + AT J = 0, we get A = J−1
(−AT

)
J , i.e., A is similar to−AT there-

fore they have the same spectrum:

σ (A) = σ
(−AT

) = σ (−A) .

We have proven the key property of constant Hamiltonian matrices, that is, its
spectrum is symmetric with respect to the imaginary axis.

Theorem 3.3 Let A ∈ R
2n×2n be a Hamiltonian matrix, then if λ ∈ σ (A)=⇒ −λ ∈

σ (A).7 Equivalently, the characteristic polynomial of a Hamiltonian matrix has only
even powers or it is an even polynomial.

Remark 3.4 Notice also that, the trace of a Hamiltonian matrix is always zero.

Hamiltonian matrices are closely related to another kind of matrices, the sym-
plectic ones.

Definition 3.4 ([39]) An even-order real matrix M ∈ R
2n×2n is called a Symplectic

Matrix, if MT J M = J .

The determinant of a symplectic matrix is +1, moreover the set of symplectic
matrices of a given order form a Group [39]. The key property of constant sym-
plectic matrices is that its spectrum is symmetric with respect to the unit circle, it
may be easily proven, from the definition and the fact that a symplectic matrix is
always invertible, then MT = J M−1 J−1, i.e., σ

(
MT

) = σ
(
M−1

) = σ (M) =⇒ if
λ ∈ σ (M) then λ−1 ∈ σ (M). Let us express this fact formally in the next theorem:

Theorem 3.4 Let M ∈ R
2n×2n be a symplectic matrix, then if λ ∈ σ (A) =⇒ λ−1 ∈

σ (A) . Equivalently, the characteristic polynomial of a Symplectic matrix is self-
reciprocal [39] or palindromic [31], i.e., pM (λ) = λ2n pM

(
λ−1

)
.

The property that relates Hamiltonian matrices with symplectic ones in a given
Hamiltonian system is:

Theorem 3.5 Let
d

dt

[
q
p

]
= J H (t)

[
q
p

]
for some H (t) = H T (t) be a linear

time-varying8 Hamiltonian system, then its state transition matrix is a symplectic
matrix.

7Given a square matrix A, by σ (A) we denote its spectrum, i.e., the set of all the eigenvalues.
8Not necessarily periodic.
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Remark 3.5 A linear time-invariant Hamiltonian system can not be asymptotically
stable, because of the symmetry of its eigenvalues; this property goes to all the
Hamiltonian Systems time-invariant or not; and linear or not.

Remark 3.6 Hamiltonian systems enjoy another important property: For arbitrary
2n-dimensional system 2n − 1 independent first integrals are required in order to
arrive at a first-order 1-dimensional ODE, which may be integrated by quadratures
to finally integrate the whole system. The Liouville Theorem ensures that a 2n-
dimensional Hamiltonian system is integrated if we know only n independent first
integrals [3, 39]; only half of the work!

3.3 Hill Equation: The Scalar Case

In this section, we are going to present the main properties of scalar Hill’s equation,
namely

• •
y + [α + βq (t)] y = 0 (3.10)

where q (t) is T -periodic.9 The parameter α represents the square of the natural
frequency for β = 0; the parameter β is the amplitude of the parametric excitation,
and the periodic function q (t) is called the excitation function. For comparison
reasons, we are going to use three different excitation functions: (a) q (t) = cos t ,
in this case the equation is called Mathieu equation; (b) q (t) = sign (cos t), in this
case the equation is called Meissner equation, and (c) q (t) = cos t + cos 2t , which
was used originally by Lyapunov [35].

Notice that a linear second-order differential equation with periodic coefficients:

• •
z + a(t)

•
z + b(t)z = 0 (3.11)

wherea(t) andb(t) areT -periodic,maybe always transformedwith y = e− 1
2

∫
a(τdτ)z,

into (3.10), therefore there is no loss of generality to consider with respect to (3.10).
Note also that this is not a Lyapunov Transformation in general [27].

If we define the 2-dimensional vector x �
[

y
•
y

]
, the Eq. (3.10) may be rewritten

as

•
x =

[
0 1

−α − βq (t) 0

]
x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
0 1

−1 0

]
︸ ︷︷ ︸

J

[
α + βq (t) 0

0 1

]
︸ ︷︷ ︸

H(t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

x (3.12)

9We will assume through the paper that q (t) is piecewise continuous, integrable in [0, T ] and of
zero average, i.e.,

∫ T
0 q (t) dt = 0.
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where J is as in Eq. (3.9) for n = 1, and H (t + T ) = H (t) = H T (t), satisfies
the condition for linear Hamiltonian systems. Then the state transition matrix of
Hill’s equation in the format (3.12) is a Symplectic matrix for all t . Therefore its
Monodromy matrix M is also a symplectic matrix. The characteristic polynomial
pM (μ) of the Monodromy Matrix M is of the form:

pM (μ) = μ2 − tr (M) μ + 1 (3.13)

Definition 3.5 The eigenvalues of theMonodromymatrix M , equivalently the roots
of its characteristic polynomial pM (μ), are called multipliers of (3.12) or (3.10),
denoted byμ. For Hamiltonian systems are symmetric with respect to the unit circle.

Definition 3.6 Associated to every multiplier μ, there exist (an infinite) numbers
called characteristic exponents λ related to a multiplier by μ = eλT .

The roots of pM (μ) or the multipliers of (3.10) are:

μ1,2 =
[
tr (M) ±

√
tr2 (M) − 4

]
/2 (3.14)

• If tr2 (M) < 4 the multipliers are complex conjugates and their modulus is∣∣μ1,2

∣∣2 = tr2 (M)

4
+ 4 − tr2 (M)

4
= 1. The two eigenvalues are different, which

implies that the minimal and the characteristic polynomials of M are the same.
This case corresponds to a stable system.

• If tr2 (M) > 4, the multipliers are real and reciprocal, μ1 =
[
tr (M)+√

tr2 (M) − 4
]
/2 andμ2 =

[
tr (M) − √

tr2 (M) − 4
]
/2.Obviouslyμ1 + μ2 =

tr (M) and μ1μ2 = 1, so μ2 = μ−1
1 . If one of the multipliers, say μ1 > 1, then

this case corresponds to instability.

• If tr2 (M) = 4 the multipliers are real and equal to +1 if tr (M) = +2, or the
multipliers are equal to −1 if tr (M) = −2. In this case, Hill equation is stable
if only if M is a diagonal matrix or scalar matrix, otherwise the Hill equation is
unstable.10

The boundaries between stability-instability correspond to this last case, i.e., when
|tr (M)| = 2. It is clear that M depends on the parameters α, β. It is customary
to define [36]11 φ (α, β) � tr (M) . Hochstadt [29] was the first to recognize the
important properties of φ (α, β).

10When the multipliers are ±1 and the Monodromy matrix is diagonal, and we say that there is a
point ofCoexistence, because there are two linearly independent periodic solutions of Hill equation;
T -periodic for multipliers +1, and 2T -periodic for the multipliers equal to −1.
11In Magnus [36] the function that we call φ (α, β), is denoted as Δ (λ), because λ is used instead
of our α, and the parameter β is not used in the cited work.
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Theorem 3.6 (Hochstadt) The function φ (α, β) for any β constant, is an entire
function of order 1

2 . The functions φ (α, β) ± 2 = 0 have an infinite number of roots.
For any β0, and for α0 sufficiently negative, φ (α0, β0) is positive, therefore increasing
α appears the first root for the equation φ (α, β) − 2 = 0, which corresponds to a
double multiplier at +1, and from there appear two roots (not necessarily different)
at −1, then two roots +1, up to infinity.

Due to the Hochstadt Theorem, there are two infinite sequences:

λ0, λ1, λ2, λ3, λ4, λ5, . . .

λ1, λ2, λ3, λ4, λ5, . . .

(3.15)

The first sequence corresponds to roots of φ (α, β) + 2 = 0, and the second
sequence corresponds to φ (α, β) − 2 = 0. Moreover they interlace as:

λ0, λ1, λ2, λ1, λ2, λ3, λ4, λ3, λ4, λ5, λ6, . . . (3.16)

This fact is illustrated in Fig. 3.1

Remark 3.7 Notice that for the values in which φ (α, β0) ∈ [−2, 2] the multipliers
lie on the unit circle, and for the values in which |φ (α, β0)| > 2 the multipliers are
both positive or both negative, and one the reciprocal of the other. Also if for some
value of α = α1 both multipliers lie on −1, and increasing this value up to the point
α = α2 for which both multipliers lie on+1; the path of the multiplier from the point
−1 to +1 should be through arcs on the unit circle, they can not go from −1 to +1

Fig. 3.1 For a constant β = 1, φ (α, 1) = tr (M) which is only function of α. For those values in
which |φ (α, 1)| > 2, are projected on α-axis and correspond to the unstable regions
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on the real line, because at 0 the non-singularity of the Monodromy matrix would
be violated. This property goes to any degree of freedom as long as the system is
Hamiltonian. Moreover, even in the non-Hamiltonian case the Monodromy matrix
is always nonsingular, because it is the state transition matrix, evaluated at the end
of a period.

3.3.1 Multipliers of Hamiltonian Systems

Given in general a linear Hamiltonian system:

•
x = J H (t) x (3.17)

where J was defined in (3.9) and H (t) ∈ R
2n×2n is a real symmetric matrix. Due

to the fact that a Hamiltonian system cannot exhibit asymptotic stability, then the
accepted definition for weak stability of a Hamiltonian system is that all the solutions
be bounded in (−∞,+∞). The following definition is also required:

Definition 3.7 The Hamiltonian system (3.17) is strongly stable if it is stable
(bounded) and there exists an ε > 0, such that for all H̃ (t) 2n × 2n symmetric
matrices, while

∥∥H̃ (t) − H (t)
∥∥ < ε, all the Hamiltonian systems

•
x = J H̃ (t) x

are stable.

The condition of strong stability for Hamiltonian Systems was formulated more
than 50 years ago, the sufficiency by Krein [34], and the necessity by Gelfand and
Lidskii [24]; another definition is required for an indefinite inner product associated
to the symplectic geometry of the Hamiltonian System [48].

Definition 3.8 Given an even-order real vector space of dimension 2n, and the
standard inner product (x, y) � yT x, and given any Hermitian nonsingular matrix
H ∈ R2n×2n, it is possible to define the indefinite inner product as 〈x, y〉 � (Gx, y) .

We are going to use H = i J .12

For any multiplier on the unit circle μ, its associated eigenvector vμ is such that〈
vμ, vμ

〉 �= 0, if
〈
vμ, vμ

〉
> 0, μ is called Multiplier of the First Kind; if

〈
vμ, vμ

〉
< 0,

μ is called Multiplier of the Second Kind [48]. If |μ| �= 1,
〈
vμ, vμ

〉 = 0, but if we
extend the definition of Multiplier of first kind for μ : |μ| < 1; and Multiplier of the
second kind for thoseμ : |μ| > 1. Then all the multipliers are of first or second kind,

12Recall that given any skew-hermitian matrix J , then (i J ) is an hermitian matrix. [22, 48].
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and moreover, for a Hamiltonian system of dimensions 2n, n multipliers are of first
kind and the remaining n multipliers are of second kind.13

Remark 3.8 The key property due to Krein is that the multipliers including their kind
are continuous functions with respect to variations in the Hamiltonian functions, in
our case the symmetric Matrix H (t), [34, 48].

Due to the last remark, if two multipliers coincide on the unit circle and both
are of the same kind, they cannot leave the unit circle, because they would violate
continuity of the kind of multipliers.

Finally, to formulate the Gelfand–Lidskii–Krein Theorem, we require this last
definition:

Definition 3.9 A multiplier μ with algebraic multiplicity r, is said to be definite of
first or second kind, if 〈q, q〉 is of the same sign for all q in the eigenspace associated
to μ.

Theorem 3.7 (Krein–Gelfand–Lidskii) The linear periodic Hamiltonian system
•
x = J H (t) x is strongly stable iff all the multipliers lie on the unit circle and
those with algebraic multiplicity greater than one are definite or all are of the same
kind.

3.3.2 Arnold’s Tongues

If we mark in the α − β plane the points of instability, which correspond to
|tr (M)| > 2 with some color, and leave blank the points of stability which corre-
spond to |tr (M)| < 2; this diagram is called Ince-Strutt diagram. Figure3.2 shows
the Ince-Strutt diagram for the Mathieu equation.

Remark 3.9 We have to emphasize that the Ince-Strutt diagramwas obtained numer-
ically, i.e., gridding 1000 points in each of the chosen intervals for α ∈ [−1, 10] and
β ∈ [0, 10]. Then integrating the differential equation in the time interval [0, 2π ]
with the initial conditions

[
1 0

]T
, we get the solution x1 (t) , similarly for initial

condition
[
0 1

]T
we get another solution x2 (t) on each one of the grid points; finally

the Monodromy matrix is M = [
x1 (2π) x2 (2π)

]
.

13Equivalently, if we increase the Hamiltonian, i.e., H̃ (t) − H (t) > 0, and μ was an isolated
multiplier on the unit circle associated to H (t), when H (t) is increased to H̃ (t) , μ moves on
the unit circle to μ̃; if arg μ̃ > argμ, the multiplier μ is said to be a Multiplier of the First Kind,
contrarily, i.e., arg μ̃ < argμ, the multiplier μ is a Multiplier of the Second Kind [48].
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Fig. 3.2 Arnold Tongues for the Mathieu equation. Boundaries of the blue zones correspond to a
2π -periodic solution, red zones correspond to 4π -periodic solution

3.3.3 Meissner Equation

The exceptional cases in which an analytic solution of the scalar Hill equations may
be obtained [40] are: (a) q (t) a train of impulses, (b) q (t) piecewise constant, (c) q (t)
piecewise linear and d) q (t) elliptic functions14. The case b) for q (t) = sign (cos t),
which corresponds to theMeissnerEquation, is particularly simple. It is easy to get the
Monodromymatrix analytically, full details are in [44, pp. 276–278]. For α > β ≥ 0,
we have

M =(
cos

(√
α − βπ

) 1
(
√

α−β)
sin

(√
α − βπ

)
− (√

α − β
)
sin

(√
α − βπ

)
cos

(√
α − βπ

)
)

•

•
(

cos
(√

α + βπ
) 1

(
√

α+β)
sin

(√
α + βπ

)
− (√

α + β
)
sin

(√
α + βπ

)
cos

(√
α + βπ

)
)

=

⎛
⎝ cosπ

√
α + β cosπ

√
α − β − (

sin π
√

α + β sin π
√

α − β
) √

α+β√
α−β

− (
sin π

√
α + β cosπ

√
α − β

)√
α + β − (

cosπ
√

α + β sin π
√

α − β
)√

α − β

1√
α+β

(
sin π

√
α + β

) (
cosπ

√
α − β

) + 1√
α−β

(
cosπ

√
α + β

) (
sin π

√
α − β

)
(
cosπ

√
α + β

) (
cosπ

√
α − β

) −
√

α−β√
α+β

(
sin π

√
α + β

) (
sin π

√
α − β

)
⎞
⎠

14In the case that the periodic function q (t) is an elliptic function, called Lamé Equation.
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and its trace is

tr (M) = 2 cos
(
π

√
α + β

)
cos

(
π

√
α − β

)−
[√

α−β√
α+β

+
√

α+β√
α−β

] (
sin

(
π

√
α + β

)
sin

(
π

√
α − β

))

then the condition |tr (M)| = 2, reduces to:
∣∣∣2 cos (π√

α + β
)
cos

(
π

√
α − β

)−
[√

α−β√
α+β

+
√

α+β√
α−β

] (
sin

(
π

√
α + β

)
sin

(
π

√
α − β

))∣∣∣ = 2

If we make β = 0 in this last expression |tr (M)| = 2, in order to know the points
at which the Arnold Tongues are born, we get∣∣∣2 [

cos
(
π

√
α
)
cos

(
π

√
α
)] − 2

[
sin

(
π

√
α
)
sin

(
π

√
α
)]∣∣∣ = 2

�∣∣∣2 cos (2π√
α
)∣∣∣ = 2

�
2π

√
α = kπ

which finally leads us to α = k2

4
for k = 0, 1, 2, . . .

It is customary to assign a number to each Arnold Tongue according to the rule:

kth Arnold Tongue touches the α-axis at
k2

4
. We may also say that in the boundaries

of even-order Arnold’s Tongues there is at least one T -periodic solution, similarly,
in the boundaries of odd-order Arnold’s Tongues there is at least one 2T -periodic
solution.

Figure3.3 shows the Meissner equation, i.e., the Hill equation for q (t) = sign
(cos t).

Remark 3.10 Notice in the Ince-Strutt diagram for the Meissner equation, starting
from the 3rd Arnold Tongue, the appearance of zero-length intervals in the α direc-
tions; these points are called Coexistence, and correspond a parameters in which all
the solutions are T -periodic if they belong to an even-order tongue, or 2T -periodic
if they belong to an odd-order tongue. Notice also that coexistence points are excep-
tional ones.15

15Chulaevsky [13] justifies the fact that coexistence points are exceptional ones, because: ... ‘From
a topological point of view the scalar matrices, which correspond to coexistence points, form a
subvariety in the variety of 2 × 2 Jordan Cells.’



3 Hill Equation: From 1 to 2 Degrees of Freedom 57

Fig. 3.3 Arnold Tongues for theMeissner equation. Notice the coexistence point approx at α ≈ 2.5
and β ≈ 1.5

If we introduce the notation

T ongue (i) � {(α, β) : (α, β) belongs to the i th Arnold Tongue},
in the above notation we include their boundaries. We may express compactly the
next fundamental property:

Remark 3.11 (Non-intersecting) All the Arnold Tongues are non-intersecting, i.e.,
T ongue (i) ∩ T ongue ( j) = φ, ∀ i �= j.

3.3.4 Critical Lines

The following question arises: What happen when we analyze in large intervals [9]
of (α, β)? In Fig. 3.4 we show the same diagram for Meissner equation, but now in
the intervals α ∈ [0, 120] and β ∈ [0, 120] .

Wemay observe from Fig. 3.4 that below 45◦ the region is ‘essentially stable’ and
above this line is ‘essentially unstable’: this line was designated by Broer [9] as the
‘critical line’, and it is independent of the function q (t) used, as long as q (t) is of

zero average and (‖q (t)‖2 �
[∫ T

0 |q (t)|2 dt
]1/2 = ‖cos t‖2.
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Fig. 3.4 Arnold Tongues for the Meissner equation at a larger scale, notice that above 45◦ almost
everything is unstable

3.3.5 Forced Hill Equation

In [41] the T -periodically forced Hill equation was analyzed, i.e.,

• •
y + [α + βq (t)] y = f (t) , where f (t + T ) = f (t) . (3.18)

It is known [36], that in the stable regions there exists kT -periodic solutions, for
k ≥ 3, of the homogeneous equation (3.18 with f (t) = 0), for these values of (α, β)

there are two independent kT -periodic solutions. Figure3.5 shows these kT -periodic
lines for k = 3, 5, 9, and 14.

When we apply a forced periodic term f (t + T ) = f (t), of the same period T
as the exciting function q (t) . In [41], we prove that if f (t) contains a kT -periodic
harmonic, then the corresponding kT -periodic line becomes unstable, due to linear
resonance.

3.3.6 Open-Loop Stabilization of Hill Equation

The last point considered for the scalar Hill equations is: Given a Hill equation

for some set of parameters (α0, β0) : • •
y + [α0 + β0q (t)] y = 0, where q (t) is a T

-periodic function. If the equation for these parameters is unstable, the following
problem is posed (Fig. 3.6):



3 Hill Equation: From 1 to 2 Degrees of Freedom 59

Fig. 3.5 Colored lines represent kT -periodic solutions in the homogeneous case, but also Linear
Resonance for the forced case

Fig. 3.6 Illustrates graphically the solution proposed to the problem of stabilization of a Hill
equation adding to q (t) another T-periodic function

Problem 3.1 There exists another T -periodic function r (t) such that the new Hill

equation
• •
y +

[
α0 + β0

(
q (t) + γ r (t)

)]
y = 0 is stable for the same set of para-

meters (α0, β0)? [16].

Solution 3.1 Suppose (α0, β0) is unstable, equivalently (α0, β0) ∈ T ongue (i) for
some i ≥ 1, add a T -periodic function r (t) to q (t) such that (α0, β0) ∈ T ongue
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(i + 1). This guarantees that if tr [M(α0, β0, q (t))] > 2, then tr [M(α0, β0, q (t)+
r (t))] < −2.16

Due to the continuity of tr [M(α0, β0, q (t))], if we perform the convex combi-
nation of q (t) and r (t), i.e., q (t) → q (t) + γ r (t) , for some γ ∈ [0, 1],

tr
[
M(α0, β0, q (t) + γ r (t))

]∣∣
γ=0 > 2 and similarly

tr
[
M(α0, β0, q (t) + γ r (t))

]∣∣
γ=1 < −2, =⇒

∃ γ0 ∈ (0, 1) : tr
[
M(α0, β0, q (t) + γ r (t))

]∣∣
γ=γ0

= 0, which corresponds to a
stable system.

Notice that the previous solution rests heavily on Remark 11 (Non-Intersecting).

3.4 Hill Equation: Two Degrees of Freedom Case

In the 2 degrees of freedom case, y (t) ∈ R
2

• •
y + [αA + βBq (t)] y = 0. (3.19)

Notice, that we have included matrices A, B ∈ R
2×2, and we keep our two-

parameter (α, β) in order to make some comparisons with the 1-DOF case.

Similarly to the 1-DOF case, if we define x =
[

y
•
y

]
∈ R

4, we may express (3.19)

in state space as:

•
x =

[
0 I2

−αA − βBq (t) 0

]
x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
0 I2

−I2 0

]
︸ ︷︷ ︸

J

[
αA + βBq (t) 0

0 I2

]
︸ ︷︷ ︸

H(t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

x . (3.20)

In order to the system described by (3.20) be a Hamiltonian (H (t) = H T (t)),
the restrictions: A = AT and B = BT should be satisfied.

Without loss of generality,wemay assumematrix A diagonalwith positive entries,
which represents the square of the two natural frequencies of the system without
parametric excitation.An early publication appears in [26],where the author analyzes
a pair of Mathieu equations coupled.

Now there are four multipliers, eigenvalues of the Monodromy matrix, they have
symmetry with respect to the real axis because we are treating real matrices, and
there is a symmetry with respect to the unit circle because the state transition matrix
is symplectic. Now there are three possibilities for multipliers to abandon the unit

16Here tr
[
M(α0, β0, q (t) + γ r (t))

]
refers to the trace of the Monodromy Matrix associated to

• •
y +

[
α0 + β0

(
q (t) + γ r (t)

)]
y = 0.
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Fig. 3.7 Points where multipliers for a 2-DOF Hamiltonian system may leave the unit circle. Note
that for leaving the unit circle at the points ±1, only two multipliers are required; but to leave the
unit circle at 1�θ , for θ �= 0 or π , the four multipliers should satisfy the configuration shown

circle, namely: (a) a pair of multipliers leaving at the point +1, (b) a pair leaving at
the point −1, and (c) two conjugate pairs leaving the unit circle at any point 1�θ ,
θ ∈ (0, π).17 The cases (a) and (b) already appear in the 1-DOF case; but (c) is a
new case for systems having at least 2-DOFs, and it is called Krein Collision of the
multipliers. Figure3.7 represents the three case above.

3.4.1 Reduction of the Characteristic Polynomial

Because of the symmetry of the characteristic polynomial of theMonodromyMatrix,
pM (μ) = μ4 − Aμ3 + Bμ2 − Aμ + 1, is a self-reciprocal polynomial,Howard and
MacKay [30] introduced a new variable ρ = μ + μ−1, in this variable the charac-
teristic polynomial of M reduces to degree 2, and is given by:

Q (ρ) = ρ2 − Aρ + B − 2 (3.21)

their corresponding eigenvalues are:

ρ1,2 = 1
2

[
A ± (

A2 − 4B + 8
)1/2]

(3.22)

17We use r�θ to represent a complex number with modulus r , and argument θ.
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Fig. 3.8 Regions of stability for the reduced polynomial in white. Red for some μ < −1; Green
for some μ > 1; Yellow for some μ < −1 and another μ̃ > 1; Pink for two multipliers < 1; Cyan
for two multipliers > 1. Blue for two multipliers not real outside the unit disk

and the eigenvalues of pM (μ) are recovery from:

μ = 1

2

[
ρ ± i

(
4 − ρ2)1/2] . (3.23)

Remark 3.12 The symmetry property inherited by the Hamiltonian nature allows to
reduce the order in the analysis to one half18

The transition boundaries defined when a multiplier leave the unit circle or equiv-
alently using (3.22) are given by two lines and a parabola:

(a) μ = +1 B = +2A − 2

(b) μ = −1 B = −2A − 2

(c) Krein collision B = A2/4 + 2.

(3.24)

Figure3.8 shows the relationships given in (3.24) indicating the typical multi-
plier positions. The reduced polynomial Q (ρ) = ρ2 − Aρ + B − 2, the white zone
represents parameters A, B which produces multipliers of pM (μ) = μ4 − Aμ3 +
Bμ2 − Aμ + 1 on the unit circle through formula (3.23). Colored regions correspond

18In [17] this property is extended to Hamiltonian systems with dissipation, strictly speaking this
class of systems is not longer Hamiltonian.
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Fig. 3.9 Zoom of the Fig. 3.8 for the point A there is at least one T -periodic and at least one 2T
-periodic solutions; for the point B there are at least two linearly independent 2T -periodic solutions;
and for the point C there are at least two linearly independent T -periodic solutions

to unstable zones, in the boundary B = +2A − 2 there is at least one T -periodic solu-
tion; in the boundary B = −2A − 2 there is at least one 2T -periodic solution; in the
parabola boundary B = A2/4 + 2 there are a couple of multipliers at some point of
the unit circle except±1, and have two periodic solutions of any frequency in general
(Fig. 3.9).

Remark 3.13 Figures3.10 and 3.11 use this same colors code.

Using this code of colors, Fig. 3.10 shows the Arnold Tongues for a 2-DOFs
Mathieu equation, and Fig. 3.11 shows the Arnold Tongues for a 2-DOFs Meissner
equation. For comparison reasons we chose the same matrices A and B.

For the Figs. 3.10 and 3.11 we use the following equation:

•
x =

[
0 I2

−αA − βBq (t) 0

]
x, (3.25)

with A =
[
1 0
0 2

]
and B =

[
1 −1

−1 2

]
and we have used q (t) = cos t for the

Fig. 3.10; and q (t) = sign (cos t) for the Fig. 3.11.
Zones of instability occur when some pair of multipliers coincide in the point +1

or −1 and after that they leave the unit circle, as in the scalar case, but there are
multipliers associated to each of the natural frequencies of the subsystems; therefore
there are two possible ways to leave at each of the points ±1, each one associ-
ated with the two subsystems, these Tongues are called Principal. But the true new
characteristic is that the multiplier now may leave the unit circle at any point 1�θ

for some θ ∈ (0, π) , these Krein Collision give unstable zones called Combination
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Fig. 3.10 Arnold Tongues for a 2-DOF Mathieu equation (3.25) with q (t) = cos t . Blue zones
correspond to Combination Arnold Tongues
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Fig. 3.11 Arnold Tongues for a 2-DOF Meissner equation (3.25) with q (t) = sign (cos t). Blue
zones correspond to Combination Arnold Tongues
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Fig. 3.12 This figure critical line for a 2-DOFs system, now the critical line is 33.6◦, arctan(2/3)

Arnold Tongues. There are two kinds of Combination Arnold Tongues: summing or
difference, see [48] for further information.

Remark 3.14 In the 2-DOF case, some comments are in order. First, there are Arnold
Tongues related to each of the natural frequencies of each subsystem. And of course,
the Arnold Tongues associated to each subsystem are non-overlapping. Nevertheless,
generically the Arnold Tongues for some rationally independent natural frequencies
are intersecting.

Remark 3.15 (Critical lines for 2-DOF) With respect to the critical line for Hill
equation of at least 2-DOFs, we claim that generically this critical line now form an
angle with the horizontal axis lower than 45◦, see Fig. 3.12 for the Lyapunov like
equation, i.e., q (t) = cos t + cos 2t [15].

Remark 3.16 (Forced 2-DOF Hill Equation) There is no chance to extend the prop-
erty obtained to simultaneously have parametric instability (Arnold Tongues) and
linear resonance in the same Ince-Strutt diagram as in Fig. 3.5.

Remark 3.17 (Open-loop stabilization) In general, it is not possible for 2-DOF sys-
tems to take advantage of the non-intersecting property because this property does
not exist in n-DOF for n ≥ 2. Nevertheless for very small values of β, we could
develop this idea, see Fig. 3.6.
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3.4.2 Computational Issues

The obvious algorithm to get theArnold Tongues is gridding and integrating for every
point (α, β) . This for a 1000 × 1000 gridding, could take of the order of 20h to run,
in aDell desktop PC Intel core 2 duo 2.8GHz 4GB ram and 980GPU’s. So, if we keep
this naive approach and use a parallel computation, then this algorithmcould decrease
its speed up to 2min for the same resolution. The use of the analytic boundaries of
the reduced polynomial (3.21) not only decreases the speed of computation, but also
gives better precision. For large scales such as those required for critical lines, it
is required to use symplectic integrators [25] in order to keep symplecticity of the
Monodromy matrix, which guarantees good precision.

3.5 Future Work

We are going to enumerate the possible extensions of the scalar and 2-DOF Hill
equation.

3.5.1 Generalizations of the Scalar Case

Given the scalar equation:

• •
y + [α + βq (t)] y = 0,

it always represents a Hamiltonian System, therefore the only generalization possible
is:

• Scalar I.- The function q (t) is no longer T -periodic, could be Quasi-Periodic or
Almost Periodic. Notice that in this case there is not a Floquet Theorem!19

A function q (t) is Quasi-Periodic, denoted q (t) ∈ Q P , if it is the sum of a
finite number of Periodic functions of frequency not rationally related; for instance
q (t) = sin t + sin π t.

Recall that a function q (t) is Periodic if it admits a Convergent Fourier Series of
the form:

q (t) =
∞∑

k=−∞
ρke j(kω0)t

19There is a reduced for of a Floquet theorem, no factorization is possible, but there is a reducibility
part.
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Remark 3.18 Notice that there exists a fundamental frequency ω0 and its harmonics
(kω0), rationally related.

A function q (t) isAlmost-Periodic, denoted q (t) ∈ AP , if it admits a Convergent
Generalized Fourier Series of the form:

q (t) =
∞∑

k=−∞
ρke j�k t

where the sequence {. . . , ρk, ρk+1, . . .} ∈ �2
20, this condition guarantees the conver-

gence.

3.5.2 Generalizations of the 2-DOFs

Given the 2-DOFs Hill equation expressed in state variables:

•
x =

[
0 I2

−αA − βBq (t) 0

]
x .

The following possible open problems are listed in increasing level of complexity:

• 2-DOFs I.- If we keep the function q (t) T -periodic, but matrix B is no longer
symmetric. It is possible to solve the problem, because we still may apply the
Stability consequence of the Floquet Theorem. But the Monodromy Matrix is no
longer symplectic. So the same condition for stability, all the multiplier lie on the
unit circle, there is no result for strong stability. It is unknown how the multiplier
leaves the unit circle.

• 2-DOFs II.- The function q (t) is no longer T -periodic, then q (t) ∈ Q P or
q (t) ∈ AP . Again, there is not a Floquet Theorem, there is noMonodromyMatrix,
therefore no analytic condition of the stability based on the multipliers, etc.

• 2-DOFs III.- The function q (t) is no longer T -periodic, but q (t) ∈ Q P or q (t) ∈
AP; and B is no longer symmetric. The resulting system is no longer Hamiltonian,
neither T -Periodic. None of the tools used are valid. Very scarce results exist in
this area.

• IV.- This item does not belong to n-DOFs Hamiltonian systems, if the dimension
of the state equation is odd (never is a Hamiltonian system), i.e.,

•
x = A (t) x, A (t) = A (t + T ) , x (t) ∈ R

2n+1

20A sequence {. . . , xk , xk+1 . . .} double infinite belongs to �2 if
∞∑

k=−∞
|xk |2 = M < ∞. See for

instance [18].
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the system is still periodic, we may apply the Floquet Theorem, but for stable or
bounded systems there is always a real multiplier at +1 or −1, it is unknown how
to leave the unit circle, etc.

A final comments about the relationship between Hill equation [36] and Sturm–
Liouville Theory [14]. In the scalar case if we write the standard SL Problem

Hill Equation rewritten as
• •
y + βq (t) y = −αy

with boundary conditions: (a) y(0) = y(T ) &
•
y (0) = •

y (T )

and the spectral parameter α, we recovery the T -Periodic boundaries of the Arnold
Tongues with the above Boundary Value Problem.

If we replace the boundary conditions by: (b) y(0) = −y(T ) &
•
y (0) = − •

y (T ),
we get as a solution the 2T -periodic boundaries of the Arnold Tongue [19] or [36].

Completely different is the 2-DOF case, becausewith the above boundaries condi-
tions (a) and (b) we recovery the boundaries of the principal Arnold Tongues, but the
boundaries of the Combination Arnold Tongues do not correspond to some specific
boundary condition.

3.6 Conclusions

We may summarize the differences explained in the previous exposition, in the fol-
lowing table:

Property 1-DOF 2-DOF
Multiplier leaving the unit
circle

only at +1 or −1 any 1�θ , θ ∈ [0, π ]

Arnold Tongues Not interesting for high excitation β generically
intersecting

Boundaries of the Arnold
Tongues

∃T -periodic or 2T -periodic
sols

a) May have T -periodic sol
b) May have 2T -periodic sol
c) May have T & 2T -periodic
sol
d) A periodic solution noncon-
mensurable with T

Combination Tongues NO YES
Critical Lines 45◦ less than 45◦
Equivalent with SL Problem YES NO
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Chapter 4
Sliding Mode Control Devoid of State
Measurements

H. Sira-Ramírez, E.W. Zurita-Bustamante, M.A. Aguilar-Orduña
and E. Hernández-Flores

Abstract An input-output approach is presented for sliding mode control of
linear and nonlinear switched systems of the differentially flat type. Two slidingmode
control design options are presented: (1) a Delta-Sigma modulation implementation
of a robust continuous output feedback controller design, such as the Active Distur-
bance Rejection Control scheme and (2) An Integral reconstructor-based approach,
involving a suitable linear combinations of iterated integrals of the available system
input and the measured output of the system. These reconstructors provide the syn-
thesis of a suitably compensated stabilizing sliding surface coordinate function for
stabilization or trajectory tracking problems. The relation of the second approach
with Delta-Sigma modulation is also established. Two experimental case studies are
presented including nonlinear mechanical plants: An under-actuated convey crane
and a DC-motor-Single-link manipulator system.

4.1 Introduction

Classical sliding mode control fundamentally relies on the need to measure, for slid-
ing surface synthesis, the entire state vector of the system (See Utkin [26], Utkin
et al. [27], Slotine and Li [25], Edwards and Spurgeon [2]). For this task, asymptotic
state observers were originally proposed. In spite of the lack of a clear cut separation
principle, in nonlinear systems, the closed-loop stability of an observer-based sliding
mode controlled system can be established without major difficulties [2] (See also
Khalil et al. [13]). The need to free sliding mode control from the state space formu-
lation may point toward new research areas involving systems described by integral
equations, distributed parameter systems, and fractional order systems.
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Well-established research trends, known as Active Disturbance Rejection
(ADRC), as well as more recent developments, known as Model Free control (MFC)
(See Fliess and Join [3], Fliess et al. [4]) have been explored and developed, including
numerous theoretical results and interesting practical applications. Themain assump-
tion is that all the acting disturbances can be lumped into a simplified, time-varying,
uniformly absolutely bounded total disturbance signal affecting the input-output
model. Once this simplifying feature is accepted, the estimation of the disturbance
proceeds via either powerful algebraic estimation techniques (Sira-Ramírez et al.
[21]), or, alternatively, via disturbance observers of extended nature (Han [12], Gao
et al. [6, 7], Zheng et al. [29, 30], Zhao and Gao [28]). In this chapter, we will be
largely relying in the simplifying philosophy of ADRC and MFC by lumping the
description of the effects of exogenous and endogenous additive disturbances and
uncertainties into a single additive unstructured term in the input-output model of
the system. This is much in the same underlying spirit of the paradigm of scalar
sliding mode control, for the sliding surface coordinate function controlled evolu-
tion, in using sufficiently large bounded switching amplitudes in front of the lumped,
unstructured, yet bounded, uncertainties.

In this chapter, we explore two input-output sliding mode based controller design
approaches for differentially flat switched systems. The first one is based on Delta-
Sigma modulation implementation of an average designed (output) feedback con-
troller. We explore the use of the robust ADRC technique as an appropriate option.
ADRC constitutes a functionally adaptive output feedback controller built on the
basis of an Extended State Observer (ESO), online estimating the additive distur-
bances, and an appropriate canceling controller which is based on the flat output
estimated phase variables. The ESO online estimates the, so called total disturbance
affecting the input-output system model (exogenous disturbances, neglected state-
dependent nonlinearities and the effects of unmodeled dynamics are comprised into
a single, additive, time-varying signal). The ADRC controller is designed as if the
switched-controlled system input was of a continuous nature. This designed con-
trol is taken as an average feedback control which is to be implemented through a
Delta-Sigma modulator on the actual switched system. Delta-Sigma modulation is
a classical communications dynamical analog signal encoding technique, suitably
modified for sliding mode control. The modulator allows continuous control inputs
to be converted into equivalent binary switched signals which, based on the equiva-
lent control concept, achieve a qualitatively similar behavior as the average design.
An experimental illustrative application of this approach in a convey crane system
is here presented.

The second approachhere explored is an integral reconstructor-based slidingmode
control for the simplified input-to-flat output model of the given nonlinear system.
Its relation with Delta-Sigma modulation (Sira-Ramírez [19]) is clearly established.
Integral reconstructors were introduced by Fliess et al. [5] in the context of Gen-
eralized Proportional Integral Control for the specific case of linear systems. GPI
control is a model-based technique which relies on producing structural estimates
of the states via finite linear combinations of iterated integrations of input and out-
put variables. The state estimates differ from the actual values in terms describable
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as “classical disturbances” (constant, ramp, parabolic time-polynomials, etc.). Such
errors are easily compensated via linear combinations of a sufficient number of
iterated output tracking errors or output stabilization errors. A second experimen-
tal illustrative application of this approach in a DC-motor-Single-link manipulator
system is presented.

This chapter is organized as follows: In Sect. 4.2 we present Delta-Sigma mod-
ulation as a means of translating an average, smooth, feedback controller design
into a binary-valued (switched) control input. The switchings emerge from the cre-
ation of a sliding regime in the state space of a one-dimensional subsystem which
is exogenous to the plant. The switched control input reproduces, in an average
(equivalent control) sense, the features of the original smooth, average, designed
input signal. ADRC is presented as a viable robust option for an average output feed-
back controller implementable through a Delta-Sigma modulator for the switched
system. Section4.3 introduces, in a tutorial manner, integral reconstructor-based
sliding mode control for pure integration, linear, plants. Section4.3 also develops
the manner in which integral reconstructor-based sliding control is related to flat
SISO systems naturally reducible to perturbed pure integration systems. Section4.4
presents two experimental case studies. An under-actuated convey crane controlled
via an ADRC output feedback controller implemented through a Delta-Sigma mod-
ulator. An integral reconstructor-based sliding mode controller is developed for a
single-link manipulator including the complete DC motor dynamics. Section4.5 is
devoted to the conclusions of this chapter.

4.2 Delta-Sigma Modulation

In this section, we provide the basics of Delta-Sigma modulation. These modulators
constitute analog-to-binary conversion tools, specifically tailored for sliding mode
control. They translate a continuous average feedback control law design, possi-
bly dynamic in nature, into a switched (i.e., binary-valued) signal, whose average
behavior precisely recovers the features of the continuous closed-loop behavior in
an equivalent control sense. The modulators achieve such a translation on the basis
of the creation of a sliding regime on a state space which is exogenous to the state
space of the plant system and of minimal dimension.

Consider we are given a sufficiently smooth scalar signal, μ(t), which is bounded
by the closed interval (−W,W ) ⊂ R. i.e., supt |μ(t)| < W . Suppose it is desired to
produce a binary-valued signal u(t) ∈ {−W,W } so that the average value of u(t), in
a sliding mode control sense, coincides with μ(t) (Fig. 4.1).

Consider the Delta-Sigma modulation encoding circuit, shown in Fig. 4.2. The
following relations describe the mathematical model of such a system
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Fig. 4.1 Delta-Sigma modulation of input signal μ

Fig. 4.2 Delta-Sigma modulation implementation of average output feedback controller design

ς̇ = μ(t) − u(t) = μ(t) − W sign(ς)

sup
t

|μ(t)| < W, u(t) ∈ {−W,W } ∀ t (4.1)

The signal ς is known as the encoding error. The switching amplitudes {−W,W }
are addressed as the encoding limits, the signal u(t) is the locally coded signal.

A sliding regime globally exists on the set, ς = 0, whose corresponding ideal
sliding dynamics is described by μ(t) = ueq(t).

The proof of this result is quite simple. Consider the product ςς̇ :

ςς̇ = ς(μ(t) − u(t)) = ςμ(t) − ςu(t) (4.2)

A sliding regime globally exists on ς = 0 if and only if ςς̇ < 0 in the open
hemispaces delimited by the sliding manifold ς = 0. Indeed, the choice u =
W sign(ς) yields ςς̇ < 0. On the manifold, ς = 0, the ideal sliding dynamics is
obtained from the invariance condition: ς̇ = 0, yielding ueq(t) = μ(t) for all t . The
initial conditions of ς are irrelevant in the previous analysis and the sliding motion,
on ς = 0, takes place globally with respect to the possible initial conditions.

The use of Delta-Sigma modulators in the control of dynamical systems, subject
to binary-valued control inputs, is immediate by producing an average feedback
controller design as if the control input to the system were of a smooth nature.
After establishing the uniform hard bounds of the designed feedback controlled
input signal, this signal is to be injected to a Delta-Sigma modulator with suitable
switching limits (encoding limits) which are, at least, as large as the obtained bounds.
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4.2.1 Use of Delta-Sigma Modulation in Average Controller
Design Implementation for Switched Systems

For simplicity, we consider that the given nonlinear plant is a Single-Input Single-
Output (SISO) nonlinear system and remark that the results are extendable to Multi-
InputMulti-Output (MIMO) systems and infinite dimensional systems characterized
by inputs with finite (known) delays.

Suppose we are given the following smooth nonlinear (SISO) system,

ẋ = f (x) + g(x)ϑ, x ∈ R
n, ϑ ∈ R

y = h(x), y ∈ R (4.3)

for which it is known that the dynamic scalar output feedback control law

u = k(ζ, y, y∗(t)), ζ̇ = γ (ζ, y, y∗(t)), ζ ∈ R
μ, μ ≤ n (4.4)

globally accomplishes a smooth, possibly in an exponentially asymptotic manner,
output reference trajectory tracking task, i.e., limt→∞ y(t) = y∗(t). Suppose, fur-
thermore, that from a sufficiently large set of initial conditions, the control input
values, ϑ(t), remain uniformly bounded by the compact interval of the real line,
[−W,W ], for some suitable but fixed amplitude W > 0.

One of the questions that concern us here is: How can we take advantage of the
above knowledge if at the outset, for some valid reason, the actual plant control input
signal, u(t), were restricted to take values on the binary-valued set: {−W,W }, for
all times? In other words, is there a sliding surface coordinate function s on which
a sliding regime exists, such that its corresponding equivalent control ueq(t) values
coincide with the obtained u(t) for which the ideal sliding dynamics is none other
than the continuously achieved closed-loop behavior?

The answer to this question cannot be found in the realm of the composite state
space (x, ζ ) ∈ R

n+μ since any forced algebraic restriction of the extended state
variables, (x, ζ ), disrupts the very nature of the average feedback control law, thus
producing a different closed-loop behavior.

Consider the following simple exogenous relations for, respectively, some
switched input signal, ϑ , and a sufficiently continuous average signal, ϑav, satis-
fying: ϑ(t) ∈ {−W,W }, ∀t , and, ϑav(t) ∈ [−W,W ] ∀t ,

ṡ = ϑav − ϑ, ϑ = W sign(s) (4.5)

Clearly, a sliding regime exists on s = 0 provided ϑav ∈ (−W,W ). Moreover, the
invariance conditions, s = 0, ṡ = 0, imply ϑeq = ϑav. Notice that s is an exogenous
variable, foreign, to the considered plant system, when u is taken to be the actual
(switched) control input and ϑav is the control signal resulting from the continuous
feedback design. The equivalent control of the exogenous sliding regime, on s = 0,
coincides with the continuous values of the designed average feedback control input.
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The above result is the basis of Delta-Sigma modulation based control strate-
gies. It just makes available to the designer a means of translating the outcome
of his favorite methodology, for synthesizing smooth feedback controllers, into an
implementable control strategy with binary-valued control input restrictions which
equivalently generate a good average approximation to the designed (and possibly
tested) smooth responses.

The following figure depicts the Delta-Sigma modulation scheme, acting on an
average dynamic output feedback controller design for a nonlinear system.

4.2.2 Active Disturbance Rejection as an Average Controller
for a Switched System

ADRC constitutes a mature research area, with a wealth of theoretical and appli-
cations results [10, 11, 14, 29]. Typically, a given nonlinear feedback linearizable
plant description, of the form,

ẋ = f (x) + g(x)ϑ, x ∈ R
n, y = h(x), ϑ ∈ R, y ∈ R (4.6)

which is monovariable in nature u ∈ R, is replaced by a simpler input-to-flat output,
perturbed, pure integration model. This is carried out to facilitate the controller
design. The preferred type of model used is centered around the class of input-output
models with a simple structure, such as in Ramírez–Neria et al. [18]. The additive
state-dependent terms, ignored in the simplification process, are lumped into a total
disturbance term. Generally speaking, the class of input-to-flat output models treated
is of the form

y(n) = η(y, ẏ, · · · , y(n−1)) + γ (y, ẏ, · · · , y(n−1))ϑ (4.7)

We assume that the input gain function is either constant or perfectly known. In
traditional ADRC, as well as in MFC, a phenomenological model is used to replace
the plant in all the design considerations by a simpler plant. In this case, the system
may be replaced by the following system,

y(n) = γ (·)ϑ + ξ(t) (4.8)

where γ (·) is either a known function of a known constant gain, replacing the actual
gain γ (y, ẏ, · · · , y(n−1)) and ξ(t) represents the total disturbance including the non-
linear state-dependent term Ln

f y(x).
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The observer-based average ADRC output feedback controller is prescribed as,

ϑav = 1

γ (·)

[
(y∗(t))(n) − z −

n−1∑
i=0

κi
(
yi − [y∗(t)](i))

]

ẏ0 = y1 + λn(y − y0)

ẏ1 = y2 + λn−1(y − y0)
...

ẏn−1 = γϑav + z + λ1(y − y0)

ż = λ0(y − y0) (4.9)

The last n + 1 differential equations, correspond with a total disturbance observer
known as theExtendedStateObserver (ESO). This output feedback controller, whose
validity has been rigorously demonstrated from the theoretical viewpoint in numerous
articles [10, 11, 14, 29], as well as in many laboratory case studies (see Ramírez-
Neria et al.[16–18, 24], J. Linares et al. [22, 23], Cortés-Romero et al.[1].) is known
as the ESO based ADRC controller.

The robust average ADRC design, shown above, may be implemented for the
trajectory tracking of a binary-valued switched system through a Delta-Sigma mod-
ulator, provided the smooth average control input ϑav(t) ∈ [−W,+W ] for all t , for
some sufficiently large real number W .

An actual implementation of this controller for a binary-valued control input is
discussed in the second experimental case study presented in this chapter.

We remark that the area of MFC exhibits many similar philosophical features
with ADRC (See Fliess and Join [3], Fliess et al. [4]). In MFC a more radical
simplification of the plant is introduced by systematically reducing the order of
the uncertain plant to either 1 or 2, with a well engineered constant gain and the use
of algebraic estimation techniques for the online estimation of the total disturbance
and, possibly, the input gain. However, in output feedback ADRC of flat systems,
the order n of the plant system is preserved. If the control input gain LgL

n−1
f y(x) is

unknown, or nonconstant, then it is replaced by a constant gain and the disturbance
is estimated by means of a linear extended controller, otherwise, the known gain is
used.

4.3 Integral Reconstructors and Sliding Mode Control
for Pure Integration Systems

Here we review, in a tutorial fashion, the rôle of integral reconstructors (See Fliess
et al. [5]) in an elementary example, constituted by a third order, pure integration,
plant and its natural connections with Delta-Sigma modulation. Consider the third
order integration plant,
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y(3) = ϑ, ϑ ∈ {−W,W } (4.10)

Suppose it is desired to track a smooth output reference trajectory signal y∗(t) with
the available, binary-valued, control input. The corresponding nominal control input
is, according to the inversion of the model, ϑ∗(t) = [y∗(t)](3)

The tracking error dynamics for ey satisfies,

e(3)
y = eϑ , ey = y − y∗(t), eϑ = ϑ − ϑ∗(t) (4.11)

Integral reconstructors for the second and first order time derivative of y are readily
devised as,

̂̈ey =
∫ t

0
eϑ(σ )dσ, ̂̇ey =

∫ t

0

∫ σ

0
eϑ(σ1)dσ1dσ (4.12)

where, the actual values of the output time derivatives satisfy:

ëy = ̂̈ey + ëy(0),

ẏ = ̂̇ey + ëy(0)t + ėy(0) (4.13)

The presence of constant and time polynomial ramp errors in the structural esti-
mates, or integral reconstructors, of the time derivatives of y, prompts the use of
integral output tracking error compensation. A suitably compensated sliding surface
coordinate function is proposed as

s = ̂̈ey + k3̂ėy + k2ey + k1

∫ t

0
ey(σ )dσ + k0

∫ t

0

∫ σ

0
ey(σ1)dσ1dσ

=
∫ t

0
eϑ(σ )dσ + k3

∫ t

0

∫ σ

0
eϑ(σ1)dσ1dσ + k2ey

+ k1

∫ t

0
ey(σ )dσ + k0

∫ t

0

∫ σ

0
ey(σ1)dσ1dσ

= k2ey +
∫ t

0

[
eϑ(σ ) + k1ey(σ ) +

∫ σ

0

(
k3eϑ(σ1) + k0ey(σ1)

)
dσ1

]
dσ

(4.14)

An expression for ṡ, to be used later, is readily obtained as:

ṡ = eϑ + k3

∫ t

0
eϑ(σ )dσ + k2ėy + k1ey + k0

∫ t

0
ey(σ )dσ

= (ϑ − ϑ∗(t)) + k3(ëy − ëy(0)) + k2ėy + k1ey + k0

∫ t

0
ey(σ )dσ

= (ϑ − ϑ∗(t)) + k3ëy + k2ėy + k1ey + k0ρ



4 Sliding Mode Control Devoid of State Measurements 81

Fig. 4.3 Integral
reconstructors-based sliding
mode control scheme for
third order integration plant

ρ̇ = ey, ρ(0) = −k3
k0
ëy (4.15)

A switching policy aiming at creating a sliding regime on s = 0 is obtained by
exercising all the available control possibilities in the perusal of the condition sṡ < 0.
The switching policy is clearly given by

ϑ = −W sign(s). (4.16)

This switching policy, in combination with the last expression found for the sliding
surface coordinate function s, yields the interpretation of the sliding mode control
scheme of Fig. 4.3.

4.3.1 Relation with Delta-Sigma Modulation

Using simple block diagram algebra manipulation, a reinterpretation of the proposed
controller scheme, in terms of an average controller passing through a Delta-Sigma
modulator, is presented in Fig. 4.4.

Define,

ρ1 =
∫ t

0
ey(σ )dσ + k0

k1

∫ t

0
ρ2(σ )dσ + ëy(0) + k3ėy(0)

k1

ρ2 =
∫ t

0
y(σ )dσ + k3

k1
ëy(0) (4.17)
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Fig. 4.4 Reinterpretation of
integral reconstructor-based
sliding mode control scheme
for third order integration
plant, in terms of an average
state feedback controller and
a Delta-Sigma modulator

It follows that on σ = 0 the dynamics of the tracking error is governed by,

ëy = −k3ėy − k2ey − k1ρ1

ρ̇1 = y + k0
k1

ρ2, ρ1(0) = ëy(0) + k3ėy(0)

k1

ρ̇2 = y, ρ2(0) = k3
k1
ëy(0) (4.18)

The characteristic equation of the linear system is obtained as:

p(
d

dt
)ey =

[(
d

dt

)4

+ k3

(
d

dt

)3

+ k2

(
d

dt

)2

+ k1

(
d

dt

)
+ k0

]
ey = 0 (4.19)
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The set of coefficients {k3, k2, k1, k0} is chosen as a Hurwitz set so as to guaran-
tee global exponential asymptotic stability of ey to the origin of the tracking error
coordinates.

The equivalent control is implicitly obtained from the invariance conditions s =
ṡ = 0. This yields:

eϑ,eq = −k3

∫ t

0
eϑ(σ )dσ − k2ėy − k1ey − k0

∫ t

0
ey(σ )dσ

= −k3ëy − k2ėy − k1ey − k0ρ

ρ̇ = ey, ρ(0) = −k3
k0
ëy(0) (4.20)

The ideal sliding dynamics for the output tracking error, e(3)
y = eϑ,eq , is then given

by,

e(3)
y = −k3ëy − k2ėy − k1ey − k0ρ

ρ̇ = ey, ρ(0) = −k3
k0
ëy(0) (4.21)

which has the same characteristic equation as the tracking error dynamics previously
found for the condition s = 0.

4.3.2 Sliding Mode Control of Differentially Flat Systems

Consider the smooth nonlinear system

ẋ = f̃ (x) + g̃(x) (W [2u − 1]) = f (x) + g(x)u, x ∈ R
n, u ∈ {0, 1} (4.22)

Clearly f (x) = f̃ (x) − g̃(x)W , g(x) = 2Wg̃(x). Alternatively, the results below
also applied without major modifications to systems controlled by a binary-valued
control input signal, ϑ , taking values in the set {−W,W }. The system would read as

ẋ = f (x) + g(x)ϑ, x ∈ R
n, ϑ ∈ {−W,W } (4.23)

Independently of the nature of the control signal, assume the smooth vector fields
f and g, locally, satisfy the exact feedback linearization conditions:
(a) The set of vector fields: [g, ad f g, · · · , adn−2

f g] span an involutive distribution

(b) [g, ad f g, · · · adn−2
f g adn−1

f g] is a full rank matrix.
The set of vector fields { f, g} are said to conform an exactly feedback linearizable

pair. The system will be said to be flat. The flat output may be (non-uniquely) found
via its gradient. The following result is well-known (See Sira-Ramírez and Agrawal
[20]). We call the matrix K = [g, ad f g, · · · adn−2

f g adn
f g], the Kalman matrix.
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Proposition 4.1 If conditions (a) and (b) are locally satisfied, the gradient of the
flat output, y, is given by

∂y(x)

∂xT
= [0, 0, ...., 0, 1]

[
g, ad f g, · · · , adn−2

f g, adn−1
f g

]−1
(4.24)

i.e., the row gradient of the scalar flat output is given by the last row of the inverse
of the Kalman matrix.

In general, from the previous statement, the flat output is not uniquely defined and
there are, indeed, infinitely many scalar outputs which qualify as a flat output.

The map

y(x) =

⎡
⎢⎢⎢⎣

y(x)
ẏ(x)

...

y(n−1)(x)

⎤
⎥⎥⎥⎦ = (x) =

⎡
⎢⎢⎢⎣

y(x)
L f y(x)

...

Ln−1
f y(x)

⎤
⎥⎥⎥⎦ (4.25)

is a local diffeomorphism on R
n .

The nonlinear system is equivalent to the following integration system:

y(n) = Ln
f y(

−1(y)) + LgL
(n−1)
f y(−1(y))ϑ (4.26)

where L j
φ y(x) denotes the j times iterated directional derivative of the scalar function

y(x) along the vector field φ(x). Clearly, LgL
(n−1)
f y(−1(y)) is locally assumed to

be nonzero.
Customarily, the flat output is naturally provided with a key physical meaning,

which eases the understanding of the underlying physical system, it trivializes the
controller design and it is enormously helpful in off-line planningof physically sound,
meaningful, trajectories. We assume that the flat output y is a measured variable
of the system (See the Case Studies section). Moreover, thanks to the differential
parametrization property, all states are differentially parameterizable in terms of
the flat output and a finite number of its time derivatives. This off-line adverts of
possible nominal state and input restrictions violations for the desired nominal flat
output trajectory.

The system, describing the dynamics of the scalar flat output, y, may be locally
written as:

y(n) = η(y, ẏ, · · · , y(n−1)) + γ (y, ẏ, · · · , y(n−1))u, γ (y, ẏ, · · · , y(n−1)) 	= 0
(4.27)

If the gain function γ (y, ẏ, · · · , y(n−1)) is known, then the input coordinate trans-
formation γ (y, ẏ, · · · , y(n−1))u = ϑ yields a system of the form:

y(n) = ϑ + η(y, ẏ, · · · , y(n−1)) (4.28)
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In line with the MFC and ADRC philosophy, we would consider such a system as
a pure integration system, with all exogenous disturbances and the nonlinearities in
the term: η(y, ẏ, · · · , y(n−1)), playing the rôle of an unknown, unstructured, time-
varying total disturbance, ξ(t). i.e., sliding mode considerations will be based on the
simplified perturbed pure integration model

y(n) = ϑ + ξ(t) (4.29)

A rigorous justification of this simplification procedure, from a powerful com-
bination of differential algebra and functional analysis, can be found in Fliess and
Join [3] (See also: Han [12], and Guo and Jin, [8, 9] for similar approaches). If the
nonlinear input gain function, γ (y, ẏ, · · · , y(n−1)), is not known, the ADRC proce-
dure indicates to go ahead and replace the unknown gain function by an appropriate
constant based on engineering judgment. In the MFC approach, algebraic identifica-
tion is always a viable, and quite effective, online option (See Morales et al. [15]). In
our two illustrative experimental case studies, presented below, the gains are known
and constant and, hence, we will have no need to use online algebraic identification
techniques nor of the input gain replacement option.

4.4 Experimental Case Studies

4.4.1 An Inverted Pendulum on a Car System

Consider an inverted pendulum on a car system shown in Fig. 4.5. The mass of the
car is M , while L is the length of the pendulum with concentrated massm, θ denotes
the angle between the pendulum rod and the vertical direction.

4.4.1.1 Mathematical Model of the Inverted Pendulum on a Car

The model of the system is derived from the Euler–Lagrange equations, and it is:

(M + m)ẍ − mL θ̈ cos(θ) + mL θ̇2 sin(θ) = F (4.30)

−mL cos(θ)ẍ + mL2θ̈ − mgL sin(θ) = 0 (4.31)

Writing the model in matrix form, the equations of the inverted pendulum on a
car are:

M(q)q̈ + C(q, q̇) + G(q) = u(F) (4.32)
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Fig. 4.5 An inverted
pendulum on a car system

where

q =
[
x
θ

]
M(q) =

[
M + m −mL cos(θ)

−mL cos(θ) mL2

]
C(q, q̇) =

[
0 mL sin(θ)θ̇

0 mL2

]
(4.33)

G(q) =
[

0
−mgL sin(θ)

]
u(F) =

[
F
0

]
(4.34)

The input force (F) is obtained from a DC motor. The control input torque can
be expressed as a function of the motor voltage through the relation: F = kt

r R V (t)
where R is the armature resistance of the motor, kt is the motor torque constant and
r is the radius of the mesh that is used to move the car.

Now, we linearize the system around the stable equilibrium point

x̄ = 0; ¯̇x = 0; θ̄ = 0; ¯̇θ = 0; V̄ = 0; (4.35)

In this case, the linearization is around the origin, all incremental variables coincide,
then, with the actual variables. The linearized system is written as,

(M + m)ẍδ − mL θ̈δ = kt
Rr

Vδ(t) (4.36)

−mLẍδ + mL2θ̈δ = mgLθδ (4.37)

where xδ = x − x̄ , θδ = θ − θ̄ and Vδ = V − V̄
The linearized system in (4.36) is flat [20], then is observable from the incremental

flat output and the system is, clearly, controllable. The flat output is obtained as the
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last row of the inverse of the controllability matrix multiplied by the state vector.
The flat output is found to be the incremental value of the linearized projection of
the pendulum tip position onto the horizontal line (i.e., the “shadow” of the tip on
the horizontal.):

y = −xδ + Lθδ (4.38)

The consecutive time derivatives of the flat output are computed through the observ-
ability matrix of the linearized system. This results in:

y = −xδ + Lθδ; ẏ = −ẋδ + L θ̇δ; ÿ = gθδ; y(3) = gθ̇δ

y(4) = gkt
r RLM

Vδ + g2(M + m)

LM
θδ (4.39)

The second order time derivative of the flat output is seen to be proportional to the
measured angular position θ . Therefore, it is not necessary to estimate the flat output
acceleration since this is conformed from themeasured angular position. On the other
hand, the first and third order time derivatives of the flat output are combinations of
the velocities of the measured positions.

The inverse relation yields the following differential parametrization of the all
system variables:

xδ = −y + L

g
ÿ; ẋδ = −ẏ + L

g
y(3), θδ = 1

g
ÿ; θ̇δ = 1

g
y(3)

The control input, in terms of the flat output, is just:

Vδ = r RLM

gkt
y(4) + r R(M + m)

kt
ÿ (4.40)

The input-output dynamics of the linearized system is, thus, given by

y(4) = gkt
r RLM

Vδ + g(M + m)

LM
ÿ (4.41)

The simplified input-output dynamics which is quite useful in simplifying the
design and implementation of an ADRC and sliding mode controller is:

y(4) = βVδ + ξ(t), β = gkt
r RLM

, ξ(t) = −g(M + m)

LM
ÿ (4.42)

4.4.1.2 An Active Disturbance Rejection Control

Suppose it is desired to have the output y track a given trajectory y∗(t), oriented by
the need to stabilize the car and the pendulum on a given constant position without
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remaining oscillations of the pendulum. Define ey = y − y∗(t), eV = (V − V ∗(t))
where V ∗(t) is the nominal control obtained from (4.40). Similarly, we let eθ =
θδ − θ∗

δ . The incremental state variables nominal trajectories, θ∗(t), is easily obtained
from the flatness property which differentially parametrizes all system state variables
in terms of the flat output and a finite number of its time derivatives. In our case, the
tangent linearized system enjoys such a special property.

Consider the following relations satisfied by the even order time derivatives of
the incremental flat output trajectory tracking errors:

ëy = ÿ − ÿ∗ = geθ ; e(6)
y = βeV (4.43)

These relations may be viewed as dynamical sub-systems with input given by linear
combinations of the generalized position tracking error variables. The first relation
is used to build an ESO observers for the unmeasured, first-time derivatives of the
incremental flat output tracking error.

Let êy0 denote the redundant estimate of the measured flat output tracking error
ey = y − y∗(t). The first observer is devised as follows:

d

dt
êy0 = êy1 + k1(ey − êy0)

d

dt
êy1 = geθ + k0(ey − êy0) (4.44)

This observer produces an estimate êy1 of the first order time derivative of ey .
The second relation from (4.43) prompts an ESO that simultaneously estimates

the third order time derivative of the flat output tracking error, here denoted by ê(3)
y ,

and the possible unknown disturbances, summarized in the extension variable z, due
to neglected nonlinearities aswell as exogenous perturbations (unmodeled dynamics,
force disturbances and so on). We have,

d

dt
êy2 = êy3 + k4(geθ − êy2)

d

dt
êy3 = ẑ + βeV + k3(geθ − êy2)

d

dt
ẑ = k2(geθ − êy2)

(4.45)

The output observation error, e0 = ey − êy0, and its time derivatives e1 = geθ −
êy2 generate the following set of reconstruction error dynamics,

ë0 + k1ė0 + k0e0 = 0

e(3)
1 − k4ë1 − k3ė1 − k2e1 = 0
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An appropriate choice of coefficients (k4,. . ., k0) guarantee exponentially decreasing
estimation errors, e0 and e1. Using, respectively, a second and third order Hurwitz
polynomial of the form: (s2 + 2ζ1ω1s + ω2

1) and (s2 + 2ζ2ω2s + ω2
2)(s + p), one

obtains:

k1 = 2ζ1ω1; k0 = ω2
1; k4 = 2ζ2ω2 + p; k3 = 2pζ2ω2 + ω2

2; k2 = pω2
2

The tracking controller is synthesized with a canceling strategy in mind based on
the estimate of the total disturbance input function, ξ(t). The estimation of ξ(t) is
denoted by ẑ. The output feedback control eu = u − u∗(t) is given by,

eu = 1

β

[
ẑ − λ3(êy3 − y∗(3)) − λ2(geθ − ÿ∗) − λ1(êy1 − ẏ∗) − λ0(ey − y∗)

]
(4.46)

The linear controller gains {λ3,…,λ0}, were set by using the coefficients of a desired
fourth Hurwitz polynomial of the form, (s2 + 2ζωs + ω2). We obtained:

λ3 = 4ζω; λ2 = (4ζ 2ω2 + 2ω2); λ1 = 4ω3ζ ; λ0 = ω4

In Fig. 4.6 a block diagramof theADRCscheme for the inverted pendulumon a car
system is shown. From (4.46), we observe that eu = V (t) − V ∗(t), where eu = υav,
represents the average input control of the plant. If we use a�-�modulator we have
that the corresponding sliding surface s correspond with the average input control.
Figure4.7 shows the corresponding block diagram of the ADRC and�-�modulator
for the system, where u(t) represents the discontinuous control obtained trough the
modulator.

Fig. 4.6 Block diagram of the inverted pendulum on a car system with ADRC scheme
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Fig. 4.7 Block diagram of the inverted pendulum on a car system with ADRC scheme and �-�
modulator

4.4.1.3 Description of the Experimental Platform and Experimental
Results.

The experimental platform consists of two rails, which allowed an aluminum car to
move along them by using a rack and a pinion driven by a DC motor with gearbox
of transmission ratio, 30:1. The primary radius of the pinion is 0.03 [m] and the
motor supply voltage is 12V. Both the rail and the rack are, respectively, located in
the bottom and top of the car. These are fixed to a rigid structure made with a PTR
profile and a steel plate. On the car, two incremental rotary encoders, of 2000 pulses
per revolution, are found. The pinion is mounted on the car shaft and the hanging
pendulum, made of aluminum with a length of 0.56 [m] and a mass of 0.2 [kg], can
freely rotate on its hinge, as shown in Fig. 4.8.

The angular position of the pendulum is measured using one of the incremental
rotary encoders and the position of the car is measured by the second encoder. The
DCmotor, powered by a DC voltage supplied by a “Monster motor shield” H-bridge,

PENDULUM

CAR

ENCODER

MOTOR

RAILS

RACK

PINION

Fig. 4.8 Experimental platform of the inverted pendulum on a car system
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Inverted Pendulum
on a car System

GraphingDataControl, Trajectory Planning,
and Data Processing

Control Signal

PowerAmplifier

Encoder Lecture

Fig. 4.9 Schematics of the implementation of the controller

is controlled by means of a target “C2000 Delfino TMS320F28335” card. This card
reads the signal from the incremental rotary encoders and sends it to the computer
where the data is plotted. This system is shown in Fig. 4.9

The initial conditions of the pendulum and car position are given by [x = 0,
θ = 0]. The reference trajectory is specified via a “rest-to-rest”maneuver synthesized
by means of a Bézier polynomial, interpolating between 0 and 0.5 [m] in 3 s. The
parameters of the dominating the closed-loop characteristic polynomial in the linear
controller:

p1(s) = s4 + λ3s
3 + λ2s

2 + λ1s + λ0 (4.47)

are obtained by equating this polynomial to a desired Hurtwitz polynomial of the
form (s2 + 2ζ1ω1 + ω2

1)
2. The parameters were adjusted to ζ1 = 1, ω1 = 9.

An appropriate choice of coefficients (k4,. . ., k0) guarantee exponentially decreas-
ing estimation errors, e0 and e1. Using, respectively, a second and third order poly-
nomial of the form:

p2(s) = s2 + k1s + k0 (4.48)

p3(s) = s3 + k4s
2 + k3s + k2 (4.49)

Equating this polynomials to a desired Hurtwitz polynomials of the form (s2 +
2ζ2ω2s + ω2

2) and (s2 + 2ζ3ω3s + ω2
3)(s + p) the desired parameters are obtained.

The parameters were adjusted to ζ2 = 1, ω2 = 120,ζ3 = 1, ω3 = 120 and p = 120.
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Fig. 4.10 Sliding mode controlled trajectory tracking features for the inverted pendulum on a car
variables and applied control input, compared with the corresponding equivalent control

In Fig. 4.10 the closed-loop system response is depicted, when the desired trajec-
tory initially coincides with the flat output reference trajectory. The desired trajectory
is followed with good precision and reaches the desired value in the required time.
The sliding mode control input signal is plotted along with the computed equivalent
control. This is contained within the expected sliding mode existence range.

Figure4.11 shows the response of the closed-loop system when it is disturbed by
an instantaneous external force at the tip of the pendulum once the system is in equi-
librium (approximately, at t = 11 [s] and t = 17 [s]). The reaction of the controller
allows to bring the flat output to the desired reference equilibrium while avoiding the
input effects of the external disturbance. This demonstrates the remarkable robustness
of the proposed controller.
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Fig. 4.11 Tracking, control input voltage

Table 4.1 Experimental
platform parameters

Parameter Value

Armature resistance R 2.4�

Torque constant kt 0.35Nm/A

Pendulum mass 0.278kg

Car mass 1.672kg

Pendulum length 0.56m

Primitive radius of the pinion 0.03m

Experimental platform parameters, used in this experimental test, are presented
in Table4.1.

4.4.2 A Nonlinear Manipulator-DC Motor System

Consider the single-link robot manipulator shown in Fig. 4.12. It is desired to track
a pre-specified angular position trajectory, given by θ∗(t). Suppose that only the
angular position of the pendulum, θ(t), is accessible for measurement.
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Fig. 4.12 Single-link
manipulator: simple link
manipulator with DC motor

Fig. 4.13 Motor scheme
with electro-mechanical
analogies

Using the Euler–Lagrange formalism, the single-link manipulator model is
obtained as: (

J + ml2c
)
θ̈ + mglc sin θ = τ (4.50)

where m is the mass of the link, J is the moment of inertia of the link, lc is the
distance from the pivot to the center of gravity of the beam and θ describes the
angular position of the link with respect to the vertical.

Considering the model of the DC motor, shown in Fig. 4.13, this model is given
by the following equations:

Lm
d

dt
im + Rmim + km θ̇m = V (4.51)

Jm θ̈m = kt im − τm − Bm θ̇m (4.52)

where Lm is the armature inductance, Rm is the armature resistance, im is the armature
current, km the electromotive force (EMF) constant, V is the applied voltage, Jm is
the motor’s rotor inertia, Bm is the coefficient of viscous friction of the motor, kt is
the torque constant, θm the angular position of the rotor, and τm the load torque on
the motor shaft.

Since the motor and the pendulum are coupled by means of a gear-head box (with
a gear relation n:1) and a rigid coupling, we can say that the motor’s torque and angle
are related with the pendulum’s torque and angle via the following relations:

nτm = τ ; 1

n
θm = θ
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Using the relationships above, we can combine the pendulum’s equation with the
motor equations. In terms of the pendulum’s angular displacement, and considering
that km = kt = K . Thus, measured in the International System of Units the model
of the full system is:

Lm
d

dt
im + Rmim + Knθ̇ = V (4.53)

(
J + ml2c + Jmn

2
)
θ̈ + Bmn

2θ̇ + mglc sin θ = Kimn (4.54)

The composite system is flat. The flat output can be taken to be the angular
position of the pendulum F = θ . This flat output induces the following differential
parametrization of the system variables and of the control input:

im = [(
J + ml2c + Jmn

2
)
F̈ + Bmn

2 Ḟ + mglc sin (F)
]
/Kn

θ = F

ω = Ḟ (4.55)

v = V = Lm

Kn

(
F (3)

(
J + ml2c + Jmn

2
) + Bmn

2 F̈ + mglc Ḟ cos (F)
)

+ Rm

Kn

(
F̈

(
J + ml2c + Jmn

2
) + Bmn

2 Ḟ + mglc sin (F)
) + KnḞ (4.56)

The input-to-flat output dynamics of the system is given by:

F (3) = − β

nkt

[
LmBmn

2 + Rm
(
Jmn

2 + J + ml2c
)]

F̈

− β

nkt

(
Lmmglc cos F + kmktn

2 + RmBmn
2
)
Ḟ

−α sin F + βV (4.57)

where α and β are defined as:

α = Rmmglc
Lm

(
J + ml2c + Jmn2

) ; β = nK

Lm
(
J + ml2c + Jmn2

)
Let the constant gainβ be known. Given the nonlinear system (4.57), with the con-

trol input represented by the motor’s armature circuit voltage V . Define uav = βV .
Consistent with the methodology advocated by the ADRC methodology, consider
the following simplified third order system dynamics,

F (3) = θ(3) = βV + ξ = uav + ξ (4.58)



96 H. Sira-Ramírez et al.

where, generally speaking, ξ represents the systems nonlinearities and possible
exogenous and endogenous disturbances as well as unmodeled uncertainties affect-
ing the plant behavior. Here, we have,

ξ = − β

nK

[
LmBmn

2 + Rm
(
J + ml2c + Jmn

2
)]

F̈

− β

nK
(Lmmglc cos F + K 2n2 + RmBmn

2)Ḟ − α sin F (4.59)

ξ represents the state-dependent total disturbance including the nonlinear and linear
expressions affecting the dynamics of the angular position third order time derivative.
This disturbance term also includes all the exogenous disturbances, modeling errors,
friction terms, and unmodeled dynamics affecting the system behavior.

The output tracking error eθ = θ − θ∗(t) and the auxiliary input error eu = uav −
u∗(t), with u∗(t) = [y∗](3). The simplified description of the tracking error dynamics,
treated in the previous section, except for the disturbance term, is given by:

e(3)
θ = eu + ξ (4.60)

We propose the following integrally reconstructed sliding surface (no integration
limits are shown for simplicity):

σ̂ = ̂̈eθ + k5 ̂̇eθ + k4eθ + k3

∫
eθ (λ) dλ + k2

∫∫
eθ (λ1) dλ1dλ

+ k1

∫∫∫
eθ (λ2) dλ2dλ1dλk0

∫∫∫∫
eθ (λ3) dλ3dλ2dλ1dλ (4.61)

where, as before, the estimated phase variables of the plant are computed as integrals
of the input error without taking into account the disturbance. The estimates are then
structural reconstructors which we know beforehand they are in error. The only vari-
ation we are introducing is the addition of two extra iterated integrals of third and
fourth order. This provision is taken just to have one more degree of integral com-
pensation in the actual physical system operation. The effects of the (matched) phase
variables dependent disturbance will be handled in part by the integral compensation
and in part by the intrinsic robustness of the sliding regime under matching condi-
tions. The parameters k0, k1, k2, k3, k4, k5, are design constants to be determined so
that the closed-loop characteristic polynomial of the unperturbed system is a Hurwitz
polynomial. As before, a suitable switching policy is given by:

βV = uav = −W signσ̂ (4.62)

Under ideal sliding conditions we have that the following invariance conditions
are satisfied: σ̂ = 0, d

dt σ̂ = 0. From these two conditions, the equivalent control is
readily determined as shown in the next Eq. (4.63):
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Fig. 4.14 Block diagram for the sliding mode control with integral reconstructor and two extra
integrators for a third order plant

Fig. 4.15 Sliding mode controller equivalence with a sigma delta modulator based scheme

eueq = −k5ëθ − k4ėθ − k3eθ − k2

∫
eθ − k1

∫∫
eθ − k0

∫∫∫
eθ

= −k5

∫
eu − k4

∫∫
eu − k3eθ − k2

∫
eθ − k1

∫∫
eθ − k0

∫∫∫
eθ (4.63)

The diagram for the third order sliding mode control scheme, based on integral
reconstructors, is presented in Fig. 4.14.

As explained before, this diagram can be reinterpreted in the form of a Delta-
Sigma modulator based scheme, as shown in Fig. 4.15.

Also taking advantage of the integral reconstructors to estimate ėθ , we finally
arrived to the scheme on Fig. 4.16 which corresponds to a GPI controller with an
extra integration term and a sigma delta modulator.
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Fig. 4.16 GPI and Delta-Sigma modulator controller scheme

Fig. 4.17 Experimental
platform of a single-link
manipulator
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Fig. 4.18 Experimental platform diagram

4.4.2.1 Description of Platform and Experimental Results

An experimental platform of the nonlinear manipulator-DC motor system was built,
consisting of a pendulum with a 250 [g] mass attached to a 0.27 [m] thin aluminum
bar. The link was bounded by a rigid coupling to the axis of a 12V DC motor with a
131:1 gear ratio andwith 64 counts per revolution. A two-channel Hall effect encoder
is used to sense the rotation of a magnetic disk on a rear protrusion of the motor shaft
(see Fig. 4.17).

TheDCmotor is excited by aDCvoltage source through a “Monstermotor shield”
H-bridge, controlled with the STM32F407 discovery kit, which also read the motor’s
encoder and is able to send the data to a computer where the data is graphed, as shown
in Fig. 4.18.

The output reference trajectory tracking experiment considered a Bézier polyno-
mial, interpolating between 0 and 3

2π [rad] in 2 seconds. The closed-loop system is
dominated by the ideal linear dynamics whose characteristic polynomial is:

p(s) = s6 + k5s
5 + k4s

4 + k3s
3 + k2s

2 + k1s + k0 (4.64)

whose coefficients are obtained from a corresponding desired Hurwitz polynomial
of the form: (s2 + 2ζωn + ω2

n)
3. For the experimental results, the values of the para-

meters were set to: W = 12, ζ = 0.5 and ωn = 27.
In Fig. 4.19, the response of the closed-loop system is depicted when the initial

condition of the desired reference trajectory coincideswith the initial angular position
of the link. The position maneuver from 0 to 3π/2 [rad] is achieved in a significantly
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Fig. 4.19 Tracking, control
input voltage

0 1 2 3 4 5 6 7
time

0

2

4

6

ra
d

Reference trajectory tracking performance

0 1 2 3 4 5 6 7
time

-20

-10

0

10

20
V
ol
ts

Control input voltage

v veq

Table 4.2 Motor parameters

Lm Jm Km Kt Rm

2mH 5.5942e-4kgm2 10.065e-3V*s/rad 10.065e-3Nm/A 1.8�

short period of time (2 [s]) and the desired reference trajectory is tracked with good
accuracy. The GPI control signal is a bit noisy during the transition from one rest
to an other, but when the reference trajectory is reached the noise disappears. The
motor parameters, used in this experimental test, are presented in Table4.2.

4.5 Conclusions

In this chapter, we have introduced an input-output approach for sliding mode con-
trol of switched linear and (a large class of) nonlinear systems (namely, the class
of feedback linearizable systems, or flat systems). Although the developments were
centered around the single-input single-output case, the results may be generalized
for the multivariable case, provided dynamic feedback linearization is allowed and
appropriately handled. One of the explored options is represented by the switched
implementation of a sound smooth average output feedback controller design for the
plant, via a Delta-Sigma modulator. We took for such a prototypical controller the
Active Disturbance Rejection Control (ADRC) scheme which is a rather robust out-
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put feedback controller. The implementationmodule is represented by aDelta-Sigma
modulator, taking the average designed bounded control input signal as the modu-
lator input. The modulator produces, at the output, the switched, or binary-valued,
version of the input. The modulator thus provides a command signal for the switched
plant. Delta-Sigma modulators absorb the sliding regime creation problem into its
exogenous, one-dimensional, state space, foreign to the given plant. It provides, in
turn, a switching (binary-valued) output whose average value, in an equivalent con-
trol sense, coincides with the input signal to the modulator. Here, in this chapter, we
illustrated the case of an average ADRC output reference trajectory tracking design
for an under-actuated switched nonlinear inverted pendulum on a car system using its
controllable tangent linearization. The desired output reference trajectory takes the
system variables arbitrarily far from the operating equilibrium used for the approxi-
mate linearization. The second option, for the input-output approach to sliding mode
control design, is based on the possibilities of structural phase variables reconstruc-
tion, or integral reconstruction in pure integration systems. Using this approach, a
sliding surface coordinate function, free of phase variables measurements, is synthe-
sized using a variation of the Generalized Proportional Integral (GPI) control idea.
The class of feedback linearizable, or flat, systems has been shown here to benefit
from the integral reconstruction procedure in sliding mode schemes. The connection
of integral reconstructor-based sliding regimes with Delta-Sigma modulators was
also clearly established. We have provided here two case studies, including labora-
tory prototypes, as an illustrative implementation of the foregoing developments.
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Chapter 5
Design of Asymptotic Second-Order Sliding
Mode Control System

Yaodong Pan and Katsuhisa Furuta

Abstract A chattering-free sliding mode (SM) control system can be realized by a
second-order sliding mode (2nd-SM) control based on the derivative model of the
original system. In this case, the derivative of a switching function, which may be
unavailable for the control implementation, is required for the finite time conver-
gence to a 2nd-SM. In this chapter, a new asymptotic SM control algorithm, without
using the derivative of the switching function, is proposed for a class of nonlinear
systems, to ensure the asymptotically convergence to a 2nd-SM. The locally and
asymptotically stability is guaranteed by a Lyapunov function.

5.1 Introduction

In a variable-structure control systemwith a slidingmode (SM), a switching function
and an SM control law should be designed such that the system reaches the SM in
finite time and stays there after that, and the reduced-order system on the SM is
asymptotically stable [6, 16]. To keep the system state on the SM, the SM control
input has to be switched in a high frequency, which results in chattering phenomena.
As one of effective methods to deal with the chattering problem, second-order SM
(2nd-SM) control algorithms have been proposed and have been implemented in
many mechanical control systems [2–5, 10, 12].

To design a chattering-free SM control system by a 2nd-SM control algorithm,
the derivative of the control input may be considered as an alternative control input
and an SM control law is designed for the alternative control input based on the
derivative model of the system. Thus a smooth control input as the integration of an
2nd-SM control law is obtained. To guarantee the finite time convergence to a 2nd-
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SM with a 2nd-SM control law, both the switching function and its derivative (or its
derivative-related information) are required for the 2nd-SM control implementation
[11]. In practical control systems, however, the derivatives of the switching function
may be unmeasurable or unavailable for the control implementation, although it can
be estimated by an observer.

An asymptotic 2nd-SM control algorithm without using the derivative has been
proposed [1, 7, 15] such that a 2nd-SM is reached, asymptotically with a first-order
SM (1st-SM) control law, i.e., a relay control law. The asymptotic convergence to the
2nd-SM can also be observed when an SM control is implemented to a system with
fast dynamic actuators [8] or inertial sensors [9]. It has been proved in [14] for a linear
time-invariant system that a high order SM can be reached locally and asymptotically
with a reduced-order SM control law and the asymptotic reduced-order SM control
system is locally and asymptotically stable if the sum of system poles is less than
the sum of system zeros. A similar necessary condition for the convergence to the
2nd-SM with a relay control law is also required for nonlinear time-varying cases
[7]. Therefore, the asymptotic 2nd-SM control algorithm can only be implemented
to those systems satisfying the necessary condition [7, 14]. In [13], the condition has
been represented by linear matrix inequalities (LMI).

In this chapter, a new chattering-free asymptotic 2nd-SM control algorithm is
proposed for a class of nonlinear systems, without using the derivative of the switch-
ing function. A 1st-SM control law is implemented such that a 2nd-SM is reached,
locally and asymptotically together with a pre-feedback control term letting the nec-
essary condition mentioned above hold. A Lyapunov function is provided to show
the local and asymptotic stability of the proposed asymptotic SM control system.

This chapter is organized as follows: Sect. 5.2 describes the problem to be con-
sidered in this chapter; Sect. 5.3 proposes the asymptotic SM control algorithm and
shows its local and asymptotic stability; Sect. 5.4 presents simulation results; and
Sect. 5.5 concludes the chapter.

5.2 Problem Description: Nonlinear Model

Consider a single-input single-output nonlinear system, described by

y(n)(t) = f (y(t), ẏ(t), . . . , y(n−1)(t), u(t)), (5.1)

where y(t) ∈ R and u(t) ∈ R1 are the output and the input variables, respectively,
and f (y, ẏ, . . . , y(n−1), u) ∈ Ck (k ≥ 1) is a continuously differentiable nonlinear
function. The control input u(t) is essentially bounded in a compact subset U ⊂ R.
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Define a state vector x ∈ Rn as

x(t) =

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...

xn(t)

⎤
⎥⎥⎥⎦

where xi (t) = y(i−1)(t) (i = 1, 2, . . . , n). It is assumed that the state x(t) is consid-
ered in a bounded compact subset X ⊂ Rn , i.e., x(t) ∈ X ⊂ Rn . Denoting the non-
linear function f (y, ẏ, . . . , y(n−1), u) as f (x, u), the system (5.1) can be described
as

ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎣

x2(t)
x3(t)

...

xn
f (x, u)

⎤
⎥⎥⎥⎥⎥⎦

. (5.2)

Define a switching function as

σ(t) = Cx(t) (5.3)

whereC = [
c0 c1 · · · cn−2 1

] ∈ R1×n . It is assumed that the switching functionσ(t)
is designed such that all roots of the polynomial equation

sn−1 + cn−2s
n−2 + · · · + c1s + c0 = 0 (5.4)

have negative real parts.
Taking the derivative of both sides of the system dynamical equation (5.2) yields

ẍ(t) = A(x, u)ẋ(t) + B(x, u)u̇(t), (5.5)

where A(x, u) ∈ Rn×n and B(x, u) ∈ Rn×1 are determined by

A(x, u) =
[

O(n−1)×1 In−1

−a0(x, u) −a1(x, u) ... −an−1(x, u)

]

B(x, u) =
[
O1×(n−1)

b(x, u)

]
.

Here, ai (x, u) (i = 0, 1, . . . , n − 1) and b(x, u) are defined as

ai (x, u) = − ∂

∂xi+1
f (x, u), (i = 0, 1, . . . , n − 1) (5.6)
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b(x, u) = ∂

∂u
f (x, u). (5.7)

In this chapter, Ii and Oj×k are the i × i (i = 2, 3, . . .) identity matrix and the j × k
( j = 1, 2, . . .; k = 1, 2, . . .) zero matrix, respectively.

Assumption 1 There exist two positive constants b and b̄ such that b(x, u) is
bounded by

0 < b ≤ b(x, u) ≤ b̄, ∀x ∈ X ⊂ Rn,∀u ∈ U ⊂ R.

Define an extended state vector x̄ ∈ Rn+1 as

x̄(t) =

⎡
⎢⎢⎢⎣

y(t)
ẏ(t)
...

y(n)(t)

⎤
⎥⎥⎥⎦ =

[
x(t)
ẋn(t)

]
=

[
x1(t)
ẋ(t)

]
.

Then the extended system dynamics of (5.5) can be described as

˙̄x(t) = Ā(x, u)x̄(t) + B̄(x, u)u̇(t) (5.8)

where Ā(x, u) ∈ R(n+1)×(n+1) and B̄(x, u) ∈ R(n+1)×1 are defined as

Ā(x, u) =
[

0 1 O1×(n−1)

On×1 A(x, u)

]

B̄(x, u) =
[

0
B(x, u)

]
.

Then the switching function (5.3) and its derivative can be written as

σ(t) = Cx(t) = [
C 0

]
x̄(t) = [

c0 c1 · · · cn−2 1 0
]
x̄(t)

σ̇ (t) = Cẋ(t) = [
0 C

]
x̄(t) = [

0 c0 · · · cn−3 cn−2 1
]
x̄(t)

Define a new state vector as

w(t) =
⎡
⎣

σ(t)
σ̇ (t)
z(t)

⎤
⎦ ∈ Rn+1,
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where z(t) ∈ Rn−1 is the internal state vector defined as

z(t) =

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...

xn−1(t)

⎤
⎥⎥⎥⎦ ∈ Rn−1.

A state transformation matrix T ∈ R(n+1)×(n+1)

T =
⎡
⎣

c0 c1 · · · cn−2 1 0
0 c0 · · · cn−3 cn−2 1

In−1 O(n−1)×2

⎤
⎦

transforms the state from x̄(t) to w(t) as

w(t) = T x̄(t).

Then the system (5.8) is transformed with the transformation matrix T as

ẇ(t) = Ã(x, u)w(t) + B̃(x, u)u(t) (5.9)

with Ã(x, u) = T Ā(x, u)T−1 and B̃(x, u) = T B̄(x, u) being determined by

Ã(x, u) =
⎡
⎣

0 1 O1×(n−1)

−α(x, u) −β(x, u) Cz(x, u)

Bz O(n−1)×1 Az

⎤
⎦

B̃(x, u) =
⎡
⎣

0
b(x, u)

O(n−1)×1

⎤
⎦ ,

where Az ∈ R(n−1)×(n−1), Bz ∈ R(n−1)×1, Cz(x, u) ∈ R1×(n−1), α(x, u) ∈ R, and
β(x, u) ∈ R are given by

Az =
[
O(n−2)×1 In−2

−c0 −c1 · · · −cn−2

]
(5.10)

Bz =
[
O(n−2)×1

1

]

Cz(x, u) = [
b0(x, u) b1(x, u) · · · bn−2(x, u)

]

α(x, u) = an−2(x, u) + c2n−2 − cn−3 − cn−2an−1(x, u)

β(x, u) = an−1(x, u) − cn−2. (5.11)
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Here bi (x, u) (i = 0, 1, . . . , n − 2) is defined as

bi (x, u) = ci−2 − ai−1(x, u) − ci (cn−3 − an−2(x, u))

+(cn−2ci − ci−1)(cn−2 − an−1(x, u))

with a−1(x, u) = c−1 = c−2 = 0.
Therefore, the system (5.9) can be represented as two subsystems:

σ̈ (t) = −β(x, u)σ̇ (t) − α(x, u)σ (t) + Cz(x, u)z(t) + b(x, u)u̇(t), (5.12)

ż(t) = Azz(t) + Bzσ(t). (5.13)

The control objective is to stabilize the system (5.1) asymptotically by a chattering-
free asymptotic 2nd-SM control law without using σ̇ (t), the derivative of σ(t).

5.3 Design of Asymptotic SM Control System

Based on the dynamical equations (5.12) and (5.13), most of 2nd-SM control algo-
rithms can realize a chattering-free SM control but the derivative of σ(t) is required
for the control implementation. For example, using the twisting 2nd-SM control [12]
designed as

u̇(t) = −r1 sign(σ̇ (t)) − r2 sign(σ (t)), (5.14)

a chattering-free SM control law is given by

u(t) = −r1

∫ t

0
sign(σ̇ (t))dt − r2

∫ t

0
sign(σ (t))dt,

where r1 and r2 are positive constants.
To avoid using the derivative of σ(t), it is possible to stabilize the system (5.1)

by the asymptotic 2nd-SM control with a 1st-SM control law [1, 7, 14, 15]

u̇(t) = −k2 sign(σ (t)). (k2 > 0)

In this case, the 2nd-SM can be reached with the 1st-SM control law locally and
asymptotically if the time-varying coefficient β(x, u) in (5.12) is positive. For prac-
tical systems, however, β(x, u) may be unknown and may be negative. In this case,
a feedback control term is added to the 1st-SM control law as

u̇(t) = −k1σ̇ (t) − k2 sign(σ (t))
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such that b(x, u)k1 + β(x, u) is positive with a sufficiently large positive constant
k1 for a bounded β(x, u). Thus, a new chattering-free asymptotic 2nd-SM control
law, without using the derivative of σ(t), is proposed in this chapter as

u(t) = −k1σ(t) − k2

∫ t

0
sign(σ (t))dt. (5.15)

Here, k1 and k2 are positive constants to be designed such that the system (5.1) is
stabilized locally and asymptotically.

5.3.1 A Stable Sliding Mode

Lemma 5.1 Consider the system (5.1) with the switching function σ(t) defined by
(5.3). The reduced-order system on the 2nd-SM σ(t) = σ̇ (t) = 0 is asymptotically
stable.

Proof On the 2nd-SM, σ(t) = σ̇ (t) = 0 holds. Thus, the stability of the reduced-
order system on the 2nd-SM σ(t) = σ̇ (t) = 0 is totally determined by the dynamics
(5.13) of the internal state z(t). The characteristic equation of the system matrix Az

defined by (5.10), of the subsystem (5.13) is given by the polynomial equation (5.4).
As the switching function σ(t) defined by (5.3) is designed such that all roots of
the polynomial equation (5.4) have negative real parts, all eigenvalues of the system
matrix Az have negative real parts, too. Thus, the reduced-order system on the 2nd-
SM is asymptotically stable.

Lemma 5.2 Consider the system (5.1) with the switching function σ(t) defined by
(5.3). A necessary condition for the 2nd-SM to be reached asymptotically with the
chattering-free asymptotic 2nd-SM control law (5.15) is that the inequality

k1b(x, u) + β(x, u) = k1b(x, u) + an−1(x, u) − cn−2 > 0 (5.16)

holds with a sufficiently large gain k1 of the control law (5.15), where β(x, u),
an−1(x, u), and b(x, u) are defined by (5.6), (5.7), and (5.11) respectively, and cn−2

is one of coefficients of the switching function σ(t) defined by (5.3).

Proof With the SM control law (5.15), the subsystem (5.12) can be rewritten as

σ̈ (t) = −λ(x, u)σ̇ (t) − α(x, u)σ (t)

+Cz(x, u)z(t) − b(x, u)k2 sign(σ (t))), (5.17)

where λ(x, u) = b(x, u)k1 + β(x, u).
It has been proven in [1, 7] that one of the necessary conditions for the system

to converge asymptotically to the 2nd-SM σ(t) = σ̇ (t) = 0 is that the coefficient
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λ(x, u) in (5.17) to be positive. Thus, the following inequality is a necessary condition
for the 2nd-SM to be reached asymptotically:

λ(x, u) = k1b(x, u) + an−1(x, u) − cn−2 > 0.

Remark 5.1 If the inequality (5.16) holds for the state x ∈ X ⊂ Rn and the control
input u ∈ U ⊂ R, then only the local and asymptotic convergence to the 2nd-SM
can be guaranteed.

5.3.2 Convergence to Sliding Mode

Theorem 5.1 Consider the description (5.12) and (5.13) of the system (5.1) with
the switching function σ(t) defined in (5.3). Then the 2nd-SM σ(t) = σ̇ (t) = 0 can
be reached locally and asymptotically with the chattering-free asymptotic 2nd-SM
control law (5.15) if

1. the system state vector w(t) = [
δ(t) δ̇(t) zT (t)

]T
is considered in a bounded

compact subset � of Rn+1, i.e., w(t) ∈ Ω ⊂ Rn+1,∀t ∈ [0,+∞) and the fol-
lowing holds:

{
x(t) ∈ X ∈ Rn

u(t) ∈ U ⊂ R
⇔

{
w(t) ∈ � ⊂ Rn+1

u(t) ∈ U ⊂ R
;

2. Assumption 1 holds for w(t) ∈ � ⊂ Rn;
3. the positive coefficient k1 is chosen to be large enough such that the following

conditions hold for x(t) ∈ X (w(t) ∈ �) and u(t) ∈ U:

λ(x, u) = k1b(x, u) + β(x, u) > 0, (5.18)

2λ(x, u)b(x, u) + ḃ(x, u) > 0 (5.19)

and
4. the following inequality holds with a sufficiently large positive coefficient k2 for

w(t) ∈ � and u(t) ∈ U:

k2 > max{k21(w, u), k22(w, u)}, (5.20)

where k21(w, u) and k22(w, u) are respectively determined by

k21(w, u) = μ1 + |α(x, u)σ (t) − Cz(x, u)z(t)| + λ(x, u)|σ̇ (t)|
b(x, u)

k22(w, u) = μ2 + |h1(x, u)σ (t) + h2(x, u)σ̇ (t) + h3(x, u)z(t)|
2λ(x, u)b(x, u) + ḃ(x, u)

.
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Here, μ1 and μ2 are positive constants and h1(x, u) (i = 1, 2, 3) is defined as

h1(x, u) = 2λα(x, u) + α̇(x, u) − Cz(x, u)Bz

h2(x, u) = 2α(x, u)

h3(x, u) = −Ċz(x, u) − Cz(x, u)(Az + 2λIn−1)

Proof Rewrite the dynamical equation (5.12) with the SM control law (5.15) as

σ̈ (t) = −λ(x, u)σ̇ (t) − η(t) sign(σ (t)), (5.21)

where λ(x, u) = k1b(x, u) + β(x, u) is positive according to Lemma 5.2 when the
inequality (5.18) holds, and η(t) ∈ R is defined as

η(t) = (α(x, u)σ (t) − Cz(x, u)z(t)) sign(σ ) + b(x, u)k2. (5.22)

Using the inequality (5.20), it can be confirmed that

η(t) ≥ −|α(x, u)σ (t) − Cz(x, u)z(t)| + b(x, u)k2
> −|α(x, u)σ (t) − Cz(x, u)z(t)| + b(x, u)k21(w, u)

> λ(x, u)|σ̇ (t)| + μ1

≥ μ1 > 0.

Choose four positive constants γ , ε, ν1, and ν2 (∀w(t) ∈ �,∀u(t) ∈ U ) satisfying

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε ≤ λ(x, u)
(

μ2

2η2(t) − ν1

)

η(t) ≥ |γ − λ(x, u)||σ̇ (t)| + ν2

ε < λ̄2

η(t)

ν1 <
μ2

2η2(t)

. (5.23)

Then, a Lyapunov function candidate is defined as

Vσ (t) = 1

2

[
σ(t) σ̇ (t)

] [
1

η(t)
ε
γ

ε
γ

ε

] [
σ(t)
σ̇ (t)

]
+ |σ(t)|

= σ̇ 2(t)

2η(t)
+ ε

2
σ 2(t) + ε

γ
σ(t)σ̇ (t) + |σ(t)|, (5.24)

which is continuously differentiable when σ(t) 	= 0. As ε and 1
η(t) are positive and

ε
η(t) − ε2

γ 2 is also positive according to the third inequality in (5.23), the 2 × 2 sym-
metric matrix
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[
1

η(t)
ε
γ

ε
γ

ε

]

is positive definite. Therefore, the Lyapunov function candidate Vσ (t) is positive
definite for all w(t) ∈ � and for all u(t) ∈ U .

The derivative of Vσ (t) for σ(t) 	= 0 along the trajectories of (5.17) is

V̇σ (t) = σ̇ (t)σ̈ (t)

η(t)
− σ̇ 2(t)

2η2(t)
η̇(t) + εσ (t)σ̇ (t)

+ ε

γ
(σ (t)σ̈ (t) + σ̇ 2(t)) + sign(σ )σ̇ (t)

= σ̇ (t)

η(t)

(
σ̈ (t) − σ̇ (t)

2η(t)
η̇(t) + η(t) sign(σ )

)

+ ε

γ
σ(t)(γ σ̇ (t) + σ̈ (t)) + ε

γ
σ̇ 2(t)

= σ̇ (t)

η(t)

(
−λ(x, u)σ̇ (t) − σ̇ (t)

2η(t)
η̇(t)

)
− ε

γ
η(t)|σ(t)|

+ε(γ − λ(x, u))

γ
σ (t)σ̇ (t) + ε

γ
σ̇ 2(t)

= − σ̇ 2(t)

2η2(t)
(2λ(x, u)η(t) + η̇(t)) − ε

γ
η(t)|σ(t)|

+ε(γ − λ(x, u))

γ
σ (t)σ̇ (t) + ε

γ
σ̇ 2(t). (5.25)

It follows from the inequality (5.20), i.e., k2 > max{k21(w, u), k22(w, u)} ≥
k22(w, u) that

2λ(x, u)η(t) + η̇(t) = (2λ(x, u)b(x, u) + ḃ(x, u))k2 + (h1(x, u)σ (t)

+h2(x, u)σ̇ (t) + h3(x, u)z(t)) sign(σ )

> (2λ(x, u)b(x, u) + ḃ(x, u))k22(w, u)

−|h1(x, u)σ (t) + h2(x, u)σ̇ (t) + h3(x, u)z(t)|
≥ μ2.

Substituting the above inequality for (5.25) and using the first two inequalities in
(5.23) yield

V̇σ (t) < − σ

2η2(t)
σ̇ 2(t) − ε

γ
η(t)|σ(t)| + ε(γ − λ(x, u))

γ
σ (t)σ̇ (t) + ε

γ
σ̇ 2(t)

= −
(

μ2

2η2(t)
− ε

γ

)
σ̇ 2(t) − ε

γ
(η(t) − (γ − λ(x, u)) sign(σ )σ̇ (t)) |σ(t)|
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≤ −ν1σ̇
2(t) − ε

γ
ν2|σ(t)|

≤ 0, (V̇σ (t) = 0 ⇔ σ(t) = σ̇ (t) = 0)

which means that Vσ (t) keeps decreasing until both σ(t) and σ̇ (t) converge to zero.
Therefore, it is proven that the 2nd-SM σ(t) = σ̇ (t) = 0 is reached locally and
asymptotically with the SM control law (5.15) for w(t) ∈ � and u(t) ∈ U .

5.3.3 Asymptotic Stability

When the switching function σ(t) in (5.3) is designed such that the reduced-order
system (5.13) on the 2nd-SM is asymptotically stable, there exists a symmetric pos-
itive definite matrix Pz ∈ R(n−1)×(n−1) satisfying

Pz Az + AT
z Pz = −In−2.

Define a Lyapunov function candidate

Vz(t) = zT (t)Pzz(t). (5.26)

Then its derivative along the trajectories of (5.13) is given by

V̇z(t) = zT (t)(Pz Az + AT
z Pz)z(t) + 2zT (t)Pz Bzσ(t)

= −zT (t)z(t) + 2zT (t)Pz Bzσ(t)

= −||z(t)||2 + 2zT (t)Pz Bzσ(t)

≤ −||z(t)||2 + 2||z(t)|| × ||Pz Bz|| × |σ(t)|
= −||z(t)|| (||z(t)|| − 2||Pz Bz|| × |σ(t)|) .

Therefore, the Lyapunov function candidate Vz(t) keeps decreasing as long as
||z(t)|| > 2||Pz Bz|| × |σ(t)|, which means that the internal state z(t) converges to a
neighborhood determined by

||z(t)|| ≤ 2||Pz Bz|| × |σ(t)|. (5.27)

Thus, z(t) is bounded for any bounded σ(t). Furthermore, the asymptotic stability
of the system (5.1) with the chattering-free asymptotic 2nd-SM control law (5.15) is
shown in the following theorem.

Theorem 5.2 Consider the system (5.1) with the switching function σ(t) defined
in (5.3). The system (5.1) with the chattering-free asymptotic 2nd-SM control law
(5.15) is locally and asymptotically stable if
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1. all conditions given in Theorem 5.1 are satisfied;
2. the switching functionσ(t) in (5.3) is designed such that the reduced-order system

(5.13) on the 2nd-SM is asymptotically stable;
3. the following inequality holds with a sufficiently large positive coefficient k2 for

w(t) ∈ � and u(t) ∈ U:

k2 ≥ max{k23(w, u), k22(w, u)}, (5.28)

where � and k22(w, u) are defined in Theorem 5.1, and k23(w, u) is defined as
k23(w, u) = kn23(w,u)

b(x,u)
with

kn23(w, u) = μ1 + |α(x, u)σ (t) − Cz(x, u)z(t)| + 2|BT
z Pzz(t)| + λ(x, u)|σ̇ (t)|.

Here, μ1 is the positive constant defined in Theorem 5.1.

Proof Define a Lyapunov function candidate as

V (t) = Vσ (t) + ε

γ
Vz(t), (5.29)

where the positive constants ε and γ satisfy the inequalities in (5.23), and Vσ (t) and
Vz(t) are defined by (5.24) and (5.26), respectively. Corresponding to the change of
the condition for the positive coefficient k2, the second condition in (5.23) is modified
as

η(t) ≥ |γ − λ(x, u)||σ̇ (t)| + 2|BT
z Pzz(t)| + ν2. (5.30)

Substituting (5.24) and (5.26) for (5.29) yields

V (t) = 1

2

[
σ(t) σ̇ (t)

] [
1

η(t)
ε
γ

ε
γ

ε

] [
σ(t)
σ̇ (t)

]
+ |σ(t)| + ε

γ
zT (t)Pzz(t)

= σ̇ 2(t)

2η(t)
+ ε

2
σ 2(t) + ε

γ
σ(t)σ̇ (t) + |σ(t)| + ε

γ
zT (t)Pzz(t).

Thus, V (t) is positive definite and is continuous differentiable for σ(t) 	= 0 if the
reduced-order system on the SM is stable and all conditions given in Theorem 5.1
are satisfied.

It follows from the definition of η(t) in (5.22) and the inequality (5.28) given in
this theorem that

η(t) = (α(x, u)σ (t) − Cz(x, u)z(t)) sign(y) + b(x, u)k2
≥ −|α(x, u)σ (t) − Cz(x, u)z(t)| + b(x, u)k2
≥ −|α(x, u)σ (t) − Cz(x, u)z(t)| + b(x, u)k23(w, u)

= λ(x, u)|σ̇ (t)| + 2|BT
z Pzz(t)| + μ1 > 0, ∀w(t) ∈ �,∀u(t) ∈ U.
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With this relation, the modification of the second condition in (5.23)–(5.30) is possi-
ble. Furthermore, it can be confirmed that the derivative of V (t) for σ(t) 	= 0 along
the trajectories of (5.12) and (5.13) is negative as shown below.

V̇ (t) = V̇σ (t) + ε

γ
V̇z(t)

≤ −ν1σ̇
2(t) − ε

γ
zT (t)z(t) + ε

γ
2zT (t)Pz Bzσ(t)

− ε

γ
(η(t) − (γ − λ(x, u)) sign(σ )σ̇ (t)) |σ(t)|

= −ν1σ̇
2(t) − ε

γ
zT (t)z(t) − 2zT (t)Pz Bz sign(σ ))

− ε

γ
|σ(t)|(η(t) − (γ − λ(x, u)) sign(σ )σ̇ (t)

≤ −ν1σ̇
2(t) − ε

γ
zT (t)z(t) − εν2

γ
|σ(t)|

≤ 0, (V̇ (t) = 0 ⇔ w(t) = 0).

Therefore, the system (5.1) with the chattering-free asymptotic 2nd-SM control law
(5.15) is locally and asymptotically stable for w(t) ∈ �.

Remark 5.2 It is clear that k23(w, u) is larger than k21(w, u). Thus, the following
holds:

max{k23(w, u), k22(w, u)} ≥ max{k21(w, u), k22(w, u)}.

According to the gain conditions (5.20) and (5.28) given in Theorems 5.1 and 5.2,
respectively, the gain determined in Theorem 5.1 is larger than or equal to the one
given in Theorem 5.2. Therefore, the gain k which ensures the asymptotic stability
of the system (5.1) with the chattering-free asymptotic 2nd-SM control law (5.15)
should be larger than or equal to the one guaranteeing the asymptotic convergence
to the 2nd-SM σ(t) = σ̇ (t) = 0. In other words, with a gain k chosen to ensure
the asymptotic convergence to the 2nd-SM, the asymptotic stability of the system
(5.1) with the chattering-free asymptotic 2nd-SM control law (5.15) may not be
guaranteed.

5.4 Simulation Results

In the simulation, a second-order system

ÿ(t) = y(t)ẏ(t) + 2y(t) + 3ẏ2(t)

+sin(5ẏ(t)) + (2 + sin(3y(t)) + y2(t))u(t) (5.31)
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Fig. 5.1 Simulation result with 1st-SM control

is considered as an example, which can be rewritten as the state equation description

ẋ(t) =
[

x2(t)
f (x(t), u(t))

]

with x(t) = [
x1(t) x2(t)

]T
, x1(t) = y(t) and x2(t) = ẏ(t), and

f (x(t), u(t)) = x1(t)x2(t) + 2x1(t) + 3x22 (t) + sin(5x2(t))

+(2 + sin(3x1(t)(t)) + x21 (t))u(t)

In the simulation, it is assumed that the initial condition x0 is equal to
[
1 1

]T
and

the control input u(t) is bounded with

|u(t)| < 10.
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Fig. 5.2 Simulation result with chattering-free asymptotic 2nd-SM control

A switching function is designed as

σ(t) = 10x1(t) + x2(t) = 10y(t) + ẏ(t), (5.32)

such that the reduced-order system on the sliding mode σ(t) = 0 is asymptotically
stable.

At first, a 1st-SM control law

u(t) = −10 sign(σ (t))

is implemented in the simulation. The results given in Fig. 5.1 show that the sliding
mode σ(t) = 0 is reached in finite time with the 1st-SM control law and the reduced-
order system on the sliding mode σ(t) = 0 designed above is asymptotically stable.
In this case, however, the chattering phenomena can be observed as the 1st-SM
control input u(t) is switched between ±10 in a high frequency.

The simulation results with the proposed SM control law (5.15) are shown in
Fig. 5.2,where the control parameters are chosen as k1 = 190 and k2 = 200. It is clear
that the SM σ(t) = 0 is reached asymptotically, the state variable x(t) converges to
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Fig. 5.3 Simulation result with 2nd-SM twisting control

the origin asymptotically, and u(t) is smooth in comparison with the 1st-SM control
law shown in Fig. 5.1. Thus, the system (5.31) with the chattering-free asymptotic
2nd-SM control law (5.15) is asymptotically stable without chattering. It is also
confirmed in the simulation that the system cannot be stabilized by the integrated 1st-
SM control law, i.e., the proposed SM control law (5.15) with k1 = 0 and k2 = 200.

For comparison, the twisting 2nd-SMcontrol (5.14) is also simulated to control the
system (5.31) with the same control parameters r1 = k1 = 190 and r2 = k2 = 200
used for the chattering-free asymptotic 2nd-SM control simulation. The simula-
tion results are shown in Fig. 5.3. Obviously, the 2nd-SM control algorithm using
the derivative of the switching function σ(t) ensure the finite time convergence
to the 2nd-SM σ(t) = σ̇ (t) = 0. There is, however, no remarkable improvement
for the convergence of the system state x(t) to the origin as it is mainly determined
by the dynamics of the reduced-order system on the SM.
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5.5 Conclusion

This chapter proposed a new chattering-free asymptotic 2nd-SM control algorithm
for a class of nonlinear systems,without using thederivative of the switching function.
TheSMcanbe reached, locally and asymptoticallywith the proposed 2nd-SMcontrol
law. The pre-feedback control term included in the control law ensures that the
necessary condition for the SM to be reached locally and asymptotically is satisfied.
The locally and asymptotical stability is proven by a Lyapunov function.
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Chapter 6
Fractional-Order Model Reference Adaptive
Controllers for First-Order Integer Plants

Manuel A. Duarte-Mermoud, Norelys Aguila-Camacho,
Javier A. Gallegos and Juan C. Travieso-Torres

Abstract In this chapter, we extend the ideas of themodel reference adaptive control
(MRAC), developed for integer-order plants with integer-order adaptive laws, to the
case of integer-order plants but with fractional-order adaptive laws. Two cases are
analyzed in detail; the directMRAC (DMRAC) and the combinedMRAC (CMRAC).
In both cases, boundedness of all the signals in the resultant adaptive scheme is
theoretically proved and a discussion on the error, and parameter convergence is
provided in each case. The study is performed for scalar first-order time-invariant
plants, since extensions to the vector case are currently under investigation.

6.1 Introduction

Model Reference Adaptive Control (MRAC) is one of the most popular adaptive
control techniques, whose origins can be traced back to the late fifties [27]. Although
in its origin MRAC was conceived for deterministic continuous-time systems in
the context of the so-called direct control (control strategy where no estimation of
the plant parameters is attempted), later it was generalized and used for stochastic
discrete-time systems in the context of indirect control (control strategy whose first
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stage is to perform a plant parameter estimation and then the controller is designed
based on those estimates). In its early stages, it have been recognized four schools to
have started research in adaptive control and even today they continue doing research
on adaptive control, namely Ioan Landau et al. at Laboratoire d’Automatique de
Grenoble, Ecole Nationale Supèrieure d’Ingénieria Electriciens de Grenoble; Karl
Aström et al. at Lund Institute of Technology, Department of Automatic Control;
Graham Goodwin et al. at the University of Newcastle, Dept. of Electrical Engineer-
ing and Computer Science; and Kumpati Narendra et al. and Stephen Morse et al. at
Yale University, Dept. of Electrical Engineering, each working independently.

Perhaps one of the cornerstones in adaptive control was set in 1980, when the
complete adaptive control problem for the ideal case (time-invariant linear systems
under no perturbations) was resolved in four different general cases and published in
1980 in the memorable June issue of the IEEE Transactions on Automatic Control,
all solutions in the same issue, so that all the authors could share this privilege [14,
16, 20, 21].

Soon after the ideal case was solved, researchers switched their attention to relax-
ing the four basic hypotheses underwhich the original solutionwas obtained (namely,
stable zeros of the plant, sign of the high frequency gain known, order of the plant
known or an upper bound thereof, and knowledge of the plant relative degree) and
also to developing solutions for the case of plants with time-varying parameters and
under external perturbations, giving rise to the robust adaptive control theory. In
1988, a generalization of the MRAC was presented in [19], called combined MRAC
(CMRAC), where the basic idea was to combine the identification and the control
processes being performed on a plant, such that the information obtained from each
one could be shared to achieve the control objective, i.e., the output of the plant
follows asymptotically the output of the model reference. Since more information is
being used to control the plant, the CMRAC is supposed to exhibit a better behavior
as compared with the direct control and the indirect control when used separately. In
this combined scheme, the control adaptive laws as well as the parameter estimation
updating laws make use of the control error, the identification error and the so-called
closed-loop estimation errors [8, 9].

Another interesting characteristic of the CMRAC is that it can be viewed as a
generalized MRAC scheme from which direct MRAC (DMRAC) and dynamical
indirect MRAC (DIMRAC) can be obtained as particular cases. It is important to
point out that the DIMRAC uses the same prior information as the algebraic indirect
MRAC (AIMRAC), and it proves that both control schemes (direct and indirect)
are equivalent, as far as the prior information needed for the solution is concerned.
Remember that AIMRAC requires, besides the sign of the high frequency gain, the
knowledge of an upper bound on the high frequency gain (if it is negative) or of a
lower bound on the high frequency gain (if it is positive). This is to avoid division by
zero of the high frequency gain estimate in the AIMRAC when solving the certainty
equivalence principle on which the AIMRAC is based [18].

In this chapter,we extend the ideas of theDMRACand theCMRAC, developed for
integer-order plants with integer-order adaptive laws, to the case when the adaptive
laws for control and estimation are updated using derivatives of fractional order. The
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study is performed for scalar first-order time-invariant plants, although the extensions
to the vector case are currently under investigation.

The use of fractional adaptive laws in the DMRAC for integer-order plants has
been reported at simulation level (see for instance [1, 24, 26]), however, as far as the
authors know, analytical results are not available in the technical literature for this
particular scheme at this moment. Some advances have been made using the error
model approach for the analysis, but in this chapter, the analysis is detailed specifi-
cally for the DMRAC. In the case of the combined approach, no results are available
in the technical literature, either analytical or at simulation level, thus the results
presented in this chapter are novel, even being developed for a simple scalar plant.

The chapter is organized as follows. After the basic concepts are introduced in
Sect. 6.2, the control problem is presented in Sect. 6.3. The direct approach is intro-
duced in Sect. 6.4, togetherwith the analytical proof of boundedness for all the signals
in the fractional adaptive scheme, and also some conclusions about the evolution of
the errors. The corresponding results for the combined approach are presented in
Sect. 6.5. Simulations comparing the behavior of both approaches are presented in
Sect. 6.6, where some general comments are stated on their properties.

6.2 Preliminaries

The Riemann–Liouville fractional integral is one of the main concepts of fractional
calculus, and is presented in Definition 6.1.

Definition 6.1 (Riemann–Liouville fractional integral [15])TheRiemann–Liouville
fractional integral of order α > 0 of a function f (t) ∈ R is defined as

I α
t0 f (t) = 1

Γ (α)

t∫

t0

f (τ )

(t − τ)1−α
dτ, t > t0, (6.1)

where Γ (α) corresponds to the Gamma Function [15], given by

Γ (α) =
∞∫

0

tα−1e−t dt.

Regarding the fractional derivative of order α > 0 of a function, there exist several
definitions. The results presented in this work use the Caputo definition given in
Definition 6.2, which has been used in literature for modeling systems and also as
part of controllers.

Definition 6.2 (Caputo Fractional Derivative) Let α ≥ 0 and n = [α]. According
to [6, Definition 3.1], the Caputo fractional derivative of order α is defined as follows
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C D
α
t0 f (t) = 1

Γ (n − α)

t∫

t0

f (n) (τ )

(t − τ)α−n+1 dτ (6.2)

whenever f (n) ∈ L1 [t0, t].

Lemma 6.1 ([7]) Let x (t) ∈ R
n be a vector of differentiable functions. Then, for all

t ≥ t0, the following relationship holds

1

2
C D

α
t0

(
xT (t) Px (t)

) ≤ xT (t) P C D
α
t0 x (t) , (6.3)

where α ∈ (0, 1] and P ∈ R
n×n is a constant, square, symmetric, and positive definite

matrix.
Particular cases of relation (6.3) were proposed in [3, 4].

Lemma 6.2 ([2]) Let x (·) : R+ → R be a bounded nonnegative function. If there
exists some α ∈ (0, 1] such that

1

Γ (α)

t∫

t0

x (τ )

(t − τ)1−α
dτ < M, ∀t ≥ t0, with M ∈ (0,∞) (6.4)

then

lim
t→∞

⎡
⎢⎢⎢⎣tα−ε

t∫
t0

x (τ ) dτ

t

⎤
⎥⎥⎥⎦ = 0, ∀ε > 0 (6.5)

6.3 The Control Problem

Let an integer-order plant with input–output pair
{
u (·) , x p (·)} be described by the

scalar integer-order differential equation (IODE)

ẋ p (t) = apx p (t) + kpu (t) , (6.6)

where ap, kp are unknown plant parameters, but the sgn
(
kp

)
is assumed to be known.

A reference model is described by the first-order IODE

ẋm (t) = am xm (t) + kmr (t) , (6.7)

where am < 0, am and km are known constants and r is a piecewise continuous
bounded function of time. It is assumed that am , km , and r have been chosen so that
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xm (t) represents the desired output of the plant at time t . The aim here is to determine
a bounded control input u (t) so that all the signals in the adaptive scheme remain
bounded and

lim
t→∞|x p (t) − xm (t) | = 0. (6.8)

If the plant parameters were known, the plant behavior could be modified using
a control signal u (t) that includes feedforward and feedback gains, having the form

u (t) = θ∗x p (t) + k∗r (t) , (6.9)

where

θ∗ � am − ap

kp
and k∗ � km

kp
. (6.10)

It can be seen that applying the control signal (6.9) in (6.6), the transfer function
of the plant together with the control will be the same as that of the reference model
(6.7). In that way, control objective (6.8) can be achieved.

However, control signal (6.9) cannot be practically implemented, since the plant
parameters ap and kp are unknown. Thus, feedforward and feedback gains θ∗, k∗
given by (6.10) cannot be computed.

One possible solution to this problem is to use adjustable parameters θ (t) and
k (t), which estimate the unknown parameters θ∗ and k∗, respectively. Thus, the
control signal to be applied to the plant will be given by

u (t) = θ (t) x p (t) + k (t) r (t) . (6.11)

How to obtain the estimated parameters θ (t) and k (t) is a question that has, in
fact, several answers. For instance, three approaches can be found in [18], namely
direct, indirect algebraic, and indirect dynamicMRAC.Onemore can be found in [8],
namely the combined MRAC. All these four approaches use the same control signal
(6.11), the main difference among them being the procedure for calculating θ (t) and
k (t). Nevertheless, one common point among the four approaches is that they use
integer-order differential equations to adaptively estimate the controller parameters
and/or the plant parameters, e.g., integer-order adaptive laws.

In this work, fractional adaptive laws are introduced to estimate the parameters
adaptively, instead of using the integer-order adaptive laws proposed in the above-
mentioned works. Since IODE can be seen as particular cases of fractional-order
differential equations (FODE), the fractional adaptive laws proposed here can be
seen as a generalization of the classic integer-order adaptive laws found in [8, 18].
Eventhough there exist four possible cases, in this work, we will focus only on two of
them; the direct fractional-order MRAC (DFOMRAC) and the combined fractional-
order MRAC (CFOMRAC). Analysis of signal boundedness in these two schemes is
detailed in Sects. 6.4 and 6.5, respectively, together with some results regarding the
convergence of the errors.
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6.4 The Direct Approach

Although the real desired control parameters θ∗ and k∗ dependon the plant parameters
ap, kp, no attempt to identify them is made within the direct approach. Instead, the
controller parameters θ (t) , k (t) are directly adjusted and these estimates used in
(6.11) to compute the control signal u (t).

Using (6.11) in (6.6), the following expression results for plant + control signal

ẋ p (t) = (
ap + kpθ (t)

)
x p (t) + kpk (t) r (t) . (6.12)

Defining the control error as

ec (t) � x p (t) − xm (t) (6.13)

and the parameter errors as

φθ (t) � θ (t) − θ∗ and φk (t) � k (t) − k∗ (6.14)

we can obtain the error equation by subtracting (6.7) from (6.12), which yields

ėc (t) = amec (t) + kpφθ (t) x p (t) + kpφk (t) r (t) , am < 0. (6.15)

In this approach, the controller parameters θ (t) , k (t) are directly adjusted, using
the following fractional adaptive laws

C D
α
t0θ (t) = −γ1sgn

(
kp

)
ec (t) x p (t) ,

C D
α
t0k (t) = −γ2sgn

(
kp

)
ec (t) r (t) ,

(6.16)

where α ∈ (0, 1] is the order of the adaptive laws and γ1, γ2 ∈ R
+ are the adaptive

gains, used to handle the convergence speed.
Summarizing, Table6.1 contains all the details of the adaptive scheme proposed

in this section, which will be referred as DFOMRAC. Figure6.1, on the other hand,

Table 6.1 DFOMRAC
implementation details

Plant ẋ p (t) = apx p (t) + kpu (t)

Reference
model

ẋm (t) = am xm (t) + kmr (t) , am < 0

Control law u (t) = θ (t) x p (t) + k (t) r (t)

Control error ec (t) = x p (t) − xm (t)

Adaptive laws C D
α
t0θ (t) = −γ1sgn

(
kp

)
ec (t) x p (t)

C D
α
t0k (t) = −γ2sgn

(
kp

)
ec (t) r (t) ,

α ∈ (0, 1]
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Fig. 6.1 Block diagram for the DFOMRAC scheme

shows the corresponding block diagram, which helps to understand the structure of
the controller.

6.4.1 Boundedness of the Signals in the DFOMRAC Scheme

As it was stated above, the evolution of the control error ec (t) is given by (6.15).
In the case of the parameter errors φθ (t) and φk (t), given by (6.14), their Caputo
fractional derivatives coincide with the Caputo fractional derivatives of the estimated
parameters (6.16). Thus, the behavior of the DFOMRAC scheme is represented by
the following set of differential equations

ėc (t) = amec (t) + kpφθ (t) x p (t) + kpφk (t) r (t) , am < 0, ec (t0) = ec0

C D
α
t0φθ (t) = −γ1sgn

(
kp

)
ec (t) x p (t) , φθ (t0) = φθ0

C D
α
t0φk (t) = −γ2sgn

(
kp

)
ec (t) r (t) , φk (t0) = φk0

(6.17)
To prove boundedness of signals in the adaptive scheme (6.17), the following

hypotheses are needed.

1. The parameter errors φθ and φk are differentiable and uniformly continuous func-
tions.

2. The control error ec is a uniformly continuous function.

The differentiability of the parameter errors is required in order to use Lemma 6.1
in the proof. For the differential system (6.17), where the order of the output error
differential equation is different from the order of the parameter errors differential
equations (mixed order), differentiability of φθ and φk has not been analytically
proved yet. Some important advances have been recently made in this direction [13],
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however, the complete proof of differentiability for this particular problem is not yet
available.

In the case of the uniform continuity of the parameter errors and the control error,
it has not been proved analytically neither, although research is being conducted in
this direction as well.

Nevertheless, it should be mentioned that extensive simulation studies performed
show that for several bounded piecewise continuous reference signals r (t) tested in
scheme (6.17), the parameter errors result in differentiable and uniformly continuous
functions and the control error was uniformly continuous as well.

Proof Since φθ (t) and φk (t) are differentiable functions, Lemma 6.1 can be applied
to obtain the following expression

1

2

d

dt
e2c (t) + |kp|

2γ1
C D

α
t0

{
φ2

θ

}
(t) + |kp|

2γ2
C D

α
t0

{
φ2

k

}
(t) ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ec (t) ėc (t) +
|kp|
γ1

φθ (t) C D
α
t0φθ (t)+

|kp|
γ2

φk (t) C D
α
t0φk (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.18)

Using (6.17) in the right-hand side of (6.18), it follows that

1

2

d

dt
e2c (t) + |kp|

2γ1
C D

α
t0

{
φ2

θ

}
(t) + |kp|

2γ2
C D

α
t0

{
φ2

k

}
(t) ≤ ame2c (t) . (6.19)

If the integer-order integral is applied to expression (6.19), then it results

1

2
e2c (t) − 1

2
e2c0 + |kp|

2γ1

t∫

t0

C D
α
t0

{
φ2

θ

}
(τ ) dτ + |kp|

2γ2

t∫

t0

C D
α
t0

{
φ2

k

}
(τ ) dτ ≤ am

t∫

t0

e2c (τ ) dτ.

(6.20)

Using properties of the fractional integrals and derivatives given in [6, Definition
3.1, Corollary 2.3], it follows that

|kp|
2γ1

t∫

t0

C D
α
t0

{
φ2

θ

}
(τ ) dτ = |kp|

2γ1
I 1−α
t0

{
φ2

θ − φ2
θ0

}
(t) , (6.21)

|kp|
2γ2

t∫

t0

C D
α
t0

{
φ2

k

}
(τ ) dτ = |kp|

2γ2
I 1−α
t0

{
φ2

k − φ2
k0

}
(t) . (6.22)
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Thus, if the following notation is used

φ (t) �
[
φθ (t)√

γ1

φk (t)√
γ2

]T

and φ0 �
[

φθ0√
γ1

φk0√
γ2

]T

,

then substituting (6.21) and (6.22) in (6.20) and rearranging terms it follows that

1

2
e2c (t) − 1

2
e2c0 − am

t∫

t0

e2c (τ ) dτ + |kp|
2

I 1−α
t0

{
φT φ − φT

0 φ0
}
(t) ≤ 0. (6.23)

We will now prove boundedness of all the signals, by contradiction, using expres-
sion (6.23).

Assume that φ (t) is not bounded. Since φ (t) is uniformly continuous, then
intervals of increasing length will exist where φT (t) φ (t) > L > φT

0 φ0. Thus, the
fractional integral given by I 1−α

{
φT φ − φT

0 φ0
}
(t) in (6.23) will diverge. This

contradicts the fact that expression (6.23) is always nonpositive, because the terms

e2c (t) and −am

t∫
t0

e2c (τ ) dτ are always non negative and the nonpositive term −e2c0 is

bounded, contradicting the hypothesis that φ (t) is unbounded. Thus, φ (t) remains
bounded ∀t ≥ t0.

The lowest value that the fractional integral in (6.23) can achieve would be for
the case when φT φ = 0 ∀t ≥ 0. Thus, from (6.23) we can write the following

1

2
e2c (t) − 1

2
e2c0 − am

t∫

t0

e2c (τ ) dτ ≤ |kp|φT
0 φ0

2Γ (1 − α)
(t − t0)

1−α . (6.24)

Assume now that ec (t) is not bounded. Since ec (t) is uniformly continuous, then
intervals of increasing length will exist where e2c (t) > C > 0. Thus, the integral

given by−am

t∫
t0

e2c (τ ) dτ in (6.24) will diverge as t → ∞. Since it is an integer-order

integral, its grow rate will be higher than t1−α , which establishes a contradiction in
(6.24) as t → ∞. Thus, it can be concluded that ec (t) remains bounded ∀t ≥ t0.

Since ec (t) = x p (t) − xm (t) is bounded and xm (t) is the output of an asymp-
totically stable system with a bounded input r (t), then it implies that x p (t) remains
bounded as well.

Given that the estimated parameters θ (t) , k (t) remain bounded, this result also
implies that the control signal u (t) (6.11) will remain bounded.

Moreover, using all these conclusions in (6.17) it follows that ėc (t), C D
α
t0φθ (t)

and C D
α
t0φk (t) remain bounded as well.

Thus, all the signals in the DFOMRAC scheme remain bounded, and this con-
cludes the proof. 
�
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6.4.2 Convergence of the Parameter Errors in the
DFOMRAC Scheme

Although the convergence of parameter errorsφθ (t) , φk (t) to zero is not an objective
in this adaptive control scheme, but only the convergence of the control error to zero,
it is interesting to analyze under which conditions it can be achieved.

In the integer-order case, the concept of Persistent Excitation (PE) [17] is used
to state what properties of the input signal r (t) must hold in order to guarantee the
parameter error convergence to zero in the control scheme.

The concept of PE in the integer-order case arose naturally in the identification
problems around the 1960s, but in 1966 it was formally stated in [5], related to
identification problems. In the case of the adaptive control, the concept of PE was
also addressed in [17].

In the case of fractional adaptive control, like the problemaddressed in this chapter,
the concept of PE has not been fully developed so far. However, some advances
have been made, which can be applied to the DFOMRAC proposed in Sect. 6.4, for
the particular case when kp = γ1 = γ2 = 1. The analysis for the rest of the cases
is currently under investigation. In what follows, the available results are briefly
introduced.

Equations in (6.17) can be compactly rewritten as

ėc (t) = amec (t) + φT (t) ω (t)

C D
α
t0φ (t) = −ec (t) ω (t)

(6.25)

where φ (t) � [φθ (t) φk (t)]T and ω (t) �
[
x p (t) r (t)

]T
. The type of mixed

order fractional differential equations like (6.25), has been studied in [11].
Let us analyze the vector of functions defined as

ωm (t) � [xm (t) r (t)]T (6.26)

which can be written in Laplace domain as

ωm (s) = [Hm (s) 1]T r, (6.27)

where Hm (s) = km/(s − am) is the transfer function of the reference model (6.7),
which is asymptotically stable (am < 0 by definition).

From arguments in the proofs of [23, Theorem 2.7.2] and [23, Theorem 2.7.2], it
follows that if r (t) has at least 2 spectral lines then ωm (t) ∈ P E (2), that is, ωm (t)
is a persistently exciting function in a space of dimension 2 (see e.g., [23, Eq. (2.5.3)]
for a definition of P E (2)).

Let us now focus in the vector ω (t). It can be seen that, according to their defin-
itions,

ωm (t) − ω (t) = [
xm (t) − x p (t) 0

]T = [−ec (t) 0]T (6.28)
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Since I α
{
e2c

}
(t) < ∞, as it was proved in Sect. 6.4.1, by [11, Theorem 1(iv)] it

can be concluded that ω (t) ∈ P E (2). From [12, Sect. 3], which allows to conclude
that

lim
t→∞φ (t) = 0. (6.29)

6.4.3 Convergence of the Control Error in the DFOMRAC
Scheme

As it was stated in previous section, it can be concluded that, for the particular case
when kp = γ1 = γ2 = 1, if r (t) has at least 2 spectral lines, then lim

t→∞φ (t) = 0. Since

ω (t) is bounded, then it follows that lim
t→∞φT (t) ω (t) = 0. Using [12, Theorem 1],

it can be concluded that lim
t→∞ec (t) = 0. That is, it can be assured that in this case

If r (t) ∈ P E (2) then lim
t→∞ec (t) = 0. (6.30)

The statement in (6.30) does not mean that the control error will not converge to
zero if the reference signal r (t) /∈ P E (2), but these are the only cases where conver-
gence to zero of the control error has been analytically proved. In fact, extensive sim-
ulation studies have shown that ec (t) also converges to zero formany r (t) /∈ P E (2),
the most usual reference signals such as steps, constant references, sinusoidal ref-
erences, etc. It also converges to zero for those cases when kp and γ1, γ2 > 0 are
different from 1.

Although the convergence to zero of the control error ec (t) cannot be analytically
assured for all bounded piecewise continuous reference signals at this moment, due
to a lack of tools to perform the analysis, it can be proved that the mean value of
the squared control error converges to zero as t → ∞, under the same hypothesis of
differentiability of φθ (t) , φk (t) used for the proof of boundedness in Sect. 6.4.1. In
what follows, the corresponding proof is detailed.

Proof Let us consider expression (6.19), which is derived based on the differentia-
bility of φ2

θ (t) and φ2
k (t). If the fractional integral of order α is applied to (6.19),

then rearranging terms, the following inequality is obtained.

− am I α
t0

{
e2c

}
(t) ≤ |kp|

2γ1

[
φ2

θ0
− φ2

θ (t)
] + |kp|

2γ2

[
φ2

k0 − φ2
k (t)

] − I α
t0 {ecėc} (t)

(6.31)

Since −am I α
t0

{
e2c

}
(t) ≥ 0 and φθ (t) , φk (t) are bounded, it follows from (6.31)

that I α
t0

{ecėc} (t) is upper bounded. Also, given that ec (t) and ėc (t) are bounded,
then it follows from [10, Proposition 1] that I α

t0
{ecėc} (t) is uniformly continuous.

Let us now assume that I α
t0

{ecėc} (t) is not bounded. Since it is upper bounded, the
only possibility is that I α

t0
{ecėc} (t) → −∞. Thus, since I α

t0
{ecėc} (t) is uniformly
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continuous, we can state that

I 1−α
t0

{
I α
t0

{ecėc}
}
(t) → −∞,

that according to [15, Lemma 2.3] can be written as

t∫

t0

ec (τ ) ėc (τ ) dτ = 1

2
e2c (t) − 1

2
e2c0 → −∞.

which contradicts the fact that ec (t) is bounded. Therefore, it can be concluded that
I α
t0

{ecėc} (t) is lower bounded.
Thus, since φθ (t), φk (t) and I α

t0
{ecėc} (t) are bounded, we can conclude from

(6.31) that −am I α
t0

{
e2c

}
(t) is bounded as well.

Based on this result and using the fact that e2c (t) is nonnegative and bounded, we
can apply Lemma 6.2, which allows concluding that

lim
t→∞

⎡
⎢⎢⎢⎣tα−ε

t∫
t0

e2c (τ ) dτ

t

⎤
⎥⎥⎥⎦ = 0, ∀ε > 0, (6.32)

that is, the mean value of the squared control error is o
(
tε−α

)
, ∀ε > 0, which means

that it converges asymptotically to zero, with a convergence speed higher than t−α .
This concludes the proof.

6.5 The Combined Approach

In the direct approach presented in Sect. 6.4, the control of the plant was carried out
directly adjusting the control parameters θ (t) and k (t), without explicitly estimating
the unknown plant parameters ap, kp.

However, as it was mentioned in Sect. 6.3, if the controller parameters are selected
as

θ (t) = θ∗ = am − ap

kp
and k (t) = k∗ = km

kp
, (6.33)

then the plant transfer function would be equal to the reference model transfer func-
tion, fulfilling the control objective (6.8).

However, since the plant parameters ap, kp are unknown, the direct approach
estimates the parameters θ (t), k (t) based on the control error ec (t) and available
input signals x p (t), r (t), but no information regarding the unknownplant parameters
is incorporated.
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Nevertheless, the above relations (6.33) motivated an alternative method where
the unknown plant parameters ap, kp are estimated through âp (t) and k̂ p (t) and used
inside the adaptive control scheme [8], namely the combined MRAC (CMRAC).

It can be seen from (6.33) that if

lim
t→∞

[
âp (t) + k̂ p (t) θ (t)

]
= am

lim
t→∞

[
k̂ p (t) k (t)

]
= km

(6.34)

where âp (t) ∈ R and k̂ p (t) ∈ R correspond to the estimates of the unknown plant
parameters ap and kp, respectively. Then the control objective (6.8) is fulfilled.

With that information, the closed-loop estimation errors are defined as

εθ (t) = âp (t) + k̂ p (t) θ (t) − am (6.35)

εk (t) = k̂ p (t) k (t) − km (6.36)

The idea now is to use these closed-loop estimation errors to adaptively esti-
mate the controller parameters θ (t) , k (t) and the estimated plant parameters
âp (t) , k̂ p (t).

To estimate the unknown plant parameters, an estimator is used as in [18], of the
form ˙̂x p (t) = am ei (t) + âp (t) x p (t) + k̂ p (t) u (t) . (6.37)

where ei (t) = x̂ p (t) − x p (t) corresponds to the identification error.
Adaptive laws for âp and k̂ p are then proposed, which contain information about

both, the identification process and the control process. These adaptive laws are
proposed in the form of IODEs in [8], but in this work a generalization is used,
where these estimated parameters can be obtained using FODEs, with the form

C D
α
t0 âp (t) = −γ3ei (t) x p (t) − γ4εθ (t) (6.38)

C D
α
t0 k̂ p (t) = −γ3ei (t) u (t) − γ4θ (t) εθ (t) − γ4k (t) εk (t) (6.39)

where γ3, γ4 ∈ R
+ are adaptive gains used to handle the convergence speed of the

estimated parameters.
In the case of the controller parameters, they are estimated using the following

fractional adaptive laws

C D
α
t0θ (t) = −γ1sgn

(
kp

)
ec (t) x p (t) − γ2sgn

(
kp

)
εθ (t) (6.40)

C D
α
t0k (t) = −γ1sgn

(
kp

)
ec (t) r (t) − γ2sgn

(
kp

)
εk (t) (6.41)
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Table 6.2 CFOMRAC implementation details

Plant ẋ p (t) = apx p (t) + kpu (t)

Reference model ẋm (t) = am xm (t) + kmr (t) , am < 0

Control law u (t) = θ (t) x p (t) + k (t) r (t)

Control error ec (t) = x p (t) − xm (t)

Estimator ˙̂x p (t) =
am ei (t) + âp (t) x p (t) + k̂ p (t) u (t) .

Identification error ei (t) = x̂ p (t) − x p (t)

Closed-loop estimation errors εθ (t) = âp (t) + k̂ p (t) θ (t) − am

εk (t) = k̂ p (t) k (t) − km

Adaptive laws C D
α
t0θ (t) =

−γ1sgn
(
kp

)
ec (t) x p (t) − γ2sgn

(
kp

)
εθ (t)

C D
α
t0k (t) =

−γ1sgn
(
kp

)
ec (t) r (t) − γ2sgn

(
kp

)
εk (t)

C D
α
t0 âp (t) = −γ3ei (t) x p (t) − γ4εθ (t)

C D
α
t0 k̂ p (t) = −γ3ei (t) u (t) − γ4θ (t) εθ (t) −

γ4k (t) εk (t) , α ∈ (0, 1]

Fig. 6.2 Block diagram for the CFOMRAC scheme

where ec (t) = x p (t) − xm (t) is the control error and γ1, γ2 ∈ R
+ are the adaptive

gains used to handle the convergence speed of the controller parameters.
To summarize, Table6.2 contains the details of the adaptive scheme detailed in

this section, which will be referred as Combined FOMRAC scheme (CFOMRAC).
Also, Fig. 6.2 shows the corresponding block diagram.
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6.5.1 Boundedness of the Signals in the CFOMRAC Scheme

For this CFOMRAC, the evolution of the control error ec (t) is described by the same
IODE than in the DFOMRAC (6.15).

In the case of the identification error ei (t), if we subtract (6.6) from (6.37), it can
be obtained that

ėi (t) = amei (t) + φa (t) x p (t) + φp (t) u (t) , am < 0 (6.42)

where
φa (t) � âp (t) − ap and φp (t) � k̂ p (t) − kp (6.43)

correspond to the plant parameter errors.
Regarding the parameter errors φa (t), φp (t), φθ (t) and φk (t), according to their

definitions, their evolution can be described by the same FODE than the estimated
parameters âp (t), k̂ p (t) and the controller parameters θ (t) and k (t), (6.38)–(6.41),
respectively.

Thus, the behavior of the adaptive scheme in this CFOMRAC is represented by
the following set of differential equations

ėc (t) = amec (t) + kpφθ (t) x p (t) + kpφk (t) r (t) , am < 0, ec (t0) = ec0

ėi (t) = amei (t) + φa (t) x p (t) + φp (t) u (t) , ei (t0) = ei0

εθ (t) = âp (t) + k̂ p (t) θ (t) − am

εk (t) = k̂ p (t) k (t) − km

C D
α
t0φθ (t) = −γ1sgn

(
kp

)
ec (t) x p (t) − γ2sgn

(
kp

)
εθ (t) , φθ (t0) = φθ0

C D
α
t0φk (t) = −γ1sgn

(
kp

)
ec (t) r (t) − γ2sgn

(
kp

)
εk (t) , φk (t0) = φk0

C D
α
t0φa (t) = −γ3ei (t) x p (t) − γ4εθ (t) , φa (t0) = φa0

C D
α
t0φp (t) = −γ3ei (t) u (t) − γ4θ (t) εθ (t) − γ4k (t) εk (t) , φp (t0) = φp0 , α ∈ (0, 1]

(6.44)

To prove boundedness of signals in the adaptive scheme (6.44), the following
hypotheses are needed

1. The parameter errors φθ , φk , φa and φp are differentiable and uniformly contin-
uous functions.

2. The control error ec and the identification error ei are uniformly continuous func-
tions.

These hypotheses are needed for the same reasons already exposed in the DFOM-
RAC. We should mention that also in this CFOMRAC, although these hypotheses
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have not been analytically proved yet, extensive simulation studies using bounded
piecewise continuous reference signals have shown that these hypotheses hold.

Proof Since φθ (t), φk (t), φa (t) and φp (t) are differentiable functions, Lemma 6.1
can be applied to obtain the following expression

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1

2γ2

d

dt
e2c (t) + γ3

2γ4

d

dt
e2i (t)+

+|kp|
2γ2

C D
α
t0

{
φ2

θ

}
(t) + |kp|

2γ2
C D

α
t0

{
φ2

k

}
(t)+

+ 1

2γ4
C D

α
t0

{
φ2

a

}
(t) + 1

2γ4
C D

α
t0

{
φ2

p

}
(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1

γ2
ec (t) ėc (t) + γ3

γ4
ei (t) ėi (t)+

+|kp|
γ2

φθ (t) C D
α
t0φθ (t)+

|kp|
γ2

φk (t) C D
α
t0φk (t)+

+ 1

γ4
φa (t) C D

α
t0φa (t)+

1

γ4
φp (t) C D

α
t0φp (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.45)

Using (6.44) in the right-hand side of (6.45), it follows that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1

2γ2

d

dt
e2c (t) + γ3

2γ4

d

dt
e2i (t) +

+|kp |
2γ2

C D
α
t0

{
φ2

θ

}
(t) + |kp |

2γ2
C D

α
t0

{
φ2

k

}
(t)+

+ 1

2γ4
C D

α
t0

{
φ2

a

}
(t) + 1

2γ4
C D

α
t0

{
φ2

p

}
(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎣

γ1

γ2
ame2c (t) + γ3

γ4
ame2i (t)−

−εθ (t)
[
kpφθ (t) + φa (t) + θ (t) φp (t)

]−

−εk (t)
[
kpφk (t) + k (t) φp (t)

]

⎤
⎥⎥⎥⎥⎥⎦

.

(6.46)

Definitions of the closed-loop estimation errors (6.35) and (6.36) can be alge-
braically manipulated to obtain

εθ (t) = âp (t) + k̂ p (t) θ (t) − am

= âp (t) + ap − ap + k̂ p (t) θ (t) − kpθ (t) + kpθ (t) − am

= (
âp (t) − ap

) + θ (t)
(

k̂ p (t) − kp

)
+ kp

(
θ (t) − am − ap

kp

)

= φa (t) + θ (t) φp (t) + kpφθ (t)

(6.47)

and
εk (t) = k̂ p (t) k (t) − km

= k̂ p (t) k (t) − kpk (t) + kpk (t) − km

=
(

k̂ p (t) − kp

)
k (t) + kp

(
k (t) − km

kp

)

= φp (t) k (t) + kpφk (t)

. (6.48)
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Thus, using (6.47), (6.48) in the right-hand side of (6.46) results as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1

2γ2

d

dt
e2c (t) + γ3

2γ4

d

dt
e2i (t)+

+|kp|
2γ2

C D
α
t0

{
φ2

θ

}
(t) + |kp|

2γ2
C D

α
t0

{
φ2

k

}
(t)+

+ 1

2γ4
C D

α
t0

{
φ2

a

}
(t) + 1

2γ4
C D

α
t0

{
φ2

p

}
(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ γ1

γ2
ame2c (t) + γ3

γ4
ame2i (t) − ε2θ (t) − ε2k (t)

(6.49)

If the integer-order integral is applied to expression (6.49), using the same proce-
dure as in the DFOMRAC case, the following expression can be obtained

⎡
⎢⎢⎢⎢⎢⎣

γ1

2γ2
e2c (t) − γ1

2γ2
e2c0 + γ3

2γ4
e2i (t) − γ3

2γ4
e2i0 − γ1am

γ2

t∫
t0

e2c (τ ) dτ−

−γ3am

γ4

t∫
t0

e2i (τ ) dτ +
t∫

t0
ε2θ (τ ) dτ +

t∫
t0

ε2k (τ ) dτ + 1

2
I 1−α
t0

{
φT φ − φT

0 φ0
}
(t)

⎤
⎥⎥⎥⎥⎥⎦

≤ 0, (6.50)

where

φ (t) �
[√ |kp|

γ2
φθ (t)

√ |kp|
γ2

φk (t)
1√
γ4

φa (t)
1√
γ4

φp (t)

]T

and

φ0 �
[√ |kp|

γ2
φθ0

√ |kp|
γ2

φk0
1√
γ4

φa0
1√
γ4

φp0

]T

.

Using the same proof by contradiction than in the DFOMRAC, it can be proved,
based on expression (6.50), that φ (t) , ec (t) , ei (t) remain bounded ∀t ≥ t0.

Based on (6.47) and (6.48), this implies that εθ (t) , εk (t) remain bounded as well.
Since ec (t) = x p (t) − xm (t) is bounded and xm (t) is the output of an asymptot-

ically stable system with a bounded input r (t), then this implies that x p (t) remains
bounded as well.

Given that x p (t), ei (t) = x̂ p (t) − x p (t) remain bounded, then it follows that
x̂ p (t) is also bounded.

Since the estimated parameters θ (t) , k (t) remain bounded, then the control signal
u (t) (6.11) will also remain bounded.

Finally, using all these conclusions in (6.44), it follows that ėc (t), ėi (t),C D
α
t0φθ (t),

C D
α
t0φk (t), C D

α
t0φa (t) and C D

α
t0φp (t) remain bounded as well.

Thus, all the signals in the CFOMRAC remain bounded, and this concludes the
proof. 
�
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6.5.2 Convergence of the Control Error in the CFOMRAC
Scheme

So far, conclusions about the convergence to zero of parameter errors φθ (t), φk (t),
φa (t) and φp (t) cannot be established for the CFOMRAC scheme, since the results
used in Sect. 6.4.2 cannot be directly applied in this case. Currently, research is being
carried out in this direction.

Also, convergence of the control error ec (t) to zero has not been analytically
established yet for this CFOMRAC scheme, neither for the identification error ei (t)
and the closed-loop estimation errors εθ (t) and εk (t). However, simulation studies
show that these errors converge to zero for the most usual reference signals such
as steps, constant references, sinusoidal references, etc. These are topics currently
under investigation.

Nevertheless, we can analytically prove that the mean value of the control error,
the identification error and the closed-loop estimation errors converge to zero as
t → ∞, under the hypotheses of differentiability for the parameter errors φθ (t),
φk (t), φa (t) and φp (t). The proof is stated in what follows.

Proof Let us consider expression (6.49), which can be obtained based on the differ-
entiability of the parameter errors and the application of Lemma 6.1. If the fractional
integral of order α is applied to (6.49), by rearranging terms the following inequality
can be obtained.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−γ1

γ2
am I α

t0

{
e2c

}
(t)−

−γ3

γ4
am I α

t0

{
e2i

}
(t)+

+I α
t0

{
ε2θ

}
(t) + I α

t0

{
ε2k

}
(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1

γ2
I α
t0

{ecėc} (t) + γ3

γ4
I α
t0

{ei ėi } (t)+

+|kp|
2γ2

[
φ2

θ (t) + φ2
k (t) − φ2

θ0
− φ2

k0

] +

+ 1

2γ4

[
φ2

a (t) + φ2
p (t) − φ2

a0 − φ2
p0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.51)

It can be seen that, since am < 0, the left-hand side of (6.51) will always be
greater or equal than zero. Thus, since φθ (t), φk (t), φa (t) and φp (t) are bounded,
it follows from (6.51) that I α

t0
{ecėc} (t) + I α

t0
{ei ėi } (t) is upper bounded. Also, given

that ec (t), ėc (t), ei (t), ėi (t) are bounded, then it follows from [10, Proposition 1]
that I α

t0
{ecėc} (t) and I α

t0
{ei ėi } (t) are uniformly continuous.

Let us now assume that I α
t0

{ecėc} (t) + I α
t0

{ei ėi } (t) is not bounded. Since it is
upper bounded, the only possibility is that I α

t0 {ecėc} (t) + I α
t0 {ei ėi } (t) → −∞. Thus,

since I α
t0

{ecėc} (t) and I α
t0

{ei ėi } (t) are uniformly continuous, we can state that

I 1−α
t0

{
I α
t0

{ecėc} + I α
t0

{ei ėi }
}
(t) → −∞,

and according to [15], Lemma 2.3 can be written as
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t∫

t0

ec (τ ) ėc (τ ) dτ +
t∫

t0

ei (τ ) ėi (τ ) dτ = 1

2
e2c (t) + 1

2
e2i (t) − 1

2
e2c0 − 1

2
e2i0 → −∞.

which contradicts the fact that ec (t) and ei (t) are bounded. Thus, it can be concluded
that I α

t0
{ecėc} (t) + I α

t0
{ei ėi } (t) is lower bounded.

Since φθ (t), φk (t), φa (t), φp (t) and I α
t0

{ecėc} (t) + I α
t0

{ei ėi } (t) are bounded,
we can conclude from (6.51) that all the fractional integrals in the left-hand side of
(6.51) are bounded as well.

Based on this result and using the fact that e2c (t), e2i (t), ε2θ (t) and ε2k (t) are
nonnegative and bounded, we can apply Lemma 6.2, to conclude that

lim
t→∞

⎡
⎢⎢⎢⎣tα−ε

t∫
t0

e2c (τ ) dτ

t

⎤
⎥⎥⎥⎦ = 0, ∀ε > 0, (6.52)

lim
t→∞

⎡
⎢⎢⎢⎣tα−ε

t∫
t0

e2i (τ ) dτ

t

⎤
⎥⎥⎥⎦ = 0, ∀ε > 0, (6.53)

lim
t→∞

⎡
⎢⎢⎢⎣tα−ε

t∫
t0

ε2θ (τ ) dτ

t

⎤
⎥⎥⎥⎦ = 0, ∀ε > 0, (6.54)

lim
t→∞

⎡
⎢⎢⎢⎣tα−ε

t∫
t0

ε2k (τ ) dτ

t

⎤
⎥⎥⎥⎦ = 0, ∀ε > 0, (6.55)

The four expressions above can be interpreted as that themean values of e2c , e2i , ε
2
θ

and ε2k are o
(
tε−α

)
, ∀ε > 0, which means that they converge asymptotically to zero,

with a convergence speed higher than t−α . This concludes the proof. 
�

6.6 A Comparative Simulation Study

This section presents a simulation studywhere the proposedDFOMRACandCFOM-
RACare used to control an integer-order scalar and unstable plant. Simulation studies
include different fractional orders for the adaptive laws, different reference signals
and also different adaptive gains.
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Let the plant to be controlled be given by the following differential equation

ẋ p (t) = x p (t) + u (t) , x p (0) = 0 (6.56)

and the reference model be given by

ẋm (t) = −xm (t) + r (t) , xm (0) = 0 (6.57)

For this plant and reference model, the controllers detailed in Tables6.1 and
6.2 were implemented using Matlab Simulink. In the case of the CFROMAC, the
estimator used corresponds to

˙̂x p (t) = −ei (t) + âp (t) x p (t) + k̂ p (t) u (t) , x̂ p (0) = 0 (6.58)

The fractional adaptive laws were implemented using the NID block included in
the Ninteger toolbox for Matlab [25]. The Oustaloup numerical approximation [22]
was used for the fractional operator in the NID block, where it is included as the
Crone approximation. The initial conditions for the estimated parameters were set
to zero in all cases.

6.6.1 Simulation Environment 1: Influence of the Fractional
Orders

In this first simulation environment, a unit step is used as reference signal and all the
adaptive gains were set to 1, that is γ1 = γ2 = γ3 = γ4 = 1. The idea here is to show
how the fractional order of the adaptive laws influence the signals behavior in the
scheme. To that extent, some representative values of the fractional order are used,
which correspond to α = 0.3, 0.5, 0.7, 0.9, 1.

Figure6.3 shows the evolution of the control error ec (t) for these values of α in
the DFOMRAC, while Fig. 6.4 shows the results for the CFOMRAC.

It can be seen from Figs. 6.3 and 6.4 that the control error remains bounded for
every α used, as it was analytically proved in Sects. 6.4.1 and 6.5.1. Moreover, it can
be observed that it converges to zero, and the convergence speed is higher as α gets
closer to 1, which results advantageous for the classic scheme (α = 1). However, the
amplitude of the initial oscillations of the control error and consequently of the output
of the plant x p (t), is also higher as α gets closer to 1. Thus, the fractional-order α can
be used by the designer to achieve smoother transients or rapid convergence speed,
or a midpoint between both characteristics.

Figures corresponding to the evolution of the identification error ei (t) and the
closed-loop estimation errors εθ (t) , εk (t) for the CFOMRAC are not shown here
for the sake of conciseness. Nevertheless, we should mention that they all converge
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Fig. 6.3 Evolution of the control error ec (t) for the DFOMRAC scheme, using different values of
the fractional-order α
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Fig. 6.4 Evolution of the control error ec (t) for the CFOMRAC scheme, using different values of
the fractional-order α
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Fig. 6.5 Evolution of the control signal u (t) for the DFOMRAC scheme, using different values of
the fractional-order α

to zero. Also, the conclusions about convergence speed and transients of these errors,
depending on the α that is used, are the same as for the control error ec (t).

The smoothness of the transient for the control error ec (t) for lower α is directly
related with the control signal u (t), whose evolution can be observed in Figs. 6.5
and 6.6, for the DFOMRAC and CFOMRAC, respectively.

It can be seen from Figs. 6.5 and 6.6 that, in fact, the control signal is smoother
for the cases when α gets closer to 0, characteristic that may be appreciated in many
applications. When the control signal is smooth, not only the transients of the control
error are also smooth, but the integral of the squared control signal can result in lower
values, which can be related to the energy used to achieve the control goal. Since the
energy efficiency is becoming more important every day, the use of fractional orders
different from 1 in these schemes could be advantageous.

Comparing theDFOMRACand theCFOMRAC, it can be seen fromFigs. 6.3, 6.4,
6.5, and 6.6 that for a fixed α, the convergence times are smaller for the CFOMRAC.
Also, CFOMRAC presents less initial oscillations with lower amplitudes, showing
that the CFOMRAC behaves better than the DFOMRAC. Of course, it must be noted
that the CFOMRAC uses more information about the system, since it estimates not
only the controller parameters but also the plant unknown parameters, thus it would
be expected that it behaves better.

Finally, Figs. 6.7 and 6.8 show the corresponding parameter errors for this simu-
lation environment, for the DFOMRAC and CFOMRAC, respectively.

It can be seen from Figs. 6.7 and 6.8 that the parameter errors remain bounded, as
it was analytically proved for both DFOMRAC and CFOMRAC. It is interesting to
observe that, although for all α the same initial conditions were set for the estimated
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Fig. 6.6 Evolution of the control signal u (t) for the CFOMRAC scheme, using different values of
the fractional-order α
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Fig. 6.8 Evolution of the parameter errors φθ (t), φk (t), φa (t) and φp (t) for the CFOMRAC
scheme, using different values of the fractional-order α

parameters, they can converge to different values for different values of α. This,
however, does not change the fact that the control error ec (t) converges to zero for
all α used, of course with different convergence speeds. The parameter errors do not
converge to zero because the reference signal used in this simulation environment is
a unit step, which does not have enough spectral lines to guarantee the convergence
to zero of the parameter errors, as it was explained in Sect. 6.4.2 for the DFOMRAC.
For the CFOMRAC, no analytical results were provided for the convergence of the
parameter errors, but we can see here that it is also not achieved for this reference
signal.
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Fig. 6.9 Evolution of the control error ec (t) for the DFOMRAC scheme, using different values of
the fractional-order α and the adaptive gains γ1, γ2

6.6.2 Simulation Environment 2: Influence of the Adaptive
Gains

In the previous simulation environment, the adaptive gains were set to 1 in all cases,
and only the influence of the fractional-order α was analyzed. In this simulation
environment, the reference signal and the fractional orders used are the same as in
Sect. 6.6.1, however different values of adaptive gains are employed, to show how
this parameter influences the evolution of the signals behavior in the schemes. To
that extent, three values of γ are used, which correspond to γ1 = γ2 = γ3 = γ4 =
γ = 0.1, 1, 10.
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Fig. 6.10 Evolution of the control error ec (t) for the CFOMRAC scheme, using different values
of the fractional-order α and the adaptive gains γ1, γ2, γ3, γ4

Figure6.9 shows the evolution of the control error ec (t) for these values of γ in
the DFOMRAC, while Fig. 6.10 shows the result for the CFOMRAC.

It can be seen from Figs. 6.9 and 6.10 that the value of the adaptive gain does
not affect the boundedness of the control error, no matter what fractional-order α is
used. However, it can be observed that for every α used, the convergence speed of the
control error increases as γ increases. Also, it can be seen that the amplitude of the
initial oscillations decreases as γ increases, but those cases with lower values of α

remain with lower amplitudes. This is a very interesting behavior, since it tells us
that the convergence speed can be increased using the adaptive gain γ , and it can be
done without deteriorating the transient, just using fractional orders in the adaptive
laws.
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Fig. 6.11 Evolution of the control signal u (t) for the DFOMRAC scheme, using different values
of the fractional-order α and the adaptive gains γ1, γ2

Of course, some other facts need to be taken into account, like the evolution of the
control signal u (t), which can be observed in Figs. 6.11 and 6.12, for the DFOMRAC
and CFOMRAC respectively.

In this case, it can be seen from Figs. 6.11 and 6.12 that the increase of the
adaptive gain γ has a similar effect on the control signal than that for the control
error, with respect to convergence speed and amplitude of the initial oscillations.
Thus, the advantage of using higher adaptive gains together with fractional orders in
the adaptive laws is evident in this problem.

Also, it can be seen from Figs. 6.9, 6.10 and 6.12 that the CFOMRAC behaves
better than the DFOMRAC for fixed α and adaptive gains, since the convergence
speed of the control error and control signal is higher for CFOMRAC, and also their
transients show less oscillations with smaller amplitudes.
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Fig. 6.12 Evolution of the control signal u (t) for the CFOMRAC scheme, using different values
of the fractional-order α and the adaptive gains γ1, γ2, γ3, γ4

Regarding the parameter errors, they are not shown in this case for the sake
of conciseness. But in summary, they do not converge to zero, since the reference
signal is a unit step, which is not persistently exciting, and the increase of the adaptive
gain does not modify this fact. However, the convergence speed to their final values
increases as γ increases, as it happened for the control error and the control signal.
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Fig. 6.13 Evolution of the parameter errors φθ (t) and φk (t) for the DFOMRAC scheme, using
different values of the fractional-order α and a persistently exciting reference signal

6.6.3 Simulation Environment 3: Influence of the Reference
Signal in the Parameters Convergence

Although the main goal of the control schemes proposed in this chapter is not the
parameter convergence but the control error convergence, it is interesting to showhow
the reference signal can influence the parameter convergence in these schemes.To that
extent, this simulation environment uses a reference signal given by r (t) = 2 sin (t),
which has two spectral lines, and consequently, the parameter convergence should
be achieved according to the analytical results, at least for the DFOMRAC. The
fractional orders used here are the same as in the previous simulations, and the
adaptive gains are γ1 = γ2 = γ3 = γ4 = 1.

Figures6.13 and 6.14 show the corresponding parameter errors for this simulation
environment, for the DFOMRAC and CFOMRAC respectively.

It can be seen from Figs. 6.13 and 6.14 that in this case, all the parameter errors
converge to zero. For the lower values of α, the convergence cannot be observed in
the time window plotted, but they can be seen to converge if the simulation time
is increased enough. The convergence to zero of the parameter error in the case
of DFOMRAC was analytically proved in Sect. 6.4.2 for the particular case where
kp = γ1 = γ2 = 1. Thus, this simulation only shows what we already knew.

However, in the case of the CFOMRAC, no analytical results are available at
this moment regarding the parameter convergence to zero. Nevertheless, simulations
show that even though more parameters are adjusted in the CFOMRAC, the spectral
content of the reference input need not be increased to achieve parameter errors
convergence to zero, as can be observed in Fig. 6.14.
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Fig. 6.14 Evolution of the parameter errors φθ (t), φk (t), φa (t) and φp (t) for the CFOMRAC
scheme, using different values of the fractional-order α and a persistently exciting reference signal
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Chapter 7
Sliding Modes for Switched Uncertain Linear
Time Invariant Systems: An Output Integral
Sliding Mode Approach

Leonid Fridman, Rosalba Galván-Guerra, Juan-Eduardo
Velázquez-Velázquez and Rafael Iriarte

Abstract A robustifying methodology for switched uncertain linear time invari-
ant systems with matched uncertainties/perturbations and state-dependent location
transitions using only output information is presented. An output integral sliding
mode control technique, based on an algebraic hierarchical observer is proposed.
This approach allows the theoretically exact compensation of the matched uncer-
tainties/perturbations right after the initial time; but it requires the use of filters to
reconstruct the state vector and produces a high level of chattering. To eliminate
the necessity of filtering and to diminish the chattering, a continuous output integral
sliding mode controller is designed. This controller is based on the super-twisting
algorithm and it compensates the matched uncertainties/perturbations after a finite
transient. For this case, sufficient conditions to ensure the convergence of the con-
troller and the observer before every switching are given. The proposed approach is
illustrated via numerical simulations.
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7.1 Introduction

7.1.1 State of the Art

The switched systemmodeling framework is used to represent a system composed of
continuous dynamical subsystems, which interact using discrete switching rules [7,
25]. Each subsystem is active in a specific state space subset, called location, which
is defined by a set of switching manifolds. When a switching manifold is activated,
the system passes between locations and it is said that a location transition occurs
at a switching moment. These transitions conform a location trajectory. Normally,
the location transitions are considered as autonomous or controlled. If the switching
manifolds depend on the state vector it is said that the system is a switched system
with state-dependent location transitions.

In the context of switched systems, several control architectures are reported
(see e.g., [16, 20]) that assume the state vector is available, and others that use
only output information [8, 11, 18]. These strategies provide a nominal controller
that makes the closed-loop system behaves in a nominal way. In the presence of
matched uncertainties/perturbations, the trajectory of the system could deviate from
the nominal behavior. In this work, using only output information, we will design a
robustifying methodology that makes the system insensitive to the matched uncer-
tainties/perturbations, i.e., given a nominal controller we design a new controller
that, together with the nominal one, ensure the location trajectory of the system and
the robustification of the nominal behavior.

7.1.2 Methodology

It is well known that the slidingmodesmethodology compensates thematched uncer-
tainties/perturbations. But, if it is required for this to occur just after the initial time,
the Integral Sliding Mode (ISM) framework [27] is the right option. Moreover, ISM
allows to robustify a given nominal controller. However, it has two main disadvan-
tages:

• The need of all the states and the initial conditions.
• And the discontinuous control of ISM produces high-level chattering.

In the switched framework in [19] an ISM is proposed with the same disadvantages
than in the non-switched case.

The presence of uncertainties/perturbations in a switched system does not only
affect the trajectory of the system, but also the location trajectory and the switching
moments. This problem becomes more difficult when only output information is
available. Works like [5, 10, 12] based on sliding modes, address the problem of
state vector reconstruction in the presence of matched uncertainties/perturbations.
However, most of the sliding mode observers are not capable to reconstruct the
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state vector right after the initial time. The Output Integral Sliding Mode (OISM)
methodology ([4] and [13, p. 31]) is based on a hierarchical observer that allows
theoretically exact reconstruction of the states just after the initial time when the
uncertainties/perturbations are completely compensated.

The OISMmethod eliminates the need of the states and the initial conditions. This
method robustifies the nominal behavior of the system using only output information
and allows to reconstruct the system states theoretically exactly just after the initial
time by reconstructing step-by-step the output and its derivatives. Moreover, the
controller and the observer work simultaneously and the sliding motions start just
after the initial time. Since the OISM still uses a discontinuous control law, it has
two weak points:

• Presence of high-level chattering.
• To reconstruct the output and its derivatives a first-order filter is used. This
affects its ability to reconstruct the state vector and to compensate the uncer-
tainties/perturbations right after the initial time.

For switched systems in [3, 6, 24], different observers capable to reconstruct
theoretically exactly both the states and the location trajectory are proposed, using
the Super-Twisting Algorithm (STA) [17]. The continuous state is reconstructed
using classical observation techniques and the location trajectory is identified using
residual-based strategies. However, these results are based on the existence of STA
gains that assure convergence before the switching and they do not provide any
methodology for the design of such gains.

When the ISMmethodology is combinedwith the STA aContinuous ISM (CISM)
is obtained. This strategy allows to robustify in a continuous way the nominal behav-
ior of the system. But, to assure exact compensation of the Lipschitz uncertainties-
perturbations right after the initial time it is necessary to know the initial conditions
of the uncertainties/perturbations, otherwise the methodology has reaching phase.

Continuous OISM (COISM)methodology is used in [22] for fault tolerant control
of uncertain linear systems. There, it is assumed that the faults are Lipschitz and at
the initial time there are not faults, eliminating the reaching phase of the controller.
The states are reconstructed using a high-order differentiator, that must converge
before the fault occurs. The design of the gains to assure the convergence time is not
provided.

Hence, to assure the location trajectory and the robustification of the nominal
behavior of switched systems despite the presence ofmatched uncertainties/perturba-
tions using only output information. It is necessary to extend the existent robustifying
output-based ISM approaches (OISM/COISM) to the switched case and to give con-
ditions for the design of controller and observer gains guaranteeing the convergence
properties.
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7.1.3 Contribution

In this chapter, theOISM/COISMrobustifyingmethodology is extended forSwitched
Uncertain Linear Time Invariant Systems (SULTIS) with matched uncertainties/
perturbations and state-dependent location transitions. Two strategies are designed:

• The OISM concept is extended ensuring theoretically exact compensation of
matched uncertainties/perturbations right after the initial time and preserving the
switching moments. The observer has a cascade structure, composed by a family
of reduced order observers, turned on at the same time, that reconstruct the outputs
not affected by the uncertainties/perturbations and their derivatives theoretically
exactly just after the initial time. To reconstruct the states, first-order filters are
needed. As the states are reconstructed theoretically exactly just after the initial
time, the observer and the controller can work simultaneously. The switching
moments are detected online by using the observed state vector and the given
switching manifolds.

• The COISM concept is extended ensuring theoretically exact compensation of
matched uncertainties/perturbations right after a finite transient in every location
and preserving the switching moments. The observer has the same structure as
in the OISM case but the observers are turned on sequentially, i.e., the observers
are turned on once the lower derivatives have been theoretically exactly recon-
structed. Sufficient conditions are developed to assure the convergence of the full
observer before half of the dwell time. After the observer has converged, aCOISM
controller that uses an OISM sliding variable together with a STA control law is
turned on and the gains are designed to assure its convergence before the dwell
time. This ensures exact compensation of the matched uncertainties/perturbations
before the dwell time. Sufficient restrictions to the state vector at the switching
times are developed to guarantee the absence of switching during the convergence.
Under these conditions, the robustification methodology assures that the location
trajectory is preserved. Here, the STA gains are adjusted as a function of the con-
vergence time, using an estimation of the reaching time. For the implementation,
the STA controller is modified to assure the non-Lipschitz terms of the observer
do not affect the STA behavior of the controller. The integral structure of the slid-
ing dynamics preserves the continuity of the control law, allowing to adjust the
chattering.

7.1.4 Chapter Organization

Section7.2 presents the problem formulation where the SULTIS and the nominal
system are defined. Section7.3 is dedicated to the design of the OISM controller
for SULTIS in the presence of matched uncertainties/perturbations highlighting the
switched hierarchical observer and theOISMcontroller design. Section7.4 is devoted
to the design of the COISM controller, giving sufficient conditions for the controller
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and the observer such that the matched uncertainties/perturbations are compensated
theoretically exactly after the dwell-time condition. In this section, also the restric-
tions to the initial conditions to guarantee the robustification of the SULTIS are
discussed. Finally, Sect. 7.5 concludes the chapter.

7.2 Problem Formulation

Consider a SULTISwith state-dependent location transitions, composed of r different
locations1

˙̄x(t) = Āi x̄(t) + B̄i (u(t) + φ(t)) ,

ȳ(t) = C̄i x̄(t), x̄(0) = x̄0, (7.1)

where i = σ(x̄, t) : Rn × R
+ → I = {1, 2, . . . , r} denotes the active location,

Āi ∈ R
n×n, B̄i ∈ R

n×m and C̄i ∈ R
p×n

are known matrices, φ : R+ → R
m are uncertainties/perturbations and u(t) is the

control.
Using a state transformation x = [

xT1 (t), xT2 (t)
]T = T1,i x̄ and an output transfor-

mation y = Ty,i ȳ, where

T1,i =
[

B̄⊥+
i

Cti B̄
⊥+
i + B̄+

i

]

with Cti = (C̄i B̄i )
+C̄i (In − B̄i B̄

+
i )B̄⊥

i , and

Ty,i =
[

(C̄i B̄i )
⊥+

(C̄i B̄i )
+

]
;

Equation (7.1) is transformed into

ẋ(t) =
[
A11,i A12,i

A21,i A22,i

]

︸ ︷︷ ︸
Ai

x(t) +
[
0
Im

]

︸ ︷︷ ︸
Bi

(u(t) + φ(t)),

[
y1(t)
y2(t)

]
=
[
C1,i

C2,i

]
x(t) =

[
C11,i 0
0 Im

]

︸ ︷︷ ︸
Ci

x(t), x(0) = x0, (7.2)

with i = σ(T−1
1,i x, t).

1See [26] for a general formal definition.
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A transition between each location is ruled by a set of given switching manifolds
mi,i ′ : Rn → R, with i ′ ∈ I and i �= i ′, such that

⋂

i ′∈I
i ′ �=i

{x : mi,i ′(x) = 0} = ∅.

When the state x is in location i andmi,i ′(x) = 0 it is said that a transition to location
i ′ occurs. It is considered that these switching manifolds are known.

Under the assumption that φ(t) = 0 a nominal system is defined as

ẋnom(t) = Ai xnom(t) + Biunom(t),

ynom(t) = Ci xnom(t), xnom(0) = x0, (7.3)

where unom(t) = −K̄i xnom(t), with K̄i ∈ R
m×n , is a given stabilizing nominal con-

trol.
The switching moments t j , j = 1, 2, . . . are not defined a priori but, by using the

given switching manifolds and the nominal trajectory xnom , it is possible to detect
these transitions such that

t j = min
i ′∈I
i ′ �=i

{t > t j : mi,i ′(xnom(t)) = 0}.

Suppose that the switching moments for (7.3) conform an ordered sequence

0 = t0 < t1 < t2 < · · · < t j−1 < t j < . . . .

such that t j − t j−1 > δ, i.e., the nominal switched system (7.3) satisfies the dwell
time condition. To assure the nominal trajectory does not present Zeno behavior, we
assume

lim
t→t−j

d

dt
mi,i ′(xnom(t)) > ρ and lim

t→t+j

d

dt
mi,i ′(xnom(t)) > ρ

or

lim
t→t−j

d

dt
mi,i ′(xnom(t)) < −ρ and lim

t→t+j

d

dt
mi,i ′(xnom(t)) < −ρ

with ρ > 0. Let σ(T−1
1,i0xnom(0), 0) = i0 ∈ I. Then, the location trajectory

σ(T−1
1,i xnom(t), t) can be restated as

σ(T−1
1,i xnom(t), t) :=

{
i if σ(T−1

1,i xnom(t−), t−) = i and mi,i ′(T
−1
1,i xnom(t)) �= 0,

i ′ if σ(T−1
1,i xnom(t−), t−) = i and mi,i ′(T

−1
1,i xnom(t)) = 0.



7 Sliding Modes for Switched Uncertain Linear Time Invariant Systems … 159

By using this information the location trajectory of (7.3) can be characterized by the
switching sequence

Σ = {x0; (i0, t0), (i1, t1), . . . , (i j , t j ), . . . |i j ∈ I, j = 0, 1, . . . }.

For (7.1), in general, the switching sequence and the state trajectory are affected by
the uncertainties/perturbations φ(t).

7.2.1 General Assumptions

In order to robustify the SULTIS by using only output information, we need to make
the following assumptions.

1. The initial location is known and the initial condition is unknown but bounded,
i.e., there exists μ ∈ R+, such that ‖x̄(0)‖ ≤ μ.

2. The SULTIS without any controller satisfies the dwell time condition.
3. rankB̄i = rankC̄i B̄i = m for all i ∈ I.
4. The uncertainties/disturbances φ are bounded

‖φ(t)‖ ≤ Ψimax , ∀t ∈ [t j−1, t j ],

where Ψimax is given for all i ∈ I.
5. The switched system (7.1) has more outputs than inputs, i.e., p > m.
6. The switched system is controllable in every location [23], i.e., the pair ( Āi , B̄i )

is controllable for i ∈ I.
7. The switched system is strongly observable in every location [15], i.e., the triple

( Āi , B̄i , C̄i ) is strongly observable for i ∈ I.

7.3 Output Integral Sliding Mode Control for SULTIS

Let us start this section by designing an output-based robustifying methodology of
the nominal trajectory of the SULTIS (7.2) by using an OISM strategy. This method-
ology uses a controller that compensates thematched uncertainties/perturbations and
an observer that reconstructs the state vector of the system. The controller and the
observer work at the same time, guaranteeing the convergence to the nominal tra-
jectory since the initial time. The overall structure of the proposed methodology is
depicted in Fig. 7.1.
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Fig. 7.1 Block diagram of
the OISM robustifying
strategy for SULTIS

7.3.1 Switched Hierarchical Observer

7.3.1.1 General Form of the Switched Observer

Let us start this section designing a cascade structure observer capable to reconstruct
the state vector of (7.2) theoretically exactly since the initial time. Note that we are
measuring all the states that are directly affected by the uncertainties/perturbations
(y2). Hence, we only need to reconstruct the remaining ones. Recall assumptions
A3, A5–A7, since the pair (Ai , Bi ,Ci ) is strongly observable we can assure that
the pair (A11,i ,C11,i ) is observable (see [4] for a proof of this claim) and assume it
has observability index li . Note that since the discrete state is reconstructed using
the observed states, the switched system is observable with observability index l =
max
i∈I

li .

The proposed reduced order observer is composed by:

1. An auxiliary Luenberger error stabilizer

˙̃x1(t) = A11,i x̃1(t) + A12,i y2(t) + Ki
(
y1(t) − C11,i x̃1(t)

)
(7.4)

where Ki is the observer gain that is designed to assure the observation error
e1(t) = x1(t) − x̃1(t) is bounded.

2. A switched version of the hierarchical observer [4, 13] composed by

a. A family of sliding mode observers

ẋak = A11,i x̃1(t) + A12,i y2(t) + Lk,i (t)
(
C11,i A

k−1
11,i Lk,i

)−1
vk(t), (7.5)

k = 1, . . . , l − 1. These observers reconstruct the output error y1(t) −
C11,i x̃1(t) and its l − 1 derivatives. The matrices Lk,i are design parame-
ters and vk is a first-order sliding mode output injection signal that contains
since the initial time the output error k-th derivative.
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b. An algebraic part
x̂1(t) = x̃1(t) + O+

1,i,l veq(t). (7.6)

where O1,i,l is the observability matrix of the pair (A11,i ,C11,i ) and

veq(t) =

⎡

⎢⎢⎢
⎢⎢
⎣

y1(t) − C11,i x̃1(t)
v1eq (t)
v2eq (t)

...

vl−1eq (t)

⎤

⎥⎥⎥
⎥⎥
⎦

∈ R
pl .

The full reconstructed state vector is given by

x̂(t) =
[
x̂1(t)
y2(t)

]
;

This part reconstructs the state vector of (7.1) theoretically exactly just after
the initial time by using the information provided by (7.4)–(7.5), i.e., x̂(t) =
x(t).

Let us design each part of the observer.

7.3.1.2 Luenberger Error Stabilizer

Consider theLuenberger-type error stabilizer (7.4)with initial conditionC11,i x̃1(0) =
y1(0), the matrix Ki must be designed such that the error dynamics

ė1(t) = (
A11,i − KiC11,i

)
e1(t) = Âi e1(t), e1(0) = x1(0) − x̃1(0),

is exponentially stable. The trajectory of the observer is assumed continuous, then
at the switching moments

x̃1(t
−
j ) = x̃1(t

+
j ).

Since the dynamical error e1(t) is stable there exist positive constants γi , ηi such that

‖e1(t)‖ ≤ γi e
−ηi(t−t j)‖e1(0)‖ ≤ γi e

−ηi(t−t j) (μ + ‖x̃(0)‖) .

Note that we are not assuming that x neither x̃ are bounded. The Luenberger observer
only assures e1 is bounded.
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7.3.1.3 Switched Hierarchical Observer in Algebraic Form

In this subsection a sliding mode-based step-by-step observer is proposed to recon-
struct the output error y1(t) − C11,i x̃1(t) and its l − 1 time-derivatives just after
the initial time. This observer recovers the vectors C11,i A

k−1
11,i x1(t), k = 1, . . . , l − 1

using a family of first-order sliding mode observers. The observer design is given by
the following proposition.

Proposition 7.1 Assume

1. The auxiliary variable xak is designed as (7.5), where Lk,i (t) ∈ R
n×p is a design

matrix such that det
(
C11,i A

k−1
11,i Lk,i

) �= 0.
2. The auxiliary input vk(t) is defined as

vk(t) = Mk,σ (t)
s̄k(t)

‖s̄k(t)‖ ,

where the scalar gain Mk,i should satisfy the condition

‖C11,i A
k
11,i‖‖e1(t)‖ < Mk,i (t).

3. At the switching moments, t j all the variables xak satisfy the conditions

C11,i xa1(t
+
j ) = y1(t

+
j ), (7.7)

and
C11,i A

k−1
11,i x̃1(t

+
j ) + vk−1eq (t

+
j ) = C11,i A

k−1
11,i xak(t

+
j ). (7.8)

4. The sliding variables s̄k are designed as

s̄1(t) = y1(t) − C11,i xa1(t), (7.9)

and
s̄k(t) = C11,i A

k−1
11,i x̃1(t) + vk−1eq (t) − C11,i A

k−1
11,i xak(t). (7.10)

Then, for all t > 0
vkeq (t) = C11,i A

k
11,i e1(t),

and it is possible to reconstruct completely all the vector functions C11,i A
k−1
11,i x(t).

Proof Since the auxiliary variables xak fulfill the conditions (7.7)–(7.8) the sliding
variables (7.9)–(7.10) are zero at each switching time. The establishment of the
sliding mode ∀t ∈ [t j , t j+1] follows from the results presented in [4] and [13, p. 34].
Then it is possible to assure s̄k(t) = ˙̄sk(t) = 0, ∀t ≥ 0.

By using the equivalent control of the sliding mode observers we can construct
the vector
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veq(t) = O1,i,l e1(t), ∀t > 0.

The equivalent control veq is not available, but it can be reconstructed by filtering the
high-frequency signals vk . Note that we have reconstructed the output error in every
location and its l − 1 time-derivatives. Since the pair (A11,i ,C11,i ) is observable, the
pseudo-inverse of O1,i,l is well defined and the states can be recovered by means of
the equation

x1(t) = x̃1(t) + O+
1,i,l veq(t). (7.11)

The hierarchical observer is defined as

x̂1(t) = x̃1(t) + O+
1,i,l veq(t). (7.12)

Assuming an ideal output integral sliding mode, x̂(t) ≡ x(t) for all t > 0 and the
states have been reconstructed theoretically exactly just after the initial time.

7.3.2 OISM Control Design

Now that the state has been reconstructed theoretically exactly, we can design an
OISM controller that compensates the uncertainties/perturbations, right after the
initial time. The proposed sliding variable only depends on output information,

s(y, t) = Gi (y(t) − y(t j )) −
t∫

t j

GiCi (Ai x̂(ρ) + Biunom(ρ))dρ. (7.13)

Gi is a projection matrix and without loss of generality, it is designed such that
GiCi Bi = I .

Taking the derivative of the sliding variable (7.13) along the trajectories of (7.2)

ṡ(y, t) = GiCi Ai
(
x(t) − x̂(t)

) + uint (t) + φ(x, t),

s(y(t j ), t j ) = 0; (7.14)

the equivalent control is

uinteq = −φ(x, t) − GiCi Ai
(
x(t) − x̂(t)

) ;

and the sliding dynamics of the SULTIS (7.2) takes the form

ẋ(t) = Ãi x(t) + Biunom(t) + BiGiCi Ai x̂(t),

y(t) = Ci x(t), x(0) = x0, (7.15)
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where
Ãi = [In − BiGiCi ]Ai .

Note that if the state vector is exactly reconstructed, (7.15) is equivalent to (7.3).
The next theorem gives the design conditions of the OISM controller.

Theorem 7.1 Assume A1–A7 are fulfilled, the observation error ‖x(t) − x̂(t)‖ is
bounded and the scalar βi satisfies the inequality

βi − ‖GiCi Ai‖ ‖x(t) − x̂(t)‖ − ΨiMax ≥ λi > 0, (7.16)

where λi is a constant. Then the sliding mode is established from the initial moment
and the theoretically exact compensation of the matched uncertainties/perturbations
just after the initial time is assured.

Proof Let us select

V (s(y, t)) = 1

2
‖s(y, t)‖2,

as the candidate Lyapunov function. The derivative of V along the trajectories of the
sliding variable (7.14) is:

V̇ (s(y, t)) = sT (y, t)ṡ(y, t) = sT (y, t)
(
GiCi Ai

(
x(t) − x̂(t)

) + uint (t) + φ(x, t)
)
.

Consider a first-order sliding mode control

uint (t) = −βi
s(y, t)

‖s(y, t)‖ .

Then, the derivative of the candidate Lyapunov function takes the form

V̇ (s(y, t)) ≤ −‖s(y, t)‖ (βi − ‖GiCi Ai‖ ‖x(t) − x̂(t)‖ − ΨσMax

)

= −2
(
βi − ‖GiCi Ai‖ ‖x(t) − x̂(t)‖ − ΨσMax

)
V (s(y, t))1/2, ∀t ∈ (t j , t j+1]

If (7.16) is satisfied, the proposed sliding mode control assures finite-time stability
of the sliding variable (7.14) for all t ∈ (t j , t j+1]. Note that V is not increasing along
the trajectories of the sliding variable and since s(y(t j ), t j ) = 0, then

1

2
‖s(y(t), t)‖2 = V (s(y(t), t)) ≤ V (s(y(t j ), t j )) = 1

2
‖s(y(t j ), t j )‖2 = 0, t ∈ [t j , t j+1]

Now, it is clear that s(y(t), t) = 0 for all t ≥ 0 and the sliding mode is established
from the initial time.
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The next algorithm summarizes the proposed robustifying output control theoret-
ical approach.

OISM Algorithm

1. In order to assure a bounded observation error, design the matrix function Ki ,
assuring that the error dynamics of the Luenberger-based stabilizer is exponen-
tially stable.

2. Compute the scalar gain βi satisfying (7.16) and assuring the existence of the
sliding mode in every location.

3. Design the auxiliary systems xak (7.5) with the sliding variable s̄k (7.10) and
compute the constants Mk,i . This ensures that the proposed observer reconstructs
the output and its derivatives right after the initial time.

4. Reconstruct the control input vkeq from the high-frequency signal vk .
5. In the nominal control substitute x by x̂ , i.e., use only output information. The

switching sequences are identified with the approximated state vector x̂ .
6. Run simultaneously the observer x̂ according to (7.17), and the controllers unom

and uint .

7.3.3 Hierarchical Observer Realization

The proposed sliding mode observer needs a low-pass filter to reconstruct the equiv-
alent output injection veq from the high-frequency signal vk(t). We consider a first-
order low-pass filter [27, p. 23] where the filtered signal vkav(t) would approximate
vkeq (t), i.e.,

Fkv̇kav(t) = −vkav(t) + vk(t), vkav(t
+
j ) = C11,i A

k
11,i (x̂1(t j ) − x̃1(t j )),

where Fk = √
Δt k is the time constant of the filter and Δt is the sample step.

We define a filter for every location and we assume that the filtered output vkav is a
Lipschitz function, considering that at the switching moments the observation error
is very small and can be depreciated.

The realization of the observer (7.12) takes the form

x̂1(t) = x̃1(t) + O+
1,i,l vav(t), ∀t ≥ 0,

vav =

⎡

⎢
⎢⎢⎢⎢
⎣

y1(t) − C11,i x̃1(t)
v1av(t)
v2av(t)

...

vl−1av(t)

⎤

⎥
⎥⎥⎥⎥
⎦

∈ R
p(l−1). (7.17)
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Due to the effects of the first-order filters there is an error ε(t) = veq(t) − vav(t) and
(7.17) takes the form O1,i,l x̂1(t) = O1,i,l x̃1(t) + vav(t) + ε(t). The observed states
x̂1(t) satisfy the identity x̂1(t) = arg minx̂1∈Rn‖O1,i,l x̂1(t) − O1,i,l x̃1(t) − vav(t)‖.

In [13, p. 88] it is shown that the value of the error constant ε depends on the step
size Δt . Hence, with a small value of Δt , ε can be depreciated as well as the term
‖x(t) − x̂(t)‖ in (7.16).

7.3.4 Simulation Results

Consider a system of the form (7.1) with two locations, where

Ā1 =

⎡

⎢⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 2 3 4

⎤

⎥⎥
⎦ , Ā2 =

⎡

⎢⎢
⎣

0 0 −1 0
−50 −200 −365 −250
0 0 0 −1
0 −1 0 0

⎤

⎥⎥
⎦

B̄1 =

⎡

⎢⎢
⎣

0
0
0
1

⎤

⎥⎥
⎦ , B̄2 =

⎡

⎢⎢
⎣

0
2
0
0

⎤

⎥⎥
⎦ , C̄1 =

[
0 0 0 1
1 0 0 0

]
, C̄2 =

[
1 0 0 0
0 1 0 0

]
,

and

σ(x̄, t) =
⎧
⎨

⎩

2 σ(x̄(t−), t−) = 1 and |x̄4| ≤ 0.5,
1 σ(x̄(t−), t−) = 2 and |x̄4| > 1,

σ (x̄(t−), t−) otherwise.

It is considered that the system starts in location i0 = 1. The initial conditions
x0 = [0.1,−0.1, 0.2,−1.5]T are unknown with a bound μ = 2 and the uncertain-
ties/perturbations used in the simulations are

φ(t) = 5 sin(π cos(3π t)) + 10.

All the simulations are done in Simulink, using the Euler method with a sample step
Δt = 1e − 5. Note that the system is unstable.

The system is transformed into the form (7.2), with

T1,1 =

⎡

⎢⎢
⎣

0 1 0 0
0 0 1 0

−1 0 0 0
0 0 0 1

⎤

⎥⎥
⎦ , T1,2 =

⎡

⎢⎢
⎣

−1 0 0 0
0 0 1 0
0 0 0 1
0 0.5 0 0

⎤

⎥⎥
⎦ ,

Ty,1 =
[
0 1
1 0

]
, and Ty,2 =

[−1 0
0 0.5

]
,



7 Sliding Modes for Switched Uncertain Linear Time Invariant Systems … 167

Fig. 7.2 Nominal behavior
of (7.3) versus SULTIS (7.2)
with the nominal controller
only: Nominal behavior
(continuous line), SULTIS
(dashed line) 0 1 2 3
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For the transformed nominal system (7.3), an LQR nominal controller is proposed
in each location:

K̄1 = [
2.4142 6.0210 9.0699 9.9279

]

and
K̄2 = [−50.0200 1.2563 0.2688 −251.8423

]
.

This nominal controller guarantees the stability of the nominal system (see Fig. 7.2)
and a dwell time δ = 0.1.When the nominal controller is applied and there are uncer-
tainties/perturbations in the system, the nominal controller is incapable to take the
states to zero, see Fig. 7.2. This shows the necessity of the robustifying methodology.

Let’s apply the OISM controller to the system. The Luenberger stabilizer gains
were designed as in [1]. This stabilizer is shown in Fig. 7.3 assuring the existence of a
bound for the observation error e1(t). In Fig. 7.4 the reconstructed state is presented
and in Fig. 7.5 the sliding variables s̄k are given. Note that the observer is in the sliding
mode since the initial time. Hence the observer is capable to reconstruct the state
vector theoretically exactly right after the initial time. In Fig. 7.6 a comparison of the
observation error norm for different sample steps is given. Note that, the filters affect
the state reconstruction and the lower the sample step is the lower the observation
error will be.
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Fig. 7.3 Luenberger
stabilizer behavior: Real
state (continuous line),
observed state x̃ (dashed
line)
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Fig. 7.4 OISM cascade
observer: Real state
(continuous line), observed
state x̂ (dashed line)
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The norm of the error between the nominal system and the SULTIS is illustrated
for different sample steps in Fig. 7.7. Notice that the lower the sample step is the lower
this error will be. Hence, the OISM controller compensates theoretically exactly the
matched uncertainties/perturbations since the initial time. But the control signal is
discontinuous, generating high-level chattering (see Fig. 7.8).
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Fig. 7.5 OISM cascade
observer: Virtual sliding
mode variables
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Fig. 7.6 Comparison of the
observation error norm
different sample steps
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7.4 Continuous Output Integral Sliding Mode for SULTIS

To eliminate the necessity of filters and to diminish the chattering a COISM-based
robustifying methodology for SULTIS is proposed. This methodology uses a STA-
based cascade observer that reconstructs the state vector theoretically exactly before
half of the dwell time. After the observer has converged the COISM controller
is turn on, assuring theoretically exact compensation of the matched uncertain-
ties/perturbations before the dwell time. For this methodology, it is necessary to
add the following assumptions.
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Fig. 7.7 Comparison of the
control error norm different
sample steps
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Fig. 7.8 SULTIS with
OISM controller
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Fig. 7.9 Robustifying
COISM block diagram

A8. The uncertainties/disturbances φ conform a bounded Lipschitz function:

‖φ(t)‖ ≤ Ψimax , ∀t ∈ [t j−1, t j ];
∥∥φ̇(t)

∥∥ ≤ �imax , ∀t ∈ [t j−1, t j ];

where �imax , Ψimax ∈ R+ are given for all i ∈ I.
A9. The SULTIS without any controller satisfies the dwell time condition.

The main structure of the COISM robustifying methodology is very similar as the
one presented in the OISM section, but the filter block is no longer necessary (see
Fig. 7.9). Assumption A9 ensures the absence of a switching before the dwell time
even when the controller is turn off. Before design each part of the robustifying
methodology we introduce a result that is used in the sequel (for the proof see the
appendix)

Lemma 7.1 Consider the scalar system

χ̇(t) = u(t) + ζ(t), (7.18)

where ζ(t) is a bounded lipschitz unknown signal such that
∥
∥ζ̇ (t)

∥
∥ ≤ ϑ1 and

‖ζ(t)‖ ≤ ϑ2. u(t) is an STA control law

u(t) = −κ1�χ(t)� 1
2 + w(t),

ẇ(t) = −κ2�χ(t)�0, w(0) = 0. (7.19)

If the STA gains are designed such that

(κ1, κ2) ∈ K =
⎧
⎨

⎩
(κ1, κ2)

∣
∣∣∣∣∣

2
√
2k̄ϑ2

kminκ1
− td < 0,

κ2 > 5ϑ1,

32ϑ1 < κ2
1 < 8(κ2 − ϑ1)

⎫
⎬

⎭
,

where td is a given time and χ(0) = 0, then χ has a reaching time tR < td .
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Remark 7.1 Any given reaching time can be achieved if the STA gains satisfies
Lemma 7.1. But the lower the reaching time, the bigger the gains should be, causing
an increment in the chattering. By using a switched strategy, as the one proposed in
[14], the chattering can be attenuated.

7.4.1 Cascade Structure Observer

Recall assumptions A3, A5–A7, A8. Once again, since the pair (Ai , Bi ,Ci ) is
strongly observable we can assure the pair (A11,i ,C11,i ) is observable (see [4]) and
assume that the SULTIS (7.2) has observability index l.

To reconstruct theoretically exactly the states without filtration an STA-based
hierarchical observer is used. This cascade observer has the same structure as in the
OISM strategy, but using the STA. Here, the structure of the cascade observer is
presented emphasizing its peculiarities:

• A Luenberger stabilizer of the form (7.4), designed as in Sect. 3.1.2. Under these
conditions, the first derivative of the observation error remains bounded, i.e.,

‖ė1(t)‖ < ‖A11,i − KiC11,i‖γ.

• A hierarchical observer composed by:

– A family of l − 1 super-twisting based observers (7.5), that reconstruct theo-
retically exactly before half of the dwell time, step-by-step, the output uncer-
tainties/perturbations free part and its derivatives. For this observer, vk(t) is an
output injection signal based on the STA.

– And an algebraic part

x̂(t) =
[
x̂1(t)
y2(t)

]
; (7.20)

where x̂1(t) = x̃1(t) − O+
1,i,l v(t) with O1,i,l the observability matrix of the pair

(C11, A11) and

v(t) =

⎡

⎢⎢⎢⎢⎢
⎣

C11 x̃1(t) − y1(t)
v1(t)
v2(t)

...

vl−1(t)

⎤

⎥⎥⎥⎥⎥
⎦

.

The algebraic part (7.20) reconstructs theoretically exactly the states of the
system before half of the dwell time.

The next subsections are devoted to the design of each part of the observer.

http://dx.doi.org/10.1007/978-3-319-62464-8_3
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7.4.1.1 Hierarchical Observer Design

To reconstruct the states x(t) theoretically exactly before half of the dwell time
without the use of filters, it is necessary to recover the vectorsC11A

k−1
11,i x1(t) by using a

family of super-twisting based observers with a convergence time tR < δ
2(l−1) . Each

observer is turn on once the lower derivative observers have converged. Assuring
theoretically exact reconstruction of the output error and its l − 1-derivatives for
t j−1 + δ

2 ≤ t ≤ t j .
The observer design is given by the following theorem.

Theorem 7.2 Assume

(a) The auxiliary state vectors xak , for all k = 1, . . . , l − 1, i ∈ I and τk = t j−1 +
δ(k−1)
2(l−1) ≤ t ≤ t j is designed as in (7.5), where Lk,i (t) ∈ R

n−m×p−m is a design

matrix such that det
(
C11,i A

k−1
11,i Lk,i

) �= 0.
(b) At t = τk the k-th variable xak satisfies

C11,i xa1(t
+
j−1) = y1(t

+
j−1),

C11,i A
k−1
11,i xak(τk) = C11,i A

k−1
11,i x̃1(τk) − vk−1(τk);

i = I, j = 1, 2, . . . , and k = 2, . . . , l − 1.
(c) The sliding variables sk are designed as

sk(y1(t), xak(t))=
{
y1(t) − C11,i xa1(t), k = 1,
C11,i A

k−1
11,i x̃1(t) − vk−1(t) − C11,i A

k−1
11,i xak(t), k=2, . . . , l − 1.

(7.21)

(d) The output injection vk is designed as an STA of the form

vk(t) = −κk,i1�sk(y1(t), t)�
1
2 + �k(t),

�̇k = −κk,i2�sk(y1(t), t)�0, (7.22)

�k(t0) = 0, �k(τ
+
k ) = �k(τ

−
k ) + �̄i,k;

where �̄i,k ∈ R
p.

(e) And (κk,i1 , κk,i2) ∈ KO,k , where

KO,k =

⎧
⎪⎨

⎪⎩
(κ1, κ2)

∣∣∣∣∣∣
∣

2
√
2k̄M2,i,k

kminκ1
− δ

2(l−1) < 0,
κ2 > 5M1,i,k,

32M1,i,k < κ2
1 < 8(κ2 − M1,i,k)

⎫
⎪⎬

⎪⎭
,

with
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M1,i,k ≥ ∥∥C11,i A
k
11,i

∥∥ (‖Ai − KiCi‖γi + ‖Bi‖Ψimax

) ;
M2,i,k ≥ ∥∥C11,i A

k
11,i

∥∥ γi .

Then,
vk(t) = −C11,i A

k
11,i (x1(t) − x̃1(t)) ,

for t j−1 + δ
2 ≤ t ≤ t j and it is possible to reconstruct theoretically exactly all the

vector functions C11,i A
k−1
11,i x1(t) in the same time interval.

Proof Remember that the observers are turn on sequentially whenever the observers
that reconstruct the lowers derivatives have converged. The proof is constructive and
can be obtained iteratively.

Let’s start by recovering the first vector C11,i A11,i x1(t). Let k=1, since the condi-
tions (a)–(c) are fulfilled; it is clear that s1(y1(t j−1), xa1(t j−1)) = 0. Moreover, the
time derivative of the sliding variable along the trajectories of (7.2) and (7.5) has the
form

ṡ1(y1(t), xa1(t)) = C11,i A11,i (x1(t) − x̃1(t)) + v1(t), (7.23)

and once it has converged, the equivalent control that maintains the trajectory on the
surface has the form

v1eq (t) = −C11,i A11,i (x1(t) − x̃1(t)) .

Now, we design the output injection (d) assuring the sliding variable s1 and its
derivatives converge to the origin before each switching. Substituting the STA output
injection (7.22) on the auxiliary state vector xa1, then (7.23) can be restated as

ṡ1(y1(t), xa1(t)) = −κ1,i1�s1(y1(t), t)�
1
2 + �1(t),

�̇1 = −κ1,i2�s1(y1(t), t)�0 + C11,i A11,i

(
ẋ1(t) − ˙̃x1(t)

)
,

�1(t j R) = C11,i A11,i
(
x1(t j R) − x̃1(t j R)

) ;

where �1(t) = C11,i A11,i (x1(t) − x̃1(t)) + �1(t). Observe that this dynamical sys-
tem has the form (7.18).

Since (κ1,i1 , κ1,i2) satisfies Lemma7.1 (condition (e)) and s1(y1(t j−1), xa1(t j−1) =
0, s1 converges to the origin with a reaching time t̄1, j R < τ2. Then, the exact conver-
gence of s1 and its derivatives to the origin for τ2 ≤ t ≤ t j is assured.

Assume the result is true for k = k, and let us prove the result for k = k + 1.
Once again our aim is to recover the k-vector C11,i Ak

11,i x(t). Conditions (a)–(c) are
satisfied. Taking the time derivative of the sliding variable along the trajectories of
(7.2) and (7.5) for τk ≤ t < t j .

ṡk(y1(t), xak (t)) = C11,i A
k
11,i (x1(t) − x̃1(t)) + vk(t). (7.24)
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Moreover, once the k-th sliding variable and its derivatives have converged,

C11,i A
k
11,i xak (τk) = C11,i A

k
11,i x1(τk).

and the equivalent control is

vkeq (t) = −C11,i A
k
11,i (x̃1(t) − x1(t)) .

Designing the output injection (d) the sliding variable dynamics (7.24) can be rewrit-
ten as

ṡk(y1(t), xak (t)) = −κk1�sk(y1(t), t)�
1
2 + �k(t),

�̇k = −κk,i2�sk(y1(t), t)�0 + C11,i A
k
11,i

(
ẋ1(t) − ˙̃x1(t)

)
,

�k(τk) = C11,i A
k
11,i x1 (τk) − x̃1(τk)) ,

where �k(t) = C11,i Ak
11,i (x1(t) − x̃1(t)) + �k(t).

Since condition (e) is satisfied and sk(y1(τk), xak(τk)) = 0, once again from
Lemma 7.1, sk converges to the origin with a reaching time t̄k, j R < τk+1. And the
exact convergence of sk and its derivatives to the origin for τk+1 ≤ t ≤ t j is guaran-
teed.

Note that we proved exact reconstruction of the output error and its (l − 1) time-
derivatives for t j−1 + δ

2 ≤ t ≤ t j .

7.4.1.2 State Reconstruction

Using the family of STA observers the output y1 and its l − 1 time-derivatives at
every location have been reconstructed theoretically exactly in the time interval
[t j−1 + δ

2 , t j ]. Using this information we can construct the vector

O1,i,l x1(t) = O1,i,l x̃1(t) − v(t).

Since the pair (A11,i ,C11,i ) is observable, the pseudo-inverse ofO1,i,l is well defined
and the states can be recovered by means of the equation

x1(t) = x̃1(t) − O+
1,i,l v(t). (7.25)

Then, the algebraic observer is suggested as

x̂1(t) = x̃1(t) − O+
1,i,l v(t); (7.26)

and we are able to reconstruct theoretically exactly the states for t j−1 + δ
2 ≤ t ≤ t j

by using (7.20).
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7.4.2 COISM Control Design

In the previous section, we designed an observer capable to reconstruct theoretically
exactly the states of the SULTIS before half of the dwell time, i.e., x̂(t) = x(t) for
all t j−1 + δ

2 ≤ t < t j . Once the states have been reconstructed, at t = t j−1 + δ
2 the

controllers are turn on. In this section, the integral part of the control law is designed.
Consider the SULTIS (7.2) and define the output-based integral sliding dynamics

s(y, t) = Gi

(
y(t) − y

(
t j−1 + δ

2

))
−

t∫

t j−1+ δ
2

GiCi (Ai x̂(τ ) + Biunom(τ ))dτ,

(7.27)
i ∈ I; whereGi ∈ Gi is a design projectionmatrix, chosen,without loss of generality,
such that GiCi Bi = I . Observe that s

(
y
(
t j−1 + δ

2

)
, t j−1 + δ

2

) = 0. Taking the first
derivative of the sliding variable along the trajectory of (7.2) we obtain

ṡ(y, t) = GiCi Ai
(
x(t) − x̂(t)

) + uint (t) + φ(t). (7.28)

Since x(t) = x̂(t), then
ṡ(y, t) = uint (t) + φ(t); (7.29)

the equivalent control [27] that maintains the trajectory on the sliding mode is

uIeq = −φ(t), (7.30)

and the sliding mode dynamics of the SULTIS takes the form

ẋ(t) = Ai x(t) + Biunom(t)

y(t) = Ci x(t), x(0) = x0; (7.31)

7.4.2.1 Implementation of STA Controller Based on STA Observer

The control law uint depends on the observed state x̂ , so it is necessary to design
this controller in such a way that the observer STA dynamics does not affect the
properties of the controller [9], i.e., the uncertain/perturbations should be Lipschitz
without affecting the continuity of the control law. Let us design the COISM term
using the STA [17]

uint = −κi1�s(y(t), t)�
1
2 + ω(t),

ω̇ = −κi2�s(y(t), t)�0, ω

(
t j−1 + δ

2

)
= 0; (7.32)
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where κiι ∈ R+ with i ∈ I and ι = 1, 2. Substituting the STA control (7.32) in (7.28)
and with a simple change of variable.

ṡ(y, t) = −κi1�s(y(t), t)�
1
2 + �(t) + GiCi Ai

[O+
1,i,l v(t)
0

]
,

�̇(t) = −κi2�s(y(t), t)�0 + GiCi Ai

[(
ẋ1(t) − ˙̃x1(t)

)

0

]

+ φ̇(t),

s

(
y, t j−1 + δ

2

)
= 0; (7.33)

where

�(t) = GiCi Ai

[
(x1(t) − x̃1(t))

0

]
+ φ(t) + ω(t).

The term O+
1,i,l v(t) is non-Lipschitz, so it is not possible to consider it as uncer-

tainty/perturbation and to assure the convergence of the STA. If the proposed Super-
Twisting controller is changed to

uint = −GiCi Ai

[O+
1,i,l v(t)
0

]
− κi1�s(y(t), t)�

1
2 + ω(t),

ω̇ = −κi2�s(y(t), t)�0, ω(0) = 0, ω(t+j ) = ω(t−j ) + ω̄i ; (7.34)

we compensate the term GiCi AiO+
i,l v(t) and the sliding dynamics have the typical

STA form

ṡ(y, t) = −κi1�s(y(t), t)�
1
2 + �(t),

�̇(t) = −κi2�s(y(t), t)�0 + GiCi Ai

[(
ẋ1(t) − ˙̃x1(t)

)

0

]

+ φ̇(t), (7.35)

s(y, t j−1) = 0;

Remark 7.2 Thanks to the integral structure of s(y, t) the non-Lipschitz dynamics
of the observer that affect the controller, only depends on v, the continuous part of
the observer dynamics. Hence, the continuity of uint is preserved.

The followingLemmagives the design of theSTAgains (κi1 , κi2) for the controller.

Lemma 7.2 Suppose assumptions A1–A6 are satisfied and (κi1, κi2) ∈ KC

KC =

⎧
⎪⎨

⎪⎩
(κ1, κ2)

∣∣∣∣∣
∣∣

2
√
2k̄L2,i

kminκ1
− δ

2 < 0,
κ2 > 5L1,i ,

32L1,i < κ2
1 < 8(κ2 − L1,i )

⎫
⎪⎬

⎪⎭
,
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with

L1,i ≥ �imax + ‖GiCi Ai‖
(‖Ai − KiCi‖γi + ‖Bi‖Ψimax

) ;
L2,i ≥ ‖GiCi Ai‖γi + �imax .

Then, the sliding mode dynamics converges to the origin with a reaching time t j R <

t j−1 + δ < t j .

Proof This result comes directly from Lemma 7.1.

With this, we assure the robustification of the nominal trajectory before the dwell
time.

Remark 7.3 In comparison with the OISM strategy, we are not able to reconstruct
the states right after the initial time. Due to the presence of the reaching phase, the
controller and the observer will reconverge after every switching. But, the proposed
methodology does not need the use of filters.

7.4.3 Robustifying Conditions: Restrictions to the Initial
Conditions

Along this chapter, we assume the existence of the dwell time. However, we are con-
sidering state-dependent location transitions and any deviation of the state trajectory
may provoke an undesirable switching. In this section, we analyze under which con-
dition we can guarantee the existence of the dwell time, and hence the robustification
of the nominal trajectory.

Recall that the controller has been designed such that it converges before t =
t j−1 + δ. But, during the reaching phase, the COISM controller causes a transient in
the SULTIS that could produce an unexpected switching. To avoid this issue, it is
necessary to restrict the value of the states at the switching times.

Lemma 7.3 If

‖x(t j−1)‖ ≤ μ j−1 <

ξ j−1,max −
∥
∥∥∥∥

t j−1+δ/2∫

t j−1

eAi (t j−1+ δ
2 −τ)dτ

∥
∥∥∥∥

‖Bi‖�max

∥∥eAi δ/2
∥∥ . (7.36)

where

ξ j−1,max = ‖Ai − Bi Ki‖
e‖Ai−Bi Ki‖ δ

2

Mi,min − ‖Bi‖ δ

2
umax ;

Mi,min = min
i ′I,
i �=i ′

∥∥arg minx∈Rn |Mi,i ′(x)|
∥∥ ;
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umax = ‖uint (t) + φ(t)‖ ≤ κ1m
1
4 s

1
2
max + �max ; (7.37)

�max = �max + (κ2 + Ψmax )
δ

2
;

smax =
(
�max + α0κ1m

1
4

) δ

2
;

with α0 the unique positive root of the equation

α − a0 − b0α
1
2 = 0

with

a0 = δ2�max

8
, and b0 =

√
2δ

3
2 κ1m

1
4

6
.

Then the SULTIS does not switch before the dwell time.

Proof The proof of this lemma comes directly from the bound of the state vec-
tor and the sliding variable for all t j−1 < t ≤ t j−1 + δ. Recall that s(y, t) ∈ R

p.
Majoring �, we can show that ‖�(t)‖ ≤ �max and by applying the Martynyuk-
Kosolapov’s integral inequality [Theorem 4.1] [2] to the integral equation of ṡ we
get that ‖s(y, t)‖ ≤ smax . Note that at t = t j−1 + δ

2

‖x(t j−1 + δ/2)‖ ≤ ∥∥eAi δ/2
∥∥μ j−1 +

∥∥
∥∥∥∥∥

t j−1+δ/2∫

t j−1

eAi (t j−1+δ/2−τ)dτ

∥∥
∥∥∥∥∥

‖Bi‖�max = ξ j−1.

Hence,

‖x(t)‖ ≤ ξ j−1 + ‖Bi‖ δ
2umax

‖Ai − Bi Ki‖ e‖Ai−Bi Ki‖ δ
2

by direct application of the Gronwall-Bellman inequality to the integral equation of
the SULTIS for t j−1 ≤ t < δ. Furthermore, if (7.36) is satisfied then ξ j−1 < ξ j−1,max

and the state trajectory does not hit any switching manifold for all t j−1 ≤ t < δ.

With this lemma, we can analyze if for a given set of switching manifolds and a
bound of the initial condition, the SULTIS with state-dependent location transitions
can be robustified.

7.4.4 Simulation Results

For comparison purposes, consider the system proposed in Sect. 7.3.4. This system
has two locations, initial conditions x0 = [0.1;−0.1; 0.2;−1.5]T are unknown with
a known boundμ = 2 and the uncertainties/perturbations used in the simulations are
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Fig. 7.10 Sliding variables
of the hierarchical observer
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Fig. 7.11 Cascade observer:
Real states (continuous line)
versus observed states x̂
(dashed line)
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Fig. 7.12 Controller sliding
variables
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Fig. 7.13 SULTIS with the
COISM controller
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φ(t) = 5 sin(π cos(3π t)) + 10.

All the simulations are done in Simulink, using the Euler method with a sample
step Δt = 1e − 5. Remember that the system is unstable and it can be shown that
satisfy assumption A9 with dwell time δ = 0.1. The system is transformed into the
form (7.2), with the same transformation and for the transformed nominal system
(7.3) an LQR nominal controller is proposed in each location. Now, let’s apply
the COISM methodology. First, we design the cascade observer. Recall that this
observer is composed by two parts: The Luenberger-type error stabilizer and the
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hierarchical observer. The Luenberger stabilizer was designed using the methodol-
ogy proposed in [1]. This stabilizer is shown in Fig. 7.3 and it is designed for the
uncertainties/perturbations free part of the SULTIS assuring the existence of a bound
for the observation error e1 and its first derivative.

Now, let’s design the second part of the cascade observer. Since the considered
system has observability index l = 2, it is necessary to design a hierarchical observer
composed by two slidingmodes observers. The observers are designed such that they
guarantee a convergence time lower than 0.025.

At every switching time, the controllers are turnedoff and thefirst observer starts to
evolve. At t = t j + 0.025, the second observer is turn on. The reaching phase of both
observers is illustrated in Fig. 7.10. Notice that the first observer converges before t =
t j + 0.025. Moreover, the full observer converges before t = t j + 0.05. To attenuate
the chattering a switched STA gains strategy [14] is applied to both observers, the
attenuation of the chattering can be seen in the second column of the figure. The
complete behavior of the cascade observer is presented in Fig. 7.11. Hence, we have
reconstruct the states of the system without the use of filters theoretically exactly
before half of the dwell time. Moreover, note that the observation error is lower than
the OISM one.

Once the observer has converged theCOISMcontroller is turn on. This is designed
to accomplish a convergence time td = 0.05 and after the dwell time the gains are
reduced to attenuate the chattering. The sliding variables of the controller are given in
Fig. 7.12. Observe that the sliding variables converge before the dwell time, assuring
exact compensation of the uncertainties-perturbations before the dwell time and the
robustification of the nominal controller. Moreover, the generated control signal is
continuous, attenuating the chattering (see Fig. 7.13).

7.5 Concluding Remarks

A robustifying methodology based on the OISM/COISM theory for SULTIS with
state-dependent location transition is developed. Two strategies are considered.

• An output feedback controller for SULTIS with matched uncertainties/
perturbations based on an OISM methodology is presented. The uncertainties are
compensated and the state vector is reconstructed theoretically exactly just after
the initial time. The switching sequences of the SULTIS and the nominal system
coincide. But, in the practice to reconstruct the state it is necessary to use filters
that affect the performance of the observer and the controller. Moreover, the used
first-order sliding mode generates high level of chattering.

• To eliminate the disadvantages of the OISM controller, a continuous output feed-
back controller for SULTIS with matched uncertainties/perturbations based on a
COISM methodology is presented. The chattering is attenuated and the necessity
of filters is eliminated. But, in general, the observer and the controller reconverge
after each switching. Hence, the STA is adjusted to the switched case satisfying



7 Sliding Modes for Switched Uncertain Linear Time Invariant Systems … 183

a specific reaching time in each location. The COISM controller implementation
is modified to preserve the STA behavior of the controller by eliminating the non-
Lipschitz terms of the STAobserver. The continuity of the controller is kept, thanks
to the integral structure of the sliding variable. Moreover, sufficient conditions are
given for the states at the switching times to guarantee the absence of switchings
before the dwell time. The location trajectory remains beside the effects of the
reaching phase and the robustification of the nominal trajectory is assured after
the dwell time.
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Appendix: Proof Lemma 4

Todesign theSTAgainswith a desired convergence time an estimation of the reaching
time tR is needed. This estimation can be obtained by using the continuous candidate
Lyapunov function [21]

V (χ,Π) =

⎧
⎪⎪⎨

⎪⎪⎩

k2

4

(
Π(t)�χ(t)�0

γ̄
+ k0em̄(χ,Π)
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χ̄ (χ,Π)

)2
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I (g) =
⎛
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π
2 −arctan

(
1√
g−1
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⎞

⎠ .

The next statement provides sufficient conditions for the STA gains to assure finite-
time stability and an estimation of the reaching time.

Theorem 7.3 [21] If κ2 > 5ϑ1 and 32ϑ1 < κ2
1 < 8(κ2 − ϑ1) then:

• I (g−) ∩ I (g+) �= ∅
• χ(t) converge in finite time to the origin
• V (χ,Π) is a positive definite absolutely continuous function in R

2 and continu-
ously differentiable when χΠ �= 0

• The time derivative of V (χ,Π) along the trajectory of Eq.7.18 satisfies

V̇i(χ,Π) ≤ −k
√
V (χ,Π) ≤ −kmin

√
V (χ,Π),

almost everywhere with

kmin = κ1√
8

min
g∈(g−,g+)

⎧
⎨

⎩

∣∣
∣∣∣∣
gk̄ − √

ge
arctan

(
−1√
g−1

)
+ π(κ21 g−8κ2)

16ϑ1√
g−1

∣∣
∣∣∣∣

⎫
⎬

⎭

• The corresponding guaranteed reaching time is

tR ≤ 2k−1
min

√
V (χ(0),Π(0)). (7.38)

In order to assure that the system has converged before a given time td we need
to design the gains κι, ι = 1, 2 such that the reaching time tR fulfills the condition
0 < tR < td . Since κ2 > 5ϑ1 and 32ϑ1 < κ2

1 < 8(κ2 − ϑ1), χ(t) converge in finite
time with a reaching time tR . Now, since χ(0) = 0,

V (χ(0),Π(0)) ≤ 2k̄2ϑ2
2

κ2
1

and

tR ≤ 2
√
2k̄ϑ2

kminκ1
.

Hence since (κ1, κ2) ∈ K , we can assure tR < td .
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Chapter 8
Discontinuous Integral Control for Systems
with Relative Degree Two

Jaime A. Moreno

Abstract For systems with relative degree two we propose a homogeneous con-
troller capable of tracking a smooth but unknown reference signal, despite of a
Lipschitz continuous perturbation, and by means of a continuous control signal. The
proposed control scheme consists of two terms: (i) a continuous and homogeneous
state feedback, and (ii) a discontinuous integral term. The state feedback term aims at
stabilizing (in finite time) the closed loopwhile the (discontinuous) integral term esti-
mates the perturbation and the unknown reference signal in finite time and provides
for perfect compensation in closed loop. By adding a continuous and homogeneous
observer we complete an output feedback scheme, when not all states are available
for measurement. The global finite time stability of the closed loop and its insensi-
tivity with respect to matched Lipschitz continuous perturbations is proved in detail
using a smooth and homogeneous Lyapunov function.

8.1 Introduction

Second Order Sliding Modes (SOSM) [13, 23, 25, 27, 28] can ensure perfect output
tracking for uncertain systems with relative degree two despite of bounded perturba-
tions. Combined with the first order differentiator [24, 26] this completes an output
feedback control strategy (see also [30] for a Lyapunov based approach). In the pres-
ence of arbitrary but bounded perturbations/uncertainties it is well known that this
objective can only be achieved by a discontinuous control law. The price to pay is
the high frequency switching of the control signal, a phenomenon usually called
chattering, and which is undesirable since it has a negative effect in the actuator, and
excites unmodeled dynamics of the plant. To reduce the effect of chattering, a natural
alternative consists in adding an integrator to the plant and designing a third order
Higher Order Sliding Modes (HOSM) controller for the new control variable. This
leads to perfect tracking in finite time, and the system will be insensitive to Lipschitz
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continuous (but not necessarily bounded) perturbations. In this form a continuous
control signal is obtained, reducing the chattering effect. However, this requires to
feedback not only the two plant states but also an extra state, which is unknown due to
the unknown perturbation. Moreover, to implement an output feedback controller it
is necessary to differentiate two times the variable to be tracked, with the consequent
noise amplification effect.

For systems with relative degree one, first order Sliding Mode (SM) controllers
[40, 41] are able to solve the perfect tracking problem for non vanishing (or persis-
tently acting) bounded perturbations, again at the expense of the presence of chat-
tering. To attenuate the chattering effect, besides the addition of an extra integrator
and the application of a SOSM controller, there is an alternative approach using the
Super-Twisting (ST) algorithm [13, 23, 28]: it allows to obtain a continuous control
signal achieving the objective in finite time despite Lipschitz continuous perturba-
tion/uncertainty signals, and without the necessity of taking the derivative of the
sliding variable. This solution has many advantages and is one of the main virtues
of the ST controller.

An analogous solution for systems with relative degree two has been presented
for the first time in [42], and then a more restricted version was given in [14]. A
different proof of the algorithm in [14] was proposed in [21] and a Twisting-Like
algorithm (more in the spirit of [42]) was proposed in [39], where again a different
proof technique was developed. All these solutions require the full state. In [31] the
algorithm developed in [39] is analyzed using a novel and more general Lyapunov-
based approach. Moreover, an output feedback version is developed, which uses a
continuous rather than a discontinuous observer. In the present work we follow the
ideas of [31] to analyze and design the algorithm presented in [42], which includes
the results of [14, 39] as particular cases.We also develop an output feedback version
with a continuous observer for that algorithm. Moreover, we provide complete and
detailed proofs, in contrast to [31], where only some of the proofs were given due to
space restrictions.

In the case of (almost) constant perturbations ρ(t) a classical solution to the robust
regulation problem is the use of integral action, as for example in the PID control
[22]. The linear solution would consist of a state feedback plus an integral action,
u = −k1x1 − k2x2 + z , ż = −k3x1. This controller requires only to feedback the
position and the velocity. For an output feedback it would be only necessary to
estimate the velocity (with the D action for example). In contrast to the HOSM
controller this PID control is only able to reject constant perturbations, instead of
Lipschitz ones, and it will reach the target only exponentially fast, and not in finite
time. By the Internal Model Principle it would be possible to reject exactly any
kind of time varying perturbations ρ (t), for which a dynamical model (so called an
exosystem) is available. However, this would increase the complexity (order) of the
controller, since this exosystem has to be included in the control law.

Here we provide a solution to the problem, that is somehow an intermediate
solution between HOSM and PID control. Similar to the HOSM control our solution
uses a discontinuous integral action, it can compensate perturbations with bounded
derivative (ρ (t) is Lipschitz) and the origin is reached in finite time. So it can solve
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not only regulation problems (where ρ is constant) but also tracking problems (with ρ

time varying) in finite time and with the same complexity of the controller. Similar to
thePIDcontrol the proposed controller provides a continuous control signal (avoiding
chattering) and it requires only to feedback position and velocity. We also provide
for a (non classical) D term, i.e. a finite time converging observer, to estimate the
velocity. This basic idea has been already presented in our previous work [42]. In
the present one we give a much simpler Lyapunov-based proof, and we also include
an observer in the closed loop together with its Lyapunov-based proof. Our solution
can be seen as a generalization of the Super Twisting control for systems of relative
degree one [13, 23, 26, 28, 32] to systems with relative degree two.

The rest of the paper is organized as follows. In next Sect. 8.2 we recall some
facts about differential inclusions, homogeneity and Lyapunov functions. Section8.3
presents the problem to be solved in the paper while in Sect. 8.4 we present the main
result: The Discontinuous Integral Controller with and without observer and give
some discussion on the algorithms. Section8.5 is dedicated to present a detailed
Lyapunov-based proof of the convergence of the closed loop for the proposed control
algorithms. In Sect. 8.6 we give an illustrative example with some simulations and
in Sect. 8.7 some conclusions are drawn.

8.2 Preliminaries: Differential Inclusions and Homogeneity

We recall some important concepts aboutDifferential Inclusions (DI’s), homogeneity
and homogeneous DI’s [1–6, 10–12, 18, 27, 29], which are used in the chapter.

Uncertain or discontinuous systems are more appropriately described by DI ẋ ∈
F (t, x) than by Differential Equations (DE). A solution of this DI is any function
x (t), defined in some interval I ⊆ [0, ∞), which is absolutely continuous on each
compact subinterval of I and such that ẋ (t) ∈ F (t, x (t)) almost everywhere on I .
Thus, for a discontinuousDE ẋ = f (t, x) the function x (t) is said to be a generalized
solution of the DE if and only if it is a solution of the associated DI ẋ ∈ F (t, x).
We will consider the DI ẋ ∈ F (t, x) associated to ẋ = f (t, x), as the one given by
the approach of A.F. Filippov [2, 12, Sect. 1.2]. So, we refer to such DI as Filippov
DI and to its solutions as Filippov solutions. The multivalued map F (t, x) satisfies
the standard assumptions if: (H1) F (t, x) is a nonempty, compact, convex subset
of R

n , for each t ≥ 0 and each x ∈ R
n; (H2) F (t, x) as a set valued map of x , is

upper semi-continuous for each t ≥ 0; (H3) F (t, x) as a set valued map of t , is
Lebesgue measurable for each x ∈ R

n . (H4) F (t, x) is locally bounded. Recall that
a set valued map G : R

n1 ⇒ R
n2 with compact values is upper-semicontinuous if

for each x0 and for each ε > 0 there exists δ > 0 such that G (x) ⊆ G (x0) + Bε ,
provided that x ∈ Bδ (x0). It is well-known that, see [12] or [2, Theorem 1.4], if
the multivalued map F (t, x) satisfies the standard assumptions then for each pair
(t0, x0) ∈ [0, ∞) × R

n there is an interval I and at least a solution x (t) : I → R
n

such that t0 ∈ I and x (t0) = x0. A DI ẋ ∈ F (x) (a DE ẋ = f (x)) is called globally
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uniformly finite-time stable (GUFTS) at 0, if x (t) = 0 is a Lyapunov-stable solution
and for any R > 0 there exists T > 0 such that the trajectory starting within the ball
‖x‖ < R reaches zero in the time T .

Assume that the origin x = 0 is an equilibrium position of the the DI ẋ ∈ F (t, x),
thismeans that 0 ∈ F (t, 0) for almost every (a.e.) t ≥ 0. It is possible to characterize
the asymptotic stability of the origin by means of a (strict) Lyapunov function, in
the same spirit as the classical second Lyapunov theorem for smooth systems (see
e.g. [2, Theorem 4.1]). In particular, if the Lyapunov function V (t, x) is of class C1

(once continuously differentiable), and it satisfies

a (‖x‖) ≤ V (t, x) ≤ b (‖x‖)
∂V (t, x)

∂t
+ ∂V (t, x)

∂x
ν ≤ −c (‖x‖)

for a.e. t ≥ 0, for all x ∈ R
n and all ν ∈ F (t, x), and for some functions a, b, c ∈

K∞, then the origin is Uniformly Globally Asymptotically Stable (UGAS)1 for the
DI.

Continuous and discontinuous homogeneous functions and systems have a long
history [1–4, 6, 11, 15, 17, 27, 29, 33–36, 43]. We recall briefly this important
property. For a given vector x = [x1, ..., xn]	 ∈ R

n and for every ε > 0, the dilation
operator is defined as �r

εx := [εr1x1, ..., εrn xn]	, where ri > 0 are the weights of
the coordinates, and let r = [r1, ..., rn]	 be the vector of weights. A function V :
R

n → R (respectively, a vector field f : R
n → R

n , or a vector-set field F(x) ⊂ R
n)

is called r-homogeneous of degree l ∈ R if the identity V (�r
εx) = εl V (x) holds

for every ε > 0 (resp., f (�r
εx) = εl�r

ε f (x), or F(�r
εx) = εl�r

εF(x)). Along this
paper we refer to this property as r-homogeneity or simply homogeneity. A system
is called homogeneous if its vector field (or vector-set field) is r-homogeneous of
some degree.

Given a vector r and a dilation �r
εx , the homogeneous norm is defined by

‖x‖r, p :=
(∑n

i=1 |xi |
p
ri

) 1
p
, ∀x ∈ R

n , for any p ≥ 1, and it is an r-homogeneous

function of degree 1. The set S = {x ∈ R
n : ‖x‖r, p = 1} is the corresponding homo-

geneous unit sphere. The following Lemma provides some important properties of
homogeneous functions and vector fields (some others are recalled in the Appendix).

Lemma 8.1 ([2, 6, 18]) For a given family of dilations �r
εx, and continuous real-

valued functions V1, V2 on R
n (resp., a vector field f ) which are r-homogeneous

of degrees m1 > 0 and m2 > 0 (resp., l ∈ R), we have: (i) V1V2 is homogeneous
of degree m1 + m2. (ii) For every x ∈ R

n and each positive-definite function V1,

we have c1V
m2
m1
1 (x) ≤ V2 (x) ≤ c2V

m2
m1
1 (x), where c1 � min{z:V1(z)=1} V2 (z) and c2 �

max{z:V1(z)=1} V2 (z). Moreover, if V2 is positive definite, there exists c1 > 0. (iii)

1Since uniqueness of solutions is in general not assumed, this means that all trajectories starting
at any initial point (t0, x0) is uniformly stable and uniformly attractive. This concept is sometimes
refered to as “strong stability”, in contrast to the “weak stability” which is valid only for some
trajectory for every initial point.
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∂V1 (x) /∂xi is homogeneous of degree m1 − ri , with ri being the weight of xi . (iv)
The Lie’s derivative of V1(x) along f (x), L f V1 (x) := ∂V1(x)

∂x · f (x), is homogeneous
of degree m1 + l.

It is worth to recall that for homogeneous systems the local stability implies global
stability and if the homogeneous degree is negative, asymptotic stability implies
finite-time stability [2, 4, 27, 29]. (Asymptotic) stability of homogeneous systems
and homogeneous DI’s can be studied by means of homogeneous LFs (HLFs), see
for example [2–4, 6, 15, 17, 27, 29, 33, 37, 43]: Assume that the origin of a homo-
geneous Filippov DI ẋ ∈ F(x) is strongly globally AS. Then, there exists a C∞
homogeneous strong LF.

The following robustness result of Asymptotically stable homogeneous Filippov
Differential Inclusions is of paramount importance for the assertion of the accuracy
properties of HOSM algorithms in presence of measurement or discretization noise
or also delay and external perturbations. They have been established by Levant [4,
26, 27, 29].

Proposition 8.1 Let ẋ ∈ F (x) be a globally uniformly finite-time stable homoge-
neous Filippov inclusion with homogeneity degrees r = (r1, · · · , rn) and degree
l < 0, and let τ > 0. Suppose that a continuous function x (t) is defined for any
t ≥ −τ l and satisfy some initial conditions x (t) = ξ (t) for t ∈ [−τ l , 0

]
. Then if

x (t) is a solution of the perturbed differential inclusion

ẋ (t) ∈ Fτ

(
x
(
t + [−τ l , 0

]))
, 0 < t < ∞,

then the inequalities |xi | < γiτ
ri are established in finite time with some positive

constants γi independent of τ and ξ .

Along this paper we use the following notation. For a real variable z ∈ R and a real
number p ∈ R the symbol �zp = |z|psign(z) is the sign preserving power p of z.
According to this �z0 = sign (z), d

dz �zp = p |z|p−1 and d
dz |z|p = p �zp−1 almost

everywhere for z. Note that �z 2 = |z|2sign(z) �= z2, and if p is an odd number then
�z p = z p and |z|p = z p for any even integer p. Moreover, �zp �zq = |z|p+q ,
�zp �z0 = |z|p, and �z0 |z|p = �zp.

8.3 SISO Regulation and Tracking Problem

Consider a SISO dynamical system affine in the control

ż = f (t, z) + g (t, z) u , y = h (t, z) , (8.1)

where z ∈ R
n defines the state vector, u ∈ R is the control input, y ∈ R is the output

and h (t, z) : R × R
n → R is a smooth output function. A standard problem of con-

trol is the output tracking problem [20], consisting in forcing the output y to track
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a (time-varying) signal yR (t). Usually this problem has associated a (robust) distur-
bance decoupling or attenuation property [19, 20]. For our purposes we assume that
the functions f (t, z) and g (t, z) are uncertain smooth vector fields on R

n and the
dimension n can also be unknown. The control objective, i.e. the standard HOSM
control problem [25, 27, 38], consists in making the output σ = y − yR vanish in
finite time and to keep σ ≡ 0 exactly by a bounded (discontinuous) feedback control.
All differential equations are understood in the Filippov’s sense [12].

When the relative degree δ with respect to σ is known, well defined and constant
of value δ = 2 and the zero dynamics is e.g. Input-to-State Stable, this is equivalent
to designing a controller for the uncertain system

∑ :
{
ẋ1 = x2,
ẋ2 = φ (t, z) + b (t, z) u ,

(8.2)

or equivalently for the (Filippov) DI [12]

∑
I D :

{
ẋ1 = x2,
ẋ2 ∈ [−C, C] + [Km, KM ] u ,

(8.3)

where x = (x1, x2)T = (σ, σ̇ )T and σ̇ = d
dt h (z, t) and σ̈ = d2

dt2 h (z, t) = φ (t, z) +
b (t, z) u, and we assume that |φ (t, z)| ≤ C, b (t, z) ∈ [Km, KM ]. Recall that
[a, b] represents the closed interval in the real line with limits a and b. Note thatI D

does not depend on the particular properties of the original systems’ dynamics and
the DI only retains the constants ρ = 2, C , Km and KM . Due to the persisting uncer-
tainty/perturbation causing the constant C > 0 the stabilization of x = 0 requires a
control discontinuous at x = 0, and therefore the classical nonlinear control tech-
niques, that aim at designing a continuous controller as e.g. [19, 20, 22], cannot be
applied.

For homogenous HOSM [27], and in particular for Second Order Sliding Modes
(SOSM) [23, 28], the problem is solved by designing a bounded memoryless feed-
back r-homogeneous control law of degree 0 (called also 2-sliding homogeneous)

u = ϕ (x1, x2) = ϕ
(
εr1x1, εr2x2

)
, ∀ε > 0 , (8.4)

with r = (2, 1), that renders the origin x = 0 finite-time stable for DI . The motion
on the set x = 0, which consists of Filippov trajectories [12], is called a 2nd-order
slidingmode. The functionϕ is discontinuous at the 2-sliding set (x = 0). The closed-
loop inclusion (8.3)–(8.4) is an r-homogeneous of degree −1 Filippov DI satisfying
standard assumptions. Some well-known SOSM controllers are the twisting (8.5)
and the terminal (8.6) controllers [23, 28] (see also [8, 9] for a Lyapunov-based
approach)

u = −k1 �x10 − k2 �x20 (8.5)

u = −k1
⌈
x1 + k2 �x22

⌋0
. (8.6)
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The previous controllers are discontinuous and cause the high frequency switching
of the control signal u (t) (the so called chattering), that has a negative effect on the
actuator and excites the unmodelled dynamics of the plant. In order to avoid the
switching of the control signal with the aim of attenuating the chattering effect, it is
natural to look for a controller producing a continuous control signal. In this case we
have to change the assumptions on the class of uncertainties, since it is impossible
to fully compensate a possibly discontinuous perturbation φ (t, z)with a continuous
control signal.

If we assume for example, that the perturbation/uncertainty ρ (t) � φ (t, z) is a

Lipschitz function of time, i.e.
∣∣∣ dφ(t, z)

dt

∣∣∣ ≤ L and (for simplicity) that KM = Km = 1,

then (8.2) becomes
ẋ1 = x2
ẋ2 = u + ρ (t) ,

(8.7)

and a natural alternative consists in extending the system adding an integrator to (8.7)

∑
e :
⎧
⎨
⎩
ẋ1 = x2,
ẋ2 = z ,

ż ∈ v + [−L , L] ,

(8.8)

that is, defining a new state z = u + ρ (t), and designing a third order HOSM con-
troller for the new control variable v. A particular example of such an algorithm is
given by the “relay polynomial” controller [8, 9, 11]

v = −k1
⌈
x1 + k2 �x2 3

2 + k3 �z3
⌋0

. (8.9)

This allows to reach the origin in finite time, and it will be insensitive to Lipschitz
perturbations, i.e. with ρ̇ (t) bounded. In this form a continuous control signal u
will be obtained, so that the chattering effect is reduced. However, this requires to
feedback not only the two states x1 and x2 but also the state z, which is unknown due
to the unknown perturbation. z has to be obtained (even if x1 and x2 are measured) by
using Levant’s robust and exact differentiator [26, 27] (see also [7] for a Lyapunov-
based approach), i.e.

˙̂x1 = −l1
⌈
x̂1 − x1

⌋ 2
3 + x̂2

˙̂x2 = −l2
⌈
x̂1 − x1

⌋ 1
3 + ẑ

˙̂z = −l3
⌈
x̂1 − x1

⌋0
.

(8.10)

This also allows to implement an output feedback controller, assuming that only the
sliding variable x1 is measured. Since it is necessary to differentiate two times x1
there is a noise amplification effect.
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8.4 Main Result: Discontinuous Integral Controller

For the robust finite time stabilization of the origin of system (8.7) we propose a non-
linear, homogeneous state feedback control law,which is able to stabilize the origin in
finite time in the absence of non vanishing perturbations, and a discontinuous integral
controller is added to compensate for the persistently acting perturbations. In contrast
to the continuous integral controller, that can only compensate for (almost) constant
perturbations, the discontinuous one can deal with time varying perturbations which
are Lipschitz continuous, that is, their derivatives exist almost everywhere and it is
uniformly bounded. The control signal of the controller is continuous, so that the
chattering effect of the SM and HOSM controllers is avoided.

Theorem 8.1 Consider the plant (8.7) with Lipschitz continuous perturbation signal

ρ (t) with Lipschitz constant L, i.e. ∀t ≥ 0,
∣∣∣ dρ(t)

dt

∣∣∣ ≤ L. Then the control law

u = −k1
⌈
x1 + k2 �x2 3

2

⌋ 1
3 + z

ż = −k3
⌈
x1 + k4 �x2 3

2

⌋0 (8.11)

can stabilize the origin in finite time for any k4 and appropriate designed gains k1,
k2, k3. The control signal u (t) is continuous. �

A procedure to design the gains is described in Sect. 8.5.1.1. Theorem 8.1 shows
that with the addition of the discontinuous integral term it is possible to eliminate
completely the effect of the Lipschitz perturbation ρ (t), that cannot be (fully) com-

pensated by the state feedback u = −k1
⌈
x1 + k2 �x2 3

2

⌋ 1
3
alone. In fact, the integral

controller can be interpreted as a perturbation estimator, since z (t) = −ρ (t) after a
finite time. Note that if both x1 and x2 are available for measurement, it is possible
to implement the controller (8.11), and this is in contrast with the HOSM control
alternative (8.9), that cannot be implemented without the differentiator (8.10).

Note also that the input to the discontinuous integrator y = x1 + k4 �x2 3
2 can be

a combination of the “position” x1 (with relative degree two) and the “velocity” x2
(with a relative degree one). The value of k4 can be arbitrary (including zero), so that
the velocity is not necessary for the integral action. For k4 > 0 this output can be
seen as a passive output of the system (x1, x2). However, it is necessary to have the
position in this signal, otherwise the closed loop will be unstable.

The implementation of controller (8.11) requires the measurement of both states
x1, x2. If only the position is measured a finite time convergent observer for x2 can
be implemented, so that an output feedback control is obtained. There are different
alternatives to doing this.

A first option consists in designing an observer for x2 as amodification of Levant’s
differentiator (8.10) given by
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˙̂x1 = −l1
⌈
x̂1 − x1

⌋ 2
3 + x̂2

˙̂x2 = −l2
⌈
x̂1 − x1

⌋ 1
3 − k1

⌈
x1 + k2

⌈
x̂2
⌋ 3

2

⌋ 1
3 + z + ζ̂

˙̂
ζ = −l3

⌈
x̂1 − x1

⌋0
.

(8.12)

It is possible to show that the closed loop with this observer (8.11)–(8.12) is homo-
geneous and achieves the desired output feedback controller. However, this structure
is somehow redundant in the sense that both the integral controller and the observer
estimate the perturbation, which is therefore estimated twice.

In order to avoid this double estimation of the perturbation a further alternative
is to use a first order differentiator [24] to estimate x2 based on x1. This indeed
avoids to estimate twice the perturbation but requires from ρ (t) to be not only
Lipschitz continuous but also uniformly bounded. Moreover, the closed loop is not
longer homogeneous and the precision and the global stability has to be studied in
particular.

We present in the next Theorem a further alternative, avoiding the double esti-
mation of the perturbation and keeping the homogeneity of the closed loop system.

Theorem 8.2 Consider the plant (8.7) with Lipschitz continuous perturbation signal
ρ (t) with Lipschitz constant L. Assume that only x1 is measured. Then the output
feedback control law

˙̂x1 = −l1
⌈
x̂1 − x1

⌋ 2
3 + x̂2

˙̂x2 = −l2
⌈
x̂1 − x1

⌋ 1
3 − k1

⌈
x1 + k2

⌈
x̂2
⌋ 3

2

⌋ 1
3

u = −k1
⌈
x1 + k2

⌈
x̂2
⌋ 3

2

⌋ 1
3 + z

ż = −k3
⌈
x1 + k4

⌈
x̂2
⌋ 3

2

⌋0
,

(8.13)

can stabilize the origin in finite time for appropriate designed gains k1, k2, k3, k4, l1
and l2. In particular, the gains have to fulfill the following inequality

k4 �= k2 +
⎛
⎝ l2

l
1
2
1 k1

⎞
⎠

3

. (8.14)

�
A procedure to design the gains is described in Sect. 8.5.3.5. We notice that the
gains k1 > 0, k2 > 0, l1 > 0, l2 > 0 while k4 can be selected freely, except for the

value given in (8.14). Moreover, if k4 < k2 +
(

l2

l
1
2
1 k1

)3

then k3 > 0 and if k4 > k2 +
(

l2

l
1
2
1 k1

)3

then k3 < 0. Condition (8.14) corresponds to the existence of a transmission
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zero of the system consisting of the plant (8.7) and the observer (see Sect. 8.5.3.4
below for this interpretation). It is well-known, that integral control is not feasible if
there exists a transmission zero at s = 0, and this is exactly what happens if condition
(8.14) is violated.

Note that the (continuous) observer in (8.13) is not able to reconstruct x2 in
presence of the (possibly) unboundedly growing perturbation ρ (t) in open loop. But
the interaction of the observer and the discontinuous integral controller allows the
estimation of both, the variable x2 by the observer and the perturbation ρ (t) by the
integral controller.

The next Corollary shows how to scale the gains of the controller and observer
to maintain the properties of the closed loop system, but with the objective of e.g.
accelerating the convergencewithout the necessity of calculating a new set of feasible
gains.

Corollary 8.1 Consider controller (8.13) (or in particular controller (8.11) with
l1 = l2 = 0) with the set of parameters (k1, k2, l1, l2, k3, k4, L). Assume that with
this parameters the closed loop system has a finite-time stable equilibrium point.
Then, the equilibrium point of the closed loop systemwill be finite time stable with the

set of parameters given by
(
λ

2
3 k1, λ− 1

2 k2, λ
1
3 l1, λ

2
3 l2, λk3, λ− 1

2 k4, λL
)
, for every

λ > 0.

The closed loop systemconsisting of plant (8.7) and integral controller (8.11), exclud-
ing the perturbation, is r−homogeneous with weights r = (3, 2, 1) for the variables
(x1, x2, z) and negative homogeneous degree l = −1. Also the closed loop sys-
tem consisting of plant (8.7) and the observer and integral controller (8.13) without
perturbation is r−homogeneous with weights r = (3, 2, 3, 2, 1) for the variables
(x1, x2, e1, e2, z) and negative homogeneous degree l = −1. From homogeneity
arguments [13, 26, 27] (see Proposition 8.1) one expects that the controllers have
precision of order |x1| ≤ ν1τ

3 and |x2| ≤ ν2τ
2, where τ is the discretization step and

ν1 and ν2 are constants depending only on the gains of the algorithm. Moreover, it
is easy to show that for the Lyapunov functions used in the proofs of the previous
results, the following inequality is satisfied

V̇ (x) ≤ −κV
4
5 (x) ,

fromwhich finite time convergence can be deduced. With the value of κ it is possible
to estimate the convergence time as

T (x0) ≤ 5

κ
V

1
5 (x0) .
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8.5 Proof of the Main Results Using the Lyapunov Method

WeproveTheorems 8.1 and 8.2 using smooth and homogeneousLyapunov functions.
We consider first the properties of some functions that will appear in the following

proofs.

Lemma 8.2 Consider for every real value p > 0 the continuous function of two real
variables x, y ∈ R

ψ (x, y) = ⌈
x + �yp

⌋ 1
p − y .

ψ has the following properties:
(i) ψ (0, y) = 0, ∀y ∈ R.
(ii)

{
(x, y) ∈ R

2 | ψ (x, y) = 0
} = {

(x, y) ∈ R
2 | x = 0

}
, i.e. ψ (x, y) van-

ishes only when x = 0.
(iii) ψ (x, y) is monotonically increasing in x for every y. Moreover, if p ≥ 1

0 < ψ (x, y) x < 2
p−1
p |x | p+1

p , ∀y ∈ R, ∀x ∈ R \ 0 .

Proof Item (i) is immediate. Item (ii) follows from the equivalences

ψ (x, y) = 0 ⇔ ⌈
x + �yp

⌋ 1
p = y ⇔ x + �yp = �yp ⇔ x = 0 .

The first part of item (iii) is implied by the fact that

∂ψ (x, y)

∂x
= 1

p
∣∣x + �yp

∣∣ p−1
p

> 0 ,

where the derivative exists. The left part of the inequality follows from themonotonic-
ity of ψ (x, y). Since the function �· 1

p is Hölder continuous for p ≥ 1 we have that

|ψ (x, y)| =
∣∣∣⌈x + �yp

⌋ 1
p − y

∣∣∣ ≤ 2
p−1
p |x | 1

p .

And this implies the right-hand side of the inequality. �

8.5.1 Proof of Theorem 8.1

By introducing as state variable x3 = z + ρ (t) the dynamics of the closed loop
system formed by the plant (8.7) and the controller (8.11) is given by
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ẋ1 = x2

ẋ2 = −k1
⌈
x1 + k2 �x2 3

2

⌋ 1
3 + x3

ẋ3 = −k3
⌈
x1 + k4 �x2 3

2

⌋0 + ρ̇ (t) .

Since |ρ̇ (t)| ≤ L we canwrite the discontinuous differential equation as the Filippov
differential inclusion (DI)

ẋ1 = x2

ẋ2 = −k1
⌈
x1 + k2 �x2 3

2

⌋ 1
3 + x3

ẋ3 ∈ −k3
⌈
x1 + k4 �x2 3

2

⌋0 + [−1, 1] L ,

(8.15)

where the discontinuous function �x0 is now interpreted as the multivalued map

�x0 =

⎧⎪⎨
⎪⎩

1 if x > 0

[−1, 1] if x = 0

−1 if x < 0

. (8.16)

(8.15) is r−homogenous of degree −1, with weights r = (3, 2, 1) for the state
variables x = (x1, x2, x3). To proof the Theorem we show that the origin x = 0 is
the only equilibrium point for (8.15) and that it is finite time stable. Note that x = 0
is an equilibrium point for (8.15) only if 0 ∈ F (0), where F (x) is the multivalued
map on the right-hand side of the DI (8.15). x = 0 is the unique equilibrium point of
the DI if k3 > L . To show that it is asymptotically stable we use Lyapunov’s theorem
for DI [2] and due to homogeneity finite time convergence follows [3, 11, 27, 29,
35].

For convenience, we introduce the diffeomorphic change of state variables

ξ1 = x1 −
⌈
x3
k1

⌋3

, ξ2 = x2, ξ3 = x3
k1

,

and the change of parameters (assuming that k1 > 0),

κ3 = k3
k1

, � = L

k3
.

Thus the dynamics of (8.15) can be written as

ξ̇1 = ξ2 − 3 |ξ3|2 ξ̇3

ξ̇2 = −k1ψ
(
ξ1 + k2 �ξ2 3

2 , ξ3

)

ξ̇3 ∈ −κ3

(⌈
ξ1 + �ξ33 + k4 �ξ2 3

2

⌋0 − [−1, 1] �

)
,

(8.17)
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where
ψ (x, y) = ⌈

x + �y3⌋ 1
3 − y .

Consider the homogeneous and smooth Lyapunov Function

V (ξ) = 3

5
γ1 |ξ1| 5

3 + ξ1ξ2 + 2

5
k2 |ξ2| 5

2 + 1

5
|ξ3|5 .

From Lemma 8.4 it follows easily that given k2 > 0 it is always possible to render
V positive definite selecting γ1 sufficiently large.

Its derivative along the trajectories of (8.15) is given by

V̇ ∈ W1 (ξ1, ξ2) − k1W2 (ξ) − κ3W3 (ξ) ,

where

W1 (ξ) =
(
γ1 �ξ1 2

3 + ξ2

)
ξ2

W2 (ξ1, ξ2) =
(
ξ1 + k2 �ξ2 3

2

)
ψ
(
ξ1 + k2 �ξ2 3

2 , ξ3

)

W3 (ξ) =
(
−3 |ξ3|2

(
γ1 �ξ1 2

3 + ξ2

)
+ �ξ34

)(⌈
ξ1 + �ξ33 + k4 �ξ2 3

2

⌋0 − [−1, 1] �

)
.

Note that W1 and W2 are single-valued functions, while W3 is a multivalued (or set
valued) one. The latter function can be rewritten as

W3 (ξ) = |ξ3|
(
ξ1 + �ξ33 + k4 �ξ2 3

2

)(⌈
ξ1 + �ξ33 + k4 �ξ2 3

2

⌋0 − [−1, 1] �

)
−

(
3 |ξ3|

(
γ1 �ξ1 2

3 + ξ2

)
+ ξ1 + k4 �ξ2 3

2

)
|ξ3|

(⌈
ξ1 + �ξ33 + k4 �ξ2 3

2

⌋0 − [−1, 1] �

)
.

Note that, since 0 ≤ � = L
k3

< 1, we have that

⌈
ξ1 + �ξ33 + k4 �ξ2 3

2

⌋0 − [−1, 1] � =
{

> 0 if ξ1 + �ξ33 + k4 �ξ2 3
2 > 0

< 0 if ξ1 + �ξ33 + k4 �ξ2 3
2 < 0

.

This implies that the first term in W3 is non negative, and it follows that W3 can be
bounded from below by a continuous and homogeneous function

W3 (ξ) ≥ W̃3 (ξ) = W31 (ξ) − W32 (ξ) ,

where

W31 (ξ) = (1 − �) |ξ3|
∣∣∣ξ1 + �ξ33 + k4 �ξ2 3

2

∣∣∣
W32 (ξ) = (1 − �)

∣∣∣3 |ξ3|
(
γ1 �ξ1 2

3 + ξ2

)
+ ξ1 + k4 �ξ2 3

2

∣∣∣ |ξ3| .
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Thus, for asymptotic stability it suffices to show that

V̇ ≤ W1 (ξ1, ξ2) − k1W2 (ξ) − κ3W̃3 (ξ) < 0 ,

where the right-hand side is a continuous homogeneous function.
In the latter expression we conclude, thanks to Lemma 8.2, that the second term

is non negative, i.e. W2 (ξ) ≥ 0, and it vanishes on the set

S1 =
{

ψ
(
ξ1 + k2 �ξ2 3

2 , ξ3

)
= 0 ⇔ ξ1 + k2 �ξ2 3

2 = 0 ⇔ ξ2 = −
⌈

ξ1

k2

⌋ 2
3

}
.

On this set we have that

V̇ |S1 ≤ −
(
γ1k

2
3
2 − 1

) ∣∣∣∣
ξ1

k2

∣∣∣∣
4
3

− κ3 (1 − �) |ξ3| ×
(∣∣∣∣
(
1 − k4

k2

)
ξ1 + �ξ33

∣∣∣∣−
∣∣∣∣∣3 |ξ3|

(
γ1k

2
3
2 − 1

)⌈ ξ1

k2

⌋ 2
3

+
(
1 − k4

k2

)
ξ1

∣∣∣∣∣

)
.

In this latter expression, the first term on the right-hand side is negative if we select

γ1 >
1

k
2
3
2

and it only vanishes on the set S2 = {ξ1 = 0}. On this set we obtain

V̇ |S1∩S2 ≤ −κ3 (1 − �) |ξ3|4 < 0 ,

which is negative, since 0 ≤ � < 1. According to Lemma 8.5we conclude that select-
ing κ3 small we can render V̇ |S1< 0 and then selecting k1 sufficiently large we can
render V̇ < 0.

Moreover, from Lemmas 8.1 and 8.5 we obtain that

V̇ (x) ≤ −κV
4
5 (x) ,

for some κ > 0, and from this inequality we conclude finite time convergence. With
the value of κ it is possible to estimate the convergence time as

T (x0) ≤ 5

κ
V

1
5 (x0) .



8 Discontinuous Integral Control for Systems with Relative Degree Two 201

8.5.1.1 Gain Selection for Controller (8.11)

From the proof of Theorem 8.1 we derive the following procedure to design the
gains k1, k2, k3, k4 given a Lipschitz constant L ≥ 0, to assure the convergence of
the controller. Note that this procedure does not guarantee a good performance.

1. Select k2 > 0 and k4 ∈ R arbitrary. Select also a value for 0 < � < 1 (or � = 0 if
L = 0).

2. Choose γ1 large enough such that γ1 > k
− 2

3
2 and V > 0.

3. Calculate κ3 small enough such that the inequality V̇ |S1< 0 is fulfilled, i.e.

1

κ3
>

1

κ∗
3

� (1 − �)(
γ1k

2
3
2 − 1

)×

max

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

|ξ3|
(∣∣∣∣3 |ξ3|

(
γ1k

2
3
2 − 1

)⌈
ξ1
k2

⌋ 2
3 +

(
1 − k4

k2

)
ξ1

∣∣∣∣−
∣∣∣
(
1 − k4

k2

)
ξ1 + �ξ33

∣∣∣
)

∣∣∣ ξ1k2
∣∣∣
4
3

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

.

4. Find k1 sufficiently large such that the inequality W1 (ξ1, ξ2) − k1W2 (ξ) −
κ3W̃3 (ξ) < 0 is fulfilled, i.e.

k1 > k∗
1 � max

{
W1 (ξ1, ξ2) − κ3W̃3 (ξ)

W2 (ξ)

}
.

5. Finally, the actual gains are calculated as follows: (i) k2 > 0 and k4 ∈ R are freely

chosen. (ii) k3 = L
�
, with � �= 0 selected. (iii) k1 > max

{
k3
κ∗
3
, k∗

1

}
.

Note that the maximizations above are feasible, since the functions to be maximized
are continuous everywhere, except when the denominator vanishes. In a neighbor-
hood of these points the function is negative and tends to −∞ as the root of the
denominator is approached. Moreover, the function is r−homogeneous of degree 0
and is bounded above, so that a maximum exists.

8.5.2 Proof of Theorem 8.2

System Description

System (8.7) with controller (8.13) is given by the dynamics



202 J.A. Moreno

ẋ1 = x2

ẋ2 = −k1
⌈
x1 + k2

⌈
x̂2
⌋ 3

2

⌋ 1
3 + z + ρ (t) ,

˙̂x1 = −l1
⌈
x̂1 − x1

⌋ 2
3 + x̂2

˙̂x2 = −l2
⌈
x̂1 − x1

⌋ 1
3 − k1

⌈
x1 + k2

⌈
x̂2
⌋ 3

2

⌋ 1
3

ż = −k3
⌈
x1 + k4

⌈
x̂2
⌋ 3

2

⌋0

(8.18)

which is a discontinuous system, i.e. the right-hand side is discontinuous as a function
of the state. If we introduce the estimation errors e1 = x̂1 − x1, e2 = x̂2 − x2 and
the state variable combining the output of the integrator and the perturbation x3 =
z + ρ (t), recalling that |ρ̇ (t)| ≤ L , and applying Filippov’s regularization procedure
[3, 12, 27] the dynamics of the system can be described by the Filippov DI

ẋ1 = x2

ẋ2 = −k1
⌈
x1 + k2 �x2 + e2 3

2

⌋ 1
3 + x3 ,

ė1 = −l1 �e1 2
3 + e2

ė2 = −l2 �e1 1
3 − x3 (t)

ẋ3 ∈ −k3
⌈
x1 + k4 �x2 + e2 3

2

⌋0 + [−1, 1] L ,

(8.19)

where the discontinuous function �x0 is now interpreted as a multivalued map
(8.16), as in the previous proof. The trajectories of (8.19) are defined in the sense
of Filippov [12]. To prove Theorem 8.2 we show (i) that (x1, x2, e1, e2, x3) = 0 is
the only equilibrium point of the DI, and (ii) that it is Globally Finite Time Stable,
for what we use Lyapunov’s theorem for DIs [2], with a smooth and homogeneous
Lyapunov function. Uniqueness of the equilibrium point at x = 0 is guaranteed under
the condition that k3 > L .

Again, for convenience we introduce the following diffeomorphic change of vari-
ables

ξ1 = x1 −
⎛
⎝1 + k2

⎛
⎝k1l

1
2
1

l2

⎞
⎠

3⎞
⎠
⌈
x3
k1

⌋3

= x1 − �αz33 , ξ2 = x2, z3 = x3
l2

,

ε1 = e1 +
⌈
x3
l2

⌋3

, ε2 = e2
l1

+
⌈
x3
l2

⌋2

,

with

α =
((

l2
k1

)3

+ k2l
3
2
1

) 1
3

, l̃2 = l2
l1

, κ3 = k3
l2

, � = L

k3
.

For the dynamics of ξ we will use
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ζ3 = l
1
2
1 z3, η = l

1
2
1

k1
,

α

l
1
2
1

=
((

l̃2η
)3 + k2

) 1
3

.

The dynamics become

ξ̇1 = ξ2 − 3α3 |z3|2 ż3
ξ̇2 = −k1ψ1 (ξ, z3) − k1ω (ε2, ξ)

ε̇1 = −l1 (ϕ1 (ε1, z3) − ε2) + 3 |z3|2 ż3
ε̇2 = −l̃2ϕ2 (ε1, z3) + 2 |z3| ż3
ż3 ∈ −κ3

(�ψ2 (ξ, ε2, z3)0 − [−1, 1] �
)

where

ϕ1 (ε1, z3) = ⌈
ε1 − �z33

⌋ 2
3 + �z32

ϕ2 (ε1, z3) = ⌈
ε1 − �z33

⌋ 1
3 + z3

ψ1 (ξ, z3) =
⌈
ξ1 + k2

⌈
ξ2 − �ζ32

⌋ 3
2 +

((
l̃2η
)3 + k2

)
�ζ33

⌋ 1
3

− l̃2ηζ3

ψ2 (ξ, ε2, z3) = ξ1 + �αz33 + k4
⌈
ξ2 + l1ε2 − l1 �z32

⌋ 3
2 ,

ω (ε2, ξ) =
⌈
ξ1 + k2

⌈
ξ2 + l1ε2 − l1 �z32

⌋ 3
2 + �αz33

⌋ 1
3 −

⌈
ξ1 + k2

⌈
ξ2 − l1 �z32

⌋ 3
2 + �αz33

⌋ 1
3

.

The Lyapunov Function Candidate

We use the following Lyapunov function candidate

V (ξ, ε, z3) = V1 (ξ, z3) + μV2 (ε, z3) ,

where μ > 0,

V1 (ξ, z3) = 3

5
γ1 |ξ1| 5

3 + ξ1ξ2 + 2

5
k2
∣∣ξ2 − �ζ32

∣∣ 52 + k2ξ2 �ζ33 + 1

5
γ3 |z3|5

V2 (e, z3) = |ς1| 5
3 + γ2 |ε2| 5

2 ,

and
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ς1 = ε1 − φ (ε2, z3) ,

φ (ε2, z3) = ⌈
ε2 − �z32

⌋ 3
2 + �z33 ,

with γi > 0 for i = 1, 2, 3. Given values of l1 and k2 function V is positive definite
for any γ2 > 0, any μ > 0, and for large values of γ1 and γ3.

The derivative of V along the trajectories of the system can be written in the
following form

V̇ (ξ, ε, z3) ∈ −Wz3
1 (ξ) + W2 (ξ, ε2) − μWz3

3 (ε) − κ3W4 (ξ, ε2, z3)

where

Wz3
1 (ξ1, ξ2) = k1χ1 (ξ, z3) ψ1 (ξ, z3) −

(
γ1 �ξ1

2
3 + ξ2

)
ξ2

W2 (ξ, ε2) = −k1χ1 (ξ, z3) ω (ε2, ξ)

Wz3
3 (ε) = 5

3
l1 �ε1 − φ (ε2, z3)

2
3 (ϕ1 (ε1, z3) − ε2) − 5

2
l̃2χ2 (ε, z3) ϕ2 (ε1, z3)

W4 (ξ, ε2, z3) = χ3 (ξ, ε, z3) |z3|
(
�ψ2 (ξ, ε2, z3)0 − [−1, 1] �

)
,

and

χ1 (ξ, z3) = ξ1 + k2
(⌈

ξ2 − �ζ32
⌋ 3

2 + �ζ33
)

,

χ2 (ε, z3) = �ε1 − φ (ε2, z3) 2
3
∣∣ε2 − �z32

∣∣ 12 − γ2 �ε2 3
2

χ3 (ξ, ε, z3) = −3α3 |z3|
(
γ1 �ξ1 2

3 + ξ2

)
− 2k2l1

⌈
ξ2 − l1 �z32

⌋ 3
2 +

3k2l
3
2
1 ξ2 |z3| + γ3 �z33 + 5μγ2 �ε2 3

2 .

The proof of the theorem is based on the following properties for theWi functions
appearing in V̇ .

Lemma 8.3 Functions Wi have the following properties:
(i) All are r−homogeneous functions of degree 4, withweights r = (3, 2, 3, 2, 1)

for the states (ξ1, ξ2, ε1, ε2, z3).
(ii) W z3

1 (ξ1, ξ2), W2 (ξ, ε2) and Wz3
3 (ε) are single-valued and continuous while

W4 (ξ, ε2) is a multivalued function.
(iii) W z3

3 (ε): Given any l̃2 > 0 it is possible to render W z3
3 (ε) > 0 for every

(ε1, ε2) �= 0 and for every z3 ∈ R, and W z3
3 (ε) = 0 if and only if ε = (ε1, ε2) = 0,

by selecting l1 sufficiently large.
(iv) W z3

1 (ξ1, ξ2): Given any η > 0 and any k2 > 0, it is possible to render
W z3

1 (ξ1, ξ2) > 0 for every (ξ1, ξ2) �= 0 and for every z3 ∈ R, and W z3
1 (ξ1, ξ2) = 0

if and only if (ξ1, ξ2) = 0, by selecting k1 sufficiently large.
(v) W2 (ξ, ε2) has no defined sign, but W2 (ξ, 0) = 0, since ω (0, ξ) = 0.
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(vi) W4 (ξ, ε2) is a multivalued function. It can be bounded from below by a
continuous and homogeneous function W̃4 (ξ, ε2, z3)

W4 (ξ, ε2, z3) ≥ W̃4 (ξ, ε2, z3)

where

W̃4 (ξ, ε2, z3) = (1 − �) β |z3|
∣∣∣ψ̃2 (ξ, ε2, z3)

∣∣∣− (1 − �) |z3|
∣∣∣χ̃3 (ξ, ε, z3) − βψ̃2 (ξ, ε2, z3)

∣∣∣ ,

ψ̃2 (ξ, ε2, z3) =
⌈⌈

ξ1 + �αz33
⌋ 2

3 + k
2
3
4

(
ξ2 − l1 �z32

)⌋ 3
2 + k4 �ε2 3

2 ,

β = 2k2l
5
2
1 + γ3

(
α2 − k

2
3
4 l1
) 3

2

.

Moreover, if α2 − k
2
3
4 l1 > 0

W̃4 (0, 0, z3) = (1 − �) β |z3|
∣∣∣ψ̃2 (0, 0, z3)

∣∣∣

= (1 − �) β

∣∣∣∣∣∣∣

⎛
⎝
((

l2
k1

)3

+ k2l
3
2
1

) 2
3

− k
2
3
4 l1

⎞
⎠

3
2

∣∣∣∣∣∣∣
|z3|4 > 0 ,

which is positive.2 �
With these properties we can prove that V̇ < 0. First note that one can select the
gains k1, k2, l1 and l2 such that Wz3

1 (ξ) > 0 and Wz3
3 (ε) > 0. Since Wz3

3 (ε) = 0
only on the set S1 = {

(ξ, ε, z3) ∈ R
5 | ε = 0

}
, then the value of the function

−Wz3
1 (ξ) + W2 (ξ, ε2) − μWz3

3 (ε)
∣∣
S1

= −Wz3
1 (ξ) < 0 ,

since W2 (ξ, 0) = 0. Thus, according to Lemma 8.5 one can render the func-
tion −Wz3

1 (ξ) + W2 (ξ, ε2) − μWz3
3 (ε) < 0 selecting μ large enough. Moreover,

−Wz3
1 (ξ) + W2 (ξ, ε2) − μWz3

3 (ε) = 0 only on the set S2 = {
(ξ, ε, z3) ∈ R

5

| ξ = ε = 0}.
Finally, since

V̇ (ξ, ε, z3) ≤ −Wz3
1 (ξ) + W2 (ξ, ε2) − μWz3

3 (ε) − κ3W̃4 (ξ, ε2, z3)

2We assume here that
(
l2
k1

)3 + k2l
3
2
1 > k4l

3
2
1 and also that k3 > 0. The case

(
l2
k1

)3 + k2l
3
2
1 < k4l

3
2
1

and k3 < 0 can be treated in the same manner. These conditions are derived from (8.14), which
corresponds to the absence of a transmission zero located at the zero frequency.
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and the value of V̇ on the set S2 satisfies

V̇ |S2≤ −κ3W̃4 (0, 0, z3) < 0 ,

then it follows from Lemma 8.5 that selecting κ3 small enough we obtain V̇ < 0.
Moreover, from Lemmas 8.1 and 8.5 we obtain that

V̇ (ξ, ε, z3) ≤ −κV
4
5 (ξ, ε, z3) ,

for some κ > 0, and from this inequality we conclude finite time convergence. With
the value of κ it is possible to estimate the convergence time as

T (x0) ≤ 5

κ
V

1
5 (ξ0, ε0, z30) .

8.5.3 Proof of Lemma 8.3

Items (i) and (ii) are simple and can be obtained by checking the conditions on the
functions.

8.5.3.1 Proof of Item (iii)

We first show that �ε1 − φ (ε2, z3) 2
3 (ϕ1 (ε1, z3) − ε2) > 0, except on the set S3 =

{ε1 = φ (ε2, z3)}. The claim follows by simply checking (a) that the sets where each
of the factors vanish are the same, i.e. {ε1 − φ (ε2, z3) = 0} = {ϕ1 (ε1, z3) − ε2 = 0},
and then (b) evaluating the expression at some particular value. (a) follows from the
following equivalences

ε1 = φ (ε2, z3) ⇔ ⌈�ε1 − �z33
⌋ 2

3 = ε2 − �z32 ⇔ ϕ1 (ε1, z3) − ε2 = 0 .

We check (b) at the point z3 = 0

�ε1 − φ (ε2, 0) 2
3 (ϕ1 (ε1, 0) − ε2) =

⌈
ε1 − �ε2 3

2

⌋ 2
3
(
�ε1 2

3 − ε2

)
> 0 .

To conclude the proof we observe that the first term in Wz3
3 (ε) is positive, and

evaluating Wz3
3 (ε) on S3 (where it vanishes) we obtain
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Wz3
3 (ε) |S3 = 5

2
γ2l̃2 �ε2 3

2 ϕ2 (φ (ε2, z3) , z3)

= 5

2
γ2l̃2 �ε2 3

2

(⌈
φ (ε2, z3) − �z33

⌋ 1
3 + z3

)

= 5

2
γ2l̃2 �ε2 3

2

(⌈
ε2 − �z32

⌋ 1
2 + z3

)
> 0 .

The last inequality is a consequence of Lemma 8.2 with p = 2. Lemma 8.5 implies
item (iii).

8.5.3.2 Proof of Item (iv)

This proof is similar to that of item (iii). We first show that the first term in Wz3
1 (ξ)

is non negative, i.e. χ1 (ξ, z3) ψ1 (ξ, z3) > 0 except on the set

S4 =
{
χ1 (ξ, z3) = 0 ⇔ ξ1 = −k2

(⌈
ξ2 − �ζ32

⌋ 3
2 + �ζ33

)}
.

Note that we can write ψ1 (ξ, z3) as

ψ1 (ξ, z3) =
⌈
χ1 (ξ, z3) +

⌈
ηl̃2ζ3

⌋3⌋ 1
3

− ηl̃2ζ3 .

The claim is therefore a consequence of Lemma 8.2 with p = 3. In particular, we
obtain that

0 ≤ χ1 (ξ, z3) ψ1 (ξ, z3) ≤ 2
2
3 |χ1 (ξ, z3)| 4

3 .

Evaluating Wz3
1 (ξ) on the set S4 (where its first term vanishes) we obtain

Wz3
1 (ξ) |S4=

(
γ1k

2
3
2

⌈⌈
ξ2 − �ζ32

⌋ 3
2 + �ζ33

⌋ 2
3 − ξ2

)
ξ2 . (8.20)

If Wz3
1 (ξ) |S4> 0 we can conclude item (iv) by means of Lemma 8.5.

We show that for γ1 large enough, then Wz3
1 (ξ) |S4> 0. Note first that for z3 = 0

this is true. Moreover, the term
⌈⌈

ξ2 − �ζ32
⌋ 3

2 + �ζ33
⌋ 2

3
is monotonicaly increas-

ing as a function of ξ2 and vanish only at ξ2 = 0. This can be concluded since its
derivative is

∂
⌈⌈

ξ2 − �ζ32
⌋ 3

2 + �ζ33
⌋ 2

3

∂ξ2
=

∣∣ξ2 − �ζ32
∣∣ 12

∣∣∣⌈ξ2 − �ζ32
⌋ 3

2 + �ζ33
∣∣∣
1
3
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which is non negative everywhere, where it exists. When z3 �= 0 this derivative is
very large in a neighborhood of ξ2 = 0 (at ξ2 = 0 it becomes infinite, since the
function is not differentiable there). This implies that for every value of z3 function
Wz3

1 (ξ) |S4> 0 in a neighborhood of ξ2 = 0, and therefore if Wz3
1 (ξ) |S4≯ 0 there

is a value ξ2 �= 0 such that Wz3
1 (ξ) |S4= 0. This is only possible if at that point

γ1k
2
3
2

⌈⌈
ξ2 − �ζ32

⌋ 3
2 + �ζ33

⌋ 2
3 = ξ2

or equivalently

ξ2 =
⎡
⎢⎢⎢⎢

⎡
⎢⎢⎢

ξ2

γ1k
2
3
2

⎥⎥⎥⎦
3
2

− �ζ33
⎥⎥⎥⎥⎦

2
3

+ �ζ32 . (8.21)

Using Lemma 8.2 (with p = 3
2 ) we can conclude that the right-hand side satisfies

∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎢

⎡
⎢⎢⎢

ξ2

γ1k
2
3
2

⎥⎥⎥⎦
3
2

− �ζ33
⎥⎥⎥⎥⎦

2
3

+ �ζ32
∣∣∣∣∣∣∣∣
≤ 2

1
3

γ1k
2
3
2

|ξ2| .

This implies, that if 2
1
3

γ1k
2
3
2

< 1, i.e. 2
1
3

k
2
3
2

< γ1, the right-hand side of Eq. (8.21) grows

slower than the left-hand side (i.e. ξ2), and therefore the equation cannot have a
solution different from ξ2 = 0. This finishes the proof of item (iv).

8.5.3.3 Proof of Items (v) and (vi)

The proof of item (v) is direct and simple. To prove item (vi) we observe that
W4 (ξ, ε2, z3) can be written as for any constant β > 0

W4 (ξ, ε2, z3) = |z3| βψ̃2 (ξ, ε2, z3)
(
�ψ2 (ξ, ε2, z3)0 − [−1, 1] �

)
+

|z3|
(
χ̃3 (ξ, ε, z3) − βψ̃2 (ξ, ε2, z3)

) (
�ψ2 (ξ, ε2, z3)0 − [−1, 1] �

)

Since 0 ≤ � < 1 function
(�ψ2 (ξ, ε2, z3)0 − [−1, 1] �

)
has the same sign of

ψ2 (ξ, ε2, z3)when it does not vanish. Note further that ψ̃2 (ξ, ε2, z3) ψ2 (ξ, ε2, z3)
> 0. This follows from the following equivalences

ψ̃2 = 0 ⇔ ⌈
ξ1 + �αz33

⌋ 2
3 = −k

2
3
4

(
ξ2 + ε2 − l1 �z32

) ⇔ ψ2 = 0 ,

and for z3 = 0 it becomes
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ψ̃2 (ξ, ε2, 0) ψ2 (ξ, ε2, 0) =
(⌈

�ξ1 2
3 + k

2
3
4 ξ2

⌋ 3
2 + k4 �ε2 3

2

)(
ξ1 + k4 �ξ2 + ε2 3

2

)
> 0 .

This implies that

W4 (ξ, ε2, z3) ≥ (1 − �) β |z3|
∣∣∣ψ̃2 (ξ, ε2, z3)

∣∣∣− (1 − �) |z3|
∣∣∣χ̃3 (ξ, ε, z3) − βψ̃2 (ξ, ε2, z3)

∣∣∣ .

Since

χ̃3 (0, 0, z3) − βψ̃2 (0, 0, z3) =
(
2k2l

5
2
1 + γ3 − β

(
α2 − k

2
3
4 l1
) 3

2
)

�z33

the selection of β as in the statement of item (vi) provides that χ̃3 (0, 0, z3) −
βψ̃2 (0, 0, z3) = 0 and that W̃4 (0, 0, z3) > 0, since

ψ2 (0, 0, z3) =
(
α3 − k4l

3
2
1

)
�z33

=
((

l2
k1

)3

+ k2l
3
2
1 − k4l

3
2
1

)
�z33 ,

and we have assumed that α3 − k4l
3
2
1 �= 0. In fact, we assume that α3 − k4l

3
2
1 > 0

but the case α3 − k4l
3
2
1 < 0 can be treated in the same manner by just assuming that

k3 < 0.

8.5.3.4 Interpretation of the Condition (8.14): Transmission Zero

We provide an interpretation of condition (8.14) as the absence of a transmission
zero of the open loop system (see (8.19))

ẋ1 = x2

ẋ2 = −k1
⌈
x1 + k2 �x2 + e2 3

2

⌋ 1
3 + x3 ,

ė1 = −l1 �e1 2
3 + e2

ė2 = −l2 �e1 1
3 − x3

y = x1 + k4 �x2 + e2 3
2 ,

from the input x3 to the output y. Since the right-hand side of this system is not
smooth, then we cannot use the standard tools [20, 22] to find the relative degree and
the zero dynamics. However, we know that a transmission zero at frequency s = 0
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corresponds to the fact that for any constant input x3 the output will be zero y = 0
for all the time (if the initial conditions are selected appropriately). We show for the
previous system that if condition (8.14) is violated, then this is exactly what happens.

For thiswecalculate the (unique) equilibriumpoint (x̄1, x̄2, ē1, ē2) corresponding
to a constant input x̄3, that is given by

(x̄1, x̄2, ē1, ē2) =
⎛
⎝
⎛
⎝ 1

k31
+ k2l

3
2
1

l32

⎞
⎠ �x̄33 , 0, −

⌈
x̄3
l2

⌋3

, −l1

⌈
x̄3
l2

⌋2
⎞
⎠

and therefore the output y = ȳ at this point is given by

ȳ =
⎛
⎝ 1

k31
+ k2l

3
2
1

l32
− k4

(
l1
l22

) 3
2

⎞
⎠ �x̄33 .

We see immediately that if condition (8.14) is violated, then the output ȳ = 0 inde-
pendently of the constant value x̄3, and so the system has a transmission zero at zero
frequency.

8.5.3.5 Gain Selection for Controller (8.13)

From the proof of Theorem 8.2 we derive the following procedure to design the
gains k1, k2, k3, k4, l1, l2 given a Lipschitz constant L ≥ 0, to assure the conver-
gence of the controled system. Note that this procedure does not guarantee a good
performance.

1. Select arbitrary values for γ2 > 0 and l̃2 > 0 and calculate l1min sufficiently large
such that Wz3

3 (ε) > 0, i.e.

l1min = 3

2
l̃2 max

{
χ2 (ε, z3) ϕ2 (ε1, z3)

�ε1 − φ (ε2, z3) 2
3 (ϕ1 (ε1, z3) − ε2)

}
.

2. Select and arbitrary k2 > 0 and choose γ1 and γ̃3 = γ3/l
5
2
1 large enough so that

Wz3
1 (ξ) |S4> 0 (see Eq. (8.20)) and V1 (ξ, z3) > 0. Calculate k1min sufficiently

large such that Wz3
1 (ξ1, ξ2) > 0, i.e.

k1min = max

⎧
⎨
⎩

(
γ1 �ξ1 2

3 + ξ2

)
ξ2

χ1 (ξ, z3) ψ1 (ξ, z3)

⎫
⎬
⎭ .



8 Discontinuous Integral Control for Systems with Relative Degree Two 211

From the expressions of χ1 (ξ, z3) and ψ1 (ξ, z3) we observe that k1min depends
only on the selection of γ1, k2, l̃2, η. We can fix the value of η arbitrarily in order
to find k1min. Finally, we select k1 > k1min and l1 > l1min such that η = √

l1/k1.
3. Select μ > 0 sufficiently large so that −Wz3

1 (ξ) + W2 (ξ, ε2) − μWz3
3 (ε) < 0.

4. Choose a value for 0 < � < 1 (or � = 0 if L = 0). Calculate κ3 small enough
such that the inequality V̇ (ξ, ε, z3) < 0 is fulfilled, i.e.

1

κ3
≥ max

{
−W̃4 (ξ, ε2, z3)

Wz3
1 (ξ) − W2 (ξ, ε2) + μWz3

3 (ε)

}
.

Note that the maximizations above are feasible, since the functions to be maximized
are continuous everywhere, except when the denominator vanishes. In a neighbor-
hood of these points the function is negative and tends to −∞ as the root of the
denominator is approached. Moreover, the functions are r−homogeneous of degree
0 and are bounded above, so that a maximum exists.

8.5.3.6 Proof of Corollary 8.1

Consider system (8.19) and perform on it the linear change of states (X1, X2, E1,

E2, X3) = λ (x1, x2, e1, e2, x3) for some λ > 0. In the new variables the dynamics
become

Ẋ1 = X2

Ẋ2 = −k1λ
2
3

⌈
X1 + k2λ− 1

2 �X2 + E2 3
2

⌋ 1
3 + X3 ,

Ė1 = −l1λ
1
3 �E1 2

3 + E2

Ė2 = −l2λ
2
3 �E1 1

3 − X3 (t)

Ẋ3 ∈ −k3λ
⌈
X1 + k4λ− 1

2 �X2 + E2 3
2

⌋0 + [−1, 1] λL .

Transforming the gains as

(k1, k2, l1, l2, k3, k4, L) →
(
λ

2
3 k1, λ− 1

2 k2, λ
1
3 l1, λ

2
3 l2, λk3, λ− 1

2 k4, λL
)

we obtain an equation identical to (8.19), and therefore asymptotic stability with the
set of parameters (k1, k2, l1, l2, k3, k4, L) implies the asymptotic stability with the

transformed set of parameters
(
λ

2
3 k1, λ− 1

2 k2, λ
1
3 l1, λ

2
3 l2, λk3, λ− 1

2 k4, λL
)
.

8.6 Simulation Example

We illustrate the behavior of the proposed integral controllers by some simulations.
Consider the dynamics of a simple pendulum without friction
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ẋ1 = x2
ẋ2 = − g

l sin (x1) + 1
ml2 u + ρ (t) ,

where x1 = θ is the position angle, x2 = θ̇ is the angular velocity, m is the mass
of the bob, g is the gravity acceleration, l is the length of the bob, the control u
is the torque applied to the pendulum, and the perturbation ρ (t) = 0.4 sin (t), that
can be interpreted also as the second derivative of a reference signal (in this case
the state x corresponds to the tracking error). For the simulations we have used
the following parameter values l = 1 [m], m = 1.1 [Kg], g = 9.815 [m/s2], and the
initial conditions x1 (0) = 2, x2 (0) = 2.

We have implemented three controllers:

• A State Feedback (SF) controller with discontinuous integral term, as given by
(8.11), with gains k1 = 2, k2 = 5, k3 = 0.5, k4 = 0, and initial value of the inte-
grator z (0) = 0.

• An Output Feedback (OF) controller with discontinuous integral term, as given
by (8.13), with controller gains k1 = 2λ

2
3 , k2 = 5λ

1
2 , k3 = 0.5λ, k4 = 0, λ = 3,

observer gains l1 = 2L , l2 = 1.1L2, L = 4, observer initial conditions x̂1 (0) = 0,
x̂2 (0) = 0, and initial value of the integrator z (0) = 0.

• ATerminal controller [13, 23, 26], given by u = −k1
⌈
x1 + k2 �x22

⌋0
, with gains

k1 = 1.2, k2 = 0.6.

The simulations for the three controllers are presented in Figs. 8.1, 8.2, 8.3 and 8.4.
In Fig. 8.1 the evolution of the position is presented and also the evolution of the
estimated position given by the observer for the OF, which converges very fast. All
controllers are able to bring the position to zero in finite time.

Figure8.2 presents the time evolution of the velocity and its estimation by the
observer for the OF, which converges in finite time around the time 15. We see also
the typical zig-zag behavior for the Terminal controller. All controllers are able to
bring the velocity to rest in finite time.

In Fig. 8.3 the integrator state is presented for both controllers OF and SF, and the
(negative) value of the perturbation (−ρ (t)). We note the zig-zag behavior of the
integral controller, due precisely to its discontinuous character. We appreciate also
that the integrator signal reconstructs after a finite time the (negative value of the)
perturbation, and this is the reason for it to be able to fully compensate its action on
the plant.

Figure8.4 presents the control signal u for the three controllers.We see that, while
theOF and the SF controllers with discontinuous Integral action provide a continuous
control signal, the Terminal controller provides a switching (discontinuous) control
signal, with an extremely high frequency when the equilibrium has been reached,
which corresponds to the (undesirable) chattering phenomenon. Finally, in Fig. 8.5
the trajectories for the three controllers are presented on the phase plane for (x1, x2).
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Fig. 8.2 Behavior of x2 with terminal and the discontinuous integral controller
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plane

8.7 Conclusion

We present in this paper a Discontinuous Integral Controller, which shares the prop-
erties of the classical PID control and the HOSM controllers: Similar to HOSM it
is able to fully compensate a Lispchitz perturbation or to track an (unknown) time
varying reference with bounded second derivative, it has high precision due to the
homogeneity properties, and it stabilizes the origin globally and in finite time. Simi-
lar to the PID control it has a continuous control signal. In order to achieve an Output
Feedback schemewe introduce a finite time converging observer. The stability proofs
are performed with a novel Lyapunov method. It is possible to extend this idea to
systems with higher relative degree, and this will be done in future work.
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Appendix: Some Technical Lemmas on Homogeneous
Functions

We recall or prove some useful Lemmas needed for the development of our main
results. Lemmas 8.5 and 8.6 are extensions of classical results for homogeneous
continuous functions to semicontinuous ones [18, Theorems 4.4 and 4.1].

Lemma 8.4 [16] (Young’s inequality) For any positive real numbers a > 0, b > 0,
c > 0, p > 1 and q > 1, with 1

p + 1
q = 1, the following inequality is always satisfied

ab ≤ cp

p
a p + c−q

q
bq ,

and equality holds if and only if a p = bq .

And the Lemma:

Lemma 8.5 Let η : R
n → R and γ : R

n → R+ be two lower (upper) semicontinu-
ous single-valued r-homogeneous functions of degreem > 0. Suppose that γ (x) ≥ 0
(γ (x) ≤ 0) on R

n. If η (x) > 0 (η (x) < 0) for all x �= 0 such that γ (x) = 0, then
there is a constant λ∗ ∈ R and a constant c > 0 such that for all λ ≥ λ∗ and for all
x ∈ R

n \ {0},
η(x) + λγ (x) ≥ c ‖x‖mr,p

(
η(x) + λγ (x) ≤ −c ‖x‖mr,p

)
.

Proof By virtue of the homogeneity of η and γ , it is sufficient to establish the result
on the unit sphere S = {x ∈ R

n : ‖x‖r,p = 1}. Suppose that this relation is not valid.
Then for every integer q there is a point xq in S such that

η(xq) + qγ (xq) <
1

q
. (8.22)

The sequence
{
xq
}
, being bounded, has a subsequence converging to a point x0,

and we can accordingly suppose that
{
xq
}
converges to x0. Since γ (x) ≥ 0 on S, it

follows from (8.22) and the lower semicontinuity of η and γ , i.e. lim inf x=x0 η (x) ≥
η (x0) , lim inf x=x0 γ (x) ≥ γ (x0) , that η (x0) ≤ 0, γ (x0) = 0. This contradicts
our hypothesis, and the first part of the Lemma is established. The second part is
proved in the same manner since if η (x) is lower semicontinuous then −η (x) is
upper semicontinuous. �

Lemma 8.6 Let η : R
n → R be an upper semicontinuous, single-valued

r-homogeneous function, with weights r = [r1, ..., rn]	 and degree m > 0. Then
there is a point x2 in the unit homogeneous sphere S = {x ∈ R

n : ‖x‖r,p = 1} such
that the following inequality holds for all x ∈ R

n
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η(x) ≤ η (x2) ‖x‖mr,p . (8.23)

Under the same conditions, if η is lower semicontinuous, there is a point x1 in the
unit homogeneous sphere S such that the following inequality holds for all x ∈ R

n

η (x1) ‖x‖mr,p ≤ η(x) . (8.24)

Proof By virtue of the homogeneity of η, it is sufficient to establish the inequal-
ity (8.23) on the unit homogeneous sphere S = {x ∈ R

n : ‖x‖r,p = 1}, i.e. η(x) ≤
η (x2). Since S is compact and non empty, the latter inequality is a consequence
of the fact that an upper semicontinuous function has a finite maximum value on a
compact set and it achieves it at some point x2 [18, Theorem 3.2]. The second part
of the Lemma, i.e. inequality (8.24), is obtained by applying the same arguments to
−η (x), which is upper semicontinuous. If η is continuous, then we obtain item (ii)
in Lemma 8.1.
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Chapter 9
Theory of Differential Inclusions
and Its Application in Mechanics

Maria Kiseleva, Nikolay Kuznetsov and Gennady Leonov

Abstract The following chapter deals with systems of differential equations with
discontinuous right-hand sides. The key question is how to define the solutions of
such systems. The most adequate approach is to treat discontinuous systems as sys-
tems with multivalued right-hand sides (differential inclusions). In this work, three
well-known definitions of solution of discontinuous system are considered. We will
demonstrate the difference between these definitions and their application to different
mechanical problems. Mathematical models of drilling systems with discontinuous
friction torque characteristics are considered. Here, opposite to classical Coulomb
symmetric friction law, the friction torque characteristic is asymmetrical. Problem
of sudden load chande is studied. Analytical methods of investigation of systems
with such asymmetrical friction, based on the use of Lyapunov functions, are demon-
strated. TheWatt governor and Chua system are considered to show different aspects
of computer modeling of discontinuous systems.

9.1 Introduction

Two hundred and thirty years ago, after numerous experiments, Coulomb has for-
mulated a law of dry fiction (Coulomb friction, see Fig. 9.1). Since then, various
problems stimulated the development of theory of mechanical systems with dry fric-
tion.

First of all, it is important to mention the well-known Penleve paradoxes [65],
which provoked interesting discussions and showed contradiction of Coulomb’s
law with Newtons laws of classical mechanics. Nowadays, an independent research
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Fig. 9.1 Coulomb friction
torque M f
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branch named “tribology” has grown out of these classical problems. Many
researchers contributed to this branch of science, among them there are such famous
scientists as F.P. Bowden and D. Tabor [8], E. Rabinovicz [73], P.J. Blau [6], K.C.
Ludema [62], I.G. Goryacheva [23, 24], V.I. Kolesnikov [33].

From a mathematical point of view the problem of investigation of dynamics in
modelswith dry friction is closely connectedwith the theory of differential inclusions
and dynamical systems with discontinuous right-hand sides. Nowadays this theory
is being actively developed and applied to investigation of different applications by
such famous scientists as S.V. Emelyanov, A.S. Poznyak, V.I. Utkin and others (see
e.g. [1, 5, 10, 16, 17, 30, 66, 71, 72, 75, 78]).

The following work is motivated by the problem of investigation of a drilling
system. This problem was studied by the research group from the Eindhoven Uni-
versity of Technology [14, 64]. In these papers, the interaction of the drill with the
bedrock is described by symmetric discontinuous characteristics. In the paper [45]
a more precise model of friction is considered for simplified mathematical model
of drilling system actuated by induction motor. Here the following assumption is
made: the moment of resistance force with asymmetric characteristics (see Fig. 9.2,
M is assumed to be large enough) is used instead of classical Coulomb friction with
symmetric discontinuous characteristics. Such an asymmetric characteristic has a
“locking” property—it allows rotation of the drill in one direction only. The consid-
ered simplified model corresponds to an, ordinary hand electric drill. In this case it
is naturally to assume that the drilling takes place in one direction only.

The study of discontinuous systems with dry friction is a challenging task due to
the need for a special theory for discontinuous systems to be developed. In particular,
a proper definition of the solution on discontinuity surfaces is required. Now there are
many definitions of solutions of discontinuous system, here three of them are consid-
ered following the works [19, 20, 22, 28, 54]. Analytical investigation of stability
of simplified drilling systems will be performed. Additional examples of numeri-
cal modeling theory of differential inclusions and its application in discontinuous
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Fig. 9.2 Non-symmetric
friction torque M f
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mechanical systems will be considered. It will be explained why it is necessary to
use special methods of investigation for discontinuous systems.

9.2 Differential Equation with Discontinuous Right-Hand
Sides and Differential Inclusions: Definitions of
Solutions

The starting point of studies in theory of differential inclusions is usually connected
with the works of French mathematician A. Marchaud and Polish mathematician
S.K. Zaremba published in 1934–1936. They were studying equations of the form

Dx ⊂ f (t, x), (9.1)

where t ∈ Dt ⊂ R, x ∈ Dx ⊂ R
n and f (t, x) is a multivalued vector function that

maps each point (t, x) of some regionD = Dt × Dx to the set f (t, x) of points from
R

n . For operator D the notions of contingent and paratingent were introduced by
Marchaud and Zaremba respectively.

Definition 9.1 Contingent of vector function x(t) at the point t0 is a set Cont x(t0)

of all limit points of sequences
x(ti ) − x(t0)

ti − t0
, ti → t0, i = 1, 2, . . .

Definition 9.2 Paratingent of vector function x(t) at the point t0 is a set Parat x(t0)

of all limit points of sequences
x(ti ) − x(t j )

ti − t j
, ti → t0, t j → t0, i = 1, 2, . . .

Wazhewski continued investigations of Marchaud and Zaremba and proved [80]
that if x(t) is a solution of differential inclusion (9.1) in the sense of Marchaud then
vector function x(t) is absolutely continuous.
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Definition 9.3 Let I ⊂ Dt ⊂ R be an interval of time. Function x(t) : I → R
n is

absolutely continuous on I if for every positive number ε there is a positive number
δ such that whenever a finite sequence of pairwise disjoint sub-intervals (t1k, t2k) of
I with t1k, t2k ∈ I satisfies ∑

k

(t2k − t1k) < δ

then ∑

k

||x(t2k) − x(t1k)|| < ε.

Important property of absolutely continuous function x(t) is that x(t) has deriva-
tive ẋ(t) almost everywhere on I (see, e.g. [74]). This property played a key role in
the development of theory of differential inclusions and equations with discontinu-
ous right-hand side since it allowed to avoid artificial constructions in Definitions 9.1
and 9.2 and to consider usual derivative almost everywhere.

In 1960 paper [21] was published by A.F. Filippov, where he considered solutions
of differential equations with discontinuous right-hand side as absolutely continuous
functions. Filippov approach is one of the most popular among other notions of
solutions of systems with discontinuous right-hand sides. Following [21], consider
a system

ẋ = f (t, x), t ∈ R, x ∈ R
n, (9.2)

where f : R × R
n → R

n is a piecewise continuous function such that measure of
the set of discontinuity points is assumed to be zero.

Definition 9.4 Vector function x(t), definedon an interval (t1, t2), is called a solution
of (9.2) if it is absolutely continuous and for almost all t ∈ (t1, t2) vector ẋ(t) is within
minimal closed convex set, which contains all f (t, x ′) when x ′ is within almost all
δ-neighbourhoods of the point x(t) in Rn (for fixed t), i.e.

ẋ ∈
∏

δ>0

∏

μN=0

conv f (t,U (x(t), δ) − N ). (9.3)

Consider the case when system (9.2) is autonomous and vector function f (x) is
discontinuous on some smooth surface S inRn and continuous in the neighbourhood
of this surface. Let there exist limits f+(x) and f−(x) of vector function f (x) when
a point x approaches S from one or another side. Suppose that the vectors f+(x)
and f−(x) are both pointing towards the discontinuity surface S. Then the so-called
slidingmode appears. According toDefinition 9.4, the vector field of slidingmode on
the discontinuity surface can be defined as follows. The plane tangent to the surface
S at the point x and the segment l, which connects the terminal points of vectors
f+(x) and f−(x), are constructed. Then the vector with initial point at x and terminal
point at the point of intersection of the segment and tangent plane is constructed:
f0 = f0(x). According to Definition 9.4, vector f0(x) defines vector field at the point
x .
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The obtained solution of (9.2) satisfies Definition 9.4, but nevertheless there are
important applied problems for which Definition 9.4 is unsuitable. As an exam-
ple of such a problem we consider a problem of synthesis of controls u1 and u2,
which are limited, |u1| ≤ 1, |u2| ≤ 1, and which transform optimally fast each point
(x1(0), x2(0)) of the system

ẋ1 = x2u1, ẋ2 = u2 (9.4)

to the origin of coordinates. It is well-known [7] that synthesis of such a control is
possible for the whole plane (x1, x2). For example, for the first quadrant of the plane
the optimal control is as follows

u1 =
{
1, x1 < 0.5x22,

−1, x1 ≥ 0.5x22,
u2 =

{
−1, x1 ≤ 0.5x22,

1, x1 > 0.5x22.
(9.5)

In particular, the trajectory x1 = 0.5x22 is optimal and for this trajectory system
(9.4) takes the form ẋ1 = −x2, ẋ2 = −1. Let us take the point x = (x1, x2) on
this trajectory and approach to this trajectory from the side x1 < 0.5x22. The limit
value of the right-hand sides of system (9.4) is f+(x) = (x2,−1). If we approach
the trajectory from the side x1 > 0.5x22, then the limit is f−(x) = (−x2, 1). Since
f+(x) = − f−(x), in this particular case the segment l passes through the point x ,
i.e. f0(x) = 0 and according to Definition 9.4 the solution on sliding mode is equi-
librium state. At the same time (−x2,−1) is a velocity vector on optimal trajectory.
Thus, optimal trajectory is not a solution in the sense of Definition 9.4 by Filippov.

M.A. Aizerman and E.S. Pyatnitskiy [61] offered other definition of solution
of equations with discontinuous right-hand sides which allows one to deal with
usual derivative. We consider their approach in the particular case when f (t, x) is
discontinuous on the surface �. Consider a sequence of continuous vector functions
fε(t, x), which coincide with f (t, x) outside of ε-neighbourhood of surface �, and
tend to f (t, x) for ε → 0 at each point, which does not belong to Σ . Let xε(t) be a
solution of the system

ẋ = fε(t, x). (9.6)

Then the solution of system (9.2) in the sense of Aizerman and Pyatnitskiy is a limit
of any uniformly converging subsequence of solutions xεk (t):

xεk (t) ⇒ x(t).

In general, there may exist more than one such limit. Nevertheless this notion of
solution, introduced in [61], does not always suitable for applications.

For example, consider a system

ẋ = Ax + bφ(σ), σ = c∗x, (9.7)
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Fig. 9.3 Friction model,
where static friction exceeds
dynamic friction

0

φ

σ

-1

α

1

-α

where φ(σ) is a dry friction characteristic, shown in Fig. 9.1 or in Fig. 9.3, i.e.

φ(σ) =
{
sign σ, σ 	= 0,

[−1, 1], σ = 0,
or φ(σ) =

{
sign σ, σ 	= 0,

[−α, α], σ = 0.
(9.8)

Since the definitions suggested by Filippov and by Aizerman and Pyatnitskiy deal
only with those values of a nonlinearity for which σ 	= 0, the solutions of system
(9.7) with dry friction characteristics, shown in Fig. 9.1 and in Fig. 9.3 coincide. This
result does not match the physics of this phenomena.

To take into account dynamics on the discontinuity surface, the most adequate
approach is to consider system with discontinuous right-hand side (9.2) as system
with multivalued right-hand side, called differential inclusion [18, 20]:

ẋ ∈ f (t, x), (9.9)

where t ∈ DDDt ⊂ R, x ∈ Dx ⊂ R
n and f (t, x) is a multivalued vector function that

maps each point (t, x) of some regionD = Dt × Dx to the set f (t, x) of points from
R

n .

Definition 9.5 The vector function x(t) is called a solution of differential inclusion
(9.9), if it is absolutely continuous and for those t for which derivative ẋ(t) exists,
the following inclusion holds:

ẋ(t) ∈ f (t, x(t)). (9.10)

To build a substantive theory, it is assumed that multivalued function f (t, x) is
semicontinuous.Filippov approach [19] requires additionally that∀(t, x) ∈ D the set
f (t, x) is aminimal closed bounded set. This conditions coincidewithDefinition 9.4.

Definition 9.6 Function f (t, x) is called semicontinuous (upper semicontinuous,
β-continuous) at the point (t0, x0) if for any ε > 0 there exists δ(ε, t, x) such that
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the set f (t, x) is contained in the ε-neighbourhood of set f (x0, x0), provided that
the point (t, x) belongs to δ-neighbourhood of the point (t0, x0).

As was shown above for some physical problems Filippov definition may gives
wrong results, thus a more general class of multivalued functions f (t, x) was con-
sidered by A. Kh. Gelig, G.A. Leonov and V.A. Yakubovich [20] (Gelig-Leonov-
Yakubovich approach): ∀(t, x) ∈ D the set f (t, x) is a bounded, closed, and convex
set.

The following local theorem on the existence of solutions of differential inclusion
holds true [20].

Theorem 9.1 Suppose that multivalued the function f (t, x) is semicontinuous at
every point (t1, x1) of a region

D1 ⊂ D : |t1 − t0| ≤ α, |x1 − a| ≤ ρ,

and set f (t1, x1) is bounded, closed, and convex. In addition, suppose

sup |y| = c for y ∈ f (t1, x1), (t1, x1) ∈ D1.

Then for |t − t0| ≤ τ = min(α, ρ/c) there exists at least one solution x(t)with initial
condition x(t0) = a, which satisfies (9.9) in the sense of Definition 9.5.

For differential inclusion (9.9) theorem on the continuation of solution remaining
in a bounded region holds true. Also the theorem, which states that for every ω-
limiting point of trajectory x(t) there exists at least one trajectory that entirely consists
of ω-limiting points, and some other theorems of qualitative theory, are valid [19,
20, 77].

For generalizations of classic results of stability theory on solutions of differential
inclusion (9.9) in Gelig-Leonov-Yakubovich approach the existence of procedure of
determination of discontinuous right-hand side according to a chosen solution (i.e.
existence of extended nonlinearity, which allows one to replace differential inclusion
with differential equation) was proven byB.M.Makarov specially for themonograph
[20].

Let us demonstrate now the methods of theory of differential equations with
discontinuous right-hand sides, described above, in concrete problems.

9.3 Analytical Methods of Investigation of Discontinuous
Systems: An Example of Mathematical Model of
Drilling System with “Locking Friction”

Consider the simplified mathematical model of drilling system actuated by induction
motor (here we follow the works [26, 45]). Assume that the drill is absolutely rigid
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body stiffly connected to the rotor, which rotates by means of the magnetic field
created by the stator of the induction motor. The value of interaction of the drill
with the bedrock is defined as a value of resistance torque, which appears during the
drilling process. Such a system experiences rapidly changes loads during the drilling,
thus it is necessary to investigate the behavior of induction motor during load jumps,
i.e. when resistance torque acting on the drill suddenly changes.

The following problem of stability is urgent since decrease of drilling systems
failures plays important role in the oil and gas industry [76, 79].

As the equations of electromechanicalmodel of the drilling systemweconsider the
equations of induction motor, proposed in [34, 52], supplemented with the resistance
torque M f of drilling:

L
di1
dt

+ Ri1 = SB(sinθ)θ̇ ,

L
di2
dt

+ Ri2 = SB(cosθ)θ̇ ,

I θ̈ ∈ −βSB(i1sinθ + i2cosθ) + M f

(
R

L
+ θ̇

)
. (9.11)

Here θ is a rotation angle of the drill about the magnetic field created by the

stator, which rotates with a constant angular speed
R

L
, i1(t), i2(t) are currents in

rotor windings, R is resistance of windings, L is inductance of windings, B is the
induction of magnetic field, S is an area of one wind, I is an inertia torque of drill,

β is a proportionality factor, ω = θ̇ + R

L
is an angular velocity of the drill rotation

with respect to a fixed coordinate system. The resistance torque M f is assumed
to be of the Coulomb type [20, 65]. Unlike the classic Coulomb friction law with
symmetrical discontinuous characteristic the friction torqueM f has non-symmetrical
discontinuous characteristics shown in Fig. 9.2.:

M f (ω) =

⎧
⎪⎨

⎪⎩

−T0 forω > 0

[−T0, MT0] forω = 0

MT0 forω < 0.

For T0 ≥ 0 the number M > is assumed to be large enough. That means that the
drilling process only takes place when ω > 0. Such characteristics does not allow
for ω to switch from positive to negative values during the transient process in real
drilling systems. In this case the system only gets stuck for ω = 0 for a long enough
period of time. These effects happen frequently during drilling operation and are
studied by the analysis of system (9.11).

Performing the nonsingular change of variables
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s = −θ̇ ,

x = L

SB
(i1cosθ − i2sinθ),

y = L

SB
(i1sinθ + i2cosθ)

we reduce system (9.11) to the following one:

ṡ ∈ ay + M̃ f (s),
ẏ = −cy − s − xs,
ẋ = −cx + ys,

(9.12)

where a = β(SB)2

I L
, c = R

L
. Here variables x , y define electric values in rotor wind-

ings and the variable s defines the sliding of the rotor. M̃ f has the following form

M̃ f (s) =

⎧
⎪⎨

⎪⎩

γ, s < c;
[−γ M, γ ], s = c;
−γ M, s > c;

where γ = T0
I
.

According to Makarov’s theorem for any solution of (9.12) in the sense of the
Gelig-Leonov-Yakubovich approach there exists extended nonlinearity M̃ f 0 such
that the following system is valid

ṡ(t) = ay(t) + M̃ f 0(t),
ẏ(t) = −cy(t) − s(t) − x(t)s(t),
ẋ(t) = −cx(t) + y(t)s(t)

(9.13)

for almost all t .
Let us conduct local analysis of equilibrium states of system (9.13).

Proposition 9.1 For 0 ≤ γ <
a

2
system (9.13) has a unique asymptotically stable

equilibrium state.

Indeed, for γ = 0 the system (9.13) has one asymptotically stable equilibrium
state s = 0, y = 0, x = 0, which occurs when the rotation of drill with constant
angular speed is congruent to the rotation speed of the magnetic field (idle speed
operation).

For γ ∈ (0,
a

2
) system (9.13) has one equilibrium state

s0 = c(a − √
a2 − 4γ 2)

2γ
, y0 = −γ

a
, x0 = −γ s0

ac
,



228 M. Kiseleva et al.

where s0 is the smallest root of the equation

acs

c2 + s2
= γ.

In this case the direction of rotation of the drill and the magnetic field are the same,
but the drill rotates with a lower angular speed s0 < c.

Assume that there is a sudden change in load at the moment t = τ from value γ0
to value γ1, where 0 < γ0 < γ1. This occurs at the moment when the drill comes in
contact with the bedrock. For γ = γ0 the system experiences a unique state of stable
equilibrium

s0 = c(a − √
a2 − 4γ02)

2γ0
, y0 = −γ0

a
, x0 = −γ0s0

ac
.

It is essential that after the transient process the solution s(t), x(t), y(t) of the

system (9.12) with γ = γ1 and the initial data s(τ ) = c(a − √
a2 − 4γ02)

2γ0
, y(τ ) =

−γ0

a
, x(τ ) = −γ0s0

ac
tends to the equilibrium state

s1 = c(a − √
a2 − 4γ12)

2γ1
, y1 = −γ1

a
, x1 = −γ1s1

ac

as t → +∞.
The following theorem holds.

Theorem 9.2 Let the following conditions be fulfilled

γ0 <
a

2
, (9.14)

γ1 < min
{a
2
, 2c2

}
, (9.15)

3(M2 + 2M)γ 2
1 − 8c2γ1 + 3ac2 ≥ 0. (9.16)

Then the solution of system (9.13) with γ = γ1 and the initial data s(τ ) =
c(a − √

a2 − 4γ02)

2γ0
, y(τ ) = −γ0

a
, x(τ ) = −γ0s0

ac
tends to an equilibrium state of

this system as t → +∞.

Let us give the scheme of the proof of this theorem. We consider the region
{s(t) < c} of the phase space of system (9.13).

Performing the change of variables
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η(t) = ay(t) + γ1, z(t) = −x(t) − γ1

ac
s(t),

we reduce system (9.13) to the following system

ṡ(t) = η(t),
η̇(t) = −cη(t) + az(t)s(t) − ψ(s(t)), for almost all t

ż(t) = −cz(t) − 1

a
s(t)η(t) − γ1

ac
η(t).

(9.17)

Here ψ(s) = −γ1

c
s2 + as − cγ1.

Introduce a function

V (s, η, z) = a2

2
z2 + 1

2
η2 +

s∫

s1

ψ(s)ds.

For every solution of system (9.17) from region s(t) < c the following condition

V̇ (s(t), η(t), z(t)) = −a2cz(t)2 − aγ1

c
η(t)z(t) − cη(t)2 ≤ 0 for almost all t

(9.18)
is fulfilled.

Quadratic form in the right-hand side of system (9.18) is definitely negative under
condition (9.15).

We introduce a set

� =
⎧
⎨

⎩V (s, η, z) ≤
c∫

s1

ψ(s)ds + (1 + M)2

2
γ 2
1 , s ∈ [s2, c]

⎫
⎬

⎭ ,

where the point s2 < c is such that

c∫

s2

ψ(s)ds + (1 + M)2

2
γ 2
1 = 0.

The set Ω is limited and for s = c it becomes

a2

2
z2 + 1

2
η2 ≤ (1 + M)2

2
γ 2
1 .

Returning to the initial coordinates (x , y, s), we obtain

(x + γ1

a
)2 + (y + γ1

a
)2 ≤ (1 + M)2

a2
γ 2
1 .
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Note that this circle is below the upper boundary y = Mγ1

a
of the sliding region

Δ =
{
s = c,−γ1

a
≤ y ≤ Mγ1

a

}
of system (9.13).

In the sliding region � system (9.13) can be reduced to the system of ordinary
differential equations

ẏ(t) = −cy(t) − c − cx(t),
ẋ(t) = −cx(t) + cy(t),

which is reduced by replacement of time t = t1
c
to

ẏ(t) = −y(t) − x(t) − 1,
ẋ(t) = −x(t) + y(t).

(9.19)

We introduce a function

W (x, y) =
(
x + γ1

a

)2 +
(
y + γ1

a

)2
.

Semicircles
{
W (x, y) = R2, y > −γ1

a

}
, where R ≤ M + 1

a
γ1, are noncontact

for system (9.19). Indeed, for the solutions of the system (9.19) under condition
(9.15) the following relation

1

2
Ẇ (x(t), y(t)) = −y2(t) − y(t) − γ1

a
+ γ 2

1

a2
−

(
x(t) + γ1

a

)2

=
(
2γ1
a

− 1

)
y(t) + γ1

a

(
2γ1
a

− 1

)
− R2 < 0

is valid.

The solution, which falls into the sliding region, necessarily comes out through

the lower boundary y = −γ1

a
into the region s < c due to the fact that ṡ < 0 for

s = c, y < −γ1

a
. From condition (9.18) it follows that this solution proves to be

inside the region

{
V (s, η, z) ≤

c∫
s1

ψ(s)ds

}
. Then it does not fall further into the

sliding region, and tends to a unique equilibrium state (s1, y1, x1) of the system due
to the limitation of �. It is obvious that the trajectories, which fall into �, but not
existing in the sliding region, also tend to the equilibrium state.

For details about the classical results of Lyapunov (see [20]) allow one to prove
that the system is dichotomic1 if condition (9.15) is fulfilled.

1System is called dichotomic if every solution bounded for t > 0 tends to stationary set for t → +∞
[20, 46, 47, 52].
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The set � contains the point s = s0, η = γ1 − γ0, z = γ0 − γ1

ac
s0 if

(γ1 − γ0)
2

2c2
s0

2 + (γ1 − γ0)
2

2
≤

c∫

s0

ψ(s)ds + (1 + M)2

2
γ1

2. (9.20)

For γ0 < γ1 and condition (9.16) we have

(γ1 − γ0)
2

2
≤

c∫

0

ψ(s)ds + (1 + M)2

2
γ1

2. (9.21)

Let us show that

(γ1 − γ0)
2

2c2
s0

2 ≤
0∫

s0

ψ(s)ds. (9.22)

Indeed, taking into account that γ0 ≤ 2γ1, we obtain:
γ1

3c
s02 − a

2
s0 − (γ1 − γ0)

2

2c2
s0 + cγ1 = 1

12c2γ02
(c2(a − √

a2 − 4γ02)2γ1 − 3a2

c2γ0 + 3a2c
√
a2 − 4γ02γ0 − 3(γ1 − γ0)

2(a − √
a2 − 4γ02)γ0 + 12c2γ1γ02) ≥

1

12c2γ02
(2a2c2 − 2ac2

√
a2 − 4γ02γ1 + 3ac2

√
a2 − 4γ02 − 3a2c2γ0 +

3
√
a2 − 4γ02γ0γ12 − 3aγ1

2γ0 + 8c2γ02γ1) ≥ 0.
Hence, from inequalities (9.21) and (9.22) we obtain condition (9.20).
Thus solution s(t), η(t), z(t) with the initial data s(τ ) = s0, η(τ) = γ1 − γ0,

z(τ ) = γ0 − γ1

ac
s0 tends to equilibrium state of the system.

Let M be a reasonably large number such that condition (9.16) of the theorem is
fulfilled. In this case the following statement is valid.

Corollary 9.1 Let γ0 = 0 and

γ1 < min
{a
2
, 2c2

}
. (9.23)

Then the solution of system (9.12) with γ = γ1 and the initial data s(τ ) = 0, y(τ ) =
0, x(τ ) = 0 tends to equilibrium state of this system as t → +∞.

For the values γ1 ∈
{
2c2,

a

2

}
(i.e., condition (9.23) is not fulfilled) the computer

modeling of system (9.12) (region 2 in Fig. 9.4), which shows that the statement
of consequence is retained, is carried out. Further we will discuss the aspects of
modeling of systems with multivalued right-hand sides.

It can be checked that the extended nonlinearity can be written down in explicit
form.
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Fig. 9.4 Safe load region:
1—due to the theorem,
2—obtained by numerical
modeling of the system  =

 2c
2

 = a/2



c0

2
1

Corollary 9.2 For system (9.12) the extended nonlinearity is of the following form:

M̃ f 0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ, if s = c, y < −γ

a
or s < c;

−γ M, if s = c, y >
Mγ

a
or s > c;

−ay, if s = c,−γ

a
≤ y ≤ Mγ

a
.

In the works [27, 29, 31, 32, 53, 55] more complex models of drilling systems
were studied. Analytical investigation of such models is a challenging task, so it
is necessary to use numerical methods. Let us further describe some aspects of
numerical modeling in two other applied systems—Watt governor and Chua circuit.

9.4 Numerical Methods of Investigation of Discontinuous
Systems

9.4.1 Difficulties of Numerical Modeling of Discontinuous
Systems

Numerical modeling is one of the tools of investigation of differential equations
with discontinuous equations with right-hand sides. Let us first show why it is
important to use special methods developed for discontinuous systems. Consider the
I.A. Vyshnegradsky problem. The following system of differential equations
describes dynamics of Watt governor with dry friction

ẏ1 = −Ay1 + y2 − sign(y1),

ẏ2 = −By1 + y3,

ẏ3 = −y1.

(9.24)

Let sign be understood here in ordinary sense:



9 Theory of Differential Inclusions and Its Application in Mechanics 233

1200 1250 1300 1350 1400 1450 1500 1550 1600
−1.5

−1

−0.

−0.

5

0

0.5

1

1.5
x 10−3

t

y 1

0 10 20 30 40 50 60 70 80
5

0

0.5

1

t

y 1

Fig. 9.5 Numerical modeling of Watt governor using built-in Matlab functions

sign(y1) =

⎧
⎪⎨

⎪⎩

1, if y1 > 0;
0, if y1 = 0;
−1, if y1 < 0.

Let us consider the values of parameters A = 1.5, B = 1.1 and conduct numeri-
cal modeling of trajectory of system (9.24) with initial data y1(0) = −0.5, y2 = 1,
y3(0) = 1.2, using standard Matlab build-in function ode45 for solving ordinary dif-
ferential equations. As can be seen in Fig. 9.5 numerical modeling shows that there
are oscillations in system (9.24).

This nonlinear system was studied by A.A. Andronov and A.G. Mayer [4]. In
particular, they proved that sliding segment of this system is globally stable if the
following inequalities

A > 0, B > 0, AB > 1. (9.25)

are satisfied.
Thus, the result of modeling with standard build-in Matlab functions may lead to

wrong results. Moreover, the notation (9.24) is wrong and right notation is as follows

ẏ1 ∈ −Ay1 + y2 − Sign(y1),

ẏ2 = −By1 + y3,

ẏ3 = −y1,

(9.26)

and the model of dry friction is described in the following way

Sign(y1) =

⎧
⎪⎨

⎪⎩

1, if y1 > 0;
[−1, 1], if y1 = 0;
−1, if y1 < 0.
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Fig. 9.6 Numerical modeling of Watt governor using Filippov definition
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Fig. 9.7 Plots of satε(x1) and sign(x1)

Let us conduct the numerical modeling using Filippov definition [70]. The results
of the modeling of system (9.26) correspond to theoretical results and are shown in
Fig. 9.6.

9.4.2 Numerical Modeling of Chua System

We showed an example of numerical modeling of a discontinuous system based
on Filippov’s approach. Let us compare this method with modeling based on the
Aizerman–Pyatnitskiy approach.

Consider the following example of discontinuous system—modified Chua system
with discontinues characteristic [36, 37, 54]

ẋ1 ∈ −α(m1 + 1)x1 + αx2 − α(m0 − m1)Sign(x1),
ẋ2 = x1 − x2 + x3,
ẋ3 = −βx2 − γ x3,

(9.27)

where α, β, γ , m0, m1 are parameters of the system.
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Fig. 9.8 Hidden attractor in Chua system: comparison of solutions

For parameters α = 8.4562, β = 12.0732, γ = 0.0052, m0 = −0.1768, m1 =
−1.1468 system (9.27) has a so-called hidden attractor2 [35, 41, 49–51, 56].

So as to model system (9.27) with the help of both Filippov and Gelig-Leonov-
Yakubovich definitions, the special event-driven numerical method, described in
[70], was used. To model the system, using the Aizerman-Pyatnitskiy approach,

one needs to replace sign(x1) by satε(x1) = 1

2

(
| x1
ε

+ 1| − | x1
ε

− 1|
)
, where ε >

0. Decrease of parameter ε allows one to obtain Aizerman-Pyatnitskiy solution
(satε(x1) ⇒ sign(x1) for ε 	= 0, see Fig. 9.7). In Fig. 9.8 hidden attractor modeled
using Filippov’s definition method is drawn in red colour and hidden attractor mod-
eled using the Aizerman and Pyatnitskiy definition method is drawn in green. As one
can see, the more ε is decreased, the more solutions (attractors) coincide with each
other. This fact meets theorem proved in [28, 54].

Conclusion

We have discussed Filippov, Aizerman-Pyatnitskiy, and Gelig-Leonov-Yakubovich
approaches to the study of differential equations with discontinuous right-hand sides
and differential inclusions. While for a wide range of dynamical models with these
three approaches give the same result (see, e.g. [28, 54]), there are models, where the

2From a computational point of view, it is natural to suggest the following classification of attractors,
based on the simplicity of finding the basin of attraction in the phase space: [35, 41, 49–51, 56]:
An attractor is called a self-excited attractor if its basin of attraction intersects with any open
neighbourhoodof an equilibrium, otherwise it is called a hidden attractor.For a self-excited attractor
its basin of attraction is connectedwith an unstable equilibrium and, therefore, self-excited attractors
can be localized numerically by the standard computational procedure in which after a transient
process a trajectory, started in a neighbourhood of an unstable equilibrium, is attracted to the state of
oscillation and traces it. For a hidden attractor its basin of attraction is not connected with equilibria.
The hidden attractors, for example, are the attractors in the systems with no equilibria or with only
one stable equilibrium (a special case of multistability—multistable systems and coexistence of
attractors) [15, 31, 39]. The classical examples of the hidden oscillations are nested limit cycles in
the study of 16th Hilbert problem (see, e.g., [42]), counter examples to the Aizerman and Kalman
conjectures on the absolute stability of nonlinear control systems [9, 44, 57], and oscillations in
electromechanical models without equilibria and with Sommerfeld effect [31]. Recent examples of
hidden attractors can be found, e.g., in [2, 3, 11–13, 25, 27, 38, 40, 43, 48, 49, 53, 58–60, 63,
67–69, 81–85].
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difference between these definitions is essential. As examples, we have considered te
Chua circuit with discontinues characteristic, and mechanical systems with classical
Coulomb symmetric friction law and the asymmetrical friction torque characteristic.
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Chapter 10
Stability Probabilities of Sliding Mode
Control of Linear Continuous Markovian
Jump Systems

Jiaming Zhu and Xinghuo Yu

Abstract In this chapter, an equivalent control-based sliding mode control is
proposed for linear Markovian jump systems, which guarantees the asymptotical
stability. The control objects are single-input single-output systems and multi-input
multi-output systems. By using the stochastic system theory, a multi-step state tran-
sition conditional probability function is introduced for the continuous Markovian
process, which is used to define the reaching and sliding probabilities. Furthermore,
the formulas for calculating reaching and sliding probabilities are derived for situa-
tions where the control force may not be strong enough to ensure the fully asymptot-
ical stability. In particular, for multi-input multi-output systems, by using the linear
matrix inequality approach, sufficient conditions are proposed to guarantee the sto-
chastically asymptotical stability of the systems on the sliding surfaces. Extensive
simulations are conducted to validate the theoretical results and show the relationship
between the control force and reaching and sliding probabilities.

10.1 Introduction

In recent years, continuous Markovian jump systems (MJSs) have gained particular
research interest. ContinuousMJSs are a class of continuous-time dynamical systems
with stochastic jumps, in which jumping parameters are modeled as a continuous-
time, discrete-state Markov chain with right continuous trajectories taking values in
a finite set. A continuous-time Markov chain is a stochastic process that moves from
state to state in accordance with a (discrete-time) Markov chain, but is such that the
amount of time it spends in each state is exponentially distributed, before proceeding
to the next state. These systems represent a class of stochastic systems that are pop-
ular in modeling practical systems which may experience random abrupt changes in
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their structures and parameters. Such a system can be found in robotic manipulator
systems, aircraft control, space stations, nuclear power plants, and wireless commu-
nication networks. Numerous results on MJSs have been reported in the literature
[1–11]. These results cover a wide range of fields, including quadratic control [1],
output feedback control [2], guarantee cost control [3], robust stabilization of MJS
with uncertain switch probability [4] and partly unknown transition probability [5],
H∞ control and filter [6], robust Kalman filter [7], exponential filter [8], and state
estimation and sliding mode control of singular MJSs [11].

Sliding mode control (SMC) has been regarded as an important robust control
method for uncertain nonlinear systems. SMC is a nonlinear control method that
alters the dynamics of a nonlinear system by application of a discontinuous con-
trol signal that forces the system to enter and then slide along a surface embedded
with prescribed dynamical properties for all subsequent times. In the past decades,
SMC has been successfully applied to a wide variety of practical engineering sys-
tems. Most recently, significant and substantial progress has been achieved in SMC
for MJSs [12–25]. These include adaptive SMC for stochastic MJSs with actuator
degradation [15], SMC for stochastic MJSs with incomplete transition rate [16],
non-fragile observer-based H∞ SMC for Ito stochastic systems with Markovian
switching [18], asynchronous H2/H∞ filtering for discrete-time stochastic MJSs
with randomly occurred sensor nonlinearities [19], observer-based H∞ control on
nonhomogeneous MJSs with nonlinear input [20], adaptive SMCwith application to
super-twist algorithm [21], robust H∞ SMC for MJSs subject to intermittent obser-
vations and partially known transition probabilities [22], and finite-time stabilization
for MJSs with Gaussian transition probabilities [23]. In [24], combining with LMI
conditions of stochastic stability and integral sliding surface, a SMC law is synthe-
sized for singular MJSs, which can achieve the bounded L2 gain performance. In
[25], a bounded real lemma and an integral sliding surface are introduced, and then
a SMC law is proposed for time-delay singular MJSs.

Although substantial progress has been made in MJSs under SMC, there are still
some fundamental problems which have not been fully studied. The literatures only
explored SMC of MJSs assuming that the required strong control force is available
to overpower the stochastic uncertainty. However, in practice, controls are usually
limited in power and sometimes insufficient, which may only make the controlled
system reach the control target in a probabilistic sense. The outstanding question is
what is the relationship between the control force and probabilistic jumping nature of
MJSs. In [26], for SMC of second-order MJS;, the asymptotical stability probability
was introduced to ensure the fully asymptotical stability.

In this chapter, we further explore the SMC of linear MJSs. The control objects
include single-input single-output (SISO) systems and multi-input multi-output
(MIMO) systems. We first derive conditions that guarantee the asymptotical sta-
bility of the MJSs under an equivalent control-based SMC paradigm. We then pro-
pose the reaching and sliding probabilities to deal with the situations where there
is no sufficient control force. Particularly for MIMO systems, by using the linear
matrix inequality(LMI) approach, sufficient conditions are proposed to guarantee the
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stochastically asymptotical stability of the systems on the sliding surfaces. Simula-
tion studies are done to demonstrate the effectiveness of the results.

This paper is organized as follows. After the introduction in Sect. 10.1, the SMC
of SISO linear MJSs is presented in Sect. 10.2. Next, the SMC ofMIMO linear MJSs
is presented in Sect. 10.3. Then, the numerical simulation result is given in Sect. 10.4.

10.2 Sliding Mode Control of SISO Linear Markovian
Jump Systems

Before proceeding, we introduce some notations which will be used later for deriva-
tions and discussions. P(·) denotes the probability of an event. P(A|B) denotes the
conditional probability of event A given event B. P(E A|B) denotes the conditional
probability of events A and E given event B. P(E |AB) denotes the conditional
probability of event E given events A and B. ‖ · ‖ denotes the Euclidean norm of a
vector or the Frobenius norm of a matrix. M < 0 denotes that matrix M is a negative
definite matrix.

10.2.1 Problem Statement and Preliminaries

The SISO linear MJS under investigation is

⎧
⎨

⎩

ẋ1(t) = A11x1(t) + A12x2(t),
dx2(t) = (A21(ηt )x1(t) + A22(ηt )x2(t) + B2(ηt )u(t))dt + D(x)dω,

η0 = s0, t ≥ 0,
(10.1)

where

A11 =

⎡

⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 1
0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎦

, A12 =

⎡

⎢
⎢
⎢
⎣

0
...

0
1

⎤

⎥
⎥
⎥
⎦

, (10.2)

A21(ηt ) = [−a1(ηt ), −a2(ηt ) · · · , −an−1(ηt )
]
, (10.3)

A22(ηt ) = −an(ηt ), B2(ηt ) = b2(ηt ), (10.4)

|D(x)| ≤ H‖x‖, (10.5)
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x(t) = [xT1 (t), x2(t)]T is the system state, x1(t) ∈ Rn−1, x2(t) ∈ R; u(t) ∈ R is the
control input; D(x) is a known continuous function; ω is a 1-dimensional Brownian
motion; A11, A12, A21, A22, B2 are coefficient matrices with compatible dimensions,
H is a known constant and {ηt , t ∈ [0, T ]} is a finite-state Markovian process hav-
ing a state-space S = {1, 2, . . . , ν}, B2( j) > b0 > 0, j ∈ S, generator (αi j ) with
transition probability from mode i at time t to mode j at time t + �, i, j ∈ S,

Pi j (�) = P(ηt+� = j |ηt = i)

=
{

αi j� + o(�), if i �= j,
1 + αi i� + o(�), if i = j,

(10.6)

where

αi i = −
ν∑

m=1,m �=i

αim, αi j ≥ 0,∀i, j ∈ S, i �= j, (10.7)

� > 0 and lim
�→0

o(�)/� = 0.

Assumption 1. The Markovian process ηt is unmeasurable. Only the initial state ηt0
and the generators (αi j ) are available.

The sliding variable is defined as

s(x) = C1x1 + x2, C1 = [c1, c2, . . . , cn−1] (10.8)

where s is Hurwitz. Substituting (10.8) into system (10.1) yields

⎧
⎨

⎩

ẋ1 = (A11 − A12C1)x1 + A12s,
ds = ( Ā21(ηt )x1 + Ā22(ηt )s + B2(ηt )u(t))dt + D(x)dω,

η0 = s0, t ≥ 0.
(10.9)

where

Ā21(ηt ) = C1A11 − C1A12C1 + A21 − A22C1,

Ā22(ηt ) = C1A12 + A22. (10.10)

Definition 10.1 The system (1) is called mean-square stable, if for each ε > 0, there
is a δ > 0, such that

sup
t0≤t<∞

E‖x(t)‖2 < ε, for all ‖x0‖ < δ. (10.11)

In addition, the system (1) is called asymptotically mean-square stable, if it is mean-
square stable and there is a δ0 > 0, such that

lim
t→∞ E‖x(t)‖2 = 0, for all ‖x0‖ < δ0. (10.12)
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For conventional (non-Markovian jumping) linear systems, D(x) = 0, a well-known
SMC is the equivalent control-based SMC [14] where

u(t) = ueq − ksgn(s), (10.13)

with k > 0 and

ueq = −B−1
2 ( Ā21x1 + Ā22s). (10.14)

which enables ṡ = 0. This SMC scheme can drive the system trajectory to reach the
switching surface in a finite time, and then maintain it on the surface at all times.
When in the sliding mode, the system state converges to zero exponentially.

Noting Assumption 1, this SMC scheme cannot be applied directly, for the sto-
chastic coefficients Ā21, Ā22 are not available. The equivalent control ueq has to be
redesigned.

An important step to studyMJSs under SMC is to derivemulti-step state transition
probability which will be very useful to study reaching and sliding probabilities.
Equation (10.6) shows the probability of state transition from i to j at time interval
from t to t + �whatever it jumps how many times and along which transition route.
Also, it is not suitable for a large time interval, considering the existence of item o(�)

in the equation. However, in order to achieve the asymptotical stability of the systems
with different stochastic process parameters, the valid ranges of control parameters
could be different. Therefore, we must derive the probability of stochastic parameter
jumps along a known parameter transition route such as (s0, s1, . . . , sn) from time t
to t + �, for any �. Note that it is different from the transition probability in (10.6).
Without loss of generality, we consider the multi-step transition probability from
time 0 to tr where tr is a given time by which the switching surface s = 0 will be
reached.

First, we derive the one-step jump stochastic state transition probability density
function. From [27, 28], we have the transition probability formula

P(τ1 ≤ t, ητ1 = j |η0 = i) = qi j
qi

(1 − e−qi t ), (10.15)

P(ητ1 = j |η0 = i) = qi j
qi

, (10.16)

where

qi = −αi i = lim
t→0

1 − Pii (t)

t
, (10.17)

qi j = αi j = lim
t→0

Pi j (t)

t
, (10.18)

and τ1 represents the time at which the Markovian process parameter first jumps.
Thus, we have the one-step jump state transition probability density function as
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fpdf(τ1 = t, ητ1 = j |η0 = i)

= d

dt
P(τ1 ≤ t, ητ1 = j |η0 = i)

= qi j e
−qi t . (10.19)

Events are defined as follows.

B : The initial condition is η0 = s0. (10.20)

A j : ηt = j, 0 ≤ t ≤ tr . (10.21)

A0(t) : The stochastic process parameter does

not jump, ητ = s0, 0 ≤ τ ≤ t, (10.22)

Ak
j (t) : The stochastic process parameter jumps

k times

ητ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s0 0 ≤ τ < t1,
s1 t1 ≤ τ < t2,

...

sk tk ≤ τ ≤ t.

where the route rkj = (s0, . . . , sk) ∈ Sk (10.23)

Sk = {(s0, s1, . . . , sk)|si ∈ S, si−1 �= si ,

1 ≤ i ≤ k}. (10.24)

Ak(t) : Ak(t) =
⋃

rkj ∈Sk
Ak

j (t), k = 1, 2, . . . , n. (10.25)

The sample space is defined as

A(t) : A(t) =
∞⋃

n=0

An(t), (10.26)

which is the set of all possible stochastic jump events.
The total conditional probability is given as

P(A|B) = P

( ∞⋃

n=0

An(t)|B
)

=
∞∑

n=0

P(An|B) = 1, (10.27)

where
P(An|B) =

∑

rnj ∈Sn
P(An

j |B). (10.28)

The following Lemma is given.
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Lemma 10.1 ([29]) For the continuous Markovian stochastic process, n−step state
transition conditional probability is

P(A0(t)|B) = e−qs0 t , (10.29)

P(An
j (t)|B) =

∫ t

0
P(An−1

j (t − s)|B)qs0s1e
−qs0 sds, (10.30)

and

P(A j |B) = P(ηt = j |η0)

=
n=∞∑

n=0,sn= j

∑

rni ∈Sn
P(An

i (t)|B). (10.31)

where events are defined by (10.20)–(10.25).

Proof First, we consider that the Markovian process parameter does not jump. The
stochastic state transition conditional probability is given as

P(A0(t)|B) = e−qs0 t . (10.32)

Second, we consider that the Markovian process stochastic parameter jumps n times
(n ∈ [1,∞)).

Considering the Markov property, the stochastic state transition conditional prob-
ability is given as

P(An
j (t)|B) =

∫ t

0
P(An−1

j (t − s)|B)qs0s1e
−qs0 sds (10.33)

where P(An−1
j (t − s)|B) is the modification of P(An−1

j (t)|B), with all t being
replaced by t − s and all si being replaced by si+1. Therefore, all qsi−1si are replaced
by qsi si+1 , 0 ≤ i ≤ n − 1.

By (10.20)–(10.25), we have

P(A j |B) = P(ηt = j |η0) =
n=∞∑

n=0,sn= j

P(An|B)

=
n=∞∑

n=0,sn= j

∑

rni ∈Sn
P(An

i (t)|B). (10.34)

This completes the proof. �
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10.2.2 Control Scheme and Stability Probability

There are two important phases in SMC, the reaching phase and sliding phase. If the
control force is large enough, it can suppress any matched uncertainties to realize the
sliding motion. However, if it is not sufficiently large, it will affect the reaching and
sliding abilities of the SMC, that is, the reachability and sliding ability would be in a
probabilistic sense. In this section, wewill derive conditions to guarantee the globally
asymptotical stability of the MJSs under the equivalent control-based SMC. We will
also derive the reaching probability function and the sliding probability function. For
convenience, we introduce the reaching probability, denoted by P(Er |Br ), which
represents the condition probability of the system reaching the sliding mode in a
finite time tr , and the sliding probability, denoted by P(Es |Bs), which represents the
condition probability of the system maintaining on the sliding mode.

Events are defined as

Br : The condition is η0 = s0, x(0) = x0,

u(t) = fu(t), 0 ≤ t ≤ tr . (10.35)

Bs : The condition is ηtr = ηtr , x(tr ) = xtr ,

s(tr ) = 0, u(t) = fu(t), t > tr . (10.36)

Er : The system first reaches the sliding mode

at time tr , s(tr ) = 0. (10.37)

Es : The system maintains on the sliding mode,

s(t) = 0, t > tr . (10.38)

where tr is a given constant, fu(t) represents the designed control input.
From the above discussions, we know that we can easily design an equivalent

control-based SMC for LTI non-MJS systems that is globally and asymptotically
stable. Since MJSs can be regarded as a system stochastically jumping between a set
of LTI systems, the first question arises that how to design an equivalent control-based
SMC to make the SISO MJSs asymptotically stable.

The following SMC is proposed for the SISO MJS as

u(t) = ûeq(t) − k1‖x1‖sgn(s) − k2s − kr sgn(s) − 3

2s

H 2

b0
‖x‖2, if s �= 0,

u(t) = ûeq(t) − k1‖x1‖sgn(s) − k2s − kr sgn(s), if s = 0, (10.39)

where the variable s is defined by (10.8), k1, k2 are control parameters, and ûeq(t) is
the approximation of the equivalent control defined as

ûeq(t) = −
∑

j∈S
P̂j B

−1
2 ( j)( Ā21( j)x1 + Ā22( j)s). (10.40)
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where P̂j is the approximation of P(ηt = j |η0). Some auxiliary parameters are
defined as

k1i = B−1
2 (i)

∥
∥
∥
∥
∥
∥
Ā21(i) − B2(i)

∑

j∈S
P̂j B

−1
2 ( j) Ā21( j)

∥
∥
∥
∥
∥
∥

, (10.41)

k2i = B−1
2 (i)

∥
∥
∥
∥
∥
∥
Ā22(i) − B2(i)

∑

j∈S
P̂j B

−1
2 ( j) Ā22( j)

∥
∥
∥
∥
∥
∥

, (10.42)

for i = 1, . . . , ν.
The following theorem is given for the globally asymptotically stable MJS under

SMC.

Theorem 10.1 ([29]) For the SISO linear MJS (10.1) under SMC (10.39), if k1, k2
are selected as

k1 = max
i∈S {k1i }, k2 = max

i∈S {k2i }, (10.43)

where k1i , k2i are defined by (10.41) and (10.42), then the close-loop system is asymp-
totically stable.

Proof The Lyapunov function candidate is given as

V (s) = 1

4
s4. (10.44)

For any time t ≥ 0,ηt = i, i ∈ S. Thus system (10.9) can be written as

{
ẋ1 = (A11 − A12C1)x1 + A12s,
ds = ( Ā21(i)x1 + Ā22(i)s + B2(i)u(t))dt + D(x)dω,

(10.45)

where η0 = s0, t ≥ 0.
First, we study the reaching stage(0 ≤ t ≤ tr ).
Substituting SMC (10.39) and (10.43) into the derivative of s yields

LV (s) = s3[ Ā21(i)x1 + Ā22(i)s + B2(i)u(t)] + 1

2
Tr

{

DT (x)
∂2V

∂s2
D(x)

}

= s3

⎡

⎣ Ā21(i)x1 + Ā22(i)s − B2(i)
∑

j∈S
P̂j B

−1
2 ( j )

· ( Ā21( j)x1 + Ā22( j)s)

⎤

⎦ − B2(i)k1‖x1‖|s|3
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−B2(i)k2s
4 − B2(i)kr |s|3 − 3

2
H 2‖x‖2s2 + 3

2
D2(x)s2

≤
∥
∥
∥
∥
∥
∥
Ā21(i) − B2(i)

∑

j∈S
P̂j B

−1
2 ( j) Ā21( j)

∥
∥
∥
∥
∥
∥

‖x1‖|s|3

+
∥
∥
∥
∥
∥
∥
Ā22(i) − B2(i)

∑

j∈S
P̂j B

−1
2 ( j) Ā22( j)

∥
∥
∥
∥
∥
∥
s4

−B2(i)k1‖x1‖|s|3 − B2(i)k2s
4 − B2(i)kr |s|3

≤ −B2(i)kr |s|3 ≤ −min
i∈S {|B2(i)|}kr |s|3 ≤ 0, (10.46)

which means the system reaching the switching surface in finite time tr where tr =
|s(0)|

mini∈S{|B2(i)|}kr . The equality holds if and only if s = 0. It means under SMC (10.39),
the system can maintain it on the switching surface after reaching it.

Once the switching surface is reached, by (10.45), we have

ẋ1 = (A11 − A12C1)x1. (10.47)

Noting x2 = −C1x1, the entire system state x exponentially converges to the equi-
librium. This completes the proof. �

Here a new question arises. If the control is insufficient, what will the system’s
asymptotical stability probability be? This question is answered in the following.

In the reaching stage, the control target is to drive the system state to reach the
sliding mode in finite time tr . With the following definitions of auxiliary parameters

kn1 j = max
i∈rnj

{k1i } , kn2 j = max
i∈rnj

{k2i } , (10.48)

where k1i , k2i are defined by (10.41) and (10.42), and rnj = (s j0, . . . , s jn) ∈ Sn+1

represents the Markovian process state transition route, we derive the reaching prob-
ability formulae.

Theorem 10.2 ([29])For the SISO linearMJS (10.1) under SMC (10.39), the reach-
ing probability is given as follows

P(Er |Br ) =
m∑

n=0

P(Er A
n|Br ), (10.49)

where

P(Er A
n|B) =

∑

rnj ⊂Sn

P(Er |An
j B)P(An

j |B), (10.50)

P(Er |An
j B) =

{
1 k1 ≥ kn1 j and k2 ≥ kn2 j ,
0 k1 < kn1 j or k2 < kn2 j ,

(10.51)
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where m is a positive integer which satisfies

m∑

i=0

P(Er A
i |Br ) > 1 − ε,

on condition k1 = max
j∈S {k1 j }, k2 = max

j∈S {k2 j } and ε > 0 is a small constant.

Proof We consider the situations where the control parameters k1 and k2 are not
sufficient to guarantee the asymptotical stability of the MJS under SMC. Therefore,
there exist probabilities that the reaching phase does not exist.

First, consider that the stochastic parameter ηt does not jump. ηt = s0. The reach-
ing probability for no jump is

P(Er A
0|Br ) = P(Er |A0Br )P(A0|B) (10.52)

=
{
e−qs0 t k1 ≥ k1s0 and k2 ≥ k2s0 ,
0 k1 < k1s0or k2 < k2s0 ,

(10.53)

where P(A0|B) is defined by (10.29) and

P(Er |A0Br ) =
{
1 k1 ≥ k1s0 and k2 ≥ k2s0 ,
0 k1 < k1s0or k2 < k2s0 .

(10.54)

Now consider that the stochastic parameter ηt jumps n times (n ∈ [1,∞)). Denote
kn1 j , k

n
2 j as the sufficient control parameters which enable the system to reach the

control target while the stochastic parameter ηt jumps along the transition route rnj .
It holds that

kn1 j = max
i∈rnj

{k1i } , kn2 j = max
i∈rnj

{k2i } . (10.55)

The reaching probability for n jumps is

P(Er A
n|Br ) =

∑

rnj ⊂Sn

P(Er |An
j Br )P(An

j |B). (10.56)

where P(An
j |B) is defined by (10.30) and

P(Er |An
j Br ) =

{
1 k1 ≥ kn1 j and k2 ≥ kn2 j ,
0 k1 < kn1 jor k2 < kn2 j .

(10.57)

The total reaching probability is

P(Er |Br ) =
∞∑

i=0

P(Er A
i |Br ). (10.58)
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Considering that when tr is a constant, the stochastic parameter jump number j is
limited, we have an approximation that

P(Er |Br ) =
m∑

j=0

P(Er A
j |Br ), (10.59)

where m is a positive integer. In practice, we can set a rule that if
m∑

i=0
P(Er Ai |Br ) >

1 − ε on condition k1 = max
j∈S {k1 j }, k2 = max

j∈S {k2 j }, where ε is a small constant, then

we can omit the residual items P(Er A j |Br ), j > m. This completes the proof. �

In the sliding stage, the control target is to keep the system state sliding on the
switching surface. Insufficient control force may result in violation of the existence
condition of the sliding mode ṡs < 0 in the neighborhood of s = 0.

The following theorem is given for the sliding probability.

Theorem 10.3 For the SISO linearMJS (10.1) under SMC (10.39), the sliding prob-
ability is given as follows

P(Es |Bs) =
∑

j∈S
P(Es |A j Bs)P(A j |Bs) (10.60)

where

P(Es |A j Bs) =
{
1 k1 ≥ k1 j and k2 ≥ k2 j ,
0 k1 < k1 j or k2 < k2 j .

(10.61)

Proof In the sliding stage, since the system state is already on the switching surface,
the control target is to keep the system state to stay on it at any time.

For each time t , ηt = j, j ∈ S, as seen from (10.46), theMJS under SMC (10.39)
can ensure that the system state stays in the switching surface. However, if the control
parameters k1 and k2 are somehow insufficient, we get

P(Es |A j Bs) =
{
1 k1 ≥ k1 j and k2 ≥ k2 j ,
0 k1 < k1 jor k2 < k2 j .

(10.62)

Synthesizing all possibilities, we then have the sliding probability calculated as

P(Es |Bs) =
∑

j∈S
P(Es |A j Bs)P(A j |Bs). (10.63)

This completes the proof. �
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10.3 Sliding Mode Control of MIMO Linear Markovian
Jump Systems

10.3.1 Problem Statement and Preliminaries

The MIMO linear MJS under investigation is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ẋ1(t) = (A11(ηt ) + �11(ηt ))X1(t)
+(A12(ηt ) + �12(ηt ))X2(t),

Ẋ2(t) = (A21(ηt ) + �21(ηt ))X1(t)
+(A22(ηt ) + �22(ηt ))X2(t) + B2(ηt )U (t),

Y (t) = X1(t),
η0 = s0, t ≥ 0,

(10.64)

where X (t) = [XT
1 (t), XT

2 (t)]T is the system state, X1 ∈ R(n−m), X2 ∈ Rm ;U (t) ∈
Rm is the control input; Y (t) ∈ R(n−m) is the system output; Ai j (ηt ), i, j = 1, 2, B2

(ηt ) are stochastic coefficient matrices with compatible dimensions, �i j (ηt ), i, j =
1, 2 are stochastic uncertain matrices and {ηt , t ∈ [0, T ]} is a finite-state Markovian
process having a state-space S = {1, 2, . . . , ν}, det(B2( j)) �= 0, j ∈ S, generator
(qi j ) with transition probability from mode i at time t to mode j at time t + δ,
i, j ∈ S,

Pi j (δ) = P(ηt+δ = j |ηt = i)

=
{
qi jδ + o(δ), if i �= j,
1 + qiiδ + o(δ), if i = j,

(10.65)

where

qii = −
ν∑

m=1,m �=i

qim, qi j ≥ 0,∀i, j ∈ S, i �= j, (10.66)

δ > 0 and lim
δ→0

o(δ)/δ = 0.

Assumption 1. The uncertain matrices satisfy

‖�i j (k)‖ ≤ δi j (k), i, j = 1, . . . , 2, k = 1, . . . , v, (10.67)

where δi j (k) are known constants.

Definition 10.2 The system (10.64) is called mean-square stable, if for each ε > 0,
there exists δ > 0, such that

sup
t0≤t<∞

E‖X (t)‖2 < ε, for all ‖X (t0)‖ < δ. (10.68)
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In addition, the system (10.64) is called asymptotically mean-square stable, if it is
mean-square stable and

lim
t→∞E‖X (t)‖2 = 0, for all ‖X (t0)‖ < δ. (10.69)

Furthermore, if Eq. (10.12) holds for arbitrary positive constant δ, then the system
(1) is called globally asymptotically mean-square stable.

The sliding surfaces are defined as

S(X, ηt ) = C1(ηt )X1 + X2 = 0. (10.70)

DenotesL as the weak infinitesimal operator of the process {X1(t), ηt , t ≥ 0} at the
point {t, X1, j}. Substituting (10.70) and ηt = j into system (10.64) yields

⎧
⎨

⎩

Ẋ1 = Ā11( j)X1 + Ā12( j)S,

L S = Ā21( j)X1 + Ā22( j)S + B2( j)U (t),
η0 = s0, t ≥ 0,

(10.71)

where ηt = j , j = 1, . . . v, and

Ā11( j) = A11( j) + �11( j) − (A12( j) + �12( j))C1( j),

Ā12( j) = A12( j) + �12( j),

Ā21( j) = C1( j)(A11( j) + �11( j))

−C1( j)(A12( j) + �12( j))C1( j)

+(A21( j) + �21( j))

−(A22( j) + �22( j))C1( j) +
v∑

i=1

α j iC1(i),

Ā22( j) = C1( j)(A12( j) + �12( j)) + (A22( j) + �22( j)).

(10.72)

An important step for analyzing the probability problems of MJSs under SMC is
to derive multi-step state transition probability. Some events are defined as follows.

B : The initial condition is η0 = s0. (10.73)

A j : ηt = j, 0 ≤ t ≤ tr . (10.74)

A0(t) : The stochastic process parameter does

not jump, ητ = s0, 0 ≤ τ ≤ t, (10.75)

Ak
j (t) : The stochastic process parameter jumps

k times
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ητ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s0 0 ≤ τ < t1,
s1 t1 ≤ τ < t2,

...

sk tk ≤ τ ≤ t.

where the route rkj = (s0, . . . , sk) ∈ Sk (10.76)

Sk = {(s0, s1, . . . , sk)|si ∈ S, si−1 �= si ,

1 ≤ i ≤ k}. (10.77)

Ak(t) : The stochastic process parameter jumps k times

Ak(t) =
⋃

rkj ∈Sk
Ak

j (t), k = 1, 2, . . . , n. (10.78)

10.3.2 Control Scheme and Stability Probability

There are two key steps in designing an SMC scheme. The first step is to design
sliding surfaceswhich have desired systemdynamics performance (e.g., asymptotical
stability). The second step is to design a discontinuous controller which can drive
the system to reach the sliding surface in a finite time.

At the beginning, we design sliding surfaces (10.70) and give sufficient conditions
in terms of LMIswhich can guarantee that the slidingmotion is asymptotically stable.
The result is given in the following theorem.

Theorem 10.4 ([30]) The system (10.64) is asymptotically stable on the sliding
surface (10.70), if there exist symmetric positive-definite matrices P( j), general
matrices Q( j) and positive scalars b1( j), b2( j) such that the following inequalities
hold for all j ∈ S.

[
N11( j) N12( j)
NT
12( j) N22( j)

]

< 0, (10.79)

where

N11( j) = A11( j)P( j) + P( j)AT
11( j) − A12( j)Q( j)

−QT ( j)AT
12( j) + α j j P( j) + b1( j)δ

2
11( j)I

+b2( j)δ
2
12( j)I, (10.80)

N12( j) = [α1/2
j1 P( j), . . . , α

1/2
j j−1P( j), α

1/2
j j+1P( j),

. . . , α
1/2
jv P( j), P( j), QT ( j)], (10.81)

N22( j) = diag(−P(1), . . . ,−P( j − 1), −P( j + 1),

−P(v), −b1( j)I, −b2( j)I ), (10.82)

Q( j) = C1( j)P( j). (10.83)
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Proof By Schur complement lemma, we get that (10.79) is equivalent to

A11( j)P( j) + P( j)AT
11( j) − A12( j)Q( j) − QT ( j)AT

12( j)

+α j j P( j) + b1δ
2
11 I + b2δ

2
12 I +

v∑

i=1,i �= j

α j i P( j)P−1(i)P( j)

+ b−1
1 P2( j) + b−1

2 QT ( j)Q( j) < 0. (10.84)

It leads to

A11( j)P( j) + P( j)AT
11( j) − A12( j)Q( j) − QT ( j)AT

12( j)

+α j j P( j) + b1�11�
T
11 + b2�12�

T
12

+
v∑

i=1,i �= j

α j i P( j)P−1(i)P( j) + b−1
1 P2( j)

+ b−1
2 QT ( j)Q( j) < 0. (10.85)

Let M( j) = P−1( j). Pre- and post multiplied by M( j), it gives

M( j)A11( j) + AT
11( j)M( j) − M( j)A12( j)C1( j)

−CT
1 ( j)AT

12( j)M( j) +
v∑

i=1

α j i M(i)

+ b1Mj�11�
T
11Mj + b2Mj�12�

T
12Mj

+ b−1
1 I + b−1

2 CT
1 ( j)C1( j) < 0. (10.86)

The Lyapunov function candidate is given as

V1 = XT
1 M( j)X1. (10.87)

The weak infinitesimal operator L of the process {X1(t), ηt , t ≥ 0} at the point
{t, X1, j} is given by

L V1 = 2XT
1 M( j)Ẋ1 +

v∑

i=1

XT
1 α j i M(i)X1

= 2XT
1 M( j)(A11( j) + �11( j) − A12( j)C1( j)

−�12( j)C1( j))X1 +
v∑

i=1

XT
1 α j i M(i)X1. (10.88)

By (10.86), we getL V1 < 0, if X1 �= 0. Referring (10.70), it can be drawn that the
system state [XT

1 , XT
2 ]T is stochastically asymptotically stable. This completes the

proof. �
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There are two phases in sliding mode dynamics, the reaching phase and sliding
phase. If the control force is large enough, it can suppress any matched uncertainties
to realize the sliding motion. However, if it is not sufficiently large, it will affect the
reaching and sliding abilities of the SMC, that is, the reaching ability and sliding
ability would be in a probabilistic sense. In this section, we will derive the conditions
to guarantee the globally asymptotical stability of the MJSs under SMC. We will
also derive the reaching probability function and the sliding probability function.
For convenience, we introduce the reaching probability [29], denoted by P(Er |Br ),
which represents the condition probability of the system reaching the sliding mode
in a finite time tr , and the sliding probability [29], denoted by P(Es |Bs), which
represents the condition probability of the system maintaining on the sliding mode.

Some events are defined as

Br : The condition is η0 = s0, X (0) = X0,

U (t) = Fu(t), 0 ≤ t ≤ tr . (10.89)

Bs : The condition is ηtr = ηtr , X (tr ) = Xtr ,

S(tr ) = 0,U (t) = Fu(t), t > tr . (10.90)

Er : The system first reaches the sliding mode

at time tr , S(tr ) = 0. (10.91)

Es : The system maintains on the sliding mode,

S(t) = 0, t > tr . (10.92)

where tr is a given constant, Fu(t) represents the designed control input.
The following SMC is proposed for the MIMO MJS as

U (t) =

⎧
⎪⎨

⎪⎩

Ueq(t) − B−1
2 ( j)

(
k1‖X1‖ S

‖S‖ + k2S + kr
S

‖S‖
)

S �= 0,
0 S = 0,

where variable S is defined by (10.70), k1, k2 are control parameters, and Ueq(t) is
the equivalent control defined as

Ueq(t) = −B−1
2 ( j)[(C1A11( j) − C1A12( j)C1 + A21( j)

−A22( j)C1 +
v∑

i=1

α j iC1(i))X1

+(C1A12( j) + A22( j))S]. (10.93)

The following theorem is given.

Theorem 10.5 Assume the condition in Theorem10.4 holds, and SMC is designed
as (10.93), the close-loop system is asymptotically stable, if the control parameters
in (10.93) are given as follows.
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k1 = max
j∈S {k1 j }, k2 = max

j∈S {k2 j }, (10.94)

k1 j = ‖C1( j)‖δ11( j) + ‖C1( j)‖2δ12( j) + δ21( j)

+‖C1( j)‖δ22( j), (10.95)

k2 j = ‖C1( j)‖δ12( j) + δ22( j), j = 1, . . . , ν. (10.96)

Proof The Lyapunov function candidate is given as

V (S) = 1

2
ST (X)S(X). (10.97)

Substituting SMC (10.93) and (10.94) into it, the weak infinitesimal operator L
of the process {X1(t), ηt , t ≥ 0} at the point {t, X1, j} is given by

L V (S) = ST [ Ā21( j)X1 + Ā22( j)S + B2( j)U (t)]
= ST [(C1�11( j) − C1�12( j)C1 + �21( j)

−�22( j)C1)X1 + (C1�12( j) + �22( j))S]
−ST

(

k1‖X1‖ S

‖S‖ + k2S + kr
S

‖S‖
)

≤ −kr‖S‖ ≤ 0. (10.98)

The equality holds if and only if S = 0. It means under SMC (10.93), the system can
reach the switching surface in a finite time tr = ‖S(0)‖

kr
and then maintain its state on

the switching surface afterwards.

Here a question arises. If the control is insufficient, what will the reaching prob-
ability and sliding probability be? This question is answered in the following.

In the reaching phase, the control objective is to drive the system state to reach the
sliding mode in finite time tr . With the following definitions of auxiliary parameters

kn1 j = max
i∈rnj

{k1i } , kn2 j = max
i∈rnj

{k2i } , (10.99)

where k1i , k2i are defined by (10.95) and (10.96), and rnj = (s j0, . . . , s jn) ∈ Sn+1

represents the Markovian process state transition route, we derive the reaching prob-
ability formulae.

Theorem 10.6 ([30]) For the MIMO linear MJS (10.64) under SMC (10.93), the
reaching probability is given as follows

P(Er |Br ) =
m∑

n=0

P(Er A
n|Br ), (10.100)
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where

m = argmin
n

{
n∑

i=0

P(Er A
i |Br ) > 1 − ε, 0 < ε � 1,

if k1 = max
j∈S {k1 j }, k2 = max

j∈S {k2 j }
}

, (10.101)

P(Er A
n|B) =

∑

rnj ⊂Sn

P(Er |An
j B)P(An

j |B), (10.102)

P(Er |An
j B) =

{
1 k1 ≥ kn1 j and k2 ≥ kn2 j ,
0 k1 < kn1 j or k2 < kn2 j .

(10.103)

Proof The proof is similar to the proof of Theorem10.2, so it is omitted here. �

In the sliding phase, the control objective is to keep the system state sliding on the
switching surface. Insufficient control force may result in violation of the existence
condition of the sliding mode ST Ṡ < 0 in the neighborhood of S = 0.

The following theorem is given for the sliding probability.

Theorem 10.7 For the MIMO linear MJS (10.64) under SMC (10.93), the sliding
probability is given as follows

P(Es |Bs) =
∑

j∈S
P(Es |A j Bs)P(A j |Bs) (10.104)

where

P(Es |A j Bs) =
{
1 k1 ≥ k1 j and k2 ≥ k2 j ,
0 k1 < k1 j or k2 < k2 j .

(10.105)

Proof The proof is similar to the proof of Theorem10.3, so it is omitted here. �

10.4 Numerical Simulations

In this section, we present numerical simulations to show the effectiveness of the
theoretical results.

We consider a second-order MJS (10.1), where ηt ∈ S is a continuous Markovian
process and

S = {1, 2, 3, 4}, A(i) =
[

A11 A12

A21(i) A22(i)

]

,
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A(1) =
[
0 1
3 5

]

, B2(1) = 1,

A(2) =
[
0 1
2 4

]

, B2(2) = 2,

A(3) =
[
0 1
5 3

]

, B2(3) = 1,

A(4) =
[
0 1
4 2

]

, B2(4) = 2,

generator (αi j ) with transition probability from mode i at time t to mode j at time
t + �, i, j ∈ S as

(αi j ) =

⎡

⎢
⎢
⎣

−8 3 2 3
1 −1 0 0
2 1 −5 2
0 2 2 −4

⎤

⎥
⎥
⎦

The sliding variable is defined as

s = C1x1 + x2, C1 = 2.

It is obvious that

A11 − A12C1 < 0, i = 1, . . . , 4.

The initial parameters are set that x(0) = [0.5 − 0.2]T , η0 = 1, and tr = 0.1.
By (10.17) and (10.18), we get

qi j = αi j , qi = −αi i , 1 ≤ i, j ≤ 4,

q1 = 8, q2 = 1, q3 = 4, q4 = 4.

Using P̂j = P(ητ1 = j |η0 = i) to estimate P(ηt = j |η0 = i), we get

P̂1 = 0.5, P̂2 = 0.3, P̂2 = 0.125, P̂4 = 0.125.

The SMC law is given as (10.39).
According to Theorem10.1, we have

k11 = 3.3750, k12 = 2.6250, k13 = 2.6250, k14 = 5.6250,

k21 = 1.8750, k22 = 2.1250, k23 = 0.1250, k24 = 3.1250,

If control parameters satisfy k1 ≥ 5.6250, k2 ≥ 3.1250, then the system is asymp-
totically stable. The results are shown in Figs. 10.4 and 10.5.
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Table 10.1 xxx

j r1j k11 j k12 j P(A1
j |B)

1 (1,2) 3.3750 2.1250 0.2644

2 (1,3) 3.3750 1.8750 0.1107

3 (1,4) 5.6250 3.1250 0.1856

Next, we study the stability probability when the control is insufficient. It is
investigated in two stages.

For the reaching state (0 ≤ t ≤ tr ), first, consider that the stochastic parameter
does not jump. From Theorem10.2, we get

P(E A0|B) = P(E |A0B)P(A0|B)

=
{
0.2019 k1 ≥ 3.3750 and k2 ≥ 1.8750,
0 k1 < 3.3750 or k2 < 1.8750,

where

P(E |A0B) =
{
1 k1 ≥ 3.3750 and k2 ≥ 1.8750,
0 k1 < 3.3750 or k2 < 1.8750,

and P(A0|B) is defined by (10.29).
However, if the stochastic parameter jumps n times, we have the following

scenarios.
For case n = 1, there are three parameter transition routes which are

r11 = (1, 2), r12 = (1, 3), r13 = (1, 4).

From Theorem10.2, we have

k111 = max{k11, k12} = 3.3750,

k121 = max{k21, k22} = 2.1250,

k112 = max{k11, k13} = 3.3750,

k122 = max{k21, k23} = 1.8750,

k113 = max{k11, k14} = 5.6250,

k123 = max{k21, k24} = 3.1250.

From Lemma10.1, we have the solution of P(A1
j |B), which leads to (Tables10.1

and 10.2)
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Table 10.2 xxx

j r2j k21 j k22 j P(A2
j |B)

1 (1,2,1) 3.3750 2.1250 0.0205

2 (1,2,3) 3.3750 2.1250 0

3 (1,2,4) 5.6250 3.1250 0

4 (1,3,1) 3.3750 1.8750 0.0199

5 (1,3,2) 3.3750 2.1250 0.0164

6 (1,3,4) 5.6250 3.1250 0.0261

7 (1,4,1) 5.6250 3.1250 0

8 (1,4,2) 5.6250 3.1250 0.0525

9 (1,4,3) 5.6250 3.1250 0.0392
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Fig. 10.1 Reaching probability

Thus, it gives that

P(E A1|B) =
∑

r1j ∈S1
P(E |A1

j B)P(A1
j |B)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 k1 < 3.3750 or k2 < 1.8750,
0.1105 3.3750 ≤ k1 < 5.6250 and 1.8750 ≤ k2 < 2.1250,

0.3751
3.3750 ≤ k1 < 5.6250 and k2 ≥ 2.1250,
or 2.1250 ≤ k2 < 3.1250 and k1 ≥ 3.3750,

0.5607 k1 ≥ 5.6250 and k2 ≥ 3.1250.

For case n = 2, similar to the above, we get
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Fig. 10.2 Sliding probability

P(E A2|B) =
∑

r2j ∈S2
P(E |A2

j B)P(A2
j |B)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 k1 < 3.3750or k2 < 1.8750,
0.0199 3.3750 ≤ k1 < 5.6250 and 1.8750 ≤ k2 ≤ 2.1250,

0.0568
3.3750 ≤ k1 < 5.6250 and k2 ≥ 2.1250,
or k1 ≥ 3.3750 and 2.1250 ≤ k2 ≤ 3.1250,

0.1746 k1 ≥ 5.6250 and k2 ≥ 3.1250,

Finally, for case n = 3, the same derivations can be done and we have the total
reaching probability approximated as

P(Er |Br ) =
3∑

i=0

P(E Ai |B)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 k1 < 3.3750 or k2 < 1.8750,
0.3323 3.3750 ≤ k1 and 1.8750 ≤ k2 < 2.1250,

0.6338
3.3750 ≤ k1 < 5.6250 and k2 ≥ 2.1250,
or 2.1250 ≤ k2 < 3.1250 and k1 ≥ 3.3750,

1.0 k1 ≥ 5.6250 and k2 ≥ 3.1250,
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Fig. 10.3 Continuous
Markovian process
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Fig. 10.4 System state
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For the sliding stage(t > tr ), let ts = 0.2. By Theorem10.1 and P̂j = Pi j (ts), we
get

P̂1 = 0.5000, P̂2 = 0.1875, P̂3 = 0.1875, P̂4 = 0.1250.

Referring to Theorem10.3, we get the sliding probability
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Fig. 10.5 Control input
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P(Es |Bs) =
∑

j∈S
P(Es |A j Bs)P(A j |Bs)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 k1 < 2.6250 or k2 < 0.1250,

0.1875
k1 ≥ 2.6250 and 0.1250 ≤ k2 < 1.8750,
or 2.6250 ≤ k1 < 3.3750 and k2 ≥ 0.1250,

0.6875 k1 ≥ 3.3750 and 1.8750 ≤ k2 < 2.1250,

0.8750
k1 ≥ 3.3750 and 2.1250 ≤ k2 < 3.1250,
or 3.3750 ≤ k1 < 5.6250 and k2 ≥ 3.1250,

1.0 k1 ≥ 5.6250 and k2 ≥ 3.1250,

The results are shown in Figs. 10.1, 10.2, 10.3, 10.4 and 10.5.
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Chapter 11
Adaptive Sliding Mode Control
Using Monitoring Functions

Liu Hsu, Tiago Roux Oliveira, Gabriel Tavares Melo
and José Paulo V. S. Cunha

Abstract In this chapter, we propose an adaptive sliding mode control approach
based on monitoring functions, to deal with disturbances of unknown bounds. An
uncertain linear system is considered as well as a quite general class of non-smooth
disturbances. Global tracking is demonstrated using only output feedback. The pro-
posed adaptation method is able to make the control gain less conservative, but large
enough when the disturbance grows and allows it to decrease if the latter vanishes,
leading to reduced chattering effects. Simulations are presented to show the potential
of the new adaptation scheme in this adverse scenario of possibly growing, temporar-
ily large, or vanishing disturbances.

11.1 Introduction

Sliding mode control (SMC) is a very appealing control strategy to deal with dis-
turbances and uncertainties. Many adaptive methodologies have been explored to
remove the obstacle of considering disturbances of known bounds in the control
design. Examples are the use of monotonically increasing gains [13, 15, 20], that,
as the name suggests, increases the switching gains until a sliding mode is achieved.
The price to be paid in these schemes is that, when the disturbances reduce to lower
magnitudes, the gains keep unnecessarily high, thus increasing the effects of the
chattering phenomenon.
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Another common strategy found in literature to dealwith disturbances of unknown
bounds is the use of dynamic switching gains [1, 5, 17], such that these gains are
increased until a sliding mode is obtained, then decreased until the same is lost fol-
lowing some predetermined rule. This strategy may have the disadvantage of loosing
the sliding mode an excessive number of times, generating undesired oscillations
in the sliding variable. Other adaptive control strategies based on the concepts of
equivalent [4, 19] and average control [16] were also proposed to avoid excessive
switching gains, thus reducing the chattering effects.

On the other hand, monitoring functions were proposed in earlier works to
deal with a variety of problems, including unknown control direction [14, 21] and
extremum seeking control [10]. In this chapter, we propose a novel application of
monitoring functions to adapt the switching gains of sliding mode controllers so that
the disturbances can be majored and, simultaneously, reduced chattering effects can
be achieved, depending on the design parameters. In addition, this strategy seems
to lead to better performance or to less restrictive assumptions for a wider class of
disturbances in comparison with the existing literature. For instance, no upper bound
for the disturbance derivatives [4, 19] is necessary for the implementation of our
novel adaptation law.

Unlike most research done in the area of adaptive sliding mode control, we have
considered objectives of trajectory tracking and output feedback in the presence not
only of disturbances with unknown bounds but also of parametric uncertainties of
the system as well.

In general, state-feedback framework is assumed to facilitate the control problem
in earlier publications. Moreover, a stabilization scenario free of parametric uncer-
tainties is usually assumed in the existing literature.

11.1.1 Notation and Terminology

In this chapter, we adopt the following notation:

• The element-wise absolute value of a vector x = [x1, x2, . . . , xn]T is defined as
|x | := [|x1|, |x2|, . . . , |xn|]T .

• The symbol “s” represents either the Laplace variable or the differential operator
“d/dt”, according to the context.

• As in [8, 11] the output y of a linear time-invariant (LTI) system with transfer
function G(s) and input u is given by y = G(s)u. Convolution operations g(t) ∗
u(t), with g(t) being the impulse response from G(s), will be eventually written,
for simplicity, as G(s) ∗ u.

• Filippov’s definition [6] is assumed for the time-domain solution of discontinuous
systems. Note that the control signal u is not necessarily a function of t in the usual
sense when sliding modes take place. In order to avoid clutter, u(t) denotes the
locally integrable functions which are equivalent to u, in the sense of equivalent
control [18], along any given Filippov solution z(t) of the closed-loop system. It
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should be stressed that z(t) is, by definition, absolutely continuous. Then, along
any solution, u can be replaced by u(t) in the right-hand side of the governing
differential equations. Although the equivalent control u(t) = ueq(t) is not directly
available, the output signal of linear time-invariant systems with strictly proper
transfer function G(s) is given by y(t) = G(s)u = G(s)u(t) = G(s)ueq(t).

• Class K and class KL functions are defined as in [12]:

Definition 11.1 A continuous function α : [0, a) → [0,+∞) is said to belong to
class K if it is strictly increasing and α(0) = 0.

Definition 11.2 A continuous function β : [0, a) × [0,+∞) → [0,+∞) is said to
belong to class KL if, for each fixed s, the mapping β(r, s) belongs to class K with
respect to r and, for each fixed r , the mapping β(r, s) is decreasing with respect to
s and β(r, s) → 0 as s → +∞.

11.2 Problem Statement

Consider an uncertain single-input-single-output (SISO) LTI system

y = Gp(s)[u + d(t)] , (11.1)

where u is the control input, y is the output, d(t) is a matched input disturbance and

Gp(s) = kp
Np(s)

Dp(s)
, (11.2)

with Np(s) and Dp(s) being monic polynomials of degree m and n, respectively.
The following assumptions are made:

(A1) Gp(s) is minimum phase and its parameters are unknown but belong to a
known compact set.

(A2) The degreesm and n of Np(s) and Dp(s), respectively, are known constants.
Moreover, Gp(s) has relative degree one (n∗ = n − m = 1).

The above assumptions (A1)–(A2) are slightmodifications of those commonly found
in model-reference adaptive control literature [11]. Consider the additional assump-
tions:

(A3) The sign of the high frequency gain kp �= 0 is known.
(A4) The disturbance d(t) is piecewise continuous in t , and satisfies

|d(t)| ≤ d̄ < +∞ , ∀t ≥ 0 , (11.3)

where d̄ > 0 is an unknown constant.
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11.2.1 Reference Model

The reference model is given by

ym = M(s)r = km
s + am

r , (11.4)

wheream > 0 and km > 0. The reference signal r(t) is assumedpiecewise continuous
and uniformly bounded.

11.2.2 Control Objective

The control objective is to achieve global stability and convergence of the error state
with respect to a small neighborhood of the origin of the error space. In particular,
the tracking error

e0(t) = y(t) − ym(t) (11.5)

must converge at least asymptotically to a small neighborhood of zero, i.e., practical
tracking is desired.

11.3 Control Parameterization and Disturbance
Upper Bound

Considering the usual model reference adaptive control (MRAC) approach [11], the
output error e0 satisfies [7]:

e0 = k∗M(s)[u − u∗] , (11.6)

where k∗ = kp/km ,
u∗ := θ∗Tω − Wd(s) ∗ d , (11.7)

is the model matching control in the presence of the disturbance d [2]. The regressor
vector ω is composed by the states of the input/output filters, by the system output y
and the reference signal r :

ω := [
ωT
1 , y, ωT

2 , r
]T ∈ R

2n . (11.8)

According to [11], the input and output filters are given by:

ω̇1 = Fω1 + gu , ω̇2 = Fω2 + gy , (11.9)

where F ∈ R
(n−1)×(n−1) and g ∈ R

(n−1).
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The ideal parameter vector θ∗ = [θ∗T
1 , θ∗

0, θ∗T
2 , 1/k∗]T is unknown but it is

assumed to be element-wise bounded by a known constant vector θ̄ [7]:

θ̄i ≥ ∣∣θ∗
i

∣∣ , ∀i ∈ {1, . . . , 2n} . (11.10)

The transfer function Wd(s) is proper, stable, and given by

Wd(s) = [k∗M(s)]−1W̄d(s) , (11.11)

where W̄d(s) is the closed-loop transfer function from the input disturbance d
to e0 [8].

The signal u∗ will be regarded as the total input disturbance to be canceled by the
sliding mode control law, thus an upper bound will be required for control design. If
the upper bound d̄ in assumption (A4) is known, sinceWd(s) is a proper and bounded-
input–bounded-output (BIBO) stable transfer function and d(t) satisfies (A4), then
applying [9, Lemma 2] to the convolution Wd(s) ∗ d(t), such that |Wd(s) ∗ d(t)| ≤
d̂1(t), where d̂1 is defined by

d̂1(t) := d̄ + cde
−γd t ∗ d̄ . (11.12)

The constants cd > 0 andγd > 0 are the coefficients of a first-order approximation
filter (FOAF) with transfer function cd/(s + γd). The FOAF can be designed as
described by [3].

However, the disturbance upper bound d̄ is unknown, thus, the following adaptive
law is proposed

d̂(t) = β(k, t) + cde
−γd t ∗ β(k, t) . (11.13)

This is based on (11.12), where the unknown upper bound d̄ is replaced by an appro-
priate classKL function β(k, t), and k ∈ N is the switching number of a monitoring
function to be defined later. The function β(k, t) grows monotonically with the num-
ber of switchings k and decreases with time after each switching in a prescribed
manner. After each new switching, the function β(k, t) working together with the
FOAF will give a norm bound for the disturbance d(t) at least during a sufficiently
large interval. The union of all these time intervals is denoted here by T+. Thus,
from (11.7), u∗ satisfies

|u∗(t)| ≤ θ̄T |ω(t)| + d̂(t) , ∀t ∈ T+ . (11.14)

The set denoted by T− corresponds to the complementary set of T+, i.e., T+ ∪ T− =
[0,+∞) and T+ ∩ T− = ∅.
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11.4 Output-Feedback Control Law

The adopted control law is given by

u = − f (t) sign(kp) sign(e0) . (11.15)

According to (11.6), the modulation function f (t) is designed to overcome the ideal
matching control u∗, which is regarded as an input disturbance in (11.6). From
(11.14), note that one possible choice for f (t) that verifies the inequality f (t) ≥
|u∗(t)| is

f (t) = θ̄T |ω(t)| + d̂(t) + δ , (11.16)

where δ > 0 is an arbitrary constant. By invoking [8, Lemma 1], this modulation
function guarantees that the output error e0(t) tends to zero, ∀t ∈ T+. From (11.4)–
(11.6), it can be shown that the output error signal is the solution of the differential
equation

ė0(t) = −ame0(t) + kp[u(t) − u∗(t)] + π(t) , (11.17)

where π(t) denotes an exponentially decaying transient term due to initial condi-
tions of the observable but not controllable subsystem of the nonminimal realiza-
tion (Ac, bc, hT

c ) of M(s) in (11.6), used in MRAC theory [11, p. 346]. Now, from
(11.15), (11.6) and (11.7), noting that sgn(u − u∗) = −sgn(e0), if f (t) > |u∗(t)|,
∀t ≥ t̄0, then by using the Comparison Theorem [6], |e0| would be bounded by the
solution of the following differential equation

ξ̇(t) = −amξ(t) + π(t) , ∀t ∈ [t̄0,+∞) , ξ(t̄0) = e0(t̄0) , (11.18)

i.e., one has

|e0(t)|≤|ξ(t)|≤e−am(t−t̄0)|e0(t̄0)| + c0e
−λ0t , ∀t ≥ [t̄0,+∞) , (11.19)

where t̄0 denotes some initial time, and |e−amt ∗ π(t)| ≤ c0e−λ0t , for c0 being an
unknown positive constant depending on the initial conditions of the state variables
and λ0 being a known constant satisfying 0 < λ0 < min{−Re(λi [Ac]), am}, with
λi [Ac] being the spectrum of Ac referred above [11, p. 346].

11.5 Monitoring Function

Based on (11.19), consider the auxiliary function ϕk(t) defined as follows:

ϕk(t) = e−am (t−tk )|e0(tk)| + a(k)e−λ0t , t ∈ [tk,+∞) , (11.20)
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where a(k) is any positive monotonically increasing unbounded sequence, k ∈ N,
and t0 = 0.

The monitoring function ϕm can be defined as

ϕm(t) := ϕk(t) , ∀t ∈ [tk, tk+1) (⊂ [0,+∞)) . (11.21)

The motivation behind the introduction of ϕm(t) is that π(t) in (11.17) is not avail-
able for measurement. Reminding that the inequality (11.19) holds if the inequality
f (t) > |u∗(t)| is satisfied, it would seem natural to use the signal ξ(t) in (11.18) as a
benchmark to detect if the slidingmode is being lost and the error is increasing so that
k in β(k, t) must be increased, see Eq. (11.13). However, since π(t) is not available,
one has to use ϕm(t) to replace ξ(t) and invoke the switching of ϕm(t). Note that
from (11.21), one always has |e0(tk)| < ϕk(tk) at t = tk . Hence, the switching time
tk is well defined (for k ≥ 0):

tk+1 =
{
min{t > tk : |e0(t)| = ϕk(t)}, if it exists ,

+∞, otherwise .
(11.22)

The whole scheme is depicted in Fig. 11.1.

Fig. 11.1 Block diagram of the proposed output feedback adaptive sliding mode control strategy
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11.6 Stability Analysis

The theorem below presents preliminary results of practical tracking of the proposed
approach in Fig. 11.1. Although the ultimate residual set has not yet been fully char-
acterized, it is possible to state that the tracking error becomes sufficiently small
for an appropriate choice of the class KL function β(k, t) in (11.13) applied to the
modulation function (11.16) [20]. This is a current investigation topic.

Theorem 11.1 Consider the plant (11.1), the reference model (11.4), the control
law (11.15) withmodulation function (11.16), and adaptive law (11.13) as well as the
monitoring function (11.21). Assume that (A1)–(A4) hold. Then, practical tracking
is achieved, and the tracking error e0(t) defined in (11.5) converges ultimately close
to the origin.

Proof If a classK function β(k)was used in (11.13) instead of the classKL function
assumed before, it is possible to verify from assumption (A4) and (11.19) that after
a finite number ki of switchings, the signal d̂(t) becomes ultimately greater than d̄.
Hence, the condition in (11.14) is verified for t ≥ tki . In addition, for ki sufficiently
large, a(ki )e−λ0t of (11.20) will allow ϕk(t) to be an upper bound valid for ξ(t)
in (11.19) since

|e−amt ∗ π(t)| ≤ c0e
−λ0t < a(ki )e

−λ0t , (11.23)

consequently no switching will occur after that. Thus, the tracking error e0(t) con-
verges to zero at least exponentially since themonitoring function (11.20) and (11.21)
converges exponentially when the switching process stops. In addition, the sliding
mode at e0 = 0 is reached in finite time since the condition ė0e0 < −δ|e0| can be
obtained, with δ > 0 included in the modulation function (11.16).

The application of a classKL function β(k, t) instead of a classK just introduces
a forgetting factor in the described scheme. According to [20], it is always possible
to find an increasing sequence of switchings for β(k, t) until the tracking error e0(t)
enters inside any prescribed residual set. Since β(k, t) always decreases with time,
the monitoring function switches from time to time when necessary, in order to make
ϕk(t) > |e0(t)|. If the FOAF defined by the coefficients cd , γd in (11.13) is appropri-
ately designed to generate a valid upper bound for d(t) from β(k, t), then the sliding
mode e0 = 0 is lost only during small intervals of time (t ∈ T−), and is immediately
recovered after a finite number of successive switchings of the monitoring func-
tion. Thus, as t → +∞, the monitoring function never stops switching from time to
time (unless d(t) ultimately vanishes going to zero), and the tracking error e0(t) is
never allowed to increase more than some prescribed small residual value since the
time intervals belonging to T− can be made arbitrarily short so that the monitoring
function (11.20) and (11.21) assumes very small values for long intervals T+.

Since the disturbance and the reference signals are uniformly bounded (see
assumption (A4) and Sect. 11.2.1), then the error cannot ultimately diverge sig-
nificantly from zero. �
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Remark 11.1 (Modulation Function Reset) The term β(k, t) in (11.16) plays a key
role in the domination of the unknown disturbance d(t) in (11.7). It allows that
inequality f (t) > |u∗(t)| is satisfied as the number of switchings increases. However,
since β(k, t) → +∞ as k → +∞, within every fixed time interval, the modulation
function may need a reset mechanism to reinitialize k, from time to time, in order
to avoid that the controller amplitudes increase to very high values as t → +∞.
An alternative to avoid a large number of switchings could be the inclusion of a
small piecewise constant term in the modulation function, which would be properly
increased every time the switching index achieves some prescribed threshold value.

In some practical applications, despite the fact the disturbance d(t) has unknown
norm bound, it may tend to some specific value or has a minimal upper bound after
somefinite time (for example,when the disturbance has a large transient and thengoes
to a small steady state). For these situations, the following corollary can be stated.

Corollary 11.1 In Theorem11.1, if the disturbance d(t) has the additional property:

|d(t)| < dl , ∀t ∈ [tl,+∞), (11.24)

where dl ≥ 0 is a known constant, then replacing (11.16) by the new modulation
function given by

f (t) = θ̄T |ω(t)| + d̂(t) +
(
1 + cd

γd

)
dl + δ , ∀t ≥ 0 , (11.25)

exact tracking is achieved and e0(t) is kept in the origin after some finite time.
Moreover, d̂(t) → 0, ∀t > tl , which decreases the amplitude of the control signal
u(t) needed to keep the sliding mode.

Proof For t < tl , Theorem 11.1 can be applied such that at least practical tracking
is achieved during this time interval. For all t ≥ tl , the redesigned modulation func-
tion (11.25) implies that f (t) > |u∗(t)| is ultimately satisfied, the sliding manifold
e0 = 0 is necessarily reached in some finite time, and themonitoring function switch-
ing finally ceases. Hence, the tracking error becomes null and global exact tracking
is obtained.

Since the term dl is large enough to guarantee that f (t) > |u∗(t)|, ∀ ≥ tl , and the
function β(k, t) vanishes when the switching process stops (k is fixed and finite),
then d̂(t) in (11.13) tends to zero leading to the reduction of the amplitude of the
control signal u(t) given by (11.25). �

11.7 Numerical Examples

In this section, a numerical example is presented to illustrate the properties of the
proposed adaptive slidingmode controller. The systembeing considered is an integra-
tor, thus Gp(s) = 1/s. The chosen reference model is given by M(s) = 1/(s + 1).
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In this example, no input/output filters ω1 and ω2 in the regressor vector ω are
needed, since the order of the system is n = 1. Thematching parameters are θ∗

0 = −1
and 1/k∗ = 1 in the vector θ∗, thus θ∗Tω = −y + r . Therefore, the upper bound
θ̄T |ω(t)| = |y| + |r | and δ = 0.01 were chosen in the modulation function (11.16).

In the simulations, the initial condition of the system is y(0) = 2, the remaining
initial conditions are null. The reference signal is chosen as r(t) = sin(0.5t), and
the disturbance is d(t) = 5 sin(t) + U(t − 10) − U(t − 20), where U(t) is the unit
step function.

To avoid spurious switchings of themonitoring function due to numerical residues
of the error (caused by numeric integration), a modification in (11.20) and (11.21) is
introduced for simulation purposes:

ϕk(t) = e−am (t−tk )|e0(tk)| + (k + 1)e−λ0t + ε , (11.26)

where ε is an arbitrarily small positive constant. In the simulations, ε was set to
0.01 and the remaining design parameters in (11.13) were chosen as a(k) = k + 1,
am = λ0 = 1, cd = 2, γd = 2, and β(k, t) = (10k + 1)e−3t/(10k+1).

In Fig. 11.2, it can be verified that the exact tracking starts around 0.2 seconds,
and stays in a very small neighborhood of the desired trajectory ym , despite of the
unknown disturbance d. Figure11.3 shows the switchings of the monitoring function
ϕm . As discussed before, every time the value of the absolute error |e0| tries to
increase, the monitoring function switches.

As can be seen in Fig. 11.4, in this simulation example, the chosen function β(k, t)
fails to upper bound the disturbance most of the time, but the FOAF defined by cd , γd

(a)

(b)

Fig. 11.2 a System output y(t) and model output ym(t). b Convergence of y(t) to ym(t) (zoom)
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Fig. 11.3 Absolute tracking error |e0(t)| and monitoring function ϕm(t)

Fig. 11.4 Time evolution of the function β(k, t) as well as the absolute value of the unknown
disturbance |d(t)|
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Fig. 11.5 Modulation function f (t) and the absolute value of the ideal matching control |u∗(t)|
faced as an input disturbance

in (11.13) is conservative enough to generate a valid upper bound for the equivalent
(total) input disturbance u∗, i.e., f (t) > |u∗| (see Fig. 11.5).

Figure11.6 shows by means of the signal u that the sliding mode is lost only
in very short time intervals, and the amplitude of the switching (modulation func-
tion) changes according to the need imposed by the matched disturbance u∗, thus
mitigating chattering effects.

For the sake of comparison, another simulation result is presented in the spirit
of the approach proposed by [15, 20], using β(k, t) = 3k + 1 (a class K function
instead of a class KL) with the system, reference model, and parameters as defined
before. In Fig. 11.7, it is possible to note when the disturbance returns to lower levels,
the modulation function stays at unnecessarily high control amplitudes. This kind of
control signal would increase chattering effects in practical situations.

At last, the proposed control algorithm is tested taking into account a piecewise
constant disturbancewith initial growing behavior, followed by a vanishing phase and
ultimate large-persistent profile. This shows the capability of the proposed adaptation
scheme in changing the modulation function for different amplitude conditions so
that the tracking of the desired trajectory can be always preserved (Figs. 11.8, 11.9
and 11.10).According toCorollary 11.1, if additional information on the upper bound
for the final amplitude of the disturbance (dl = 10) is known, then the monitoring
function switching stops so that the exact tracking (e0 = 0) is perfectly obtained as
shown in Fig. 11.11.
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Fig. 11.6 Control signal u(t) and the ideal matching control u∗(t)

Fig. 11.7 Control signal u(t) and the ideal matching control u∗(t) when a class K function β(k)
is used rather than a class KL function β(k, t). The control objectives are achieved at the expense
of an unnecessarily large control signal amplitude
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Fig. 11.8 Control signal u(t) and the ideal matching control u∗(t) when the disturbance is d(t) =
10U(t) + 50U(t − 10) − 60U(t − 30) + 10U(t − 250)

(a)

(b)

Fig. 11.9 a System output y(t) and model output ym(t) when d(t) = 10U(t) + 50U(t − 10) −
60U(t − 30) + 10U(t − 250). b Convergence of y(t) to ym(t) (zoom)
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Fig. 11.10 Modulation function f (t) and the absolute value of the ideal matching control |u∗(t)|
when d(t) = 10U(t) + 50U(t − 10) − 60U(t − 30) + 10U(t − 250)

Fig. 11.11 Modulation function f (t) and the absolute value of |u∗(t)| when d(t) = 10U(t) +
50U(t − 10) − 60U(t − 30) + 10U(t − 250) and an ultimate upper bound dl = 10 is assumed
known for d(t)
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11.8 Conclusion

A novel adaptive sliding mode controller to cope with parameter uncertainties and
non-smooth disturbances with unknown constant upper bound has been developed.
The proposed controller is based on a monitoring function as a tool for switching
the control gain (modulation function adaptation). Disturbance domination as well
as global convergence and practical trajectory tracking are guaranteed by using only
output feedback. The ultimately decreasing characteristic of the adaptive modulation
function leads to less conservative and smaller switching control gains, thus reduc-
ing undesirable chattering effects of the sliding mode controller, as illustrated by
numerical simulations.
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Chapter 12
Fast Control Systems: Nonlinear Approach

Andrey Polyakov

Abstract This chapter treats the problem of fast control design for nonlinear sys-
tems. First, we discuss the question: which nonlinear system can be called fast? Next,
we develop some tools for analysis and design of such control systems. The method
generalized homogeneity is mainly utilized for these purposes. Finally, we survey
possible research directions of the fast control systems.

12.1 Introduction

The Olympic motto “Citius, Altius, Fortius” (“Faster, Higher, Stronger”) precisely
reflects the evolution trend of any known engineering invention. Each next generation
of aircrafts (automobiles, trains, robots, and so on) has to be faster than the previous
one. They also must demonstrate higher performance and stronger robustness. Any
related renovation usually requires an update of automatic control system.

The control theory is an interdisciplinary branch of both mathematics and engi-
neering sciences. Consequently, on the one hand, some engineering invention pre-
cedes some renovation of control design methodology. Indeed, digital controllers
(computes in general) replaced analog devices implying the appearance of new
research fields such as sampled, hybrid, event-driven control systems. On the other
hand, new ideas to control theory may come from pure mathematics. For example,
sliding mode control principles [47] are essentially based on ideas of the theory of
differential equations with discontinuous right-hand sides [17] introduced in 1960,
but the calculus of variations (see, e.g., [39]) initiated in seventeenth century underlies
the optimal control design [39].

The fundamental background of the whole modern mathematical control theory
has been presented in the seminal work [26] of A.M. Lyapunov “The general prob-
lem of the stability of motion” published in 1892. Today quantitative characteristics
of stability (Lyapunov exponents, Lyapunov functions, etc.) specify performance of
control systems (such as convergence rate, input-to-state stability, etc.). Exponen-
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tial stability determines the convergence rate of stable linear Ordinary Differential
Equations (ODEs), which are still the most popular models of control systems.

Anymathematicalmodel is just an approximation of a real (physical) plant process
under some assumptions on its behavior. Frequently, linear approximation (model)
is not appropriate if we deal with a “fast” control system, since linearizion neglects
some nonlinear dynamics, which imply fast transitions. To define “fast” control, this
paper uses linear systems as the reference point for comparison of convergence rate.
Namely, a nonlinear system is said to be fast if it demonstrates transients motions
faster than any linear one, i.e., convergence rate of a nonlinear system is faster than
any exponential. In [37] such systems were called hyper-exponential.

12.1.1 Motivating Example

Here we present an example of a nonlinear model of the physical system in order to
pick out nonlinearities which may invoke fast transitions.

Let us consider a mechanical system consisting of a rigid body moving laterally
on a contact surface and in some viscous environment (fluid). The simplest real-life
example of such amechanical system is a car moving on a flat road with a sufficiently
high velocity (more than 50km/h).

Let z be position of the center of mass of the body in an inertial frame. The
equation describing the motion of this system has the form

ż(t) = v(t), m v̇(t) = F(t), t > 0, z(t) ∈ R,

where v(t) is the velocity,m is a mass of the body, and F is the sum of external forces.
We study only deceleration motion of this system assuming that at the initial

instant of time the system has some nonzero velocity ż(0) = v(0) �= 0. Dissipation
of the energymaybe caused by several external forces. To discover hyper-exponential
behavior it is sufficient to consider only two of them:

• drag force (fluid resistance) is proportional to the square of the velocity [16]

Fdrag(t) = −kdrag v
2(t) sign[v(t)],

where kdrag > 0 is the coefficient of fluid resistance and the sign function is

sign[ρ] =
⎧
⎨

⎩

1 if ρ > 0,
0 if ρ = 0,

−1 if ρ < 0;

• dry friction force is nearly velocity independent and given by the next model [3]

Fdry(t) = −kdry sign[v(t)],

where kdry > 0 is the coefficient of dry friction.
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Usually, the frictionmodels also contain some linear terms (proportional to velocity).
We skip them for simplicity of analysis, since theywill not effect the final conclusions
about convergence rate.

The sum of external forces F(t) can be represented as follows

F(t) = Fdrag(t) + Fdry(t) = − (
kdry + kdrag v

2(t)
)
sign[v(t)].

and the differential equation describing the evolution of the velocity of the body has
the form:

mv̇(t) = − (
kdry + kdrag v

2(t)
)
sign[v(t)].

It is easy to see that v = 0 is the equilibrium point of the last equation, which is
globally stable, v(t) → 0 as t → +∞. The equation can be solved analytically:

v(t) = tan

(

arctan(|v(0)|) −
√
kdry kdrag

m
t

)

sign[v(0)].

This immediately implies v(t) = 0 for t ≥ m√
kdry kdrag

arctan(|v(0)|). Since arctan is

bounded function we conclude that independently of initial velocity the motion of
the body terminates no later than

Tmax = mπ

2
√
kdry kdrag

.

The deceleration rate of this mechanical system is hyper-exponential since it is
faster than any exponential in the following sense:

∀C > 0, ∀α > 0 : ∃v(0) ∈ R, ∃t ′ > 0 such that |v(t)| < C |v(0)|e−αt , ∀t > t ′.

Below we use this property for the rigorous definition of fast stability.

12.1.2 State of the Art

It seems that the first separation of fast and slow motions of dynamical systems have
been systematically studied in the context of the so-called singularly perturbedODEs
[46], which contain a small parameter multiplied by the highest derivative. Tending
this parameter to zero implies boosting system transitions in a certain subspace. In
this paper, we follow another philosophy.

According to the motivating example given above fast motions are caused by the
nonlinearity of the plant. Depending on of the type nonlinearity, the fast transitions
can be guaranteed locally or globally. Description of the behavior of such a “fast
nonlinear systems” can be efficiently embedded into Lyapunov’s Theory of stability.
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Some results in this context can be discovered in the literature. In particular, fast
stability ofODEs is represented by the notions of finite-time and fixed-time stabilities
[2, 6, 11, 13, 19, 25, 28, 32, 38, 43, 50], but hyper-exponential transitions are
studied in [37] as fast behavior of time-delay systems. Fast models described by
partial differential equations may demonstrate the so-called finite-time extinction
property [10, 18, 30, 45] also known as super stability [5, 12]. This chapter studies
systematically all the mentioned concepts and presents some tools for analysis and
design of fast (in particular fixed-time) control systems.

12.2 Stability and Fast Convergence

The concept of stability introduced by A.M. Lyapunov [26] considers a nominal
motion x∗

t0,x0(t), t ≥ t0 of a dynamic system with initial state x∗
t0,x0(t0) = x0 and

perturbed motions obtained for initial conditions x0 + δ, where δ is a perturbation. If
small perturbations of initial conditions imply small deviations of perturbed motions
from x∗

t0,x0(t) then the nominal motion is called stable. In this chapter, we deal only
with stability analysis of the zero solution (i.e., the origin), since making the change
of variables y = x − x∗ we transform stability analysis problem to the latter case.

Let us consider the nonlinear system

ẋ(t) = f (t, x(t)), t > t0 ∈ R, (12.1)

x(t0) = x0 ∈ R
n, (12.2)

where f : R×R
n may be a non-Lipschitz or even discontinuous function. In the latter

case, we assume that f satisfies conditions of existence of Filippov solutions [17],
which almost everywhere satisfy the differential inclusion ẋ(t) ∈ F(t, x(t)), t >

0, where F : R × R
n ⇒ R

n is a set-valued function contracted from f using a
proper regularization procedure. The three most popular regularization procedures
are surveyed in [17, 38]. Note that in general the Cauchy problem (12.1), (12.2) may
have nonunique solutions implying two types of stability: weak stability (a stability
property holds for some solution) and strong stability (a stability property holds for
all solutions) (see, for example, [17, 42, 43]).Weak stability usually is not enough for
robust control purposes. All conditions presented in definitions below are assumed
to hold for all solutions of (12.1), (12.2).

12.2.1 Nonrated Stability

Assume that the origin is the equilibrium point of (12.1), i.e., f (t, 0) = 0 (or
0 ∈ F(t, 0)) for all t ∈ R. This means that x∗(t) ≡ 0 is the solution to (12.1), (12.2)
with x0 = 0.
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Definition 12.1 (Lyapunov stability) The origin of the system (12.1) is said to be
Lyapunov stable if for ∀ε ∈ R+ and ∀t0 ∈ R there exists δ = δ(ε, t0) ∈ R+ such that
for ∀x0 ∈ R

n : ‖x0‖ < δ any solution xt0,x0(t) of the Cauchy problem (12.1), (12.2)
exists for t > t0 and ‖xt0,x0(t)‖ < ε for t > t0.

If the function δ does not depend on t0 then the origin is called uniformly Lyapunov
stable. If f (t, x) is independent of t (time-invariant) and the zero solution of (12.1)
is Lyapunov stable, then it is uniformly Lyapunov stable.

Proposition 12.1 If the origin of the system (12.1) is Lyapunov stable then x(t) = 0
is the unique solution of the Cauchy problem (12.1), (12.2) with x0 = 0 and t0 ∈ R.

The origin, which does not satisfy any condition fromDefinition 12.1, is unstable.

Definition 12.2 (Asymptotic stability) The origin of the system (12.1) is said to be
asymptotically stable if it is Lyapunov stable and if for any t0 ∈ R there exists an
open set U (t0) ⊆ R

n : 0 ∈ int(U(t0)) such that ∀x0 ∈ U (t0), lim
t→+∞ ‖xt0,x0(t)‖ = 0

holds.

The setU (t0) is called domain of attraction. It is always a neighborhood of the origin.
If U (t0) = R

n then the asymptotically stable origin of the system (12.1) is called
globally asymptotically stable.

The uniform asymptotic stability asks for a more strong attractivity property.

Definition 12.3 (Uniform asymptotic stability) The origin of the system (12.1) is
said to be uniformly asymptotically stable if it is asymptotically stable with a time-
invariant attraction domainU ⊆ R

n and∀R > 0,∀ε > 0 there exists t∗ = t∗(R, ε) ∈
R+ such that ∀x0 ∈ U : ‖x0‖ < R and ∀t0 ∈ R, ‖xt0,x0(t)‖ < ε for t > t0 + t∗ holds.

If U = R
n then a uniformly asymptotically stable origin of the system (12.1) is

called globally uniformly asymptotically stable. Uniform asymptotic stability always
implies asymptotic stability. The converse holds for time-invariant systems.

Proposition 12.2 ([9], Proposition 2.2, p. 78) Let a set-valued function F : Rn →
R

n be defined and upper-semicontinuous inRn. Let F(x) be nonempty, compact and
convex for any x ∈ R

n. If the origin of the system ẋ ∈ F(x) is asymptotically stable
then it is uniformly asymptotically stable.

12.2.2 Rated Stability

In order to provide good performance to a control system, the rate of transition
processes has to be adjusted. An asymptotic stability does not characterize conver-
gence rate, which should be somehow specified. The exponential stability is the
classical example of a “rated” stability.
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Definition 12.4 (Exponential stability) The origin of the system (12.1) is said to be
exponentially stable if it is asymptotically stable and for any t0 ∈ R, there exists an
attraction domain U (t0) and C=C(t0)>0, r =r(t0)>0 such that

‖xt0,x0(t)‖ ≤ C‖x0‖e−r(t−t0), t > t0, x0 ∈ U (t0). (12.3)

The exponential stability is uniform if U (t0), C(t0) and r(t0) are time-invariant.
The parameter r defines the rate of exponential convergence. Obviously, exponential
stability implies both Lyapunov stability and asymptotic stability, and it is usually
exploited by linear control theory.

Definition 12.5 (Hyper-Exponential Stability) The origin of the system (12.1) is said
to be hyper-exponentially stable if it is exponentially stable with U (t0)⊆R

n, t0 ∈R

and

∀C>0, ∀r >0, ∃x0∈U (t0), ∃t ′ = t ′(t0) : ‖xt0,x0 (t)‖<C‖x0‖e−r(t−t0), t> t0 + t ′.
(12.4)

The origin is uniformly hyper-exponentially stable ifU (t0), t ′(t0) are time-invariant.
Definition 12.5 also introduces kind of “nonrated” stability since it does not provide
any quantitative index to characterize (compare) the hyper-exponential convergence
rates.

Given a vector α = (α0, α1, . . . , αr )
� ∈ R

r+1
+ , αi > 0 with r ≥ 0 let us define

recursively the following family of functions

ρ0,α(s) = α0s, ρi,α(s) = αi (e
ρi−1,α(s) − eρi−1,α(0)), i = 1, 2, . . . , r .

Obviously ρi,α(0) = 0. The Fig. 12.1 depicts e−ρi,α(t), t > 0 for i = 1, 2 and αi = 1
in a logarithmic scale in order to show the decay rate.

Definition 12.6 (Rated Hyper-Exponential Stability, [37]) The origin of the sys-
tem (12.1) is said to be hyper-exponentially stable of degree r ≥ 0, if it is
hyper-exponentially stable with U (t0) ⊆ R

n, t0 ∈ R and ∃C = C(t0) > 0,
∃α = α(t0) ∈ R

r+1
+ such that

‖xt0,x0(t)‖ ≤ C‖x0‖e−ρr,α(t−t0)), t > t0, x0 ∈ U (t0). (12.5)

The rated hyper-exponential stability becomes uniform if U (t0), C(t0) and r(t0) are
time-invariant. By analogy with the exponential case let us call the vector α by the
rate of hyper-exponential convergence. If the degree r is equal to zero then rate of
convergence becomes exponential.

Example 12.1 The right-hand side of the system

ẋ(t) = −2x(t)| ln |x(t)||, t > t0, x(t0) = x0 ∈ U := (−0.5, 0.5),
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Fig. 12.1 Hyper-exponential rate of convergence

is continuous at the origin (and, in fact, inR). The considered systemhas the following
an explicit solution

x(t) = x0e
ln(|x0|)(e2(t−t0)−1) for x0 ∈ U.

Since, obviously, we have |x(t)| ≤ |x0|e− ln(2)(e2(t−t0)−e2·0) for all x0 ∈ U then the
origin of the considered system is uniformly hyper-exponentially stable of degree 1
with the rate of hyper-exponential convergence given by the vector α = (2, ln 2)�.

Remark 12.1 Similarly to the exponential case, the indexα (rate of hyper-exponential
convergence) can be utilized for comparison of decay rates. Indeed, it is easy to show
that for α, β ∈ R

r+1
+ the inequality α ≥ β (understood in a component-wise sense)

implies e−ρr,α(s) ≤ e−ρr,β (s) for all s ≥ 0.

12.2.3 Non-asymptotic Convergence

The motivating example considered in Sect. 12.1.1 presents the mechanical system,
which has non-asymptotic transitions, i.e., any trajectory reach the equilibrium after
a finite instant of time.

Definition 12.7 (Finite-time stability [6, 43]) The origin of the system (12.1) is said
to be finite-time stable if it is Lyapunov stable in U (t0) ∈ R

n, t0 ∈ R and finite-time
attractive: ∀x0 ∈ U (t0), ∃T = T (t0, x0) ≥ 0 such that xt0,x0(t) = 0, ∀t ≥ t0 + T .
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The finite-time transitions are required for many control applications. For exam-
ple, anti-missile control has to be designed only on a finite interval of time, since
there is nothing to control after missile explosion.

Obviously, that finite-time stability always implies asymptotic stability. The
settling-time function T of time-invariant finite-time stable system (12.1) is inde-
pendent of t0, i.e., T = T (x0). However, in contrast to asymptotic and Lyapunov
stability, finite-time stability of a time-invariant system, in general, does not imply
uniform finite-time stability, which asks at least for boundednees of the settling-time
function in a neighborhood of the origin.

Example 12.2 ([6], p. 756) Let a vector field f : R
2 → R

2 of a time-invariant
system be defined on the quadrants

QI = {
x ∈ R

2\{0} : x1 ≥ 0, x2 ≥ 0
}
QI I = {

x ∈ R
2 : x1 < 0, x2 ≥ 0

}

QI I I = {
x ∈ R

2 : x1 ≤ 0, x2 < 0
}

QIV = {
x ∈ R

2 : x1 > 0, x2 < 0
}

as shown inFig. 12.2. The vector field f is continuous, f (0) = 0 and x = (x1, x2)T =
(r cos(θ), r sin(θ))T , r > 0, θ ∈ [0, 2π). In [6] it was shown that this system is
finite-time stable and, moreover, it is uniformly asymptotically stable. However, for
the sequence of the initial conditions xi0 = (0,−1/ i)T , i = 1, 2, . . . we have (see
[6] for the details) xi0 → 0 and T (xi0) → +∞ as i → +∞. So, considering an open
ball B(r) of the radius r with the center at the origin we have for any r > 0 that

sup
x0∈B(r)

T (x0) = +∞,

i.e., the trajectories of the considered system converge to zero in finite-time, but
non-uniformly with respect to the initial conditions.

Definition 12.8 (Uniform finite-time stability, [28, 38]) The origin of the system
(12.1) is said to be uniformly finite-time attractive if it is finite-time stable in a time-
invariant attraction domain U ⊆ R

n and the settling-time function T : R ×U → R

is locally bounded on R ×U uniformly on the first argument, i.e.,

Fig. 12.2 Example of S.P. Bhat and D. Bernstein [6]
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∀y ∈ U, ∃ε > 0 such that sup
t0∈R, ‖x0−y‖<ε

T (t0, x0) < +∞.

The mechanical system considered in the motivating example presented in
Sect. 12.1.1 is obviously uniformly finite-time stable even if the drag force is assumed
to be equal to zero. The quadratic term provided by drag force implies faster non-
asymptotic transitions characterized by the next definition.

Definition 12.9 (Fixed-time stability, [32]) The origin of the system (12.1) is said
to be fixed-time stable if it is uniformly finite-time stable inU ⊂ R

n and the settling-
time function T (t0, x0) is bounded on R ×U , i.e.,

∃Tmax > 0 : xt0,x0(t) = 0, t > t0 + Tmax, ∀t0 ∈ R, ∀x0 ∈ U.

If U = R
n then the origin of the system (12.1) is globally stable in the sense of the

definitions given above.
Obviously, all finite-time and fixed-time stable systems are also hyper-

exponentially stable (locally or globally).

12.3 Mathematical Tools for Analysis of Fast Nonlinear
Systems

12.3.1 Generalized Homogeneity

Homogeneity, widely studied in control theory [14, 23, 31, 36, 40], is a sort of
symmetry of an object (e.g., function or vector field) with respect to some group of
transformations called dilation.

12.3.1.1 Dilation Group

Let ‖ · ‖ be a norm in R
n and ‖ · ‖A be the matrix norm induced by ‖ · ‖, i.e.,

‖A‖A = supu∈Rn
‖Au‖
‖u‖ if A ∈ R

n×n .

Definition 12.10 A map d : R → R
n×n is called dilation in Rn if it satisfies

• the group property: d(0) = I ∈ R
n×n and d(t + s) = d(t)d(s) for t, s ∈ R;

• the continuity property: the map d is continuous in the norm ‖ · ‖A, i.e.,

∀t > 0, ∀ε > 0, ∃δ = δ(t, ε) > 0 : |s − t | < δ ⇒ ‖d(s) − d(t)‖A ≤ ε.

• the limit property: lim
s→−∞‖d(s)u‖ = 0 and lim

s→+∞‖d(s)u‖ = +∞ uniformly on

u∈ S, where S = {u ∈ R
n : ‖u‖ = 1} is the unit sphere in Rn .
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The dilation given by this definition was originally introduced in [34] for abstract
Banach spacesB in the form a strongly continuous group of linear bounded operators
[29], i.e., d(s) ∈ L(B,B) and d(·)u : R → B is continuous for any u ∈ B. In
a finite dimensional space any strongly continuous group is uniformly continuous,
i.e., continuous in the normof theBanach spaceL(B,B) - the space of linear bounded
operators B → B. For B = R

n we derive L(B,B) = R
n×n and the Definition 12.10

is equivalent Definition 1 from [34].

Example 12.3 The well-known dilations in Rn

• uniform dilation (L. Euler 17th century): d(s) = es , s ∈ R;

• weighted dilation (Zubov 1958, [49]): d(s)=
(

er1s 0 ... 0
0 er2s ... 0
... ... ... ...
0 0 ... ern s

)

, s∈R, ri >0;

obviously, satisfy Definition 12.10. The geometric dilation [23, 41, 48] is more
general since it allows the map d(s) : Rn →R

n(s∈R) to be nonlinear.

The matrix Gd ∈ R
n×n defined as Gd = lims→0

d(s)−I
s is known (see, e.g., [29,

Chapter 1]) as the generator of the group d(s). It satisfies the following properties

d

ds
d(s) = Gdd(s) = d(s)Gd, s ∈ R and d(s) = eGds =

+∞∑

i=0

siGi
d

i ! .

If we denote �A�A = infu∈Rn
‖Au‖
‖u‖ , A ∈ R

n×n then the limit property implies that

• d(s) �= I if s �= 0; • �d(s)�A → +∞ as s → +∞;
•‖d(s)‖A → 0 as s → −∞; •�Gd�>0 (i.e. kerGd={0}).

Definition 12.11 The dilation d ismonotone on R
n if ‖d(s)‖A < 1 for s < 0.

Monotonicity of the dilation depends on the norm ‖ · ‖.

Example 12.4 The dilation d(s) = es
(

cos(s) sin(s)
− sin(s) cos(s)

)
withGd = (

1 1−1 1

)
is monotone

on R
2 equipped with the weighted norm ‖u‖P = √

u�Pu if P =
(

1 1/
√
2

1/
√
2 1

)
> 0

and it is non-monotone if, for example, P =
(

1 3/4
3/4 1

)
> 0. In the latter case, the

curve {d(s)u : s ∈ R} may cross the unit sphere in two different points.

Theorem 12.1 A dilation d is monotone on R
n if and only if one of the following

conditions holds:

(1) �d(s)�A > 1 for s > 0;
(2) the continuous function ‖d(·)u‖ : R→R+ is strictly increasing for any u ∈ S,

where S := {u ∈ R
n : ‖u‖ = 1} is the unit sphere;

(3) for any u ∈ R
n there exists a unique pair (s0, u0) ∈ R×S such that u = d(s0)u0.
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Proof (1) For any u ∈ S we have 1 = ‖u‖ = ‖d(s)d(−s)u‖ ≤ ‖d(s)‖A‖d(−s)u‖.
Hence, 1 ≤ ‖d(s)‖A�d(−s)�A for any s ∈ R.
(2) On the one hand, since supu∈S‖d(s)u‖ = ‖d(s)us‖ for some us ∈ S, then strict
monotonicity of ‖d(·)u‖ for any u ∈ S implies ‖d(s)‖ < 1 for s < 0. On the other
hand, if d is monotone then for u �= 0 and s1 < s2 one has ‖d(s1)u‖ − ‖d(s2)u‖ =
‖d(s1)u‖ − ‖d(s2 − s1)d(s1)u‖ ≤ (1 − �d(s2 − s1)�A)‖d(s1)u‖ < 0. This implies
the function ‖d(·)u‖ is strictly increasing for any u ∈ S.
(3)Necessity. Existence and uniqueness of the pair (s0, u0) such that u0 = d(s0)u ∈ S
for u ∈ R

n immediately implies continuity of the dilation and the condition 2).
Sufficiency. If u ∈ S is an arbitrary vector from the unit sphere then d(s)u /∈ S for all
s �= 0. Indeed, otherwise the pair (s0, u0) ∈ R × S : u0 = d(s)u ∈ S is not unique.
Hence, the limit property of the dilation (see, Definition 12.10) implies ‖d(s)u‖ < 1
for all s < 0 and all u ∈ S, i.e., ‖d(s)‖A < 1 for s < 0.

Theorem 12.1 guarantees the functions‖d(·)‖A :R→R+ and�d(·)�A :R→R+ are
also continuous and strictly increasing. Moreover, if ‖ · ‖ is Ck outside the origin
then the identity d

ds d(s) = Gdd(s) guarantees that these functions are also Ck .

Definition 12.12 The dilation d is said to be strictly monotone onRn if there exists
β > 0 such that ‖d(s)‖A ≤ eβs for s ≤ 0.

The dilation d considered in Example 12.4 is strictly monotone on R
2 equipped

with the conventional Euclidian norm.

Theorem 12.2 Let d be a dilation in R
n then

• the matrix −Gd is Hurwitz, i.e., all eigenvalues λi of Gd are placed in the right
complex half-plane;

• for any β ∈ (0, β∗] there exists a symmetric matrix P ∈ R
n×n, P = P� such that

PGd + G�
d P ≥ 2βP, P > 0; (12.6)

where −β∗ < 0 is the spectral abscissa of −Gd, i.e., β∗ = min�(λi )

• the dilation d is strictly monotone with respect to the weighted Euclidean norm
‖ · ‖=√〈·, ·〉 induced by the inner product 〈u, v〉=u�Pv with P satisfying (12.6)
and

eαs ≤ �d(s)�A ≤ ‖d(s)‖A ≤ eβs ifs ≤ 0, eβs ≤ �d(s)�A ≤ ‖d(s)‖A ≤ eαs if s ≥ 0,

α := supz∈S〈Gdz, z〉 = 1

2
λmax(P

1/2GdP
−1/2 + P−1/2G�

d P
1/2) > 0,

β := inf z∈S〈Gdz, z〉 = 1

2
λmin(P

1/2GdP
−1/2 + P−1/2G�

d P
1/2) > 0.

(12.7)

Proof Since d
ds d(s) = Gdd(s), d(0) = I then d(s) is the fundamental matrix of the

linear system of ODEs with the matrix Gd. The limit property of the dilation implies
that this system of ODEs is globally asymptotically stable in the inverse time, i.e.,
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the matrix −Gd is Hurwitz. Hence, there exists a symmetric positive definite matrix
such that (12.6) holds and for any u ∈ S one has d

ds ‖d(s)u‖2 = u�d(s)�(G�
d P +

PGd)d(s)u ≥ 2β‖d(s)u‖2. Similarly we derive d
ds ‖d(s)u‖2 ≤ α‖d(s)u‖2, i.e., the

inequalities (12.7) hold.

Therefore, any dilation d is strictly monotone on R
n equipped with the

weighted Euclidian norm ‖u‖=√
u�Pu if the matrix P>0 satisfies (12.6).

12.3.1.2 Homogeneous Norm

The “homogeneous norm” is not a norm in the classical sense, since, in particular,
the triangle inequality may not hold. However, it introduces a topology in R

n:

Sd(r) = {
u ∈ R

n : ‖u‖d = r
}

and Bd(r) = {u ∈ d : ‖u‖d < r} , r > 0,

where Sd(r) is the homogeneous sphere of the radius r , Bd(r) is the homogeneous
ball of the radius r and ‖·‖d : Rn → R is a function introduced by the next definition.

Definition 12.13 A continuous function ‖ · ‖d : R
n → R+ is said to be d-

homogeneous norm if ‖u‖d → 0 as u → 0 and ‖d(s)u‖d = es‖u‖d > 0 for
u ∈ R

n\{0} and s ∈ R.

There are many ways to construct a homogeneous norm inRn (see, e.g., [21, 23, 34,
40]). For monotone dilations we can introduce the canonical homogeneous norm
as follows:

‖u‖d = esu : ‖d(−su)u‖ = 1. (12.8)

In [33] this homogeneous norm was called canonical since it is induced by the
canonical norm ‖ · ‖ in Rn and ‖x‖d = ‖x‖ = 1 on the unit sphere S. Obviously

�d(ln ‖u‖d)�A ≤ ‖u‖ ≤ ‖d(ln ‖u‖d)‖A,

where �d(·)�A and ‖d(·)‖A are continuous and strictly increasing functions (see,
Theorem 12.1).

As a consequence of Theorem 12.2, the symbol ‖ · ‖d denotes the canonical
homogeneous norm by default.

Proposition 12.3 Ifd is strictlymonotone onRn with dilation rateβ > 0:‖d(s)‖A ≤
eβs for s < 0 (see Definition 12.12) then
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•
∣
∣
∣‖u1‖β

d−‖u2‖β
d

∣
∣
∣ ≤ ‖u1−u2‖ for u1, u2 ∈ R

n\Bd(1),

• the homogeneous norm ‖ · ‖d is Lipschitz continuous outside the origin;
• if the norm ‖ · ‖ is smooth outside the origin then the homogeneous norm ‖ · ‖d is
also smooth outside the origin, d

ds ‖d(−s)u‖ < 0 for s ∈ R, u ∈ R
n\{0} and

∂‖u‖d
∂u = ‖u‖d

∂‖z‖
∂z

∣
∣
∣
z=d(−s)u

∂‖z‖
∂z

∣
∣
∣
z=d(−s)u

Gdd(−s)u

∣
∣
∣
∣
∣
s=ln ‖u‖d

for u ∈ R
n\{0} (12.9)

Proof

• Since for ui ∈ R
n we have ‖ui‖d = esi : ‖d(−si )u‖ = 1 then 1 = ‖d(−s1)u1‖ =

‖d(−s1)(u1−u2)+d(s2−s1)d(−s2)u2‖ ≤ ‖d(−s1)‖A‖(u1−u2)‖+‖d(s2−s1)‖A.
For 1 < ‖u2‖d < ‖u1‖d we have 0 < s2 < s1 and 1 ≤ e−βs1‖u1 − u2‖ + eβs2−βs1

or equivalently, ‖u1‖d − ‖u2‖d ≤ ‖u1 − u2‖.
• Lipschitz continuity follows from the proven inequality, the identity ‖d(s)u‖d =
es‖u‖d and monotonicity of the dilation.

• The existence of the unique function s : Rn → R such that ‖d(−s(u))u‖ = 1
has been proven in Theorem 12.1. Since the dilation is strictly monotone then
d
ds ‖d(−s)u‖ < 0 on S (and, on R

n\{0}) for all s ∈ R (see, Theorem 12.1). Since

the norm ‖ · ‖ is smooth them d
ds ‖d(−s)u‖ = − ∂‖z‖

∂z

∣
∣
∣
z=d(−s)u

Gdd(−s)u. Taking

into account ∂
∂u ‖u‖d = es ∂s

∂u

∣
∣
s=ln ‖u‖d the formula (12.9) can be derived using the

Implicit Function Theorem [22] applied to the equality ‖d(−s)u‖ = 1.

12.3.1.3 Homogeneous Functions and Homogeneous Vectors Fields

Vector fields, which are symmetric in certain sense with respect to a dilation d, have
a lot of properties useful for control design and state estimation of both linear and
nonlinear plants as well as for analysis of the convergence rate.

Definition 12.14 (Homogeneous vector field (function) [34]) A vector field f :
R

n → R
n (a function h : Rn → R) is said to be d-homogeneous of degree ν ∈ R if

f (d(s)u) = eνsd(s) f (u), ∀u ∈ R
n\{0}, ∀s ∈ R. (12.10)

(resp. h(d(s)u) = e νsh(u), ∀u ∈ R
n\{0}, ∀s ∈ R.)

Example 12.5 Let us consider the dilation d(s) = es
( 1 0 0

0 cos(s) sin(s)
0 − cos(s) sin(s)

)
that is strictly

monotone with respect to the Euclidean norm ‖x‖ = √
xT x and Gd =

(
1 0 0
0 1 1
0 −1 1

)
.

The vector field f : R3 → R
3 defined as f (x) =

(
x22+x23

x21 (cos(ln |x1|)+sin(ln |x1|))
x21 (cos(ln |x1|)−sin(ln |x1|))

)

and the

function h : R3 → R given by h = x31 + (x22 + x23 )
3
2 are d-homogeneous of degree

1 and 3, respectively.
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Example 12.6 (Vector Field with Both Negative and Positive Homogeneity
Degrees) Note that the vector fieldmay have different degrees of homogeneity depen-
dently of dilation group. Indeed, the linear vector field f = Ax : R

n → R
n

defined by a chain of integrators A = (
0 In−1
0 0

) ∈ R
n×n is d1-homogeneous of

degree 1 with d1(s) = diag{eis}ni=1 and d2-homogeneous of degree −1 with
d2(s) = diag{e(n−i+1)s}ni=1. A similar conclusion can be drawn for the chain of
power integrators.

The homogeneity allows local properties (e.g., smoothness) of vector fields (func-
tions) to be extended globally.

Corollary 12.1 Let the vector field f : R
n → R

n (a function h : R
n → R) be

d-homogeneous of degree ν ∈ R and the norm ‖ · ‖ in R
n be defined according to

Theorem 12.2 with β = β∗ and α ≥ β given by (12.7).

(i) If the function h is bounded on the unit sphere S then

(a) for ν > 0 it is continuous at the origin, h(0) = 0 and radially unbounded1

provided that h(x) �= 0 on S;
(b) for ν = 0 it is globally bounded in R

n and continuity of h at the origin
implies that h = const;

(c) for ν < 0 it is discontinuous at the origin, unbounded in any neighborhood
of the origin and |h(x)| → 0 as x → ∞;

(ii) If the vector field f is bounded on the unit sphere S then

(a) for ν+β > 0 it is continuous at the origin, f (0) = 0 and radially unbounded
if f (x) �= 0 on S;

– for ν + β = 0 (resp. ν + α = 0) it is bounded on Bd(r) (resp. on R
n\Bd(r))

for any fixed r > 0;
– for ν + β = ν + α = 0 it is globally bounded on R

n;
– for ν+β < 0 it is discontinuous at the origin, unbounded in any neighborhood
of the origin and ‖ f (x)‖ → 0 as x → ∞;

(iii) The vector field f (resp. function h) is Lipschitz continuous on R
n\{0} if and

only if it satisfies the Lipschitz condition on S.

(iv) If h : Rn → R is a d-homogeneous function of degree ν and differentiable on
S then it differentiable on R

n\{0} and
∂h(u)

∂u
Gdu = νh(u) for u ∈ R

n\{0}. (12.11)

1The vector field f (resp. function f ) is radially unbounded if x → ∞ implies ‖ f (x)‖ → +∞
(resp. |h(x)| → +∞).
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Proof

(i) Since h(u) = h(d(ln ‖u‖d)z) = ‖u‖ν
dh(z) where z = d(− ln ‖u‖)u ∈ S and

the homogeneous norm is continuous then h is continuous at the origin if ν > 0,
discontinuous at the origin if ν < 0 and globally bounded if ν = 0.

(ii) Similarly, for the vector field f we derive f (u) = ‖u‖ν
dd(ln ‖u‖d) f (z)

and ‖u‖ν
d�d(ln ‖u‖d)�A‖ f (z)‖ ≤ ‖ f (u)‖ ≤ ‖u‖ν

d‖d(ln ‖u‖d)‖A‖ f (z)‖. For
‖u‖ < 1 we have ‖u‖ν+α

d ‖ f (z)‖ ≤ ‖ f (u)‖ ≤ ‖u‖ν+β
d ‖ f (z)‖ and ‖u‖ν+β

d

‖ f (z)‖ ≤ ‖ f (u)‖ ≤ ‖u‖ν+α
d ‖ f (z)‖ if ‖u‖ > 1.

(iii) Sufficiency. Let ui ∈ R
n\{0}, i = 1, 2 then ui = d(ln ‖ui‖d)zi for some zi ∈ S,

f (u1) − f (u2) = f (d(ln ‖u1‖d)z1) − f (d(ln ‖u2‖d)z2) = ‖u1‖ν
dd(ln ‖u1‖d)

f (z1)−‖u2‖ν
dd(ln ‖u2‖d) f (z2) = ‖u1‖ν

dd(ln ‖u1‖d)( f (z1)− f (z2))+(‖u1‖ν
dd

(ln ‖u1‖d)−‖u2‖νd(ln ‖u1‖d) f (z2)+(‖u2‖νd(ln ‖u1‖d)−‖u2‖ν
dd(ln ‖u2‖d))

f (z2). If L > 0 is a Lipschitz constant on S then ‖ f (u1) − f (u2)‖ ≤
L‖u1‖ν

dd(ln ‖u1‖d)‖z1− z2‖+‖d(ln ‖u1‖d) f (z2)‖(‖u1‖ν
d−‖u2‖ν

d)+‖ f (z2)‖
‖u2‖ν‖d(ln ‖u1‖d) − d(ln ‖u2‖d)‖A. Since d(s1) − d(s2) = Gd

∫ s1
s2
d(s)ds and

the function ‖d(·)‖A is strictly increasing then ‖d(ln ‖u1‖d)−d(ln ‖u2‖d))‖A ≤
M‖Gd‖| ln ‖u1‖d − ln ‖u2‖d|, where M = max{‖d(ln ‖u1‖d)‖A, ‖d(ln ‖u2‖d)
‖A}. Since the homogeneous norm is Lipschitz continuous (see Proposition
12.3) on R

n\{0}, and power and logarithm functions are Lipschitz continuous
outside zero, then f is Lipschitz continuous outside the origin.
Necessity. Suppose the contrary, i.e., f is Lipschitz continuous on R

n\{0}, but
it does not satisfy the Lipschitz condition of S. This means for any Ln > 0
there exists un, vn ∈ S such that ‖ f (un)− f (vn)‖ > Ln‖un − vn‖, n = 1, 2, ..,
i.e., Ln → +∞ as n → +∞. Since S is compact then f is bounded on S.
This means that ‖un − vn‖ → 0 as n → 0. The latter contradicts Lipschitz
continuity, since for any u ∈ S there exists εu > 0 and Lu > 0 such that
‖u − v‖ < ε implies ‖ f (u) − f (v)‖ ≤ Lu‖u − v‖.

(iv) Since h(u) = h(d(ln ‖u‖d)z) = ‖u‖ν
dh(z) where z = d(− ln ‖u‖)u ∈ S then

∂h
∂u = ∂

∂u

(‖u‖ν
dh(z)

)
, z = z(u) = d(− ln ‖u‖d)u. Since ‖ · ‖d is smooth

outside the origin, then the differentiability of the function h on the sphere S
implies its differentiability on R

n\{0}. From h(u) = ‖u‖ν
dh(d(− ln ‖u‖d)u)

we derive ∂h(u)

∂u = νh (d(− ln ‖u‖d)u)‖u‖ν−1
d

∂‖u‖d
∂u + ‖u‖ν

d
∂h(d(− ln ‖u‖du))

∂u =
νh(d(− ln ‖u‖d)u)‖u‖ν−1

d
∂‖u‖d

∂u +‖u‖ν
d

∂h(z)
∂z

∣
∣
∣
z=d(− ln ‖u‖d)u

∂
∂u (d(− ln ‖u‖d)u)

= νh(d(− ln ‖u‖du)‖u‖ν−1
d

∂‖u‖d
∂u + ‖u‖ν

d
∂h(z)
∂z

∣
∣
∣
z=d(− ln ‖u‖d)u

(d(− ln ‖u‖d)
−Gdd(− ln ‖u‖d)u

‖u‖d
∂‖u‖d

∂u

)
. For ‖u‖ = 1 we derive ∂h(u)

∂u Gdu
∂‖u‖d

∂u = νh(u)
∂‖u‖d

∂u .

Hence, multiplying by u we derive that (12.11) holds for ‖u‖ = 1. Since
‖ · ‖new = γ ‖ · ‖ with γ > 0 is again the norm satisfying Theorem 12.2, then
the obtained identity holds on R

n\{0}. Finally, note that this identity immedi-
ately implies homogeneity of the gradient field of h.



302 A. Polyakov

Let degd(h) (resp. degd( f )) denote the homogeneity degree of d-
homogeneous function h (resp. d-homogeneous vector field f ).

Theorem 12.3 (“Homogeneous arithmetics”) If h,w are d-homogeneous functions
and f, g are vector fields then

1. if degd(h) = deg(w) then degd(w + h) = degd(w) = degd(h);
2. degd(wh) = degd(w) + degd(h);
3. if h ∈ C1 at least on R

n\{0} then

edeg(h)s ∂h(u)

∂u
= ∂h(z)

∂z

∣
∣
∣
∣
z=d(s)u

d(s), ∀u ∈ R
n\{0}, ∀s ∈ R; (12.12)

4. if degd( f ) = degd(g) then degd( f + g) = degd( f ) = degd(g);
5. ∂h

∂u f ∈ Hd and degd
(

∂h
∂u f

) = degd(h) + degd( f ) if h ∈ C1(Rn\{0},R).

Proof The Properties 1,2, and 4 are obvious. The Property 3 follows from the def-
inition of the Frechét derivative, which coincides with ∂h

∂u if h is smooth. Namely,

lim‖‖→0

∥
∥
∥h(u+)−h(u)− ∂h(u)

∂u 

∥
∥
∥

‖‖ = 0 and lim‖‖→0

∥
∥
∥
∥h(d(s)u+)−h(d(s)u)− ∂h(z)

∂z

∣
∣
∣
z=d(s)u



∥
∥
∥
∥

‖‖ = 0

with  ∈ R
n . Since h is d-homogeneous then

∥
∥
∥
∥h(d(s)u+)−h(d(s)u)− ∂h(z)

∂z

∣
∣
∣
z=d(s)u



∥
∥
∥
∥

‖‖ =

eνs

∥
∥
∥
∥h(u+̃)−h(u)−e−νs ∂h(z)

∂z

∣
∣
∣
z=d(s)u

d(s)̃

∥
∥
∥
∥

‖d(s)̃‖ ≤ eνs

�d(s)�A

∥
∥
∥
∥h(u+̃)−h(u)−e−νs ∂h(z)

∂z

∣
∣
∣
z=d(s)u

d(s)̃

∥
∥
∥
∥

‖̃‖ ,

where ̃ = d(−s) such that ‖̃‖ → 0 implies ‖‖ → 0. Therefore, the identity
(12.12) holds. The Property 5 is a straightforward corollary of the Property 3.

Let us denote by L(k)
f h the Lie derivative of the function along the vector field f ,

i.e., L(0)
f h = h and L(k)

f h = ∂L(k−1)
f h

∂u f for k = 1, 2, . . . .

Corollary 12.2 If the d-homogeneous vector field f : R
n → R

n and the d-
homogeneous function h : Rn → R are sufficiently smooth to guarantee existence
and continuity the Lie derivatives up to the order k at least on Rn\{0}, then L(i)

f h is
d-homogeneous of degree degd( f ) i + degd(h), i = 0, 1, 2, . . . .

12.3.2 Homogeneous Differential Equations

12.3.2.1 Stability of Homogeneous Systems

The next theorem gives the most important result about scalability solutions to d-
homogeneous evolution equations [7, 23, 27, 34, 40, 49].
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Theorem 12.4 Let f : Rn → R
n be continuous d - homogeneous vector field of

degree ν ∈ R. If ϕx0 : R+ → R
n is a solution to

ẋ = f (x), (12.13)

with the initial condition x(0) = x0 ∈ R
n then ϕd(s)x0(t) := d(s)ϕ(t0 + eνs t) with

t0, s ∈ R is a solution to (12.13) with the initial condition x(0) = d(s)ϕx0(t0).

Proof Since d
dt ϕ(t) = f (ϕ(t)) then d(s) d

dt ϕ(t) = d
dt d(s)ϕ(t) = d(s) f (ϕ(t)) =

e−νs f (d(s)ϕ(t)). Making the change of time t = t0+eνs tnew we complete the proof.

This theorem has a lot of corollaries, which are very useful for qualitative analysis
of homogeneous systems.

Corollary 12.3 Let a continuous vector field f : Rn → R
n be d - homogeneous of

degree ν ∈ R. The origin of the system (12.13) is globally uniformly asymptotically
stable if and only if one of the following three conditions holds

(1) it is locally attractive;
(2) there exists a strictly positively invariant compact set2 to the system (12.13);
(3) there exists a d-homogeneous Lyapunov function V : R

n → R+ such that
V ∈ C∞.

Proof (1) Necessity is obvious. Let us prove Sufficiency. Local attractivity implies
that there exists a closed ball B with the center at the origin such that ϕx0(t) → 0 as
t → +∞ for any x0 ∈ B. Theorem 12.4 implies that the same property holds for
any d-homogeneous ball d(s)B, i.e., the origin is globally attractive. All trajectories
of the system with initial conditions x0 ∈ B and t ∈ [0, t∗] form again a compact set
Ω t∗ . Since the origin is globally attractive then the set Ω = ⋃

t∗≥0 Ω t∗ is compact
invariant set to the system (12.13). Using Theorem 12.4 we derive the same result for
d(s)Ω , i.e., the origin of the system (12.13) is Lyapunov stable and, consequently,
globally uniformly asymptotically stable.
(2)Necessity follows from the Converse Lyapunov theorem (see [4]) about existence
of the Lyapunov function for any uniformly asymptotically stable continuous system.
The level set of the corresponding Lyapunov function is strictly positively invariant
compact set. Sufficiency. Since f is continuous and d-homogeneous then f (0) =
0, i.e., the origin is the equilibrium point of the system (12.13). If Ω is strictly
positively invariant then by Theorem 12.4 the set d(s)Ω as well as is also strictly
positively invariant compact set for the system (12.13). This means that 0 ∈ int.
Indeed, otherwise there exists s∗ such that int(d(s)Ω)∩ int(Ω) = ∅ and ∂(d(s)Ω)∩
∂(Ω) �= ∅, but the latter contradicts the strict positive invariance of these sets. On the
other hand, the origin is the unique equilibrium point of the system (12.13). Indeed,
otherwise, f (d(s)x∗) = 0 for all s ∈ R if f (x∗) = 0 and the continuous curve
{d(s)x∗ : s ∈ R} crosses Ω , but this again contradicts the strict positive invariance
of Ω. Taking into account continuity of the dilation d and d(s)Ω → 0 as s → 0 we

2A compact set Ω is strictly positively invariant for (12.13) if x0 ∈ ∂Ω ⇒ ϕx0 (t) ∈ int(), t > 0.
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conclude that the origin is locally attractive and globally asymptotically stable.
(3)Sufficiency is obvious. Let us provenecessity using the idea proposed in [40]. The
Converse Lyapunov Theorem implies that there exists a smooth Lyapunov function
V : Rn → R+. Let the smooth function a : R → R+ be defined as a(ρ) = e

1
1−ρ

if ρ > 0 and a(ρ) = 0 if ρ ≤ 1. Obviously, a′(ρ) > 0 if ρ > 1. Then the
function Vhom : R

n → R+ defined as Vhom(x) = ∫ +∞
−∞ e−sa(V (d(s)x))ds is d-

homogeneous Lyapunov function to the system (12.13). Indeed, it is well-defined
due to the cut-off function a), smooth, positive definite and radially unbounded.
Finally, V is d-homogeneous V (d(q)x) = ∫ +∞

−∞ e−sa(V (d(−s+q)x))ds = eqV (x)

and V̇ (x) = ∫ +∞
−∞ e−sa′(V (d(−s)x)) ∂V (z)

∂z

∣
∣
∣
z=d(s)x

d(s) f (x)ds < 0 since f is d-

homogeneous and ∂V (z)
∂z

∣
∣
∣
z=d(s)x

d(s) f (x) = e−νs ∂V (z)
∂z f (z)

∣
∣
∣
z=d(s)x

< 0.

Corollary 12.4 Let a continuous vector field f : Rn → R
n be d - homogeneous of

degree ν ∈ R and the origin of (12.13) be globally uniformly asymptotically stable.

• If ν < 0 then it is globally finite-time stable.
• If ν > 0 then any ball Bd(r) is fixed-time attractive, i.e.,

∀r > 0 ∃T = T (r) ≥ 0 : ϕx0(t) ∈ Bd(r), ∀t > T, ∀x0 ∈ R
n.

Proof Let us denote T0 = sup
‖x0‖d≤2

in
τ≥0:‖ϕx0 (t)‖d≤1,∀t>τ

τ . Since the origin is uni-

formly asymptotically stable then T0 < +∞ and ϕx1(t) := d(ln 2)ϕx0(T0 + 2ν t) is
a solution to (12.13) with x(0) = x1 := d(ln 2)ϕx0(T0) such that ‖ϕx1(t)‖d ≤ 2 for
all t ≥ 0. Hence, ϕx2(t) := d(ln 2)ϕx1(T0 + 2ν t) = d(2 ln 2)ϕx0(T0 + 2ν(T0 +
2ν t)) is again a solution to (12.13) x(0) = x2 := d(ln 2)ϕx1(T0) such that

‖ϕx2(t)‖d ≤ 2. We derive ϕxi (t) = d(i ln 2)ϕx0

(
2iν t + T0

∑i−1
j=0 2

jν
)

, ‖ϕxi (T0)‖d =
∥
∥
∥d(i ln 2)ϕx0

(
T0

∑i
j=0 2

jν
)∥
∥
∥
d

= 2i‖ϕx0(Ti )‖d ≤ 1, where Ti = T0
i∑

j=0
2 jν . Hence,

‖ϕx0(Ti )‖d → 0 as i → +∞, but Ti → T := T0
∑+∞

j=0 2
jν as i → +∞. For ν < 0

we have T = T0
1−2ν < +∞.

Since ϕx̃1(t) = d(ln 2))ϕx0(2
ν t) is a solution to (12.13) with x(0) = x̃1 :=

d(ln 2)x0 then we have ‖ϕx̃1(t)‖d = 2‖ϕx0(2
ν t)‖d ≤ 2 for t ≥ 2−νT0 and

‖ϕx̃1(t)‖d ≤ 1 for t ≥ 2−νT0 + T0 due to the definition of T0. Similarly,
ϕx̃i (t) = d(ln 2))ϕx̃i−1(2

ν t) is a solution to (12.13) with x(0) = x̃2 := d(ln 2)x̃1
and ‖ϕx̃i (t)‖d ≤ 1 for all t ≥ T0

∑i
j=0 2

− jν as i → +∞. We complete the proof

with the remark: ‖x̃i‖d → +∞ as i → +∞ but T ∗ = T0
∑+∞

j=0 2
− jν < +∞ if

ν > 0.

12.3.2.2 Observability of Homogeneous Systems

Let us consider the nonlinear system
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ẋ = f (x), x ∈ R
n, y = h(x), y ∈ R, (12.14)

The points x1, x2 ∈ R
n , x1 �= x2 are indistinguishable if h(ϕx1(t)) = h(ϕx2(t))

for all t ≥ 0. Otherwise, these points are said to be distinguishable.

Definition 12.15 (Observability) The system (12.14) is locally observable at the
point x0 ∈ R

n if there exists a neighborhoodU (x0) such that for any y ∈ U (x0)\{x0}
the points x0 and y are distinguishable. The system (12.14) is globally observable in
R

n if it is locally observable at any x0 ∈ R
n .

Corollary 12.5 Let f : Rn → R
n be d - homogeneous continuous vector field and

h : Rn → R be d-homogeneous continuous function. The nonlinear system (12.14)
is observable on R

n\{0} if and only if it is locally observable on the sphere S.

This corollary is the straightforward consequence of Definition 12.15 and
Theorem 12.4.

Theorem 12.5 Let the norm ‖ · ‖ be smooth in Rn\{0} and the dilation d be strictly
monotone onRn. Let h : Rn → R be d-homogeneous of degreeμ > 0 and f : Rn →
R

n be d - homogeneous of degree ν > − μ

n−1 . Let the vector field H =
(

h
L f h
...

L(n−1)
f h

)

:
R

n → R
n be C1 on S. The nonlinear system (12.14) is globally observable if one of

the following conditions holds

(i) n ≥ 3, infu∈S‖H(u)‖ > 0 and det
(

∂H
∂u

∣
∣
u∈S

) �= 0;
(ii) H is C1 at zero, det

(
∂H
∂u

∣
∣
u=0

) �= 0 and nμ + n(n−1)
2 ν = trace(Gd).

Proof To guarantee observability it is sufficient to show that the map H is homeo-
morphism (or diffeomorphism) on Rn .

We have that L(i)
f h is homogeneous of degree μ + iν (see, Corollary 12.2).

Hence, H(u) =
( ‖u‖μ

d 0 ... 0

0 ‖u‖μ+ν
d ... 0

... ... ... ...

0 0 ... ‖u‖μ+(n−1)ν
d

)

H(z), where z = d(− ln ‖u‖d)u ∈
S. Since the norm ‖ · ‖ is selected to be smooth on R

n and H is C1 on the
sphere S then H is C1 on R

n\{0} (see, Corollary 12.1). Due to (12.12) we

derive

( eμs 0 ... 0
0 e(μ+ν)s ... 0
... ... ... ......
0 0 ... e(μ+(n−1)ν)s

)
∂H(u)

∂u = ∂H(d(s)u)

∂u d(s) and
e(nμ+0.5n(n−1)ν)s det

(
∂H(u)

∂u

)

det(d(s)) =
det

(
∂H(d(s)u)

∂u

)
. Note that det(d(s)) = det(eGds) = estrace(Gd) for all s ∈ R.

(i) Therefore, det
(

∂H(u)

∂u

)
�= 0) on R

n\{0}. On the other hand, since H(z) �= 0
for z ∈ S then ‖H(u)‖ → +∞ as ‖u‖ → +∞ (i.e., H radially unbounded
and, consequently, proper) and ‖H(u)‖ → 0 as ‖u‖ → 0 (i.e., H is continuous
at zero). According to Theorem of Hadamard (see, e.g., Theorem 2.1, [44]) we
derive that H is the bijection onRn\{0} provided thatRn\{0} is simply connected
C1-manifold (that is the case for n ≥ 3). Continuity of H at the origin proven
above as well as H(0) = 0 together with H(u) �= 0 on R

n\{0} implies that H
is the global homeomorphism.
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(ii) If nμ + n(n−1)
2 ν = trace(Gd) then det

(
∂H(u)

∂u

)
= det

(
∂H(d(s)u)

∂u

)
for all s ∈ R.

Since H isC1 at zero then for all u ∈ R
n we have det

(
∂H(u)

∂u

)
= det

(
∂H
∂u

∣
∣
u=0

) �=
0, i.e., H is C1 diffeomorphism on Rn .

The condition (ii) of Theorem 12.5 covers linear systems if ν = 0, μ = 1 and
Gd = I .

12.3.3 Implicit Lyapunov Function Method

Lyapunov function method [26] is the main tool for analysis of nonlinear dynamical
systems. Frequently, it is very difficult to find an appropriate Lyapunov function.
However, stability analysis of homogeneous differential equation can be reduced to
convergence analysis from a sphere S. Indeed, this sphere can be assigned to be
the unit level set of a Lyapunov function, which can be constructed by means of the
homogeneous dilation of S yielding d(s)S to be its es-level set. The latter implies that
the Lyapunov function of homogeneous system can always be designed implicitly

V : Rn → R+ such that d(− ln V (x))x ∈ S, x ∈ R\{0}. (12.15)

using the so-called Implicit Lyapunov Function method [1, 24, 35].

Theorem 12.6 [35] Let continuous function Q : R+ × R
n → R satisfy the condi-

tions

(C1) Q is continuously differentiable outside the origin of R+ × R
n;

(C2) for any x ∈ R
n\{0} there exists V ∈ R+ such that Q(V, x) = 0;

(C3) lim
x→0

(V,x)∈Ω

V=0, lim
V→0+

(V,x)∈Ω

‖x‖=0, lim
‖x‖→∞

(V,x)∈Ω

V= + ∞, where Ω= {(V, x)∈R+×R
n :

Q(V, x)=0};
(C4) ∂Q(V,x)

∂V < 0 for all V ∈ R+ and x ∈ R
n\{0}.

If ∂Q(V,x)
∂x f (x) < 0 for all (V, x) ∈ Ω then the origin of (12.13) is globally

uniformly asymptotically stable.

Proof The conditions (C1), (C2), (C4) and the implicit function theorem [22] imply
that the equation Q(V, x) = 0 implicitly defines a unique positive definite function
V : Rn\{0} → R+ such that Q(V (x), x) = 0 for all x ∈ R

n\{0}. The function V

is continuously differentiable outside the origin and ∂V
∂x = −

[
∂Q(V,x)

∂V

]−1
∂Q(V,x)

∂x for

Q(V, x) = 0, x �= 0. Hence, since ∂Q(V,x)
∂V < 0 then the condition ∂Q(V,x)

∂x f (x) < 0
implies V̇ (x) = ∂V

∂x f (x) < 0. Note that due to the condition (C3) the function V is
radially unbounded and it can be continuously prolonged at the origin by V (0) = 0.

Evidently, the conditions of Theorem 12.6 mainly repeat (in the implicit form) the
requirements of the classical theoremonglobal asymptotic stability (see, for example,



12 Fast Control Systems: Nonlinear Approach 307

[4]). Indeed,Condition (C1) asks for smoothness of theLyapunov function.Condition
(C2) and the first two limits from Condition (C3) provide its positive definiteness.
The last limit from Condition (C3) implies radial unboundedness of the Lyapunov
function. Condition (C5) guarantees the negative definiteness of the total derivative
of the Lyapunov function calculated along trajectories of the system (12.13). The
only specific condition is (C4), which is imposed by implicit function theorem (see,
for example, [22]). This condition is required in order to guarantee that the Lyapunov
function is (uniquely) well-defined by the equation Q(V, x) = 0.

Corollary 12.6 [35] Let a continuous function Q : R+ × R
n → R satisfy the

conditions (C1)–(C4) of Theorem 12.6. If there exist c > 0 and 0 < μ ≤ 1 such that
∂Q(V,x)

∂x f ≤ cV 1−μ ∂Q(V,x)
∂V for (V, x) ∈ Ω then the origin of the system (12.13) is

globally uniformly finite-time stable and T (x0) ≤ V μ
0

cμ , where Q(V0, x0) = 0.

Proof Theorem 12.6 implies global uniform asymptotic stability of the origin of
(12.13). The uniform finite-time stability of the origin follows from the differential
inequality V̇ (x)) ≤ −cV 1−μ(x), which, due to the condition of this corollary, holds.

Corollary 12.7 [35] Let there exist two functions Q1 and Q2 satisfying the condi-
tions (C1)–(C4) of Theorem 12.6 and

(C5) Q1(1, x) = Q2(1, x) for all x ∈ R
n\{0};

(C6) there exist c1>0and0 <μ< 1 such that the inequality ∂Q1
∂x f (x) ≤ c1V 1−μ ∂Q1

∂V ,
holds for all V ∈ (0, 1] and x ∈ R

n\{0} satisfying the equation Q1(V, x) = 0;
(C7) there exist c2>0 and ν>0 such that the inequality ∂Q2

∂x f (x) ≤ c2V 1+ν ∂Q2
∂V ,

holds for all V ≥ 1 and x ∈ R
n\{0} satisfying the equation Q2(V, x) = 0,

then the system (12.13) is globally fixed-time stable with the settling-time
estimate T (x0) ≤ 1

c1μ
+ 1

c2ν
.

Proof Let the two functions V1 and V2 be defined by the equations Q1(V, x) =
0 and Q2(V, x) = 0 (see, the proof of Theorem 12.6). Consider the sets Σ1 =
{x ∈R

n :V1(x)>1}, Σ2 = {x ∈ R
n : V2(x) > 1} and prove that Σ1 = Σ2. Suppose

the contrary, i.e., ∃z ∈ R
n such that z ∈ Σ1 and z /∈ Σ2.

On the one hand, Q1(V1, z) = 0 implies V1 > 1 and Q1(1, z) > Q1(V1, z) = 0
due to Condition C4). On the other hand, Q2(V2, z) = 0 implies V2 ≤ 1 and
Q2(1, z) ≤ Q2(V2, z) = 0. The contradiction follows from (C5).
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Therefore, due to (C5) and (C4) the function V : Rn → R defined by the equality

V (x) =
⎧
⎨

⎩

V1(x) for V1(x) < 1,
V2(x) for V2(x) > 1,
1 for V1(x) = V2(x) = 1,

is positive definite, continuous in R
n and continuously differentiable for x /∈

{0} ∪ {x ∈ R
n : V (x) = 1}. The function V is Lipschitz continuous outside the

origin and has the following Clarke’s gradient [8]:

∇CV (x) = ξ∇V1(x) + (1 − ξ)∇V2(x), x ∈ R
n,

where ξ = 1 for 0 < V1(x) < 1, ξ = 0 for V2(x) > 1, ξ = [0, 1] for
V1(x) = V2(x) = 1 and ∇Vi is the gradient of the function Vi , i = 1, 2. Hence, due
to conditions (C6) and (C7), the inequality

dV (ϕx0(t))

dt
≤

⎧
⎨

⎩

−c1V 1−μ(ϕx0(t)) for V (ϕx0(t)) < 1,
−c2V 1+ν(ϕx0(t)) for V (ϕx0(t)) > 1,

−min{c1, c2} for V (ϕx0(t)) = 1,

holds for almost all t such that ϕx0(t) �= 0, where ϕx0(t) is a solution of the system
(12.13) with the initial condition x(0) = x0. This implies the fixed-time stability
of the origin of the system (12.13) with the estimate of settling-time function given
above. Please see [32] or [38] for more details.

Corollary 12.8 Let Q1, Q2 satisfy Conditions (C1-C5) of Corollary 12.7 and
(C6∗) for (V, xh(t)) ∈ Ω such that x(t) satisfies (12.16) one has

∂Qi

∂x ≤2α0V ln
(
eV (−1)i

)
∂Qi (V,xh(t))

∂V , ∀t ∈R+,

where α0 > 0 and i = 1, 2;
then the origin of system (12.16) is globally hyper-exponentially stable with degree
r = 1 and convergence rate α = (α0, 1).

The proof this corollary is similar to Corollary 12.7.
The next theorem provides the important topological characterization of homo-

geneous systems. In particular, it says that any asymptotically stable homogeneous
system is isomorphic to some “quadratically stable” system.

Theorem 12.7 Let d be dilation on R
n and f : R

n → R
n be a continuous d-

homogeneous vector field. The origin of the system (12.13) is globally asymptotically
stable if and only if there exist a positive definite symmetric matrix P ∈ R

n×n

satisfying (12.6) and a d-homogeneous diffeomorphism � : Rn\{0} → R
n\{0} of

degree zero such that

∂��(x)P �(x)

∂x
f (x) < 0 for x ∈ R

n : ��(x)P �(x) = 1.
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Moreover, ‖�(·)‖d :Rn →R+ is the d-homogeneous Lyapunov function of degree 1,
where ‖ · ‖d is the d-homogeneous norm induced by the norm ‖u‖ = √

u�Pu.

Proof Sufficiency Since P satisfies (12.6) then the dilation d is strictly monotone
on R

n equipped with the norm ‖x‖ = √
xT Px . Since �(d(s)u) = d(s)�(u)

then � can be prolonged to the origin by continuity �(0) = 0. Note also that
�(u) �= 0 for all u �= 0, otherwise (i.e., ∃u∗ �= 0 : �(u∗)), due to homogeneity
we derive that �(u) = 0 on a smooth curve {d(s)u∗, s ∈ R}, which starts at the
origin goes to ∞. The latter contradicts the assumption that � is diffeomorphism
(continuously differentiable invertible map with continuously differentiable inverse)
on R

n\{0}. Since ‖�(d(s)u)‖d = ‖d(s)�(u)‖d = es‖�(u)‖d then the function
‖�(·)‖d is d-homogeneous of degree 0, radially unbounded, continuous at the ori-
gin and continuously differentiable outside the origin. Due to (12.9) the inequality
∂‖�(x)‖

∂x f (x)
∣
∣
∣‖�(x)‖=1

< 0 implies ∂‖�(x)‖d
∂x f (x)

∣
∣
∣‖�(x)‖=1

< 0. Applying homogene-

ity we derive ∂‖�(x)‖d
∂x f (x) < 0 for x ∈ R

n\{0}.
Necessity Since d is a dilation onRn then due to Theorem 12.2 it is strictly monotone
on R

n equipped with the smooth norm ‖x‖ = √
x�Px , where P > 0 satisfies the

inequality (12.6). Since the origin of the system (12.13) is asymptotically stable
then according to Corollary 12.3 there exists a smooth d-homogeneous Lyapunov
function Ṽ : R

n → R+ of degree μ > 0. The function V = Ṽ 1/μ is also Lya-
punov function to (12.13) that is homogeneous of degree 0, continuous at the origin
and smooth outside the origin. Let us consider the map � : R

n\{0} → R
n\{0}

defined as �(x) = d
(
ln

(
V (x)
‖x‖d

))
x for x ∈ R

n\{0}. Obviously, the inverse

map �−1 : R
n\{0} → R

n\{0} defined as �−1(z) = d
(
− ln

(
V (z)
‖z‖d

))
z. Finally,

�(d(s)x) = d(s)�(x) and ‖�(x)‖d = V (x), Using (12.9) we complete the proof.

Corollary 12.9 Let d be a strictly monotone dilation onRn equipped with a smooth
norm ‖ · ‖. Let a map H : Rn\{0} → R

n\{0} be a diffeomorphism and H(d(s)u) =
d(s)H(u), s ∈ R, u ∈ R

n. If f : Rn → R
n is d-homogeneous vector field and

∂‖H(x)‖
∂x f (x)

∣
∣
∣‖H(x)‖=1

< 0

then ‖H(·)‖d : R
n → R+ is the homogeneous Lyapunov function to the system

(12.13).

Proof The homogeneous norm is defined implicitly by (12.8). It satisfies the con-
ditions (C1)–(C3). The condition (C4) is also satisfied due to strict monotonicity
of d. Since H is the diffeomorphism on R

n\{0} then ‖H · ‖d also satisfy condi-

tions (C1)–(C4). Due to (12.9) the inequality ∂‖H(x)‖
∂x f (x)

∣
∣
∣‖H(x)‖=1

< 0 implies

∂‖H(x)‖d
∂x f (x)

∣
∣
∣‖x‖=1

< 0. Finally, applyinghomogeneitywederive ∂‖H(x)‖d
∂x f (x) < 0

for all x ∈ R
n\{0}.
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12.4 Fast Control for Nonlinear Plants

Let us consider the nonlinear control system

ẋ = f (x, u), (12.16)

y = h(x), (12.17)

where x ∈ R
n is the state vector of a plant, u ∈ R

m is the vector of control inputs,
f : Rn × R

m → R
n is a continuous vector field of the plant, y ∈ R

k is a measured
output given by means of measurement operator h : Rn → R

k .
The control aim is to stabilize the origin of the system (12.16) in a fixed-time

independently of the initial condition x(0) = x0.

Theorem 12.8 (Dynamical State Feedback) Let d1 and d2 be dilations inRn and d∗
1

and d∗
2 be dilations in R

m. Let the joint dilations d1 =
(

d1(s)
d∗
1(s)

)
and d2 =

(
d2(s)
d∗
2(s)

)
be

strictly monotone on R
n+m equipped with a smooth norm ‖ · ‖. Let the vector field

f̃ =
(

f
0m

)
: R

n+m → R
n+m be continuous, d1-homogeneous of negative degree

μ1 < 0 and d2-homogeneous of positive degree μ2 > 0. If there exist γ > 0 and
c > 0:

∂‖ξ‖
∂x f (ξ) + c ≤ γ

∂‖ξ‖
∂u

[
∂‖ξ‖
∂u

]�
for ‖ξ‖=1, ξ =( x

u )∈R
n+m (12.18)

then the dynamical state feedback

u̇ =
{
g1(ξ) if ‖ξ‖ ≤ 1,
g2(ξ) if ‖ξ‖ > 1,

u(0) = 0, ξ =
(
x
u

)

(12.19)

gi (ξ)=−γ ‖ξ‖μi
di
d∗
i (ln ‖ξ‖di

)

[
∂‖ξ‖
∂u

∣
∣
∣
ξ=ξi

]�
, ξi =di (− ln ‖ξ‖di )ξ, i =1, 2

stabilizes the origin of the system (12.16) in a fixed-time T (x0) ≤ Tmax := c
−μ1α1

+
c

μ2α2
, α1 =inf‖ξ‖=1

∂‖ξ‖
∂ξ

Gd1ξ, α2 =inf‖ξ‖=1
∂‖ξ‖
∂ξ

Gd2ξ, and ‖u(t)‖ < +∞ for t ≥ 0,
‖u(t)‖ → 0 as t → T (x0).

Proof Let us consider the system ξ̇ = fi (ξ), fi =
(

f
gi

)
, i = 1, 2.By construction fi is

di -homogeneous of degreeμi . From (12.18) we derive ∂‖ξ‖
∂ξ

fi (ξ) ≤ −c for ‖ξ‖ = 1.
Corollary 12.7 implies that in this case the homogeneous norm ‖ · ‖di is the
Lyapunov function to the corresponding system. The closed-loop system (12.16),

(12.19) has the right-hand side f ∗ =
{
f1 if 0 < ‖ξ‖ ≤ 1,

f2 if ‖ξ‖ ≥ 1,
Since f1(ξ) = f2(ξ)
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for ‖ξ‖ = 1 then f ∗ is continuous at least outside the origin. The function

V (ξ) =
{

‖ξ‖d1 if ‖ξ‖ ≤ 1,

‖ξ‖d2 if ‖ξ‖ > 1
is the Lyapunov function of the closed-loop system.

Indeed, it is continuous at zero, Lipschitz continuous onRn+m\{0} and continuously
differentiable on R

n+m\S\{0}, where S is a unit sphere in R
n+m . Using formula

(12.9) we derive V̇ (z) ≤ − c
α1
V 1+μ1 if 0 < V < 1, V̇ (z) ≤ − c

α2
V 1+μ2 if V > 1

and V̇ (z) = lim suph→0+
V (z+h f ∗)−V (z)

h ≤ − c
max{α1,α2} if V = 1. Taking into account

μ1 < 0 and μ2 > 0 we immediately derive fixed-time stability of the closed-loop
system.

The similar result can be extended to the output-based control design for affine
single input single output system with relative degree n.

Theorem 12.9 (Dynamical Output-Feedback for SISO System (m = k = 1))

• Let d1 and d2 be dilations in Rn.

• Let the vector field f̃ = (
f
0

) : Rn+1 → R
n be continuous,

(
d1(s)
eq1s

)
-homogeneous

of negative degree μ1 < 0 and
(

d2(s)
eq2s

)
-homogeneous of positive degree μ2 > 0,

where q1>0, q2>0.
• Let the measurement function h : Rn → R be d1-homogeneous of degree κ1 >

−(n − 1)μ1 and d2-homogeneous of degree κ2 > 0.

• Let H :=
(

h
L f h
...

L(n−1)
f h

)

be independent of u and the map H : Rn → R
n

be global diffeomorphism in Rn.

• Let the dilations d1(s) =
( eκ1s

e(κ1+μ1)s

...
e(κ1+(n−1)μ1)s)

eq1s

)

and d2(s) =
( eκ2s

e(κ2+μ2)s

...
e(κ2+(n−1)μ2)s)

eq2s

)

be strictly

monotone on R
n+1 equipped with a smooth norm ‖ · ‖.

If there exist γ > 0 and c > 0 such that

∂

∥
∥
∥

(
H(x)
u

)∥
∥
∥

∂x f (x, u)+c ≤ γ
∂

∥
∥
∥

(
H(x)
u

)∥
∥
∥

∂u

[
∂

∥
∥
∥

(
H(x)
u

)∥
∥
∥

∂u

]�
for

∥
∥
(
H(x)
u

)∥
∥ = 1 (12.20)

then the dynamical output-based control

u̇ =
{
g1(z) if ‖z‖ ≤ 1,
g2(z) if ‖z‖ > 1,

u(0) = 0, z = (
y, ẏ, . . . , y(n−1), u

)�
, (12.21)

gi (z) = −γ ‖z‖qi+μi
di

[
∂‖z‖
∂u

∣
∣
∣
∣
z=zi

]�
, zi = di (− ln ‖z‖di )z, i = 1, 2
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stabilizes the origin of the system (12.16) in a fixed-time T (x0) ≤ Tmax := c
−μ1α1

+
c

μ2α2
, α1 = inf‖z‖=1

∂‖z‖
∂ξ

Gd1 z, α2 = inf‖z‖=1
∂‖z‖
∂ξ

Gd2 z, and ‖u(t)‖ < +∞ for t ≥ 0,
‖u(t)‖ → 0 as t → T (x0).

Proof Let us consider the system ξ̇ = fi (ξ) :=
(

f (x,u)
gi (H(x),u)

)
, ξ = ( x

u ) , i = 1, 2. Tak-

ing into account y( j) = L( j)
f h and degdi

(L( j)
f h) = κi + jμi we derive by construction

fi is
(

di (s)
eqi s

)
-homogeneous of degree μi . Since the map H : Rn → R

n is the global

diffeomorphism then the map H̃ : R
n+1 → R

n+1 defined as H̃(ξ) := (
H(x)
u

)
is

global diffeomorphism onRn+1. Note that κi + (n−1)μi > 0 implies H̃(0) = 0 and

H̃(ξ) �= 0 if ξ �= 0. Since
∥
∥
∥H̃

((
di (s)
eqi s

)
ξ
)∥
∥
∥
di

=
∥
∥
∥di (s)H̃(ξ)

∥
∥
∥
di

= es
∥
∥
∥H̃(ξ)

∥
∥
∥
di

then

the function Vi : Rn+1 → R+ defined as Vi (ξ) =
∥
∥
∥H̃(ξ)

∥
∥
∥
di

is
(

di (s)
eqi s

)
-homogeneous

of degree 1, continuous onRn+1, smooth outside the origin (due to strictmonotonicity
of the dilation di and differentiability of H̃ ) and radially unbounded. From (12.18)we

derive
∂

∥
∥
∥H̃(ξ)

∥
∥
∥

∂ξ
fi (ξ) ≤ −c for

∥
∥
∥H̃(ξ)

∥
∥
∥ = 1. Note that f1(ξ) = f2(ξ) for ‖ξ‖ = 1,

so the closed-loop system (12.16), (12.19) has continuous right-hand side. The func-

tion V (ξ) =
{
V1(ξ) if ‖H̃(ξ)‖ ≤ 1,

V2(ξ) if ‖H̃(ξ)‖ > 1
is the Lyapunov function for the closed-loop

system. This Lyapunov function is Lipschitz continuous on Rn+m , continuously dif-
ferentiable on R

n+1\S̃\{0}, where S̃ = {ξ ∈ R
n+1 : ‖ξ‖ = 1} is a unit level set of

the function V . Using formula (12.9) we derive V̇ (z) ≤ − c
α1
V 1+μ1 if 0 < V < 1,

V̇ (z) ≤ − c
α2
V 1+μ2 if V > 1 and V̇ (z) = lim suph→0+

V (z+h f ∗)−V (z)
h ≤ − c

max{α1,α2}
if V =1. Taking into account μ1 <0 and μ2 > 0 we immediately derive fixed-time
stability of the closed-loop system.

12.5 Discussions and Conclusions

12.5.1 Summary of the Obtained Results

• The notions of fast stability are surveyed. Quantitative characteristics of fast sta-
bility (like hyper-exponential convergence rate) are introduced.

• The concept of generalized homogeneity is introduced for ODE as a main tool for
fast control design.

• Two (state-based and output-based) schemes of dynamical fixed-time control
design are proposed for plants described by nonlinear ODE.
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12.5.2 On Drawback Finite-Time Stability for Time-Delay
Systems

The examples given above present hyper-exponential systems with non-asymptotic
transitions (solutions vanish in finite-time). However, finite-time convergence to zero
is rather rare or sometimes impossible for time-delay models. For example, let us
consider the scalar time-delay system

ẋ(t) = f0(x(t)) + f1(x(t − h)), t > 0,

where x(t) ∈ R, f1, f2 : R → R are continuous functions, and h > 0 is a constant
delay. This system has continuously differentiable solutions [20] for any smooth
initial conditions

x(τ ) = ψ(τ), τ ∈ [−h, 0], φ ∈ C([−h, 0],R).

Let us assume that x = 0 is the equilibrium of the system and f1 is nontrivial in any
neighbourhood of x = 0, i.e., for ∀ε > 0, ∃x ∈ R : |x | < ε such that f1(x) �= 0. If
we omit the latter assumption then the considered time-delay system degenerates to
delay-free one in some neighborhood of the origin.

We claim that the zero solution of the time-delay system is never finite-time stable.
In other words, there is no continuous function f0 such that the considered system
is finite-time sable. Indeed, let us suppose the contrary, i.e.,

∃T > 0, ∃δ > 0 such that x(t) �= 0, t ∈ (T − δ, T ) and x(t) = 0, t > T .

In this case, f0(x(t)) = 0 and ẋ(t) = f1(x(t − h)) for t > T . Since x(t) �= 0 for
t ∈ (T − δ, T ) then ẋ(t) is not identically zero for some t > T . This together with
continuous differentiability of x implies the contradiction to x(t) = 0 for t > T .

Therefore, ideas of non-asymptotic (finite-time/fixed-time) stabilization are incon-
sistent with some time-delay systems (see also [15] for more details). However, they
may demonstrate asymptotic hyper-exponential transitions [37].

12.5.3 Fast Transition of PDEs

12.5.3.1 Fixed-Time Extinction of Waves

Hyper-exponential transitions also appear in distributed-parameter systems. Indeed,
let us consider the wave equation

utt = uxx , t > 0, x ∈ [0, 1], u : R+ × [0, 1] → R,
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with the so-called transparent boundary condition

ux (t, 0) = ut (t, 0), ux (t, 1) = −ut (t, 1)

and the initial conditions

u(0, x) = φ(x), ut (0, x) = ψ

from {(φ,ψ) ∈ H 1((0, 1),R)× L2((0, 1),R) : φ(0) + φ(1)+∫ 1
0 ψ(s)ds = 0},

where L2 and H 1 are Lebesgue and Sobolev spaces, respectively. The boundary
conditions are transparent in the sense that the wave u(t, x) = f (x − t) traveling to
the right leaves the domain at x = 1 without generating any reflected wave and the
wave u(t, x) = f (x + t) traveling to the left leaves the domain at x = 0 similarly.

It is well-known (see, e.g., [30]) that the solution of such wave equation vanishes
for t ≥ 1 independently of the initial condition. In the context of distributed para-
meters systems, this effect is known as finite-time extinction. Obviously, the norm
of u tends to zero hyper-exponentially with respect to time variable t .

This example shows that in the case of distributed parameters systems the hyper-
exponential and finite-time/fixed-time transitions can be observed in linear models
(see also [5, 12]).

12.5.3.2 Generalized Homogeneity of Infinite-Dimensional Systems

The extension of the homogeneity concept to infinite-dimensional systems has been
presented in [34], where a lot of important properties of homogeneous dilations,
functionals and operators have been discovered in the case of Banach spaces. The
developed homogeneous framework looks promising for the extension of the existing
results to fast control and estimation to PDEs and Time-Daly Systems.
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Chapter 13
Finite-Time Sliding Mode Controller
with State-Dependent Gain Parameter

Cesar U. Solis and Julio B. Clempner

Abstract This brief text proposes a state-dependent gain parameter added to a Fast
Terminal Sliding Mode Control in order to restrict the input signal amplitude. The
suggested controller involves the following properties: convergence in finite time
to the equilibrium point, robustness against bounded persistent state perturbations
and uncertainties in the model. In order to exemplify the contributions we exhibit an
application to an underactuated rotational inverted pendulum, to stabilize it upwards.

13.1 Introduction

13.1.1 Brief Review

The main idea of the Terminal Sliding Mode Control (TSMC) is guaranteeing the
convergence to the equilibrium point in finite time reaching a structure of sequential
sliding manifolds [17]. This control law works fine in a neighborhood of the attractor
(equilibrium point), but when the initial condition is far away from equilibrium point
the convergence is slow and there is a singularity, i.e. the control law diverges when
the initial condition is outside of the convergence region [15, 20].

The solution to these problems is the non-singular Fast Terminal Sliding Mode
Control (FTSMC), which adds a linear damping term and a specific selection of
the coefficients accelerating the convergence from far away initial conditions and
removing the singularity [3, 18, 20].
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Several important research works on TSMC are already presented in the litera-
ture. Venkataraman et al. [17] developed the TSMC at the Jet Propulsion Laboratory
(JPL). Zhihong et al. [21] proposed a TSMC for MIMO (multiple-input multiple-
output) systems, by inserting a nonlinear term of the system in the linear sliding
mode. Feng et al. [5] applied the non-singular TSMC to n-link rigid manipulators.
Yang et al. [19] proposed new norms for FTSMC strategies, and a faster conver-
gence rate is established. Mobayen et al. [9] developed a new LMI-based robust
finite time sliding mode control strategies for a class of uncertain nonlinear systems.
Cruz-Zavala et al. [4] designed a second-order uncertain system FTSMC with a
single control input proposing a design based on a Lyapunov method. Solis et al.
[14] designed a FTSMC including an integral filter applied to a chaotic van der Poll
oscillator. Related works on adaptive laws applied to Sliding Mode Control are for
instance the following: Plestan et al. [11] exposed new methodologies for adaptive
gain robust control via Sliding Modes; Utkin et al. [16] presented an adaptive gain
for Super-Twist control; Shtessel et al. [13] suggested a new adaptive method for
Super-Twist. For Furuta-pendulum mathematical models and control we have that
Jadlovsky et al. [6] designed and implemented a general procedure which yields
the mathematical model for a classical or rotational inverted pendulum system with
an arbitrary number of pendulum links. Khanesar et al. [7] applied a conventional
sliding mode control to a rotational inverted pendulum. Azar et al. [1] developed an
adaptive sliding mode technique for a Furuta pendulum.

13.1.2 Main Results

We propose a brief contribution to the FTSMC Theory involving a state-dependent
gain parameter. We apply the control to an underactuated rotational inverted pen-
dulum, well-known as Furuta pendulum. To our knowledge, this is the first time
that a FTSMC is applied to a rotational inverted pendulum. This dynamical system
consists of an actuated rotational horizontal arm with a concentrated mass linked to
a non-actuated vertical rotational arm with a concentrated mass.

Summarized contributions:

• Presenting a Theorem that shows the stabilization of a controllable linear system
using the FTSMC with recursive structure.

• Showing that the FTSMC converges in a bounded finite time.
• Showing the disturbance rejection with matching condition for controllable non-
linear systems with a state-dependent gain parameter.

• Applying the proposed controller to a linearized-approach dynamical model for a
underactuated rotational inverted pendulum and the nonlinear terms are considered
as uncertainties and perturbations.

• Presenting a numerical example to demonstrate the effectiveness of the controller.
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13.1.3 Organization of the Text

The remainder of the contribution is organized as follows. Section13.2 presents
a motivation exposing an existent Terminal Sliding Mode control that solves the
requirements, but considering that it is slow when the initial condition is far away
from the equilibrium point. In Sect. 13.3, we suggest a Fast Terminal Sliding Mode
Control technique and show the finite time convergence, the stability of the control
law, and the disturbance rejectionwith a state-dependent gain parameter. In Sect. 13.4
we present the application of the algorithm to an underactuated rotational inverted
pendulum and a numerical example that validate the effectiveness of the controller.
In Sect. 13.5 we present a simplified guide to solve practical exercises. Finally, we
close in Sect. 13.6 with conclusions.

13.2 Motivation: The Terminal Sliding Mode Control

Let us consider a controllable linear system given by

ẋ = Ax + Bu (13.1)

with x ∈ R
n, A ∈ R

n×n, B ∈ R
n×1, u ∈ R. Then, there exists a similarity trans-

formation matrix T such that it transforms the dynamical system (13.1) into the
form:

ż1 = z2
...

...
...

żn = r (z) + u

(13.2)

with z = T x, r (z) a linear scalar function in z, and the transformation is given by

T := [
h hA hA2 · · · hAn−1

]ᵀ
(13.3)

where h = [
0 0 · · · 0 1

] C−1
(A,B), and

C(A,B) := [
B AB A2B · · · An−1B

]

denotes the controllability matrix (see [2, 12]).
Now, taking into account the dynamical system given in (13.2), let us design the

control in the form u = ueq + uc.
To design ueq , let us consider the following recursive structure of manifolds:
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s0 = z1
...

s j = ṡ j−1 + β j−1s
q j−1/p j−1

j−1

...

sn−1 = ṡn−2 + βn−2s
qn−2/pn−2
n−2

(13.4)

where β j > 0 and p j , q j > 0 are odd integers. When s j = 0 is reached [18], the
dynamics becomes:

ṡ j−1 + β j−1s
q j−1/p j−1

j−1 = 0 (13.5)

then solving for an initial state z1 (0) �= 0, the dynamics will reach z1 = 0 in a finite
time determined by:

tr = p0
β0 (p0 − q0)

|z1 (0)|(p0−q0)/p0

The equilibrium point is a terminal attractor. Note that the terminal dynamics
(13.5) is not Lipschitz, for any initial condition, but [10] proved that the forward-in-
time solution exists and it is unique.

13.3 Fast Terminal Sliding Mode Control

When the states are far away from the equilibrium point, the term zq0/p01 tends
to reduce the magnitude of the convergence rate at a distance from equilibrium.
To attenuate this problem we consider the following fast terminal sliding mode
dynamics:

ż + αz + βzq/p = 0 (13.6)

where α, β > 0. If z is far away from zero, the approximate dynamics becomes
ż = −αz that is faster than the dynamics given in (13.5). Now, when z nearest 0, the
approximate dynamics becomes ż = −βzq/p which is a terminal attractor. We can
solve the ODE (13.6) analytically, obtaining the zero-dynamics time is given by:

tr = p

α (p − q)

(
ln

(
αz1 (0)(p−q)/p + β

) − ln β
)

(13.7)

The following recursive procedure for FTSMC of higher order systems accelerate
the convergence:
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s0 = z1
...

s j = ṡ j−1 + α j−1s j−1 + β j−1s
q j−1/p j−1

j−1

...

sn−1 = ṡn−2 + αn−2sn−2 + βn−2s
qn−2/pn−2
n−2

(13.8)

where α j > 0, β j > 0.

13.3.1 Finite-Time Convergence

To compute the time to reach the equilibrium point let us solve and sum the time to
reach every manifold given in (13.7) and (13.8), and we obtain:

Tr =
n∑

j=1

t j

= tn +
n−1∑

j=1

p j−1

α j−1
(
p j−1 − q j−1

) ·
(

ln

(

α j−1s j−1t
p j−1−q j−1
p j−1+p j−1

j

)

− ln β j−1

)

(13.9)

Below in Theorem 13.3 we implement a formula to obtain the coefficients in order
to guarantee the convergence of the sum. Theorem 13.5 proofs tn < ∞, whereby it
is possible to guarantee convergence in finite time.

13.3.2 Control Law Design

The slidingmode control should be designed such that sn−1ṡn−1 < −K |sn−1|, K > 0
therefore sn−1 = 0 can be reached in finite time. The dynamics (13.2) can be written
as ż = Az + Bu.
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Theorem 13.1 For the dynamical system (13.2), if the control is designed as

u = ueq + uc (13.10)

where

ueq = −
n−2∑

k=0

(
αkLn−k−1

Az+Busk + βkLn−k−1
Az+Bus

qk/pk
k

)

uc = −Ksign sn−1

where L is the Lie derivative and K > 0, then the system will reach the sliding
mode sn−1 = 0 in finite time.

Proof Following [20], it is necessary to take the time-derivative of sn−1:

ṡn−1 = s̈n−2 + αn−2ṡn−2 + βn−2LAz+Bus
qn−2/pn−2
n−2

since s j = ṡ j−1 + α j−1s j−1 + β j−1s
q j−1/p j−1

j−1 , for i = n − 1, n − 2, . . . , 1 and the l-
th-order Lie derivative of s j is given by:

Ll
Az+Bus j = Ll+1

Az+Bu ṡ j−1 + α j−1Ll
Az+Bus j−1 + β j−1Ll

Az+Bus
q j−1/p j−1

j−1

then applying to the time-derivative on sn−1 yields

ṡn−1 = Ln
Az+Bus0 +

n−2∑

k=0

βkLn−k−1
Az+Busk +

n−2∑

k=0

βkLn−k−1
Az+Bus

qk/pk
k

= żn +
n−2∑

k=0

αkLn−k−1
Az+Busk +

n−2∑

k=0

βkLn−k−1
Az+Bus

qk/pk
k

substituting the control yields sn−1ṡn−1 = −K |sn−1|, which means that the sliding
mode sn−1 = 0 will be reached in finite time.

The parameters qk , pk must be chosen carefully in order to avoid the singularity,
because there are terms in dn−k−1/dtn−k−1sqk/pkk which may contain negative powers
so that, when sk−1 → 0, u → ∞. This problem can be remedied by the following
theorems.

Theorem 13.2 For any k ∈ 0, 1, . . . , n − 2,

Ln−k−1
Az+Bus

qk/pk
k = fk(z)
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where fk is a continuous nonlinear function.

Proof (Mathematical induction) Let k = 0, then Ln−1
Az+Bus

q0/p0
0 = Ln−1

Az+Buz
q0/p0
1 =

f0(z). Let k = 1, thenLn−2
Az+Bus

q1/p1
1 = Ln−2

Az+Bu(z2 + α0z1 + β0z
q0/p0
1 )q1/p1 which can

be apparently expressed as f1(z). Assume for k = k0, Ln−k0−1
Az+Bu s

qk0 /pk0
k0

= fk0(z). Let
us consider k = k0 + 1. Since

sk0 = fk0(ṡk0 , sk0−1)

= fk0(s̈k0−2, ṡk0−2, sk0−2)

...

= fk0(s
(k0)
0 , s(k0−1)

0 , . . . , s0)

and s0 = z1, then s(l)
k0

is a function of zk0+l+1, zk0+l , . . . , z1. Therefore,

Ln−k0−2
Az+Bu s

qk0+1/pk0+1

k0+1 is a function of z.

Theorem 13.3 If
qk
pk

>
n − k − 1

n − k

when sk → 0 sequentially from k = n − 2 to k = 0, then u is bounded.

Proof The n-derivative of a composite function is given by

dn

dtn
F(s) =

∑ n!
i1! . . . il !

dmF

dss

(
ṡ

1!
)i1 (

s̈

2!
)i2

· · ·
(
s(l)

l!
)il

over all solutions in non-negative integers of the equation i1 + 2i2 + · · · + lil = n
and m = i1 + i2 + · · · + il . Let r = qk/pk , and dropping the index k. Since in the
sliding mode sk+1 = 0,

sk+1 = ṡk + αksk + βks
qk/pk
k

= ṡ + αs + βsr

= 0

then ṡ = O (sr ) when s → 0. We therefore have dmF/dsm = O (
sr−m

)
and s(d) =

(ṡ)d−1 = O (
sdr−(d−1)

)
. Hence when s → 0, i.e., sk → 0, (n + 1)r − n = (n +

1)qk/pk − n > 0 will ensure that these terms are bounded. From the above analy-
sis, we have dn/dtns = (ṡ(n−1)) = O(sr )(n−1) = O(snr−n+1). Hence when s → 0,
nr − n + 1 = nqk/pk − n + 1 > 0 will ensure that dn/dtns is bounded. With the
above expressions in mind, the control (13.10) can be written as
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u = a(z) +
∑ (

O
(
s

(n−k−1)qk
pk−(n−k−1)+1

k

)
+ O

(
s

(n−k)qk
pk−(n−k−1)

k

))
+ K sign sn−1

For the second term to be bounded while sk → 0, it is sufficient that (n − k)qk/qk −
(n − k − 1) > 0 for sk → 0 sequentially from k = n − 2 to k = 0 so that the control
u is bounded.

13.3.3 Matching Disturbance Rejection with
State-Dependent Gain Parameter

Theorem 13.4 Let us consider the dynamical system:

ẋ = Ax + Bu + ζ (x, t) (13.11)

where the pair (A, B) is controllable, ζ (x, t) := Bη (x, t) represents the
uncertainties and perturbations satisfying the matching condition, η (x, t) is a
Lipschitz locally function in x, ‖x‖ is bounded and we have that:

‖η (x, t)‖ ≤
m∑

j=0

L j ‖x‖ j

where L j > 0 for all j ∈ {0, 1, . . . ,m}, for some m ≥ 0 (note that if m = 0
then we have a constant bound). Given the control law (13.10) we may select
the chattering parameter as follows:

K (z(t)) :=
m∑

j=0

K j

∥∥T−1z
∥∥ j

(13.12)

where z = T x a similarity transformation is given by (13.3), K j > L j for all
j �= 1 (if L0 = 0, then we take K0 > 0 for ensuring the existence of the sliding
manifold) and for K1 > L1

∥∥T−1
∥∥ + ‖H‖ where H is the bottom elements of

T , then the control law stabilizes the system.

Proof If (A, B) is controllable then there exists a similarity transformation T applied
to the system (13.11) we obtain:
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ż1 = z2
...

...
...

żn = r (z) + u + η
(
T−1z, t

)

where r (z) = Hz is a scalar function in z, i.e., H is a constant row vector, then
‖r (z)‖ ≤ ‖H‖ ‖z‖.

Then, using the control law given in (13.10), and selecting the chattering adaptive
parameter K (z(t)) we have:

K (z(t)) :=
m∑

j=0

K j

∥∥T−1z
∥∥ j

(13.13)

Then, we have (see Theorem 13.1):

sn−1ṡn−1 =
⎛

⎝−
m∑

j=0

K j

∥∥T−1z
∥∥ j + η

(
T−1z, t

) + r (z)

⎞

⎠ |sn−1|

≤
⎛

⎝(
L1

∥∥T−1
∥∥ + ‖H‖ − K1

) ‖z‖ +
m∑

j=0, j �=1

(
L j − K j

) ∥∥T−1z
∥∥ j

⎞

⎠

× |sn−1|

Taking K j > L j for all j �= 1 (if L0 = 0, take K0 > 0 for the existence of the
sliding manifold) and K1 > L1

∥∥T−1
∥∥ + ‖H‖, we can guarantee the stability of the

system.

Theorem 13.5 Given K (z (t)) by (13.12) applied to the control law (13.10),
then tn < ∞, i.e., convergence occurs in finite time.

Proof Consider the Lyapunov function V (t) := 1
2 s

2
n−1, then time-derivative is as

follows:

V̇ (t) = sn−1ṡn−1

≤ −K (z (t))
√
2V (t)

solving with V (0) = V0 (remember V0 > 0 because a Lyapunov function is positive
definite), we obtain:
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√
V (t) ≤ √

V0 − 1√
2

t∫

0

K (z (τ )) dτ

We have proven above that the manifold is reached, i.e., V (tn) = 0 for some tn > 0,
we need to prove tn < ∞, substituting we have:

√
2V0 ≥

tn∫

0

K (z (τ )) dτ

but K (z (τ )) = K0 + v (z (τ )) where v (z (τ )) is a non-negative function obtained
from (13.13), then:

√
2V0 ≥ tnK0 +

tn∫

0

v (z (τ )) dτ ≥ 0

The integral is non-negative for all tn > 0, if tn → ∞ the right-hand side of the
inequality is not finite, but

√
2V0 is a finite upper bound for this, then there is a

contradiction, concluding that tn is finite.

13.4 The FTSMC Applied to an Underactuated Rotational
Pendulum

13.4.1 Rotational Inverted Pendulum Description

The goal is to stabilize and hold in upward position an underactuated rotational
inverted pendulum. The task must be accomplished in finite time with a continuous-
time robust feedback control law based on terminal sliding manifolds.

The rotational inverted pendulum is described in Fig. 13.1. Let us consider the
coordinate system as follows:

xm1 = l1 cosα

ym1 = l1 sin α

zm1 = 0
(13.14)

xm2 = xm1 − l2 sin β sin α

ym2 = ym1 + l2 sin β cosα

zm2 = l2 cosβ

(13.15)

where m1 and m2 are the mass of the links of the pendulum respectively, l1 and l2 its
lengths. Note that the generalized coordinates are given by the angular coordinates
α and β.
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Fig. 13.1 Underactuated
rotational inverted pendulum

The velocity of the links are given by the time-derivative of (13.14) and (13.15)
as follows:

ẋm1 = −l1α̇ sin α

ẏm1 = l1α̇ cosα

żm1 = 0
(13.16)

ẋm2 = ẋm1 − l2
(
β̇ cosβ sin α + α̇ sin β cosα

)

ẏm2 = ẏm1 + l2
(
β̇ cosβ cosα − α̇ sin β sin α

)

żm2 = −l2β̇ sin β

(13.17)

13.4.2 Dynamical Model for the Underactuated
Rotational Pendulum

We proceed using Euler–Lagrange formulation to obtain the Newton equations. We
can construct the lagrangian function in the generalized coordinates presented above,
obtaining:

L (
α, β, α̇, β̇

) :=1

2

(
m1l

2
1 + m2l

2
1 + m2l

2
2

)
α̇2 + 1

2
m2l

2
2 β̇

2

− m2l2g cosβ − 1

2
m2l

2
2 α̇

2 cos2 β

+ m2l1l2α̇β̇ cosβ (13.18)

we can consider the viscous friction on the links with the coefficients k1 and k2, via
the Rayleigh function:

R (
α̇, β̇

) := 1

2
k1α̇

2 + 1

2
k2β̇

2 (13.19)

A different kind of friction might be represented by a perturbation. Let us solve the
Euler–Lagrange formulation:
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d

dt

(
∂L
∂q̇

)
− ∂L

∂q
+ ∂R

∂q̇
= F (13.20)

where q := [
α β

]ᵀ
and the input generalized force is F := [

u 0
]ᵀ
. The system

is underactuated because there is one actuator represented by u and two degrees of
freedom. Solving (13.20) for the acceleration q̈ , we obtain the dynamical model of
the rotational inverted pendulum:

α̈ =
[
−k1l2α̇ + l2u + k2l1β̇ cosβ − 1

2
m2gl1l2 sin (2β)

− m2l
3
2 α̇β̇ sin (2β) − m2l1l

2
2 sin β

(
α̇2 cos2 β − β̇2

) ]

/
[
l2

(
m1l

2
1 + m2

(
l21 + l22

)
sin2 β

)]
(13.21)

β̈ =
[
m2

2gl
3
2 sin

3 β − (
m2

(
l21 + l22

) + m1l
2
1

)
k2β̇+

1

2
m2

2l
4
2 α̇

2 sin (2β) + m2l
2
2k2β̇ cos2 β + m2

2gl2l
2
1 sin β

− m2
2l

4
2 α̇

2 cos3 β sin β + 1

2
m2

2l
2
1l

2
2

(
α̇2 − β̇2

)
sin (2β)

− m2l1l2u cosβ + m2l1l2k1α̇ cosβ

− 2m2
2l1l

3
2 α̇β̇ sin3 β + m1m2gl

2
1l2 sin β

+2m2l1l
3
2 α̇β̇ sin β + 1

2
m1m2l

2
1l

2
2 α̇

2 sin (2β)

]

/
[
m2l

2
2

(
m1l

2
1 + m2

(
l21 + l22

)
sin2 β

)]
(13.22)

It is possible to write the above dynamical system in the quasi-linear format:

ẋ = f (x) + g (x) u

with x = [
α α̇ β β̇

]ᵀ ∈ R
4×1 called the state vector, f (x) , g (x) ∈ R

4×1 functions
that depend only on x, u ∈ R. The state x0 = [

0 0 0 0
]ᵀ

is the equilibrium point
that we want to reach and hold with a robust control law.

13.4.3 Approximated Linearization

The dynamical system given in (13.21) and (13.22) can be linearized around the
equilibrium point x0 through the Non-hyperbolic Hartman-Grobman Theorem [8],
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then there exists a neighborhood N of x0 where the system has a similar behavior as
the following linear system:

ẋ = Ax + Bu (13.23)

where A = ∂ f
∂x (x0) (the Jacobian matrix) and B = g (x0).

In our case, we have:

A =

⎡

⎢⎢
⎢
⎣

0 1 0 0
0 − k1

m1l21
− m2g

m1l1
k2

m1l1l2

0 0 0 1
0 k1

m1l1l2
g(m2+m1)

m1l2
− k2(m1+m2)

m1m2l22

⎤

⎥⎥
⎥
⎦

(13.24)

B =

⎡

⎢⎢
⎣

0
1

m1l21
0

− 1
m1l1l2

⎤

⎥⎥
⎦ (13.25)

Lemma 13.1 (A, B) is controllable.

Proof We can construct the controllability matrix C(A,B) := [
B AB A2B A3B

]
.

Then, we have that the rank C(A,B) = 4 (= n).

If (A, B) is controllable then there exists a non-singular linear transformation T
(similarity transformation) that takes (13.23) into z = T x.

13.4.4 Numerical Example

Let us consider the dynamical system given in (13.21)–(13.22) with the follow-
ing parameters:m1 = 0.05 (kg), l1 = 0.05 (m), l2 = 0.2 (m), g = 9.81 (m/s2), k1 =
0.001 (kg · m2/s2) and k2 = 0.0005 (kg · m2/s2). In order to exemplify the robust-
ness of the controller let us add matching uncertainties and perturbations:

ζ (x, t) := B

(
1

2
sin (4π t) + sign (sin (10π t)) ‖x‖

)

Substituting in the linearization we have:

A =

⎡

⎢⎢
⎣

0.00 1.00 0.00 0.00
0.00 −8.00 −784.80 1.00
0.00 0.00 0.00 1.00
0.00 2.00 245.25 −0.31

⎤

⎥⎥
⎦
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B =

⎡

⎢⎢
⎣

0.00
8000.00

0.00
−2000.00

⎤

⎥⎥
⎦

It is possible to determine that this dynamical system is locally controllable, then
we can transform it as follows:

T = 10−6

⎡

⎢
⎢
⎣

−2.50 0.00 −10.20 0.00
0.00 −2.50 −0.60 −10.20
0.00 0.00 −500.00 0.00
0.00 0.00 0.00 −500.00

⎤

⎥
⎥
⎦ .

The new linear system is given by:

Az =

⎡

⎢⎢
⎣

0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00
0.00 392.40 244.75 −8.31

⎤

⎥⎥
⎦

For the control law we select the following parameters: q0, q1, q2 = 25, p0, p1,
p2 = 13,α0, α1, α2 = 5,β0, β1, β2 = 3, K (x) = 1 + 2 ‖x‖, and the initial statex0 =[
0 0 0 10

]ᵀ
.

In Fig. 13.2 we can see the convergence of the angles of the pendulum to the
equilibrium point and the disturbance and uncertainties rejection; this attractor is in
finite time because the sliding surfaces reach it in finite time (see Fig. 13.4). Finally,
in Fig. 13.3 it is possible to see the control law and the decreasing chattering effect
because the K (x) converges to 1 when the equilibrium point converges to x = 0.

Fig. 13.2 Angles of the rotational inverted pendulum with FTSMC
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Fig. 13.3 Input FTSMC on the rotational inverted pendulum

Fig. 13.4 Reaching the sliding surfaces in finite time with FTSMC

13.5 Practical Considerations

In order to put into practice the main ideas or solve some academic exercises,
let us present to the reader the following simplified checkpoints:

• Determine if the dynamical system under study is controllable.
• Make sure that the perturbations and uncertainties satisfy the matching con-
dition, otherwise it is not possible to guarantee convergence to a point.
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• Obtain a linearization (or approximated linear version) in the form (13.11).
• Apply the transformation (13.3) to the dynamical system obtained and the
parameters K that satisfy the Theorem 13.4.

• Compute the control law presented in Theorem 13.1 fulfilling the conditions
in Theorem 13.3.

• Finally compute the remaining parameters to set a bound in the convergence
time presented in Eq. (13.3), obviously set Tr > 0. If Tr is near to zero will
obtain abrupt and larger control signals.

Clearly this is a brief guide to set over all parameters of the controller, maybe with
experience and perseverance it will be possible to improve it in better way.

13.6 Conclusions

We have presented a FTSMC involving a state-dependent gain parameter which was
proposed in order to limit the chattering effect. Showed the stability analysis of the
controller, the uncertainty and disturbance rejection with matching condition. Next,
we presented a proof of convergence of the method in finite time. The proposed
solution decreases, in time, the chattering effect reaching a lower bound given by
K . In order to validate the approach we presented a numerical example, where a
rotational inverted pendulum reaches the equilibrium in upward position. Practical
considerations were shown in order to apply the ideas to exercises.

In addition, we havemade some comparisons with another adaptive method based
on Sliding Mode Control. Shtessel [13] and Utkin [16] suggested two different algo-
rithms employing an adaptive Super-Twist method with the benefit of presenting
a chattering effect that decreases considerably better than our method but with the
disadvantage of converging in exponential time. As well as, Plestan [11] presented a
methodwhere an adaptive gain is given by a piece-wise ordinary differential equation
which convergence is in exponential time (with a correct selection of the parame-
ters). In our case, the state-dependent gain is much more simple to obtain and the
convergence time is finite.
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Chapter 14
Setting Nash Versus Kalai–Smorodinsky
Bargaining Approach: Computing
the Continuous-Time Controllable
Markov Game

Kristal K. Trejo and Julio B. Clempner

Abstract The bargaining game refers to a situation in which players have the possi-
bility of concluding a mutually beneficial agreement. Here there is a conflict of inter-
ests about which agreement to conclude or no-agreement may be imposed on any
player without that player’s approval. Remarkably, bargaining and its game-theoretic
solutions has been applied in many important contexts like corporate deals, arbitra-
tion, duopoly market games, negotiation protocols, etc. Among all these research
applications, equilibrium computation serves as a basis. This chapter examines bar-
gaining games from a theoretical perspective and provides a solution method for
the game-theoretic models of bargaining presented by Nash and Kalai–Smorodinsky
which propose an elegant axiomatic approach to solve the problem depending on
different principles of fairness. Our approach is restricted to a class of continuous-
time, controllable and ergodic Markov games. We first introduce and axiomatize the
Nash bargaining solution. Then, we present the Kalai–Smorodinsky approach that
improves the Nash’s model by introducing the monotonicity axiom. For the solution
of the problem we suggest a bargaining solver implemented by an iterated procedure
of a set of nonlinear equations described by the Lagrange principle and the Tikhonov
regularization method to ensure convergence to a unique equilibrium point. Each
equation in this solver is an optimization problem for which the necessary condition
of a minimum is solved using the projection gradient method. An important result of
this chapter shows the equilibrium computation in bargaining games. In particular,
we present the analysis of the convergence as well as the rate of convergence of the
proposed method. The usefulness of our approach is demonstrated by a numerical
example contrasting the Nash and Kalai–Smorodinsky bargaining solution problem.

K.K. Trejo (B)
Department of Automatic Control, Center for Research and Advanced Studies,
Av. IPN 2508, Col. San Pedro Zacatenco, Del. Gustavo A. Madero,
07360 Mexico, Mexico
e-mail: ktrejo@ctrl.cinvestav.mx

J.B. Clempner
Centro de Investigaciones Económicas, Administrativas y Sociales,
Instituto Politécnico Nacional, Lauro Aguirre 120, Col. Agricultura,
Del. Miguel Hidalgo, 11360 Mexico, Mexico
e-mail: julio@clempner.name

© Springer International Publishing AG 2018
J.B. Clempner and W. Yu (eds.), New Perspectives and Applications of Modern
Control Theory, https://doi.org/10.1007/978-3-319-62464-8_14

335



336 K.K. Trejo and J.B. Clempner

14.1 Introduction

14.1.1 Brief Review

The bargainingmodel has been applied inmany important contexts including arbitra-
tion, supply chain contracts, duopoly market games, negotiation protocols, etc. It is
related to negotiation and group decision processes, and introduces a solution concept
for cooperative games. Cooperation concerns to coalitions of two or more players
acting together with a specific common purpose taking into account the objective of
maximizing their own individual payoffs. The bargaining game dynamics refers to
a situation in which players have the possibility of concluding a mutually beneficial
agreement. Here there is a conflict of interests about which agreement to conclude or
no-agreementmay be imposed on any playerwithout that player’s approval. There are
two theoretical perspectives that provide a solution for the cooperative game-theoretic
bargaining models that employ the axiomatic method to evaluate bargaining: Nash
[28] and Kalai–Smorodinsky [20]. It is important to note that the two bargaining
solution approaches have the same feasible payoff set and disagreement point are
considered to be the same bargaining problem in Nash’s model.

The bargaining model was first presented as a game in John Nash’s seminal 1950
paper [28], using the framework of game theory proposed by von Neumann and
Morgenstern [42]. The von Neumann and Morgenstern theory supposes that when
players form a coalition, they expect that a complementary coalition responds by
damaging them in the worst way. This statement finds disapprovements in the litera-
ture. In this sense, Nash improved von Neumann and Morgenstern’s work extending
the idea by proposing axioms that characterize a unique result and a solution to the
problem called the Nash bargaining solution. The formal description consists of two
main components: a feasible set of utility allocations reached via cooperation, and
the disagreement point occurring when players do not cooperate. A solution is a
function that selects a feasible utility allocation for every problem. It is interesting
to note that bargaining is one of the first situations of conflict of interest presented
in the literature of game theory [19, 30].

The Kalai–Smorodinsky [20] bargaining solution differs from the Nash
approach [28]. The fundamental difference between the two approaches resides in
the fact that the Nash solution complies with independence of irrelevant alternatives
instead the Kalai–Smorodinsky solution fits monotonicity. Kalai and Smorodinsky
argue that the entire set of alternatives must affect the agreement reached.

14.1.2 Related Work

TheNash bargaining problem and the Kalai–Smorodinsky approach has attracted the
attention of researchers from different disciplines and it is still a relevant topic which
is receiving a growing amount of attention for both practitioners and academics in
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game theory.Merlo andWilson [24] studied an n-player sequential bargainingmodel
forMarkov processes. They investigated the uniqueness and efficiency of the equilib-
rium outcomes, the conditions under which agreement is delayed, and the advantage
to proposing. The sequential bargaining model in which the size of the cake and the
order in which players move is characterized by the sets of subgame perfect and
stationary subgame perfect equilibria. Bolt and Houba [6] suggested a model for the
bargaining process based on an offer model with an exogenous risk of breakdown for
Markov games. They analyzed amodified version of the variable threat gamewithout
commitmentwithin a dynamic context. Cai [7] presented an alternating offer bargain-
ing game, showing that the proposed model has a finite number of Markov perfect
equilibria, some of which exhibit wasteful delays. The maximum number of delay
periods that can be supported in Markov perfect equilibria increases in the order of
the square of the number of players and that these results are robust to a relaxing of the
Markov requirements and to more general surplus functions. Rubinstein and Wolin-
sky [36] developed a bargaining problem treated with a strategic approach in which
the market where pairs of agents who are interested in carrying out a transaction,
are brought together by a stochastic process and, upon meeting, initiate a bargaining
process over the terms of the transaction. They derived the steady-state equilibrium
agreements and analyzed their dependence on market conditions. Kalandrakis [21]
studied an infinitely repeated divide-the-dollar bargaining game with an endogenous
reversion point characterizing a Markov equilibrium which is such that irrespective
of the discount factor or the initial division of the dollar, the proposer eventually
extracts the whole dollar in all periods. They showed that proposed strategies are
weakly continuous in the status quo, and the correspondence of voters’ acceptance
set fails lower hemicontinuity. Cripps [15] analyzed an alternating offer bargaining
game which is played by a risk neutral buyer and seller, where the value of the
good to be traded follows a Markov process. He showed that if the buyer is less
patient than the seller, then there will be delays in the players reaching an agree-
ment, the buyer is forced into a suboptimal consumption policy and the equilibrium
is ex-ante inefficient. In addition, he proved that if the buyer is more patient than the
seller, then there is a unique and efficient equilibrium where agreement is immedi-
ate. Kenan [22] presented repeated contract negotiations involving the same buyer
and seller where the size of the surplus being divided, is specified as a two-state
Markov chain with transitions that are synchronized with contract negotiation dates.
The contracts are linked because the buyer has persistent private information. Since
there is persistence in the Markov chain generating the surplus, a successful demand
induces the seller to make another aggressive demand in the next negotiation, since
the buyer’s acceptance reveals that the current surplus is large. Coles and Muthoo
[14] introduced an alternating offers-bargaining model in which the set of possible
utility pairs evolves through time in a non-stationary manner. They showed that in
the limit, as the time interval between two consecutive offers becomes arbitrarily
small, there exists a unique subgame perfect equilibrium and derived a characteri-
zation of the unique subgame perfect equilibrium payoffs. Naidu et al. [27] studied
intentional idiosyncratic play in a standard stochastic evolutionary model of equi-
librium selection in a class of bargaining games showing existence and uniqueness
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of a stochastically stable bargaining outcome under intentional idiosyncratic play
in a class of games that nests contract games and the Nash demand game. Abreu
and Manea [1] studied in the bargaining model the Markov perfect equilibria of an
infinite horizon game in which pairs of players connected in a network are randomly
matched. They established the existence of Markov perfect equilibria and show that
Markov perfect equilibria payoffs are not necessarily unique. In addition, developed
a method for constructing pure strategy Markov perfect equilibria for high discount
factors. Agastya [2] studied the dual issues of allocation and coalition formation in a
model of social learning showing that all self-perpetuating allocations realized from
a simple bargaining game must be core allocations, although players make simulta-
neous demands for surplus, and only on their own behalf. Furthermore, they provided
a sufficient condition under which the society eventually learns to divide the surplus
according to some core allocation, regardless of the initial history.

Anant et al. [4] generalized the Kalai–Smorodinsky’s result defining a property
called Nash equilibrium regularity and showed that the result is true as long as the
feasibility sets happen to be Nash equilibrium regular. Dubra [17] established a
restricted version of Nash’s Independence that overcomes its major criticisms and
then show that a one parameter class of asymmetric Kalai–Smorodinsky solutions
is characterized by restricted independence, scale invariance, Pareto optimality and
Kalai–Smorodinsky’s individual monotonicity axiom. Köbberling and Peters [23]
demonstrated for the Kalai–Smorodinsky bargaining solution that for two forms of
risk aversion (utility risk aversion and probabilistic risk aversion) can have surpris-
ingly opposite consequences for bargaining solutions that exhibit a weak monotonic-
ity property. Driesen et al. [16] analyzed bargaining problems under the assumption
that players are loss-averse showing that n-player bargaining problems have a unique
self-supporting outcome under the Kalai–Smorodinsky solution. They established
the bargaining solutions that give exactly these outcomes, and characterized them by
the standard axioms: scale invariance, individual monotonicity, and strong individ-
ual rationality, and proposed a new axiom called proportional concession invariance.
Roth [35] concluded that Kalai–Smorodinsky game for two-person bargaining can-
not be transformed into a general n-person bargaining games in a straightforward
manner showing that the solution is not Pareto Optimal; no solution, whatever it is,
can possess the other properties which characterize in the two-person case. In this
sense, Peters and Tijs [31] proved that there exists a unique bargaining solution,
defined on the whole class of two-person bargaining games, having the following
properties: individual rationality, Pareto optimality independence of equivalent util-
ity representation, individual monotonicity and symmetry. They introduced a rather
large subclass of n-person bargaining games showing that having the four axioms
of the Kalai–Smorodinsky solution, and exactly one of these solutions is symmetric.
They also proved that all these solutions are risk-sensitive. Moulin [25] introduced a
bargaining game where players bid fractions of dictatorship that are used by all non-
winners of the auction to threaten acceptance of the winner’s proposal. He described
the equilibrium behavior as a subgame perfect equilibrium. Alexander [3] charac-
terized the Kalai–Smorodinsky bargaining solution when firms and unions negotiate
over wages alone, and firms set the level of employment in order to maximize profits
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given the agreed wage. He analyzed the case that the wage elasticity of employment
and the union’s risk aversion are both constant showing that in this case there is a
simple relationship between the Kalai–Smorodinsky and the Nash solutions.

14.1.3 Nash Versus Kalai–Smorodinsky

In this chapter, we analyze the bargaining solutions presented by Nash [28, 29]
and Kalai–Smorodinsky [20], which depend on different principles of fairness. The
bargaining solution allows players to solve the bargaining problem that result in a
“fair” improved position.

Following Nash [28], a solution to the bargaining problems B is a function f that
takes as input any bargaining problem and returns a vector of utilities that belongs to
the set of possible agreements Φ. Several solutions can be proposed for solving the
problem, but some of themcan present inconsistencies. For example, one solution can
go against symmetry by proposing a total improvement of the position of one player
obtaining a point in the Pareto frontier of the utility and the other player receives
no improvement [12]. A different solution to the problem could be a disagreement
point. The first solution violates symmetry, so the solution is unfair, and the second
solution is not Pareto-efficient, and does not take advantage of the cooperation related
to an agreement situation. For solving the inconsistencies in the solution of the
problem, Nash [28] proposed several axioms: (a) Invariant to affine transformations
(or Invariant to equivalent utility representations): an affine transformation of the
utility and disagreement point should not alter the outcome of the bargaining process;
(b) Pareto optimality: the solution selects a point of the Pareto frontier such that the
players can be made “better” off without making other players “worse off”; (c)
Symmetry: if the players are indistinguishable, the solution should not discriminate
between them; and (d) Independence of irrelevant alternatives: if the solution is
chosen from a feasible set which is an element of a subset of the original set but
containing the point selected earlier by the solution, then the solutionmust still assign
the same point chosen from the subset. As a result, Nash [28] proposed the Nash
bargaining solution: we say that there is a unique solution b to the bargaining problem
that satisfies the four axioms (a to d) which is given by the point that maximizes the
product of utilities of the players.

While three of Nash’s axioms are quite uncontroversial, the fourth one (Indepen-
dence of irrelevant alternatives) raised some criticism, which lead to a different line
of research.Kalai andSmorodinsky [20] looked for characterizations of an alternative
solution which do not use the controversial axiom. The solution idea can be repre-
sented geometrically in the followingway. Let a(Φ) be the utopia point, typically not
feasible, which gives the maximum payoff. Now, connect the point of disagreement
d and that ideal point a(Φ) by a line segment. The Kalai–Smorodinsky solution is
the maximal point in Φ on that line segment. They replaced Nash arguable fourth
axiom by a monotonicity axiom: (e) If the set of possible agreements Φ is enlarged
such that the maximum utilities of the players remain unchanged, then neither of
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the players must not suffer from it. Then, Kalai and Smorodinsky [20] proposed the
following solution: we say that there is a unique solution b to the bargaining prob-
lem that satisfies the four axioms (a, b, c and e) which is given by the intersection
point of the Pareto frontier and the straight line segment connecting d and the utopia
point a(Φ).

Nash [28] showed that there exists a unique standard independent solution for
the bargaining model, while Kalai and Smorodinsky [20] showed that a different
solution is the unique standard monotonic one.

14.1.4 Organization of the Chapter

The rest of this chapter is organized in the following manner. In the next section, the
motivation introduces the archetypal bargaining problem. In Sect. 14.3, the prelimi-
naries present the Markov continuous-time model, the game theory Markov model
and the c-variable method. The Nash bargaining model and the Kalai–Smorodinsky
bargaining model are presented in Sects. 14.4 and 14.5, respectively. In Sect. 14.6,
there are suggested bargaining solver for the Nash and the Kalai–Smorodinsky bar-
gaining models. In addition, it discusses the equilibrium computation in bargaining
games: we present the analysis of the convergence as well the rate of convergence of
the proposedmethod. Themodel for the disagreement point is presented in Sect. 14.7.
Section14.8 shows the usefulness of our approach presenting a numerical example
contrasting the Nash and Kalai–Smorodinsky bargaining solution. Section14.9 con-
cludes and discusses future work.

14.2 Motivation

The most basic definition of bargaining refers to a socio-economic class of problems
involving several players who cooperate in terms of obtaining a mutually better
position of a desirable surplus whose distribution is in conflict. The features of the
cooperation of the players in terms of reaching an agreement and the initial situations
of the players in the status quo before an agreement has effect will determine how
the surplus will be distributed. Several social, political and economic problems are
related to the bargaining problem.

For instance, let us consider the case of selling a used car.When it comes to selling
the car, the seller naturally wants to obtain the most money possible. It is practical
to trade the car at a dealer or make a quick sale to a used car dealership, but these
options usually leave the seller with significantly less than what the car is actually
worth. Selling a car by himself allows the seller to get its full value. Then, the seller
values his car at 3,000 which is the minimum price at which he would sell it. On the
other hand, there exists a buyer that values the car at 5,000 which is the maximum
price at which he would buy it. If trade occurs, the price lies between 3,000 and
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5,000, then both the seller and the buyer would become better-off and a conflict of
interests arises. In any trade the seller and the buyer have the possibility of achieving
a mutually beneficial agreement by having conflicting interests over the terms of the
trade.

The formal theory of bargaining originated with John Nash’s work in the early
1950s [28, 29]. The term bargaining is usually employed to refer to situations in
which players have the possibility of achieving a mutually beneficial agreement,
there is a conflict of interests about when an agreement should conclude, and no
agreement may be imposed on any individual without their approval.

Let us consider two players l = 1, 2. A bargaining problem is a pair B = (Φ, d)

in the utility space where Φ is a set of possible agreements in terms of utilities u that
player 1 and player 2 can yield. The player’s utility function ul is strictly increasing
and concave. The set of possible agreements is Φ, which is a compact and convex
set of R2. An element of Φ is a pair u = (u1, u2) ∈ Φ and d = (d1, d2) is called the
disagreement utility point. Compactness arises from the assumptions related to closed
production sets and bounded factor endowments. Convexity is obtained from the fact
that expected utility over outcomes. Also, the set Φ involves points that dominate
the disagreement point, i.e., there is a positive surplus to be enjoyed if agreement is
reached. The function f takes as input any bargaining problem and returns a pair of
utilities u = (u1, u2) ∈ Φ. When we need to refer to the components of f , we write
u1 = f 1(B) and u2 = f 2(B). The interpretation is that given a bargaining problem
B = (Φ, d) there exists an agreement u = f (Φ, d) ∈ Φ such that u1 ≥ d1 and
u2 ≥ d2 which ensures that there exists a mutually beneficial agreement. Figure14.1
shows the bargaining problem.

Fig. 14.1 Bargaining model
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Fig. 14.2 Bargaining
axioms

Fig. 14.3 Nash’s bargaining
solution

Two fundamental axioms impose the most important restrictions over the solution
of the bargaining problem (see Fig. 14.2). Pareto optimality: the function f (Φ, d)

has the property that there does not exist a point u = (u1, u2) ∈ Φ such that u1 ≥
f 1(Φ, d) and u2 ≥ f 2(Φ, d) such that (u1, u2) �= f (Φ, d). Symmetry: suppose that
B is such thatU is symmetric around the 45◦ line and d1 = d2, then f 1(B) = f 2(B).
The rest of the axioms will be presented in the formalization of the model.

Nash’s bargaining solution of the bargaining situation described above is the
unique pair of utilities, denoted by (u1, u2) ∈ Φ, that solves the following maxi-
mization problem
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max
u1,u2∈Θ

(u1 − d1)(u2 − d2)

whereΘ ≡ {
(u1, u2) ∈ Φ

∣
∣ u1 ≥ d1 and u2 ≥ d2

}
. Themaximizationproblemstated

above has a unique solution, because the result of (u1 − d1)(u2 − d2), which is
referred to as the Nash product, is continuous and strictly concave. Figure14.3 illus-
trates Nash’s bargaining solution.

14.3 Preliminaries

In this section, we introduce the (continuous-time, time-homogeneous) game model
in which we are interested and the formulation of the problem [8]. As usual, R and
N stand for the sets of real numbers and nonnegative integers, respectively.

Throughout the remainder

G = (N , Sl , Al , {Al(s)}s∈S, V l, Ql)l=1,N (14.1)

stands for a continuous-time Markov game (CTMG), where N is the number of
players and each player is indexed by l = 1,N , the state space Sl is a finite set{
sl(1), . . . , s

l
(N )

}
, N ∈ N, endowed with the discrete topology and the action set Al

is the action (or control) space, a finite space endowed with the corresponding Borel
σ -algebra B(Al).

For each sl ∈ Sl , Al(sl) ⊂ Al is the nonempty set of admissible actions at sl andwe
shall suppose that it is compact. Whereas, the setKl := {(sl , al) : sl∈Sl , al ∈ Al(sl)

}

is the class of admissible pairs, which is considered as a topological subspace of
Sl × Al and, similarly, the setK := {

k : k ∈ ×N
l=1 K

l
}
. V l ∈ B(×N

l=1S
l × K

l) is the
(measurable) one-stage cost function.

The function Ql in (14.1) is the matrix
[
ql( jl |il ,kl )

]
of the game’s transition rates,

satisfying ql( jl |il ,kl ) ≥ 0 for all (sl , al) ∈ K
l and i �= j such that

[
ql( jl |il ,kl )

] =
⎧
⎨

⎩

−∑N
i �= j λ

l
(i, j)(a

l), i f i = j

λl
(i, j)(a

l), i f i �= j

where λl
(i, j) is a transition rate between state i and j , λl

(i) = ∑N
j �=i λ(i, j). This matrix

is assumed to be conservative
∑Nl

jl=1 q
l
( jl |il ,kl ) = 0 and stable, which means that

ql∗(il ) := sup
al∈Al

ql(il )(al) < ∞ ∀il ∈ Sl

where ql(il )(al) := −ql(il ,il )(al) ≥ 0 for all al ∈ Al .
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Now, we denote the probability transition matrix by

Π l(t) = [π l
(s,il ,τ, jl ,kl )]il , jl ,kl , τ ≥ s

such that, π l
(s,il ,τ, jl ,kl )

= π l
(0,il ,t, jl ,kl )

, t = τ − s ∀il , jl ∈ Sl and where
∑Nl

jl=1

π l
( jl |il ,kl ) = 1. The Kolmogorov forward equations can be written as the matrix dif-

ferential equation as follows:

Π ′(t) = Π(t)Q; Π(0) = I

Π(t) ∈ R
N×N , I ∈ R

N×N is the identity matrix. This system can be solved by

Π(t) = Π(0)eQt = eQt :=
∞∑

t=0

tnQn

n! (14.2)

and at the stationary state, the probability transition matrix is defined as

Π∗ = lim
t→∞Π(t)

Definition 14.1 The vector Pl ∈ R
N is called stationary distribution vector if

(
Π l)∗ Pl = Pl

where
∑Nl

il=1 P
l
(il )

= 1.

This vector can be seen as the long-run proportion of time that the process is in
state il ∈ Sl .

Theorem 14.1 The following statements are equivalent:

• QlPl = 0
• Π l(t)Pl = Pl; ∀t ≥ 0.

The proof of this fact is easy in the case of a finite state space, recalling the
Kolmogorov backward equation.

A strategy for player l is then defined as a sequence dl = {
dl(t), t ≥ 0

}
of sto-

chastic kernels dl(t) such that: (a) for each time t ≥ 0, dl(kl |il )(t) is a probability
measure on Al such that dl

(Al (il )|il )(t) = 1 and, (b) for every El ∈ B(Al) dl
(El |il )(t) is a

Borel-measurable function in t ≥ 0.We denoted by Dl the family of all strategies for
player l. A multistrategy is a vector d = (d1, . . . , dN ) ∈ D := ×N

l=1D
l . From now

on, we will consider only stationary strategies dl(kl |il )(t) = dl(kl |il ). For each strategy,
dl(kl |il ) the associated transition rate matrix is defined as:

Ql(dl) := [ql(il , jl )(dl)] =
Ml∑

kl=1

ql( jl |il ,kl )d
l
(kl |il )
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such that on a stationary state distribution for all dl(kl |il ) and t ≥ 0 we have that

Π l∗(d) = lim
t→∞ eQ

l (dl )t , where Π l∗ (dl
)
is a stationary transition controlled matrix.

The cost function of each player, depending on the states and actions of all the other
players, is given by the valuesWl

(i1,k1;...;iN ,kN ), so that the “average cost function” Vl

in the stationary regime can be expressed as

Vl (d) :=
N1,M1∑

i1,k1

..

NN ,MN∑

iN ,kN

Wl
(i1,k1,..,iN ,kN )

N∏

l=1

dl(kl |il )P
l
(
sl=s(il )

)

where

Wl
(i1,k1,..,iN ,kN ) =

N1∑

j1

..

NN∑

jN

V l
(i1, j1,k1,..,iN , jN ,kN )

N∏

l=1

π l
( jl |il ,kl )

Given that
cl(il ,kl ) = dl(kl |il )P

l
(
sl=s(il )

)

we have

Vl (c) :=
N1,M1∑

i1,k1

..

NN ,MN∑

iN ,kN

Wl
(i1,k1,..,iN ,kN )

N∏

l=1

cl(il ,kl ) (14.3)

c = (c1, . . . , cN ).
The variable cl(il ,kl ) satisfies the following restrictions [9, 33]:

1. Each vector from the matrix cl :=
[
cl(il ,kl )

]

il=1,Nl ;kl=1,Ml

that represents a station-

ary mixed-strategy that belongs to the simplex

SNl×Ml :=

⎧
⎪⎪⎨

⎪⎪⎩

cl(il ,kl ) ∈ R
Nl×Ml for cl(il ,kl )≥0,

where
Nl ,Ml∑

il ,kl

cl(il ,kl )=1
(14.4)

2. The variable cl(il ,kl ) satisfies the continuous time and the ergodicity constraints,
and belongs to the convex, closed and bounded set defined as follows:

cl ∈ Cl
adm =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

hl( jl )(c
l) =

Nl ,Ml∑

il ,kl

π l
( jl |il ,kl )c

l
(il ,kl )

−
Ml∑

kl

cl( jl ,kl )= 0

Nl ,Ml∑

il ,kl

ql( jl |il ,kl )c
l
(il ,kl )

= 0

(14.5)
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Notice that by (14.5) it follows that

Pl
(
sl=s(il )

) =
Ml∑

kl

cl(il ,kl ) dl(kl |il ) = cl(il ,kl )
Ml∑

kl

cl(il ,kl )
(14.6)

In the ergodic case
∑Ml

kl
cl(il ,kl ) > 0 for all l = 1,N .

14.4 The Nash Bargaining Model

TheNash bargaining solution is based on amodel inwhich the players are assumed to
negotiate on which point of the set of feasible payoffs Φ ⊂ R

N will be agreed upon
and realized by concerted actions of the members of the coalition l = 1, . . . ,N . A
pivotal element of the model is a fixed disagreement vector d ∈ R

N which plays the
role of a deterrent. If negotiations break down and no agreement is reached, then the
disagreement point will take effect (the players are committed to the disagreement
point in the case of failing to reach a consensus on which feasible payoff to realize).
Thus thewhole bargaining problemBwill be concisely given by the pairB = (Φ, d).
We will call this form the condensed form of the bargaining problem (see [18, 28]).

A bargaining problem can be derived from the normal form of an N -person
game G = C1, . . . ,CN ; u1, . . . , uN in a natural way. The set of all feasible payoffs
(outcomes) is defined as

Θ = u : u = (
u1(c), . . . , uN (c)

)
, c ∈ C

where C = C1 × · · · × CN

Given a disagreement vector d ∈ R
N , B = (Θ, d) it is a bargaining problem in

condensed form. We can derive another bargaining problem B = (Φ, d) from G by
extending the set of feasible outcomesΘ to its convex hullΦ. Notice that any element
ϕ ∈ Φ can be represented as

ϕ =
N∑

l=1

λlul

where u = (u1(c), . . . , uN (c)), (c ∈ C), λl ≥ 0 for all l, and
∑N

l=1 λl = 1.
The payoff vector ϕ can be realized by playing the strategies c with probability

λ, and so ϕ is the expected payoff of the players. Thus, when the players face the
bargaining problem B the question is, which point of Φ should be selected, taking
into account the different position and strength of the players that is reflected in the
set Φ of extended payoffs and the disagreement point d.
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Nash approached this problem by assigning a one-point solution to B in an
axiomatic manner. Let B denote the set of all pairs (Φ, d) such that

1. Φ ⊂ R
N is compact, convex;

2. there exists at least one u ∈ Φ such that u > d.

A Nash solution to the bargaining problem is a function f : B → R
N such that

f (Φ, d) ∈ Φ.We shall confineourselves to functions satisfying the following axioms
(see [18, 20, 26, 28]).

1. Feasibility: f (Φ, d) ∈ Φ.
2. Rationality: f (Φ, d) ≥ d.
3. Pareto Optimality: For every (Φ, d) ∈ B there is u ∈ Φ such that u ≥ f (Φ, d)

and imply u = f (Φ, d).
4. Symmetry: If for a bargaining problem (Φ, d) ∈ B, there exist indices i, j such

that ϕ = (ϕ1, . . . , ϕN ) ∈ Φ if and only if ϕ̄ = (ϕ̄1, . . . , ϕ̄N ) ∈ Φ, (ϕ̄l = ϕl , l �=
i, l �= j, ϕ̄i = ϕ j , ϕ̄ j = ϕi ) and di = d j for d = (d1, . . . , dN ), then f i = f j for
the solution vector f (Φ, d) = ( f 1, . . . , f N ).

5. Invariance with respect to affine transformations of utility: Let αl > 0, βl , (l =
1, . . . ,N ) be arbitrary constants and let

d ′ = (α1d1 + β1, . . . , αN dN + βN ) with d = (d1, . . . , dN )

and
Φ ′ = (α1ϕ1 + β1, . . . , αNϕN + βN ) : (ϕ1, . . . , ϕN ) ∈ Φ.

Then f (Φ ′, d ′) = (α1d1 + β1, . . . , αN f N + βN ), where f (Φ, d) = ( f 1, . . . ,
f N ).

6. Independence of irrelevant alternatives: If (Φ, d) and (T, d) are bargaining pairs
such that Φ ⊂ T and f (T, d) ∈ Φ, then f (T, d) = f (Φ, d).

Theorem 14.2 There is a unique function f satisfying axioms 1–6, furthermore for
all (Φ, d) ∈ B, the vector f (Φ, d) = ( f 1, . . . , f N ) = (u1, . . . , uN ) is the unique
solution of the optimization problem

maximize g(u) =
N∏

l=1
(ul − dl)

subject to u ∈ Φ, u ≥ d

(14.7)

The objective function of problem (14.7) is usually called the Nash product.

Proof See [18].

Remark 14.1 There are exactly two solutions satisfying axioms 1, 2, 4, 5, and 6.
One is the Nash’s solution and the other is the disagreement solution.
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For the next conjectures consider a bargaining problem as a pair (Φ, d) where
Φ ⊂ R

2 and d ∈ R
2.

Conjecture 14.1 The Pareto frontier Ωe of the set Φ is the graph of a concave
function, denoted by h, whose domain is a closed interval B ⊆ R. Furthermore,
there exists f 1 ∈ B such that u1 > d1 and h(u1) > d2 [26].

Conjecture 14.2 The set Ωw of weakly Pareto-efficient utility pairs is closed [26].

14.5 The Kalai–Smorodinsky Bargaining Model

With the property of independence of irrelevant alternatives, Nash’s solution is not
sensitive to the range of outcomes contained in the feasible set, for instance, by the
utopia point a(Φ) = (a1(Φ), . . . , aN (Φ)) defined by

al(Φ) = max{ul |ul ∈ Φ , u ≥ d}

this point is the highest possible utility payoff player l can attain in the bargaining
problem (Φ, d). Raiffa [34] proposed a solution for two-player games which is
sensitive to changes in a(Φ), he proposed the solution u for two-player games such
that u = f (Φ, d) is the Pareto-optimal point at which (u1 − d1)/(a1 − d1) = (u2 −
d2)/(a2 − d2). The solution u selects the maximal point on the line joining d to a,
yielding each player the largest reward consistent with the constraint that the players’
actual gains should be in proportion to their maximum gains, as measured by the
ideal point a(Φ).

The Kalai–Smorodinsky solution for the bargaining problem amounts to normal-
izing the utility function of each agent in such a way that it is worth zero at the status
quo and one at this agent’s best outcome, given that all others get at least their status
quo utility level; and to share equally the benefit from cooperation. This solution
has been axiomatically characterized when societyN contains only two agents, i.e.,
l = 1, 2. To every two-person game we associate a pair (Φ, d), where d is a point
in the plane d = (d1, d2) called the status quo and Φ is a subset of the plane, every
point u = (u1, u2) ∈ Φ represents levels of utility for players 1 and 2 that can be
reached by an outcome of the game which is feasible for the two players when they
do cooperate.

Let B denote the set of all pairs (Φ, d) such that

1. Φ ⊂ R
2 is compact, convex;

2. there exists at least one point u ∈ Φ such that ul > dl , for l = 1, 2.

Asolution to thebargainingproblem is a function f : B → R
2 such that f (Φ, d) ∈

Φ.We shall confine ourselves to functions satisfying the following axioms (see [20]).

1. Pareto Optimality: For every (Φ, d) ∈ B there is no u ∈ Φ such that u ≥ f (Φ, d)

and imply u �= f (Φ, d).
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2. Symmetry: We let f : R2 → R
2 be defined by T ((u1, u2)) = (u2, u1) and we

require that for every (Φ, d) ∈ B, f (T (Φ), T (d)) = T ( f (Φ, d))

3. Invariance with respect to affine transformations of utility: A is an affine transfor-
mation of utility if A = (A1, A2) : R2 → R

2, A((u1, u2)) = (A1(u1), A2(u2)),
and the maps Al(u) are of the form clu + dl for some positive constant cl and
some constant dl . We require that for such a transformation A, f (A(Φ), A(d)) =
A( f (Φ, d)).

4. Monotonicity: For a pair (Φ, d) ∈ B, let a(Φ) = (a1(Φ), a2(Φ)) and gΦ(u1) be
a function defined for u1 ≤ a1(Φ) in the following way

gΦ(u1) = u2 if (u1, u2) is the Pareto of (Φ, d)

= a2(Φ) if there is no such u2.

If (Φ2, d) and (Φ1, d) are bargaining pairs such that a1(Φ1) = a1(φ2) and gΦ1 ≤
gΦ2 , then f 2(Φ1, d) ≤ f 2(Φ2, d), where f (Φ, d) = ( f 1(Φ, d), f 2(Φ, d)).

The axiom of monotonicity states that if, for every utility level that player 1 may
demand, the maximum feasible utility level that player 2 can simultaneously reach is
increased, then the utility level assigned to player 2 according to the solution should
also be increased.

Theorem 14.3 Let f be a bargaining solution. Then f satisfies Pareto optimality,
symmetry, invariance with respect to affine transformations of utility and monotonic-
ity if, and only if, f is Kalai–Smorodinsky solution. (See the proof in Roth [34]).

14.5.1 TheN -Person Kalai–Smorodinsky Solution

Kalai and Smorodinsky [20] defined their solution only on two-player bargaining
problems.We consider the set of allN -player bargaining problems defined by Peters
and Tijs [31], and on this set we define a class of asymmetric N -person Kalai–
Smorodinsky solutions. The set of players is denoted by l = (1, . . . ,N ), withN ≥ 2.
A setΦ ⊆ R

N is comprehensive if x ∈ Φ and x ≥ y imply y ∈ Φ, for all x, y ∈ R
N .

A bargaining problem for N is a pair (Φ, d) where:

1. Φ ⊆ R
N is compact, convex, and comprehensive,

2. there exists a u ∈ Φ such that u > d and d ∈ Φ,

We talk about comprehensiveness in the sense that any player can choose a lower
utility payoff without this leading to an infeasible outcome. Players seek agreement
on an outcome u ∈ Φ, yielding utility ul to player l. In case no agreement is reached
the disagreement outcome d results. For all bargaining problem (Φ, d) ∈ Bwe define
the Pareto set of Φ as

P(Φ) = {u ∈ Φ| for all x ∈ R
N , if x ≥ u and x �= u, then x /∈ Φ}
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A bargaining solution is a map f : B → R
N that assigns to each bargaining

problem (Φ, d) ∈ B a single point f (Φ, d) ∈ Φ.
Raiffa [34] and Kalai and Smorodinsky [20] defined and characterized the Kalai–

Smorodinsky solution for two-person bargaining problems. Roth [35] observed that
theN -player extension of the solution is not Pareto-optimal on all bargaining prob-
lems in B, i.e., does not assign an element of P(Φ) to each (Φ, d) ∈ B. Therefore,
Peters and Tijs [31] introduced a subclass of bargaining problems in B for which this
shortcoming does not occur.

Theorem 14.4 For bargaining games with three or more players, no solution
exists which possesses the properties of Pareto optimality, symmetry, and restricted
monotonicity. (See the proof in Roth [35]).

Condition 14.5 Forall u∈Φ, u ≥ d, l = (1, . . . ,N ): u /∈ P(Φ)andul < al(Φ) ⇒
∃ ε > 0 with u + εel ∈ Φ, where the vector el in R

N has the l-th coordinate equal
to 1 and all other coordinates equal to 0.

If a feasible outcome u is not Pareto optimal, then for any player l who receives
less than his utopia payoff it is possible to increase his utility while all other players
still receive u. Let I ⊆ B consists of all bargaining problems satisfying Condition
14.5. The class of bargaining problems (Φ, 0) ∈ I is denoted by I0.

Peters and Tijs [31] defined theN -player extension of the solution by making use
of monotonic curves. A monotonic curve for N is a map

ψ : [1,N ] →
{

u ∈ R
N
+ |ul ≤ 1 for all player l, and 1 ≤

N∑

l=1

ul
}

such that for all 1 ≤ s ≤ t ≤ N we have ψ(s) ≤ ψ(t) and
∑N

l=1 ψ l(s) = s. The set
of all monotonic curves for N is denoted by �.

Lemma 14.1 For each ψ ∈ � and (Φ, 0) ∈ I0 with f (Φ, 0) = eN , the set

P(Φ) ∩ {ψ(t)|t ∈ [1,N ]}

contains exactly one point (see [31]).

Let ψ be some monotonic curve in �. Following the Lemma 14.1 we can define
ρψ : I → R

N , the solution associated with ψ . Let (Φ, 0) ∈ I0; if a(Φ, 0) = eN ,
then {

ρψ(Φ, 0)
} := P(Φ) ∩ {ψ(t)|t ∈ [1,N ]}

and if a(Φ, 0) = a, then ρψ(Φ, 0) := aρψ(a−1Φ). For (Φ, d) ∈ I, we define
ρψ(Φ, d) = d + ρψ(Φ − d). The class of all solutions associated with a monotonic
curve in � is referred to as the class of individually monotonic bargaining solutions,
the Kalai–Smorodinsky solution is an element of this class. Observe that ψ̂ (the
monotonic curve of the Kalai-Smorodinsky solution) defines a straight line in R

N ,
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which for bargaining games (Φ, 0) ∈ I0 with a(Φ, 0) = eN , coincides with the line
connecting the disagreement point 0 and the utopia point eN . For general bargaining
problems (Φ, d) ∈ I, the solution is the intersection of the Pareto set P(Φ) and the
straight line that connects the disagreement point d and the utopia point a(Φ, d).

14.6 The Bargaining Solver

14.6.1 The Nash Bargaining Solver

Stated in general terms, a N -person bargaining situation is a situation in which N
players have a common interest to cooperate, but have conflicting interests over
exactly how to cooperate. This process involves the players making offers and coun-
teroffers to each other.

Consider aN -person bargaining problem. Let us denote the disagreement utility
that depends on the strategies cl(il ,kl ) as dl(c1, . . . , cN ) for each player
(l = 1, . . . ,N ), and the solution for the Nash bargaining problem as the point
(u1, . . . , uN ). Following (14.3) the utilities ul , in the sameway that the disagreement
utilities, are for Markov chains as follows

ul = ul
(
c1, . . . , cN

) :=
N1,M1∑

i1,k1

. . .

NN ,MN∑

iN ,kN

Wl
(i1,k1,...,iN ,kN )

N∏

l=1

cl(il ,kl ) (14.8)

where the matricesWl represent the behavior of each player. This point is better than
the disagreement point, therefore must satisfy that ul > dl .

The function for finding the solution to the Nash bargaining problem is

g(c1, . . . , cN ) =
N∏

l=1

(ul − dl)α
lχ(ul>dl ) (14.9)

where αl ≥ 0 and
∑N

l αl = 1, (l = 1, ..,N ), which are weighting parameters for
each player. We can rewrite (14.9) for purposes of implementation as follows

g̃(c1, . . . , cN ) =
N∑

l=1

αlχ(ul > dl) ln(ul − dl)

Thus, the strategy x∗, which is the vector x∗ = (c1, . . . , cN ) ∈ Xadm := ⊗N
l=1 C

l
adm ,

is the solution for the Nash bargaining problem

x∗∈ Arg max
x∈Xadm

{
g̃(c1, .., cN )

}
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the strategies cl satisfy the restrictions (14.4) and (14.5). Applying the Lagrange
principle, (see, for example, [32, 33])

L(x, μ, ξ, η) = g̃(c1, . . . , cN ) −
N∑

l=1

Nl∑

jl=1
μl

( jl )
hl( jl )(c

l)−

N∑

l=1

Nl∑

il=1

Nl∑

jl=1

Ml∑

kl=1
ξ l
( jl )

ql( jl |il ,kl )c
l
(il ,kl )

−
N∑

l=1

Nl∑

il=1

Ml∑

kl=1
ηl
(
cl(il ,kl ) − 1

)

The approximative solution obtained by the Tikhonov’s regularization with δ > 0
(see [33]) is given by

x∗, μ∗, ξ ∗, η∗ = arg max
x∈Xadm

min
μ,ξ,η≥0

Lδ(x, μ, ξ, η)

where

Lδ(x, μ, ξ, η) = g̃(c1, . . . , cN ) −
N∑

l=1

Nl∑

jl=1
μl

( jl )
hl( jl )(c

l)−

N∑

l=1

Nl∑

il=1

Nl∑

jl=1

Ml∑

kl=1
ξ l
( jl )

ql( jl |il ,kl )c
l
(il ,kl )

−
N∑

l=1

Nl∑

il=1

Ml∑

kl=1
ηl
(
cl(il ,kl ) − 1

)
−

δ
2

(‖x‖2 − ‖μ‖2 − ‖ξ‖2 − ‖η‖2)

(14.10)

Notice that the Lagrange function (14.10) satisfies the saddle-point [32] condition,
namely, for all x ∈ Xadm and μ, ξ, η ≥ 0 we have

Lδ(xδ, μ
∗
δ , ξ

∗
δ , η∗

δ ) ≤ Lδ(x
∗
δ , μ∗

δ , ξ
∗
δ , η∗

δ ) ≤ Lδ(x
∗
δ , μδ, ξδ, ηδ)

14.6.2 Kalai–Smorodinsky Solver

Consider aN -person bargaining problem. Let us denote the disagreement utility that
depends on the strategies cl(il ,kl ) as d

l(c1, . . . , cN ) for each player (l = 1, . . . ,N ),
and the solution for the bargaining problem as the point (u1, . . . , uN ). Following
(14.3) the utilities ul are for Markov chains as follows

ul = ul
(
c1, . . . , cN

) :=
N1,M1∑

i1,k1

. . .

NN ,MN∑

iN ,kN

Wl
(i1,k1,...,iN ,kN )

N∏

l=1

cl(il ,kl ) (14.11)

where the matrices Wl represent the behavior of each player.
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TheKalai–Smorodinsky solution chooses themaximum individually rational pay-
off profile at which each player’s payoff has the same proportion from disagreement
point to the utopia point. For solving the bargaining problem we consider that there
exists an optimal solution that is a strong Pareto optimal point and it is the closest
solution to the utopia point. To find the Pareto optimal solution, we formulate the
problem as the L p-norm that reduces the distance to the utopia point in the Euclidean
space. Following [41], the function for finding the solution to the bargaining problem
is

g(c1, . . . , cN ) =
[∣∣
∣
∣
∣

N∑

l=1

λl (u
l − dl)α

lχ(ul>dl )

(al − dl)αlχ(al>dl )

∣
∣
∣
∣
∣

p]1/p

(14.12)

where al is the utopia point, αl ≥ 0 are weighting parameters for each player, and
λ ∈ �N such that

�N :=
{
λ ∈ R

N : λ ∈ [0, 1] ,
N∑

l=1
λl = 1

}

We can rewrite (14.12) for purposes of implementation as follows

g̃(c1, . . . , cN ) =
⎡

⎣

∣
∣
∣
∣
∣
∣

N∑

l=1

λl
(
αlχ(ul > dl ) ln(ul − dl ) − αlχ(al > dl ) ln(al − dl )

)
∣
∣
∣
∣
∣
∣

p⎤

⎦

1/p

Thus, the strategy x∗, which is the vector x∗ = (c1, . . . , cN ) ∈ Xadm := ⊗N
l=1 C

l
adm ,

is the solution for the bargaining problem

x∗∈ Arg max
x∈Xadm ,λ∈�N

{
g̃(c1, . . . , cN )

}

the strategies cl satisfy the restrictions (14.4) and (14.5). Applying the Lagrange
principle

L(x, λ, μ, ξ, η) = g̃(c1, . . . , cN ) −
N∑

l=1

Nl∑

jl=1
μl

( jl )
hl( jl )(c

l)−

N∑

l=1

Nl∑

il=1

Nl∑

jl=1

Ml∑

kl=1
ξ l
( jl )

ql( jl |il ,kl )c
l
(il ,kl )

−
N∑

l=1

Nl∑

il=1

Ml∑

kl=1
ηl
(
cl(il ,kl ) − 1

)

The approximative solution obtained by the Tikhonov’s regularization with δ > 0 is
given by

x∗, λ∗, μ∗, ξ ∗, η∗ = arg max
x∈Xadm ,λ∈�N

min
μ,ξ,η≥0

Lδ(x, λ, μ, ξ, η)
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where

Lδ(x, λ, μ, ξ, η) = g̃(c1, . . . , cN ) −
N∑

l=1

Nl∑

jl=1
μl

( jl )
hl( jl )(c

l)−

N∑

l=1

Nl∑

il=1

Nl∑

jl=1

Ml∑

kl=1
ξ l
( jl )

ql( jl |il ,kl )c
l
(il ,kl )

−
N∑

l=1

Nl∑

il=1

Ml∑

kl=1
ηl
(
cl(il ,kl ) − 1

)
−

δ
2

(‖x‖2 + ‖λ‖2 − ‖μ‖2 − ‖ξ‖2 − ‖η‖2)

(14.13)

Notice that the Lagrange function (14.13) satisfies the saddle-point condition,
namely, for all x ∈ Xadm, λ ∈ �N and μ, ξ, η≥ 0 we have

Lδ(xδ, λδ, μ
∗
δ , ξ

∗
δ , η∗

δ ) ≤ Lδ(x
∗
δ , λ∗

δ , μ
∗
δ , ξ

∗
δ , η∗

δ ) ≤ Lδ(x
∗
δ , λ∗

δ , μδ, ξδ, ηδ)

14.6.3 The Extraproximal Solver Method

In the proximal format (see, [5]) the relation (14.10) can be expressed as

μ∗
δ = argmin

μ≥0

{
1
2‖μ − μ∗

δ‖2 + γLδ(x∗
δ , μ, ξ ∗

δ , η∗
δ )
}

ξ ∗
δ = argmin

ξ≥0

{
1
2‖ξ − ξ ∗

δ ‖2 + γLδ(x∗
δ , μ∗

δ , ξ, η∗
δ )
}

η∗
δ = argmin

η≥0

{
1
2‖η − η∗

δ‖2 + γLδ(x∗
δ , μ∗

δ , ξ
∗
δ , η)

}

x∗
δ = argmax

x∈X
{− 1

2‖x − x∗
δ ‖2 + γLδ(x, μ∗

δ , ξ
∗
δ , η∗

δ )
}

(14.14)

for the relation (14.13) the proximal format will be extended with Lδ(x, λ, μ, ξ, η)

and the following equation

λ∗
δ = arg max

λ∈�N

{− 1
2‖λ − λ∗

δ‖2 + γLδ(x∗
δ , λ, μ∗

δ , ξ
∗
δ , η∗

δ )
}

where the solutions x∗
δ , λ

∗
δ ,μ

∗
δ , ξ

∗
δ and η∗

δ depend on the parameters δ > 0 and γ > 0.
The Extraproximal Method for the conditional optimization problems was sug-

gested in [5, 38].We design themethod for the static bargaining game in a general for-
mat with some fixed admissible initial values (x0 ∈ X , λ0 ∈ �N andμ0, ξ0, η0 ≥ 0),
considering that we want to maximize the function as follows:
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1. The first half-step (prediction):

μ̄n = argmax
μ≥0

{− 1
2‖μ − μn‖2 − γLδ(xn, μ, ξn, ηn)

}

ξ̄n = argmax
ξ≥0

{− 1
2‖ξ − ξn‖2 − γLδ(xn, μ̄n, ξ, ηn)

}

η̄n = argmax
η≥0

{− 1
2‖η − ηn‖2 − γLδ(xn, μ̄n, ξ̄n, η)

}

x̄n = argmax
x∈X

{− 1
2‖x − xn‖2 + γLδ(x, μ̄n, ξ̄n, η̄n)

}

(14.15)

2. The second half-step (basic)

μn+1 = argmax
μ≥0

{− 1
2‖μ − μn‖2 − γLδ(x̄n, μ, ξ̄n, η̄n)

}

ξn+1 = argmax
ξ≥0

{− 1
2‖ξ − ξn‖2 − γLδ(x̄n, μ̄n, ξ, η̄n)

}

ηn+1 = argmax
η≥0

{− 1
2‖η − ηn‖2 − γLδ(x̄n, μ̄n, ξ̄n, η)

}

xn+1 = argmax
x∈X

{− 1
2‖x − xn‖2 + γLδ(x, μ̄n, ξ̄n, η̄n)

}

(14.16)

For the Kalai–Smorodinsky solution the presented extraproximal method will be
extended employing the relation (14.13) and the following equations:

1. The first half-step (prediction):

λ̄n = arg max
λ∈�N

{− 1
2‖λ − λn‖2 + γLδ(xn, λ, μ̄n, ξ̄n, η̄n)

}

2. The second half-step (basic)

λn+1 = arg max
λ∈�N

{− 1
2‖λ − λn‖2 + γLδ(x̄n, λ, μ̄n, ξ̄n, η̄n)

}

The following theorempresents the convergence conditions of (14.15) and (14.16)
and gives the estimate of its rate of convergence for the bargaining equilibrium. As
well, we prove that the extraproximal method converges to a unique equilibrium
point. Let us define the following extended vectors

x̃ =
(
x
λ

)
∈ X̃ := X × R

+ μ̃ =
⎛

⎝
μ

ξ

η

⎞

⎠ ∈ R
+ × R

+ × R
+

Then, the regularized Lagrange function can be expressed as

L̃δ(x̃, μ̃) := Lδ(x, λ, μ, ξ, η)
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The equilibrium point that satisfies (14.14) can be expressed as

μ̃∗
δ = argmin

μ̃≥0

{
1
2‖μ̃ − μ̃∗

δ‖2 + γ L̃δ(x̃∗
δ , μ̃)

}

x̃∗
δ = argmax

x̃∈X̃

{
− 1

2‖x̃ − x̃∗
δ ‖2 + γ L̃δ(x̃, μ̃∗

δ )
}

Now, let us introduce the following variables

ỹ =
(
ỹ1
ỹ2

)
∈ X̃ × R

+, z̃ =
(
z̃1
z̃2

)
∈ X̃ × R

+

and let define the Lagrange function in terms of ỹ and z̃

Lδ(ỹ, z̃) := Lδ(ỹ1, z̃2) − Lδ(z̃1, ỹ2)

For ỹ1 = x̃, ỹ2 = μ̃, z̃1 = z̃∗
1 = x̃∗

δ and z̃2 = z̃∗
2 = μ̃∗

δ we have

Lδ(ỹ, z̃
∗) := L̃δ(x̃, μ̃

∗
δ ) − L̃δ(x̃

∗
δ , μ̃)

In these variables the relation (14.14) can be represented by

z̃∗= arg max
ỹ∈X̃×R+

{− 1
2‖ỹ − z̃∗‖2+γ Lδ(ỹ, z̃

∗
)
}

(14.17)

Finally, we have that the extraproximal method can be expressed by

1. First step
ẑn= arg max

ỹ∈X̃×R+

{− 1
2‖ỹ − z̃n‖2+γ Lδ(ỹ, z̃n)

}
(14.18)

2. Second step
z̃n+1= arg max

ỹ∈X̃×R+

{− 1
2‖ỹ − z̃n‖2+γ Lδ(ỹ, ẑn)

}
(14.19)

Lemma 14.2 Let L̃δ(x̃, μ̃) be differentiable in x̃ and μ̃, whose partial derivative
with respect to μ satisfies the Lipschitz condition with positive constant K0. Then,

‖z̃n+1 − ẑn‖ ≤ γ K0‖z̃n − ẑn‖

Proof See [37, 41].

Lemma 14.3 Let us consider the set of regularized solutions of a nonempty game.
The behavior of the regularized function is described by the following inequality:

Lδ(ỹ, ỹ) − Lδ(z̃
∗
δ , ỹ) ≥ δ‖ỹ − z̃∗

δ‖
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for all ỹ ∈ {ỹ | ỹ ∈X × R
+} and δ > 0.

Proof See [41].

Theorem 14.6 (Convergence and rate of convergence) Let L̃δ(x̃, μ̃) be differen-
tiable in x̃ and μ̃, whose partial derivative with respect to μ̃ satisfies the Lipschitz
condition with positive constant K . Then, for any δ > 0 there exists a small-enough

γ0 = γ0(δ) < K :=min

{
1√
2K0

,
1+

√
1+2(K0)

2

2(K0)
2

}

where such that, for any 0 < γ ≤ γ0, sequence {z̃n}, which generated by the equiv-
alent extraproximal procedure (14.18) and (14.19), monotonically converges with
exponential rate r ∈ (0, 1) to a unique equilibrium point z̃∗, i.e.,

‖z̃n−z̃∗‖2≤ en ln r‖z̃0−z̃∗‖2

where
r = 1+ 4(δγ )2

1+2δγ−2γ 2K 2 −2δγ < 1

and rmin is given by
rmin= 1− 2δγ

1+2δγ = 1
1+2δγ .

Proof Following Theorem 18 in [41] we obtain that

r = 1 − 2γ δ + (2γ δ)2

1+2γ δ−2γ 2K 2 < 1.

Iterating over the previous inequality we have

‖z̃∗
δ−z̃n+1‖2≤r‖z̃∗

δ − z̃n‖2 ≤ · · · ≤ en+1 ln r‖z̃∗
δ − z̃0‖2 (14.20)

That implies that the series converge and also that the trajectories are bounded. Then,
by (14.20) we have that

‖z̃∗
δ−z̃n+1‖2 →

n→∞ 0.

Given that z̃ is a bounded sequence, by the Weierstrass Theorem there exists a point
z̃′ such that any subsequence z̃ni satisfies that z̃ni →

ni→∞ z̃′. In addition, we have

that
∥
∥z̃ni − z̃ni+1

∥
∥2 → 0. Fixing, n = ni in (14.17) and computing the limit when

ni → ∞ we have

z̃′ = arg min
ỹ∈X̃×R+

{
1
2‖ỹ − z̃′‖2+γ Lδ(ỹ, z̃

′
)
}

Then, we have that z̃′ = z̃∗
δ , i.e., any limit point of the sequence z̃n is a solution of

the problem. Given that
∥
∥z̃n − z̃∗

δ

∥
∥2 is monotonically decreasing then, there exists a
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unique limit point (equilibrium point). As a consequence, we have that the sequence
z̃n satisfies that z̃n →

n→∞ z̃∗
δ with a convergence velocity of en ln r .

See the complete proof in [41]

Remark 14.2 The exponential rate r ∈ (0, 1) satisfies

r � r0
(
1 + 1

N 2

)
.

14.7 The Model for the Disagreement Point

A pivotal element of the model is a fixed disagreement vector (also called status
quo or threat point). If negotiations break down and no agreement is reached, then
inevitably the disagreement point will take effect (the players are committed to the
disagreement point in the case of failing to reach a consensus on which feasible
payoff to realize).

Let us introduce the variables (see [38])

x := col cl , x̂ := col cl̂ , (l = 1, . . . ,N )

The strategies of the players are denoted by the vector x , and x̂ is a strategy of the
rest of the players adjoint to x . For reaching the goal of the game, players try to find
a join strategy x∗ = (c1, . . . , cN ) ∈ Xadm := ⊗N

l=1 C
l
adm satisfying

g(x, x̂) :=
N∑

l=1

[
dl
(
cl , cl̂

)
−
(
max
cl∈Cl

dl
(
cl , cl̂

))]
(14.21)

Here dl
(
cl , cl̂

)
(see 14.3) is the utility function of the player l which plays the

strategy cl ∈ Cl and the other plays the strategy cl̂ ∈ Cl̂ . If we consider the utopia
point

c̄l := argmax
cl∈Cl

dl
(
cl , cl̂

)

then, we can rewrite (14.21) as follows

g(x, x̂) :=
N∑

l=1

[
dl
(
cl , cl̂

)
− dl

(
c̄l , cl̂

)]
(14.22)

The functions dl
(
cl , cl̂

)
(l = 1, . . . ,N ) are assumed to be concave in all their

arguments.

Condition 14.7 The function g(x, x̂) satisfies the Nash condition
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dl
(
cl , cl̂

)
− dl

(
c̄l , cl̂

)
≤ 0

for any cl ∈ Cl and all l = 1, . . . ,N
Definition 14.2 A strategy x∗ is said to be a Nash equilibrium if

x∗∈ Arg max
x∈Xadm

{
g(x, x̂)

}

Applying the regularized Lagrange principle we have the solution for the Nash
equilibrium

x∗, x̂∗, μ∗, ξ ∗, η∗ = arg max
x∈X,x̂∈X̂

min
μ,ξ,η≥0

Lθ,δ(x, x̂, μ, ξ, η)

where

Lθ,δ(x, x̂, μ, ξ, η) := (1 − θ)g(x, x̂) −
N∑

l=1

Nl∑

jl=1
μl

( jl )
hl( jl )(c

l)−
N∑

l=1

Nl∑

il=1

Nl∑

jl=1

Ml∑

kl=1
ξ l
( jl )

ql( jl |il ,kl )c
l
(il ,kl )

−
N∑

l=1

Nl∑

il=1

Ml∑

kl=1
ηl
(
cl(il ,kl ) − 1

)
−

δ
2

(
‖x‖2 + ∥

∥x̂
∥
∥2 − ‖μ‖2 − ‖ξ‖2 − ‖η‖2

)

(14.23)

Notice also that the Lagrange function (14.23) satisfies the saddle-point condition,
namely, for all x ∈ X, x̂ ∈ X̂ , and μ, ξ, η≥ 0 we have

Lθ,δ(xδ, x̂δ, μ
∗
δ , ξ

∗
δ , η∗

δ )≤Lθ,δ(x∗
δ , x̂∗

δ , μ∗
δ , ξ

∗
δ , η∗

δ )≤Lθ,δ(x∗
δ , x̂∗

δ , μδ, ξδ, ηδ)

14.7.1 The Extraproximal Solver Method

In the proximal format the relation (14.23) can be expressed as

μ∗
δ = argmin

μ≥0

{
1
2‖μ − μ∗

δ‖2 + γLθ,δ(x∗
δ , x̂∗

δ , μ, ξ ∗
δ , η∗

δ )
}

ξ ∗
δ = argmin

ξ≥0

{
1
2‖ξ − ξ ∗

δ ‖2 + γLθ,δ(x∗
δ , x̂∗

δ , μ∗
δ , ξ, η∗

δ )
}

η∗
δ = argmin

η≥0

{
1
2‖η − η∗

δ‖2 + γLθ,δ(x∗
δ , x̂

∗
δ , μ∗

δ , ξ
∗
δ , η)

}

x∗
δ = argmax

x∈X
{− 1

2‖x − x∗
δ ‖2 + γLθ,δ(x, x̂∗

δ , μ∗
δ , ξ

∗
δ , η∗

δ )
}

x̂∗
δ = argmax

x̂∈X̂

{− 1
2‖x̂ − x̂∗

δ ‖2 + γLθ,δ(x∗
δ , x̂, μ∗

δ , ξ
∗
δ , η∗

δ )
}
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where the solutions x∗
δ , x̂

∗
δ (u), μ∗

δ , ξ ∗
δ and η∗

δ depend on the parameters δ > 0 and
γ > 0.

We design the method for the static Nash game in a general format with some
fixed admissible initial values (x0 ∈ X , x̂0 ∈ X̂ , andμ0, ξ0, η0 ≥ 0), considering that
we want to maximize the function, as follows:

1. The first half-step:

μ̄n = argmax
μ≥0

{− 1
2‖μ − μn‖2 − γLθ,δ(xn, x̂n, μ, ξn, ηn)

}

ξ̄n = argmax
ξ≥0

{− 1
2‖ξ − ξn‖2 − γLθ,δ(xn, x̂n, μ̄n, ξ, ηn)

}

η̄n = argmax
η≥0

{− 1
2‖η − ηn‖2 − γLθ,δ(xn, x̂n, μ̄n, ξ̄n, η)

}

x̄n = argmax
x∈X

{− 1
2‖x − xn‖2 + γLθ,δ(x, x̂n, μ̄n, ξ̄n, η̄n)

}

x̂ n = argmax
x̂∈X̂

{− 1
2‖x̂ − x̂n‖2 + γLθ,δ(xn, x̂, μ̄n, ξ̄n, η̄n)

}

(14.24)

2. The second half-step

μn+1 = argmax
μ≥0

{
− 1

2‖μ − μn‖2 − γLθ,δ(x̄n, x̂ n, μ, ξ̄n, η̄n)
}

ξn+1 = argmax
ξ≥0

{
− 1

2‖ξ − ξn‖2 − γLθ,δ(x̄n, x̂ n, μ̄n, ξ, η̄n)
}

ηn+1 = argmax
η≥0

{
− 1

2‖η − ηn‖2 − γLθ,δ(x̄n, x̂ n, μ̄n, ξ̄n, η)
}

xn+1 = argmax
x∈X

{
− 1

2‖x − xn‖2 + γLθ,δ(x, x̂ n, μ̄n, ξ̄n, η̄n)
}

x̂n+1 = argmax
x̂∈X̂

{− 1
2‖x̂ − x̂n‖2 + γLθ,δ(x̄n, x̂, μ̄n, ξ̄n, η̄n)

}

(14.25)

14.8 Numerical Illustration

Consider a two-person bargaining problem in a class of continuous-time controllable
Markov chains. Let us denote the disagreement cost that depends on the strategies
cl(il ,kl ) (l = 1, 2) for players 1 and 2 as d1(c1, c2) and d2(c1, c2) respectively, and the
solution for the bargaining problem as the point (u1, u2).

The process to solve the bargaining problem consists of two main steps, firstly to
find the disagreement point we define it as the Nash equilibrium point of the problem
[29]; while for the solution of the bargaining process we follow the models presented
by Nash and Kalai–Smorodinsky.

Let the states N1 = N2 = 6, and the number of actions M1 = M2 = 3. The indi-
vidual utility for each player is defined by
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U 1
(i, j |1)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

34 45 1 28 7 23
27 43 25 47 26 24
15 45 14 15 43 48
36 47 12 17 20 5
20 41 22 43 35 14
29 29 18 18 32 23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

U 2
(i, j |1)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

31 1 30 38 2 17
18 41 10 13 42 11
5 8 34 33 12 31
2 44 13 43 3 40
25 5 22 5 28 10
13 18 7 29 48 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

U 1
(i, j |2)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

30 44 14 47 25 31
44 24 45 37 11 30
24 25 12 20 32 22
22 25 44 50 12 33
38 12 36 33 27 22
24 5 44 45 37 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

U 2
(i, j |2)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

15 15 43 9 18 14
13 13 2 36 32 30
25 25 15 42 18 22
39 23 45 2 11 5
18 41 27 38 40 2
29 5 7 18 17 25

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

U 1
(i, j |3)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

28 27 48 8 16 27
43 47 33 24 22 28
21 37 19 28 15 42
24 29 24 3 50 42
42 49 46 33 31 42
50 42 51 45 13 11

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

U 2
(i, j |3)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

14 11 31 48 50 11
17 34 14 39 39 20
15 23 28 31 24 2
9 22 48 48 35 24
20 9 36 3 21 17
35 10 34 14 20 49

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The transition rate matrices for each player are defined as follows

q1
(i, j |1)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.5371 0.0444 0.2305 0.0946 0.0705 0.0970
0.0208 −0.5381 0.0294 0.0665 0.0471 0.3743
0.1179 0.0965 −0.6554 0.0939 0.1042 0.2429
0.1871 0.0965 0.1622 −0.5826 0.0285 0.1083
0.0825 0.1871 0.0671 0.0431 −0.4624 0.0827
0.0831 0.1685 0.1221 0.3425 0.0432 −0.7593

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

q1
(i, j |2)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.6112 0.1333 0.6916 0.2839 0.2114 0.2911
0.0624 −1.6142 0.0881 0.1996 0.1412 1.1228
0.3538 0.2894 −1.9662 0.2817 0.3127 0.7287
0.5614 0.2894 0.4867 −1.7477 0.0855 0.3248
0.2474 0.5614 0.2012 0.1292 −1.3873 0.2482
0.2492 0.5055 0.3662 1.0275 0.1295 −2.2780

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

q1
(i, j |3)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.5371 0.0444 0.2305 0.0946 0.0705 0.0970
0.0208 −0.5381 0.0294 0.0665 0.0471 0.3743
0.1179 0.0965 −0.6554 0.0939 0.1042 0.2429
0.1871 0.0965 0.1622 −0.5826 0.0285 0.1083
0.0825 0.1871 0.0671 0.0431 −0.4624 0.0827
0.0831 0.1685 0.1221 0.3425 0.0432 −0.7593

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦



362 K.K. Trejo and J.B. Clempner

q2
(i, j |1)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.8499 0.2201 0.3707 0.1271 0.0374 0.0947
0.3467 −0.6729 0.1271 0.0376 0.0970 0.0644
0.2831 0.0856 −0.6306 0.0706 0.0376 0.1537
0.0703 0.1577 0.1369 −0.8573 0.3673 0.1250
0.3727 0.0964 0.0944 0.1298 −0.8026 0.1092
0.1627 0.1095 0.1237 0.0754 0.4537 −0.9250

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

q2
(i, j |2)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.8499 0.2201 0.3707 0.1271 0.0374 0.0947
0.3467 −0.6729 0.1271 0.0376 0.0970 0.0644
0.2831 0.0856 −0.6306 0.0706 0.0376 0.1537
0.0703 0.1577 0.1369 −0.8573 0.3673 0.1250
0.3727 0.0964 0.0944 0.1298 −0.8026 0.1092
0.1627 0.1095 0.1237 0.0754 0.4537 −0.9250

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

q2
(i, j |3)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.1332 0.2934 0.4942 0.1694 0.0498 0.1263
0.4623 −0.8972 0.1694 0.0502 0.1294 0.0859
0.3774 0.1141 −0.8408 0.0942 0.0501 0.2050
0.0938 0.2102 0.1825 −1.1431 0.4898 0.1667
0.4970 0.1286 0.1258 0.1730 −1.0701 0.1456
0.2169 0.1460 0.1650 0.1005 0.6049 −1.2334

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

14.8.1 Computing the Disagreement Point

Given δ and γ and applying the extraproximal method we obtain the convergence
of the strategies for the disagreement point in terms of the variable c1(i1,k1) for the
player 1 (see Fig. 14.4) and the convergence of the strategies c2(i2,k2) for the player 2
(see Fig. 14.5).

c1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0517 0.0540 0.0523
0.0560 0.0605 0.0607
0.0542 0.0548 0.0514
0.0660 0.0672 0.0635
0.0332 0.0372 0.0385
0.0582 0.0679 0.0727

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

c2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0824 0.0766 0.0830
0.0669 0.0449 0.0584
0.0840 0.0736 0.0823
0.0407 0.0215 0.0325
0.0399 0.0564 0.0503
0.0371 0.0329 0.0366

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Following (14.6) the mixed strategies obtained for the players are as follows

d1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.3273 0.3416 0.3311
0.3160 0.3416 0.3424
0.3378 0.3416 0.3205
0.3354 0.3416 0.3230
0.3051 0.3416 0.3533
0.2926 0.3416 0.3658

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

d2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.3405 0.3166 0.3429
0.3933 0.2637 0.3429
0.3503 0.3068 0.3429
0.4295 0.2275 0.3429
0.2723 0.3847 0.3429
0.3484 0.3087 0.3429

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Fig. 14.4 Convergence of
the strategies for player 1 to
the disagreement point

Fig. 14.5 Convergence of
the strategies for player 2 to
the disagreement point

With the strategies calculated, the resulting utilities following (14.3), at the dis-
agreement point for each player dl(c1, c2), are as follows:

d1(c1, c2) = 905.6447 d2(c1, c2) = 704.2493
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Fig. 14.6 Convergence of
the strategies for player 1 to
the Nash solution

14.8.2 Computing the Nash Bargaining Solution

Given δ, γ , αl and applying the extraproximal method for the Nash bargaining
solution, we obtain the convergence of the strategies in terms of the variable c1(i1,k1)
for the player 1 (see Fig. 14.6) and the convergence of the strategies c2(i2,k2) for the
player 2 (see Fig. 14.7).

c1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0281 0.0677 0.0623
0.0010 0.0758 0.1003
0.0907 0.0686 0.0010
0.1115 0.0842 0.0010
0.0010 0.0466 0.0613
0.0010 0.0851 0.1127

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

c2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.1227 0.0350 0.0842
0.1100 0.0010 0.0592
0.1555 0.0010 0.0835
0.0607 0.0010 0.0329
0.0010 0.0946 0.0510
0.0663 0.0032 0.0371

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The mixed strategies obtained for the players are as follows

d1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.1778 0.4280 0.3942
0.0056 0.4280 0.5663
0.5658 0.4280 0.0062
0.5669 0.4280 0.0051
0.0092 0.4280 0.5628
0.0050 0.4280 0.5670

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

d2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.5073 0.1447 0.3479
0.6462 0.0059 0.3479
0.6479 0.0042 0.3479
0.6415 0.0106 0.3479
0.0068 0.6453 0.3479
0.6221 0.0300 0.3479

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

With the strategies calculated, the resulting utilities at theNash bargaining solution
for each player, are as follows:

u1(c1, c2) = 958.0281 u2(c1, c2) = 813.2879
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Fig. 14.7 Convergence of
the strategies for player 2 to
the Nash solution

14.8.3 Computing the Kalai–Smorodinsky Bargaining
Solution

Given δ, γ , αl and applying the extraproximal method for the Kalai–Smorodinsky
bargaining solution with the L1-norm, we obtain the convergence of the strategies in
terms of the variable c1(i1,k1) for the player 1 (see Fig. 14.8) and the convergence of
the strategies c2(i2,k2) for the player 2 (see Fig. 14.9).

c1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0010 0.0432 0.1139
0.0010 0.0484 0.1278
0.1156 0.0438 0.0010
0.1420 0.0537 0.0010
0.0010 0.0297 0.0782
0.0010 0.0543 0.1435

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

c2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.2061 0.0010 0.0349
0.1447 0.0010 0.0245
0.2044 0.0010 0.0346
0.0800 0.0010 0.0136
0.0010 0.1245 0.0211
0.0903 0.0010 0.0154

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The mixed strategies obtained for the players are as follows

d1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0063 0.2730 0.7207
0.0056 0.2730 0.7213
0.7207 0.2730 0.0062
0.7219 0.2730 0.0051
0.0092 0.2730 0.7178
0.0050 0.2730 0.7219

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

d2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.8518 0.0041 0.1441
0.8500 0.0059 0.1441
0.8517 0.0042 0.1441
0.8454 0.0106 0.1441
0.0068 0.8491 0.1441
0.8465 0.0094 0.1441

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Fig. 14.8 Convergence of
the strategies for player 1 to
the KS solution

Fig. 14.9 Convergence of
the strategies for player 2 to
the KS solution

With the strategies calculated, the resulting utilities at the Kalai–Smorodinsky
bargaining solution for each player are as follows:

u1(c1, c2) = 960.5554 u2(c1, c2) = 841.0831

Figure14.10 shows the straight line linking the utilities obtained at the disagree-
ment point and those obtained at the utopia point. We can also observe that the Nash
solution approaches this line while the Kalai–Smorodinsky solution is exactly on this
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Fig. 14.10 The bargaining
solution

line. The utilities at the utopia point for the bargaining problem are for each player
as follows:

a1(c1, c2) = 964.3472 a2(c1, c2) = 849.8365

14.9 Conclusions and Future Work

This chapter focused on a general class of bargaining game models restricted to
continuous-time, controllable and ergodicMarkov games.We examined the bargain-
ing approach from a theoretical perspective and provided a computational solution of
the bargaining game for the Nash and Kalai–Smorodinsky models. We encapsulated
both models, first focusing on some of the early results suggested in the literature,
and then extending the Nash and Kalai–Smorodinsky analysis to continuous-time
Markov games. For solving the problem we proposed a bargaining solver imple-
mented by an iterated procedure of a set of nonlinear equations implemented by the
Lagrange principle and including a regularization method to ensure convergence to
a unique equilibrium point. In particular, we studied the computational complexity
of equilibrium computation. We believe that our results form a theoretical basis for
further algorithm design and complexity analysis in bargaining games.

Future research can take anumber of directions. First, given the fact that bargaining
theory is relevant for and applicable to real life situations (corporate deals, labor
disputes and contracts, supply chain contracts, security games [10, 11, 13, 39,
40], etc.) it will be interesting to develop an application of these models. Since
we conceptualize the bargaining games as a special class of poly-linear games, we
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will develop new methods for computing the equilibrium point and improving the
regularization technique. Finally, we will propose several ways to generalize our
model.
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Chapter 15
H∞- Stabilization of a 3D Bipedal
Locomotion Under a Unilateral Constraint

Oscar Montano, Yury Orlov, Yannick Aoustin
and Christine Chevallereau

Abstract The applicability of theH∞ control technique to a fully actuated 3D biped
robot is addressed. In contrast to previous studies, this investigation contributes to the
study of robustness of bipedal locomotion while assuming an imperfect knowledge
of the restitution rule at the collision time instants in addition to external disturbance
forces applied during the single support phases. Performance issues are illustrated in
a numerical study performed with an emulator of the 32-DOF biped robot ROMEO,
of Aldebaran Robotics.

15.1 Introduction

Bipedal robots form a subclass of legged robots. Their design is naturally inspired
from the functional mobility of the human body. On the practical side, the study
of mechanical legged locomotion has been motivated by its potential use as means
of locomotion in rough terrains, but in particular, the interest arises from diverse
sociological and commercial interests, ranging from the desire to replace humans in
hazardous occupations (de-mining, nuclear power plant inspection, military inter-
ventions, etc.), to the restoration of motion in the disabled [36].

For practical implementation, good mechanical design and good modeling, play
a very important role in achieving good performance. However, in real world appli-
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cations bipedal robots are subject to many sources of uncertainty during walking;
these could include a push from a human, an unexpected gust of wind, geometric
perturbations of terrain height, or parametric uncertainties of non-modeled friction
forces [5]. For these reasons, the design of feedback control systems, capable of
attenuating the effect of these uncertainties, is critical to achieve the desired walking
gait.

For simplicity, the complete model of the biped robot considered in this work
consists of two parts: the differential equations describing the dynamics of the robot
during the single support phase (one foot swinging in the air, the other staying as a
pivot on the ground), and an impulse model of the contact event (the impact between
the swing leg and the ground, which is modeled as a contact between two rigid bodies
as in the work by [36]), thus considering the double support phase instantaneous.
Therefore, the complete model of the biped robot considered in this work is simpli-
fied as a hybrid system consisting of free-motion phases separated by impacts. The
study of hybrid dynamical systems has recently attracted a significant research inter-
est, basically due to the wide variety of applications and the complexity that arises
from the analysis of this type of systems (see, e.g. [7, 11], and references quoted
therein). Particularly, the disturbance attenuation problem for hybrid dynamical sys-
tems has been addressed by [10, 24], where impulsive control inputswere admitted to
counteract/compensate disturbances/uncertainties at time instants of instantaneous
changes of the underlying state. However, the drawbacks of these approaches are
(1) the complexity of finding a solution to the equations that allow the synthesis of
the control law, and (2) the physical implementation of impulsive control inputs is
impossible in many practical situations, e.g., while controlling walking biped robots.

In this regard, many authors have dealt with the problem of robustly controlling
the walking gait of biped robots: [29] presents an iterative approach to find Control
Lyapunov Functions, such that a mechanical system subject to impacts and friction
remains stable. In [6, 30], PD control laws and a torque-optimization method are
combined to increase the robustness against joint-torque disturbances. Other robust
control techniques, such as sliding mode control, have been designed for this kind of
systems (see e.g., the works by [25, 28]). While providing both finite-time conver-
gence to a desired reference trajectory and disturbance rejection, these approaches
also entail the well-known problem of chattering in the actuators. This further moti-
vates the study of robust control techniques such as the one presented in this work,
which attenuate the effect of disturbances while avoiding undesirable and harmful
effects on both the actuators, and the joints.

This chapter further develops the results presented in [23], studying the applica-
bility of the H∞ control technique (extended in [20] towards mechanical systems
operating under unilateral constraints) to the 32 degrees-of-freedom biped robot
ROMEO, of Aldebaran Robotics [32]. Results dealing with the orbital stabilization
of a simpler 2D, fully actuated biped can be found in [19]. In contrast to previous
studies, this investigation contributes to the study of robustness of bipedal locomo-
tion while assuming an imperfect knowledge of the restitution rule at the collision
time instants, in addition to external disturbance forces applied during the single
support phases.
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15.2 Notation

The notation used throughout this work is rather standard. The argument t+ is used to
denote the right-hand side value x(t+) of a trajectory x(t) at an impact time instant
t whereas x(t−) stands for the left-hand side value of the same; by default, x(t)
is reserved for x(t−), thus implying an underlying trajectory to be continuous on
the left. Vectors are represented by bold, lowercase letters, whereas matrices are
represented by bold, uppercase letters.

15.3 Background Materials

In this section, theH∞ control problem under unilateral constraints is stated, and suf-
ficient conditions for the existence of a solution are presented. Later on, the applica-
bility of these results to the biped robot of interest will be studied.

15.3.1 Problem Statement

Given a scalar unilateral constraint F(x1, t) ≥ 0, consider a nonlinear system, evolv-
ing within the above constraint, which is governed by continuous dynamics of the
form

ẋ1 = x2 (15.1)

ẋ2 = Φ(x1, x2, t) + Ψ 1(x1, x2, t)w + Ψ 2(x1, x2, t)u

z = h1(x1, x2, t) + k12(x1, x2, t)u (15.2)

beyond the surface F(x1, t) = 0 when the constraint is inactive, and by the algebraic
relations

x1(t+
i ) = x1(t−

i )

x2(t+
i ) = μ0(x1(ti ),x2(t

−
i ), ti ) + ω(x1(ti ), x2(t−

i ), ti )wi
d (15.3)

zdi = x2(t+
i ) (15.4)

at a priori unknown collision time instants t = ti , i = 1, 2, . . . , when the system
trajectory hits the surface F(x1, t) = 0. In the above relations, x� = [x�

1 , x�
2 ] ∈ R

2n

represents the state vector with components x1 ∈ R
n and x2 ∈ R

n; u ∈ R
n is the

control input of dimension n; w ∈ R
l and wi

d ∈ R
q collect exogenous signals affect-

ing the motion of the system (external forces, including impulsive ones, as well as
model imperfections). The variable z ∈ R

s represents a continuous-time component
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of the system output to be controlled. The discrete component zdi of this output is
pre-specified by the post-impact value x2(t). The overall system in the closed-loop
should be dissipative with respect to the output thus specified. Throughout, the func-
tions Φ, Ψ 1, Ψ 2, h1, k12, F , μ0, and ω are of appropriate dimensions, which are
continuously differentiable in their arguments and uniformly bounded in t . The ori-
gin is assumed to be an equilibrium point of the unforced system (15.1)–(15.10),
which is located beyond the unilateral constraint, i.e., F(0, t) �= 0, Φ(0, 0, t) = 0,
h1(0, 0, t) = 0, for all t and μ0(0, 0, 0) = 0.

Clearly, the above system (15.1)–(15.10) is an affine control system of the vector
relative degree [2, . . . , 2]�, and it governs a wide class of mechanical systems with
impacts. Since the control input u has the same dimension as that of the generalized
position x, the present investigation is confined to the fully actuated case, though it
could readily be extended to the over-actuated casewith a correct choice of the control
inputs [18]. The treatment in the underactuated case is also possible using the virtual
constraint approach [1, 36] whenever it is applicable (e.g., for the undegraduation
degree one similar to that of [21, 22]).

Admitting the above time-varying representation is particularly invoked to deal
with tracking problems where the plant description is given in terms of the state
deviation from the reference trajectory to track [4]. Therefore, if interpreted in terms
of mechanical systems, Eq. (15.1) describes the continuous dynamics in terms of the
position and velocity tracking errors (x1 and x2, respectively), before the underlying
system hits the reset surface F(x1, t) = 0, depending on the position error x1 only,
whilst the restitution law, given by Eq. (15.3), is a physical law for the instantaneous
change of the velocity error when the resetting surface is hit.

Consider a causal feedback controller

u = κ(x, t) (15.5)

with the function κ(x, t) of classC1 such that κ(0, t) = 0. Such a controller is said to
be a locally (globally) admissible controller if the undisturbed (w,wi

d = 0) closed-
loop system (15.1)–(15.10) is uniformly (globally) asymptotically stable.

TheH∞-control problem of interest consists in finding an admissible global con-
troller (if any exists) such that the L2-gain of the disturbed system (15.1)–(15.10) is
less than a certain attenuation level γ > 0, that is the inequality

∫ T

t0

‖z‖2dt +
NT∑

i=1

‖zdi ‖2 ≤

γ 2

[∫ T

t0

‖w‖2dt +
NT∑

i=1

‖wi
d‖2

]
+

N∑
j=0

β j (x(t−
j ), t j ) (15.6)

locally holds for some positive definite functions β j (x, t), j = 0, . . . , NT , for all
segments [t0, T ] and a natural NT such that tNT ≤ T < tNT +1, and for all piecewise
continuous disturbances w(t) and discrete ones wi

d, i = 1, 2, . . . . In turn, a locally
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admissible controller (15.5) is said to be a local solution of theH∞-control problem
if there exists a neighborhood U ∈ R

2n of the origin, validating inequality (15.6) for
some positive definite functions β j (x, t), j = 0, . . . , NT , for all segments [t0, T ] and
a natural NT such that tNT ≤ T < tNT +1, for all piecewise continuous disturbances
w(t) and discrete oneswi

d, i = 1, 2, . . . , for which the state trajectory of the closed-
loop system starting from an initial point (x(t0) = x0) ∈ U remains in U for all
t ∈ [t0, T ].

It is worth noticing that the above L2-gain definition is consistent with the notion
of dissipativity, introduced by [14, 37], and with the iISS notion [13]. It represents
a natural extension to hybrid systems (see, e.g. the works by [2, 16, 24, 38]). In
mechanical terms, for the disturbed case, even if the output z is not driven to zero,
the L2-gain of the system is still locally less than the specified value γ , so the output
will be bounded around zero and in consequence the state trajectories of the plant
will evolve around the trajectory to track. To facilitate the expositions the underlying
system, chosen for treatment, has been pre-specified with the post-impact velocity
value x2(t) in the discrete output (15.10) to be controlled. The general case of a
certain function κd(x2(t)) of the post-impact velocity value in the discrete output
(15.10) can be treated in a similar manner because the L2-gain inequality (15.6) is
flexible in the choice of positive definite functions βk(x, t), k = 0, . . . , NT .

15.3.2 NonlinearH∞-Control Synthesis Under Unilateral
Constraints

For later use, the continuous dynamics (15.1) are rewritten in the form

ẋ = f(x, t) + g1(x, t)w + g2(x, t)u (15.7)

whereas the restitution rule is represented as follows

x(t+
i ) = μ(x(t−

i ), ti ) + Ω(x(t−
i ), ti )wi

d, i = 1, 2, . . . (15.8)

withx� = [x�
1 , x�

2 ], f�(x, t)= [x�
2 ,Φ�(x, t)],g1�(x, t) = [0,Ψ �

1 (x, t)],g�
2 (x, t) =

[0,Ψ �
2 (x, t)], μ�(x, t) = [x�

1 ,μ�
0 (x, t)], and Ω�(x, t) = [0, ω(x, t)]. In combina-

tion with the output equations, which are repeated here for the sake of clarity

z = h1(x1, x2, t) + k12(x1, x2, t)u (15.9)

zdi = x2(t+
i ), (15.10)

the nonlinear system is completely described beyond and at the contact with the
unilateral constraint F(x, t). In order to simplify the synthesis to be developed
and to provide reasonable expressions for the controller design, the assumptions
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h1�k12 = 0, k12�k12 = I, which are standard in the literature (see, e.g., [26]) are
made. Relaxing these assumptions is indeed possible, but it would substantially com-
plicate the formulas to be worked out.

15.3.3 Non-local State-Space Solution

Below we list the hypotheses under which a solution to the problem in question is
derived. Given γ > 0, in a domain x ∈ B2n

δ , t ∈ R, where B2n
δ ∈ R

2n is a ball of
radius δ > 0, centered around the origin,

(H1) The norm of the matrix function ω is upper bounded by
√
2
2 γ , i.e.,

‖ω(x, t)‖ ≤
√
2

2
γ. (15.11)

(H2) there exist a smooth, positive definite, decrescent function V (x, t) and a posi-
tive definite function R(x) such that the Hamilton–Jacobi–Isaacs inequality

∂V

∂t
+ ∂V

∂x
(f(x, t) + g1(x, t)α1 + g2(x, t)α2) +

h1�h1 + α2
�α2 − γ 2α1

�α1 ≤ −R(x) (15.12)

holds with

α1 = 1

2γ 2
g�
1 (x, t)

(
∂V

∂x

)�
, α2 = −1

2
g�
2 (x, t)

(
∂V

∂x

)�

(H3) Hypotheses H1 is satisfied with the function V (x, t) which decreases along
the direction μ in the sense that the inequality

V (x, t) ≥ V (μ(x), t) (15.13)

holds in the domain of V .

The main result of the present work is as follows.

Theorem 15.1 Consider system (15.1)–(15.10) subject to (15.13). Given γ > 0,
suppose Hypotheses (H1) and (H2) are satisfied in a domain {x ∈ B2n

δ , t ∈ R}. Then,
the closed-loop system (15.1)–(15.10), driven by the controller

u = α2(x, t), (15.14)

locally possesses a L2-gain less than γ . Once Hypothesis (H3) is satisfied as well,
the function V (x, t) constitutes a Lyapunov function of the disturbance-free closed-
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loop system (15.1)–(15.10), (15.14) the uniform asymptotic stability of which is thus
additionally guaranteed.

Proof The proof of Theorem15.1 is preceded by an instrumental lemma which
extends the powerful Lyapunov approach to impact systems. The following result
specifies [9, Theorem 2.4] to the present case with x1 = x and x2 = t .

Lemma 15.1 Consider the unforced (u = 0) disturbance-free (w = 0, wd
i = 0, i =

1, 2, . . . ) system (15.7), (15.8) with the assumptions above. Assume that there exists
a positive definite decrescent function V (x, t) such that its time derivative, computed
along (15.7), is negative definite whereas V (x, t) ≥ V (μ(x,t), t) for all t ∈ R and all
x ∈ R

2n such that F(x1, t) = 0. Then the system is uniformly asymptotically stable.

Since the proof follows the same line of reasoning as that in the book by [26]
for the impact-free case here we provide only a sketch. Similar to the proof of
[26, Theorem 7.1], let us consider the function V (x, t) whose time derivative, com-
puted along the disturbed closed-loop system (15.1)–(15.10) between collision time
instants t ∈ (tk, tk+1), k = 0, 1, . . . , is estimated as follows [26, p. 138]:

dV

dt
≤ −‖z‖2 + γ 2‖w‖2 − R(x). (15.15)

Then integrating (15.15) from tk to tk+1, k = 0, 1, . . . , yields

∫ tk+1

tk

[γ 2‖w‖2 − ‖z‖2]dt ≥
∫ tk+1

tk

R(x(t))dt +
∫ tk+1

tk

dV (x(t), t)

dt
dt > 0. (15.16)

Skipping positive terms on the right-hand side of (15.16), it follows that

∫ T

t0

(γ 2‖w‖2 − ‖z‖2)dt ≥ V (x(T ), T )

+
NT∑
i=1

[V (x(t−
i ), ti ) − V (x(t+

i ), ti )] − V (x(t0), t0). (15.17)

Since the function V is smooth by Hypothesis (H2), the following relation

|V (x(t−
i ), ti ) − V (x(t+

i ), ti )| ≤ LV
i |x(t−

i ) − x(t+
i )| (15.18)

holds true with LV
i > 0 being a local Lipschitz constant of V , in the ball of radius

‖x(t+
i )‖, centered around x(t−

i ). Relations (15.17) and (15.18), coupled together,
result in
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∫ T

t0

(γ 2‖w‖2 − ‖z‖2)dt ≥ −
NT∑
i=1

[2(LV
i )‖x(t−

i )‖ − V (x(t0), t0) (15.19)

Apart from this, the inequality

NT∑
i=1

‖zdi ‖2 =
NT∑

i=1

‖x2(t+
i )‖2 ≤

NT∑
i=1

[2‖μ0‖2]

+ 2
NT∑
i=1

[‖ωwi
d‖2] ≤ γ 2

NT∑
i=1

‖wi
d‖2 +

NT∑
i=1

[2‖μ0‖2] (15.20)

is ensured by H1. Thus, combining (15.19)–(15.20), one derives

∫ T

t0

‖z‖2dt +
NT∑

i=1

‖zdi ‖2 ≤ V (x(t0), t0) +
NT∑
i=1

[2‖μ0‖2]

+ γ 2

[∫ T

t0

‖w‖2dt +
NT∑

i=1

‖wi
d‖2

]
+

NT∑
i=1

[(2LV
i )‖x(t−

i )‖ (15.21)

i.e., the disturbance attenuation inequality (15.6) is established with

β0(x(t0), t0) = V (x(t0), t0),

βi (x(ti ), ti ) = (2LV
i )‖x(t−

i )‖ + 2‖μ0(x(t−
i ), ti )‖2 (15.22)

with i = 1, . . . , N .

To complete the proof it remains to establish the asymptotic stability of the
undisturbed version of the closed-loop system (15.1)–(15.10), (15.14). Indeed,
the negative definiteness (15.15) of the time derivative of the Lyapunov function
V (x, t) between the collision time instants, coupled to Hypothesis (H3), ensures
that Lemma15.1 is applicable to the undisturbed version of the closed-loop system
(15.1)–(15.10), (15.14). By applying Lemma15.1, the required asymptotic stability
is thus validated. �

15.3.4 Local State-Space Solution

To present a local solution to the problem in question the underlying system is
linearized to

ẋ =A(t)x + B1(t)w + B2(t)u, (15.23)

z = C1(t)x + D12(t)u, (15.24)
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within impact-free time intervals (ti−1, ti ) where t0 is the initial time instant and

ti , i = 1, 2, . . . are the collision time instants, whereas A(t) = ∂f
∂x

∣∣∣∣
x=0

, B1(t) =

g1(0, t), B2(t) = g2(0, t), C(t) = ∂h
∂x

∣∣∣∣
x=0

, D12(t) = k12(0, t).

By the time-varying strict bounded real lemma [27, p. 46], the following condition
is necessary and sufficient for the linear H∞ control problem (15.23), (15.24) to
possess a solution: given γ > 0,

C) there exists a positive constant ε0 such that the differential Riccati equation

− Ṗε(t) = Pε(t)A(t) + A�(t)Pε(t) + C1
�(t)C1(t)

+ Pε(t)[ 1

γ 2
B1B1

� − B2B2
�](t)Pε(t) + εI (15.25)

has a uniformly bounded symmetric positive definite solution Pε(t) for each
ε ∈ (0, ε0);

As shown below, this condition, if coupled to Hypothesis H1 and a certain
monotonicity condition, is also sufficient for a local solution to the nonlinear H∞
control problem to exist under unilateral constraints.

Theorem 15.2 Let condition C be satisfied with some γ > 0. Then Hypothesis H2
hold locally around the equilibrium (x = 0) of the nonlinear system (15.1)–(15.10)
with

V (x, t) = x�Pε(t)x, R(x) = ε

2
‖x‖2 (15.26)

and the closed-loop system driven by the state feedback

u = −g2(x, t)�Pε(t)x (15.27)

locally possesses a L2-gain less than γ provided that Hypothesis H1 holds as well.
If in addition, Hypothesis H3 is satisfied with the quadratic function V (x, t), given
in (15.26), then the disturbance-free closed-loop system (15.1)–(15.10), (15.27) is
uniformly asymptotically stable.

Proof Due to [27, Theorem 24], Hypothesis H2 locally holds with (15.26). Then by
applying Theorem15.1, the validity of Theorem15.2 is established.

15.3.5 Remarks on the Synthesis of Periodic Systems

For the periodic tracking of period T with periodic impact instants ti+1 = ti + T, i =
1, 2, . . ., Theorem15.2 admits a time-periodic synthesis (15.27) which is based on
an appropriate periodic solution Pε(t) of the periodic differential Riccati equation
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(15.25). It should be noted that Pε(t
+
i+1) = Pε(t

+
i ), due to the periodicity, and inequal-

ity (15.13) of H3 is then specified to the boundary condition

x�Pε(t
−
2 )x ≥ μ�(x, t+

1 ))Pε(t
+
1 )μ(x, t+

1 )), (15.28)

on the Riccati equation (15.25).
This result will be used in the following section to robustly track a reference

trajectory for a fully actuated 3D biped robot.

15.4 Robust Trajectory Tracking of a 3D Biped Robot

In this section, the results on H∞ control of mechanical systems under unilateral
constraints are implemented on the 32-DOF biped robot ROMEO, from Aldebaran
Robotics. In order to complywith all the conditions for the existence of the controller,
an on-line trajectory adaptation method is introduced so as to ensure asymptotic
tracking of the biped dynamics to the desired walking gait.

15.4.1 Model of a Biped with Feet

The bipedal robot considered in this section is walking on a rigid and horizontal
surface. It consists of the 32-DOF robot Romeo, of Aldebaran Robotics, depicted in
Fig. 15.1. Similar to the planar biped form the previous section, the walking gait takes
place in the sagittal plane and is composed of single support phases and impacts.

15.4.2 Dynamic Model in Single Support

The configuration of the biped robot in single support can be described only by the
vector q = (q0, q1, . . . , q32)

�. We use the modified Denavit–Hartenberg notation
[15] to define the frame position for each joint (see Fig. 15.2). To define the geometric
structure of the biped we assume that the link 0 (stance foot) is the base of the
bipedal robot while the link 12 (swing foot) is the terminal link. Considering the
torso, head and arms, one obtains a tree structure. To take into account explicitly the
contact with the ground, we have to add six more variables to describe the position
and orientation of the frame 0 with respect to a fixed Galilean frame Rg . Thus, we
can define the position, velocity, and acceleration vectors, X = (X0

�,α0
�,q�)�,

V = (0V�
0 ,0 ω�

0 , q̇�)�, and V̇ = (0V̇�
0 ,0 ω̇�

0 , q̈�)�. X0 and α0 are the position and
orientation variables of frame R0, while 0V0 and 0ω0 are the linear and angular
velocities of R0, with respect to the Galilean frame. Therefore, the complete dynamic
model of the biped can be written as follows:
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Fig. 15.1 32-DOF Robot
Romeo, of Aldebaran
Robotics

De(X)V̇ + Ce(X,V) + Ge(X) = Deττ + J1�R1 + J2�R2 + Dww1, (15.29)

with the complementarity condition

0 ≤ F(X) ⊥ R2 ≥ 0 (15.30)

and the constraint equation
J1V̇ = 0, (15.31)

where De is the symmetric, positive definite 38 × 38 inertia matrix; Deτ and Dw are
38 × 32 constant matrices, composed of zeros and ones; τ = (τ1, . . . , τ32)

� is the
32 × 1 vector of joint torques; termsCe(X,V), andGe(X) are the 38 × 1 vector of the
centrifugal and Coriolis forces, and the 38 × 1 vector of gravity forces, respectively;
w1 is the 32 × 1 vector of external disturbances; R1 and R2 represent the wrench
of reaction forces on foot 1 and foot 2, respectively, whereas J1 and J2 are 6 ×
38 Jacobian matrices converting these efforts to the corresponding joint torques.
Equations (15.29), (15.30), in addition to a restitution law to be defined later, form
a Lagrangian Complementarity System.

Due to the difficulty of the analytic calculation of the dynamic model (15.29), it
is numerically computed by means of the Newton–Euler algorithm [17], which is
based on recursive calculations associated with the choice of the reference frames
from Fig. 15.1b. Then, matrices De, Ce(X,V) and Ge(X) can be easily and rapidly
computed using the method of [35]. The same algorithm also allows to find the
ground reaction forces.
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Fig. 15.2 Frames placement for the main limbs; the remaining 6 frames not appearing belong to
the hands (2 frames) and the neck and head (4 frames), thus completing the 32 degrees of freedom.
The zero frame R0 is attached to the left foot
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In the single support phase, considering a flat foot contact of the support foot with
the ground, and assuming no take off, no sliding and no rotation of the support foot,
the model (15.29)–(15.31) can be reduced to:

D(q)q̈ + H(q, q̇) = τ + w1 (15.32)

where τ = (τ 1, . . . , τ 32)
� is the 32 × 1 vector of joint torques. The termH(q, q̇) is

the 32 × 1 vector of the centrifugal, Coriolis and gravity forces.
The above-mentioned assumptions are verified during the numerical study using

model (15.29). If at least one of these conditions are not satisfied, the conditions to
construct (15.32) are not met and thus it is not valid. Thus, the reference trajectories
are designed taking these conditions as restrictions.

15.4.3 Impact Model

The impact is assumed to be inelastic with complete surface of the foot sole touching
the ground. This means that the velocity of the swing foot impacting the ground is
zero after impact. The double support phase is instantaneous and it can be modeled
through passive impact equations. An impact occurs at a time t = TI when the swing
leg touches the ground.

Since the impact is assumed to be passive, absolutely inelastic, and that the legs
do not slip [33], the following equations:

J1V− = 0 (15.33)

J2V+ = 0 (15.34)

hold. Thismeans that the feet perfectly stick on the ground after the shock, thus avoid-
ing multiple impacts. Given these conditions, the ground reactions can be viewed
as impulsive forces. The algebraic equations, allowing one to compute the jumps of
the velocities, can be obtained through integration of the dynamic equations of the
motion, taking into account the ground reactions during an infinitesimal time interval
from T −

I to T +
I around an instantaneous impact.

The impact is assumed to be with complete surface of the foot sole touching
the ground. This means that the velocity of the swing foot impacting the ground
is zero after impact. After an impact, the right foot (previous stance foot) takes off
the ground, so the vertical component of the velocity of the taking-off foot must be
directed upwards right after an impact and the impulsive ground reaction in this foot
equals zeros. Thus, the impact dynamic model can be represented as follows [33]:

V+ = (I − D−1
e J�

2 (J2D−1
e J�

2 )−1J2)V− + wd
ei

V+ = φe(X)V− + wd
ei (15.35)
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where V− is the velocity of the robot before the impact, and V+ is the velocity
after the impact; φe(X) represents a restitution law that determines the relations
between the velocities before, and after the impacts; X is the configuration of the
robot at the impact. The additive termwd

ei is introduced to account for inadequacies in
this restitution law. Thus, Eq. (15.35) renders the complementarity system (15.29)–
(15.34) complete.

Considering that the support foot velocity is zero before the impact, and the swing
foot velocity is zero after the impact, and combining (15.33)–(15.35), it is possible
to obtain the following expression:

q̇+ = φ(q)q̇− + wd
i (15.36)

Also, considering the reference frame x0, y0, z0 shown in Fig. 15.2, and since we
are assuming flat foot contact with the ground, the time-invariant unilateral constraint
F0(q) ≥ 0 is determined by the height of the swing foot’s sole.

Remark 15.1 It is important to remark at this point, that if all the assumptions men-
tioned above are met, the so-called complementarity system [12] (15.29), (15.35),
subject to the unilateral constraint (15.30), is simplified to the form equations (15.32),
(15.36), which define a hybrid system that can be controlled using the methodology
developed in this work. For the latter, the unilateral constraint can be defined as
F(q), which represents the height of swing foot, as a function of the generalized
coordinates of the implicit-contact model (15.32).

15.4.4 Motion Planning

Since a walking biped gait is a periodical process, the objective is to design a cyclic
gait. A complete walking cycle is composed of two phases: a single-support phase,
and an instantaneous support phase, which is modeled through passive impact equa-
tions. The single support phase has a duration of 0.31 s, and it begins with one foot
which stays on the ground while the other foot swings from the rear to the front. The
double support phase is assumed instantaneous. This means that when the swing
leg touches the ground the stance leg takes off. The reference trajectories, allowing
a symmetric step, are obtained by an off-line optimization, minimizing a Sthenic
criteria, as presented in the work of [33]. The restitution law during the impact phase
is given by:

q̇r (t+
k ) = φ(qr(tk))q̇r (t−

k ), k = 1, 2, . . . . (15.37)
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15.4.5 Pre-feedback Design

Our objective is to design a pre-feedback controller of the form

τ = D(q̈r − u) + H (15.38)

that imposes on the undisturbed biped motion desired stability properties around qr

while also locally attenuating the effect of the disturbances. Thus, the controller to
be constructed consists of the feedback linearizing terms of (15.38) subject to u = 0,
which are responsible for the trajectory compensation, and a disturbance attenuator
u, internally stabilizing the closed-loop system around the desired trajectory. In what
follows, we confine our research to the trajectory tracking control problem where
the output to be controlled is given by

z =
⎡
⎣ 0

ρp(qr − q)

ρv(q̇r − q̇)

⎤
⎦ +

⎡
⎣ I
0
0

⎤
⎦u, zd = qr(t+

k ) − q(t+
k ) (15.39)

with positive weight coefficients ρp, ρv.
Now, let us introduce the state deviation vector x = (x1, x2)�, where x1(t) =

qr(t) − q(t) is the position deviation from the desired trajectory, and x2(t) = q̇r (t) −
q̇(t) is the velocity deviation from the desired velocity.

Then, rewriting the state equations (15.32), (15.39) in terms of the errors x1 and
x2, we obtain an error system in the form (15.1)–(15.10), being specified with

f(x, t) =
[
x2
0

]
, g1(x, t) =

[
0

D−1(qr − x1)

]
, (15.40)

g2(x, t) =
[
0
I

]
, h(x) =

⎡
⎣ 0

ρpx1
ρvx2

⎤
⎦ , k12(x) =

⎡
⎣ I
0
0

⎤
⎦ , (15.41)

μ(x, t) =
[

x1
φ(qr)q̇r − φ(qr − x1)(q̇r − x2)

]
, (15.42)

ω(x, t) = −I (15.43)

where as a matter of fact, the zero symbols stand for zero matrices and I for identity
matrices of appropriate dimensions.
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15.4.6 Hybrid Error Dynamics

The transitions occur in the error dynamics according to the following scenarios:

(T1) The reference trajectory reaches its predefined impact time instant t = t k, k =
1, 2, . . .when it hits the unilateral constraint whereas the plant remains beyond
this constraint, that is, F0(qr(t k)) = 0, F0(x1(t k) + qr(t k)) �= 0;

(T2) The plant hits the unilateral constraint at t = t j , j = 1, 2, . . . while the refer-
ence trajectory is beyond this constraint, that is, F0(qr(t j )) �= 0, F0(x1(t j ) +
qr(t j )) = 0;

(T3) Both the reference trajectory and the plant hits the unilateral constraint at the
same time instant t = t l, l = 1, 2, . . . (what can deliberately be enforced by
modifying the pre-specified reference trajectory on-line), that is, F0(qr(t l)) =
0, F0(x1(t l) + qr(t l)) = 0.

These scenarios are illustrated in Fig. 15.3. Transition errors are then represented
as follows.

Scenario T1:

x1(t k+)= x1(t k−)

x2(t k+) =μ1(x(t k−), t k) + wd
k , (15.44)

provided that F0(qr(t k)) = 0 and F0(x1(t k) + qr(t k)) �= 0, k = 1, 2, . . .;
Scenario T2:

x1(t j+)= x1(t j−)

x2(t j+) = μ2(x(t j−), t j ) + wd
j , (15.45)

Fig. 15.3 The three different scenarios for the transitions in the error dynamics
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provided that F0(qr(t j )) �= 0 and F0(x1(t j ) + qr(t j )) = 0, j = 1, 2, . . .;
Scenario T3:

x1(t l+)= x1(t l−)

x2(t l+) = μ3(x(t l−), t l) + wd
l , l = 1, 2, . . . (15.46)

provided that F0(qr(t l)) = 0 and F0(x1(t l) + qr(t l)) = 0, l = 1, 2, . . .

where wd
k , w

d
j , w

d
l are discrete perturbations, counting for restitution inadequacies,

and functions μ1, μ2, and μ3 are given by

μ1(x, t) = x2 + [I − φ(qr(t))]q̇r (t−) (15.47)

μ2(x, t) = φ(x1 + qr(t))[x2 + q̇r (t−)] − q̇r (t−) (15.48)

μ3(x, t) = φ(x1 + qr(t)[x2 + q̇r (t−)] − φ(qr(t))q̇r (t−). (15.49)

To put the previous equations into the form (15.3), it suffices to set

F(x, t) = F0(x1 + qr(t)), ω(x, t) = I, (15.50)

and specify the function μ0(x,t) by means of

μ0(x,t) =
⎧⎨
⎩

μ1(x, t) if F0(qr(t)) = 0, F0(x1 + qr) �= 0
μ2(x, t) if F0(qr(t)) �= 0, F0(x1 + qr) = 0
μ3(x, t) if F0(qr(t)) = 0, F0(x1 + qr) = 0.

(15.51)

Clearly, the functionsμ0(x,t),ω(x, t), F(x, t), thus specified, meet the assumptions,
imposed on the generic system (15.1)–(15.10) to be twice continuously differentiable
in the state domain for all t , and to be piece wise continuous, and uniformly bounded
in t , for all state variables x in some neighborhood around the origin.

15.4.7 State Feedback H∞ Synthesis Using Trajectory
Adaptation

To respect Condition C of Theorem15.2 for the error system (15.1)–(15.10), the
controlled output (15.39) is specified with ρp = 3500 and ρv = 500, and then,
following the standard H∞ design procedure (see, e.g., [27, Sect. 6.2.1]), the dis-
turbance attenuation level and the perturbation parameter are set to γ = 200 and
ε = 0.01 to ensure an appropriate solvability of the perturbed differential Riccati
equation (15.25), subject to the boundary condition (15.28). Next, hypothesis H1 of
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Theorem15.2 is straightforwardly verified with γ , thus specified, and with ω, being
an identity matrix. Finally, to comply with hypothesis H3 of Theorem15.2 to be
verified at the impact time instants the previously defined reference trajectory is
adapted on-line in such a manner that the state error dynamics possess no jumps.
Thus, inequality (15.13) becomes redundant for the adapted trajectory because only
trivial transitions with μ(x,t) = 0 are feasible.

For hybrid systems with state-triggered jumps, the jump times of the plant and the
reference trajectory are in general not coinciding. During the time interval caused by
this jump-time mismatch, the tracking error is large, even in the undisturbed case.
Since this behavior also occurs for arbitrarily small initial errors, the error dynamic
displays unstable behavior in the sense of Lyapunov. This behavior is known in
the literature as “peaking”. It is expected to occur in all hybrid systems with state-
triggered jumps when considering tracking or observer design problems [3], and
imposes a difficulty in guaranteeing that the norm of the tracking error converges to
zero. In order to achieve synchronization (Scenario T3 from the previous section) in
our biped application, the reference trajectory is adapted, as illustrated in Fig. 15.4 for
the first joint q1. Provided that the impact is detectable (e.g., by using a force or touch
sensor) it happens that either the reference trajectory hits the constraint before the
plant does, or the plant hits the constraint before the reference trajectory does. In the
former scenario, the reference trajectory is continuously extrapolated until the plant

Fig. 15.4 Reference velocity adaptation for the first joint, with an impact at t l = 0.5s
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collision occurs, whereas in the latter scenario, the reference trajectory is restarted
on-line once the plant collision is detected. Either way, both the plant trajectory and
the adapted reference trajectory exhibit impacts at the same time instants. Before
the collision, the nominal reference trajectory and the adapted one, are forced to
be equivalent by the adaptation proposed. The position and velocity tracking errors
are measured, and once the impact of the plant is detected, the adapted trajectory is
updated on-line in such a manner that the new post-impact error, x+

21 in Fig. 15.4,
coincides with the error measured before the impact (x21(t l−) in Fig. 15.4), thereby
rendering the evolution of the error to exhibit no jump, so as to ensure a smooth
control action. Following the idea of [8], a new polynomial in terms of the tracking
error is defined for the adapted trajectory, that starts from this imposed condition,
and will join the nominal reference trajectory in the middle of the step with the same
velocity, andwill continue to be the same until the end of the step.While the reference
trajectory is recalculated after the impact, the perturbed differential Riccati equation
(15.25) is also updated, and its corresponding solution is recomputed on-line.

15.4.8 Numerical Study

To illustrate the performance issues of the developed stable bipedal gait synthesis,
numerical simulationswere performed for themodel of a laboratory prototype,whose
parameters were drawn from the Aldebaran’s ROMEO documentation. The contact
constraints (no takeoff, no rotation, andno slidingduring the single support phase) are
verified on-line to confirm the validity of (15.32), (15.36). Thewell-known constraint
complementarity-based approach [31] is used to simulate the biped contact with the
ground, using a Matlab emulator. The latter approach belongs to the family of time-
stepping approaches and it is often invoked for biped dynamics simulations (see,
e.g., the works by [34, 39]).

First, the undisturbed-case results are presented,1 where the plant initial conditions
deviate 5% from the reference gait’s initial conditions. The control law calculation
time averaged at 1.5ms. As predicted by the theory, Fig. 15.5 depicts the Lyapunov
function V (x, t), decreasing smoothly and asymptotically towards zero, illustrating
that no peaking phenomena is present, thanks to the trajectory adaptation (Figs. 15.6
and 15.7).

As a next step, a persistent disturbance of 10 sin(t)Nm was applied to the hip,
while the velocities after the impact are deviated 5% from their nominal values
(given by (15.36)), thus considering disturbances on both the single support and
impact phases. Six joints among the 32 were selected to clearly illustrate the effect

1Simulation video available at https://youtu.be/vzh01Vh-RcI.

https://youtu.be/vzh01Vh-RcI
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Fig. 15.5 Lyapunov function for the undisturbed system, with nonzero initial conditions

Fig. 15.6 Zero moment point locations for both feet during the disturbance-free walking gait. The
dashed lines represent the feet geometrical limits and the ZMP always rests inside of them, thus
illustrating no rotation of the support foot at each step
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Fig. 15.7 Feet heights for 6 steps for Romeo, representing a stable motion. P1–P4 represent the
heights of the corners of each foot

of this disturbance (both ankles, knees, and hip joints). This is depicted in Fig. 15.8,
where the error is small and bounded, and the robot maintains a stable walking gait.
The torques for these joints are shown in Fig. 15.9, where they stay between the
boundaries of ±150Nm. Despite the disturbances, good performance of the closed-
loop error dynamics, driven by the proposed nonlinear H∞ state feedback, is still
achieved.

Finally, the performance of the H∞ controller was compared against the perfor-
mance of a PD controller. In order to do a fair comparison, the same pre-feedback
(15.38) was used, and just the disturbance attenuator (15.27) was replaced by the PD
controller u = −Kpx1 − Kvx2, with the constant matrices [Kp,Kv] = B�

2 Pε where
Pε is the solution to the algebraic version of the Riccati equation (15.25) with ˙Pε = 0.

The comparison results with the time-varying disturbance force 10 sin(t) + 10N,
applied to the hip are shown in Fig. 15.10, where it can be seen that after 6.13 s, the
cumulative position tracking error, generated by the developed nonlinear periodic
H∞ tracking controller, is approximately 26% less than that generated by the PD
controller. Thus, a better performance of the proposed synthesis is concluded in
comparison to the standard linearH∞ PD design.
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Fig. 15.10 Cumulative error comparison of the nonlinearH∞ controller (dashed lines) versus the
linear H∞ PD controller (solid lines)

15.5 Conclusions

In this chapter, sufficient conditions for a local solution to the H∞ state feedback
tracking problem to exist, are presented in terms of the appropriate solvability of an
independent inequality on a discrete disturbance factor that occurs in the restitution
rule, and two coupled inequalities, involving a Hamilton–Jacobi–Isaacs inequality.
The former inequality ensures that the closed-loop impulse dynamics (when the state
trajectory hits the unilateral constraint) are ISSwhereas the latter inequalities, arising
in the continuous-time state feedback, should impose the desired iISS property on
the continuous closed-loop dynamics between impacts.

The effectiveness of this synthesis procedure, based on solving a disturbed dif-
ferential Riccati equation, corresponding to the linearized system, is supported by
a numerical study, made for the state feedback design of a stable walking gait of a
32-DOF fully actuated biped robot. The desired disturbance attenuation is satisfac-
torily achieved under external disturbances during the free-motion phase, and in the
presence of uncertainty in the transition phase.
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Chapter 16
Event-Triggered Sliding Mode Control
Strategies for a Class of Nonlinear Uncertain
Systems

Antonella Ferrara and Michele Cucuzzella

Abstract This chapter presents novel Sliding Mode Control (SMC) strategies of
Event-Triggered (ET) type for a class of nonlinear systems affected by uncertainties
and external disturbances. By virtue of its ET nature, the proposed control strategies
are particularly appropriate for Networked Control Systems (NCSs), i.e., feedback
systems including communication networks. The objective of the proposed control
schemes is indeed to reduce the number of data transmissions over the communication
network, in order to avoid problems typically due to the network congestion such
as jitter and packet loss. In particular, an ET-SMC scheme and an ET Second Order
SMC (ET-SOSMC) scheme are designed for a class of nonlinear uncertain NCSs,
guaranteeing satisfactory performance of the controlled system even in presence of
delayed transmissions. The proposed control schemes are theoretically analyzed in
this chapter, showing their capability of enforcing the robust ultimate boundedness
of the sliding variable associated with the controlled system, and also of its first time
derivative in case of ET-SOSMC. Moreover, in order to guarantee the avoidance of
the notorious Zeno behaviour, the existence of a lower bound for the time elapsed
between consecutive triggering events is proven.

16.1 Introduction

Sliding Mode Control (SMC) is considered a powerful strategy, able to guaran-
tee satisfactory performance in terms of robustness of the controlled system, even
in the presence of unavoidable modelling uncertainties and external disturbances
[27, 57–59]. The same robustness property holds for Second Order SMC (SOSMC)
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methodology [4–8, 25, 26, 34, 40, 52, 55], in which not only the sliding variable, but
also its first time derivative are steered to zero in a finite time. This is confirmed by the
numerous applications described in the literature (see, for instance, [16–18, 21–23,
42, 56]). Moreover, by virtue of its low complexity, SMC methodology represents
a very easy to implement solution adequate also for Networked Control Systems
(NCSs), i.e., feedback systems including communication networks [1, 36, 39, 47,
60, 62].

In Networked Control Systems (NCSs), critical problems such as jitter, packet
loss and delayed transmissions can occur specially when the network is congested
[15, 48, 51], thereby determining the worsening of the performance of the controlled
system. For these reasons, the need of designing robust control schemes able to reduce
data transmissions over the network, while guaranteeing satisfactory performance of
the controlled system even in the presence of uncertainties and delayed transmissions
becomes mandatory.

In the literature, a methodology which is very appreciated in designing control
schemes capable of reducing data transmission effort over communication networks
is the so-called Event-Triggered (ET) control [3, 37, 38, 44, 49, 53, 54, 61]. Dif-
ferently from traditional time-triggered control implementation, where periodic data
transmissions occur, ET control schemes enable the communication between the
plant and the controller (feedback path), and between the controller and the actuator
(direct path) only when some triggering condition is satisfied (or violated depend-
ing on the adopted logic). For this reason the ET control approach can significantly
reduce the number of data transmissions, avoiding the congestion of the network
and its possible unavailability. Obviously, there exists a trade-off between the perfor-
mance of the controlled system and the communication rate [24]. However, in spite
of aperiodic data transmissions, satisfactory stability properties of the controlled sys-
tem have been studied in the literature. Specifically, in [53], it was proven that in case
of nonlinear systems, relying on threshold-based ET algorithm, the Input-to-State
Stability of the controlled system can be guaranteed by ensuring a certain decrease
in a suitable Lyapunov function.

Recently, in the literature, the basic ET approach has been developed so as to
take into account the knowledge of the nominal model of the plant. This has given
rise to the so-called Model-Based ET (MB-ET) control [35, 50]. This methodology
has been also exploited together with SMC, and Model Predictive Control (MPC),
[28, 32, 41], even in case of Mixed Logical Dynamical (MLD) systems [29–31].
In particular, the use of SMC in conjunction with ET implementation is justified by
the necessity of robustness to face modelling uncertainties and external disturbances
which can naturally affect the system [10–12, 19, 20].

In the present chapter, an ET-SMC scheme and an ET-SOSMC scheme are pre-
sented for nonlinear uncertain systems including communication networks that can
be unavailable. The proposed ET-SMC strategy is based on a triggering condition
that depends on the sliding variable associated with the controlled system and on
the size of a pre-specified boundary layer of the sliding manifold. The proposed
control scheme is theoretically analyzed in the chapter, proving that the sliding vari-
able is ultimate bounded in the desired boundary layer, even in presence of delayed
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transmissions. The ET-SOSMC scheme is based on two triggering conditions and
two control laws that depend not only on the sliding variable, but also on its first time
derivative. The stability properties of this control strategy are theoretically analyzed
proving that the sliding variable and its first time derivative are ultimately bounded
in a desired vicinity of the origin, even in presence of delayed transmissions. These
results imply the ultimate boundedness of the state of the original uncertain nonlinear
system as well. Moreover, in order to avoid the notorious Zeno behaviour [2, 43],
the existence of a lower bound for the time elapsed between consecutive triggering
events is proven.

The present chapter is organized as follows. In Sect. 16.2.1, a first problem for-
mulation is presented. The proposed ET-SMC strategy is described in Sect. 16.2.2,
while in Sect. 16.2.3, the stability properties of the control scheme are theoreti-
cally analyzed. In order to demonstrate the efficiency of the proposal, an illustrative
example is provided in Sect. 16.2.4. In Sect. 16.3.1, a second problem formulation
is introduced, and in Sect. 16.3.2 the proposed ET-SOSMC strategy is described.
The stability analysis of the control scheme is formally discussed in Sect. 16.3.3,
and an illustrative example is provided in Sect. 16.3.4. Some conclusions are finally
gathered in Sect. 16.4.

16.2 Event-Triggered Sliding Mode Control

16.2.1 Problem Formulation

In the following sections, given the setD ⊂ R, we denoteDsup � supd∈D{|d|}.More-
over, given the set B, ∂B will denote the boundary of B. The relative degree of the
system, i.e., the minimum order r of the time derivative σ (r) of the sliding variable in
which the control u explicitly appears, is considered well-defined, uniform and time
invariant. Moreover, for the sake of simplicity, the dependence of all the variables
on time t is omitted when obvious.

Consider a plant (process and actuator) which can be modelled as

ẋ = a(x) + b(x)u + dm(x), (16.1)

where x ∈ Ω (Ω ⊂ R
n bounded) is the state vector, the value of which at the initial

time instant t0 is x(t0) = x0, and u ∈ R is the control variable, while a : Ω → R
n and

b : Ω → R
n are uncertain functions of class C0. Moreover, system (16.1) is subject

to the external disturbance dm : Ω × R → R
n . To permit the controller design in the

next sections, the following assumption is made on dm:

Assumption 16.1 The external disturbance dm is matched, i.e.,

dm(x) = b(x)d,
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where d is unknown, but bounded as

d ∈ D ⊂ R,

Dsup being a known positive constant.

Define now a suitable output function: the so-called sliding variable.

Definition 16.1 σ : Ω → R of class C1 is a sliding variable for system (16.1) pro-
vided that the pair (σ, u) has the following property: if u in (16.1) is designed so
that, in a finite time t�

r ≥ t0, ∀ x0 ∈ Ω,σ = 0 ∀ t ≥ t�
r , then ∀ t ≥ t�

r the origin is an
asymptotically stable equilibrium point of (16.1) constrained to the sliding manifold
σ = 0.

Now, regarding the sliding variabile σ as the controlled variable associated with
system (16.1), assume that system (16.1) is complete inΩ and has a uniform relative
degree equal to 1. The following definitions are introduced.

Definition 16.2 Given t�
r ≥ t0 (ideal reaching time), if ∀ x0 ∈ Ω,σ = 0 ∀ t ≥ t�

r ,
then an ideal sliding mode of system (16.1) is enforced on the sliding manifold
σ = 0.

Definition 16.3 Given tr ≥ t0 (practical reaching time), if ∀ x0 ∈ Ω, |σ | ≤ δ ∀ t ≥
tr, then a practical sliding mode of system (16.1) is enforced in a vicinity of the
sliding manifold σ = 0.

Moreover, assume that system (16.1) admits a global normal form in Ω , i.e., there
exists a global diffeomorphism (see [45]) of the form � = [Ψ, σ ]T = [xr, ξ ]T , with
� : Ω → �Ω (�Ω ⊂ R

n bounded), and Ψ : Ω → R
n−1, xr ∈ R

n−1, ξ ∈ R, such
that

{
ẋr = ar(xr, ξ) (16.2a)

ξ̇ = f (xr, ξ) + g(xr, ξ)(u + d), (16.2b)

with

ar (xr, ξ) = ∂Ψ
∂x

(
�−1 (xr, ξ)

)
a

(
�−1 (xr, ξ)

)

f (xr, ξ) = a
(
�−1 (xr, ξ)

) · ∇σ
(
�−1 (xr, ξ)

)

g (xr, ξ) = b
(
�−1 (xr, ξ)

) · ∇σ
(
�−1 (xr, ξ)

)
.

Note that, as a consequence of the uniform relative degree assumption, one has that
g 	= 0. In the literature, (16.2b) is the so-called auxiliary system. Since ar, f , g are
continuous functions and �Ω is a bounded set, one has also that

| f (xr, ξ)| ≤ F

g(xr, ξ) ≤ Gmax,

(16.3)
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F and Gmax being known positive constants. Moreover, the following assumption is
made on the uncertain function g.

Assumption 16.2 The uncertain function g can be lower bounded as

g(xr, ξ) ≥ Gmin, (16.4)

Gmin being a known positive constant.

Now, a preliminary control problem can be formulated.

Problem 16.1 Let Assumptions 16.1 and 16.2 hold. Relying on (16.1)–(16.4),
design a feedback control law

u� = κ(σ ), (16.5)

with the following property: ∀ x0 ∈ Ω, ∃ t�
r ≥ t0 such that σ = 0 ∀ t ≥ t�

r , in spite
of the uncertainties.

Remark 16.1 The solution to Problem 16.1 is a control law capable of robustly
enforcing an ideal sliding mode of system (16.1) in a finite time, according to
Definition 16.2.

In practical implementation the state is sampled at certain time instants t =
{t0, t1, . . . , tk, . . .}, k ∈ N, and the control law, computed as u(tk) = κ(σ (tk)), is
held constant between two successive samplings. This kind of implementation, called
sample-and-hold, can be expressed as

u = u(tk) ∀ t ∈ [tk, tk+1[ , k ∈ N, (16.6)

where tk, tk+1 ∈ T , T being the set of the triggering time instants. In conventional
implementation, the sequence {tk}k∈N is typically periodic and the time interval tk+1 −
tk , is a priori fixed. The control approach, in that case, is classified as time-triggered.

In the present chapter, instead of relying on time-triggered executions, we intro-
duce a triggering condition which depends on the sliding variable, so that the state
of the auxiliary system is transmitted over the communication network only when
such a condition is verified. This implies that also the control law is updated and sent
to the actuator of the plant only at the triggering time instants. In the literature, this
control approach is known as Event-Triggered (ET) control approach. Note that, in
this chapter, we do not adopt a mathematical model of the network, but we design
the control strategy aiming at reducing data transmission. This, in order to avoid
the network congestion and limit its negative consequences, such as packets drop.
However, in order to take into account possible malfunctions, we suppose that the
presence of communication networks can cause delayed transmissions due to the
network unavailability. More precisely, we suppose that data transmissions could
occur with time-varying delay Δdirect and Δfeedback in the direct and feedback path,
respectively (see Fig. 16.1). Let the overall time delay be Δ = Δdirect + Δfeedback.
The following assumption is made on Δ.
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Fig. 16.1 The proposed Event-Triggered Sliding Mode Control (ET-SMC) scheme

Assumption 16.3 The overall time-varying delay Δ can be bounded as

Δ ≤ Δmax, (16.7)

Δmax being a known positive constant.

Moreover, we suppose that the plant is equipped with a particular zero-order-hold
(indicated in Fig. 16.1 with ZOH∗), such that the control variable computed at the
last triggering time instant tk is held constant ∀ t ∈ [tk, tk+1[. Then, this approach
tends to reduce the transmissions over the network both on the direct path (from the
controller to the plant) and on the feedback path (from the sensor to the controller).

Taking into account the previous considerations, we can now move from Prob-
lem16.1 and formulate the problem which will be actually solved in this chapter.

Problem 16.2 Let Assumptions 16.1–16.3 hold. Relying on (16.1)–(16.4), design
a feedback control law

u = u(tk) = κ(σ (tk)) ∀ t ∈ [tk, tk+1[, k ∈ N, (16.8)

with the following property: ∀ x0 ∈ Ω, ∃ tr ≥ t0 such that |σ | ≤ δ ∀ t ≥ tr , in spite
of the uncertainties, δ being a positive constant arbitrary set.

Remark 16.2 The solution to Problem 16.2 is an ET control law capable of enforcing
a practical sliding mode of system (16.1) in a finite time, according to Definition
16.3.

Before illustrating the features of the proposed control scheme, relying on Prob-
lem 16.2 let us introduce the following definition.
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Definition 16.4 The boundary layer for the sliding variable is

Bδ �
{
σ ∈ R : |σ | ≤ δ

}
, (16.9)

δ being a positive constant arbitrarily set.

16.2.2 The Proposed Control Scheme

The control scheme proposed to solve Problem16.2 is reported in Fig. 16.1, where the
dashed path means that the corresponding signals are transmitted over the network
only at the triggering time instants tk . The control scheme contains two key blocks:
the Smart Sensor and the Controller.

The Smart Sensor

The considered sensor is smart in the sense that it has some computation capability,
i.e., it is able to compute the sliding variable and verify the following triggering
condition.

Triggering Condition

|σ | = δ, (16.10)

δ being a positive constant arbitrarily set (see Definition 16.4).
The switch in Fig. 16.1 is closed only when (16.10) holds, i.e., when the Smart

Sensor generates the triggering signal. More precisely, when (16.10) is verified, the
sign of the sliding variable is transmitted by the Smart Sensor to the Controller
(through the communication network).

The Controller.

Relying on (16.8)–(16.10), the control law we propose to solve Problem 16.2 can be
expressed as

u = u(tk) = −Umax sign(σ (tk)) ∀ t ∈ [tk, tk+1[, k ∈ N, (16.11)

where

Umax >
F

Gmin
+ Dsup (16.12)

is a positive value suitably selected in order to enforce a sliding mode (see Fig. 16.2).
Note that the control signal is transmitted by the Controller to the plant (through

the communication network) only when (16.10) holds.
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0
time

−δ

0

δ
σ

+Umax
−Umax
+Umax
−Umax

Fig. 16.2 Representation of the proposed ET-SMC strategy

16.2.3 Stability Analysis

In this section, the stability properties of system (16.1) controlled via the proposed
ET-SMC strategy are analyzed. To this end, it is convenient to introduce the following
definitions.

Definition 16.5 The set Bδ is said to be attractive if the solution to the auxiliary
system (16.2b),∀ σ ∈ R \ Bδ , satisfies the so-calledη-reachability condition [27, 58]

σ σ̇ ≤ −η|σ | . (16.13)

Definition 16.6 The solutionσ to the auxiliary system (16.2b) is said to be ultimately
bounded with respect to the set Bδ if

∀ x0 ∈ Ω, ∃ tr ≥ t0 : σ ∈ Bδ ∀ t ≥ tr . (16.14)

Definition 16.7 Let σ be the solution to the auxiliary system (16.2) starting from
the initial condition σ(t0). The set Bδ is said to be positively invariant if

σ(t0) ∈ Bδ ⇒ σ ∈ Bδ ∀ t ≥ t0 . (16.15)

Definition 16.8 In analogy with [46], given the bounded setsΩ, Ωδ ⊂ Ω , then, the
origin of system (16.1) is said to be practically stable with respect to (t�

r , tr,x ,Ω,Ωδ,

D) if

∀ t�
r ≥ t0, ∀ d ∈ D, ∀ x0 ∈ Ω, ∃ tr,x ≥ t�

r : x ∈ Ωδ ∀ t ≥ tr,x . (16.16)

Before showing the theoretical results, the following assumption is made on the
initial condition of the auxiliary system (16.2b).

Assumption 16.4 Given the auxiliary system (16.2b), let the sign of the initial con-
dition σ(t0) be known.
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Now, making reference to the auxiliary system (16.2b) the following results can
be proved.

Lemma 16.1 Let Assumptions 16.1, 16.2 and 16.4 hold with |σ(t0)| > δ, δ being
a positive constant arbitrarily set. Given the auxiliary system (16.2b) controlled by
(16.11), (16.12) with the triggering condition (16.10), then, the boundary layer Bδ

is attractive for the solution σ to (16.2b).

Proof Consider the η-reachability condition (16.13). Since Assumption 16.4 holds,
one has that sign(σ ) = sign(σ (t0)),∀ t ∈ [t0, t1], t1 being the first triggering time
instant. Making reference to system (16.2), since σ sign(σ ) = |σ |, it yields

σ σ̇ = σ ( f − gUmax sign(σ ) + gd)

≤ (F − Gmin(Umax − Dsup)) |σ |, (16.17)

By virtue of inequality (16.12), one can easily verify that (16.13) holds with
η = − (F − Gmin(Umax − Dsup)) > 0. Then, integrating the inequality σ σ̇ ≤ −η|σ |
from t0 = 0 to tr, one has

tr ≤ |σ(0)| − δ

η
, (16.18)

implying the finite time convergence of the sliding variable to Bδ . Moreover, one can
also conclude that the first transmission over the network is executed at the triggering
time instant t1 = tr. �

Remark 16.3 Note that, by virtue of Lemma 16.1, the proposed control solution
avoids to transmit the value of sign(σ ) and u over the network during the entire
reaching phase, i.e., till the sliding variable enters the boundary layer Bδ at the time
instant t1 = tr.

Lemma 16.2 Let Assumptions 16.1, 16.2 and 16.4 hold with |σ(t0)| ≤ δ, δ being
a positive constant arbitrarily set. Given the auxiliary system (16.2b) controlled by
(16.11), (16.12) with the triggering condition (16.10), then, the boundary layer Bδ

is a positively invariant set for the solution σ to (16.2b).

Proof Consider two different cases in order to prove the result.

Case 1 (|σ | < δ). In this case, according to the proposed ET-SMC strategy, ∀ t ∈
[tk, tk+1[ the control law is not updated, i.e., its sign does not change. This implies
that the sliding variable evolves in the boundary layer Bδ until it reaches its border,
so that Case 2 occurs.

Case 2 (|σ | = δ). In this second case, the triggering condition is verified. Then,
sign(σ ) is sent to the controller and the control law is updated. In particular, the sign
of the control law changes, and the sliding variable is steered towards the interior
of Bδ , so that Case 1 occurs again. This implies that ∀ σ(t0) ∈ Bδ , then, ∀ t ≥ t0,
σ ∈ Bδ , i.e., Bδ is a positively invariant set, according to Definition 16.7. �
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Now, relying on Lemmas 16.1 and 16.2, one can prove themajor result concerning
the evolution of the auxiliary system (16.2b) controlled via the proposed strategy.

Theorem 16.1 Let Assumptions 16.1, 16.2 and 16.4 hold, and let δ be a positive
constant arbitrarily set. Given the auxiliary system (16.2b) controlled by (16.11),
(16.12) with the triggering condition (16.10), then the solution σ to (16.2b) is ulti-
mately bounded with respect to Bδ .

Proof The proof is a straightforward consequence of Lemmas 16.1 and 16.2. In fact,
by virtue of Lemma 16.1, applying the control law (16.11), (16.12) there exists a
time instant tr when σ enters Bδ , i.e., the triggering condition (16.10) is verified.
Then, by virtue of Lemma 16.2, ∀ t ≥ tr, σ remains in Bδ , which implies that it is
ultimately bounded with respect to Bδ . �

Remark 16.4 Note that the proposed control scheme, because of its ET nature, can-
not generate an ideal sliding mode (see Definition 16.2), but only a practical slid-
ing mode (see Definition 16.3). However, by virtue of the Regularization Theorem
[58, Chap. 2], it can be proven that also the state of system (16.1) is ultimately
bounded. This implies that Problem 16.2 is equivalent to the problem of designing a
bounded control such that, according to Definition 16.8, the origin of system (16.1)
is practically stable.

Now, since the triggering time instants are implicitly defined and only known
at the execution times, we prove the existence of a lower bound for the so-called
inter-execution or inter-event times [53]. More specifically, let τmin be the minimum
inter-event time, such that tk+1 − tk ≥ τmin for any k ∈ N

+.

Theorem 16.2 Let Assumptions 16.1, 16.2 and 16.4 hold, and let δ be a positive
constant arbitrarily set. Given the auxiliary system (16.2b) controlled by (16.11),
(16.12) with the triggering condition (16.10), then, ∀ t > tr the inter-event times are
lower bounded by

τmin = 2δ

F + Gmax(Umax + Dsup)
.

Proof Since sign(σ ) and u are transmitted over the network onlywhen the triggering
condition (16.10) is verified, the theorem will be proved by computing the time
interval tk+1 − tk that σ takes to evolve from −δ to δ with the maximum velocity,
i.e., σ̇max = F + Gmax(Umax + Dsup). Then, one has

σ(tk+1) − σ(tk) =
∫ tk+1

tk

σ̇max dτ

δ − (−δ) = σ̇max(tk+1 − tk)

2δ = (F + Gmax(Umax + Dsup))τmin, (16.19)

where the equality tk+1 − tk = τmin follows from the assumption that σ evolves with
constant maximum velocity σ̇max. Finally, from (16.19) one obtains
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τmin = 2δ

F + Gmax(Umax + Dsup)
, (16.20)

which proves the theorem. �

Remark 16.5 Note that Theorem 16.2 guarantees that the time elapsed between con-
secutive triggering events does not become arbitrarily small, avoiding the notorious
Zeno behaviour [2, 43]. In practical cases, this result is very useful to assess the
feasibility of the proposed scheduling policy.

Taking now into account the possible occurrence of delayed data transmissions,
due to the presence of communication networks, the following result can be proven.
More precisely, relying on Problem 16.2 we will prove that by modifying the trig-
gering condition (16.10), the auxiliary state-space trajectory is ultimately bounded
with respect to the desired boundary layer Bδ .

Theorem 16.3 Let Assumptions 16.1–16.4 hold. Given the auxiliary system (16.2b)
controlled by (16.11), (16.12) with the triggering condition (16.10), then, for any
desired

δ > (F + Gmax(Umax + Dsup))Δmax,

the triggering condition

|σ | = δ′,

with

δ′ = δ − (F + Gmax(Umax + Dsup))Δmax,

enforces the following inequality

|σ | ≤ δ ∀ t ≥ t ′
r, (16.21)

t ′
r being the reaching time instant of the boundary layer

Bδ′ �
{
σ ∈ R : |σ | ≤ δ′}.

Proof In analogy with Lemma 16.1, one can easily prove that there exists a
time instant t ′

r when σ enters the inner boundary layer Bδ′ . Suppose now that
the transmission of σ(tk) = δ′ occurs with maximum time delay Δmax. More-
over, assume that the sliding variable evolves with constant maximum velocity
σ̇max = F + Gmax(Umax + Dsup). In order to enforce inequality (16.21), we impose
that σ(tk + Δmax) = δ. Then, one has
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σ(tk + Δmax) − σ(tk) =
∫ tk+Δmax

tk

σ̇max dτ

δ − δ′ = σ̇maxΔmax

δ′ = δ − (F + Gmax(Umax + Dsup))Δmax, (16.22)

which concludes the proof. �

Remark 16.6 Note that in case of delayed transmissions, the lower bound τmin can
be obtained by using δ′ instead of δ in Theorem 16.2.

16.2.4 Illustrative Example

In this section, an illustrative example is briefly discussed. Consider the perturbed
double integrator {

ẋ1 = x2
ẋ2 = u + d .

(16.23)

with d = Dsup sin(t), Dsup = 3. Let the initial condition be x(0) = [
1 1

]T
, and the

sliding variable be σ = x1 + x2. In the triggering condition (16.10) the threshold is
δ = 0.2. Then, the control amplitude Umax is selected equal to 5. In Fig. 16.3 the time
evolution of the sliding variable σ is shown. Note that, according to Theorem 16.1, σ
is ultimately bounded with respect to the boundary layer Bδ , the size of which is δ. In
Fig. 16.3 the time evolution of the system states x1, x2, and the inter-event times τk =
tk+1 − tk , are also shown. In particular, one can appreciate that the minimum inter-
event time τmin = 0.0404s, according to Theorem 16.2, is a lower bound for the inter-
event times. Moreover, considering a sampling time Ts = 1e-4 s, and a simulation
time T = 10s, the number of transmissions is 101, i.e., 99.9% less than the number
required by the conventional (i.e., time-driven) SMC implementation. Obviously,
reducing the size of the boundary layer implies the improvement of the convergence
accuracy.Yet, a larger number of transmissions could be required. The correct balance
between convergence accuracy and transmission load has to be searched depending
on the specific application. Finally, in Fig. 16.3 the time evolution of the sliding
variable σ in presence of transmissions with maximum time delay Δmax = 0.005s
acting from t =1s to t =4s is shown.Note that, by selecting δ′ =0.151 (seeTheorem
16.3), even in presence of maximum time delay, σ is ultimately bounded with respect
to the desired boundary layer Bδ . In this case, the number of transmissions is 127.
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Fig. 16.3 Event-Triggered Sliding Mode Control. a Time evolution of the sliding variable, with
visualization of the boundary layer Bδ of size δ. b Time evolution of the system states x1 and x2.
c Inter-event times τk = tk+1 − tk , with visualization of the minimum inter-event time τmin. d Time
evolution of the sliding variable in presence of delayed transmissions, with zoom and visualization
of both the desired boundary layer Bδ of size δ, and the boundary layer Bδ′ of size δ′ adopted for
the triggering condition
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16.3 Event-Triggered Second Order Sliding Mode Control

16.3.1 Problem Formulation

Consider the uncertain nonlinear system (16.1), where x ∈ Ω (Ω ⊂ R
n , bounded)

is the state vector, the value of which at the initial time instant t0 is x(t0) = x0, and
u ∈ R is the control variable, while a : Ω → R

n and b : Ω → R
n are uncertain

functions of class C1. Let Assumption 16.1 hold. We now define the sliding variable
as follows.

Definition 16.9 σ : Ω → R of class C2 is a sliding variable for system (16.1)
provided that the pair (σ, u) has the following property: if u in (16.1) is designed so
that, in a finite time t�

r ≥ t0, ∀ x0 ∈ Ω, σ = σ̇ = 0 ∀ t ≥ t�
r , then ∀ t ≥ t�

r the origin
is an asymptotically stable equilibrium point of (16.1) constrained to the sliding
manifold σ = σ̇ = 0.

Now, regarding the sliding variabile σ as the controlled variable associated with
system (16.1), assume that the system (16.1) is complete in Ω and has a uniform
relative degree equal to 2. The following definitions are introduced.

Definition 16.10 Given t�
r ≥ t0 (ideal reaching time), if ∀ x0 ∈ Ω, σ = σ̇ = 0 ∀ t ≥

t�
r , then an ideal second order sliding mode of system (16.1) is enforced on the sliding
manifold σ = σ̇ = 0.

Definition 16.11 Given tr ≥ t0 (practical reaching time), if ∀ x0 ∈ Ω, |σ | ≤ δ1,

|σ̇ | ≤ δ2 ∀ t ≥ tr , then a practical second order sliding mode of the system (16.1)
is enforced in a vicinity of the sliding manifold σ = σ̇ = 0.

Moreover, assume that system (16.1) admits a global normal form in Ω , i.e.,
there exists a global diffeomorphism of the form � = [Ψ, σ, a · ∇σ ]T = [xr, ξ ]T ,
with � : Ω → �Ω (�Ω ⊂ R

n bounded), and Ψ : Ω → R
n−2, xr ∈ R

n−2, ξ =
[σ, σ̇ ]T ∈ R

2, such that

⎧⎨
⎩

ẋr = ar(xr, ξ) (16.24a)

ξ̇1 = ξ2 (16.24b)

ξ̇2 = f (xr, ξ) + g(xr, ξ)(u + d), (16.24c)

with

ar (xr, ξ) = ∂Ψ
∂x

(
�−1 (xr, ξ)

)
a

(
�−1 (xr, ξ)

)

f (xr, ξ) = a
(
�−1 (xr, ξ)

) · ∇ (
a

(
�−1 (xr, ξ)

) · ∇σ
(
�−1 (xr, ξ)

))
g (xr, ξ) = b

(
�−1 (xr, ξ)

) · ∇ (
a

(
�−1 (xr, ξ)

) · ∇σ
(
�−1 (xr, ξ)

))
.
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Note that, as a consequence of the uniform relative degree assumption, one has that
g 	= 0. In the literature, see for instance [6], subsystem (16.24b), (16.24c) is the
so-called auxiliary system. Since ar , f , g are continuous functions and �Ω is a
bounded set, one has also that

| f (xr, ξ)| ≤ F
g(xr, ξ) ≤ Gmax, (16.25)

F and Gmax being known positive constants. Moreover, the following assumption is
made on the uncertain function g.

Assumption 16.5 The uncertain function g can be lower bounded as

g(xr, ξ) ≥ Gmin, (16.26)

Gmin being a known positive constant.

Now, a preliminary control problem can be formulated.

Problem 16.3 Let Assumptions 16.1 and 16.5 hold. Relying on (16.1) and (16.24)–
(16.26), design a feedback control law

u� = κ(σ, σ̇ ), (16.27)

with the following property: ∀ x0 ∈ Ω, ∃ t�
r ≥ t0 such that σ = σ̇ = 0, ∀ t ≥ t�

r , in
spite of the uncertainties.

Remark 16.7 The solution to Problem 16.3 is a control law capable of robustly
enforcing an ideal second order sliding mode of system (16.1) in a finite time,
according to Definition 16.10.

Taking into account the considerationsmade in Sect. 16.2.1, in the present chapter,
instead of relying on time-triggered executions, we will introduce two different trig-
gering conditions, transmitting data over the network only when such conditions are
verified (Event-Triggered implementation).

Now, we can move from Problem 16.3 and formulate the problem which will be
actually solved in this chapter.

Problem 16.4 Let Assumptions 16.1, 16.3 and 16.5 hold. Relying on (16.1) and
(16.24)–(16.26), design a feedback control law

u = u(tk) = κ(σ (tk), σ̇ (tk)) ∀t ∈ [tk, tk+1[, k ∈ N, (16.28)

with the following property: ∀ x0 ∈ Ω, ∃ tr ≥ t0 such that |σ | ≤ δ1, and |σ̇ | ≤
δ2,∀ t ≥ tr , in spite of the uncertainties, δ1 and δ2 being positive constants arbi-
trarily set.
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Remark 16.8 The solution to Problem 16.4 is an ET control law capable of enforcing
a practical second order sliding mode of system (16.1) in a finite time, according to
Definition 16.11.

Before illustrating the features of the proposed control scheme, relying onProblem
16.4 let us introduce the following definition.

Definition 16.12 The convergence set for the solution (σ, σ̇ ) to (16.24b), (16.24c) is

B � R
2 \ {S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5}, (16.29)

where

S1 �
{
(σ, σ̇ ) : |σ̇ | ≥ δ2

}
S2 �

{
(σ, σ̇ ) : σ ≥ δ1 , −δ2 < σ̇ ≤ 0

}
S3 �

{
(σ, σ̇ ) : σ ≤ −δ1 , 0 ≤ σ̇ < δ2

}

S4 �
{
(σ, σ̇ ) : σ ≥ − σ̇ |σ̇ |

2αr
+ δ1 , 0 < σ̇ < δ2

}

S5 �
{
(σ, σ̇ ) : σ ≤ − σ̇ |σ̇ |

2αr
− δ1 , −δ2 < σ̇ < 0

}
,

δ1, δ2 being positive constants arbitrarily set, and αr being a positive constant
defined as

αr � Gmin(Umax − Dsup) − F > 0, (16.30)

where Umax is the control amplitude (see Fig. 16.4).

−δ1 0 δ1
σ

−δ2

0

δ2

σ̇

A

B

C

D

+Umax
−Umax

Fig. 16.4 Representation of the convergence set B
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16.3.2 The Proposed Control Scheme

The control scheme proposed to solve Problem 16.4 is analogous to the scheme
reported in Fig. 16.1, where the dashed path means that the corresponding signals
are transmitted over the network only at the triggering time instants tk . The control
scheme contains two key blocks: the Smart Sensor and the Controller. The sig-
nals transmitted by the Smart Sensor to the Controller (through the communication
network) are specified in the following.

The Smart Sensor

The considered sensor is smart in the sense that it has some computation capability,
i.e., it is able to compute σ, σ̇ , and verify two different triggering conditions. The first
one being used only during the reaching of the convergence set (16.29), the second
one being used for the rest of the control interval.

Triggering Condition 1

For any (σ, σ̇ ) /∈ {B ∪ ∂B} the adopted triggering condition is

sign

(
σ(t) − 1

2
σMi

)
	= sign

(
σ(tk) − 1

2
σMi

)
, (16.31)

{σMi } denoting the sequence of the extremal values of the sliding variable, i.e., σMi =
σ(tMi ) such that σ̇ (tMi ) = 0.

The switch in Fig. 16.1 is closed only when (16.31) holds, i.e., when the Smart
Sensor generates the triggering signal. More precisely, when (16.31) is verified,
sign(σ − 1

2σMi ) is transmitted by the Smart Sensor to the Controller (through the
communication network). Note that the Smart Sensor checks the Triggering Condi-
tion 1 only during the reaching phase, i.e., before (σ, σ̇ ) reaches ∂B. For the rest of
the control interval a second triggering condition is adopted.

Triggering Condition 2

For any (σ, σ̇ ) ∈ {B ∪ ∂B} the adopted triggering condition is

(σ, σ̇ ) ∈ ∂B, (16.32)

B being the desired convergence set for the solution (σ, σ̇ ) (see Definition 16.12).
When (16.31) holds, sign(σ̇ ) is transmitted by the Smart Sensor to the Controller

(through the communication network).

The Controller

The proposed control strategy is based on two different control laws. The first one is
used together with (16.31) only during the reaching phase, while the second one is
used together with (16.32) for the rest of the control interval.
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Control Law 1

In analogy with the Suboptimal SOSM control algorithm in [6], and relaying on
(16.28)–(16.31), for any (σ, σ̇ ) /∈ {B ∪ ∂B}, the control law we propose to solve
Problem 16.4 can be expressed as

u = u(tk) = −Umax sign

(
σ(tk) − 1

2
σMi

)
∀ t ∈ [tk, tk+1[, k ∈ N . (16.33)

According to [6], in order to enforce a SOSM, it is necessary to select the control
amplitude as

Umax > max

( F
α∗Gmin

+ Dsup

α∗ ; 4F + (3Gmin + Gmax)Dsup

3Gmin − α∗Gmax

)
(16.34)

with

α∗ ∈ (0, 1] ∩
(
0,

3Gmin

Gmax

)

Note that the control signal is transmitted by the Controller to the plant (through the
communication network) only when (16.31) holds.

When (σ, σ̇ ) reaches (for the first time) the boundary ∂B, the Smart Sensor com-
municates (only one time) to the Controller that a second control law is applied for
the rest of the control interval.

Control Law 2

Relaying on (16.28)–(16.30) and (16.32), for any (σ, σ̇ ) ∈ {B ∪ ∂B}, the control law
we propose to solve Problem 16.4 can be expressed as

u = u(tk) = −Umax sign(σ̇ (tk)) ∀ t ∈ [tk, tk+1[, k ∈ N , (16.35)

with Umax as in (16.34).
Note that the control signal is transmitted by the Controller to the plant (through

the communication network) only when (16.32) holds.

Remark 16.9 Note that, when the system (16.1) has unitary relative degree, in order
to perform the so-called “chattering alleviation” [9, 13, 14, 33], the foregoing control
solution can be analogously applied by artificially increasing the relative degree of
the system.
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16.3.3 Stability Analysis

In this section, the stability properties of system (16.1) controlled via the proposed
ET-SOSMC strategy are analyzed. To this end, it is convenient to introduce the
following definitions.

Definition 16.13 The solution (σ, σ̇ ) to the auxiliary system (16.24b), (16.24c) is
said to be ultimately bounded with respect to the convergence set {B ∪ ∂B} if

∀ x0 ∈ Ω, ∃ tr ≥ t0 : (σ, σ̇ ) ∈ {B ∪ ∂B} ∀ t ≥ tr . (16.36)

Definition 16.14 Let (σ, σ̇ )be the solution to the auxiliary system (16.24b), (16.24c)
starting from the initial condition (σ (t0), σ̇ (t0)). The set {B ∪ ∂B} is said to be
positively invariant if

(σ (t0), σ̇ (t0)) ∈ {B ∪ ∂B} ⇒ (σ, σ̇ ) ∈ {B ∪ ∂B} ∀ t ≥ t0 . (16.37)

Before showing the theoretical results, the following assumption is made on the
initial conditions of the auxiliary system (16.24b), (16.24c).

Assumption 16.6 Given the auxiliary system (16.24b), (16.24c), let the sign of the
initial conditions (σ (t0), σ̇ (t0)) be known.

Now, making reference to the auxiliary system (16.24b), (16.24c) the following
results can be proven.

Lemma 16.3 Let Assumptions 16.1, 16.5 and 16.6 hold with (σ (t0), σ̇ (t0)) /∈
{B ∪ ∂B}, δ1 and δ2 in (16.29) being positive constants arbitrarily set. Given the
auxiliary system (16.24b), (16.24c) controlled by (16.33), (16.34) with the trigger-
ing condition (16.31), then, the solution (σ, σ̇ ) to (16.24b), (16.24c) is steered to the
convergence set {B ∪ ∂B} in a finite time.

Proof For the proof of this Lemma we refer to [6], where it is proved that the
Suboptimal control law generates the contraction of the extremal values of the slid-
ing variable. In this chapter, the event-triggered implementation of the Suboptimal
control law does not disrupt the contraction property, since the sign changes are per-
formed exactly at the same time instants when they occur in the non event-triggered
implementation. In the other time instants the sign of the control is kept constant by
the ZOH∗. �

Lemma 16.4 Let Assumptions 16.1, 16.5 and 16.6 hold with (σ (t0), σ̇ (t0)) ∈
{B ∪ ∂B}, δ1 and δ2 in (16.29) being positive constants arbitrarily set. Given the
auxiliary system (16.24b), (16.24c) controlled by (16.35), with the triggering condi-
tion (16.32), then, the convergence set {B ∪ ∂B} is a positively invariant set.

Proof Since sign(σ̇ ) and u are updated only when (16.32) holds, i.e., when (σ, σ̇ ) ∈
∂B, the Lemma will be proven showing that for any (σ (t0), σ̇ (t0)) ∈ ∂B, the vector



416 A. Ferrara and M. Cucuzzella

field (σ̇ , σ̈ ) never points outside B. Let ∂B+ denote (σ, σ̇ ) ∈ ∂B : σ̇ > 0, and ∂B−
denote (σ, σ̇ ) ∈ ∂B : σ̇ < 0 (in Fig. 16.4, ∂B+ is blue and ∂B− is red). Assume
that (σ (t0), σ̇ (t0)) ∈ ∂B−. The vector field is (σ̇ , f + g(u + d)) with σ̇ < 0 and,
according to (16.35), u = Umax. Then, σ̈ ≥ αr > 0, so that the vector field points
up-left, that is inside B. Note that, if (σ (t0), σ̇ (t0)) ∈ CD (all the points on this
curve verify σ = − σ̇ |σ̇ |

2αr
− δ1), then the vector field can be, at most, tangent to CD,

never pointing outside B. Analogous considerations can be done if (σ (t0), σ̇ (t0)) ∈
∂B+. �

Relying now on Lemmas 16.3 and 16.4, one can prove themajor result concerning
the evolution of the auxiliary system (16.24b), (16.24c) controlled via the proposed
strategy.

Theorem 16.4 Let Assumptions 16.1, 16.5 and 16.6 hold. Given the auxiliary sys-
tem (16.24b), (16.24c) controlled by (16.33), (16.34) with the triggering condition
(16.31)when (σ, σ̇ ) /∈ {B ∪ ∂B}, and by (16.35)with the triggering condition (16.32)
when (σ, σ̇ ) ∈ {B ∪ ∂B}, then, the solution (σ, σ̇ ) to (16.24b), (16.24c) is ultimately
bounded with respect to the desired convergence set {B ∪ ∂B}, δ1 and δ2 in (16.29)
being arbitrarily set positive constants.

Proof The proof is a straightforward consequence of Lemmas 16.3 and 16.4. By
virtue of Lemma 16.3, there exists a time instant tr when the trajectory (σ, σ̇ ) enters
{B ∪ ∂B}. Then, by virtue of Lemma 16.4, ∀ t ≥ tr , (σ, σ̇ ) is ultimately bounded
with respect to the convergence set {B ∪ ∂B}. �

Remark 16.10 Note that the proposed control scheme, because of its ET nature,
cannot generate an ideal second order sliding mode (see Definition 16.10), but only
a practical second order sliding mode (see Definition 16.11). However, in analogy
with the Regularization Theorem [58], it can be proven that, also in case of second
order sliding mode, the state of system (16.1) is ultimately bounded. This implies
that Problem 16.4 is equivalent to the problem of designing a bounded control such
that, according to Definition 16.8, the origin of system (16.1) is practically stable.

Now, since the triggering time instants are implicitly defined and only known
at the execution times, we prove the existence of lower-bounds for the inter-event
times [53]. Let τmin be the minimum inter-event time when (σ, σ̇ ) ∈ {B ∪ ∂B}, the
following result can be proved.

Theorem 16.5 Let Assumptions 16.1, 16.5 and 16.6 hold, and let δ1 and δ2 in (16.29)
be positive constants arbitrarily set. Given the auxiliary system (16.24b), (16.24c)
controlled by (16.35) with the triggering condition (16.32) when (σ, σ̇ ) ∈ {B ∪ ∂B},
then, the inter-event times are lower bounded by

τmin = δ2

F + Gmax(Umax + Dsup)
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Proof Since sign(σ̇ ) and u are transmitted over the network onlywhen the triggering
condition (16.32) is verified, the theorem will be proven by computing the time
interval tk+1 − tk that σ̇ takes to evolve from 0 to δ2 with the maximum acceleration
αR � Gmax(Umax + Dsup) + F . Then, it yields

σ̇ (tk+1) − σ̇ (tk) =
∫ tk+1

tk

σ̈max dτ

δ2 − 0 = αR (tk+1 − tk)

δ2 = (F + Gmax(Umax + Dsup))τmin . (16.38)

Analogous considerations can be used if we consider the evolution of σ̇ from 0
to −δ2. �

Remark 16.11 Note that Theorem 16.5 guarantees that the time elapsed between
consecutive triggering events does not become arbitrarily small, avoiding the noto-
rious Zeno behaviour [2, 43]. In practical cases, this result is very useful to assess
the feasibility of the proposed scheduling policy.

Remark 16.12 Note also that, by virtue of the contraction property of the Suboptimal
control law [6], there exists a sequence of time instants when an extremal value of
the sliding variable occurs. Then, one can conclude that also during the reaching of
the desired convergence set {B ∪ ∂B}, the notorious Zeno behaviour is avoided.

Taking now into account the possible occurrence of delayed data transmissions,
due to the presence of the communication network, the following result can be
proved. More precisely, relying on Problem 16.4 we will prove that by modifying
the triggering condition (16.32), the auxiliary state-space trajectory is ultimately
bounded with respect to the desired convergence set {B ∪ ∂B}.
Theorem 16.6 Let Assumptions 16.1, 16.3, 16.5 and 16.6 hold. Given the auxiliary
system (16.24b), (16.24c) controlled by (16.35) when (σ, σ̇ ) ∈ {B ∪ ∂B}, then, for
any desired

δ2 > (F + Gmax(Umax + Dsup))Δmax

δ1 >

(
δ22

2
− (δ2 − (F + Gmax(Umax + Dsup))Δmax)

2

2

) (
1

αR
+ 1

αr

)
,

the triggering condition

(σ, σ̇ ) ∈ ∂B ′ ,

with

B ′ � R
2 \ {S ′

1 ∪ S ′
2 ∪ S ′

3 ∪ S ′
4 ∪ S ′

5}
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and

S ′
1 �

{
(σ, σ̇ ) : |σ̇ | ≥ δ′

2

}
S ′

2 �
{
(σ, σ̇ ) : σ ≥ δ1 , −δ′

2 < σ̇ ≤ 0
}

S ′
3 �

{
(σ, σ̇ ) : σ ≤ −δ1 , 0 ≤ σ̇ < δ′

2

}
S ′

4 �
{
(σ, σ̇ ) : σ ≥ − σ̇ |σ̇ |

2αr
+ δ′

1 , 0 < σ̇ < δ′
2

}

S ′
5 �

{
(σ, σ̇ ) : σ ≤ − σ̇ |σ̇ |

2αr
− δ′

1 , −δ′
2 < σ̇ < 0

}
δ′
2 � δ2 − (F + Gmax(Umax + Dsup))Δmax > 0

δ′
1 � δ1 −

(
δ22

2
− (δ′

2)
2

2

) (
1

αR
+ 1

αr

)
> 0

enforces the following relation

(σ, σ̇ ) ∈ {B ∪ ∂B} ∀ t ≥ t ′
r, (16.39)

t ′
r being the reaching time instant of

{
B ′ ∪ ∂B ′}.

Proof In analogy with Lemma 16.3, it follows that there exists a time instant
t ′
r when (σ, σ̇ ) enters the inner convergence set

{
B ′ ∪ ∂B ′}. Suppose now that

the transmission of σ̇ (tk) = δ′
2 occurs with maximum time delay Δmax. More-

over, assume that the sliding variable evolves with constant maximum acceleration
αR � Gmax(Umax + Dsup) + F . In order to enforce relation (16.39), we impose that
σ̇ (tk + Δmax) = δ2. Then, one has that

σ̇ (tk + Δmax) − σ̇ (tk) =
∫ tk+Δmax

tk

σ̈max dτ

δ2 − δ′
2 = αRΔmax

δ′
2 = δ2 − αRΔmax. (16.40)

Now, one can easily verify that the parabolic auxiliary state-space trajectory passing
through point A in Fig. 16.4 with acceleration αR is

σ = σ̇ |σ̇ |
2αR

+ δ1 − δ22

2

(
1

αR
+ 1

αr

)
.

Then, the intersection point of this curve with σ̇ = δ′
2 is

(
σ = δ1 + (δ′

2)
2

2αR
− δ22

2

(
1

αR
+ 1

αr

)
, σ̇ = δ′

2

)
(16.41)
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Finally, by imposing that the curve σ = − σ̇ |σ̇ |
2αr

+ δ′
1 passes through the point (16.41),

one can compute the value of δ′
1. �

Remark 16.13 Note that in case of delayed transmissions, the lower bound τmin can
be obtained by using δ′

2 instead of δ2 in Theorem 16.5.

16.3.4 Illustrative Example

In this section, an illustrative example is briefly discussed. Consider the perturbed
double integrator (16.23) with d = Dsup cos(2t),Dsup = 2.4. Let the initial condition
be x(0) = [

1 0
]T
, and the sliding variable be σ = x1. Relying on system (16.23) it

is possible to set the bounds in (16.25) and (16.26) equal to F = 0, Gmin = Gmax =
1. Then, according to (16.34), the control amplitude Umax is selected equal to 5,
with α∗ = 1. Moreover, the convergence set B (see Definition 16.12) is chosen by
selecting δ1 = 0.005, δ2 = 0.1, and, according to (16.30), αr = 2.6.

In Fig. 16.5 the auxiliary state-space trajectory is shown. Note that, according
to Theorem 16.4, (σ, σ̇ ) is ultimately bounded with respect to the convergence set
B. Moreover, in Fig. 16.5 the time evolution of the sliding variable and the time
evolution of its first time derivative are reported, showing that they are ultimately
bounded with respect to the boundary layer of size δ1 and δ2, respectively. Finally, the
inter-event times τk = tk+1 − tk are also shown. In particular, one can appreciate that
the minimum inter-event time τmin = 0.0135s, according to Theorem 16.5, is a lower
bound for the inter-event times. Note that, considering a sampling time Ts = 1e-4 s,
and a simulation time T = 10s, the number of transmissions is 203, i.e., 99.8% less
than the number required by the conventional (i.e., time-driven) implementation.
Obviously, reducing the size of the convergence set implies the improvement of
the convergence accuracy. Yet, a larger number of transmissions could be required.
The correct balance between convergence accuracy and transmission load has to be
searched depending on the specific application.

In Fig. 16.6 the auxiliary state-space trajectory in presence of transmissions with
maximum time delay Δmax = 0.005s acting from t = 2s to t = 4s is shown. Note
that, by selecting δ′

1 = 0.0034 and δ′
2 = 0.063 (see Theorem 16.6), even in presence

of maximum time delay, (σ, σ̇ ) is ultimately bounded with respect to the desired
convergence set B. Moreover, in Fig. 16.6 are reported the time evolution of the
sliding variable, the time evolution of its first time derivative and the inter-event
times, with τmin = 0.0085s. In this case, the number of transmissions is 300.
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Fig. 16.5 Event-Triggered Second Order Sliding Mode Control in absence of delayed transmis-
sions. a Auxiliary state-space trajectory, with zoom and visualization of the convergence set B.
b Time evolution of the sliding variable, with zoom and visualization of the boundary layer of size
δ1. c Time evolution of the first time derivative of the sliding variable, with visualization of the
boundary layer of size δ2. d Inter-event times τk = tk+1 − tk , with visualization of the minimum
inter-event time τmin
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Fig. 16.6 Event-Triggered Second Order Sliding Mode Control in presence of delayed transmis-
sions. a Auxiliary state-space trajectory, with zoom and visualization of both the desired conver-
gence set B, and the convergence set B′ adopted for the triggering condition. b Time evolution of
the sliding variable, with zoom and visualization of the boundary layer of size δ1. c Time evolution
of the first time derivative of the sliding variable, with visualization of the boundary layer of size δ2.
d Inter-event times τk = tk+1 − tk , with visualization of the minimum inter-event time τmin
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16.4 Conclusions

In this chapter, the Event-Triggered control approach and the Sliding Mode control
methodology are coupled to design robust control schemes for nonlinear uncertain
systems including communication networks. The main objective is indeed to reduce
the data transmission effort, while guaranteeing satisfactory stability properties of
the controlled system even in presence of modelling uncertainties and delayed trans-
missions due to the network unavailability. Both the Event-Triggered Sliding Mode
Control and the Event-Triggered Second Order Sliding Mode Control schemes are
based on suitable triggering conditions. The stability properties of the proposed con-
trol schemes are theoretically analyzed, proving the ultimate boundedness of the
auxiliary system state, which implies the ultimate boundedness of the solution of the
controlled system.Moreover, lower bounds for the time elapsed between consecutive
triggering events are provided, in order to guarantee the avoidance of the notorious
Zeno behaviour.
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Chapter 17
Hybrid-Impulsive Higher Order Sliding
Mode Control

Yuri B. Shtessel, Fathi M. Aldukali and Frank Plestan

Abstract A hybrid-impulsive second order/higher order sliding mode (2-SMC/
HOSM) control is explored in order to reduce dramatically the convergence time prac-
tically to zero, achieving instantaneous (or short time) convergence and uniformity.
For systems of relative degree 2, the impulsive portion of the control function drives
the system’s output (the sliding variable) and it’s derivative to zero instantaneously
(or in short time) achieving a uniform convergence. Then the discontinuous state
or output feedback stabilizes system’s trajectory at the origin (or its close vicinity),
while achieving the ideal or real second order sliding mode (2-SM). The Lyapunov
analysis of the considered hybrid-impulsive-discontinuous systems is performed.
Hybrid-impulsive continuous HOSM (CHOSM) control is studied in systems of
arbitrary relative degree with impulsive action that achieves almost instantaneous
convergence and uniformity. This approach allows reducing the CHOSM amplitude,
since the task of compensating the initial conditions is addressed by the impulsive
action. Two hybrid-impulsive 2-SMCs are studied in systems of arbitrary relative
degree in a reduced information environment. Only “snap” knowledge of the all states
is required to facilitate the impulsive action. The efficacy of studied hybrid-impulsive
control algorithms is illustrated via simulations.

Y.B. Shtessel (B) · F.M. Aldukali
Department of Electrical and Computer Engineering, The University of Alabama
in Huntsville, Huntsville, AL 35899, USA
e-mail: shtessy@uah.edu

F.M. Aldukali
e-mail: fma0001@uah.edu

F. Plestan
Ecole Centrale de Nantes, Institut de Recherche en Communications et Cybernétique
de Nantes - IRCCyN, Nantes, France
e-mail: Franck.Plestan@irccyn.ec-nantes.fr

© Springer International Publishing AG 2018
J.B. Clempner and W. Yu (eds.), New Perspectives and Applications of Modern
Control Theory, https://doi.org/10.1007/978-3-319-62464-8_17

427



428 Y.B. Shtessel et al.

17.1 Introduction

The insensitivity and finite time convergence properties enjoyed by sliding mode
controllers (SMC) [25], make them a useful approach for systems with bounded per-
turbations. The additional properties of higher order sliding mode (HOSM) control
with respect to SMC can be listed as [15, 17, 22, 25]:

1. the capability to handle systems with arbitrary relative degree,
2. generate the continuous control function by a price of artificial increase of relative

degree,
3. the enhanced accuracy of the sliding variable stabilization, while the HOSM

controller is implemented in discrete time,
4. and make HOSM control an attractive technique for a theoretical study and a

practical implementation.

Providing finite time convergence, HOSM control cannot guaranty its uniformity.
In other words, the finite convergence time depends on the initial conditions that very
often are unknown. In the work [3], the authors propose the finite time convergent
dynamics for the HOSM differentiator in order to provide the uniformity, i.e. to make
the convergence time from an arbitrary initial condition to be uniformly bounded.
The uniformity is achieved by a price of a very aggressive feedback when the norm of
the initial conditions is large. The interest in impulsive control as a control solution
that allows driving the system’s states to the origin in a short time has increased
over the past few years [2, 3, 5, 8–12, 18, 19, 21, 23, 24, 26, 27, 30–32]. There
exist numerous practical tasks for which impulsive control is not just an option, but
the only solution to achieve the required performance, since a large deviation from
equilibrium often need to be corrected in very short time. Reaction control systems
(RCS) for quick steering and attitude control of aerospace vehicles can serve as a
good example of utility of the impulsive control [5, 11, 18, 24]. In addition, the
impulsive control was effectively applied for synchronization of the networks with
time delay [32]. For this kind of application, the goal is to drive some variable to zero
in a short time. System is assumed exhibiting the impulsive effects on a countable
set of the time instants t0 < t1 < t2 < t3 < · · · when the states of the control system
change instantaneously in accordance with restitution rules [21]. Therefore, such
systems can be also treated as discrete-continuous or hybrid-impulsive systems [19,
21]. For practical applications, the problem is in designing the impulsive control by
taking into account the non-zero sampling intervals. The results presented in this
chapter are inspired by pioneering work [10, 23, 31], where the second order sliding
mode control and relay output control were combined with the impulsive actions
achieving uniformity and short convergence time.

In this chapter, we explore a hybrid-impulsive HOSM control in order to reduce
dramatically the convergence time practically to zero, achieving instantaneous (or
short time) convergence and uniformity [8, 9, 23, 26, 27, 30]. Specifically, the
robustness and uniform convergence in systems with relative degree r ≥ 2 is studied
using the state and output feedback discontinuous-hybrid-impulsive algorithms. The
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impulsive portion of the control function drives the system’s output (the sliding
variable) and its derivative to zero instantaneously (or in short time) achieving a
uniform convergence. Then, the discontinuous state or output feedback stabilizes
system’s trajectory at the origin (or its close vicinity), while achieving the ideal or
real second order sliding mode (2-SM). The restitution rules are enforced using the
Dirac delta function and its derivative.

In order to avoid the sliding variable differentiation in HOSM control algorithms
the use of the discontinuous output feedback in 2-SMC in a concert with the hybrid-
impulsive control is explored. It is known that such systems are only stable in the
absence of the disturbance, and may be unstable in its presence. It is shown in [8,
9, 23, 26, 27, 30] that the hybrid-impulsive-discontinuous output feedback control
uniformly stabilizes the output (the sliding variable) and its derivative at zero (in a
non-perturbed case) and in a small domain (in a perturbed case). Therefore, the ideal
or real 2-SM is uniformly reached via discontinuous-impulsive output feedback. The
stability of considered hybrid-impulsive system is studied using the Lyapunov Func-
tions approaches [13, 21] for the ideal and practically implemented impulsive control
laws as in the work [8, 9, 21, 23, 26]. The studied hybrid-impulsive discontinuous
algorithms were implemented in [2, 8, 26] using a practical realization of the delta
function, which is introduced on a compact time set [26, 30]. The implementation
of delta function was studied in [8, 26] while taking into account the sampling rate
and the limitations to the amplitude of the control functions. In this chapter, we also
explore a continuous HOSM (CHOSM) of arbitrary relative degree with impulsive
action [1] in order to reduce dramatically the convergence time practically to zero,
achieving almost instantaneous convergence and uniformity. After a short conver-
gence time due to the impulsive action, CHOSM takes over and compensates for
the disturbance, while keeping the system states in the origin. This approach allows
reducing the CHOSM amplitude since the task of compensating the initial conditions
is addressed by the impulsive action. By approximating the Dirac delta function and
its derivatives, we determine practical impulsive input signals that bring the states of
the system to the origin in a short time.

Robust control of perturbed dynamic systems in a reduced information environ-
ment [2] that requires a short convergence time is another important practical task [5,
11] that is studied in this chapter. In many cases, only one or two last variables of the
system’s dynamic equations are available for measurement. For instance, a speed of a
car usually is measured by a tachometer, while the position is not directly measured.
Another example includes a launch vehicle attitude control [5, 11, 14] when only
angular accelerations (and, sometimes, angular velocities) are directly measured by
the measuring devices located in the Inertial Measurement Unit (IMU) [14]. The
controlled attitude angles may not be directly measured. In this chapter only the last
one or two states of the perturbed system presented in a format of consecutive r
integrators are assumed measured. The control problem that consists in driving all
state variables to zero instantaneously or in a short time and keep them in the origin
thereafter in the presence of the bounded perturbations is addressed via impulsive
control [2, 8, 19, 21, 26, 30] employed in a concert with second order sliding mode
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control (2-SMC) [16, 25]. Two 2-SMC algorithms are employed in a concert with
the impulsive action in the reduced information environment, specifically [2, 5, 25]:

1. Super-twisting (STW) control algorithm that drives the last state variable (assumed
measurable) and its derivative to zero in finite time in the presence of the smooth
disturbance, which derivative is bounded.

2. Twisting control (TW) that drives the two last state variables (assumed measur-
able) to zero in finite time in the presence of the bounded disturbance.

Impulsive control, applied in a concert with super-twisting and twisting control
functions, drives the rest of the variables to zero instantaneously or in a very short
time. Only “snap” knowledge (or knowledge in a single time instant) of the all states is
required in order to facilitate the effectiveness of the impulsive action. The efficacy of
the studied hybrid-impulsive 2-SMC/HOSM algorithms is verified via simulations.

A structure of the chapter is as follows: the mathematical background is presented
in Sects. 17.2 and 17.3 contains the problems description; hybrid-impulsive control in
2-SMC systems is studied in Sect. 17.4; second order systems with hybrid-impulsive
discontinuous output feedback are discussed in Sect. 17.5; simplified discontinuous-
hybrid-impulsive feedback is presented in Sects. 17.6 and 17.7 is dedicated to con-
tinuous HOSM with impulsive actions; hybrid-impulsive 2-SMC in reduced infor-
mation environment is studied in Sect. 17.8; case studies are discussed in Sect. 17.9;
conclusions are presented in Sect. 17.10 that is followed by the references section.

17.2 Mathematical Background

17.2.1 System Dynamics

Consider SISO input–output dynamic system of the form

ż = a(t, z) + b(t, z)u
σ = σ(t, z)

(17.1)

where z ∈ Rn is a state vector, u ∈ R is a control function, a(t, z) ∈ Rn is a smooth
enough partially known vector-field, b(t, z) ∈ Rn is a smooth enough known vector-
field, and σ ∈ R is a smooth enough output (a sliding variable).

The sliding variable input–output dynamics can be presented in a form of r th
order differential equation

σ (r) = f (t, z) + Δ f (t) + g(t, z)u
︸ ︷︷ ︸

v

(17.2)
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that can be presented as
σ (r) = Δ f (t) + v1 (17.3)

where f (t, z) ∈ R is a known drift term, Δ f (t) ∈ R is the perturbation, r is relative
degree, and v = − f (t, z) + v1.

The sliding variable dynamics (17.3) can be also presented in a state variable
format

ẋ = Ax + B(Δ f + v1), x(0) = x0 (17.4)

where

x = [x1, x2, . . . , xr ]T = [

σ, σ̇ , . . . , σ (r−1)
]T

, A =

⎡

⎢

⎢

⎣

0 1 ... 0
. . . .

0 0 ... 1
0 0 ... 0

⎤

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎣

0
0
...

1

⎤

⎥

⎥

⎦

(17.5)
Assumptions:
(A1) Relative degree r is assumed to be constant and known;
(A2) The zero dynamics of system (17.1) are stable;
(A3) The derivative of the perturbation Δ f (t) is bounded with a known boundary,
i.e.

∣

∣Δ ḟ
∣

∣ ≤ L1, L1 > 0, or/and Δ f (t) is bounded by itself, when required, i.e.
|Δ f | ≤ L2, L2 > 0;
(A4) The function g(t, z) �= 0, ∀z ∈ R, ∀t ∈ R+ is known.

17.2.2 The Impulsive Input Approach

The control function in (17.3) is augmented as

v1 = v2 + vimp (17.6)

where v2 is HOSM control to be designed later on, and vimp is the impulsive input
that is considered in the form [8, 26, 30]

vimp =
r−1
∑

k=0

qkδ
(k)
ε (t) (17.7)

where δ(k)
ε are the generalized derivatives of the Dirac delta distribution centered in

ε > 0 defined as [7, 29]

∫

δ(k)
ε (t)φ(t)dt = (−1)k φ(k)(ε) (17.8)

for any smooth enough test function φ(t), and qk are scalar to be determined. In
order to identify qk , firstly, a solution of system (17.4), (17.7) is determined as:
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x(t) = exp(At)x0 +
∫ t

0
expA(t − τ)B

(

qk

r−1
∑

k=0

δ(k)
ε (τ ) + v2(τ ) + Δ f (τ )

)

dτ

(17.9)
Consider unperturbed system (17.4) with Δ f (t) ≡ 0 and v2 ≡ 0, then (17.9) becomes

x(t) = exp(At)x0 +
r−1
∑

k=0

exp (A(t − ε)) Ak Bqk (17.10)

for t ≥ ε, and ε > 0 can be infinitesimal. Requiring x(ε) = 0, the coefficients qk can
be computed

[

q0, q1, . . . , qr−1
]T = − [

B, AB, . . . , Ar−1B
]−1

exp (Aε) x0 (17.11)

For system (17.4), (17.5), (17.10), (17.11) the impulsive control (17.7) becomes

vimp = −
r−1
∑

k=0

xr−k(0)δ(k)
ε (t) (17.12)

Remark 17.1 Apparently, being applied at t = 0 (or for ε = 0+) the impulsive con-
trol (17.12) drives x(t) → 0 (or σ, σ̇ , . . . , σ (r−1) → 0) instantaneously.

17.2.3 Uniformity

The definition of uniformity follows the one given in [3].

Definition 17.1 System (17.1) or (17.4), (17.5) is said to be

1. uniformly exact finite time convergent if there exists T ≥ 0 such that ∀ x(t0) ∈
Rr , x(t) ≡ 0 ∀t ≥ T

2. uniformly exact convergent if for any r0 > 0 there exists Tr ≥ 0 such that∀ x(t0) ∈
Rr ‖x(t)‖ ≤ r0 ∀t ≥ Tr

In the other words, the convergence is uniform if the convergence time does not
depend on initial conditions.

17.2.4 Approximation of Delta Function and Its Derivative

The approximation of the impulsive input by the Gaussian function was proposed
and studied in quite a few references (see, for instance, [4, 7])
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Φh(t) = 1√
2πh

exp
(−t2/(2h2)

)

(17.13)

The Gaussian function (17.13) does not have compact support that makes the approx-
imation less accurate. The following kernel function with finite time support is pro-
posed [29]

ωh(t) =
{

1
κh exp

(

t2

t2−h2

)

, i f |t | < h

0, i f |t | ≥ h
(17.14)

where κ = ∫ 1
−1 exp

(

t2

t2−1

)

dt is a normalized factor, and h > 0 is an arbitrary (usually

small) constant. It is well known that the functions ωh areC∞ smooth and, as h → 0,
these functions approximate the Dirac delta distribution [29].

Another kernel function with finite time support that is more practical for the
implementation is proposed [8, 26, 30] for piece-wise constant approximation of
delta function:

δh(t) =
{

1
h , i f 0 ≤ t ≤ h
0, otherwise

(17.15)

The first derivative of the delta function can be approximated as

δ̇h(t) = δ
(0)
h/2(t+h/2)−δ

(0)
h/2(t)

h/2 =
⎧

⎨

⎩

4/h2, 0 ≤ t ≤ h/2
−4/h2, h/2 < t ≤ h
0, otherwise

(17.16)

The higher order derivatives can be approximated iteratively

δ
(k)
h (t) = δ

(k−1)
h/2 (t + h/2) − δ

(k−1)
h/2 (t)

h/2
, k ≥ 1 (17.17)

The coefficients q0, q1, . . . , qr−1 in impulsive control (17.7) are to be calculated
taking into account the piece-wise constant approximation of the δ-function and it
derivatives in (17.15)–(17.17). Recall that, the goal of the impulsive control (17.7)
is to drive x(t) → 0 by the time t = h while the δ-function and its derivatives are
approximated as in (17.15)–(17.17).

Therefore, the coefficients q0, q1, . . . , qr−1 are to satisfy the following condition,
while v2 and Δ f (t) are assumed disabled for t ∈ [0, h]

0 = x0 +
∫ h

0
exp(−Aτ)B

(

qk

r−1
∑

k=0

δ
(k)
h (τ )

)

dτ (17.18)
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Specifically for r = 3 the coefficients are calculated as

q0 = −x3(0), q1 = −4

(

x2(0) + h

2
x3(0)

)

, q2 = −8

(

x1(0) − x2(0)h − x3(0)
h2

2

)

(17.19)

17.2.5 Continuous HOSM Control

Consider controlling SISO input–output dynamics of the form (17.3). Then the fol-
lowing result is available

Theorem 17.1 ([4]) Consider the unperturbed system (17.3) with Δ f (t) ≡ 0. Let
γi > 0 be such that the polynomial sr + γr sr−1 + · · · + γ2s + γ1 is Hurwitz, then
there exists ε ∈ (0, 1) such that for every η ∈ (1 − ε, ε) the origin of the system
(17.3), σ = σ̇ = · · · = σ (r−1) = 0 is a globally finite time stable equilibrium under
the feedback control

v1 = −γr

∣

∣

∣σ
(r−1)

∣

∣

∣

ηr
sign

(

σ (r−1)
)

− γr−1

∣

∣

∣σ
(r−2)

∣

∣

∣

ηr−1
sign

(

σ (r−2)
)

− · · · − γ1 |σ |η1 sign (σ )

(17.20)
where the coefficients η1, η2, . . . , ηr satisfy

ηi−1 = ηiηi+1

2ηi+1 − ηi
, ηr+1 = 1, ηr = η i = 2, . . . , r (17.21)

Remark 17.2 Note that the control (17.20), (17.21) is continuous.

Remark 17.3 The statement of Theorem 17.1 gives the existence conditions for the
finite convergence time controller (17.20), (17.21).

These conditions can be easily transformed into the design algorithm. For instance,
considering the roots of the Hurwitz polynomial sr + γr sr−1 + · · · + γ2s + γ1 to be
equal to −2 the control (17.20) can be parameterized for r ≤ 4 as

r = 1, η = 1, v1 = −2 |σ |5/10 sign(σ )

r = 2, η = 0.6, v1 = −4 |σ |6/14 sign(σ ) − 4 |σ |6/10 sign(σ̇ )

r = 3, η = 0.7, v1 = −8 |σ |7/16 sign(σ ) − 12 |σ̇ |7/13 sign(σ̇ ) − 6 |σ̈ |7/10 sign(σ̈ )

r = 4, η = 0.8, v1 = −16 |σ |8/16 sign(σ ) − 32 |σ̇ |8/14 sign(σ̇ ) − 24 |σ̈ |8/12 sign(σ̈ )

−8
∣

∣

...
σ
∣

∣
8/10 sign(

...
σ )

(17.22)

The theoretical result that allows designing the finite time converging continuous
control for the perturbed system (17.3) is formulated in the following theorem.
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Theorem 17.2 ([6]) Consider the perturbed system (17.3)–(17.5) with a smooth
perturbation Δ f �= 0, and its derivative is bounded

∣

∣Δ ḟ
∣

∣ ≤ L1. Let γi > 0 be
such that the polynomial sr + γr sr−1 + · · · + γ2s + γ1 is Hurwitz, and ε ∈ (0, 1)

is identified so that unperturbed system (17.3) is a finite time convergent with the
control feedback (17.20), (17.21). Then the origin of the perturbed system (17.3),
σ = σ̇ = · · · = σ (r−1) = 0 is a globally finite time stable equilibrium under the con-
tinuous control feedback

v1 = −γr

∣

∣

∣σ
(r−1)

∣

∣

∣

ηr
sign

(

σ (r−1)
)

− γr−1

∣

∣

∣σ
(r−2)

∣

∣

∣

ηr−1
sign

(

σ (r−2)
)

− · · · − γ1 |σ |η1 sign (σ ) − �

(17.23)
where

� = μ1 |s|1/2 sign(s) + ξ

ξ̇ = μ2 sign(s)
(17.24)

with
s = σ (r−1) + z, ż = u − �

μ1 = 1.5L1/2
1 , μ2 = 1.1L1

(17.25)

Remark 17.4 It is worth noting to mention that Eqs. (17.23)–(17.25) represent super-
twisting disturbance observer, and the term � becomes exactly equal to the pertur-
bation Δ f in finite time.

Remark 17.5 The continuous controller (17.23)–(17.25) can be claimed to be a
continuous HOSM (CHOSM) controller for the system in (17.1), since it drives
σ, σ̇ , . . . , σ (r−1) → 0 in finite time in the presence of the smooth disturbance Δ f
with known bounded derivative

∣

∣Δ ḟ
∣

∣ ≤ L1.

17.2.6 Lyapunov Analysis of 2-SMC Control Algorithms

17.2.6.1 Lyapunov Analysis of Super-Twisting Control

The following result is available:

Theorem 17.3 ([20]) Consider system driven by super-twisting control [16],

ẋ1 = −α |x1|1/2 sign(x1) + x2

ẋ2 = −β sign(x1) + ϕ(t)
(17.26)

where x1, x2 ∈ R, |ϕ(t)| ≤ L1, L1 > 0; α, β > 0. Then there exists a strict Lya-
punov function

V (x1, x2) = (λ + 4μ2) |x1| + x2
2 − 4μx2 |x1| sign(x1), λ, μ > 0

V̇ (x1, x2) ≤ −r0V 1/2(x1, x2), r0 = const, r0 > 0
(17.27)
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with

α >

(

2L1 + λ + 4μ2
)2

12λμ
− μ (4L1 + 1)

λ
, β = 2μα (17.28)

17.2.6.2 Lyapunov Analysis of Twisting Control

The following result is available:

Theorem 17.4 ([28]) Consider system driven by twisting control [16]

ẋ1 = x2

ẋ2 = −ᾱ sign(x1) − β̄ sign(x2) + ϕ(t)
(17.29)

where x1, x2 ∈ R, |ϕ(t)| ≤ L2, L2 > 0. Then there exists a strict Lyapunov func-
tion

V (x1, x2) = ᾱx2
1 + γ x2 |x1|3/2 sign(x1) + ᾱx2

2 |x1| + 1
4 x

4
2

V̇ (x1, x2) ≤ −r1 [V (x1, x2)]
3/4 , r1 = const, r1 > 0

(17.30)

with
ᾱ − L2 > β̄, β̄ > L2, ᾱ, β̄ > 0 (17.31)

Corollary 17.1 In systems (17.26), (17.28) and (17.29), (17.31) the following con-
ditions hold:

1. the variables x1, x2 → 0 in finite time,
2. x1 = x2 = 0 ∀t ≥ 0 if x1(0) = x2(0) = 0.

Note that the conditions (17.28) and (17.31) may be very conservative, since they
are derived using Lyapunov function techniques, and the coefficients ᾱ, β̄ > 0 can
be easily identified by tuning in the simulations.

17.3 Studied Problems

The problem discussed in this chapter is three-fold:

1. Study the robustness and uniform convergence of systems (17.3)–(17.5) with
relative degree r = 2 using the state and output feedback discontinuous-hybrid-
impulsive algorithms.

2. Study a continuous HOSM (CHOSM) control in perturbed systems (17.3)–(17.5)
of arbitrary relative degree with impulsive action in order to reduce dramati-
cally the convergence time practically to zero, achieving almost instantaneous
convergence and uniformity.
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3. Study a hybrid-impulsive second order sliding mode control (2-SMC) in per-
turbed dynamic systems (17.3)–(17.5) of arbitrary relative degree in a reduced
information environment. Only last one or two variables in system (17.3)–(17.5)
are assumed available.

17.4 Hybrid-Impulsive Control in 2-SMC Systems

Consider a single-input-single output (SISO) uncertain nonlinear system (17.3) with
r = 2. The system (17.3)–(17.5) can be presented as

{

ẋ1 = x2

ẋ2 = Δ f (t) + v1, x1(t0) = x10, x2(t0) = x20
(17.32)

where x1(t) = σ(t) and x2(t) = σ̇ (t).

17.4.1 Hybrid-Impulsive Effects

It is assumed that system (17.32) exhibits impulse effects on a countable set of time
instants t1 < t2 < t3 . . . when the states of the system (17.32) are instantaneously
changed in accordance with the restitution rules:

x1(t
+
i ) = U1(x1(t

−
i ), ti )

x2(t
+
i ) = U2(x2(t

−
i ), ti ), i = 0, 1, 2, . . .

(17.33)

where the restitution rules U1(x1(t
−
i ), ti ), U2(x2(t

−
i ), ti ) are defined as:

U1(x1(t
−
i ), ti ) = x1(t

−
i ) + γ1i

U2(x2(t
−
i ), ti ) = x2(t

−
i ) + γ2i , γ1i , γ2i ∈ R

(17.34)

The following assumptions are made [21]:
(A5) Discrete-continuous system (17.32)–(17.34) possess a globally defined,
Lipschitz continuous, positive definite, decrescent function V (t, x) : 0 < V0(x) ≤
V (t, x) ≤ V1(x) such that V̇ (t, x) ≤ 0, computed along the trajectory
x(t) = [x1(t), x2(t)]

T of Eq. (17.32), almost everywhere (excluding, possibly, the
impulsive effects (17.33), (17.34)).
(A6) At the time instants ti , i = 0, 1, 2, 3, . . . the function V (t, x), computed on the
trajectory x(t) of Eq. (17.32) taking into account the restitution rule (17.33), takes
the values V (ti , x1(t

+
i ), x2(t

+
i )) so that

lim
i→∞ V (ti , x1(t

+
i ), x2(t

+
i )) = 0 (17.35)
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17.4.2 Stability of Hybrid-Impulsive Systems

Recall the results of stability analysis of system (17.32)–(17.35).

Theorem 17.5 ([21]) Suppose that the assumption A5 and A6 hold, then system
(17.32) with the hybrid-impulsive effects (17.33), (17.34) is globally asymptotically
stable.

Corollary 17.2 If V (ti , x1(t
+
i ), x2(t

+
i )) = 0 holds for all i ≥ k where k is a finite

integer number, then system (17.5) is practically asymptotically stable with finite
convergence time.

Fulfillment of the restitution rule
Consider system (17.5) with

v1 = v2 + v3 (17.36)

where |v2| ≤ �, � > 0, and v3 is impulsive control

v3 = −x20δ(t − t0) − x10δ̇(t − t0) (17.37)

with δ(τ ), δ̇(τ ) are Dirac function (distribution) and its derivative [7, 29]. The
following lemma constitutes the fulfillment of the restitution rule [8, 21, 26].

Lemma 17.1 ([21]) Impulsive control (17.37) fulfills the restitution rule (17.33),
(17.34) changing the values x1(t), x2(t) at t = t0 instantaneously to x1(t

+
0 ) =

x2(t
+
0 ) = 0.

17.4.3 Twisting-Hybrid-Impulsive Control

17.4.3.1 On Uniformity of Convergence of Twisting Control

It is known that the perturbed system’s dynamics (17.32) controlled by the twisting
controller

v1 = −K ( sign(x1) + 0.5 sign(x2)), K > 2L2 (17.38)

is globally finite time convergent [15, 25]. The following estimation of finite con-
vergence time starting with the time moment, when x1 = 0 is available:

T ≤ |x̃2|
(1 − q̄)(0.5K − L2)

(17.39)

where x̃2 = x2 at the time moments when x1 = 0. Also, it is assumed the succes-

sive crossings of the axis x1 = 0 satisfy the inequality |x2,i+1|
|x2,i | ≤ q̄ < 1 (Fig. 17.1).

Apparently, the convergence is not uniform, since it depends on the initial conditions.
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Fig. 17.1 Twisting
controller trajectory

17.4.3.2 Stability and Uniformity of Twisting-Hybrid-Impulsive
Control

Consider system (17.32) controlled by twisting-hybrid-impulsive control given in a
form

v1 = −K ( sign(x1) + 0.5 sign(x2)) − x20δ(t − t0) − x10δ̇(t − t0), K > 2L2

(17.40)

The results of stability and uniformity analysis of system (17.32), (17.40) are pre-
sented in the following Theorem (see [8, 26]).

Theorem 17.6 The twisting-hybrid-impulsive controller (17.40) instantaneously
drives the system (17.32) to 2-SM making the system (17.32), (17.38) uniformly
exact finite time convergent.

Remark 17.6 Note that if the initial states x10 and x20 are uncertain, then the impul-
sive control (17.37) will drive instantaneously the state variables x1 and x2 not to the
origin, but to a domain Ω(x1, x2) : {|x1| ≤ ε̄1, |x2| ≤ ε̄2}, where ε̄i > 0 is the ampli-
tude of the measurement/estimation uncertainty of the initial states xi0 i = 1, 2.
Then the twisting control takes over, given the states x1, x2 measured with noise
(the variable x2 may contain noise also after the differentiation of noisy x1 using the
higher order sliding mode differentiator [16]), i.e. xmi − xi = ω̃i , |ω̃i | ≤ ε̃i , ε̃i >

0 i = 1, 2, where xmi is the measured value of the state xi . It is known [16] that in
the system run by 2-SMC (specifically by twisting control) the stabilization accuracy
of the variable x1 is proportional to O(ε̃) and of the variable x2 is proportional to
O(ε̃1/2), where ε̃ = max (ε̃1, ε̃2) , ε̃1, ε̃2 > 0, after a finite time convergence.
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17.4.3.3 Twisting Control with Simplified Hybrid-Impulsive Action

In this section, the hybrid-impulsive-twisting control law is studied assuming that
either δ̇(t − t0) or δ(t − t0) is not available. Next, system (17.32) is considered under
either one of the following simplified twisting-hybrid-impulsive control:

v1 = −K ( sign(x1) + 0.5 sign(x2)) − x20δ(x1), K > 2L2 (17.41)

or
v1 = −K ( sign(x1) + 0.5 sign(x2)) − x10δ̇(x2), K > 2L2 (17.42)

The main results of a study of the stability, dynamics and uniformity of system’s
(17.32), (17.42) are presented in the following theorems [8, 26].

Theorem 17.7 Assume that x10 = x1(t0) = 0 and x20 = x2(t
−
0 ) �= 0, then system

(17.32), (17.41) is uniformly exact finite time convergent to 2-SM x1, x2 → 0 with
zero convergence time.

Theorem 17.8 Assume that x20 = x2(t
−
0 ) = 0 and x10 = x1(t

−
0 ) �= 0 , then system

(17.32), (17.42) is uniformly exact finite time convergent to 2-SM x1(t), x2(t) → 0
with zero convergence time.

Remark 17.7 Uniformity of convergence in system (17.32), (17.41) will be com-
promised if the initial condition x10 = x1(t0) �= 0. In this case, system (17.32) will
be controlled by the controller (17.41) with mute impulsive action until the state
x1(t) becomes equal to zero in finite time t = t1 (see Fig. 17.1) that depends on the
initial condition x10. Then, as a result of the impulsive action and in accordance with
Theorem 17.7, the 2-SM will be reached in system (17.32), (17.41) instantaneously
(uniformly). The same comments are valid about the uniformity of convergence of
system (17.32), (17.42), when x20 = x2(t

−
0 ) �= 0.

17.5 Discontinuous Output Feedback-Hybrid-Impulsive
Control

In order to avoid the sliding variable differentiation in the twisting control algorithm
(17.38) the use of the discontinuous output feedback in a concert with the hybrid-
impulsive control is proposed and explored in this section.

Consider system (17.32) controlled by output feedback discontinuous-hybrid-
impulsive control

v1 = −K sign(x1) −
∑

i=0,1,2,...

x2(t
−
i )δ(t − ti ) −

∑

i=0,1,2,...

x1(t
−
i )δ̇(t − ti ), K > 0

(17.43)
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Remark 17.8 It is assumed that the value x1 is measured continuously. As to x2, a
“snap” knowledge of x2(t

−
i ), i = 1, 2, 3, . . . is required for implementing the output

feedback control law (17.43) (by “snap” knowledge we mean that the variable x2 is
accessible in isolated time instants only).

17.5.1 Unperturbed Case

The results of analysis of unperturbed system (17.5), (17.43) are presented in the
following Theorem [8, 26].

Theorem 17.9 Assume the perturbation Δ f (t) ≡ 0 in system (17.32), then system
(17.32), (17.43) with non-zero initial conditions x1(t

−
0 ) = x10, x2(t

−
0 ) = x20 is uni-

formly exact finite time convergent (to 2-SM) for i = 0 with zero convergence time.

17.5.2 Perturbed Case

Consider perturbed system (17.32), (17.43) with Δ f (t) �= 0, |Δ f (t)| ≤ L2, L2 >

0 and the non-zero initial conditions x1(t
−
0 ) = x10, x2(t

−
0 ) = x20. Then after appli-

cation of the impulsive action at t = t0 system (17.32), (17.43) becomes

{

ẋ1 = x2

ẋ2 = Δ f (t) − K sign(x1), K > L2
(17.44)

with x1(t
+
0 ) = x2(t

+
0 ) = 0 for all t ∈ [

t+0 , t1
]

.
Verifying a validity of the assumption (A5), a candidate to a Lyapunov func-

tion V1(x1, x2) = V (x1, x2) = K |x1| + 1
2 x

2
2 is introduced, and its derivative is com-

puted as:

V̇ (x1, x2) = K ẋ1 sign(x1) + x2 ẋ2 = Kx2 sign(x1) − x2K sign(x1) + x2Δ f (.) =
x2Δ f (.) ≤ |x2| L2

(17.45)
Apparently, V̇ (x1, x2) in (17.45) is sign indefinite, and the assumption (A5) in Theo-
rem 17.5 is not met. It is difficult to expect that there exists any other positive definite
function that has negative definite (negative semi-definite) derivative in a case of
perturbed system (17.44).

Therefore, the application of Theorem 17.5 for analysis of the stability of the
perturbed output feedback-hybrid-impulsive system (17.32), (17.43) is questionable.
Prior to studying the stability of the perturbed system (17.5), (17.16) the stability of
the perturbed system (17.32)–(17.34) is studied upon the following assumption.
(A7) Discrete-continuous system (17.32)–(17.34) possess a globally defined, Lip-
schitz continuous, positive definite, decrescent function 0 ≤ V0(x) ≤ V (t, x) ≤
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V1(x), and there exist β0 > 0 and c > 0 so that ∀x ∈ W , W : {V1(x) ≤ β0} inequal-
ity V̇1(x) ≤ c computed along the trajectory x(t) = [x1(t), x2(t)]

T of (17.32), holds
on any finite time interval t ∈ [tm, tM ] , 0 ≤ tm < tM (excluding, possibly, the time
instants with impulsive effects (17.33), (17.34)).

The results of analysis of the discontinuous output feedback-hybrid-impulsive
perturbed system (17.32)–(17.34) that satisfies the assumption (A7) are presented in
the following theorem (see [8, 26]).

Theorem 17.10 Assume that the assumption (A7) holds for system (17.32), then
there exist the restitution rules (17.33), (17.34) so that the trajectory x(t) =
[x1(t), x2(t)]

T stays in the domain V1(x1(t), x2(t)) ≤ β0 for all t ≥ t+0 , β0 > 0.

Next, the stability and uniformity in the perturbed system (17.32), (17.43) is
studied, and the results are formulated in the following Theorem [8, 26].

Theorem 17.11 Given β0 > 0, then the perturbed system (17.32) with the output
feedbackdiscontinuous-hybrid-impulsive control (17.43) (where ti+1, i=0, 1, 2, . . .

are defined from V1(x1(t
−
i+1), x2(t

−
i+1)) = K

∣

∣x1(t
−
i+1)

∣

∣ + 1
2 x

2
2 (t−i+1) = β0,

i = 0, 1, 2, . . .) is uniformly convergent with zero convergence time to real 2-SM
in the domain V1(x1(t), x2(t)) ≤ β0, ∀t ≥ t0.

Remark 17.9 It is worth noting that the value of β0 > 0 can be taken arbitrary small,
which yields an arbitrary small size of the domain of convergence V1(x1(t), x2(t)) ≤
β0, ∀t ≥ t0.

17.6 Simplified Discontinuous Output
Feedback-Hybrid-Impulsive Control

In this section, we consider perturbed system (17.32) controlled by discontinuous
output feedback with a simplified hybrid-impulsive control given in a form

v1 = −K sign(x1) −
∑

i=0,1,2,3,...

x2(t
−
i )δ(t − ti ), K > D (17.46)

The advantage of such simplified hybrid-impulsive discontinuous output feedback
is in the use of only delta function (the implementation of the derivative of the
delta function requires larger control amplitude and can be more challenging in real
applications) for implementing the restitution rules (17.33), (17.34). The time instants
ti in Eq. (17.46) correspond to the cases when x1(ti ) = 0. Then the restitution rules
in (17.33), (17.34) take a form

x1(t
+
i ) = x1(t

−
i ) = 0, x2(t

+
i ) = x2(t

−
i ) − x2(t

−
i ) = 0, i = 0, 1, 2, .. (17.47)

It is assumed that only x1 measurement is available continuously and x2 measurement
is available when x1 = 0 (“snap” measurement).



17 Hybrid-Impulsive Higher Order Sliding Mode Control 443

17.6.1 Unperturbed System

The results of stability analysis of unperturbed system (17.5) with a simplified dis-
continuous output feedback-hybrid-impulsive control (17.19) is presented in the fol-
lowing theorem [8, 26].

Theorem 17.12 Assume that in system (17.32) x10 = x1(t0) = 0 and Δ f (t) ≡ 0,
then unperturbed system (17.32), (17.46) for i = 0 is uniformly exact finite time
convergent (to 2-SM) with zero convergence time (see [8, 26]).

Discussion. It is worth noting that the uniformity of exact finite time convergence
is compromised as soon as the initial condition x10 = x1(t0) �= 0. The discontinuous
output feedback controller v1 = −K sign(x1) makes the condition of Theorem 17.12
valid as soon as x1is driven to zero in finite time.

17.6.2 Perturbed System

Theorem 17.11 is applied for the analysis of perturbed system (17.32) with the
hybrid-impulsive discontinuous output feedback (17.46) and a simplified restitu-
tion rule (17.47). The results of the analysis are presented in the following theorem
(see [8, 26]).

Theorem 17.13 Assume that x10 = x1(t0) = 0, x20 = x2(t0) �= 0, and x1(t
+
i ) =

ε1i , x2(t
+
i ) = ε2i (due to the imperfect snap knowledge of x2), where |ε1i | , |ε2i | ∈

R+ are small real numbers, then the perturbed system (17.5), (17.19) is uniformly
convergent with zero convergence time to real 2-SM in the domain

V1(x1(t), x2(t)) ≤ β0

β0 = max
i=1,2,3,...

βi ,

βi = K

(

|ε1i | + |ε2i | |ε2i |+
√

ε2
2i+2|ε1i |(K−D)

K−D + (D+K )

2

(

|ε2i |+
√

ε2
2i+2|ε1i |(K−D)

K−D

)2
)

+
1
2

(

|ε2i | (D+K )

K−D

(

|ε2i | +
√

ε2
2i + 2 |ε1i | (K − D)

))

(17.48)

Discussion. The results of the Theorem 17.13 are illustrated in Fig. 17.2, where
the state x2(t) is moved instantaneously to x2(t

+
0 ) ∈ ε20 and x1(t

+
0 ) → ε10 > 0 by

the impulsive action (17.46), (17.47) at t = t0. The output feedback control v1 =
−Ksign(x1) overcomes the bounded perturbation Δ f (t) and drives the states until
x1(t) becomes equal to zero at t = ti (i = 1). Then the impulsive action (17.46),
(17.47) drives x2(t) instantaneously to x2(t

+
i ) ∈ ε2i and x1(t

+
i ) ∈ ε1i < 0, and so on.

The states x1(t), x2(t) are uniformly exact convergent with zero convergence time
to real 2-SM in the domain x1(t), x2(t) ∈ { V1(x1(t), x2(t)) ≤ β0} ∀t ≥ t+0 .
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Fig. 17.2 Simplified hybrid-impulsive effects in perturbed system with the discontinuous output
feedback

Corollary 17.3 If ε1i , ε2i that may characterize the implementation error of the
restitution rules (17.47) are equal to zero, thenβ0 = 0 and the system (17.32), (17.46)
is uniformly exact convergent with zero convergence time to 2-SM x1(t) = x2(t) =
0 ∀t ≥ t+0 as soon as x1(t) becomes equal to zero.

The study of the implementation issues of delta function δε(t) and its derivatives
δ(k)
ε (t), k = 1, 2, . . . , r − 1 as in (17.15)–(17.17) are available in [8, 26]. Also, this

study is presented in the Sects. 17.7 and 17.8, and in examples discussed in Sect. 17.9.

17.7 Continuous Higher Order Sliding Mode Control
with Impulsive Action

In this section, we explore a continuous HOSM (CHOSM) control of arbitrary rel-
ative degree with impulsive action in order to reduce dramatically the convergence
time practically to zero, achieving almost instantaneous convergence and uniformity.
This approach allows reducing the CHOSM amplitude, since the task of compensat-
ing the initial conditions is addressed by the impulsive action.

Consider SISO input–output perturbed dynamics in Eqs. (17.3)–(17.5) with the
smooth perturbation Δ f (t) whose derivative is bounded

∣

∣Δ ḟ
∣

∣ ≤ L1, L1 > 0.

Next, in accordance with Theorem 17.2, the CHOSM control (17.23)–(17.25) drives
σ, σ̇ , . . ., σ (r−1) → 0 in finite time and holds σ, σ̇ , . . . , σ (r−1) in the origin all
consecutive time.
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It is worth noting that the equilibrium point σ = σ̇ = · · · = σ (r−1) = 0 is stabi-
lized by CHOSM control (17.23)–(17.25) in finite time but not uniformly.

In this section, we address the following tasks:

1. Design the hybrid-impulsive CHOSM control that drives σ, σ̇ , . . . , σ (r−1) → 0
instantaneously (uniformly) and holds σ = σ̇ = · · · = σ (r−1) = 0 for all consec-
utive time.

2. Implement the delta function and its derivatives and study the system’s (17.3)–
(17.5) controlled by hybrid-impulsive CHOSM control with the practically imple-
mented impulsive action.

17.7.1 Hybrid-Impulsive CHOSM Control with Available
Delta Function and Its Derivatives

The first main result is formulated in the following theorem.

Theorem 17.14 Assume that:

1. The initial condition vector x(0) = x0 ∈ Rr is available,
2. the delta function δε(t) and its consecutive derivatives δ(k)

ε (t), k = 1, 2, . . . ,

r − 1 are exactly implementable

then the hybrid-impulsiveCHOSMcontrol law (17.6): v1 = v2 + vimp, where v2 is the
CHOSM control function computed in terms of v1 in Eqs. (17.23)–(17.25), and vimp

is the impulsive input that is considered in the form (17.7), or in the form (17.12), (the
initial values of the states are assumed available), drives x(t) → 0 instantaneously
and keeps it there all consecutive time after a finite time transient response.

Proof The impulsive control vimp in (17.7), (17.12) drives vector x(t) → 0 instan-
taneously due to the analysis given in Sect. 17.2.2. Then it requires finite time for
the super-twisting disturbance observer in Eqs. (17.24) and (17.25) to reconstruct
the perturbation Δ f , i.e. � ≡ Δ f ∀t ≥ t f , where t f is the convergence time of the
super-twisting disturbance observer in (17.24), (17.25). Next, the control (17.23)–
(17.25) drives x(t) → 0 in finite time t̄ f > t f in accordance with Theorem 17.2.
Then x(t) ≡ 0 ∀t ≥ t̄ f . Theorem is proven.

17.7.2 Hybrid-Impulsive CHOSM Control with Impulsive
Function Piecewise-Constant Approximation

In this subsection, the Hybrid-Impulsive CHOSM control with delta function and its
derivatives being approximated as in Eqs. (17.15)–(17.17) is explored. In Eq. (17.7)
for impulsive control in the approximation case the coefficients q0, q1, . . . , qr−1



446 Y.B. Shtessel et al.

are to be calculated using Eq. (17.18). Specifically, for r = 3 the coefficients are
calculated as in Eq. (17.19).

The second main result is formulated in the following proposition

Theorem 17.15 Assume that:

1. The initial condition vector x(0) = x0 ∈ Rr is available,
2. The delta function and its r − 1 derivatives are approximated in accordance with

Eqs. (17.15)–(17.17),
3. The CHOSM control (17.23)–(17.25) is mute and Δ f (t) ≡ 0 for t ∈ [0, h].

then the CHOSM-impulsive control law in Eqs. (17.3)–(17.7), (17.23)–(17.25) drives
x(t) → 0 by time t = h and keeps it there all consecutive time after a finite time
transient response.

Proof The impulsive control vimp in (17.7), (17.15)–(17.17) drives vector x(t) →
0 by time t = h due to a special selection of the coefficients q0, q1, . . . , qr−1 in
accordance with Eq. (17.18). The rest of the proof is the same as in Theorem 17.14.

17.8 Impulsive-Second Order Sliding Mode Control
in Reduced Information Environment

In many cases, only one or two last variables of the system’s dynamic equations are
available for measurement. For instance, a speed of a car usually is measured by a
tachometer, while the position is not directly measured. Another example includes
a launch vehicle attitude control, when only angular accelerations (and, sometimes,
angular velocities) are directly measured by the measuring devices located in the
Inertial Measurement Unit (IMU) [14]. The controlled attitude angles may not be
directly measured. In this subsection, it is assumed that
(A8) Only last one (in a case of super-twisting control) or two (in a case of twisting
control) variables in system (17.4) are available.

The control problem that consists in driving all state variables to zero instanta-
neously or in a short time and keep them in the origin thereafter in the presence
of the bounded perturbations presents a challenge. Here we propose to employ the
impulsive control [19, 21, 30] in a concert with second order sliding mode control
(2-SMC) [16, 25] to address the discussed challenge.

17.8.1 Motivation Examples

Consider perturbed system (17.4) with relative degree r = 2 and the only state x2(t)
is available
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In accordance with Theorem 17.1 the super-twisting control [1, 18] v1 = vSTW

vSTW = −α |x2|1/2 sign(x2) + w
ẇ = −β sign(x2)

(17.49)

with α, β selected to meet (17.28) will drive the sliding set x2, ẋ2 → 0 in finite time
t = t f . In 2-SM the system’s (17.4), (17.49) dynamics become ẋ1 = x2, x2 = 0,
which means that x1 = x1(t f ) = const in 2-SM, and the goal x1 = 0, x2 = 0 ∀t ≥
t f is not achieved.

Consider perturbed system (17.4) with relative degree r = 3, and the only state
x3(t) is available

The super-twisting control v1 = vSTW

vSTW = −α |x3|1/2 sign(x3) + w
ẇ = −β sign(x3)

(17.50)

with α, β > 0 selected to meet (17.28) will drive the sliding set x3, ẋ3 → 0 in finite
time t = t f . In 2-SM the system’s (17.4), (17.50) dynamics become ẋ1 = x2, ẋ2 =
x3, x3 = 0, which means x2 = x2(t f ), x1 = x1(t f ) + x2(t f )

(

t − t f
) ∀t ≥ t f in 2-

SM, and the goal x1 = x2 = x3 = 0 ∀t ≥ t f is not achieved. Furthermore, the variable
x1 → ∞ as time increases in 2-SM. Therefore, the assumption (A8) appeared to be
too restrictive for the super-twisting controller design in the perturbed system (17.4)
with relative degree r ≥ 2.

Consider perturbed system (17.4) with relative degree r = 3, and the state
x2(t), x3(t) are available.

The twisting control [22, 25] v1 = vTW

vTW = −ᾱ sign(x2) − β̄ sign(x3) (17.51)

with ᾱ, β̄ > 0 selected to meet (17.31) will drive the sliding set x2, x3 → 0 in
finite time t = t f . In 2-SM the system’s (17.4), (17.51) dynamics become ẋ1 =
x2, x2 = 0, x3 = 0, which means that x1 = x1(t f ) = const in 2-SM, and the goal
x1 = x2 = x3 = 0 ∀t ≥ t f is not achieved.

17.8.2 Problem Statement and Plan of Attack

The problem is in designing the impulsive/2-SMC control function v1 for the per-
turbed system (17.3) or (17.4) in the reduced information environment that drives the
state vector x (or sliding set σ, σ̇ , . . . , σ (r−1)) to zero instantaneously or in a short
time and keep it there thereafter in the presence of the bounded perturbation (in a
case of using impulsive control in the concert with twisting control), and the smooth
perturbation with the bounded derivative (in a case of using impulsive control in the
concert with super-twisting control), assuming (A1)–(A8) hold.
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We will seek the control function of a form

v1 = v2−SMC + vimp (17.52)

The impulsive control (17.7), (17.12) is applied at t = ε, ε = 0 assuming that the
perturbation Δ f (0) ≡ 0, and the snap knowledge of the state x ∈ Rr at t = 0 is avail-
able (in other words, the initial vector x(0) = x0 is assumed measured). Therefore,
the impulsive control (17.7), (17.12) drives x(t) → 0 instantaneously, which yields
x(0+) = 0 is Eq. (17.4).

1. Plan of attack for v2−SMC = vSTW in Eq. (17.50)
Here, it is assumed that Δ f (t) is a smooth function with the bounded derivative,

and only xr is measured ∀t ≥ 0+. Next, as soon as the impulsive control (17.7),
(17.12) is applied, then the super-twisting control v2−SMC = vSTW

vSTW = −α |xr |1/2 sign(xr ) + w
ẇ = −β sign(xr )

(17.53)

is to be activated in system (17.4) at ∀t = 0+ to keep xr , ẋr = 0 (or σ (r−1), σ (r) = 0)
∀t ≥ 0+ in the presence of the disturbance with the bounded derivative.

2. Plan of attack for v2−SMC = vTW in Eq. (17.51)
Here, it is assumed that Δ f (t) is a bounded function, and only xr−1 and xr are

measured ∀t ≥ 0+. Next, as soon as the impulsive control (17.7), (17.12) is applied,
the twisting control v2−SMC = vTW

vTW = −ᾱ sign(xr−1) − β̄ sign(xr ) (17.54)

is to be activated in system (17.4) at∀t = 0+ to keep xr−1, xr = 0 (orσ (r−2), σ (r−1) =
0) ∀t ≥ 0+ in the presence of the bounded disturbance.

It is worth noting that the impulsive control (17.7), (17.12) (v1 = vimp) drives the
state vector x → 0 of the unperturbed (Δ f ≡ 0) system (17.4) instantaneously and
keeps it there for all consecutive time.

Remark 17.10 Note that for the perturbed system (17.4) with the perturbation

Δ f =
{

0, t ∈ [0, ε]
Δ f̄ , t > ε

(17.55)

the impulsive control (17.7), (17.12) cannot stabilize the state vector x at zero, since
x(ε+) = 0 and ∀t ≥ ε the state vector dynamics are described by system (17.4) with
v1 ≡ 0 and Δ f �= 0. In this case, a state vector time history can be defined

x(t) =
∫ t

ε

exp [A(t − τ)] B
(

Δ f̄
)

dτ ∀t ≥ ε (17.56)
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and x(t) deviates from the origin in a perturbed system controlled by the impulsive
action only. Therefore, based on the analysis presented in Sects. 17.2 and 17.3 it can
be concluded that neither 2-SMC nor vimp(t) individually can drive the system’s state
vector to zero instantaneously or in a short time and keep it there thereafter in the
reduced information environment in the presence of bounded perturbations.

17.8.3 Hybrid-Impulsive 2-SMC with Ideal Delta Function
and Its Derivative

Assuming availability of the ideal delta function and its derivative, the results are
summarized in the following theorems

Theorem 17.16 Assume that

1. Assumptions A1–A8 hold
2. The delta function and its (r − 1) consecutive derivatives are available,

then the impulsive-super-twisting control (17.52), (17.53) drives the state vector
x → 0 instantaneously by the time t = 0+ and keeps it there for all consecutive
time.

Proof As soon as the impulsive control (17.7), (17.12) is applied at t = 0, it drives
x → 0 instantaneously, i.e. x(0+) = 0. Then the system’s (17.4) dynamics become

ẋ = Ax + B(Δ f + vSTW ), x(0+) = 0 (17.57)

where vSTW is defined by Eq. (17.53) and the coefficients α, β > 0 are selected
in accordance with Eq. (17.28). In accordance with Theorem 17.1 xr (t) = ẋr (t) =
0 ∀t ≥ 0+ in second order sliding mode (2-SM). Then system’s (17.4) dynamics in
2-SM become ∀t ≥ 0+

˙̄x = Āx̄, xr = 0,

x̄ = [

x1, x2, . . . , xr−1
]

T , x̄(0+) = 0,

Ā =

⎡

⎢

⎢

⎣

0 1 ... 0
. . . .

0 0 ... 1
0 0 ... 0

⎤

⎥

⎥

⎦

∈ R(r−1)×(r−1)

(17.58)

which yields x̄(t) = 0, xr = 0 ∀t ≥ 0+. Theorem is proven.

Theorem 17.17 Assume that:

1. Assumptions A1–A8 hold
2. The delta function and its (r − 1) consecutive derivatives are available,
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then the impulsive-twisting control (17.52), (17.54) drives the state vector x → 0
instantaneously i.e. x(0+) = 0 and keeps it there for all consecutive time.

Proof As soon as the impulsive control (17.7), (17.12) is applied at t = 0, it drives
x → 0 instantaneously, i.e. x(0+) = 0. Then the system’s (17.4) dynamics become

ẋ = Ax + B(Δ f + vSTW ), x(0+) = 0 (17.59)

where vTW is defined by Eq. (17.54) and ᾱ, β̄ > 0 are selected in accordance with
Eq. (17.31). In accordance with Theorem 17.2 xr−1(t) = xr (t) = 0 ∀t ≥ 0+ in 2-
SM. Then, system’s (17.4) dynamics in 2-SM become ∀t ≥ 0+

˙̃x = Ãx̃, xr−1(t) = xr (t) = 0,

x̃ = [

x1, x2, . . . , xr−2
]

T , x̃(0+) = 0,

Ã =

⎡

⎢

⎢

⎣

0 1 ... 0
. . . .

0 0 ... 1
0 0 ... 0

⎤

⎥

⎥

⎦

∈ R(r−2)×(r−2)

(17.60)

which yields x̃(t) = 0, xr−1(t) = xr (t) = 0 ∀t ≥ 0+. Theorem is proven.

17.8.4 Hybrid-Impulsive-2-SMC Control with Approximation
of the Delta Function and Its Derivatives

In this subsection, the practical impulsive/2-SMC control with delta function and its
derivatives being approximated as in (17.15)–(17.17) is explored. For delta function
centered at zero the practical impulsive action in Eq. (17.7) can be rewritten as

vimp_h =
r−1
∑

k=0

qkδ
(k)
h (t) (17.61)

The coefficients q0, q1, . . . , qr−1 are to be identified so that x(h) = 0 as soon as the
practical impulsive control (17.61) is applied.

The following assumptions are made for identification of the coefficients q0,

q1, . . . , qr−1 in Eq. (17.18) with approximated delta function and its derivatives:
(A9) The perturbation Δ f (t) satisfies the condition (17.55), where Δ f (t) is bounded
(in a case of using impulsive control in the concert with twisting control), and is
smooth with the bounded derivative (in a case of using impulsive control in the
concert with super-twisting control) for all t > h.
(A10) The 2-SMC, v2−SMC , is disabled/mute while the practical impulsive control
vimp_h in (17.61) is applied.
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Specifically, for r = 3 the coefficients are calculated as in Eq. (17.19). Next, we
will seek the control function in the system (17.4) of a form

v1 = v2−SMC + vimp_h (17.62)

The obtained results are summarized in the following two theorems.

Theorem 17.18 Assume that the assumptions (A1)–(A10) hold, then the practical
impulsive-super-twisting control (17.61) with v2−SMC = vSTW , where vSTW defined
by Eqs. (17.52) and (17.53) that is active in system (17.4) ∀t ≥ h and impulsive
action vimp_h in (17.18), (17.61) drive the state vector x → 0 in a short time by
t = h and keeps it there for all consecutive time.

Proof As soon as the practical impulsive control (17.18), (17.61) is applied at t = 0
(with disabled vSTW ∀t ∈ [0, h]) it makes x(h) = 0. Then the system (17.4) becomes

ẋ = Ax + B(Δ f + vSTW ), x(h) = 0 (17.63)

where vSTW that is active ∀t ≥ h is defined by Eq. (17.53) and α, β > 0 are selected
in accordance with Eq. (17.28). In accordance with Theorem 17.1 xr (t) = ẋr (t) =
0 ∀t ≥ h in 2-SM. Then system (17.4) in 2-SM become ∀t ≥ h

˙̄x = Āx̄, xr = 0,

x̄ = [

x1, x2, . . . , xr−1
]

T , x̄(h) = 0,

Ā =

⎡

⎢

⎢

⎣

0 1 ... 0
. . . .

0 0 ... 1
0 0 ... 0

⎤

⎥

⎥

⎦

∈ R(r−1)×(r−1)

(17.64)

which yields x̄(t) = 0, xr = 0 ∀t ≥ h. Theorem is proven.

Theorem 17.19 Assume that the assumptions (A1)–(A10) hold, then the practi-
cal impulsive-twisting control (17.62) with v2−SMC = vTW , where vTW defined by
Eqs. (17.52), (17.54) ∀t ≥ h and the impulsive action vimp_h defined by Eqs. (17.15)–
(17.18), (17.61), makes the state vector x(h) = 0 and keeps it there for all consecutive
time.

Proof As soon as the practical impulsive control (17.15)–(17.18), (17.61), is applied
at t = 0 (with disabled vTW ∀t ∈ [0, h]) it makes x(h) = 0. Then the system (17.4)
becomes

ẋ = Ax + B(Δ f + vTW ), x(h) = 0 (17.65)

where vTW that is active ∀t ≥ h is defined by Eq. (17.54) and ᾱ, β̄ > 0 are selected
in accordance with Eq. (17.31). In accordance with Theorem 17.2 xr−1(t) = xr (t) =
0 ∀t ≥ h in 2-SM. Then, system (17.4) in 2-SM become ∀t ≥ h
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˙̃x = Ãx̃, xr−1(t) = xr (t) = 0,

x̃ = [

x1, x2, . . . , xr−2
]

T , x̃(h) = 0,

Ã =

⎡

⎢

⎢

⎣

0 1 ... 0
. . . .

0 0 ... 1
0 0 ... 0

⎤

⎥

⎥

⎦

∈ R(r−2)×(r−2)

(17.66)

which yields x̃(t) = 0, xr−1(t) = xr (t) = 0 ∀t ≥ h. Theorem is proven.

17.8.5 Robustness of Impulsive/2-SMC Control in Reduced
Information Environment with Respect to
Measurement Uncertainty and Chattering

17.8.5.1 Robustness to Uncertainties in Measurement of x(0)

If x(0) is measured inaccurately, then the impulsive control vimp in (17.12) or the
practical impulsive control vimp_h in (17.15)–(17.18), (17.61) will not move x(t) →
0 instantaneously or in short time but to a domain x(0+) ∈ Ω ∗ (x) or x(h) ∈ Ω ∗
(x). The problem is that system’s (17.4) dynamics in 2-SM in (17.64) or (17.66) are
unstable. The instability is due to multiple zero eigenvalues of matrices Ā and Ã. This
instability is polynomial, but not exponential, which limits the rate of divergence,
but it is still instability. The way in managing instability is inspired by the practice
of using Global Positioning System (GPS) in correcting initial conditions of IMU
integrators that integrate the measured acceleration while obtaining the velocity and
the position during the flight of aerospace vehicles. These GPS measurements (snap
knowledge) of the vector x(t) are available in isolated time instants tk, k = 1, 2, . . .

with a certain time increment Δ.
The following assumption is made about the uncertain initial condition x(0) and,

possibly, uncertain snap values x(tk), k = 1, 2, 3, . . .

(A11) The uncertain values x(0) and x(tk), k = 1, 2, 3, . . . yield such coefficients
in (17.18) that the practical impulsive control (17.61) being applied at tk, k =
1, 2, 3, . . . drives state vector x(tk + h) to the domain Ω ∗ (x).

The following corrected impulsive-2-SMC algorithm in a reduced information
environment in the presence of uncertain initial conditions x(0) and uncertain
x(tk), k = 1, 2, 3, . . . is proposed [17]:
(a) The domain x(t) ∈ Ω∗ that provides a desired accuracy of x-stabilization is
introduced
(b) make k = 0
(c) if x(tk) ∈ Ω∗ then
(d) make k = k + 1 and go to (c), otherwise
(e) treat x(tk) as a snap/initial value of the state vector and apply the practical vimp

impulsive control vimp_h in (17.15)–(17.18), (17.61), where tk is the initial time, make
k = k + 1 and go to (c).
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The accuracy of stabilization of the state vector x(t) that is provided by the
corrected practical impulsive-2-SMC algorithm in (a)–(c) in the presence of uncertain
initial conditions is estimated upon the following assumptions.
(A12) Given Ω∗ : {‖x‖2 ≤ ε

}

then for x(tk) ∈ Ω∗, x(tk+1) /∈ Ω∗ → ‖x(tk)‖2 ≤
ε, ‖x(tk+1)‖2 > ε holds.
(A13) System (17.4), (17.5) is controlled by practical impulsive-super-twisting con-
trol
(A14) The snap time intervals Δ = t_k+1 − tk = const , h << Δ.

Theorem 17.20 Assume that the assumptions (A11)–(A14) hold, then the accuracy
Ξ = ‖x(tk+1)‖2 − ε of reaching the domain Ω∗ : {‖x‖2 ≤ ε

}

is estimated as

Ξ ≤ Δ

r−1
∑

i=1

|ai | (|ai | Δ + 2 |xi (tk)|) (17.67)

where

ai = xi+1(tk) + 1

2
xi+2(tk)Δ + · · · + 1

(r − i)! xr−i (tk)Δ
r−i−1 (17.68)

Proof At the time instant t+k+1 the impulsive control vimp_h is applied and drives
the state vector x(tk+1) to the domain Ω∗, i.e. ‖x(tk+1 + h)‖2 ≤ ε. Assume that the
assumptions (A11)–(A13) hold. Then, having a snap knowledge x(tk) and bearing in
mind that xr (tk) = 0, the system’s (17.4), (17.5) dynamics ∀t ∈ [

tk, t_k+1
]

, tk > h
are described by

˙̄x = Āx̄, xr = 0,

x̄ = [

x1, x2, . . . , xr−1
]

T , x̄(tk) = x̄k,

Ā =

⎡

⎢

⎢

⎣

0 1 ... 0
. . . .

0 0 ... 1
0 0 ... 0

⎤

⎥

⎥

⎦

∈ R(r−1)×(r−1)

(17.69)

Integrating Eq. (17.69) on the time interval t ∈ [

tk, t_k+1
]

we obtain

xi (tk+1) = xi (tk) + aiΔ (17.70)

where ai are defined by Eq. (17.68). Next computing Ξ = ‖x(tk+1)‖2 − ε we obtain

Ξ = ‖x(tk+1)‖2 − ε ≤ ‖x(tk+1)‖2 − ‖x(tk)‖2 = Δ

r−1
∑

i=1

|ai | (|ai | Δ + 2 |xi (tk)|)
(17.71)

The theorem is proven.
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Remark 17.11 Note that the proposed corrective algorithm in (a)–(e) guarantees a
certain stabilization accuracy in the reduced information environment, while avoiding
integrating of IMU-measured (snap knowledge) states in order to obtain the non-
measurable states for closing a full state control feedback.

17.8.5.2 Chattering Effect

Assume that xr (in a case of super-twisting control) exhibits chattering that can be
modeled as a high frequency periodical signal with a frequency ω and zero mean
in real 2-SM. Then, as a result of integration of the system (17.63) or (17.65),
the amplitudes of the remaining variables |xr−i | ∼ 1/ωi ∀i = 1, 2, . . . , r − 1. In
other words, the effect of chattering is reduced in the remaining variables, since the
amplitude of chattering is attenuated reciprocally to ωi . The same logic can be applied
to the twisting controller that operates in the reduced information environment.

17.9 Case Studies

17.9.1 Output Feedback-Hybrid-Impulsive Control of
Perturbed Double Integrator: DC-Motor Velocity
Stabilization

Consider the following mathematical model of a DC-motor [33]:

ω̇(t) = 1

J
(−bω(t) + Kmia(t) − TL)

d ia(t)
dt = 1

La
(−Raia(t) − Kaω(t) + Va(t)) where ω(t) [1/s] is the angular velocity,

ia(t) [A] is the armature current, Va(t) [V] is the armature voltage (control law input),
J [kg · m2] is the rotor’s moment of inertia, Km [N·m

A ] is the motor constant, Ka [A
H ] is

the feedback electromotive force constant, Ra [�] is the armature resistance, La [H]
is the armature inductance, b [ kg·m2

s ] is the viscous friction coefficient, and TL [N · m]
is the bounded smooth disturbance. It is assumed that only ω(t) is measured.

The objective is to design the simplified discontinuous output feedback-hybrid-
impulsive control Va(t) in a form of Eq. (17.43) that drives ω(t), ω̇(t) → 0 in the
presence of the smooth disturbance TL .

The input–output dynamics of relative degree 2 are obtained:

ω̈(t) =
(

b2

J 2 − RaKm

J La

)

ω(t) −
(

bKm

J 2 + RaKm

J La

)

ia(t) + Km

J La
Va(t) − 1

J
ṪL + b

J 2 TL
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The control input Va(t) is represented as Va(t) = Va1(t) + Va2(t), where:

Va1(t) = J La
Km

{

−
(

b2

J 2 − KaKm
J La

)

ω(t)
}

andVa2(t) = J La
Km

[v1(t)],ϕ(t) =
−
(

bKm
J 2 + RaKm

J La

)

ia(t) − 1
J ṪL + b

J 2 TL . Then the DC-motor dynamics is reduced to

a form (17.5) or (17.32) ω̈(t) = u(t) + ϕ(t). The values of the DC-motor parameter
used for simulation are taken as [29]: Km = Ka = 0.005, La = 0.02 [H], R = 1 [�],
b = 0.35, J = 0.01 [kg · m2], and TL = 0.2 sin(t) + 0.1 cos(2t) [Nm]. The initial
conditions are taken as: ω(0) = 20 1/s, i(0) = 95 A, h = 0.005 s, and K = 255. It
is assumed that a “snap” knowledge of ω̇ (when ω = 0) is available. The results of
the simulations are presented in Figs. 17.3, 17.4, 17.5, 17.6 and 17.7.

The presented simulation plots (Figs. 17.3, 17.4, 17.5, 17.6 and 17.7) confirm the
efficacy of the proposed discontinuous output feedback-hybrid-impulsive control
on a practical example. The impulsive control drives ω̇(t) close to the origin in
a very short time as soon as ω(t) becomes equal to zero at t = 0.76 s. Then the
discontinuous output feedback in terms of the armature voltage takes over (Fig. 17.5).
Next, the impulsive control compensates the effect of the disturbance, etc. It is clear
from Figs. 17.3, 17.4, 17.5, 17.6 and 17.7 that the simplified discontinuous output
feedback-hybrid-impulsive control (17.43) drives ω(t), ω̇(t) → 0 of the perturbed
DC-motor with a high accuracy.

Fig. 17.3 Time history of
the states ω̇[1/s2], ω[1/s]
with h = 0.05[s]
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Fig. 17.4 From the top to the bottom: the phase portrait of the states ω̇[1/s2], ω[1/s] and its zoomed
portion
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Fig. 17.5 From the top to the bottom: impulsive control νimp(t) = −∑

i=1,2,3,... ω̇(t−i )δ(t −
ti )[V], its zoomed portion, output feedback relay control νrelay(t) = −K sign(ω)[V], and the
simplified discontinuous output feedback-hybrid-impulsive control (17.43): ν1(t) = νimp(t) +
νrelay(t)[V]
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Fig. 17.6 Armature voltage
Va(t)[V]
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Fig. 17.7 Armature current
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17.9.2 Third Order Hybrid-Impulsive Continuous HOSM
Control

Simulation set up. The system in Eqs. (17.3) or (17.4), (17.5) is studied with r = 3,
Δ f (t) = sin(t) + cos(2t), and initial conditions x1(0) = 1, x2(0) = −1, x3(0) =
1. The width of the delta impulse is taken as h = 0.01 s, and coefficients q0, q1, q2

are calculated as: q0 = −1, q1 = 3.98, q2 = −8.01. Also, γ1 = 8, γ2 = 12, γ3 = 6,
η1 = 0.56, η2 = 0.66, η3 = 0.8.

The impulsive control took a form (17.72)

vimp_h(t) = q0δ(t) + q1δ̇(t) + q2δ̈(t) (17.72)

The following cases have been considered:
Case 1. The system was simulated with control (17.23)–(17.25) without impulsive
control. The results of the simulations are shown in Fig. 17.8a–c.
Case 2. The unperturbed system was simulated with control (17.6), (17.7), (17.23)–
(17.25). The control function (17.23)–(17.25) was applied with a time delay δ = h =
0.01 s. The results of the simulations are shown in Fig. 17.9a–f. It can be seen from
Fig. 17.9a–c that the finite time convergence of x1, x2, x3 → 0 is achieved by time
t = h = 0.01 s. The components of the impulsive control are shown in Fig. 17.9d–f.
Case 3. The perturbed system was simulated with control (17.6), (17.7), (17.23).
The control function (17.23)–(17.25) and the disturbance were applied with a time
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Fig. 17.8 It is clear that the finite time convergence of x1, x2, x3 → 0 has been achieved by the
continuous control in the presence of the bounded disturbance

delay δ = h = 0.01 s. The results of the simulations are shown in Fig. 17.10a–c.
Apparently, the convergence time in the perturbed system) with impulsive action
(see Fig. 17.10a–c) is shorter than the convergence time in the same system without
impulsive action (see Fig. 17.8a).

17.9.3 Hybrid-Impulsive 2-SMC in Reduced Information
Environment: Perturbed System with Practical
Impulsive-Super-Twisting Control and Uncertain
Measurement of the Initial Conditions

Simulation set up. Consider perturbed system (17.4) with relative degree r = 3

ẋ1 = x2, ẋ2 = x3, ẋ3 = v + Δ f (t) (17.73)

and only state x3 is measured in the case of super-twisting control, and the states x2, x3

are measured in the case of twisting control, while a snap knowledge of x1(0), x2(0)

is required. The system (17.73) is studied with
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Fig. 17.9 Case 2 of study

Δ f (t) =
{

0, i f t ∈ [0, h]
sin(t), i f t ≥ h

(17.74)

and initial conditions x10 = 1, x20 = 1, x30 = 1. The perturbation (17.74) and its
derivative are bounded: |Δ f (t)| ≤ 1,

∣

∣Δ ḟ (t)
∣

∣ ≤ 1. The width of the practical delta
impulse and its derivatives is taken as h = 0.1 s.

Taking into account Eqs. (17.18) and (17.19), the impulsive control takes a form

vimp_h(t) = −δh(t) − 1.1δ̇h(t) − 1.105δ̈h(t), t ∈ [0, h] (17.75)

It is assumed that last variable x3(t) being measured exactly in continuous time,
and impulsive-super-twisting control is given by

v1(t) = vSTW (t) + vimp_h(t) (17.76)
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Fig. 17.10 It becomes clear from Fig. 17.10a–c that the convergence of x1, x2, x3 → 0 is achieved
by time t = h = 0.01[s]. However, the finite time transient response follows due to some finite time
required for the super-twisting disturbance observer to reconstruct the disturbance and a consecutive
finite time convergence that is enforced by the control (17.4)

with vimp_h(t) given by Eq. (17.75), where x3(0) is measure exactly and x3(0) = 1.0.
The initial values x1(0) and x2(0) that both equal to 1.0 are measured with 2% error
and the available values are x1m(0) = 0.98 and x1m(0) = 1.02, where x1m(0), x1m(0)

are measured values of x1(0) and x2(0). These errors will affect the impulsive control
(17.75). The super-twisting control is

vSTW = −α |x3|1/2 sign(x3) + w
ẇ = −β sign(x3), α = 2, β = 1, t ≥ h

(17.77)

A required stabilization accuracy is: x ∈ Ω∗(x), Ω∗(x) : {‖x‖2 ≤ 0.01
}

. The
“snap” values x1(tk), x2(tk), k = 1, 2, 3, . . . are assumed to be obtained exactly by
an external measurement device (for instance it can be GPS) with a time increment
Δ = 1[s], i.e. at time instances t1 = 1.0, t2 = 2.0, t3 = 3.0, . . .. The variable x3(t)
is exactly measured continuously. The control strategy is as described in Sect. 17.8.

The time histories of ‖x‖2 and x1, x2, x3 are shown in Fig. 17.11a and b–d
respectively. The plots of practical impulses δh(t), δ̇h(t), and δ̈h(t) applied at
time t = 0 s and at time t = 6 s are shown in Fig. 17.11e–g. The impulsive control
vimp_h(t) applied at time t = 0 s, and at time t = 6 s is shown in Fig. 17.11h. Plots of
Δ f (t) = sin(t) and vSTW (t) are presented in Fig. 17.11i, j respectively. Simulations
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confirmed the theoretical expectations for the case with uncertain initial conditions
and exact consecutive snap knowledge x1(tk), x2(tk) in the isolated time instants
t = 1.0, 2.0, 3.0, . . . s.

17.10 Conclusion

A hybrid-impulsive second order/higher order sliding mode SMC/HOSM control
approach that allows reducing dramatically the convergence time practically to zero,
and achieving instantaneous (or short time) convergence and uniformity is studied in
this chapter. Specifically, for systems of relative degree 2 the hybrid-impulsive output
feedback discontinuous control achieves almost instantaneous uniform convergence
to the origin and stabilization of the trajectory tracking error in a close vicinity of the
origin. The restitution rules are enforced using the Dirac delta function and its deriv-
ative. The discontinuous-hybrid-impulsive output feedback control with practically
implemented impulsive actions guarantees the asymptotic stability of the system’s
origin. The Lyapunov analysis of the considered hybrid-impulsive-discontinuous sys-
tems is performed. In systems of arbitrary relative degree hybrid-impulsive continu-
ous HOSM (CHOSM) control reduces dramatically the convergence time practically
to zero. This approach allows reducing the CHOSM amplitude in the sliding mode,
since the task of compensating the initial conditions is addressed by the impulsive
action, which is implemented in a piece-wise constant format. In systems of arbi-
trary relative degree in a reduced information environment two hybrid-impulsive
2-SMCs are studied. Only last one or two system variables are assumed available.
Only “snap” knowledge (or knowledge in a single time instant) of the all states is
required in order to facilitate the effective impulsive action. The efficacy of studied
hybrid-impulsive control algorithms are illustrated via simulations.

References

1. Aldukali, F.M., Shtessel, Y.B.: Continuous higher order sliding mode control with impulsive
action. In: 2015 IEEE 54th Annual Conference on Decision and Control (CDC), pp. 5420–5425.
IEEE (2015)

2. Aldukali, F.M., Shtessel, Y.B., Glumineau, A., Plestan, F.: Impulsive-super-twisting control in
reduced information environments. In: American Control Conference (ACC), pp. 7207–7212.
IEEE (2016)

3. Angulo, M.T., Moreno, J.A., Fridman, L.: An exact and uniformly convergent arbitrary order
differentiator. In: 2011 50th IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC), pp. 7629–7634. IEEE (2011)

4. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability.
Math. Control Signals Syst. (MCSS) 17(2), 101–127 (2005)

5. Butt, A., Popp, C., Pitts, H., Sharp, D.: NASA ares i launch vehicle roll and reaction control
systems design status. In: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and
Exhibit, p. 5130 (2009)

6. Edwards, C., Shtessel, Y.: Adaptive continuous higher order sliding mode control. IFAC Proc.
Vol. 47(3), 10826–10831 (2014)



17 Hybrid-Impulsive Higher Order Sliding Mode Control 463

7. Gelfand, I.M., Shilov, G.E.: Generalized Functions. Applications of Harmonic Analysis, vol.
4. Academic Press, New York (1964)

8. Glumineau, A., Shtessel, Y., Plestan, F.: Impulsive-sliding mode adaptive control of second
order system. IFAC Proc. Vol. 44(1), 5389–5394 (2011)

9. Glumineau, A., Shtessel, Y., Plestan, F.: Lyapunov stability of a hybrid impulsive-sliding mode
adaptive controller for second order system. In: 2012 IEEE 51st Annual Conference on Decision
and Control (CDC), pp. 5477–5481. IEEE (2012)

10. Guan, Z.H., Hill, D.J., Shen, X.: On hybrid impulsive and switching systems and application
to nonlinear control. IEEE Trans. Autom. Control 50(7), 1058–1062 (2005)

11. Honeywell: reaction control system (2010). http://www51.honeywell.com/aero/common/
documents/myaerospacecatalog-documents/Missiles-Munitions/$Reaction_Control_
Systems_(Tactical).pdf$

12. Karageorgos, A.D., Pantelous, A.A., Kalogeropoulos, G.I.: Transferring instantly the state of
higher-order linear descriptor (regular) differential systems using impulsive inputs. J. Control
Sci. Eng. 2009, 6 (2009)

13. Khalil, H.K.: Noninear Systems. Prentice-Hall, New Jersey (2002)
14. King, A.: Inertial navigation-forty years of evolution. GEC Rev. 13(3), 140–149 (1998)
15. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6),

1247–1263 (1993)
16. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J.

Control 76(9–10), 924–941 (2003)
17. Levant, A.: Principles of 2-sliding mode design. Automatica 43(4), 576–586 (2007)
18. Li, H.Y., Luo, Y.Z., Tang, G.J., et al.: Optimal multi-objective linearized impulsive rendezvous

under uncertainty. Acta Astronaut. 66(3), 439–445 (2010)
19. Miller, B.M., Rubinovich, E.Y.: Impulsive Control in Continuous and Discrete-Continuous

Systems. Springer Science & Business Media, New York (2012)
20. Moreno, J.A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE

Trans. Autom. Control 57(4), 1035–1040 (2012)
21. Orlov, Y.V.: Discontinuous Systems: Lyapunov Analysis and Robust Synthesis Under Uncer-

tainty Conditions. Springer Science & Business Media, New York (2008)
22. Pisano, A., Usai, E.: Sliding mode control: a survey with applications in math. Math. Comput.

Simul. 81(5), 954–979 (2011)
23. Plestan, F., Moulay, E., Glumineau, A., Cheviron, T.: Robust output feedback sampling control

based on second-order sliding mode. Automatica 46(6), 1096–1100 (2010)
24. Rosello, A.D.: A vehicle health monitoring system for the space shuttle reaction control system

during reentry. Ph.D. thesis, Draper Laboratory (1995)
25. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation.

Springer, Berlin (2014)
26. Shtessel, Y., Glumineau, A., Plestan, F., Aldukali, F.M.: Hybrid-impulsive second-order sliding

mode control: Lyapunov approach. Int. J. Robust Nonlinear Control (2016)
27. Shtessel, Y., Glumineau, A., Plestan, F., Aldukali, F.M.: Hybrid-impulsive second-order sliding

mode control: Lyapunov approach. Int. J. Robust Nonlinear Control 27(7), 1064–1093 (2017)
28. Shtessel, Y.B., Moreno, J.A., Fridman, L.M.: Twisting sliding mode control with adaptation:

Lyapunov design, methodology and application. Automatica 75, 229–235 (2017)
29. Sobolev, S.L., Browder, F.E.: Applications of Functional Analysis in Mathematical Physics.

American Mathematical Society, Dunod (1962)
30. Weiss, M., Shtessel, Y.: An impulsive input approach to short time convergent control for linear

systems. Advances in Aerospace Guidance, Navigation and Control, pp. 99–119. Springer,
Berlin (2013)

31. Yang, T., Chua, L.O.: Impulsive stabilization for control and synchronization of chaotic sys-
tems: theory and application to secure communication. IEEE Trans. Circuits Syst. I: Fundam.
Theory Appl. 44(10), 976–988 (1997)

32. Yang, X., Cao, J., Ho, D.W.: Exponential synchronization of discontinuous neural networks
with time-varying mixed delays via state feedback and impulsive control. Cogn. Neurodynam-
ics 9(2), 113–128 (2015)

http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/$Reaction_Control_Systems_(Tactical).pdf$
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/$Reaction_Control_Systems_(Tactical).pdf$
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/$Reaction_Control_Systems_(Tactical).pdf$


Chapter 18
Sliding Mode Control Design Procedure
for Power Electronic Converters Used in
Energy Conversion Systems

Yazan M. Alsmadi, Vadim Utkin and Longya Xu

18.1 Introduction

Due to its order reduction property, good dynamic performance and low sensitiv-
ity to disturbances and plant parameter variations, sliding mode control (SMC) has
been the method of choice for handling nonlinear systems with uncertain dynam-
ics and disturbances. Moreover, this control methodology reduces the complexity
of feedback control design since the system is decoupled into independent lower
dimensional subsystems [38, 39]. Because of these properties, sliding mode control
has a wide range of applications in the areas of electric motors, power systems, power
electronics, robotics, aviation and automotive control [1, 38–40].

Power electronic converters belong to the category of circuits controlled by switch-
ing devices with “ON/OFF” as the only admissible operating states [22, 28]. There-
fore, control variables can take only values fromadiscrete set. For this type of circuits,
SMC is preferred not only from a theoretical view but also a technological one. In the
past, State Space Averaging approach was the method of choice to analyze some of
the power conversion circuits [26, 35]. Using this technique, state space models and
equations are obtained for each possible switch’s position. The equations are then
averaged over a switching cycle to obtain a low frequency averaged model. Linear
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(after linearization if needed) or nonlinear control theory are then applied to design
a feedback compensator. SMC provides a powerful tool to control power converters
such that linearization is not needed and analysis and control design methods are
developed in the framework of the nonlinear models [26, 33, 35, 39].

The main drawback of any system with pulse-width modulation (PWM) control
approaches, including SMC, is the appearance of undesirable oscillations having
finite amplitude and frequency due to the presence of unmodeled dynamics or dis-
crete time implementation. This phenomenon, called “Ripple” in power electronics
literature or “Chattering” in control theory, may lower control accuracy or incur
unwanted wear of mechanical components [24, 39, 40]. An additional obstruction
of SMC is the fact that it results in frequency variations, which is not acceptable in
many applications [24].

Although the methods outlined in literature [4, 9, 10, 12–14, 36] showed efficient
suppression of chattering, these methods are disadvantageous or not even applicable
when dealingwith power electronics systems controlled by switches with “ON/OFF”
as the only admissible operating states. For example, gain-dependent and equivalent-
control based methods are not applicable to reduce chattering since the output of
power converters can only take two (or finite number of) values. Equivalent control
method of SMC also yields the continuous motion equation directly. This motion,
called “slow motion,” exits along with high frequency components [40]. The bound-
ary layer approach, on the other hand, avoids generating sliding mode by replacing
the discontinuous control action with a continuous saturation function [36, 38–40].
However, control discontinuities are inherent to these power electronics systems.
When implementing a continuous controller, techniques such as PWM have to be
exploited to adopt the continuous control law and feed it to the discontinuous sys-
tem inputs. Therefore, it seems unjustified to bypass the inherent discontinuities in
the system by converting a continuous control law to a discontinuous one by means
of PWM. As an alternative, discontinuous control inputs should be used directly in
control, and new methods should be investigated to reduce chattering under these
operating conditions [38–40].

Themost natural and straightforwardway to reduce chattering in power converters
is to increase the switching frequency. As technology progresses, switching devices
are manufactured with enhanced switching frequency (up to 100s KHz) and high
power rating. However, heat power losses enforce a new restriction. Even though
switching is possible with high switching frequency; it is limited to the maximum
allowable heat losses caused by switching.

The objective of this chapter is to provide a comprehensive sliding mode control
design procedure for power electronic converters that are used in energy conversion
systems. This includes the DC/DC, AC/DC and DC/AC power electronic converters.

First, a comprehensive control design procedure for DC/DC power converters
based on sliding mode control methodology. The input inductor current control
and subsequently output capacitor voltage regulation for different types of DC/DC
are investigated. Sliding mode control algorithms for Buck and Boost converters
with incomplete information about system states are developed by designing state
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observers. Chattering issues are also discussed and a chattering reduction design
approach for power converters is proposed.

Second, a new sliding model control strategy for AC/DC power converters is pre-
sented. The basic idea is to apply a feedback implementation of Pulsewidth Modula-
tion (PWM). The proposed control algorithm exhibits low sensitivity to disturbances
and fast dynamic performance in addition to the main converter properties. This
includes unity power factor, sinusoidal input currents, and low level of DC output
voltage ripple.

Third, Sliding Mode Pulsewidth Modulation (SMPWM) control methodologies
for current-controlled inverters are proposed. Two novel approaches based on the
sliding mode concept are presented to make the system tracking reference inputs.
The proposed approaches control the phase currents and the neutral point voltage
simultaneously. Optimization of different operational criteria is also presented.

18.2 Sliding Mode Control of DC/DC Power Converters

The input inductor current and the output capacitor voltage are normally selected
as state variables for DC/DC converters. For most converters used in practice, the
motion rate of the current is much faster than the motion rate of the output voltage.
Calling upon the Singular Perturbation theory [19, 20],1 the control problems of
the DC/DC converters can be solved by using a cascaded control structure with two
control loops: an inner current loop and an outer voltage loop. The current control
loop is based on PWM that can be implemented using SMC or hysteresis control
while output voltage regulation is normally a result of the current control loop such
that output voltage converges to the desired reference value if designing the ideal
current tracking system is accomplished [32, 34, 39].

18.2.1 Direct SMC of DC/DC Power Converters

(A) Buck-Type DC/DC Converters

The circuit structure of a Buck-type DC/DC converter is shown in Fig. 18.1, where
E is the source voltage, C is the storage capacitor, L is the loop inductor, R is the
load resistance, I is the input current and V is the output voltage.

Based on circuit analysis, the dynamic model of the Buck converter is given by:

ẋ1 = − 1

L
x2 + u

E

L
(18.1)

1Formally, conventional Singular Perturbation Theory is not applicable for differential equations
with discontinuous right-hand side. But, if sliding mode appears, sliding mode equations are in
compliance with the conditions of the theory.
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Fig. 18.1 Buck-type
DC/DC converter

ẋ2 = − 1

C
x1 + 1

RC
x2 (18.2)

where x1 = I and x2 = V .

The switching function of the switch can be defined as:

u =
{
1 switch is closed
0 switch is open

(18.3)

The control objective is to achieve a constant output voltage denoted by Vd . In other
words, the steady state behavior of the Buck converter should be given by:

x2 = Vd (18.4)

ẋ2 = V̇d = 0 (18.5)

The proposed design methodology follows a two-step procedure known as integrator
backstepping or regular form control [23, 25, 43]. First, it is assumed that x1 in
Eq. (18.2) can be handled as a control input. However, since x1 is also the output
of the current loop, given by Eq. (18.1), this first design step leads to the desired
current x∗

1. After substituting Eqs. (18.4) and (18.5) into (18.2), the desired current
is given by:

x∗
1 = Vd

R
(18.6)

The goal of the second step of the proposed design procedure is to ensure that the
actual current x1 tracks the desired current x∗

1 exactly. Due to its ideal tracking
properties, sliding mode approach is an efficient tool for this task. If sliding mode is
enforced in:

s = x1 − x∗
1 = 0 (18.7)

then, x1 = Vd/R. In order to enforce sliding mode in the manifold s = 0, control u
is defined as:

u = 1

2
(1 − sign (s)) (18.8)

The condition for sliding mode to exist is derived from (limt→+0 ṡ < 0 ,
limt→−0 ṡ > 0). As a result, sliding mode is enforced if:
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0 < x2 < E (18.9)

Equation (18.9) defines an attraction domain of the sliding manifold. Since the
controlu, given byEq. (18.8), does not contain a control gain that needs to be adjusted,
the domain of attraction, given by Eq. (18.9) is predetermined by the system archi-
tecture. In steady state conditions, Eq. (18.9) is fulfilled by the definition of a Buck
converter where the output voltage is smaller than the source voltage.

After the state of the inner current loop has reached the sliding manifold, i.e.
converged to s = 0 at time t = th , x1 = x∗

1 = Vd/R holds for t > th and the outer
voltage loop is governed by:

ẋ2 = − 1

RC
x2 + 1

RC
Vd (18.10)

The solution of Eq. (18.10) is given by:

x2 = Vd + (x2 (th) − Vd) e
−1
RC (1−th) (18.11)

where x2 tends to Vd exponentially. Hence, the goal of the proposed control design
is achieved.

(B) Boost-Type DC/DC Converters

The circuit structure of a Boost-type DC/DC converter is shown in Fig. 18.2, where
circuit variables are similar to those defined for the Buck converter. Based on circuit
analysis, the dynamic model of the Boost converter is given by:

ẋ1 = − (1 − u)
1

L
x2 + E

L
(18.12)

ẋ2 = (1 − u)
1

C
x1 − 1

RC
x2 (18.13)

where x1 = I and x2 = V and switching function u is given by Eq. (18.3).
Boost converters aremore difficult to control thanBuck converters. This is because

of the fact that the control u appears in the voltage and current equations, and both
in a bilinear fashion. Such a configuration implies a highly nonlinear system with

Fig. 18.2 Boost-type
DC/DC converter
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a difficult control design. It also leads to unstable dynamics with respect to current
when voltage is the only variable to be controlled [32, 34].

Since Boost converters satisfy the Motion-Separation principle that is based on
the Singular Perturbation theory [19, 20], their control problems can also be solved
by using two cascaded control loops: an inner current and an outer voltage control
loops. Sliding Mode control techniques will be used again to design the current
control loop.

Similar to the proposed control design for the Buck converter, the desired current
is obtained from the outer voltage loop as:

x∗
1 = Vd

2

RE
(18.14)

where Vd is the desired output capacitor voltage. The switching function of the inner
current control is defined as:

s = x1 − x∗
1 (18.15)

In order to enforce the current x1 to track the desired current x∗
1, control u can

be designed as:

u = 1

2
(1 − sign (s)) (18.16)

Under the above control scheme, the equivalent control is formally derived by
substituting ṡ = ẋ1 = 0 in (18.12) and solve for the control input u as:

ueq = 1 − E

x2
(18.17)

where x2 is the output voltage of the slow voltage loop. The motion equation of the
outer voltage loop during sliding mode is obtained by substituting the equivalent
control, given by Eq. (18.17), into (18.13).

ẋ2 = − 1

RC

(
x2 − Vd

2

x2

)
(18.18)

Equation (18.18) can be solved explicitly as:

x2 =
√
Vd

2 + (
x22 (th) − Vd

2
)
e

−2
RC (t−th) (18.19)

where th represents the reaching instant of the sliding manifold s = 0 and x2 (th) is
the output voltage at time th . Apparently, x2 tends to Vd asymptotically as time goes
to infinity.

The attraction domain of the sliding manifold s = 0 is found by applying the
convergence condition sṡ < 0 to the Eqs. (18.12) and (18.13), yielding:
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x2 > E or 0 < ueq = 1 − E

x2
< 1 (18.20)

Condition (18.20) implies that sliding mode can be enforced as long as the out-
put voltage is higher than the source voltage. This requirement is essential for a
Boost-type DC/DC converter. A careful consideration of the initial conditions is also
required to guarantee the convergence to s = 0.

18.2.2 Observer-Based Sliding Mode Control of DC/DC
Converters

In recent years, research on slidingmode control theory has revealed great advantages
of incorporating certain dynamics into the sliding mode controllers [38–40]. This
new approach, calledObserver-based Sliding Mode Control, fall into the category of
dynamic feedback control where the slidingmode controller simulates the ideal plant
model in parallel with the real one [25, 38, 42]. This helps to reduce the number of
states that need to be measured since the real plant states are substituted by observer
states. The mismatch between the measurable state(s) and the observed one is the
‘bridge’ that establishes coupling between the plant system space and the controller
space and keeps both systems operating close to each other. It can also be been
utilized in different ways to improve the control performance. Overall, an observer
can be viewed as an artificially introduced auxiliary dynamic system in order to
improve the control performance [11, 16].

This subsection investigates the input inductor current control and subsequently
output capacitor voltage regulation for different types of DC/DC. It develops sliding
mode control algorithms for Buck and Boost converters with incomplete information
about system states by designing state observers. For Buck converters governed by
linear equations, conventional observer design methods could be applied directly
while non-linear observers should be designed for Boost converters. It is assumed
that the variable under control is measured only for both converters.

(A) Observer-Based Control of Buck-Type DC/DC Converters

The observer equations, or the auxiliary system, of the buck converter are designed as:

̂̇x1 = − 1

L
x̂2 + u

E

L
− l1

(
x̂1 − x1

)
(18.21)

̂̇x2 = 1

C
x̂1 − 1

RC
x̂2 − l2

(
x̂1 − x1

)
(18.22)

where l1, l2 are constant scalar observer gains and x̂1, x̂2 are the estimates of the
inductor current and output voltage. Note that it is only required to measure the
inductor current x1.
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Equations with respect to the mismatches x1, x2 are defined as:

x1 = x̂1 − x1 (18.23)

x2 = x̂2 − x2 (18.24)

The error dynamics can be derived by subtracting Eqs. (18.1) and (18.2) from (18.21)
and (18.22):

ẋ1 = − 1

L
x2 − l1x1 (18.25)

ẋ2 = 1

C
x1 − 1

RC
x2 − l2x1 (18.26)

The characteristic polynomial of the above linear system is defined as:

P2 +
(
l1 − 1

RC

)
P +

(
− l1
RC

− 1

LC
− l2

L

)
= 0 (18.27)

For the second order error system given in Eq. (18.27), stability and desired rate
of convergence can be provided by the proper choice of l1, l2. This implies that the
observer errors x1 and x2 tend to zero asymptotically.

The switching function for the sliding mode current controller will be designed
based on the observed current x̂1 instead of the measured current x1 as done in
Eq. (18.7):

ŝ = x̂1 − Vd

R
(18.28)

The control u that is applied to the real plant and the observer system is of the
same form as in the case of the control scheme without an observer.

u = 1

2

(
1 − sign

(
ŝ
))

(18.29)

Assuming that sliding mode can be enforced in the vicinity of the sliding manifold
ŝ = 0, x̂1can be calculated as:

x̂1 ≡ Vd

R
with ∀t > th (18.30)

where th denotes the reaching instant of the slidingmanifold ŝ. The equivalent control
of u can be obtained by solving ˙̂s = 0 with respect to control:

ueq = x̂2

(
1

L
x̂2 − l1

(
x̂1 − x1

)) L

E
(18.31)
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After substituting ueq into the real plant model, given by Eqs. (18.1) and (18.2),
and considering the observer model, given by Eqs. (18.21) and (18.22), the motion in
sliding mode can be represented as a reduced order system, comprising the motion of
the real plant and the slow dynamics (output voltage loop) of the observer, as shown
in the following equations:

ẋ1 = − 1

L
x2 + l1

(
Vd

R
− x1

)
(18.32)

ẋ2 = 1

C
x1 − 1

RC
x2 (18.33)

̂̇x2 = 1

C

Vd

R
− 1

RC
x̂2 − l2

(
x̂1 − x1

)
(18.34)

Further analysis of Eqs. (18.32)–(18.34) results in:

lim
t→∞ x1 (t) = x̂1 (t)

∣∣
t≥th

= Vd

R
(18.35)

lim
t→∞ x2 (t) = lim

n→∞ x̂1 (t) = Vd (18.36)

The remaining task is to find the condition under which the occurrence of the
sliding mode can be guaranteed. Applying the existence condition of sliding mode
to Eq. (18.21) along with the substitution of Eqs. (18.28) and (18.29) yields:

− Ll1
(
x̂1 − x1

)
< x̂2 < E − Ll1(x̂1 − x1) (18.37)

0 < ueq =
(
1

L
x̂2 + l1

(
x̂1 − x1

)) L

E
< 1 (18.38)

Since s (0) = 0 with zero initial conditions for the power converter and E is high
enough, sliding mode existence condition (18.38) is fulfilled.

(B) Observer-Based Control of Boost-Type DC/DC Converters

In order to simplify the derivation of the observer-based control scheme of Boost
converters, a newcontrol input is introduced anddefined as v = (1 − u). The observer
dynamics that are designed for a Boost converter are governed by:

̂̇x1 = −v
1

L
x̂2 + E

L
− l1

(
x̂1 − x1

)
(18.39)

̂̇x2 = v
1

C
x̂1 − 1

RC
x̂2 − l2

(
x̂1 − x1

)
(18.40)

where x̂1, x̂2 are the observed inductor current and output voltage, i.e. outputs of the
observer; and l1, l2 are positive scalar observer gains.
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Equations with respect to the mismatches x1, x2 are defined as:

x1 = x̂1 − x1 (18.41)

x2 = x̂2 − x2 (18.42)

The error dynamics can be derived by subtracting Eqs. (18.12) and (18.13) from
(18.41) and (18.42):

ẋ1 = −v
1

L
x2 − l1x1 (18.43)

ẋ2 = v
1

C
x1 − 1

RC
x2 − l2x1 (18.44)

Equations (18.43) and (18.44) are nonlinear, since the system states are multi-
plied by the control input v. For the convergence proof, select a Lyapunov function
candidate as:

V = 1

2
(Lx21 + Cx22) > 0 (18.45)

The time derivative V̇ on the system trajectory can be easily calculated as:

V̇ = −Ll1x
2
1 − 1

R
x22 − Cl2x1x2 (18.46)

Therefore, the convergence rate can be selected can be selected by proper choice

of l1, l2 under Sylvester condition
(

Ll1
R > (Cl2)

2

4

)
for quadratic form (18.46). As a

result, observer errors x1 and x2 tend to zero asymptotically. The convergence rate
of the inductor current estimation can be adjusted by the observer gains l1, l2.

The switching function of the sliding mode current controller will be designed
based on the observed current x̂1 instead of measured current x1 as done in (18.15):

ŝ = x̂1 − V 2
d

RE
(18.47)

The control u that is applied to the real plant and the observer system is of the
same form as in the case of the control scheme without an observer.

u = 1

2

(
1 − sign

(
ŝ
))

(18.48)

Equation (18.48) can be represented in terms of the new control input
v = (1 − u) as:

v = 1

2

(
1 − sign

(
ŝ
))

(18.49)
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Assuming that slidingmode can be enforced in the vicinity of the slidingmanifold
ŝ = 0, x̂1can be calculated as:

x̂1 ≡ V 2
d

RE
with ∀t > th (18.50)

where th denotes the reaching instant of the slidingmanifold ŝ. The equivalent control
of u can be obtained by solving ˙̂s = 0:

veq = E − Ll1(
V 2
d

RE − x1)

x̂2
(18.51)

After substituting veq into the real plant model, given by Eqs. (18.12) and (18.13),
and considering the observer model, given by Eqs. (18.39) and (18.40), the motion in
sliding mode can be represented as a reduced order system, comprising the motion
of the real plant and the slow dynamics (output voltage loop) of the observer.

ẋ1 = −veq
1

L
x2 + E

L
(18.52)

ẋ2 = veq
1

C
x1 − 1

RC
x2 (18.53)

̂̇x2 = veq
1

C

V 2
d

RE
− 1

RC
x̂2 − l2

(
V 2
d

RE
− x1

)
(18.54)

By defining the errors x∗
1 = V 2

d
RE −x1 and x2 = x̂2 −x2 and since x1 tends to zero

at the desired rate, the above equations can be transformed into a second order error
system as:

ẋ
∗
1 = − x2

x̂2
l1x

∗
1 + E

L

x2
x̂2

− E

L
(18.55)

ẋ2 = E

C

1

x̂2
x∗
1 − Ll1

Cx̂2
(x∗

1)
2 − 1

RC
x2 − l2x

∗
1 (18.56)

Further analysis of Eqs. (18.55) and (18.56) results in:

lim
t→∞ x̂2 = x2 (18.57)

lim
t→∞

(
E

L

x2
x̂2

− E

L

)
= 0 (18.58)

This means that x∗
1 converges to zero asymptotically at a rate that depends on

l1. As a result, x2 and x2 tend respectively to zero and Vd . The remaining task
is to find the condition under which the occurrence of the sliding mode can be
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guaranteed. Applying the existence condition of sliding mode to (18.47) along with
the substitution of Eqs. (18.39), (18.40) and (18.49) yields:

0 < E − Ll1
(
x̂1 − x1

)
< x̂2 (18.59)

0 < veq = E − Ll1(x̂1 − x1)

x̂2
< 1 (18.60)

Equation (18.60) can be represented in terms of the new control input
v = (1 − u) as:

0 < ueq < 1 (18.61)

Since x1 is measured and x̂1, x̂2 are state variables in the controller space, the
initial conditions of the observer, x̂1(0) and x̂2 (0), can be designed such that the
occurrence of the sliding mode is always guaranteed.

18.2.3 Simulation Results

In order to evaluate the proposed sliding mode control strategies for DC/DC power
converters, several computer simulations have been conducted using
MATLAB/Simulink software.

(A) Direct Sliding Mode Control of Boost Converters

Parameters of the simulated Buck converter are listed in Table18.1. Figures18.3
and 18.4 show the simulation results of the proposed control algorithm for Boost
converters. As it can be seen from the figures, both the inductor current and the
output capacitor voltage converge rapidly to their reference values.

(B) Direct Sliding Mode Control of Boost Converters

Parameters of the simulated Boost converter are listed in Table18.2. Figures18.5
and 18.6 show the simulation results of the proposed control algorithm for Boost
converters. As it can be seen from the figures, both the inductor current and the
output capacitor voltage converge rapidly to their reference values.

(C) Observer-Based Sliding Mode Control of Buck Converters

Parameters of the simulatedBuck converter are listed in Table18.1. The observer gain
is selected as l = 200. Two sets of the observer initial conditions, listed in Table18.3,
were selected in order to compare the influence of observer initial conditions on the
system response.

Table 18.1 Simulation parameters of the Buck-type DC/DC converter

Parameter L (mH) C (μf) Vd (V) R (�) E (V)

Value 40 4 7 40 20
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Fig. 18.3 Current response of a sliding mode-controlled Buck DC/DC power converter

Figures18.7 and 18.8 show the response of real and estimated inductor current
and output capacitor voltage under different initial conditions. Note that both the
inductor current and the output capacitor voltage converge rapidly to their reference
values and the system response can be influenced by the design of the observer initial
conditions.

(D) Observer-Based Sliding Mode Control of Boost Converters

Parameters of the simulated Boost converter are listed in Table18.2. The observer
gain is selected as l = 200. Two sets of the observer initial conditions, listed in
Table18.4, were selected in order to compare the influence of observer initial con-
ditions on the system response.

Figures18.9 and 18.10 show the response of real and estimated inductor current
and output capacitor voltage under different initial conditions. Note that both the
inductor current and the output capacitor voltage converge rapidly to their reference
values and the system response can be influenced by the design of the observer initial
conditions.
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Fig. 18.4 Voltage response of a sliding mode-controlled Buck DC/DC power converter

Table 18.2 Simulation parameters of the Boost-type DC/DC converter

Parameter L (mH) C (μf) Vd (V) R (�) E (V)

Value 40 4 40 40 20

18.2.4 Sliding Mode Control of Multi-phase DC/DC Power
Converters

This section presents a new chattering reduction approach for power converters. The
proposed scheme is based on the idea of designing a multi-phase converter system
that operates at a given andfixed switching frequencywithout any additional dynamic
elements. This may be possible by providing a desired phase shift between phases for
any loads or frequencies in order to implement the “Harmonic Cancellation” method
[24]. Several attempts have been made to apply this idea to PWM such that phase
shifts are interconnected and can be controlled using a transformer with primary and
secondary coils in different phases. On the other hand, the phase shift was obtained
using delays, filters, or set of triangular inputs with selected delays [27, 45, 48].
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Fig. 18.5 Current response of a sliding mode-controlled Boost DC/DC power converter

Fig. 18.6 Voltage response of a sliding mode-controlled Boost DC/DC power converter
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Table 18.3 Observer initial
conditions for the simulated
Buck-type DC/DC converter

Initial condition x̂1 (0) (A) x̂2 (0) (V)

Set #1 0.12 5

Set #2 0.07 2.5

Fig. 18.7 Response of real (curves start from zero) and estimated current of a buck converter
under different initial conditions. Solid line x̂1 (0) = 0.12, x̂2 (0) = 5.0; dashed line x̂1 (0) = 0.07,
x̂2 (0) = 2.5

18.2.4.1 Frequency Control

Chattering frequency normally depends on the width of the hysteresis loop in the
switching element which is usually selected such that the frequency does not exceed
the maximum admissible level fdes for all operation modes. This can be achieved by
varying the width of hysteresis loop [9, 29].

It order to formulate the problem statement, the following system with scalar
control is considered.

ẋ = f (x, t) + b (x, t) u (x, f, b ∈ Rn) (18.62)

It is assumed that control u should be designed as a continuous function of
state variables (u0 (x)). This situation is usually assumed with the “Cascade Con-
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Fig. 18.8 Response of real (curves start from zero) and estimated voltage of a buck converter
under different initial conditions. Solid line x̂1 (0) = 0.12, x̂2 (0) = 5.0; dashed line x̂1 (0) = 0.07,
x̂2 (0) = 2.5

Table 18.4 Observer initial
conditions for the simulated
Boost-type DC/DC converter

Initial condition x̂1 (0) (A) x̂2 (0) (V)

Set #1 0 0

Set #2 1.95 38.5

trol” approach that is used for electric motors with the current as a control input
[23, 39]. Power converters often utilize PWM as a principle operation mode in order
to implement the desired control algorithm [22, 28]. Sliding mode is one of the
tools to implement this operation mode based on the feedback approach as shown in
Fig. 18.11, which illustrates that output u tracks the reference input u0(x) in sliding
mode.

Select the sliding surface as:

s = u0 (x) − u, u̇ = v = Msign (s) , M > 0 (18.63)

ṡ = g (x) − Msign (s) , g (x) = [grad (u0)]
T ( f + bu) (18.64)
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Fig. 18.9 Response of real (curves start from zero) and estimated current of a Boost converter under
different initial conditions.Solid line x̂1 (0) = 0, x̂2 (0) = 0;dashed line x̂1 (0) = 1.95, x̂2 (0) = 38.5

It is evident that sliding mode, in the surface s = 0 with u ≡ u0, exists if M >

|g(x)|. If the control is implemented with a hysteresis loop, the switching frequency
can be maintained at the desired level fdes by varying the width of the hysteresis
loop Δ [24].

Δ = M2 − g (x)2

2M

1

fdes
(18.65)

18.2.4.2 Chattering Suppression

Suppose that the desired control is implemented by m power converters with
si= u0

m −ui , (i= 1, 2, . . .m) and u0
m as reference inputs as shown in Fig. 18.12. If

each power converter operates properly, the output is equal to the desired control
u0(x). Amplitude and frequency of chattering in each converter can be found as:

A = Δ

2
, f =

M2 −
(
g(x)
m

)2
2MΔ

(18.66)
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Fig. 18.10 Response of real (curves start from zero) and estimated voltage of a Boost con-
verter under different initial conditions. Solid line x̂1 (0)= 0, x̂2 (0) = 0; dashed line x̂1 (0) = 1.95,
x̂2 (0) = 38.5

Fig. 18.11 Sliding mode
control for a simple power
converter model structure

The chattering amplitude of output u depends on the oscillation in each phase. Its
maximum value is m times higher than that of each converter. For the system shown
in Fig. 18.12, phases depend on initial conditions and cannot be controlled.

First, it should be demonstrated that, by varying phases, the output oscillation
amplitude can be controlled. Suppose that a multiphase converter withm phases is to
be designed such that the period of chattering T is the same in each phase, and two
subsequent phases have phase shift T/m. Since chattering is a periodic time function,
it can be represented as Fourier series with frequencies:

ωk = ω.k, ω = 2π

T
(k = 1.2 . . . ..∞) (18.67)
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Fig. 18.12 m-phase
converter with evenly
distributed reference

The effect of the k-th harmonic in the output signal is the sum of individual outputs
from all phases and can be easily calculated as:

∑m−1
i=0 sin

(
ωk

(
t − 2π

ωm i
)) = ∑m−1

i=0 Im[e jωkt− 2πk
m i ]

= Im
(
e jωk t Z

)
, Z = ∑m−1

i=0 e− j 2πkm i
(18.68)

To find Z, consider the following equation:

Ze− j 2πkm =
m−1∑
i=0

e− j 2πkm (i+1) =
m−1∑
i ′=0

e− j 2πkm i ′ (18.69)

Since
Ze− j 2πkm

∣∣∣
i=m

= e− j 2πkm i
∣∣∣
i=0

(18.70)

then,
Ze− j 2πkm = Z (18.71)

The function e− j 2πkm is equal to 1 only if k/m is an integer or k = m, 2m, . . .,
which means that Z = 0 for all other cases.

The above analysis shows that all harmonics except for lm (l = 1, 2, . . . ) are
suppressed in the output signal. As a result, the amplitude of chattering can be
reduced to the desired level by increasing the number of phases and providing a
desired phase shift between each two subsequent phases.

18.2.4.3 Design Principle

In order to describe the design idea of the proposed chattering suppression approach,
suppose that two power converters are implemented as shown in Fig. 18.13.
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Fig. 18.13 A controller
model with two
interconnected phases

The switching function for the second converter is selected as:

s∗
2 = s2 − s1 (18.72)

where,
s1 = u0/2 − u1 (18.73)

s2 = u0
2

− u2 (18.74)

v1 = Msign(s1)v2 = Msign(s∗
2 ) (18.75)

The time derivatives of s1, s∗
2 are:

ṡ1 = a − Msign (s1)

(
a = g (x)

2

)
(18.76)

ṡ∗
2 = Msign (s1) − Msign (s2) (18.77)

Figures18.14 and 18.15 analyze the system behavior in the plane s1 and s∗
2 with

a = 0, ∝= 1. Δ and α are the widths of the hysteresis loops for the two sliding
surfaces. T can be easily calculated as:

T = Δ

M − a
+ Δ

M + a
= 2MΔ

M2 − a2
(18.78)

By analyzing Fig. 18.14, it can be seen that the phase shift becomes:

Φ = αΔ

2M
(18.79)

where Φ is equal to the time for changing s∗
2 from αΔ

2 to −αΔ
2 or vice versa.

The previous analysis demonstrates that the phase shift between oscillations can
be selected by proper choice of∝ for any switching frequencywithout using dynamic
elements. The value ∝ is calculated to provide the desired phase shift. Since Φ must
be equal to T/m, ∝can be found as:
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Fig. 18.14 The system
behavior in s-plane

Fig. 18.15 Control of the
phase between v1, v2

∝ = 4M2

m(M2 − a2)
(18.80)

For a > 0, ∝ can be selected such that phase shift is equal to what we need. Finally,
the proposed chattering suppression design procedure for multiphase converters can
be summarized as follows:

1. Select the width of the hysteresis loop as a state function such that the switching
frequency in the first phase is maintained at the desired level.

2. Determine the number of phases for a given range of α variation.
3. Find the parameter ∝ as a function of α such that the phase shift between two

subsequent phases is equal to 1
m of the oscillation period of the first phase.

Finally, another approach, called “master-slave” method of multiphase converters
can be used for chattering reduction even if for a given number of phasesm, parameter
a is beyond the admissible domain and the desired phase shift cannot be guaranteed
byvarying thewidth of the hysteresis loop. For themaster-slave implementation, each
phase can be complimented by several sequentially connected “slaves”, as illustrated
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Fig. 18.16 A modified master-slave mode schematic with two more additional systems. v2,3 is the
switching command for the second channel

in Fig. 18.16 for a two-phase converter, such that the total phase shift is equal to the
desired value.

18.2.4.4 Simulation Results

In order to evaluate the proposed sliding mode chattering suppression control strate-
gies for multi-phase DC/DC power converters, computer simulations have been con-
ducted using MATLAB/Simulink software.

Multi-phase DC/DC Converter Topology

The chattering suppression approach developed in the previous section is applied
to DC/DC multi-phase buck converters. The objective is to demonstrate, via simu-
lations, the effectiveness of the proposed design methodology in multiphase power
converters. Simulations also check the range of the function “a” for which the chat-
tering suppression takes place. The “master-slave” method is utilized in all simula-
tions. A two-phase DC/DC converter is shown in Fig. 18.17. Simulation parameters
are listed in Table18.5.
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Fig. 18.17 A two-phase
DC/DC converter

Table 18.5 Simulation parameters of the two-phase DC/DC converter

Parameter L (H) C (F) Ra (�) RL (�) Vs (V)

Value 5 * 10−8 1 * 10−3 3 * 10−4 1 * 10−2 12

For simulation purposes, the governing equations of the m-phase converter are
assumed as follows:

İk = 1

L
(−Ik Ra + uk − VL), k = 1, 2, . . . ,m (18.81)

VL = 1

C

(
m∑

k=1

Ik − VL

RL

)
(18.82)

The following control law is used for the two-phase power converter (m = 2)
represented in Eqs. (18.81) and (18.82):

s1 = I1 − Ire f
m

, Ire f = Vref

RL
(18.83)

u1 = Vs

(
1 − sign (s1)

2

)
(18.84)

u2 = Vs

(
1 − sign

(
s∗
3

)
2

)
(18.85)

ṡ1 = 1

L

(
−Ras1 − Vs

2
sign (s1)

)
+

(
Vs
2

− Ire f Ra
m

− VL

)
= −Msign (s1) − bs1 + a

(18.86)
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ṡ∗
2 = M

(
sign (s1) − sign

(
s∗
2

))
(18.87)

ṡ∗
3 = M

(
sign

(
s∗
2

) − sign
(
s∗
3

))
(18.88)

where Vref and Ire f are the reference input voltage and the corresponding reference
load current, respectively. a = Vs

2 − Ire f Ra

m − VL , M = Vs
2L and b = Ra

L . The desired
phase shift T/2 is obtained by using two additional blocks with a phase shift of
T/4 in each of them. The four-phase converter (M = 4) is simulated with switch-
ing frequency control of the first phase by appropriate choice of hysteresis width
or hysteresis loop gain Kh in order to maintain the switching frequency at 50Hz.
The selected function Kh

(
Vref

) = −0.0013V 2
re f + 0.0127Vre f − 0.0007 is shown

in Fig. 18.18.
Figures18.19, 18.20 and 18.21 demonstrates the effectiveness of the proposed

chattering suppression algorithmon a 4-phaseDC/DCpower converterwith three dif-
ferent reference inputs, vre f 1 = 3V, vre f 2 = 6V, and vre f 3 = 8V, respectively. Note
that the inductance is relatively small in order to have fast converter dynamics. This
leads to a high level of chattering in each phase, but it is practically suppressed in
the output signal.

Finally, it is demonstrated that chattering can be reduced considerably following
the “master-slave method” even if for a given number of phases m, parameter a is
beyond the admissible domain and the desired phase shift cannot be guaranteed by

Fig. 18.18 Hysteresis loop gain Kh
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Fig. 18.19 Simulation results for the four-phase DC/DC converter, Vref = 3V

varying the width of the hysteresis loop. For the master-slave implementation, each
phase can be complimented by several sequentially connected “slaves”, as illustrated
in Fig. 18.16 for two-phase converter, such that the total phase shift is equal to the
desired value. Of course, chattering can be suppressed by increasing the number of
phases preserving the “one slave in one phase” approach, as shown in Fig. 18.22 for
an 8-phase converter.

18.2.4.5 Experimental Results

Experimental results were conducted and discussed in [2] in order to demonstrate
the effectiveness of the proposed sliding mode chattering suppression approach for
multi-phase converters and also verify the simulation results.
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Fig. 18.20 Simulation results for the four-phase DC/DC converter, Vref = 6V

Figure18.23 shows the experimental setup. The system consists of a 4-phase
DC/DC buck converter that is controlled using two loops: A current inner loop that
is sliding mode controlled with a hysteresis band, and a voltage outer loop that
defines the current reference through a PI controller. Table18.6 shows the converter
parameters.

Figure18.24 shows the experimental waveforms of the input current, output volt-
age and control command for a half- bridge, 1-phaseDC/DC converter. The reference
output voltage is 5 V. The average input current value is 2.44A and the chattering
amplitude is 0.47 A. The average output voltage is 4.96 V.
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Fig. 18.21 Simulation results for the four-phase DC/DC converter, Vref = 8V

Figures18.25 and 18.26 show the four shifted input currents and the MOSFET
drain voltages of a 4-phases DC/DC converter, respectively. Both Figures demon-
strate that themaster-slave algorithmworks properly, with respect to the current shift-
ing. The current values of each phase are iL1 = 0.62 ∓ 0.43A, iL2 = 0.6 ∓ 0.42A,
iL3 = 0.63 ∓ 0.43A, and iL4 = 0.66 ∓ 0.42A.

The effectiveness of the proposed chattering suppression algorithm is demon-
strated in Fig. 18.27, which represents the input current, output voltage and control
command of a 4-phase DC/DC converter, respectively. The reference output voltage
is 5 V. As it can be seen, the current chattering amplitude is 0.095, which is five times
less than the current chattering amplitude of the 1-phase DC/DC converter.
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Fig. 18.22 Simulation results for the eight-phase DC/DC converter, Vref = 1.5V

Fig. 18.23 Experimental
Setup of a 4-phase DC/DC
buck converter [2]
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Table 18.6 Parameters of the experimental setup (4-phase DC/DC buck converter) [2]

L (H) C (F) RL (�) E (V) Switching
Frequency

22 μ 10 μ 2 10 100KHz

Fig. 18.24 Input current, output voltage and command control of a 1-phase DC/DC converter,
vdc_re f = 5V

Fig. 18.25 Input phase currents a 4-phase DC/DC converter
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Fig. 18.26 MOSFET drain voltages of a 4-phases DC/DC converter

Fig. 18.27 Input current, output voltage and command control of a 4-phase DC/DC converter,
vdc_re f = 5V

Figure18.28, shows the input current, output voltage and control command of a
4-phase DC/DC converted, where the reference output voltage is 4.59 V. It can be
noticed that the algorithm almost cancelled the chattering completely. The average
value of the output current is 2.28 A, with a chattering width of 0.033, which is about
14 times less than the current chattering amplitude of the 1-phase DC/DC converter.
This is due to the fact that the four duty cycles are equal to 0.5, and the corresponding
Fourier harmonic coefficients cancel each other.
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Fig. 18.28 Input current, output voltage and command control of a 4-phase DC/DC converter,
vdc_re f = 4.59V

18.3 Sliding Mode Control of AC/DC Power Converters

Recently, a variety of power electronic devices, including three-phase AC/DC power
converters, has been widely used in energy conversion systems [28]. One of their
disadvantages is that they cause inherent problems of reactive power generation and
higher harmonic content in the input current. These practical problems have become
more serious as the AC/DC converter capacity becomes much larger [8, 30, 44].

The ideal AC/DC converter has a constant dc output voltage (or current) and a
pure sinusoidal input current at unity power factor from the ac line. Conventional
thyristor phase-controlled converters have an inherent drawback which is that the
power factor decreases as the firing angle increases and that harmonics of the line
current are relatively high [21, 46]. In recent years, there has been a tendency to
operate AC/DC converters with PWM switching patterns to improve the input and
output performance of the converter. PWM AC/DC converters offer distinct advan-
tages over the conventional rectifiers [15, 47]. These advantages include unity power
factor, capability of bidirectional power flow, low harmonic components in input cur-
rent and low ripple in output voltage. All of these features simplify filtering problems
on both ac and dc sides of the converter [8, 39, 47].

The objective of this section is to develop a feedback control algorithm for AC/DC
power converters such that the output voltage is maintained at the desired level with
zero steady state error, input currents are free of higher harmonics and the reactive
power is equal to zero. This mission will be accomplished using the framework
of SMC methodology implying that the order of the motion is reduced with state
trajectories in the pre-selected manifold with the system state space. Furthermore,
the control system is designed in two reference frames: the abc natural reference
frame, and the dq synchronous reference frame.



18 Sliding Mode Control Design Procedure … 497

18.3.1 Circuit Model and Design Methodology

The circuit model and analysis of the three-phase PWM AC/DC voltage source
converter in the natural abc and the rotating dq reference frames is presented next.
First, consider the three-phase PWM AC/DC voltage source converter shown in
Fig. 18.29, where ea, eb, ec are the balanced three-phaseACvoltages representing the
infinite bus, Rgand Lg represent the grid-side resistance and inductance, respectively,
Cdc is the dc-link capacitance, ia, ib, ic are the three-phase AC input currents, idc is
dc-link current, vdc is dc-link voltage and iL is the load current.

Based on circuit analysis, the AC input current equations are given by:

Lg
dia
dt

= ea − Rgia − van (18.89)

Lg
dib
dt

= eb − Rgia − vbn (18.90)

Lg
dic
dt

= ec − Rgic − vcn (18.91)

where van, vbn, vcn are the voltages from the AC side of the converter to the power
neutral point n. The balanced three-phase AC voltages are expressed as:

ea = E0 sin(ωt) (18.92)

Fig. 18.29 Three-phase PWM AC/DC voltage source converter scheme
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eb = E0 sin

(
ωt − 2π

3

)
(18.93)

ec = E0sin

(
ωt + 2π

3

)
(18.94)

where E0 is the amplitude of the phase voltage and ω is the ac power source angular

frequency. If we assume that i =
⎡
⎣ ia
ib
ic

⎤
⎦, e =

⎡
⎣ ea
eb
ec

⎤
⎦, vs =

⎡
⎣ van
vbn
vcn

⎤
⎦, then equations

in (18.89)–(18.91) can be re-written in a compact form as:

Lg
di

dt
= e − Rgi − vs (18.95)

The switching function S of each switch can be defined as:

Sj =
⎧⎨
⎩

1 Sj is close

−1 Sj is open
j = a, b, c (18.96)

The voltage vector vs be expressed in terms of the switching functions S=
⎡
⎣ Sa
Sb
Sc

⎤
⎦

as:

vs = 1

3
vdc

⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎦ S (18.97)

By substituting Eq. (18.97) into (18.95), the AC input current equations can be
expressed as:

Lg
di

dt
= e − Rgi − 1

3
vdc

⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎦ S (18.98)

Finally, the output voltage equation can be given by:

C
dvdc
dt

= −iL + i T S (18.99)

The operating principle of the three phase PWMgrid-side voltage source converter
can also be analyzed by the classical rotating field theory with the well-known Park
and Clarke transformations. The dynamic model of three-phase AC/DC voltage
source converter in the d-q rotating reference frame can be described as [28]:

Lg
did
dt

= ed −Rgid + ωgLgiq − vd (18.100)
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Lg
diq
dt

= eq − Rgiq −ωgLgid − vq (18.101)

C
dvdc
dt

= −iL + 1

2
(idsd + iqsq) (18.102)

where, vd = vdcsd and vq = vdcsq . sd and sq are the switching functions in the d-q
synchronous reference frame. id , iq , ed and eq are the input currents of the converter
and grid voltages in the synchronous d-q reference frame, respectively. Note that
vdc = vdc_d due to the field orientation.

The design methodology proposed in this chapter is different compared to the
one usually used for AC/DC power converters. It is common to start with solving
the main problem of maintaining the DC output voltage at the desired level and then
minimizing high order harmonics and reactive power at the input. In this chapter,
the inverse sequence of actions is offered. First, a tracking system is designed with
sinusoidal current references proportional to the input AC voltages. This means that
the reactive power is automatically equal to zero. If the tracking system is ideal, the
input current will be free of higher harmonics. The second phase of the research
work is the output voltage control. It will be shown that the output voltage will be
constant and depends only on the amplitude of the reference input if designing the
ideal tracking system is accomplished.

Furthermore, the proposed strategy does not utilize conventional SMC. As pre-
viously mentioned, the objective is to control three variables: two phase current and
output voltage, using three dimensional control vectors. Generally, this can be done
by enforcing sliding mode at the intersection of three sliding surfaces that depend
on the mismatches between the reference and real values. However, the following
analysis will show that matrix multiplying control is singular and conventional SMC
methodology is not applicable.

18.3.2 Proposed Control Scheme in the abc Natural
Reference Frame

(A) Sliding Mode Current Tracking Control

According to the proposed design procedure, phase currents should track sinusoidal
reference inputs proportional to input ac voltages. The tracking problem is solved in
the framework of sliding mode methodology. Substituting Eq. (18.100) into (18.99)
results in:

L
diabc
dt

= eabc + vdcΓ 0S (18.103)



500 Y.M. Alsmadi et al.

where, matrix Γ0 is given by:

Γ0 =

⎡
⎢⎢⎢⎢⎣

−2
3

1
3

1
3

1
3

−2
3

1
3

1
3

1
3

−2
3

⎤
⎥⎥⎥⎥⎦ , detΓ0 = 0 (18.104)

Since the sum of the three-phase currents is equal to zero, three state variables
should only be controlled: output voltage and two phase currents in a system with
a three dimensional control vector S. But, unfortunately the conventional sliding
mode method cannot be applied directly since matrix Γ0 is singular. Because of
that, we will start with designing a tracking system for two phase currents only.
It means that sliding mode should be enforced on the intersection of two surfaces
σa = L

(
iare f − ia

)
and σb = L

(
ibre f − ib

)
or in vector form:

σab = L
(
iabre f − iab

)
(18.105)

Excluding the phase current ic = −ia − ib yields to:

L
diab
dt

= eab + ucΓ S (18.106)

C
dvdc
dt

= −vdc
R

+ (ia, ib,−i a − ib)S (18.107)

where 
 is a 2× 3 matrix given by:

Γ =
⎡
⎣

−2
3

1
3

1
3

1
3

−2
3

1
3

⎤
⎦ (18.108)

The ideal tracking system is based on Lyapunov function:

V = 1

2
σab

T σ ab (18.109)

Discontinuous control should be selected such that time derivative of V is negative
definite. The time derivative V̇ on the system trajectory can be easily calculated as:

V̇ = σab
T F (.) − uc (α, β, γ ) S (18.110)

where F (.) is state function, which does not depend on control. α, β and γ are given
by:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α = (−2
3 σa + 1

3σb
)

β = (
1
3σa + −2

3 σb
)

γ = (
1
3σa + −2

3 σb
)

(18.111)

If vdc/L is large enough, F (.) can be suppressed with control S given by:

S =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sa = sign (α)

Sb = sign (β)

Sc = sign (γ )

(18.112)

where α, β and γ are selected such that V̇< 0. This means that σab tends to zero. Even
more, σab becomes zero after a finite time interval ts [10]. As a result, sliding mode
occurs with iab = iabre f . If a tracking system is designed with sinusoidal current
references proportional to the input AC voltages as:

iab = K ∗ eab (18.113)

where K is constant. Then, the first problem of having zero reactive power and phase
currents free of higher harmonics is solved.

(B) Sliding Mode Output Voltage Control

The main objective is to maintain the DC output voltage at the desired level. The
first question to be answered is what is the output voltage after sliding mode occurs?
Sliding mode equation can be derived using the so called “equilibrium control”
procedure [39]. Step 1: time derivative of vector σab on the state trajectory is made
equal to zero. Step 2: the obtained algebraic equation should be solved with respect
to control S and then substituted in the original system.

The equivalent control:

(Γ S)eq =
(
L
diabre f
dt

− eab

)
1

uc
(18.114)

is the solution of the following equation:

dσ ab

dt
= L

diabre f
dt

− eab − vdc(Γ S)eq = 0 (18.115)

The three phase input currents can also be written as:

(
ia, ib, −i a − ib

) = − (ia − ic, ib − ic) Γ (18.116)
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After substitutingEqs. (18.114) and (18.115) into (18.107), the slidingmode equation
can be obtained as:

C

(
dvdc
dt

)
=

(
−vdc

R

)
− L

uc

(
ia
dia
dt

+ ib
dib
dt

+ ic
dic
dt

)
+ 1

vdc
(iaea + ibib + icec)

(18.117)
For the given balanced three phase input voltages given by Eqs. (18.88)–(18.91), and
after sliding mode occurs (iab = Kea), it can be noticed that:

⎧⎨
⎩

ia
dia
dt + ib

dib
dt + ic

dic
dt = 0

iaea + ibeb + icec = 3
2K E0

2 = costant
(18.118)

After substituting Eq. (18.118) into (18.117), the sliding mode equation is given by:

C
dvdc
dt

= −vdc
RL

+ 3

2
K E0

2 1

uc
(18.119)

The last equation has only one asymptotically stable equilibrium point that can
be described by:

vdcss =
√
3

2
K E0

2RL (18.120)

In order to prove the stability of the equilibrium point, represent the right hand
side of Eq. (18.119) in the form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (vdc) = − vdc
RL

+ 3
2K E0

2 1
uc

f (vdc) = −g (vdc) (vdc − vdcss) , g (vdc) > 0

Δvdc = (vdc − vdcss)

(18.121)

The derivative of f (vdc) is negative and is given by:

f ′ (vdc) = − 1

RL
− 3

2
K E0

2 1

v2dc
< 0 (18.122)

Therefore, g (uc) > 0 andC dΔuc
dt = −gΔuc,Δuc → 0. This proves that the equilib-

rium point of (18.119) is asymptotically stable. It can be seen that the output voltage
tends to a constant value which depends on the value of constant K in the reference
current input equation. If RL is known, K can be easily assigned. Otherwise, K
should be varied such that the equilibrium point is equal to desired value ucre f . As in
any boost converter, the output voltage should be greater than some minimum value.
Correspondingly, K > Kmin and Kmin > 0. Selected K as an integral function of the
mismatch as:
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K̇ = α
(
ucre f − uc

) + M sg (Kmin − K ) , α > 0, M > α
∣∣vdc_re f − vdc

∣∣
(18.123)

where α is constant. The last term of (18.123) is added to prevent K from being less
than Kmin . The only steady state of the system is uc = ucre f , and the value of K is
given by:

K = 2

3

v2dc_re f
E0

2RL
(18.124)

If vdc_re f > 0, K (0) > 0, and vdc (0) > 0, then, according to (18.120) and
(18.123), K (t) > 0 and vdc (t) > 0 for any t > 0. Substituting uc = ucre f + x > 0
in Eq. (18.120) results in:

dx

dt
= −Avdcre f − Ax + BK

vdcre f + x
(18.125)

Differentiating Eq. (18.125) results in:

ẍ = − (t) ẋ − f (x) , (t) > 0, x f (x) > 0 (18.126)

Select the Lyapunov function:

V = ẋ2

2
+

∫ x

0
f (γ )dγ > 0 (18.127)

The time derivative V̇ on the system trajectory can be easily calculated as:

V̇ = −(t)ẋ2 (18.128)

Since ẋ(t) ≡ 0, thismeans that x(t) ≡ 0 and the equilibrium point is globally asymp-
totically stable.

18.3.3 Proposed Control Scheme in the dq Synchronous
Reference Frame

(A) Sliding Mode Current Tracking Control

Similar to the control design for electric motors, the current control of a Boost-
type AC/DC power converter can be designed either in phase coordinates or in
the dq coordinate frame. Since the control criteria (as listed in the performance
characteristics) are normally given in the dq coordinate frame, it is more convenient
to design the current control in the dq coordinate frame than in phase coordinates.
Represent the current equations in (18.100) and (18.101) in a vector form as:
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İdq = fdq(Idq , edq , ωg) − bsdq (18.129)

where,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Idq =
[
id
iq

]

sdq =
[
sd
sq

]

fdq
(
Idq , edq , ωg

) =
⎡
⎣

Rg

Lg
id + ed

Lg
+ ωgiq

− Rg

Lg
iq + eq

Lg
− ωgid

⎤
⎦

b = vdc
2L

(18.130)

The switching functions for the current control are designed as:

σd = i∗d − id (18.131)

σq = i∗q − iq (18.132)

where i∗d and i∗q are the desired values of the currents in the (d, q) coordinate frame.
The next task is to find the condition under which sliding mode can be enforced. It
can be noticed that no control gain can be adjusted for the control design of AC/DC
converters. The solution is to find a domain in the system space from which any state
trajectory converges to the sliding manifold defined by σd = 0, σq = 0. Defining
σdq = [σd , σq ]T and taking the time derivative of σdq results in:

σ̇dq = İ ∗
dq − fdq

(
Idq , edq , ωg

) + b sdq = Fdq + DS (18.133)

where I ∗
dq = [i∗d , i∗q ]T , Fdq = İ ∗

dq − fdq
(
Idq , edq , ωg

)
, D = bAα,β

d,q A
a,b,c
α,β , Aα,β

d,q A
a,b,c
α,β

are the Park and Clarke transformation matrices, respectively, S is the vector of
transformed switching functions defined in (18.8).

Design the matrix of switching functions S as:

S = −sign(S∗) (18.134)

where S∗ = [S∗
a , S

∗
b , S

∗
c ]T is a vector of transformed switching functions and

sign (S∗) = [sign(S∗
a), sign(S∗

b ), sign(S∗
c)]T . The transformed vector S∗ should be

designed such that, s f d and s f q disappear in finite time. Vector S∗ is selected as:

S∗ = 3

2b2
DTσdq (18.135)
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Design a Lyapunov function candidate as:

V = σ T
dqσdq (18.136)

The time derivative of the Lyapunov function on the system trajectory can be
easily calculated as:

V̇ = (S∗)T F∗ + (S∗)T DT DS (18.137)

where F∗ = [ F∗
a F∗

b F∗
c ]T= DT Fdq . Substituting control equation (18.134) into

(18.137) results in:

V̇ = (S∗)T F∗ − (
S∗)T DT D sign(S∗) (18.138)

where DT D is a singular matrix that can be calculated as:

DT D = b2
4

9

⎡
⎢⎢⎢⎢⎣

1 − 1
2 − 1

2

− 1
2 1 − 1

2

− 1
2 − 1

2 1

⎤
⎥⎥⎥⎥⎦ (18.139)

Equation (18.138) can be expanded as:

V̇ = (
S∗
a F

∗
a + S∗

b F
∗
b + S∗

c F
∗
c

) −
(
2

3

)2

b2
(
2
∣∣S∗

l

∣∣ + ∣∣S∗
m

∣∣ + ∣∣S∗
n

∣∣) (18.140)

where l �= m �= n and l,m, n ∈ {a, b, c}. Equation (18.140) can be further repre-
sented as:

V̇ = (
S∗
a F

∗
a + S∗

b F
∗
b + S∗

c F
∗
c

) −
(
2

3

)2

b2
(∣∣S∗

l

∣∣ + ∣∣S∗
m

∣∣ + ∣∣S∗
n

∣∣) −
(
2

3

)2

b2
∣∣S∗

l

∣∣
(18.141)

This means that the sufficient condition for V̇ < 0 can be given by:

(
2

3

)2

b2 > max(F∗
a , F∗

b , F∗
c ) (18.142)

Equation (18.142) defines a subspace in the system space in which the state
trajectories converges to the sliding manifold defined by σdq = 0 in finite time. This
is to show that the attraction domain in the sliding manifold is bounded in the state
space. It is also important to notice that parameter b = vdc

2L should be high enough at
the initial time instant. The output voltage is not zero at the initial time instant since
vdc_d = vdc. In critical applications, this can be achieved by starting the converter
operation with an open-loop control. The last step of the current control design is that
the resulting controls Sa, Sb and Sc should be mapped into the switching patterns
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that can be applied to the power converter. This can be done using the following
system of equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sw1 = 1
2 (1 + Sa) , sw4 = 1 − sw1

sw2 = 1
2 (1 + Sb) , sw5 = 1 − sw2

sw3 = 1
2 (1 + Sc) , sw6 = 1 − sw3

(18.143)

(B) Sliding Mode Output Voltage Control

It is necessary to determine the reference currents feeding to the current controller,
i∗d and i∗q , in order to ensure asymptotic stability of the output voltage regulation.
Neglecting the voltage drop over the phase resistance Rg , Eqs. (18.100)–(18.102)
can be simplified to:

Lg
did
dt

= ed + ωgLgiq − vd (18.144)

Lg
diq
dt

=eq−ωgLgid − vq (18.145)

C
dvdc
dt

= −iL + 1

2
(idsd + iqsq) (18.146)

In general, the value of the inductance satisfies L  1, while the right-hand sides
of equations in (18.144)–(18.146) have the values of the same order. Therefore,
did/dt , diq/dt � ducd/dt indicating that the dynamics of id and iq are much faster
than those of vdc. In case that the fast dynamics are stable, the output voltage control
can be simplified considerably. Based on the Singular Perturbation Theory [19, 20],
the left-hand sides of Eqs. (18.144)–(18.146) can be formally equal to zero, and the
algebraic equations for sd and sq can be solved. Therefore, the following equation
system is valid for control design of the slow-manifold:

sd = 2
(
ed + ωgLi∗q

)
vdc

(18.147)

sq = 2
(
eq + ωgLi∗d

)
vdc

(18.148)

dvdc
dt

= − iL
C

+ i∗d sd + i∗q sq
2C

(18.149)

where i∗d and i∗q are the reference values of id and iq , respectively. The real currents are
replaced with their reference values in Eqs. (18.147) and (18.149), since we assume
that the inner current control loop is in slidingmode with σd = i∗d − id , σq = i∗q − iq .
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As mentioned in the introduction, the objective is to control the three-phase AC/DC
power converter such that the output voltage is maintained at the desired level with
zero steady state error, input currents are free of higher harmonics and the reactive
power is equal to zero. The demand of sinusoidal input currents has been fulfilled
automatically by involving the (d,q) transformation. The following characteristics
will cover the remainingmajor requirements of awell-controlled three-phaseAC/DC
power converter:

1. The output voltage should converge to its reference value u∗
c .

2. The input current phase-angle, ρ∗= arctan(i∗q/ i∗d ), should trace its reference
value.

3. The power-balance condition should be satisfied, i.e. edi∗d + eqi∗q = u∗
c il = v∗

dciL .

The reference currents i∗d and i∗q should be calculated satisfying these requirements.
Substitution of (18.147) and (18.148) into (18.149) yields:

dvdc
dt

= − iL
C

+ i∗d sd + i∗q sq
Cvdc

(18.150)

Taking into account the power-balance condition, the above equation can be sim-
plified to:

dvdc
dt

= − iL
C

+ v∗
dciL
Cvdc

(18.151)

For a system with a pure load resistance RL , iL = vdc/RL . As a result, linear
dynamics for output voltage ucd can be calculated as:

dvdc
dt

= v∗
dc − vdc
CRL

(18.152)

Define the voltage regulation error as vdc = v∗
dc − vdc with a constant desired

voltage v̇∗
dc = 0 such that:

vdc + RLCv̇dc = 0 (18.153)

Equation (18.153) shows that the voltage error tends to zero asymptotically with the
time-constant RLC . It also means that the output voltage converges to its reference
value automatically if the power-balance condition is fulfilled. Finally, i∗d and i∗q can
be calculated as:

i∗d = v∗
dciL

ed + ed tanρ∗ (18.154)

i∗q = v∗
dciL tanρ

∗

ed + ed tanρ∗ (18.155)

where ρ∗ is the input reference current phase angle. It is usually determined by the
control designer.
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18.3.4 Simulation Results

In order to evaluate the proposed sliding mode control strategies for AC/DC
power converters, several computer simulations have been conducted using MAT-
LAB/Simulink software. Parameters of the simulated three-phase AC/DC converter
are listed in Table18.7. All of the reported results were obtained under the assump-
tion that ideal sliding modes are enforced in the systems. Figure18.30 shows the
DC output voltage using the proposed SMC algorithm. As it can be seen, the output
voltage is maintained at the desired level with zero steady state error. vdc_re f = 250V
in this case,

Results of the current tracking control system are shown in Fig. 18.31. After
the transient stage, phase currents track references very well. This proves that the
proposed sliding mode control strategy ensures that the input currents are free of
higher order harmonics.

Figure18.32 shows the source voltage and current. It illustrates the ability of the
proposed control algorithm to reduce the reactive power to zero and maintain a unity
power factor.

Figure18.33 illustrates the ability of the input current and output voltage control
systems under the proposed strategy to quickly follow a sudden change in the dc
link voltage reference (vdc_re f 1 = 300V, vdc_re f 2 = 250V). In this case, K should be

Table 18.7 Simulation parameters of the three-phase AC/DC converter

Parameter L (mH) C (μf) f (Hz) RL (�) E0 (V)

Value 7.5 820 60 100 120

Fig. 18.30 DC-link output
voltage of the AC/DC power
converter
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Fig. 18.31 Three-phase current tracking using the proposed SMC strategy

Fig. 18.32 Input phase voltage and phase current
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Fig. 18.33 System response
to a sudden change of the dc
link voltage and input current

varied such that the equilibrium point is equal to desired value ucref . For this purpose,
K is selected as an integral function of the mismatch vdc_re f − vdc.

18.4 Sliding Mode Control of DC/AC Power Electronic
Inverters

PWMoriginally refers to an approach used to realize or amplify a continuous function
by using on/off implementation. In power electronics industry, the term PWM also
refers to the control of semiconductor switches in converter circuits. With the devel-
opment of new control algorithms for power converters, several PWM techniques
have been proposed and implemented in the control system of DC/AC inverters, like
harmonic elimination PWM [5, 6] space vector PWM [17, 18, 41], sine-triangle
PWM [28], hybrid PWM [3], hysteresis band control, etc.

PWM control approaches can be classified into two main categories: open-loop
control using a pre-calculated switching pattern, such as harmonic elimination PWM,
and close-loop control whose switching actions depend on feedback information,
such as hysteresis band PWM approach. Some of them can be used in both open-
loop and close-loop schemes, such as space vector PWM [41]. Comparative studies
of different PWM techniques can be found in [31, 37], and other literature.
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Performance of power electronic inverters is evaluated in different aspects, for
instance harmonic loss factor, reference tracking ability and robustness against vari-
ation of circuit parameters and disturbances. Therefore, Sliding mode control (SMC)
is very natural to be used in the control of power inverters [1, 38–40], since the
switching between two discrete values can be used directly as gating signals to the
semiconductor switching devices in power converter circuits. SMC has excellent
reference tracking ability and robust against parameter variations of the inverter.

This section presents a new PWM approach for power electronic inverters called
Sliding Mode PWM (SMPWM). It is a close-loop control method based on the
sliding mode concept. The control objective is to track proper reference inputs using
a three-phase full-bridge inverter. It considers the fact that three arbitrary phase
current references cannot be tracked for three-phase three-wire systems.

18.4.1 Circuit Model and Design Methodology

Consider the system in Fig. 18.34. The three-phase full-bridge inverter under con-
trol is to provide desired currents to the load, taking into account that they can be
dependent.

Based on circuit analysis, the system equations are:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L dia
dt + Ria + Ea = sa Udc − vn

L dib
dt + Rib + Eb = sbUdc − vn

L dic
dt + Ric + Ec = sc Udc − vn

(18.156)

Fig. 18.34 Three-phase PWM DC/AC inverter scheme
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where vn is the voltage at neutral point. Ea, Eb, Ec are balanced three phase voltage
sources which represent three back EMF in ac motors. sa, sb, sc ∈ {±1} represent
the on/off control signals for six switching devices of the three-phase full-bridge
converter. If a switching device is conducting, value “1” is assigned to it, otherwise
“−1” is assigned. Since sum of the currents is equal to zero, vn of the three-phase
system can be found as:

vn = Udc

3
(sa + sb + sc) (18.157)

It looks natural that vn is discontinuous, but its averagevalue changes continuously.

18.4.2 Sliding Mode Pulse Width Modulation (SMPWM)

The objective of the inverter’s control system is to track proper selected voltage or
current references. Some existing PWM techniques use three-phase current errors as
inputs to its controller, for instance hysteresis band PWM. It controls the three phases
independently based on corresponding current error. However, as it was mentioned,
the three currents cannot be independent.

Denote ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ja = − (
R
L

)
ia − Ea

L

Jb = − (
R
L

)
ib − Eb

L

Jc = − (
R
L

)
ic − Ec

L

(18.158)

Substituting (18.157) into (18.156) results in:

di

dt
= J + Udc

3L
DS (18.159)

where,

i =
⎡
⎣ ia
ib
ic

⎤
⎦ , D =

⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎦ , S =

⎡
⎣ sa
sb
sc

⎤
⎦ , J =

⎡
⎣ Ja
Jb
Jc

⎤
⎦

Notice thatmatrix D is singular, therefore among ia, ib, ic, only two phase currents
canbe controlled independently. If the sumof reference currents

∑
i∗z �= 0, where z =

a, b, c, then problem can not be solved. If
∑

i∗z = 0, only two of the reference inputs
can be given independently, then we have one superfluous degree of freedom since
the dimension of control equals to three. As result, although three currents are equal
to the desired values, the motion of system is not unique. For example the voltage
vn in (18.157) can be equal to different values. In future, we assume that reference
inputs and are given and discuss how to utilize the additional degree of freedom.
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It should be noted from (18.156) that, since the equation for each phase current
depends on all three discontinuous functions sa, sb, sc, the frequency analysis cannot
be performed independently. Thus, although hysteresis band PWMworks in practical
implementation, its analysis needs to be carefully checked. Control algorithm should
be developed to control three-phase currentswhile only two of them can be controlled
independently. The extra one degree of freedom can be used to control one more
variable.

The proposed control algorithm is based on complementing the original system
by the first order equation:

ṡ3 = v∗
n − vn (18.160)

where vn is defined in Eq. (18.157).
The sliding surfaces s = [sa, sb, s3]T can be defined as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sa = i∗a − ia

sb = i∗b − ib

s3 = ∫
(v∗

n − vn) dτ

(18.161)

where i∗a , i∗b , v∗
n are reference signals. The derivative of vector s can be easily derived

as:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṡa = i∗a − Ja − 2
3
Udc
L sa + 1

3
Udc
L sb + 1

3
Udc
L sc

ṡb = i∗b − Jb − 2
3
Udc
L sb + 1

3
Udc
L sa + 1

3
Udc
L sc

ṡ3 = v∗
n − (Udc/3) (sa + sb + sc)

(18.162)

Three-dimensional discontinuous control J can be designed such that sliding
mode is enforced on s = 0.When slidingmode occurs on s = 0, all three components
of are equal to zero and the tracking problem is solved. Since motion equation in
sliding mode depends on parameter v∗

n , it can be selected in correspondence with
some performance criterion. Different control methods can be used to enforce sliding
mode.

Having proposed sliding surface s, the proposed control algorithm should be
designed such that vector s is reduced to zero after finite time. Select the Lyapunov
function:

V = 1

2
sT s (18.163)

Its time derivative is given by:
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V̇ = F (.) − Udc

3L
[αsa + βsb + γ sc] (18.164)

where, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (.) = sa
(
i∗a − Ja

) + sb
(
i∗b − Jb

) + s3v∗
n

α = (2sa − sb + s3L)

β = (2sb − sa + s3L)

γ = (−sa − sb + s3L)

(18.165)

If uc/L is large enough, F (.) can be suppressed with control S given by:

S =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sa = sign (α)

sb = sign (β)

sc = sign (γ )

(18.166)

The proposed SMPWM control design for AC/DC inverters has the following
advantages:

1. SMPWMwith Lyapunov approach takes into account all sliding surfaces directly
for each phase’s control.

2. SMPWM does not require the dc voltage source to have constant value.
3. SMPWM can tolerate significant amount of disturbances or fluctuations from

voltage source. This is an attractive advantage of SMPWM.

18.4.3 SMPWMUsing Sliding Surface Decoupling Approach

Although the SMPWM method proposed in Sect. 4.2 is simple, it does not provide
the capability to analyze the motion in the vicinity of the sliding manifold, since
the three equations in (18.162) are interconnected. Therefore, this section presents
another SMPWM technique that takes into account all sliding surfaces indirectly for
each phase’s switching control.

Equation (18.162) can be written in matrix form

ṡ = f2 + Udc

3L
B J (18.167)

http://dx.doi.org/10.1007/978-3-319-62464-8_4
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where the vector f2 =
[
di∗a
dt − Ka,

di∗b
dt − Kb, v∗

n

]
includes terms without control vari-

ables, and B =
⎡
⎣ 2 −1 −1

−1 2 −1
L L L

⎤
⎦. Since B is a non-singular matrix, it can be trans-

formed into a diagonalmatrix, and control variables can be decoupled for each sliding
surface. Introduce new switching manifold s = B−1s = 0. In this case,

B−1 = 1

9L

⎡
⎣ 3L 0 3

0 3L 3
−3L −3L 3

⎤
⎦ (18.168)

s = 1

9L

⎡
⎣ 3Lsa + 3s3

3Lsb + 3s3
−3Lsa − 3Lsb + 3s3

⎤
⎦ =

⎡
⎣ s1
s2
s3

⎤
⎦ (18.169)

Differentiation of (18.169) gives ṡ1 = B−1ṡ and ṡ can be as:

ṡ = B−1ṡ = f3 − Udc

3L

⎡
⎣ sa
sb
sc

⎤
⎦ (18.170)

where f3 = [ f31, f32, f33]T is a 3 * 1 vector whose elements have bounded values
as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f31 = 1
3L (L di∗a

dt − LKa + v∗
n)

f32 = 1
3L (L di∗b

dt − LKb + v∗
n)

f33 = 1
3L (−L di∗a

dt + LKa − di∗b
dt + LKb + v∗

n)

(18.171)

f3 does not include control variables, sa, sb and sc. Equation (18.170) shows that the
overall motion can be decoupled into three individual ones (with respect to control).
Select the control logic for inverter switches as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sa = sign (s1)

sb = sign (s2)

sc = sign (s3)

(18.172)

If Udc
3L > sup ‖f3‖, the slidingmode existence conditions s1ṡ1< 0, s2ṡ2< 0, s3ṡ3< 0

hold. Sliding manifold is reached after finite time. Reference input v∗
n can be selected

depending on some operation criteria: control of switching frequency, minimization
of this frequency with given accuracy, and so on.
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18.4.4 Sliding Mode Control of Neutral Point Voltage (vn)

This section explains thephysicalmeaningof theproposed controlmethodology.As it
follows from (18.162), the time derivative of s3 depends on varying at high frequency
in sliding mode. It means high frequency will be rejected on sliding surface and will
depend on average value of vn .

Section4.3 shows that SMPWMcan track reference currents and control the aver-
age value of vn at the same time. As a result, proper v∗

n can be found tominimize some
performance criterion. As an example, the switching frequency is to be minimized
in order to reduce switching losses with a given accuracy. Ideally, sliding mode is a
mathematical abstraction where the sliding motion trajectories are strictly on discon-
tinuous surfaces. However, sliding mode in a real life system occurs not strictly on
its discontinuous surfaces. Instead, it appears within some boundary layer. Analysis
of sliding motion in boundary layer can be found in [40]. Assume that switching
devices have hysteresis loopΔ. ThenΔ defines the accuracy of the system, as shown
in Fig. 18.35. In our system, the switching frequency depends on state velocities.
Moreover, the switching frequency is not a constant value. We consider the sys-
tem using surface decoupling approach shown in Sect. 4.3. Then each phase can be
handled independently. The switching frequency is determined by two time intervals
with ṡ > 0 and ṡ < 0. Consider the switching behavior of the i-th motion in (18.170)
where i ∈ {1, 2, 3}. For each motion in (18.170), the time duration of “switch on”
and the time duration of “switch off” can be written as functions of v∗

n .
The function f3 in (18.170) depends on v∗

n , as shown in (18.171). For each motion
in (18.170), the time duration of “switch on” and the time duration of “switch off”
can be written as functions of v∗

n⎧⎪⎪⎨
⎪⎪⎩

toni (v
∗
n) = Δ∥∥∥ f3i(v∗

n)− Udc
3L

∥∥∥

to f f i (v
∗
n) = Δ∥∥∥ f3i(v∗

n)+ Udc
3L

∥∥∥
(18.173)

It means that the switching frequency of the i-th motion is a function of v∗
n as well.

Fig. 18.35 Sliding manifold
of SMPWM

http://dx.doi.org/10.1007/978-3-319-62464-8_4
http://dx.doi.org/10.1007/978-3-319-62464-8_4
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fswitch_i (v
∗
n) = 1

toni (v
∗
n) + to f f i (v

∗
n
)

(18.174)

Taking into account all three motions in (18.170), the variable fswitch defined in
(18.87) can be used as a measurement of the overall switching frequency of the
system:

fswitch_i (v
∗
n) =

3∑
i=1

fswitch_i (v
∗
n) (18.175)

Let fswitch_i (v
∗
n)be the function to beminimized under the constraint Udc

3L > sup ‖ f3‖.
Then, the optimal v∗

n canbe found from (18.172) and (18.173), such that fswitch_i (v
∗
n) is

minimized. In this particular example, the performance criterion is a function of v∗
n .

In other problems, criterion could be a function of vn . Then let v∗
n equal to the optimal

value of vn , and the tracking vn = v∗
n is provided by SMPWM.

Table 18.8 Simulation parameters of the three-phase AC/DC inverter

Parameter Udc (V) Eabc, rms
(V)

i∗abc, peak
(A)

R (�) L (mH) Step (μs) Freq. (Hz)

Value 650 200 18 0.06 12 10 60

Fig. 18.36 Current tracking using SMPWM
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18.4.5 Simulation Results

In order to evaluate the proposed control algorithm, computer simulations have been
conducted using MATLAB/SIMULAINK software. Parameters used in simulation
are listed in Table18.8. This simulation used sliding surface decoupling approach.
Results of three-phase current tracking (zoomed-in) are shown in Fig. 18.35. After
the transient stage, phase currents track the references very well. Discontinuous
output voltages va, vb, vc are shown in Fig. 18.36. In Fig. 18.37, the average value
of vn tracks a time varying reference. This average value is obtained by a first order
dynamic μẋ = −x + vn and μ = 0.001. This low pass filter is used to calculate
the average value of vn in order to illustrate how close is this value to the v∗

n . Of
course this filter is not needed for implementation of the system. In this simulation,
the reference v∗

n is a randomly selected time varying function. It is not optimized
according to some criterion. The only objective of Fig. 18.37 is to show the ability
to track a time varying.

It is worth mentioning that SMPWM (see Fig. 18.38) is suitable for both analog
and digital implementations. This due to the fact that SMPWM can be implemented
with or without timing functionality, while other PWM approaches like Space Vector
PWM require the DSP controller to have the ability to handle timing [7, 41].

Fig. 18.37 Three-phase output voltages using SMPWM
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Fig. 18.38 Tracking a time varying v∗
n (t) using SMPWM
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Chapter 19
An Adaptive Finite Time Sliding Mode
Observer

Dongya Zhao, Sarah K. Spurgeon and Xinggang Yan

Abstract This chapter develops a novel adaptive finite time observer which can
achieve finite time unmatched parameter estimation and finite time system state
observation. The proposed approach has strong robustness and rapid convergence.
A step by step proof is given which employs finite time stability and sliding mode
principles. It is seen that the method also enables lumped matched uncertainty to
be estimated. An illustrative example is used to validate the effectiveness of the
proposed approach.

19.1 Introduction

In the system and control area, numerous control methodologies use a state feed-
back approach to guarantee stability. Such methods require that all the system states
are available for controller implementation [5, 13]. However, some states may be
difficult, if not impossible or prohibitively expensive, to measure in practice. For
example, the velocity in a mechanical system or the reactant concentration in a
chemical system may not be routinely measured [3]. In the case, the system states
cannot be measured, state feedback based control will not work or not work well.
Hence, to acquire all of the state information is a very important problem for both
controller design and implementation in practical applications. One of the effective
ways to estimate the system states is to use a state observer [16].
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Observer design is also important in the domain of fault detection and isolation
as well as condition monitoring [12]. Here the observer is a dynamical system rep-
resenting nominal system behavior and some appropriate measure of the deviation
between the dynamical behavior of the observer and the dynamical behavior of the
plant or process is used to monitor the condition of the plant or process and detect
the presence of faults or failures.

There are many approaches and algorithms to estimate the system states, such
as the Luenberger observer [19], the high gain observer [8], the H∞ observer [1],
sliding mode observers [15] and the Kalman filter based observer [17]. For many
observer design paradigms, the presence of unmatched uncertainty poses problems.
Problems with unmatched uncertainty frequently occur in chemical and biological
process control, as seen for example in the continuously stirred tank reactor, crude oil
unit and fermentation processes [9]. If there is unmatched uncertainty present in the
system, the observer accuracy may degrade and the observer may become unstable.

The sliding mode observer is known to possess strong robustness and appropriate
design can eliminate the effects of system uncertainty and external disturbances.
Recently, a class of step by step sliding mode observers has been developed for a
plant consisting of a series of integrators. For systemswith this structure, the observer
error will converge to zero in finite time [6, 14, 20]. However the approach cannot
deal with unmatched uncertainty effectively.

A novel finite time dynamic parameter estimator has been presented which uses
low pass filters [11]. However this requires that all of the system states can be
measured. It should also be mentioned that there is a finite time disturbance observer
which also requires that all of the states can be measured [10].

Besides strong robustness, a finite time observer has faster convergence speed
than an asymptotic observer, which is desirable in practice [4]. Note that if the
designer wants to guarantee finite time observation, the observer has to eliminate the
uncertainties and external disturbances in finite time. It is very challenging to design a
finite time observer where the system contains unmatched andmatched uncertainties.
To address this problem, this chapter proposes a new sliding mode observer for
a class of dynamical systems which contain unmatched uncertain parameters and
matched lumped uncertainty. The uncertain parameters can be estimated in finite
time by appealing to the adaptive principle. The system states can then be observed
step by step in finite time by using the sliding mode principle and appealing to
the principle of the equivalent injection. It should be mentioned that the proposed
observer can also estimate the matched lumped system uncertainty in finite time. The
proposed observer is thus not only useful for the implementation of state feedback
controllers, but also provides a candidate observer for fault detection and monitoring
as both the unknown parameters as well as the matched uncertainty, which can
be thought of as an unknown input, are estimated. By appealing to the Lyapunov
method, the system stability will be proved step by step. In comparison with existing
sliding mode observers [6, 14, 20], the proposed approach can deal with unmatched
uncertain dynamical parameters effectively. In comparison with the existing finite
time parameter estimator [11], the proposed approach can estimate the dynamical
parameters without requiring all of the system states to be measured. It should be
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mentioned that an adaptive output feedback finite time control has been designed
for the case of a second order nonlinear system, which can also estimate the system
parameters and states in finite time [21]. However, this chapter extends the approach
to a class of higher order systems and a more general design procedure is developed.

This chapter is organized as follows: In Sect. 19.2, the problem is formulated and
preliminary results and assumptionswill be presented. In Sect. 19.3, an adaptive finite
time observer will be designed and the stability analysis presented. In Sect. 19.4, an
illustrative example will be used to validate the proposed approach. Section19.5 will
present concluding remarks.

19.2 Problem Formulation and Preliminaries

Consider the following system which is subject to unmatched uncertain parameters
and matched lumped uncertainty:

ẋ1 = x2 + d1 (x̄1) θ1

...

ẋi = xi+1 + di (x̄i ) θi

...

ẋn−1 = xn + dn−1 (x̄n−1) θn−1

ẋn = u + ρ

y = x1 (19.1)

where x = [x1, x2, . . . , xn]T ∈ Rn is the system state vector, x̄i = [x1, x2, . . . , xi ]T ,
y ∈ R is the system output, u ∈ R is the control input, θi ∈ Rli is the unmatched
uncertain parameter vector, di (x̄i ) ∈ R1×li is a known function with appropriate
dimension and ρ ∈ R denotes the matched uncertainty.

Remark 19.1 Note that (19.1) includes unmatched uncertain parameter vectors θi
(i = 1, . . . , n − 1) and lumped matched uncertainty ρ. Assuming θi is a constant
vector which is unknown, the parameter vector should be estimated in finite time
online if the observer is to be finite time stable.

Definition 19.1 Avector ormatrix functionφ (x) is persistently excited (PE) if there
exist t > 0 and ε > 0 such that

∫ t+Δt
t φ (r) φT (r) dr ≥ ε I , ∀t ≥ 0.

Assumption 1 |di (x̄i ) θi | ≤ d̄i , i = 1, . . . , n − 1, d̄i > 0 is known and di (x̄i ) is PE.

Assumption 2 |ρ| ≤ ρ̄, ρ̄ > 0 is known.

The objective of this chapter is to design a finite time stable observer by using
the adaptive method and the sliding mode principle in order to compensate for the
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presence of unmatched uncertain parameters and the matched lumped uncertainty.
It will be seen that an added advantage of the proposed observer is the ability to
estimate in finite time the matched lumped uncertainty, which can be considered an
unknown input to the system. The designed observer thus belongs to the class of so
called unknown input observers.

19.3 Adaptive Finite Time State Observer

In this section, a finite time parameter estimator will be developed firstly for (19.1),
then an adaptive finite time state observer will be designed in light of the parameter
estimator.

19.3.1 Finite Time Parameter Estimator

In this section, all of the system states are assumed to be measurable. A finite time
parameter estimator is first designed by using filters as demonstrated in [2, 11].

For ẋi = xi+1 + di (x̄i ) θi (i = 1, . . . , n − 1), the following filters are chosen:

kẋi_ f + xi_ f = xi
kẋ(i+1)_ f + x(i+1)_ f = x(i+1)

kḋi_ f + di_ f = di (19.2)

where k > 0 is a constant and the initial conditions of the three filters are given by
xi_ f (0) = 0, x(i+1)_ f (0) = 0 and di_ f (0) = 0, respectively.

According to (19.2):

ẋi_ f = xi − xi_ f
k

= x(i+1)_ f + di_ f θi (19.3)

Define an auxiliary filter as:

ṗi = −l pi + dT
i_ f di_ f

q̇i = −lqi + dT
i_ f

(
xi − xi_ f

k
− x(i+1)_ f

)

(19.4)

where l > 0 is a design parameter.
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The solution of (19.4) is:

pi (t) =
∫ t

0
exp (−l (t − r)) dT

i_ f (r) di_ f (r) dr

qi (t) =
∫ t

0
exp (−l (t − r))dT

i_ f (r)
[(
xi (r) − xi_ f (r)

)
/k − x(i+1)_ f (r)

]
dr

(19.5)

It is obvious that:

θi = p−1
i (t) qi (t) (19.6)

Define an auxiliary vector as:

wi (t) = pi (t) θ̂i (t) − qi (t) (19.7)

Then design the following adaptive parameter estimator for θi :

˙̂
θi = −Γ pTi (t) sgn (wi (t)) (19.8)

where Γi ∈ Rli×li is a constant positive definite matrix, for a vector z ∈ Rn ,
sgn (z (t)) = [sgn (z1 (t)) , . . . , sgn (zn (t))]T , zi denotes i th element of vector z.

Remark 19.2 In the following state observer design, estimation of ρ is not required.
Its effect can be eliminated by robust injection, as explained in the next section.

Lemma 19.1 ([11]) If the regressor matrix di (x̄i ) is PE, the matrix pi (t) is positive
definite and satisfiesλmin (pi (t)) > σi for t > Ti andσi > 0, Ti > 0, inwhichλmin (·)
denotes the minimum eigenvalue of a positive matrix.

Lemma 19.2 ([18]) If a1, a2, . . . , an are all positive numbers and 0 < p < 2, then
the following inequality holds:

(
a21 + a22 + · · · + a2n

)p ≤ (
a p
1 + a p

2 + · · · a p
n
)2
.

Define the estimation error as:

θ̃i = θi − θ̂i (19.9)

Proposition 19.1 Consider Assumptions 1 and 2. If the parameter estimator is
designed as in (19.8), the estimation error will converge to 0 in finite time.

Proof Select a Lyapunov function as:

V e
i = 1

2Γ
θ̃T
i θ̃i (19.10)
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Differentiate (19.10) with respect to time:

V̇ e
i = − 1

Γ
θ̃T
i

˙̂
θi (19.11)

= θ̃T
i pTi (t) sgn (wi (t)) (19.12)

= θ̃T
i pTi (t)

[
sgn

(
−

(
pi (t) θ̃i

)

1

)
, . . . , sgn

(
−

(
pi (t) θ̃i

)

n

)]T
(19.13)

According to Lemmas19.1 and 19.2, it follows that:

V̇ e
i = −

n∑

i=1

(
pi (t) θ̃i

)

i

≤ −
∥
∥
∥pi (t) θ̃i

∥
∥
∥ (19.14)

≤ −μi

√
V e
i (19.15)

where μi = σi

√
2/λmax

(
Γ −1

)
, and θ̃i = 0 as t ≥ t ei , t

e
i ≤ 2

√
V e
i (0)/μi .

Remark 19.3 The estimation law (19.8) requires that all of the states are measurable.
However, it can be very difficult to measure all of the states in practice. For example,
the velocity and acceleration can be difficult to measure in mechanical problems.
Inspired by (19.8), an adaptive state observer will now be developed.

19.3.2 Adaptive Finite Time System State Observer

Before designing the observer, a further assumption is necessary.

Assumption 3
∣
∣(pi (t) ζi (t)) j

∣
∣ <

∣
∣
∣
∣

(
pi (t) θ̃i (t)

)

j

∣
∣
∣
∣, i = 1, . . . , n − 1 and j =

1, . . . , li , in which ζi (t) is caused by the observer error. This means the effect of the
deviation ζi (t) caused by x̂i+1 is smaller than that due to the parameter estimation
error θ̃i (t).

Remark 19.4 Assumption 3 means that the observer may cause a deviation in the
low pass filter which may in turn affect the parameter estimation. If the observer’s
effect is small enough, it will not affect the finite time parameter estimation. It is
not a difficult situation to deal with in practice with appropriate selection of design
parameters.

An adaptive finite time state observer is now designed for i = 1, . . . , n − 1. The
filters defined in (19.2) are now defined in terms of the state estimates as follows
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k ˙̂xi_ f + x̂i_ f = x̂i

k ˙̂x (i+1)_ f + x̂(i+1)_ f = x̂(i+1)_ f

kḋi_ f + di_ f = di (19.16)

with initial conditions x̂i_ f (0) = 0, x̂(i+1)_ f (0) = 0 and di_ f (0) = 0 respectively
where

˙̂xi_ f = x̂i − x̂i_ f
k

= x̂(i+1)_ f + di_ f θi_ f − ζi (t) (19.17)

and ζi (t) defined in Assumption 3 denotes the mismatch resulting from the use of
the observer state x̂(t) rather than the state x(t). The corresponding auxiliary filters
are defined in terms of the estimated state by

ṗi = −l pi + dT
i_ f di_ f

q̇i = −lqi + dT
i_ f

(
x̂i − x̂i_ f

k
− x̂(i+1)_ f

)

(19.18)

with corresponding solutions

pi (t) =
∫ t

0
e−l(t−r)dT

i_ f (r) di_ f (r) dr

qi (t) =
∫ t

0
e−l(t−r)dT

i_ f (r)
[(
x̂i (r) − x̂i_ f (r)

)
/k − x̂(i+1)_ f (r)

]
dr (19.19)

Then

θi = p−1
i (t) qi (t) + ζi (t) (19.20)

with

�

xi = [
α(i−1)sgn

(
x̃(i−1)

)]
eq + x̂i (19.21)

where [.]eq denotes the equivalent injection signal as defined in the domain of sliding
mode control [7]. This equivalent injection signal is not the signal applied in prac-
tice but represents the average behavior of the corresponding discontinuous signal
required to maintain a sliding condition. This equivalent injection may be obtained
by passing the applied discontinuous signal through a low pass filter.

The adaptive observer for xi is designed as:

˙̂xi = x̂(i+1) + di
( ˆ̄xi

)
θ̂i + αi sgn

(
�

xi − x̂i
)

(19.22)
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˙̂
θ i = −Γi

(
pTi (t) sgn (wi (t)) − dT

i

( ˆ̄xi
)
x̃i

)
(19.23)

If i = n, the state observer can be designed as:

˙̂xn = u + αnsgn(
�

xn − x̂n) (19.24)

where α > ρ̄,
�

xn = [
α(n−1)sgn

(
x̃(n−1)

)]
eq

+ x̂n .

Theorem 19.1 Consider the system (19.1) which is assumed to satisfy Assumptions
1–3. If the observer is designed as (19.16)–(19.24) under the conditionsΓi is positive
and αi is large enough, the system states and dynamic parameters can be estimated
in finite time. Further, the matched lumped system uncertainty can be estimated in
finite time by using the sliding mode injection as:

ρ =
[
αnsgn

(
�

xn − x̂n
)]

eq
(19.25)

Proof To prove the theorem, the observer error is defined as:

x̃i = xi − x̂i (19.26)

A step by step proof will be used.

Step 1

At the first step, the state observer and parameter adaptation law are designed as
follows:

˙̂x1 = x̂2 + d1
( ˆ̄x1

)
θ̂1 + α1sgn (x̃1) (19.27)

˙̂
θ1 = −Γ1

(
pT1 (t) sgn (w1 (t)) − dT

1

( ˆ̄x1
)
x̃1

)
(19.28)

The observer error dynamic equation is given by:

˙̃x1 = x̃2 + d1
( ˆ̄x1

)
θ̃1 + Δd1 (x̄1) θ1 − α1sgn (x̃1) (19.29)

where Δd1 (x̄1) = d1 (x̄1) − d1
( ˆ̄x1

)
.

Choose a Lyapunov function as:

V o
1 = 1

2
x̃21 + 1

2Γ1
θ̃T
1 θ̃1 (19.30)

Differentiate (19.30) with respect to time along (19.29):

V̇ o
1 = x̃1 ˙̃x1 + 1

Γ1
θ̃T
1

˙̃
θ1 (19.31)
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Substitute (19.27)–(19.29) into (19.31):

V̇ o
1 = x̃1

(
x̃2 + d1

( ˆ̄x1
)

θ̃1 + Δd1 (x̄1) θ1 − α1sgn (x̃1)
)

+
θ̃T
1

(
pT1 (t) sgn (w1 (t)) − d1

( ˆ̄x1
)
x̃1

)
(19.32)

= −α1 |x̃1| + x̃1 (x̃2 + Δd1 (x̄1) θ1) +
θ̃T
1 pT1 (t) sgn

(
−p1 (t) θ̃1 + p1ζ1 (t)

)
(19.33)

According to Lemma19.2:

V̇ o
1 ≤ − |x̃1| (α1 − |x̃2 + Δd1 (x̄1) θ1|) −

∥
∥
∥p1 (t) θ̃1

∥
∥
∥ (19.34)

If α1 is large enough, there is a positive number η1 > 0 such that:

α1 − |x̃2 + Δd1 (x̄1) θ1| ≥ η1

Equation (19.34) then becomes:

V̇ o
1 ≤ −η1 |x̃1| − ‖p1 (t) θ1‖ (19.35)

≤ −c11

√
1

2
x̃21 − c12

√
1

2
θ̃T
1 θ̃1 (19.36)

where c11 = √
2η1, c12 = σ1

√
2/λmax

(
Γ −1
1

)
. Let c1 = min {c11, c12}. Then, accord-

ing to Lemma19.2, the following inequality holds:

V̇ o
1 ≤ −c1V

o
1 (19.37)

According to the finite time stability principle, x̃1 and θ̃1 will be 0 after t ≥ to1 ,

to1 =
√

V o
1 (0)

2c1
.

After t ≥ to1 , θ̃1 = 0 and Δd1 (x̄1) = 0. According to (19.29), the following equa-
tion holds:

x̃2 = [
α1sgn (x̃1)

]
eq (19.38)

where
[
α1sgn (x̃1)

]
eq is the equivalent injection corresponding to α1sgn (x̃1).

Step 2
The state observer and parameter adaptive law are designed as follows:

˙̂x2 = x̂3 + d2( ˆ̄x2)θ̂2 + α2sgn(
�

x2 − x̂2) (19.39)

˙̂
θ2 = −Γ2

(
pT2 (t) sgn (w2 (t)) − dT

2

( ˆ̄x2
)
x̃2

)
(19.40)

where
�

x2 = [
α1sgn (x̃1)

]
eq + x̂2 and x̃2 is given in Eq. (19.38).
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The corresponding observer error dynamic equation is given by:

˙̃x2 = x̃3 + d2
( ˆ̄x2

)
θ̃2 + Δd2 (x̄2) θ2 − α2sgn (x̃2) (19.41)

where Δd2 (x̄2) = d2 (x̄2) − d2
( ˆ̄x2

)
.

Choose a Lyapunov function as:

V o
2 = 1

2
x̃22 + 1

2Γ2
θ̃T
2 θ̃2 (19.42)

By using the procedure as employed for Step 1 and described in Eqs. (19.30)–

(19.37), it can be proved that x̃2 = 0 and θ̃2 = 0 in finite time as t ≥ to2 , t
o
2 =

√
V o
2 (0)

2c2
,

c21 = √
2η2, c22 = σ2

√
2/λmax

(
Γ −1
2

)
, c2 = min {c21, c22}.

Step i

The state observer and parameter adaptive law are designed as follows:

˙̂xi = x̂(i+1) + di
( ˆ̄xi

)
θ̂i + αi sgn(

�

xi − x̂i ) (19.43)

˙̂
θ i = −Γi

(
pTi (t) sgn (wi (t)) − dT

i

( ˆ̄xi
)
x̃i

)
(19.44)

where
�

xi = [
α(i−1)sgn

(
x̃(i−1)

)]
eq + x̂i and x̃i = [

α(i−1)sgn
(
x̃(i−1)

)]
eq .

The corresponding observer error dynamic equation becomes:

˙̃xi = x̃(i+1) + di
( ˆ̄xi

)
θ̃i + Δdi (x̄i ) θi − αi sgn (x̃i ) (19.45)

where Δdi (x̄i ) = di (x̄i ) − di
( ˆ̄xi

)
.

Choose a Lyapunov function as:

V o
i = 1

2
x̃2i + 1

2Γi
θ̃T
i θ̃i (19.46)

By using the same approach as in Step 1 and Step 2, it can be proved that

x̃i = 0 and θ̃i = 0 as t ≥ toi , t
o
i =

√
V o
i (0)

2ci
, ci1 = √

2ηi , ci2 = σi

√
2/λmax

(
Γ −1
i

)
,

ci = min {ci1, ci2}.
Step n

In this final step, it is not required to compute the equivalent injection as the system
output y = xn and the observer error x̃n are known. Hence the adaptive law is not
required. The observer is designed as:
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˙̂xn = u + αnsgn(
�

xn − x̂n) (19.47)

where
�

xn = [
α(n−1)sgn

(
x̃(n−1)

)]
eq + x̂n , x̃n = [

α(n−1)sgn
(
x̃(n−1)

)]
eq .

The observer error dynamic equation will be:

˙̃xn = −αnsgn (x̃n) + ρ (19.48)

Choose a Lyapunov function as:

V o
n = 1

2
x̃2n (19.49)

Differentiate (19.49) with respect to time along (19.48):

V̇ o
n = x̃n (−αnsgn (x̃n) + ρ) (19.50)

= −αn |x̃n| + x̃nρ ≤ −αn |x̃n| + |x̃n| |ρ| ≤ − |x̃n| (αn − ρ̄) (19.51)

From Assumptions 1–3, if αn is large enough such that αn − ρ̄ > ηn > 0,
Eq. (19.51) becomes:

V̇ o
n ≤ −ηn |x̃n| = −cn

√
1

2
x̃2n = −cnV

o
n (19.52)

where cn = √
2ηn . x̃n = 0 as t ≥ ton , t

o
n =

√
V o
n (0)

2cn
.

Further, if x̃n = 0, according to (19.48), it follows that:

ρ = αnsgn (x̃n) (19.53)

In light of the sliding principle, the lumped matched uncertainty can be estimated
as follows from the corresponding equivalent injection signal:

ρ = [
αnsgn (x̃n)

]
eq (19.54)

This concludes the proof.

Remark 19.5 An adaptive finite time state observer has been developed. The results
relating to the finite stability time can be used to determine the observer parame-
ters. However, given the inherent conservatism in the Lyapunov method of proof,
some parameter tuning via simulation may improve the performance. The proposed
observer not only estimates the unmatched uncertain parameters and system states,
but also estimates the lumpedmatcheduncertainty present in the system.Theobserver
framework can be used in fault detection and condition monitoring problems as well
as being useful for state measurement and uncertainty compensation for controller
design and implementation.
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19.4 Illustrative Example

In this section, an illustrative example will be used to validate the proposed approach.
The following nonlinear dynamic system will be considered:

ẋ1 = x2 + d1 (x̄1) θ1 (19.55)

ẋ2 = x3 + d2 (x̄2) θ2 (19.56)

ẋ3 = u + ρ (19.57)

where d1 (x̄1) = x1 and d2 (x̄2) = [x1, x2] are regressor matrices. θ1 = 0.5 and θ2 =
[0.5, 0.7]T are the unmatched uncertain parameter vectors. ρ = 3sin (t) denotes the
lumped matched uncertainty.

For the simulation experiments the following parameters are chosen. In the fil-
ters defined in Eq. (19.16) the free parameter k = 10 and for the auxiliary filters in
Eq. (19.18), l = 10. Within the state observer defined in Eqs. (19.22) and (19.24)
the parameters αi are selected as α1 = 5, α2 = 3, α3 = 3. In the Eq. (19.23), the
parameters Γi are selected as Γ1 = 10, Γ2 = 0.5, Γ3 = 0.5.

Figures19.1, 19.2 and 19.3 show the system states and the corresponding state
estimates; the solid lines represent the systemstates and thedashed lines the estimates.
From these simulation results, one can see the proposed adaptive finite time observer
can estimate the system states accurately and in finite time.

Figures19.4, 19.5 and 19.6 show the corresponding parameter estimates. From
these figures, it can be seen that the proposed adaptive parameter estimator can accu-
rately estimate the parameters in finite time. It should be noted that to achieve finite
time state estimation by using a step by step sliding mode observer, it is necessary
to estimate the unmatched uncertain parameters in finite time. Otherwise, finite time
observation cannot be achieved. This is readily seen from the proof of the theorem.
During the step by step sliding mode observer proof, a corresponding equivalent
injection is used to estimate the observer error. If there is unmatched uncertainty

Fig. 19.1 System state x1
and its estimate x̂1
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Fig. 19.2 System state x2
and its estimate x̂2

Fig. 19.3 System state x3
and its estimate x̂3

Fig. 19.4 Estimation of
parameter θ1
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Fig. 19.5 Estimation of
parameter θ1(1)

Fig. 19.6 Estimation of
parameter θ2(2)

present in the error dynamic equations, this would contribute to the corresponding
equivalent injection signals at every step. It follows that the observer error would not
be accurately estimated. Hence, the unmatched uncertainty must be compensated. If
the parameters are estimated asymptotically, the observer would not be finite time
stable. This is the reason why the parameter estimator is required to be finite time
stable.

Figure19.7 shows the estimate of the lumped matched uncertainty obtained from
Eq. (19.25). In the simulation results, the discontinuous injection signals were imple-
mented using the unit vector approximation

sgn(.) ≈ (.)

abs(.) + δ
(19.58)

where δ > 0 is selected to be small. For the simulations, δ = 0.01 which was suf-
ficient to smooth the corresponding injection signal. It is seen that a high-quality
estimate of the lumped matched uncertainty is obtained.
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Fig. 19.7 Estimate of the
disturbance from the
observer equivalent injection
given from Eq. (19.25)

19.5 Conclusion

In practical systems, such as chemical processes and mechanical systems, it can be
very challenging to design a feedback control strategy based only on partial state
measurement. In such cases, a state observer is very beneficial for controller imple-
mentation. In addition state and unknown input observers can be very useful tools in
the development of fault detection and isolation systems and for condition monitor-
ing. This chapter presents a novel step by step slidingmode observer including a finite
time parameter estimator. The proposed approach can achieve good performance in
the presence of unmatched uncertain dynamic parameters as well as lumpedmatched
uncertainty. A constructive proof is developed, which is very helpful in understand-
ing the proposed approach. The proof employs the Lyapunov approach as well as
the principle of the equivalent injection from the domain of sliding mode control
and observation. As well as estimating the system states and the unknown parame-
ters, it is also possible to estimate the lumped matched uncertainty in the system.
An illustrative example is used to demonstrate the observer performance. Feedback
controller design in the light of the proposed observer is interesting and is a future
topic of research.
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