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12.1  Introduction

Before the renaissance of the immunosurveil-
lance theory that accompanied the approval of 
immune checkpoint blockers [1], cancer was 
generally viewed as a cell-autonomous disease 
that is solely caused by genetic and epigenetic 
alterations of the malignant cells [2]. Therapeutic 
interventions hence were conceived to take 
advantage of the cancer cell-intrinsic vulnerabili-
ties (making them particularly susceptible to 
antiproliferative and cytotoxic insults) or to tar-
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get pathways that would be specifically activated 
in malignant cells yet absent in their normal 
counterparts (much like antibiotics that affect 
bacterial enzymes but not those of their host). 
Based on this paradigm, cytotoxic and targeted 
therapies have been developed following a work-
flow in which anticancer agents were first identi-
fied on cultured human cell lines, then tested on 
immunodeficient mice carrying human cancers, 
and, finally, introduced into the clinics [2, 3]. 
Seemingly supporting this strategy, several suc-
cessful chemotherapeutics have been developed. 
In particular, combination therapies involving 
several distinct cytotoxic agents have been highly 
successful in reducing the risk of relapse after 
adjuvant chemotherapy in breast and colorectal 
cancers [4–6]. Moreover, the success of the first 
targeted anticancer agent, imatinib mesylate, 
which targets several oncogenic tyrosine kinases 
(such as the BCR-ABL kinase activated in 
chronic myeloid leukemia and KIT activated in 
gastrointestinal stromal tumors) [7–12] appar-
ently comforted the idea that cancer can be 
treated with specific agents (although it turned 
out later that the therapeutic efficacy of imatinib 
relies on NK and T lymphocytes) [13].

Our laboratory has been adhering to this cell- 
autonomous vision of cancer therapy until 2004 
when we performed a stunningly simple experi-
ment. We subcutaneously implanted a mouse 
colorectal cancer cell line, CT26, either in immu-
nocompetent BALB/c mice (the strain from 
which CT26 was originally derived from) or in 
immunodeficient nu/nu mice (which are athymic 
and hence lack thymus-derived T lymphocytes) 
and treated the emerging tumors with chemother-
apy based on the anthracycline doxorubicin. To 
our dismay, the growth of CT26 cancers was only 
reduced if they evolved in an immunocompetent 
setting (in BALB/c mice), not if they grew on nu/
nu mice [14]. Hence, the efficacy of chemother-
apy turned out to depend on a cellular immune 
response.

The next surprise came when we analyzed the 
cell death modality induced by doxorubicin in 
CT26 cells. At that time, only two major cell 
death pathways were known, namely, apoptosis 
and necrosis [15]. Apoptosis was conceived to 

constitute a physiological pathway accounting 
for cellular demise in developmental cell death 
and adult tissue homeostasis [16]. Necrosis was 
conceived as a purely pathological pathway 
resulting in pro-inflammatory tissue reaction due 
to the uncontrolled spilling of the cellular content 
through the permeabilized plasma membrane 
[17]. In CT26 cells, doxorubicin induced two 
hallmarks of the apoptotic pathway, namely, an 
early loss of the mitochondrial inner transmem-
brane potential as well as the activation of cas-
pases [14]. Addition of a pharmacological 
caspase inhibitor prevented the cells to adopt an 
apoptotic morphology with nuclear condensation 
and fragmentation and led to a more necrotic 
phenotype. When doxorubicin-treated apoptotic 
CT26 cells were injected subcutaneously into 
BALB/c mice, they induced an immune response 
that protected the mice against a subsequent chal-
lenge with live CT26 cells that were injected 1 
week later into the opposite flank. In contrast, 
doxorubicin-treated necrotic CT26 cells (that 
were killed in the presence of Z-VAD-fmk) failed 
to stimulate such an immune response [14]. 
These results pleaded in favor of a novel caspase- 
dependent modality of apoptosis that could stim-
ulate anticancer immunosurveillance and that we 
dubbed “immunogenic cell death” (ICD) [14]. 
Later, it turned out that CT26 cells lack the 
expression of receptor-interacting serine/
threonine- protein kinase 3 (RIPK3), a protein 
required for necroptosis (which is a regulated 
version of necrosis) and that other mouse cancer 
cell lines that possess the entire molecular 
machinery required for necroptosis can undergo 
ICD in response to necroptotic stimuli [18–20] 
including anthracyclines. Hence, different forms 
of regulated cell death (apoptosis and necropto-
sis) can contribute to ICD.

Based on the aforementioned results that were 
replicated in multiple different cancer cell types 
and mouse strains [21–26], we have been postu-
lating that ICD would constitute an important 
mechanism to convert the cell-autonomous che-
motherapeutic response, leading to focal apopto-
sis and necroptosis within the tumor, into a 
systemic immune-mediated response that can 
amplify and prolong the anticancer effects of 
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chemotherapy [19, 27–29]. In other words, ICD 
would convert cancer into its own vaccine. We 
also found that not all chemotherapeutic agents 
are equally potent in causing ICD (and hence in 
provoking an antitumor immune response) 
observing that anthracyclines and oxaliplatin are 
particularly efficient in doing so while many 
other cytotoxicants are unable to do so [27–29]. 
In subsequent studies, we observed that ICD 
inducers are able to trigger premortem stress 
responses such as autophagy and endoplasmic 
reticulum (ER) stress that lead to the release and 
exposure of DAMPs required for ICD [28, 30]. 
Hence, it is not only cell death as such but a con-
stellation of stress pathways and lethal events 
that yields ICD. These pathways and their con-
nection to the exposure or release of DAMPs, as 
well as their clinical implications, will be dis-
cussed in this chapter.

12.2  Annexin A1

Annexin A1 (ANXA1) is a relatively abundant 
and ubiquitously expressed cytoplasmic protein 
[31] that is released from dying cancer cells 
responding to chemotherapy with anthracyclines 
or oxaliplatin in vitro [32]. The exact mode of 
release is not known, although a relative of 
ANXA1, annexin A2 (ANXA2), has been shown 
to be secreted by an unconventional pathway 
[33]. Alternatively, ANXA1 may be released pas-
sively, via the permeabilized plasma membrane 
as cells die. Mouse cancer cell lines from which 
ANXA1 was removed by CRISPR/Cas9 technol-
ogy failed to undergo ICD in vitro (meaning that, 
if they were cultured with anthracyclines and 
then injected in vivo, they would fail to induce a 
protective anticancer immune response). Cancers 
arising from such ANXA1-deficient cancer cell 
also failed to reduce their growth in vivo, in 
response to systemic injections of anthracyclines 
or oxaliplatin [32].

ANXA1 can bind to formyl peptide receptor-1 
(FPR1), a seven transmembrane G protein- 
coupled receptor mostly expressed by myeloid 
cells [34]. Knockout of FPR1 in the host immune 
system (as well as transfer of FPR1-deficient 

hematopoietic stem cells into FPR1-sufficient 
irradiated hosts) led to the incapacity of the host 
to mount an anticancer immune response against 
dying cancer cells. Moreover, the absence of 
FPR1 from the immune system led to a failure to 
control the growth of cancers treated with anthra-
cyclines or oxaliplatin in vivo [32]. These results 
underscore the importance of the interaction 
between ANXA1 and FPR1 for the chemotherapy- 
triggered dialogue between cancer cells and the 
immune system. Mechanistically, it turned out 
that FPR1 guides differentiating dendritic cells 
within the tumor into the proximity of dying can-
cer cells, allowing the dendritic cell-mediated 
uptake of tumor-associated antigens and their 
subsequent presentation to T cells (Fig. 12.1) 
[32]. As a result, FPR1-deficient hosts are unable 
to mount an immune response mediated by CD8+ 
T cells against tumor antigens.

The aforementioned findings, which have been 
obtained in mice, are supported by epidemiologi-
cal studies in cancer patients. A loss-of- function 
mutation in FPR1 (A299G), which affects the 
intracellular domain of the protein within its 
N-terminus abolishing the dimerization of the 
receptor required for its activation [35], had nega-
tive prognostic features in two types of cancer. 
Breast cancer patients bearing one loss- of- function 
allele of FPR1 exhibited a shorter progression-free 
and overall survival upon adjuvant anthracycline-
based chemotherapy than patients bearing two 
normal alleles of FPR1. This finding was obtained 

DC homingANXA1 release

Dying TC ANXA1 FPR1 iDC

Fig. 12.1 Annexin A1-mediated homing of dendritic 
cells. Annexin A1 (ANXA1) is released from cancer cells 
in response to certain therapeutic approaches including 
the anthracycline- and oxaliplatin-based chemotherapeu-
tic induction of immunogenic cell death. Driven by che-
motaxis, immature dendritic cells (iDCs) are homed in on 
their target in a FPR1-dependent fashion, finally leading 
to a close proximity of dying cancer cells and antigen- 
presenting cells. FPR1, formyl peptide receptor 1
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for two independent cohorts of breast cancer 
patients [32]. Moreover, colorectal cancer patients 
bearing two loss-of-function alleles of FPR1 had a 
statistically shorter survival upon adjuvant oxalipl-
atin-based chemotherapy than patients bearing 
one or two normal alleles of FPR1 [32]. The mech-
anistic bases for these differences are not under-
stood yet. In addition, it appears that mammary 
carcinoma cells express lower ANXA1 levels than 
their normal epithelial counterparts [32], perhaps 
reflecting  immunoselection in favor of cancers that 
lack the DAMP ANXA1.

12.3  ATP

In response to treatment with chemotherapeutics 
in vitro, cancer cells release adenosine triphosphate 
(ATP) into the culture supernatant, an event that 
can be visualized by a reduction in quinacrine- 
labeled, ATP-containing lysosomal compartments 
[36]. The accompanying increase in extracellular 
levels of ATP can be measured by means of a firefly 
luciferase construct that is tethered to the cancer 
cell surface and that detects pericellular ATP upon 
addition of d-luciferin [37, 38]. This latter system 
is suitable for measuring extracellular ATP in vivo 
in tumor-bearing mice, in which the luminescence 
signal strongly increases 2 days post-chemother-
apy [25]. The mechanism of ATP release has not 
been entirely elucidated yet appears to involve a 
lysosomal secretion mechanism that depends on at 
least two processes, namely, a premortem autoph-
agy response and caspase activation. Autophagy 
must occur to allow ATP to redistribute from lyso-
somes to autolysosomes and to be secreted by a 
mechanism that requires the lysosomal- associated 
membrane protein 1 (LAMP1), which translocates 
to the plasma membrane in a caspase- dependent 
manner. The release of ATP additionally involves 
the caspase-mediated activation of the Rho-
associated coiled-coil- containing protein kinase 
(ROCK1) resulting in myosin II-dependent mem-
brane blebbing as well as the opening of pannexin 
1 (PANX1) channels, subsequent to their cleavage 
by caspases. While autophagy and LAMP1 do not 
affect PANX1 channel opening, PANX1 is required 

for the ICD- associated translocation of LAMP1 to 
the plasma membrane [39]. Hence, apoptosis-asso-
ciated ATP release is a complex process that is 
abolished in autophagy-deficient tumors, knowing 
that inactivation of autophagy occurs rather fre-
quently, especially during early oncogenesis [25, 
40–43]. Necroptotic signaling via RIPK3 and the 
mixed lineage kinase domain-like (MLKL) pseu-
dokinase may also contribute to ATP release [18], 
although it is not known whether this process also 
requires premortem autophagy to be induced. In 
any case, it appears that cancer cells manipulated to 
suppress the autophagic process fail to undergo 
ICD and do not reduce their growth upon treatment 
with anthracyclines or oxaliplatin in vivo [25]. A 
similar abolition of ICD and chemotherapeutic 
responses can be obtained by overexpressing the 
ectonucleoside triphosphate diphosphohydrolase 1 
(ENTPD1, also known as the ectoATPase CD39) 
on the cancer cells [25, 44].

Extracellular ATP acts on two classes of puri-
nergic receptors, namely, the metabotropic P2Y2 
and the ionotropic P2X7 receptors. P2Y2 recep-
tors facilitate the ATP-mediated chemotaxis of 
myeloid cells (dendritic cell precursors, neutro-
phils and macrophages) into the tumor bed post- 
chemotherapy (Fig. 12.2). Both autophagy-deficient 

DC recruitmentATP release

DC activationDying TC

iDCs
P2RX7

P2RY2ATP

Fig. 12.2 ATP-dependent recruitment and activation of 
dendritic cells. The autophagy-dependent lysosomal 
secretion of ATP from cancer cells that undergo immuno-
genic cell death leads to the recruitment and activation of 
immature dendritic cells (iDCs). Extracellular ATP acts 
on purinergic receptors of the metabotropic P2Y2 and the 
ionotropic P2X7 type. Most prominently P2Y2 receptors 
drive the ATP-mediated chemotaxis of myeloid cells 
including immature dendritic cells (iDCs) into the tumor 
bed post-chemotherapy. In summary, ATP release from 
the dying cancer cells leads to an enrichment of the tumor 
bed with immune cells. P2RX7, purinergic receptor 
P2X7; P2RY2, purinergic receptor P2Y2
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and CD39-overexpressing cancers fail to accumu-
late myeloid cells post- chemotherapy in the tumor 
bed [25], and a similar effect can be obtained upon 
pharmacological inhibition of P2Y2 [44]. P2X7 
receptors facilitate the ATP-stimulated activation 
of the NLR family pyrin domain containing 3 
(NLRP3) inflammasome in dendritic cells, which 
then triggers the secretion of interleukin-1β (IL1β) 
and the IL1β- dependent priming of tumor antigen-
specific CD8+ T cells [45]. Indeed, neutralization 
of P2Y2 or IL1 receptors and knockout of P2X7, 
NLRP3, or caspase-1 abolish the capacity of the 
immune system to mount a protective immune 
response against cancer cells that succumb to ICD 
[45].

The aforementioned interaction between 
extracellular ATP and purinergic receptors again 
appears clinically relevant. Indeed, in breast 
cancer patients treated with adjuvant chemo-
therapy, the absence of autophagy has a negative 
impact on the local immune response with an 
unfavorable ratio of CD8+ T lymphocytes over 
forkhead box P3+ (FOXP3+) regulatory T cells. 
Such observation correlates with poor patient 
survival [46]. Similarly, high expression of 
ATP-degrading ectoenzymes such as CD39 and 
the ecto-5′ nucleotidase NT5E (best known as 
CD73) indicates poor prognosis in multiple dis-
tinct cancers including breast and ovarian can-
cers [47, 48]. Finally, a loss-of-function 
mutation in P2X7 has been linked to poor prog-
nosis in a segment of breast cancer patients that 
are treated with anthracycline- based adjuvant 
chemotherapy [45].

Experimentally, it is possible to stimulate 
autophagy, ATP release, and consequent 
myeloid cell recruitment and anticancer immune 
responses by fasting or by non-immunosuppres-
sive autophagy inducers that fall into the class 
of “caloric restriction mimetics” (CRMs) [49–
52]. Several CRMs including hydroxycitrate 
can be used in mouse models to improve anti-
cancer immunosurveillance and to boost the 
anticancer immune responses elicited by ICD-
inducing chemotherapeutics [49]. Whether this 
strategy is applicable to cancer patients awaits 
urgent clarification.

12.4  Calreticulin

Calreticulin (CALR) is the most abundant pro-
tein in the lumen of the endoplasmic reticulum 
(ER). In the context of ICD, a fraction of CALR 
translocates to the surface of the plasma mem-
brane (and it is possible that another fraction of 
CALR is secreted as well) [23, 26, 53, 54]. The 
complex mechanisms that underlie CALR expo-
sure are linked to the apical phosphorylation of 
eukaryotic initiation factor-2α (eIF2α) in the con-
text of an ER stress response that culminates in 
the activation of an eIF2α kinase (EIF2K) such as 
EIF2K2 (best known as PKR) and EIF2K3 (best 
known as PERK) and/or in the inhibition of the 
corresponding phosphatase (composed by the 
catalytic subunit PP1 and the regulatory subunit 
GADD34) [26, 55, 56]. Downstream of eIF2α 
phosphorylation, caspases (and in particular cas-
pase- 8, CASP8) are activated, and calreticulin is 
transported to the cell surface following antero-
grade ER-Golgi traffic and soluble 
N-ethylmaleimide-sensitive factor attachment 
receptors (SNARE)-dependent exocytosis that 
involves the vesicle-associated membrane pro-
tein 1 (VAMP1) and the synaptosomal-associated 
protein 23 (SNAP23) [55].

Once on the cell surface, CALR acts as an 
“eat-me” signal to facilitate the transfer of tumor- 
associated antigens to dendritic cells [57], which 

Antigen uptakeCALR exposure

Dying TC CALR LRP1 iDC

Fig. 12.3 Calreticulin as de novo uptake signal for den-
dritic cells. The endoplasmic reticulum (ER) stress- 
mediated exposure (or release) of the ER chaperone 
calreticulin (CALR) to the surface of the plasma mem-
brane in the course of immunogenic cell death (ICD) 
serves as de novo uptake signal for dendritic cells. The 
binding of CALR to the low-density lipoprotein receptor- 
related protein 1 (LRP1) receptor expressed on dendritic 
cells (DC) serves the transfer of tumor-associated anti-
gens to DC

12 Immunogenic Stress and Death of Cancer Cells in Natural and Therapy-Induced Immunosurveillance



220

express the CALR receptor low-density lipopro-
tein receptor-related protein 1 (LRP1, best known 
as CD91; Fig. 12.3) [58]. CALR can be locally 
antagonized by CD47, which is constitutively 
expressed on cancer cells and can function as a 
“don’t eat me” signal [59]. Knockdown of PERK, 
CASP8, CALR, or SNAP23 as well as pharma-
cological inhibition of caspases and anterograde 
ER-Golgi transport is sufficient to abolish ICD 
in vitro and in vivo [55]. Conversely, stimulation 
of eIF2α phosphorylation by thapsigargin (which 
activates PERK) or inhibitors of PP1 can 
 stimulate CALR exposure and enhance antican-
cer immune responses in vivo, in the context of 
chemotherapy [55, 60]. Coating of cancer cells 
that are deficient in the CALR exposure pathway 
with recombinant CALR protein (which binds to 
the plasma membrane surface, presumably via 
interaction between its lectin domain and the gly-
cocalyx) can restore deficient ICD [26, 61]. 
Similarly, intratumoral injection of CALR can 
enhance the chemotherapy-elicited immune 
response and improve tumor growth inhibition 
in vivo, in mouse models [62].

There is widespread evidence that CALR 
expression and exposure contribute to anticancer 
immunosurveillance in vivo, in cancer patients. 
Low intracellular CALR expression levels have 
been correlated with a low presence of CALR on 
the cell surface, both in acute myeloid leukemia 
(AML) and in non-small cell lung cancer 
(NSCLC), as well as reduced phosphorylation of 
eIF2α [59, 63, 64]. In AML, reduced expression 
of CALR protein has a negative impact on 
progression- free and overall survival post- 
chemotherapy, correlating with poor T cell- 
mediated immune responses against 
AML-associated tumor antigens [59, 64]. In 
NSCLC, approximately 15% of the patients have 
barely detectable CALR protein in cancer cells, 
correlating with dismal prognosis, reduced infil-
tration by DC-LAMP+ dendritic cells and CD8+ T 
lymphocytes [63]. Of note, low CALR expres-
sion supersedes in importance the TNM classifi-
cation of NSCLC with respect to prognosis, 
meaning that patients with CALRlow stage 1 
NSCLC exhibit a poorer survival than stage 3 and 
stage 4 patients bearing CALRhigh cancers [63]. 

These results have been confirmed for two dis-
tinct NSCLC cohorts by detecting CALR protein 
with immunohistochemistry [64], as well as for 
an additional NSCLC cohort by measuring 
CALR mRNA levels and its correlations with 
metagenes reflecting the presence of CTL and 
dendritic cells [65]. Similarly, in ovarian cancer, 
high levels of CALR mRNA expression have a 
favorable impact on patient survival, if combined 
with the analysis of activated dendritic cells [65]. 
Conversely, high CD47 expression has a negative 
impact on the prognosis of multiple distinct can-
cers [66–68]. Mutations in the CALR gene have 
been described in myeloproliferative neoplasms 
[69–71], causing mislocalization of the corre-
sponding gene product [72], although the exact 
impact of these mutations on tumor immunosur-
veillance remains elusive. Regardless, the clini-
cal data validate the importance of the CALR 
exposure pathway for tumor biology.

12.5  HMGB1

High molecular group B1 protein (HMGB1) is 
the most abundant nonhistone chromatin-binding 
protein [73–75]. HMGB1 is usually found in an 
exclusively nuclear location yet can translocate 
to the cytoplasm, for instance, after inhibition of 
histone deacetylases [76]. Moreover, HMGB1 is 
usually released from cells that undergo necrop-
tosis or secondary necrosis [77, 78]. Mouse can-
cer cells in which either RIPK3 or MLKL have 
been knocked out release lower amounts of 
HMGB1 in response to anthracyclines than their 
necroptosis-competent controls [18].

Experiments on tumors implanted in mice 
revealed that HMGB1 is released from cancer cells 
upon chemotherapy in vivo [79–83]. Cancer cells 
from which HMGB1 has been depleted by RNA 
interference are unable to undergo ICD and become 
resistant to chemotherapy in vivo. Similarly, injec-
tion of neutralizing anti-HMGB1 antibodies abol-
ished the anticancer immune response elicited by 
ICD-inducing chemotherapy in vivo and hence 
compromised tumor growth reduction [81]. These 
results support the importance of extracellular 
HMGB1 as a DAMP in tumor immunology.
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Once present in the extracellular space, 
HMGB1 can interact with multiple additional 
factors including nucleic acids and bacterial 
polysaccharides [84–88]. HMGB1 also binds to 
several receptors including toll-like receptor 4 
(TLR4), which is expressed on multiple immune 
cell types including dendritic cells, in which it 
stimulates maturation and antigen presentation 
(Fig. 12.4) [81, 89, 90]. Knockout of TLR4, or 
that of its adaptor MYD88, from the host 
immune system abolishes the perception of ICD 
as well as tumor growth reduction by anthracy-
clines or oxaliplatin [22, 80, 81, 91]. This defect 
has been linked to a reduced antigen presenta-
tion by dendritic cells and can be partially res-
cued by treatment with the lysosomal inhibitor 
chloroquine [81].

In human breast cancer, reduced HMGB1 
expression has been linked to the advancement 
of the disease and increased tumor size [46]. 
Reduced HMGB1 expression is a negative prog-
nostic feature in breast cancer and correlates 
with an intratumoral infiltration by fewer CD8+ 
cytotoxic T lymphocytes and more immunosup-
pressive populations of FOXP3+ regulatory T 
cells and CD68+ tumor-associated macrophages 
[46]. Moreover, there are at least two cancer 
types in which a loss-of-function allele of TLR4 
compromises patient prognosis, namely, (1) 
breast cancer and (2) colorectal cancer treated 

with adjuvant chemotherapy based on anthracy-
clines and oxaliplatin, respectively [92]. These 
findings underscore the likely importance of the 
HMGB1/TLR4 interaction for the fate of cancer 
patients.

In the case of HMGB1-negative cancers, arti-
ficial supply of a synthetic TLR4 ligand, den-
drophilin, can compensate for the HMGB1 defect 
and restore anticancer immune responses elicited 
by chemotherapy in mouse models. Whether 
such a strategy might also work in cancer patients 
bearing HMGB1-negative neoplasia remains to 
be investigated.

12.6  Type-1 Interferons 
and Chemokines

In response to chemotherapeutics, tumor cells 
liberate nucleic acids including DNA and 
double- stranded RNA that may activate intracel-
lular or extracellular sensors for ectopic mole-
cules of this kind. One example for such nucleic 
acid sensor is the toll-like receptor-3 (TLR3) 
[93], although other sensors including the GAS/
STING pathway might be involved as well [94]. 
In response to these stimuli that resemble those 
induced by a viral infection and hence can be 
referred to as “viral mimicry,” cancer cells tran-
scriptionally activate one or several type-1 inter-
feron genes, secrete the corresponding gene 
products, and then stimulate their type-1 inter-
feron receptor (IFNAR) to induce a multipronged 
type-1 interferon response consisting in the acti-
vation of multiple antiviral and immunostimula-
tory gene products (Fig. 12.5) [95]. One 
quintessential antiviral gene product is myxovi-
rus resistance 1 (MX1), and one well-known 
immunostimulatory gene product is the C-X-C 
motif chemokine ligand 10 (CXCL10), which 
acts on the C-X-C motif chemokine receptor 3 
(CXCR3) to attract T lymphocytes into the 
tumor bed [95]. Cancer cells that lack TLR3, 
IFNAR, or CXCL10 are unable to elicit antican-
cer immune responses upon chemotherapy and 
hence become refractory to the treatment [95]. 
Local injection of recombinant type-1 interfer-
ons and CXCL10 can overcome this defect [95], 

HMGB1 release DC maturation

Dying TC HMGB1 TLR4 DC

Fig. 12.4 HMGB1 facilitates antigen presentation by 
dendritic cells. High-mobility group box 1 (HMGB1), 
normally secluded in the nucleus, is released at later 
stages of immunogenic cell death in response to treat-
ments such as anthracycline-based chemotherapy or ion-
izing irradiation. Extracellular HMGB1 serves as a ligand 
for TLR4 on dendritic cells (DCs) and triggers a MYD88- 
dependent signaling that stimulates DC maturation and 
antigen presentation to cytotoxic T cells (CTLs). TLR4, 
toll-like receptor 4
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underscoring the importance of the type-1 inter-
feron response for therapeutic outcome in mouse 
tumor models.

At least in breast cancer patients, the aforemen-
tioned pathway seems to be therapeutically rele-
vant. Thus, MX1 expression is induced by 
chemotherapy in vivo. The absence of signaling 
through IFNAR, indicated by the lack of signal 
transducer and activator of transcription 1 (STAT1) 
phosphorylation [96] or low MX1 expression, 
constitutes a poor prognostic feature, in particular 
in the context of anthracycline-based adjuvant 
chemotherapy [95]. Moreover, a polymorphism 
that affects the function of TLR3 reportedly influ-
ences the fate of breast cancer patients [97]. These 
results have to be interpreted in the context of 
mounting clinical evidences that type-1 interfer-
ons can be injected into patients to stimulate anti-
cancer immune responses in the context of renal 
cancer and chronic myeloid leukemia (CML) [98].

12.7  Concluding Remarks 
and Perspective

As mentioned above, there are multiple DAMPs 
(such as ANXA1, ATP, CALR, HMGB1, and 
type-1 interferons) that function as adjuvant signals 
in the context of immunogenic chemotherapies 

(Fig. 12.6). It is important to note that these 
DAMPs do not act in a redundant fashion (in 
which case they would be able to replace each 
other) but in a non-redundant way, meaning that 
removal of one single DAMP (or its receptor) 
from the system is sufficient to undermine anti-
cancer immunosurveillance elicited by immuno-
genic chemotherapies. One possibility to look at 
this problem is to postulate that each of the 
DAMPs must come into action following a 
defined spatiotemporary sequence, perhaps 
within a narrow range of intensity, following the 
“key-lock principle” [99]. Only if the DAMPs are 
expressed in the correct order, at the correct 
intensity, they are able to form the “key” that 
opens the vault that normally precludes an 
immune response [99]. Speculatively, this par-
ticular design of the system may reduce the prob-
ability of unwarranted autoinflammatory and 
autoimmune reactions in normal tissues [100]. 
On the other hand, this means that suppression of 
one single DAMP due to mutation (perhaps 
driven by immunoselection) or inhibition of one 
single DAMP receptor is sufficient to subvert 
anticancer immunosurveillance and to reduce the 
chance of cancer patients to control their disease 
upon chemotherapy.

Irrespective of these speculations, it is possi-
ble to measure all known DAMPs in cultured 

Dying TC DC IL-15

IL-17CXCR3CXCL10
IFNAR T cell recruitment

Type I IFN release T cell priming

Type IFN

T cell

T cell
Td

α, β

Fig. 12.5 Type I interferon-dependent chemokine release 
triggers T cell priming. In response to chemotherapeutics 
that mimic a viral infection, with regard to the liberation 
of nucleic acids from the dying cells, sensors for such 
molecules like the toll-like receptor-3 (TLR3), transcrip-
tionally activate one or several type-1 interferon genes. 
Once secreted, the interferon stimulates the type-1 inter-
feron receptor (IFNAR) to induce a multipronged type-1 

interferon response including the production of C-X-C 
motif chemokine ligand 10 (CXCL10), which acts on the 
C-X-C motif chemokine receptor 3 (CXCR3) to recruit T 
lymphocytes into the tumor bed finally leading to a γδ T 
cell-mediated priming of αβ T cells. CXCR3, CXC- 
chemokine receptor 3; IFNAR1; interferon α/β-receptor 
subunit 1; IL, interleukin
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cells exposed to libraries of anticancer agents to 
identify ICD inducers. In practical terms, this is 
achieved by generating biosensor cell lines that 
express fluorescent versions of ANXA1, CALR, 
or HMGB1 that have been fused to green fluores-
cent protein (GFP) or its derivatives. ATP release 
can be measured upon staining with chloroquine. 
The activation of the type-1 interferon response 
can be determined by placing GFP under the con-
trol of the MX1 promoter. Using this battery of 
biosensors, it is hence possible to select antican-
cer agents that stimulate all aspects of ICD. We 
have successfully used this approach to identify 
ICD inducers that are effective in stimulating 
anticancer immune responses in vivo, in mouse 
models [101–103].

It is tempting to speculate that such an 
approach may become even more useful in select-
ing successful anticancer drugs based on their 
ICD-stimulatory potential. Obviously, this 
approach would require additional in vivo experi-
mentations in preclinical models while carefully 

avoiding the use of immunodeficient mice carry-
ing xenotransplants like it was done in the past 
(see Sect. 12.1). Rather, anticancer drug candi-
dates should always be evaluated in immuno-
competent rodent models, including humanized 
mouse models. It is tempting to predict that this 
kind of approach will greatly reduce the attrition 
rate that has been characterizing the traditional 
drug development pipeline.
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Fig. 12.6 Mechanisms of immunogenic cell death in 
therapy-induced immunosurveillance. Cancer cells under-
going immunogenic cell death (ICD) in response to che-
motherapeutic treatments, such as doxorubicin or 
oxaliplatin, exhibit or release certain danger-associated 
molecular patterns (DAMPs) such as calreticulin (CALR) 
ATP, type I interferon (IFN), high-mobility group box 1 
(HMGB1), and annexin A1 (ANXA1). Ligation of cog-

nate receptors on the surface of myeloid or lymphoid cells 
facilitates the recruitment and activation of dendritic cells, 
their homing to the dying cancer cells, subsequent tumor 
antigen uptake, and final presentation (upon maturation of 
the dendritic cells). The production of immunostimulatory 
cytokines eventually leads to the onset of an adaptive 
immune response involving αβ and γδ T cells that reestab-
lishes cancer immunosurveillance
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