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Abstract. The rise of Bus Rapid Transit Systems (BRTS) in urban centers
involves complex problems of design and scheduling including the scheduling
of route intervals across the bus network. The difficulty stems from the fact that
transport systems keep to established routes and must set frequencies for each
route to minimize costs (measured in terms of transport capacity wasted) and
maximize the quality of service (minimizing the total time of users in the sys-
tem). All this depends on the maximum number of buses available in the system.
In an effort to find an alternative solution to the Transit Network Frequencies
Setting Problem (TNFSP) on BRTS, this paper proposes using Multi-Objective
Global Best Harmony Search (MOGBHS), a multi-objective heuristic algorithm
based on three main components: (1) Global-Best Harmony Search, as a
heuristic optimization strategy, (2) Non-Dominated Sorting, as a multi-objective
optimization strategy, and (3) Discrete Event Simulation, for obtaining quality
measures in the solutions found. To test the proposed approach, a simulation
model was implemented for Megabus, a BRTS located in Pereira (Colombia),
for which the frequency of the buses assigned to routes previously defined in the
system was optimized so that operating costs were reduced to a minimum, while
user satisfaction was maximized. The MOGBHS algorithm was compared with
NSGA-II. It was concluded that MOGBHS outperformed NSGA-II in the
number of optimal solutions found (Pareto front points), from 175% in 3,000
fitness function evaluations to 488% in 27,000 evaluations.

Keywords: Bus Rapid Transit Systems � Transit Network Frequencies Setting
Problem � Global-Best Harmony Search � Multi-objective optimization �
Non-Dominated Sorting � Discrete Event Simulation

1 Introduction

Around the world, Bus Rapid Transit Systems (BRTS) have proven to be a viable
alternative solution to growing transportation needs of the population [1]. However, to
implement a BRTS several problems must be addressed: the design of the network, the
design of routes, the definition of frequencies for each route, the assignment of buses to

© Springer International Publishing AG 2017
O. Pichardo-Lagunas and S. Miranda-Jiménez (Eds.): MICAI 2016, Part II, LNAI 10062, pp. 341–352, 2017.
DOI: 10.1007/978-3-319-62428-0_27



routes, and the assignment of personnel (drivers) to buses and routes. These problems
are grouped into a global problem called “Transit Network Design and Scheduling
Problem” (TNDSP) [2]. Solving them usually involves conflicting goals within them.
For example, if the frequency of the routes is increased to improve quality service, the
cost of operating the whole transportation system increases. In addition, each problem
has it owns constraints that must be satisfied, such as the maximum availability of
buses for the system.

Multi-objective optimization (MO) allows handling problems with multiple
conflicting objectives, in order to find a set of non-dominated optimal solutions so that
an end user is responsible for selecting the non-dominated solution that meets specific
criteria [3]. This paper proposes an MO discrete optimization algorithm to be applied for
solving a specific TNDSP problem, the Transport Network Frequencies Setting Problem
(TNFSP). This approach of solving TNSFP using a MO discrete optimization algorithm
was adopted based on the following observations: (1) major investigations have reported
promising results using meta heuristics as a solution strategy, and (2) the hybridization
of MO with Harmony Search Algorithm (HS) has shown good results in other areas of
application, but this approach has not been used to solve the TNFSP [4, 5].

The proposed optimization algorithm, called MOGBHS has three main compo-
nents: (a) Global Best Harmony Search (GBHS) [6] as a heuristic optimization strategy
(global and local search in the solution space); (b) Non-Dominated Sorting for sorting
solutions based on multiple objectives, and (c) Discrete Event Simulation for obtaining
quality measures in the solutions found. The GBHS is a hybridization of Harmony
Search Algorithm and Particle Swarm Optimization Algorithm, and is responsible for:
(a) the generation of new individuals and, (b) the evolution of the individuals in each
generation. The second component of MOGBHS carries out the sorting of solutions
using the concept of non-dominated solutions to build a Pareto front. The third com-
ponent of MOGBHS is a discrete event simulation implementation that is responsible
for executing simulations in specific scenarios (controlled by the frequency of buses on
each route, the specific defined routes and, the pattern of arrivals of the passengers,
among others); and collecting the information for bus occupancy and time spent by
customers in the system (these measures form the evaluation function to be used by the
MOGBHS). In this paper, we have calculated the fitness of the generated solutions by
MOGBHS based on the results from the simulation (BRTS) in a specific simulation
tool called ARENA [7], in order to provide feedback to the algorithm to facilitate
evolution.

MOGBHS was evaluated in a case study based on Megabus, an existing BRTS in
Pereira (Risaralda, Colombia), and compared with NSGA-II [8]. In order to make this
comparison, the activities involved were: (1) implementation of MOGBHS and
NSGA-II; (2) review, selection and analysis of existing BRTS; (3) build a simulation
model based on a simplification of selected BRTS; (4) test of MOGBHS and NSGA-II
supported by the implemented simulation model; and (5) consolidation and analysis of
results. On completing the test activities it was found that MOGBHS greatly improves
the efficiency compared with the solutions generated by NSGA-II, from 175.12% in
3,000 fitness functions evaluations (FFE) to 488.68% in 27,000 FFEs.
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The remainder of this paper comprises four more sections. In Sect. 2 a state of the
art review about TNFSP solutions is presented. In Sect. 3 the multi-objective heuristic
algorithm (MOGBHS) proposed is presented. Section 4 presents the results of the
MOBGHS contrasted with the results of NSGA-II (a fast and elitist multi-objective
genetic algorithm) for a specific case real-based used to make the comparison. Finally,
Sect. 5 presents the conclusions of the work and some future activities the authors plan
to undertake.

2 State of the Art

In the state of the art, many meta-heuristic approaches for solving the TNDSP are
reported [4, 9–12]. Many of them have in common that they solve the problem one
objective at a time and/or subdivide the problem in sub-problems and then solve each
sub-problem separately. Examples of these meta heuristics are: (a) GRASP-TNDP that
bases its operation on GRASP with the difference that instead of generating a single
solution, it seeks a Pareto approximation [13]; and (b) the set of heuristics proposed in
[14] that includes routines for generating routes and a genetic algorithm to find an
optimal set of routes with corresponding frequencies for the implementation of a
system of ZEV (Zero Emission Vehicles) public transport vehicles. Given that these
algorithms do not use a multi-objective approach to solve the problem, the obtained
solutions are in general not so useful (given that a predefined priority to solve each
objective is implied). More recent works include: a genetic algorithm with elitism for
transit network design [15], a bi-level modeling for the transit route and frequency
design and a hybrid artificial bee colony algorithm in order to solve the entire problem
[16], and a multi-objective approach with objectives alternation for transit network
design and frequencies setting [17], among others.

In order to solve a multi objective problem, with two or more objectives generally
in conflict with each other, an evolutionary approach was originally proposed. The
algorithms that follow this approach are called Multi-Objective Evolutionary Algo-
rithms (MOEA). Reported MOEA implementations have used three basic approaches
to deal with the objectives: (a) Naive; (b) Non-Dominated Sorting; and (c) Pareto
Strength [3]. The strategy of a non-dominated system basically consists in taking the
solutions that are part of the Pareto front. The solutions of this front will be considered
the best and therefore belong to the result of the optimization process. One of the best
algorithms based on this strategy is the Non-dominated Sorting Genetic Algorithm II
(NSGA-II), which to ensure good dispersion of the solutions on the Pareto front uses
the Crowding Distance measure [8].

The non-dominated and strength Pareto based approaches deals with many
objectives and have proven to be more successful in solving the TNDP [14, 18, 19].
A good review of the use of simulation models and multi-objective optimization to
solve the TNDP can be found in [20]. The main differences between the proposal by
Wang and the proposed approach of this paper (MOBGHS) are: (a) the problem to be
solved is the TNFSP; (b) the objectives in conflict to be optimized are: minimize both
the average time spent by passengers in the system and the average wasted bus
capacity; (c) the algorithm used to solve the problem is based on Global-Best Harmony
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Search (moreover as far as we know this is the first time that this algorithm has been
applied to solve the TNFSP problem as a multi-objective problem); and (d) the model
for carrying out the simulation is totally different: discrete event simulation.

The Harmony Search (HS) optimization algorithm was originally proposed in [21].
It is based on jazz musicians’ improvisation process, performed in search of a perfect
harmony, in short: HS randomly generates, evaluates and sorts a population in a place
called Harmony Memory (HM). Then, for a determined number of improvisations it
generates one element at a time where each variable of that harmony may be com-
pletely random or taken from the HM (probability defined by Harmony Memory
Consideration Rate parameter, HMCR), and in case of it being taken from HM, may or
may not (depending on the parameter Pitch Adjustment Rate, PAR) be altered by
addition or subtraction of an arbitrary value called Bandwidth (BW) also defined in the
configuration. Later some variants/improvements for the HS algorithm were proposed
in: (a) improved harmony search (IHS) where the accuracy and convergence rate of HS
was improved, arranging for PAR and BW parameters to depend on the current iter-
ation number [22]; (b) global-best harmony search (GBHS) that introduces swarm
intelligence, changing the pitch-adjustment by extraction of values from the best har-
mony in HM [6]; (c) others such as global-best harmony search using learnable evo-
lution models (GHS + LEM) [23], improved global-best harmony search [24],
parameter adaptive harmony search [25] and, global dynamic harmony search (GDHS)
[26].

3 Details of the MOGBHS Applied to Solve the TNFSP

In an attempt to improve user satisfaction and reduce operating costs in BRTS, a
multi-objective algorithm that searches configurations of bus output frequencies is
proposed. The objectives are: (1) Minimize the average time spent by passengers on the
system, and (2) Minimize the average wasted bus capacity. It additionally included the
constraint of the maximum available fleet (maximum amount of buses) for the BRTS.

Given that; (1) HS, IHS and GBHS have in common that they have a small number
of parameters to tune the performance of the algorithm (7 parameters for IHS and 5 for
the other two); (2) HS, IHS and GHS have a fast convergence, demand a modest
amount of computer resources, and have a low probability of getting trapped in a local
optima; (3) GBHS improves IHS results (which in turn improves the accuracy and
convergence rate of HS); (4) GBHS facilitates the parameter tuning; and (5) GBHS
works efficiently in continuous and discrete problems; in this research it was decided to
use GBHS as the core of the proposed MO algorithm.

GBHS was originally designed to work with a unique objective. Therefore, in this
work it was adapted to work with more than one objective using non-dominated
sorting, based on the concepts of ordering by Pareto front and Crowding distance [3, 8].
The proposed algorithm, called Multi-Objective Global Best Harmony Search
(MOGBHS) generates a set of harmonies and stores them in harmony memory,
evaluates all the objectives for each element in HM, and then sorts by Pareto front and
Crowding Distance. Then improvisations (evolutionary iterations) are carried out, in
each element of which a new harmony is generated by applying the logic of the GBHS
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algorithm. The New Harmony is evaluated, added (or inserted) to the existing HM, the
HM then is sorted by Pareto fronts and Crowding distance, and the element that make
the population exceed the maximum harmony memory size (HMS) is eliminated (the
worst harmony in HM). Figure 1 shows the MOGBHS pseudo-code.

The algorithms require the following parameters

• NI: number of improvisations performed by the algorithm
• PARmin, PARmax: Pitch Adjusting Rate minimum and maximum respectively,

used to calculate the PAR(c) value for each iteration (see line 9 in Fig. 1)
• HMCR: Harmony Memory Consideration Rate, used to decide whether a variable

from a new improvise is taken from harmony memory or randomly generated
• HMS: Harmony Memory Size defines the maximum length of solution vector that

represents the harmony memory
• NR: number of routes/variables in the target system
• NO: number of objectives to evaluate and optimize
• Limits: integer array of size [NR, 2], where for each variable (that represents a route

in the system), the maximum and minimum are defined for the value of the output
interval for this route

• MNB: Maximum Number of Buses into the system, used to calculate the feasibility
of a solution.

01 HM.PopulationRandomInitialize(Limits, MNB)
02 HM.NonDominatedOrderCalculate()
03 HM.CrowdingDistanceCalculate()
04 HM.Sort() /*Based on Pareto Front and Crowding Distance if solutions are in the same Pareto front */
05 for i = 1 to NI do
06 ActualHarmony = new Harmony() /* Create a new empty solution (improvisation or harmony) */
07 for j = 1 to NR do
08 if Random(0,1) < HMCR then
09 ActualHarmony.Intervals[j] = HM.Harmonies[Random(0,HMS)].Intervals[j]
10 PAR = PARMin + (((PARMax - PARMin) *i) / NI)
11 if Random(0,1) < PAR then
12 ActualHarmony.Intervals[j] = HM.FromBestHarmony(Random(0,NR))
13 end if
14 else
15 ActualHarmony.Intervals[j] = HM.RandomSelection(j, Limits)
16 end if
17 end for
18 if HM.InPopulation(ActualHarmony) == false and ActualHarmony.Viable(MNB) == true then
19 HM.Evaluate() /* Set fitness values using results of ARENA simulation */
20 HM.Add(ActualHarmony)
21 HM.NonDominatedOrderCalculate()
22 HM.CrowdingDistanceCalculate()
23 HM.Sort()
24 HM.RemoveTheWorst()
25 end if
26 end for

Fig. 1. Multi-Objective Global Best Harmony Search (MOGBHS).
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Each harmony (solution) generated by MOGBHS includes:

• A vector of integers with NR positions called Intervals, where Intervals[a] 8 a 2 [1,
NR] is the interval of time between the outputs of the buses that serve the route a

• A vector of doubles with NO positions called Evaluations, where Evaluations[b] 8
b 2 [1, NO] is the fitness value of the current solution (harmony) for the objective b

• An integer variable called Front that stores the number of Pareto front points for this
harmony compared to the members of the population at any given time

• A float variable called CrowdingDist that stores the crowding distance of the har-
monies to other elements at the same Pareto front.

The PopulationRandomInitialize procedure is responsible for generating an initial
population of size HMS, considering the restrictions defined in Maximum Number of
Buses into the system (MNB) and Limits parameters. The NonDominatedOrderCal-
culate procedure set the Pareto front number for each element in the harmony memory.
This procedure is adapted from [8]. The CrowdingDistanceCalculate procedure takes
the existing population and provides for each element the crowding distance to har-
monies at the same Pareto front. Finally, the Sort function, as the name implies, sorts
the population according to the following criteria: (1) in ascending order based on the
Pareto front number if the harmonies (solutions) have a different front number and,
(2) in descending order based on crowding distance when the harmonies have the same
Pareto front number.

In addition to the above functions the algorithm uses the following auxiliary
functions:

• InPopulation: check if a harmony exists in the HM
• IsViable: check if a harmony is a feasible solution based on the size of the available

fleet (MNB parameter). Returns true when the New Harmony can be implemented
with this fleet size

• Add: This procedure adds a new item to the end of a specific list
• Length: Returns the length of a list
• RemoveTheWorst: removes the worst harmony from harmony memory (HM) based

on Pareto front number and crowding distance.

Given the need to evaluate the fitness of each harmony generated by the algorithm
against the selected objectives and considering some successful cases of algorithms
supported by simulations, it was proposed to use discrete event simulation for this
purpose. Therefore before the execution of the algorithm, a model of discrete event
simulation was created to measure the time spent by passengers and wasted bus
capacity in the system. Later, during the execution of MOGBHS, the Evaluate function
uses the intervals values of the current harmony into the simulation model, executes the
simulation, reads the assessment for each of the objectives and loads them in the
Evaluations vector of the harmony.
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4 Case Study

To test the solution approach to TNFSP on BRTS the following activities were
performed:

• Implementation of the MOGBHS algorithm
• Review, Selection and Analysis of BRTS to model
• Implementation of a simplified version of the selected BRTS using the proposed

meta-model as a concept test
• Testing of the algorithm with the simulation model.

1. Implementation and Test Environment: MOGBHS was implemented in C#
programming language, chosen for its ability to manage files and character strings
for information extraction from the output of the simulations, speed of language
(being compiled) and experience of the research group (over 7 years).

The experiments were run on an ASUS N56VZ computer with an Intel Core
i7-3630QM Processor at 2.4 GHz and 8 GB of RAM. The following software was
used: Windows 8 (64 bits), Microsoft Visual Studio 2010 (.Net Framework 3.5), and
Arena 14.0.

2. Review, Selection and Analysis of BRTS to Use: In selecting a BRTS to model
for MOGBHS testing, the whole range of such systems in Colombia was reviewed,
including Transmilenio (Bogota D.C), Mio (Cali, Valle), Metrolinea (Bucaramanga,
Santander) and Megabus (Pereira, Risaralda). Due to the amount of documentation
available, the size and configuration, and simplicity of routes it was decided to take
Megabus as a basis for BRTS.

The Megabus system has 37 stations and 3 routes; however it was subsequently
decided to create a simplified version that had the same number of routes with the same
design and layout, but with fewer stations. This is because the aim is to look for a proof
of concept of the solution strategy proposed in this investigation. The real test of the
system will be made in a second phase, mainly involving additional time to implement
the BRTS in ARENA and the achievement of real system parameters (for example, the
real average arrival time of the passengers, their distribution and destinations).

To simplify the model, stations with similar characteristics were grouped and only
one station was selected for each group, causing the total number of stations to be
modeled to be reduced to eleven (11). There was a similar reduction from two to a
single Bus Central. Figure 2 presents the simplified model, in which the green color
indicates the path traveled by vehicles with route number one (1), the red color route
number two (2) and the blue color for the buses that make up route number three (3).

3. Implementation of Simulation Model: ARENA [7] was the modeling and
implementation of discrete event simulation software selected to create the simu-
lation model that MOGBHS requires for evaluation of the objectives to be mini-
mized. The operation of ARENA is based on SIMAN, a general purpose simulation
language that facilitates integration with programming languages with the ability to
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manage files. Using the simplified BRTS, the research group proceeded with the
generation of the simulation model. A screenshot of the BRTS simulation model is
presented in Fig. 3. Once the model is completed, and using ARENA, SIMAN
language source files were generated, these files serve as a resource for the
MOGBHS algorithm implementation that generates, evaluates and improves
specific harmonies using results of simulations associated with each harmony.

Fig. 2. Megabus simplified route design (Color figure online)

Fig. 3. BRTS simulation model
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4. Experimentation: An NSGA-II algorithm implementation was also used in order
to compare the results of MOGBHS algorithm. The results were obtained from the
average of 30 runs of each algorithm (MOGBHS and NSGA-II), using its own
setting and with different numbers of fitness function evaluations (FFE).

The configuration parameters for MOGBHS algorithm were: Number of Variables:
3, corresponds to the number of intervals to configure the three routes for operating the
BRT system, equivalent to the number of routes in “real” system; Harmony Memory
Size (HMS): 100; Harmony Consideration Rate (HMCR): 0.7; Pitch Adjustment Rate
(PAR) minimum: 0.1; Pitch Adjustment Rate (PAR) maximum: 0.9; It was decided that
a reasonable domain for intervals for output routes of buses would be between 1 min
and 30 min, including limits; and Improvisation Number: 3,000 to 27,000.

Values for PAR and HMCR were set based on the values recommend in [6, 22].
The defined value for HMS is higher than recommended in state of the art because is
unviable to obtain a good Pareto front with small values of HMS. The maximum
improvisation number was calculated with the number of possible configurations for a
single route (30) and with the number of considered routes (3), resulting in 27,000
possible configurations.

Given that in the state of art NSGA-II [3, 8] is reported as one of the best algorithms
in the field of multi-objective optimization, it was decided to include it as a baseline
and a point of comparison against the results obtained by MOGBHS. NSGA-II
involves selecting parents by binary tournament, simulated binary crossover (SBX) and
polynomial mutation. Since NSGA-II was created to solve continuous problems, it was
necessary to adjust the simulation and exploration operations to limit results to valid
solutions in the space of discrete values. The parameters for the test were based on
those recommended in [8], namely: Probability of mutation: 1/3; Probability of
crossing: 0.8; Population size: 100; Number of variables: 3; Allowed output intervals: 1
to 30 min; and Number of evaluations (fitness function evaluations): 3,000 to 27,000.

To obtain all the best solutions in order to be able to calculate the effectiveness of
both algorithms, and considering relatively few variables and few possibilities, an
exhaustive search was run. Given the number of options per route (30), and the number
of routes in BRTS considered (3), the number of options amounted to 27,000. After
implementing the exhaustive search, 99 solutions were found for the first Pareto front,
considered as the best existing solutions.

In Fig. 4, the effectiveness of MOGBHS and NSGA-II are compared (optimal
solutions number found divided by total number of optimal solutions in the Pareto
front), every 3,000 FFE over the 30 tests in each algorithm. Similarly, Table 1 shows a
comparison of the average effectiveness of the two algorithms (MOGBHS and
NSGA-II), taking measurements every 3,000 evaluations of the objective functions.

MOGBHS found more optimal solutions than NSGA-II after 3,000 evaluations
(FFEs), that is, it is more effective. The effectiveness is improved from 175.12% in
3,000 FFEs up to 488.68% in 27,000 FFEs. A Wilcoxon signed rank test shows with
95% confidence that MOGBHS results outperformed the NSGA-II results.
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5 Conclusions and Future Work

The proposed algorithm (MOGBHS) is based on (a) Global-Best Harmony Search as a
heuristic optimization strategy, (b) Non-Dominated Sorting as a multi-objective opti-
mization strategy, and (c) Discrete Event Simulation (based on ARENA and SIMAN)
for obtaining quality measures in the solutions (harmonies) found.

The MOGBHS was compared against an NSGA-II implementation using a real test
case from the city of Pereira, and the comparison indicated that MOGBHS effective-
ness is superior to NSGA-II, from 175.12% (in 3,000 FFEs) to 488.68% (in 27,000
FFEs).

Fig. 4. Graphic effectiveness comparison of MOGBHS vs NSGA-II

Table 1. Effectiveness comparison of MOGBHS vs NSGA-II

MOGBHS NSGA-II
FFE Optimal

solutions
found
(AVG)

Effectiveness
(%)

Optimal
solutions
found
(AVG)

Effectiveness
(%)

Effectiveness
improve (%)

3000 19.53 19.73 7.10 7.17 175.12
6000 33.93 34.28 8.73 8.82 288.55
9000 42.73 43.16 9.87 9.97 333.11
12000 50.40 50.91 10.80 10.91 366.67
15000 55.40 55.96 10.97 11.08 405.17
18000 59.60 60.20 10.80 10.91 451.85
21000 63.47 64.11 11.13 11.25 470.06
24000 66.30 66.97 11.60 11.72 471.55
27000 68.48 69.17 11.63 11.75 488.68
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MOGBHS can be used to solve various problems of multi-objective optimization.
In this respect, the research team hopes to make a comprehensive evaluation of the
discrete multi-objective benchmark problems and compare the performance of the
algorithm against others in the state of the art, including NSGA-II and SPEA-2 [27].

Given that the evaluation of an individual requires to do a simulation (this is the
most time-consuming part of the solution process) it appears promising to speed up the
convergence, remembering some previous solutions to avoid resampling them (ap-
proach similar to the one followed in Tabu Search [28, 29]). Also, given the large
number of possible combinations of the parameters of the algorithm, we plan to use
Covering Arrays [30] and meta-algorithms in order to identify the best parameter
settings for the algorithm in more complex scenarios.
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