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Abstract In general, when computing the eigenvalues of symmetric matrices, a
matrix is tridiagonalized using some orthogonal transformation. The Householder
transformation, which is a tridiagonalization method, is accurate and stable for
dense matrices, but is not applicable to sparse matrices because of the requiredmem-
ory space. The Lanczos and Arnoldimethods are also used for tridiagonalization and
are applicable to sparse matrices, but these methods are sensitive to computational
errors. In order to obtain a stable algorithm, it is necessary to apply numerous
techniques to the original algorithm, or to simply use accurate arithmetic in the
original algorithm. In floating-point arithmetic, computation errors are unavoidable,
but can be reduced by using high-precision arithmetic, such as double-double (DD)
arithmetic or quad-double (QD) arithmetic. In the present study, we compare double,
double-double, and quad-double arithmetic for three tridiagonalizationmethods; the
Householder method, the Lanczos method, and the Arnoldi method. To evaluate the
robustness of these methods, we applied them to dense matrices that are appropriate
for the Householder method. It was found that using high-precision arithmetic, the
Arnoldi method can produce good tridiagonal matrices for some problems whereas
the Lanczos method cannot.

1 Introduction

Recently, eigenvalue computation has become very important in several applica-
tions. For a real symmetric dense matrix, the target matrix is usually reduced
to symmetric tridiagonal form by orthogonal similarity transformations, and the
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eigenvalues of the obtained symmetric tridiagonal matrix are then computed by,
for example, the QR method or bisection and inverse iteration algorithms. On the
other hand, for sparse matrices other than band matrices, tridiagonalization by the
Householder transformation is so difficult because of requiring a great deal of
memory. The Lanczos method involves simple matrix-vector multiplication and
vector operations, and does not require modification of the given matrix. The
Lanczos and Arnoldi methods are simple algorithms, but the roundoff error causes
the Lanczos vectors to lose orthogonality [1]. However, they may require less
memory.

Mathematically simple algorithms are often unstable because of computation
errors. In order to obtain a stable algorithm, we can apply several techniques to the
original algorithm, or simply use accurate arithmetic. In floating-point arithmetic,
computation errors are unavoidable, but can be reduced through the use of high-
precision arithmetic, such as double-double (DD) arithmetic or quad-double (QD)
arithmetic.

Kikkawa et al. and Saito et al. [2, 3] developed the Multiple Precision Arithmetic
Toolbox (MuPAT), a high-precision arithmetic software package, on Scilab (http://
www.scilab.org/). The MuPAT uses double-double arithmetic and quad-double
arithmetic in order to work on conventional computers. The computation time for
double-double-precision arithmetic is approximately 20 times greater than that for
ordinary double-precision arithmetic, but this cost can be reduced through the use
of parallel processing.

In the present paper, we compare double, double-double, and quad-double
arithmetic for the Lanczos method, the Arnoldi method, and the Householder
method [1] for obtaining symmetric tridiagonal matrices from symmetric matrices,
and the QR method for finding all eigenvalues thereof. We use a sparse storage
format of MuPAT in order to reduce the memory requirement, but did not use
parallel processing.

2 Multiple-Precision Arithmetic on MuPAT

2.1 Double-Double and Quad-Double Arithmetic

Double-double and quad-double arithmetic were proposed as quasi-quadruple-
precision and quasi-octuple-precision arithmetic by Hida et al. [4] and Dekker [5]. A
double-double number is represented by two double-precision numbers, and a quad-
double number is represented by four double-precision numbers. A double number
x.D/, a double-double number x.DD/ and a quad-double number x.QD/ are represented
by an unevaluated sum of double-precision numbers x0; x1; x2; x3 as follows:

x.D/ D x0; x.DD/ D x0 C x1; x.QD/ D x0 C x1 C x2 C x3;

http://www.scilab.org/
http://www.scilab.org/
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Table 1 Number of
double-precision arithmetic
operations

Type Add & sub Mul div Total

DD Add & sub 11 0 0 11

Mul 15 9 0 24

Div 17 8 2 27

QD Add & sub 91 0 0 91

Mul 171 46 0 217

Div 579 66 0 649

where x0; x1; x2 and x3 satisfy the following inequalities:

jxiC1j � 1

2
ulp.xi/; i D 0; 1; 2;

where ulp stands for ‘units in the last place’. For a given decimal input data x, we
can also denote that

x.D/ D .x0/.D/; x.DD/ D .x0; x1/.DD/; x.QD/ D .x0; x1; x2; x3/.QD/:

The lower portion is ignored or truncated from the longer format data to the shorter
format data, and is assumed to be zeros from the shorter format data to the longer
format data. A double-double (quad-double) number has 31 (63) significant decimal
digits.

In this paper, we abbreviate double-double and quad-double on DD and QD.
Both DD and QD arithmetic are performed using error-free floating point arithmetic
algorithms that use only double-precision arithmetic and so require only double-
precision arithmetic operations. Both DD and QD arithmetic are described in detail
in [4] and [5]. Table 1 shows the number of double-precision arithmetic operations
for DD and QD arithmetic.

2.2 Extended MuPAT with a Sparse Data Structure

A quadruple- and octuple-precision arithmetic toolbox, i.e., the Multiple Precision
Arithmetic Toolbox (MuPAT) and variants thereof [2, 3], allow the use of double-,
quadruple-, and octuple-precision arithmetic with the same operators or functions,
and mixed-precision arithmetic and partial use of different precision arithmetic
becomes possible. The MuPAT is independent of hardware and operating system.

We developed an accelerated MuPAT for sparse matrices in [3] in order to reduce
the amount of memory and computation time, and using the developed MuPAT,
large matrices can easily be handled. We define two data types for a sparse matrix:
DDSP for double-double numbers and QDSP for quad-double numbers.

These data types are based on the compressed column storage (CCS) format,
which contains vectors in the form of row indices, column pointers, and values. Note
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that DDSP uses two value vectors and QDSP uses four value vectors to represent
double-double and quad-double numbers, respectively. As such, it is possible to use
a combination of double, double-double, and quad-double arithmetic for both dense
and sparse data structures. Based on the definitions of these data types, MuPAT
has six data types: constant, DD, and QD for dense data, and sparse, DDSP,
and QDSP for sparse data of double, double-double and quad-double numbers,
respectively.

Quad-double arithmetic requires a tremendous number of double-precision
operations. In particular, one QD division requires 649 double-precision operations,
so the required computation time is hundreds of times greater than that for double-
precision arithmetic on Scilab. In order to accelerate QD and DD arithmetic
operations, external routines written in the C language are prepared. These MuPAT
functions achieve high-speed processing but depend on the hardware and operating
system used. Currently, this code is not parallelized but can be accelerated through
the use of parallel processing.

3 Eigenvalue Computation

In order to compute the eigenvalues of a real symmetric matrix A, the matrix
A is usually tridiagonalized to an similarity tridiagonal matrix T by similarity
transformations, and the eigenvalues of the matrix T are then computed. The
Lanczos, Arnoldi, and Householder methods can be used for this purpose.

The Lanczos and Arnoldimethods involvematrix-vectormultiplication and some
vector operations. Since, unlike in the Householder method, updating the original
matrix A is not necessary, the Lanczos and Arnoldi methods can be easily applied
to sparse matrices.

The QR method and the bisection algorithm are used for computing the
eigenvalues of a tridiagonal matrix T. For computing the eigenvectors of T, the QR
method and inverse iteration are used. The quality of eigenvalues and eigenvectors
depends only on the tridiagonal matrix T and not on the tridiagonalization method.
If T is an inexact approximation of A, even if the eigenvalues and eigenvectors of T
are correctly calculated, they do not correspond to those of A.

In the present paper, we used the implicit single shift QR algorithm based on [6]
for computing all eigenvalues. The QR method generates eigenvalues as diagonal
elements in descending order.

In particular, for a sparse matrix, the transformations used for tridiagonalizing A
to T are not used to compute eigenvectors of A, which would require tremendous
computation and memory. If eigenvalues �T of T are accurately computed, an
inverse iteration method can be applied to compute the eigenvectors of .T � �TI/ or
.A � �TI/. The inverse iteration method for sparse matrices uses a direct solver or
an iterative solver, such as the conjugate gradient method.
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3.1 Tridiagonalization

For a given symmetric matrix A, it is possible to find an orthogonal Q such that
QTAQ D T is tridiagonal. In the present paper, we consider three tridiagonalization
methods for symmetric matrices: the Lanczos method, the Arnoldi method, and the
Householder method. These methods are described in detail in [1].

3.1.1 The Lanczos Method

The Lanczos method can construct an equivalent tridiagonal matrix by generating
orthogonal bases one after another. However, roundoff errors cause the Lanczos
vectors to lose orthogonality [1].

Let A be an n � n symmetric matrix, and let Q be an n � n orthogonal matrix.
Then, we generate T D QTAQ. We set the column of Q by

Q D Œq1jq2j � � � jqn�
and the components of T by

T D

2
666666664

˛1 ˇ1 � � � 0

ˇ1 ˛2 ˇ2

:
:
:

: : :
: : :

: : :

:
:
:

: : :
: : : ˇn�1

0 � � � ˇn�1 ˛n

3
777777775

:

Equating columns as AQ D QT, we conclude that

Aqk D ˇk�1qk�1 C ˛kqk C ˇkqkC1 .ˇ0q0 � 0/,

for k D 1; 2; : : : ; n � 1: The orthonormality of the vector qk implies

˛k D qTk Aqk.

If we define the vector rk as

rk D .A � ˛kI/qk � ˇk�1qk�1,

and if it is nonzero, then

qkC1 D rk
ˇk

,

where ˇk D ˙krkk2.
For a given symmetric matrix A 2 Rn�n and an initial vector q0 2 Rn, Algorithm 1

computes a matrix Q D Œq1; � � � ; qn� with orthonormal columns and a tridiagonal
matrix T 2 Rn�n so that AQ D QT. The diagonal and superdiagonal entries of T are
˛1; � � � ; ˛n and ˇ1; � � � ; ˇn�1, respectively.
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Algorithm 1 The Lanczos method [1]
1: k D 0; r0 D q0; ˇ0 D kq0k2

2: while ˇk ¤ 0 do:
3: qkC1 D rk

ˇk

4: k D k C 1

5: ˛k D qTk Aqk
6: rk D .A � ˛kI/qk � ˇk�1qk�1

7: ˇk D krkk2

8: end while

3.1.2 The Arnoldi Method

The Arnoldi method is a way to extend the Lanczos method to non-symmetric
matrices and generate the Hessenberg matrixQTAQ D H: However, for a symmetric
matrix A, this process produces a tridiagonal matrix T D H.

In the same manner as the Lanczos iteration, we set Q D Œq1; q2; � � � ; qn� and
compare columns in AQ D QH. Then,

Aqk D
kC1X
iD1

hikqi; 1 � k � n � 1:

Isolating the last term in the summation gives

rk � Aqk �
kX

iD1

hikqi,

where hik D qTi Aqk for i D 1; 2; : : : ; k. It follows that if rk ¤ 0, then qkC1 is
specified by

qkC1 D rk
hkC1;k

,

where hkC1;k D krkk2. These equations define the Arnoldi method.
For a given matrix A 2 Rn�n and an initial vector q0 2 Rn, Algorithm 2

computes a matrix Q D Œq1; � � � ; qn� 2 Rn�n with orthonormal columns and an
upper Hessenberg matrix H 2 Rn�n so that AQ D QH. Especially for a symmetric
matrix, this algorithm generates an orthogonal matrix Q and a tridiagonal matrix T.

3.1.3 The Householder Method

The Householder method for a symmetric matrix can generate an tridiagonal matrix
QTAQ D T using the Householder matrix [1]. Suppose that the Householder
matrices P1; � � � ;Pk�1 have been determined such that if

Ak�1 D .P1 � � �Pk�1/TA.P1 � � �Pk�1/,
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Algorithm 2 The Arnoldi method [1]
1: k D 0; r0 D q0; h1;0 D kq0k2

2: while hkC1;k ¤ 0 do:
3: qkC1 D rk

hkC1;k

4: k D k C 1

5: rk D Aqk
6: for i D 1; 2; � � � ; k do:
7: hik D qTi rk
8: rk D rk � hikqi
9: end for
10: hkC1;k D krkk2

11: end while

then

Ak�1 D
2
4
B11 B12 0

B21 B22 B23

0 B32 B22

3
5

is tridiagonal through its first k � 1 columns. If QPk is an order-.n � k/ Householder
matrix such that QPkB32 is a multiple of In�1 and if Pk D diag.Ik; QPk/, then the leading
k-by-k principal submatrix of

Ak D PkAk�1Pk D
2
4
B11 B12 0

B21 B22 B23
QPk

0 QPkB32
QPkB33

QPk

3
5

is tridiagonal. Clearly, if U D P1 � � �Pn�2, then UTAU D T is tridiagonal. In the
calculation of Ak, it is important to exploit symmetry during the formation of the
matrix QPkB33

QPk. More specifically, suppose that QPk has the form

QPk D I � ˇvvT , ˇ D 2

vTv
, 0 ¤ v 2 Rn�k.

Note that if p D ˇB33v and w D p � .
ˇpTv

2
/v, then

QPkB33
QPk D B33 � vwT � wvT .

We used the Householder algorithm written in [1].
Since only the upper triangular portion of this matrix needs to be calculated, we

see that the transition from Ak�1 to Ak can be accomplished in only 4.n � k/2 flops
for a dense matrix.

4 Numerical Experiments

In this section, we analyze the accuracy, numerical stability, and computing cost
for three tridiagonalization methods and the computed eigenvalue by the implicit
single shift QR algorithm [6] for the tridiagonal matrix T. For tridiagonalization,
we compare three arithmetic precisions: double (D), DD, and QD.
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The QR method can be applied to non-symmetric matrices (not only tridiagonal
matrices), in which case complex eigenvalues would appear. Therefore, we use only
tridiagonal factors in the Arnoldi method.

For the Lanczos and Arnoldi methods, the initial vector q0 is a uniformly
distributed random vector between 0 and 1 using the ‘rand’ function of Scilab.

All experiments were carried out on an Intel Core i5-4200U, 1.60GHz, 8GB
memory and Scilab 5.5.0 on Windows 7 Professional. We assumed the ‘true
eigenvalue’ to be the computation result produced by the ‘Eigenvalues’ function
of Mathematica with 200 decimal digits.

4.1 Example 1: Nos4 (Small Problem)

We demonstrate the results of the three tridiagonalizationmethods for a small matrix
‘nos4’ in MatrixMarket (http://math.nist.gov/MatrixMarket/). The dimension of
this matrix was 100, the number of the nonzero elements was 594, the condition
number on the matrix was 2:7 � 103, and the matrix originated from a structure
problem. The eigenvalues of nos4 are distributed between 0.00053795. . . and
0.84913778. . .without any clustered eigenvalues.

Table 2 lists the accuracy of the eigenvalues, the loss of orthogonality, and the
computation times for the three tridiagonalization methods and three precisions.
Here, maxj�i � N�ij and avgj�i � N�ij denote the maximum absolute error and the
average of absolute errors, where �i and N�i represent the ith computed eigenvalue
and the true eigenvalue, respectively. We checked the loss of orthogonality by
kQTQ�IkF

kIkF , where I and Q are a unit matrix and an orthogonal matrix, respectively,
and k � kF denotes the Frobenius norm. ‘Avg time’ for dense and sparse implies the
computation time only for tridiagonalization part.

For the QR algorithm, the accuracy of the eigenvalues in D, DD, and QD are
approximately the same for all tridiagonalization methods. This means that the
accuracy of the QR method with double-precision arithmetic is sufficient, and the
accuracy of tridiagonalization is important in eigenvalue computation. Therefore,
we hereinafter apply the QR method with only double-precision arithmetic and
focus on the difference in accuracy and computation time among the tridiagonal-
ization methods and their arithmetic precisions.

Concerning the tridiagonalization methods, there is little difference between the
maximum and average errors for Lanczos-QD, Arnoldi-DD, -QD, and Householder-
D, -DD, -QD (where, for example, Lanczos-QD indicates the Lanczos method with
QD precision).

The orthogonalities of Lanczos-QD, Arnoldi-DD, and Householder-D are
approximately the same and can be improved by using DD and QD. The relationship
between method and accuracy depends on the given matrix. In the case of nos4,
however, Householder-D, Arnoldi-DD and Lanczos-QD are sufficient.

http://math.nist.gov/MatrixMarket/
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In Fig. 1, the horizontal axis indicates the index of the eigenvalues in descending
order, and the vertical axis indicates the absolute error of eigenvalues j�i � N�ij.

Figure 1 shows that the absolute errors of Lanczos-D and -DD are large in general
but become small for smaller eigenvalues, the absolute error of Arnoldi-D increases
for smaller eigenvalues (from approximately the 50th eigenvalue), and Lanczos-QD,
Arnoldi-DD, -QD, and Householder-D provide sufficient accuracy.

In Fig. 2, the horizontal axis again indicates the index of the eigenvalues
in descending order, and the vertical axis indicates the value of the computed
eigenvalues. The results for ‘Mathematica’, which represents the true eigenvalues,
Lanczos-QD, Arnoldi-DD, and Householder-D are approximately the same. Both
Lanczos-D and -DD have duplicative eigenvalues. Using higher-precision arith-
metic, a plot is gradually brought closer to the true eigenvalue.

Table 3 lists the numbers of elements outside the tridiagonal part (upper
triangular) for the Arnoldi method. The Arnoldi method is based on similarity
transformation of non-symmetric matrices to Hessenberg matrices, and elements
outside the tridiagonal part should be zero in the case of symmetric matrices.
However, in our numerical experiments, nonzero elements appeared outside the
tridiagonal part because of rounding errors. The relationship between nonzero
elements and the accuracy of tridiagonalization is an area for future study.

In the case of using dense data, the ratio of the computation time for the
Lanczos, Arnoldi, and Householder methods with double-precision arithmetic is
approximately 1:2:2. For DD, the number of double-precision computations is 7
for the Lanczos method, 30 for the Arnoldi method, and 133 for the Householder
method. For QD, the number of double-precision computations is 35 for the Lanczos
method, 70 for the Arnoldi method, and 1,100 for the Householder method.

Fig. 1 Absolute error in eigenvalues for nos4 in descending order
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Fig. 2 Eigenvalues for nos4 in descending order

Table 3 Elements outside the tridiagonal part for the Arnoldi method for nos4

D DD QD

10�5 � x 598 0 0

10�10 � x < 10�5 1224 0 0

10�15 � x < 10�10 2716 103 0

10�20 � x < 10�15 313 453 0

10�30 � x < 10�20 0 3171 0

10�40 � x < 10�30 0 1124 0

10�50 � x < 10�40 0 0 263

x < 10�50 0 0 4588

Maximum 1:83 � 10�1 3:97 � 10�12 7:42 � 10�45

The computation times for Lanczos-DD and Lanczos-QD for sparse data are
84% and 28%, respectively, of those for dense data, and the computation times for
Arnoldi-DD and Arnoldi-QD for sparse data are 96% and 80%, respectively, of
those for dense data. Costs of high-precision arithmetic and saving of computation
time in sparse data type are depending on used algorithms and their implementa-
tions. For small matrices, Householder-D is the best method, but the computation
time for Lanczos-QD using sparse data is only four times greater than that for
Householder-D.
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4.2 Example 2: Trefethen_ 200b (Medium Problem)

We used a larger test matrix ‘Trefethen_200b’ from the University of Florida
Sparse Matrix Collection (http://www.cise.ufl.edu/research/sparse/matrices/). The
dimension of this matrix was 199, the number of nonzero elements was 2; 873,
the condition number was 5:2 � 102, and the matrix originated from a com-
binatorial problem. The eigenvalues of Trefethen_200b are distributed between
2.3443911. . . and 1223.3718. . .without any clustered eigenvalues.

Table 4 shows the results for various combinations of methods and precisions.
As mentioned in Sect. 4.1, we applied the QR method with only double-precision
arithmetic.

Concerning the accuracy of the eigenvalues, Lanczos-QD and Arnoldi-DD
are not improved, but Arnoldi-QD and Householder-D, -DD, -QD are sufficient.
In terms of orthogonality, the accuracy of Arnoldi-QD and Householder-D is
approximately the same.

In the case of using dense data, the ratio of the computation times for the
Lanczos, Arnoldi, and Householder methods with double-precision arithmetic is
approximately 1:14:30. For DD, the number of double-precision computation is 114
for the Lanczos method, 52 for the Arnoldi method, and 244 for the Householder
method. For QD, the number of double-precision computations is 634 for the
Lanczos method, 147 for the Arnoldi method, and 2,314 for the Householder
method.

The computation times for Lanczos-DD and for Lanczos-QD for sparse data
are 26% and 13%, respectively, of those for dense data, and the computation
times for Arnoldi-DD and Arnoldi-QD are both 80% of those for dense data. For
Trefethen_200b, the computation time was greatly reduced by the use of sparse data
of MuPAT.

In Fig. 3, the horizontal and vertical axes are the same as in Fig. 1. Figure 3
reveals the following: The absolute errors for Lanczos-QD are large, but become
small for smaller eigenvalues from approximately half of dimension. In contrast,
the absolute error for Arnoldi-DD increases for the smaller eigenvalues (from
approximately the 80th eigenvalue). Arnoldi-QD and Householder-D are sufficient.

Table 5 shows the upper triangular factors outside the tridiagonal part, which
should be zero using the Arnoldi method. For Arnoldi-D and -DD, there are numer-
ous nonzero elements within the range of double precision, and these elements
affect the accuracy of the eigenvalues. For Arnoldi-QD, the number of nonzero
elements is sufficiently small and does not affect the accuracy of eigenvalues in
double precision.

4.3 Example 3: Nos5 (Slightly Large Problem)

We used the ‘nos5’ test matrix in Matrix Market (http://math.nist.gov/
MatrixMarket/). The dimension of this matrix was 468, the number of nonzero

http://www.cise.ufl.edu/research/sparse/matrices/
http://math.nist.gov/MatrixMarket/
http://math.nist.gov/MatrixMarket/
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Fig. 3 Absolute error in eigenvalues for Trefethen_ 200b in descending order

Table 5 Elements outside the tridiagonal part for the Arnoldi method for Trefethen_ 200b

D DD QD

100 � x 1474 269 0

10�5 � x < 100 6718 1543 0

10�10 � x < 10�5 7465 2096 0

10�15 � x < 10�10 3846 2517 0

10�20 � x < 10�15 0 3168 56

10�30 � x < 10�20 0 9906 1104

10�40 � x < 10�30 0 4 2515

10�50 � x < 10�40 0 0 4548

10�60 � x < 10�50 0 0 9967

x < 10�60 0 0 1313

Maximum 2:91 � 102 3:70 � 102 2:19 � 10�18

elements was 5; 172, the condition number was 1:1 � 103, and the matrix originated
from a structure problem. The eigenvalues of nos5 are distributed between
52.899482. . . and 582029.11. . .without any clustered eigenvalues.

Table 6 shows the results for various combinations of methods and precisions.
Concerning the accuracy of the eigenvalues, the accuracy of Arnoldi-QD was not
improved, but the accuracy of Householder-D was sufficient. With respect to the
orthogonality, only Householder-D was sufficient. Although the condition number
of nos5 was not so large, the Arnoldi method with QD cannot generate an accurate



Comparison of Tridiagonalization Methods 139

T
ab

le
6

A
cc
ur
ac
y
an
d
tr
id
ia
go
na
li
za
ti
on

ti
m
e
[s
]
an
d
m
em

or
y
sp
ac
e
[K

B
]
fo
r
no
s5

T
ri
di
ag
on
al

m
ax

j� i
�

N � ij
av

gj�
i
�

N � ij
k
Q
T
Q

�
Ik

F
k
Ik

F
D
en
se

Sp
ar
se

-i
za
ti
on

ti
m
e

Sp
ac
e

ti
m
e

Sp
ac
e

L
an
cz
os

D
D

1
:3

1
�1

0
5

5
:2

7
�1

0
4

7:
5
9

�1
0

�
1

1
1
:3

4
8
6
2
:4

0
3
:2

3
4
3
7
:3

9

Q
D

8
:9

2
�1

0
4

3
:7

0
�1

0
4

5
:3

5
�1

0
�

1
5
6
:0

3
1
7
2
1
:6

9
6
:8

6
8
7
3
:1

6

A
rn
ol
di

D
D

2
:1

8
�1

0
4

5
:7

4
�1

0
2

9
:2

5
�1

0
�

2
1
9
9
:9

1
8
6
0
:6

2
1
8
8
:5

7
4
3
4
:7

6

Q
D

2
:1

5
�1

0
4

2
:8

7
�1

0
2

6
:5

4
�1

0
�

2
4
4
6
:4

7
1
7
1
8
:1

1
4
0
9
:3

5
8
6
7
:8

3

H
ou
se
ho
ld
er

D
6
:6

4
�1

0
�

9
5
:9

5
�1

0
�

1
0

1
:0

4
�1

0
�

1
4

5
:3

8
8
5
5
:5

9
–

–



140 R. Ino et al.

tridiagonal matrix. The modification of the implementation of the Lanczos method
and the Arnoldi method and the choice of the initial value remain as areas for future
research.

Arnoldi and Lanczos methods in high-precision arithmetic can not produce
accurate eigenvalues in current implementation, for example, Lanczos-QD with
sparse data structure can consume approximately the same as the computation
time and the memory space with Householder-D. There are some possibility to
improve the computation for high-precision arithmetics. By the compiled code and
parallel processing, the computation will be improved, however their codes depend
on computing environment and loose ease of use.

In the Arnoldi method, the ratio of matrix-vector operations becomes smaller as
the dimension of matrix becomes larger, but in the Lanczos method, the ratio is not
changed regardless of the dimension. Thus, in the Arnoldi method, the speed up by
the sparse data is small.

5 Concluding Remarks

Although the authors believe that simple algorithms are good, floating-point number
operations can break simple algorithms due to rounding errors. In the present paper,
we attempted to stabilize the Lanczos and Arnoldi methods for tridiagonalization
of symmetric matrices by using high-precision arithmetics; DD and QD. Since the
Lanczos and Arnoldi methods are based on matrix-vector multiplication and do not
change the given matrix, they have a possibility to be used for tridiagonalizing large
sparse matrices.

We analyzed accuracy, numerical stability, and computing cost for tridiago-
nalization using dense and sparse matrix operations. We compared double (D),
double-double (DD), and quad-double (QD) arithmetic for tridiagonalization by the
Lanczos, Arnoldi, and Householder methods, and eigenvalue computation using the
shifted QR method in only double-precision arithmetic.

The Lanczos method was stabilized by QD for only a small problem and required
more precision. The Arnoldi method was also stabilized, although there were some
problems in the case of relatively large test problems. A large matrix had some
elements outside the tridiagonal part, resulting in an non-symmetric matrix. The
Householder method was sufficient in double-precision arithmetic, but was not fit
for large sparse matrices.

We conclude that a high-precision arithmetic is effective for tridiagonalization
and no special technique is necessary for some problem. Lanczos and Arnoldi
methods can work well with high-precision arithmetic. However, some improve-
ment is necessary for other problems. The best combination of algorithm and
computing precision depends on the problem to be solved. The controlling precision
in automatic is one of our future issues.

The sparse data type in MuPAT could reduce the required memory space and
computation time for sparse matrices in high-precision arithmetic. For accelerating
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computation, parallel computing for these operations will be necessary. The analysis
of the numerical stability and additional improvement of algorithms and implemen-
tation are our future issues.
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