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Abstract The Bethe–Salpeter eigenvalue problem is solved in condense matter
physics to estimate the absorption spectrum of solids. It is a structured eigenvalue
problem. Its special structure appears in other approaches for studying electron
excitation in molecules or solids also. When the Bethe–Salpeter Hamiltonian matrix
is definite, the corresponding eigenvalue problem can be reduced to a symmetric
eigenvalue problem. However, its special structure leads to a number of interesting
spectral properties. We describe these properties that are crucial for developing
efficient and reliable numerical algorithms for solving this class of problems.

1 Introduction

Discretization of the Bethe–Salpeter equation (BSE) [15] leads to an eigenvalue
problem Hz D �z, where the coefficient matrix H has the form

H D
�

A B
�B �A

�
: (1)

The matrix A and B in (1) satisfy

A� D A; B
� D B: (2)

Here A� and A are the conjugate transpose and complex conjugate of A, respectively.
In this paper, we call H a Bethe–Salpeter Hamiltonian matrix, or, in short, a BSE
Hamiltonian. In condense matter physics, the Bethe–Salpeter eigenvalue problem is
derived from a Dyson’s equation for a 2-particle Green’s function used to describe
excitation events that involve two particles simultaneously. It is a special case of the
J-symmetric eigenvalue problem [3]. This type of eigenvalue problem also appears
in linear response (LR) time-dependent density functional theory, and the random
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phase approximation theory. In these approaches, H is sometimes called a Casida
Hamiltonian, a linear response Hamiltonian, or a random phase approximation
(RPA) Hamiltonian.

The dimension of A and B can be quite large, because it scales as O.N2/, where
N is number of degrees of freedom required to represent a three-dimensional single
particle wavefunction. As a result, efficient numerical algorithms must be developed
to solve the Bethe–Salpeter eigenvalue problem. To gain computational efficiency,
these methods should take advantage of the special structure of the Hamiltonian
in (1).

Let

Cn D
�

In 0

0 �In

�
; ˝ D

�
A B
B A

�
: (3)

Then H D Cn˝ , with both Cn and ˝ Hermitian. In most physics problems, the
condition

˝ � 0 (4)

holds, that is, the matrix ˝ is positive definite. We call H a definite Bethe–
Salpeter Hamiltonian matrix when (4) is satisfied. It has been shown in [16] that, in
general, solving a Bethe–Salpeter eigenvalue problem is equivalent to solving a real
Hamiltonian eigenvalue problem. However, a definite Bethe–Salpeter eigenvalue
problem, which is of most interest in practice, has many additional properties. In this
paper we restrict ourselves to this special case, i.e., we assume that the condition (4)
holds.

There are several ways to reformulate the definite Bethe–Salpeter eigenvalue
problem. One equivalent formulation of Hz D �z yields a generalized eigenvalue
problem (GEP) Cnz D ��1˝z. As ˝ is positive definite, Cnz D ��1˝z is
a Hermitian–definite GEP and hence has real eigenvalues. Another equivalent
formulation is .˝ � �Cn/z D 0, where ˝ � �Cn is a definite pencil [7, 20] with
a definitizing shift �0 D 0. In addition, the eigenvalue problem H2z D �2z can be
written as a product eigenvalue problem .Cn˝Cn/˝z D �2z in which both Cn˝Cn

and ˝ are positive definite. These formulations suggest that a definite Bethe–
Salpeter eigenvalue problem can be transformed to symmetric eigenvalue problems.
As a result, we can analyze various properties of the Bethe–Salpeter eigenvalue
problem by combining existing theories of symmetric eigenvalue problems (see,
e.g., [14, 20]) with the special structure of H.

In this paper, we describe several spectral properties of a definite BSE Hamil-
tonian. These properties include the orthogonality of eigenvectors, the Courant–
Fischer type of min–max characterization of the eigenvalues, the Cauchy type
interlacing properties, and the Weyl type inequalities for establishing bounds on
a structurely perturbed definite BSE Hamiltonian. Most properties take into account
the special structure of the BSE Hamiltonian. Although the derivations are relatively
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straightforward, these properties are important for developing efficient and reliable
algorithms for solving the definite Bethe–Salpeter eigenvalue problem.

The rest of this paper is organized as follows. In Sect. 2, we analyze the spectral
decomposition of H and derive two types of orthogonality conditions on the
eigenvectors. Variational properties based on these two types of orthogonality con-
ditions are established in Sect. 3. Finally, we provide several eigenvalue perturbation
bounds in Sect. 4.

2 Preliminaries

2.1 Spectral Decomposition

As a highly structured matrix, a definite BSE Hamiltonian admits a structured
spectral decomposition as stated in the following theorem.

Theorem 1 ([16, Theorem 3]) A definite Bethe–Salpeter Hamiltonian matrix is
diagonalizable and has real spectrum. Furthermore, it admits a spectral decom-
position of the form

H D
�

X Y
Y X

� �
� 0

0 ��

� �
X �Y

�Y X

��
; (5)

where � D diag f�1; : : : ; �ng � 0, and

�
X �Y

�Y X

�� �
X Y
Y X

�
D I2n: (6)

As the eigenvalues of a definite BSE Hamiltonian appear in pairs ˙�, we denote
by �C

i .U/ (��
i .U/) the ith smallest positive (largest negative) eigenvalue of a matrix

U with real spectrum. When the matrix is omitted, �C
i (or ��

i ) represents �C
i .H/

(or ��
i .H/), where H is a definite BSE Hamiltonian. Thus the eigenvalues of H are

labeled as

��
n � � � � � ��

1 < �C
1 � � � � � �C

n :

To represent the structure of the eigenvectors of H, we introduce the notation

�.U; V/ WD
�

U V
V U

�
;
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where U and V are matrices of the same size. The structure is preserved under
summation, real scaling, complex conjugation, transposition, as well as matrix
multiplication

�.U1; V1/�.U2; V2/ D �.U1U2 C V1V2; V1U2 C U1V2/:

The Eqs. (5) and (6) can be rewritten as

Cn˝ D �.X; Y/Cn�.�; 0/�.X; �Y/�; �.X; �Y/��.X; Y/ D I2n:

The converse of Theorem 1 is also true in the following sense: If (5) holds, then H
is a definite BSE Hamiltonian because

H D Cn
�
�.X; �Y/�.�; 0/�.X; �Y/��

:

As a result, H�1 D Cn
�
�.X; �Y/�.��1; 0/�.X; �Y/��

is also a definite BSE
Hamiltonian.

2.2 Orthogonality on the Eigenvectors

From the spectral decomposition of a definite BSE Hamiltonian H, we immediately
obtain two types of orthogonality conditions on the eigenvectors of H.

First, the fact ˝ D �.X; �Y/�.�; 0/�.X; �Y/� implies that

�.X; Y/�˝�.X; Y/ D �.�; 0/:

Therefore, the eigenvectors of H are orthogonal with respect to the ˝-inner product
defined by hu; vi˝ WD v�˝u. The eigenvectors can be normalized as

�. QX; QY/�˝�. QX; QY/ D I2n:

through a diagonal scaling �. QX; QY/ D �.X; Y/�.��1=2; 0/.
Second, it follows directly from (6) that

�.X; Y/�Cn�.X; Y/ D Cn:

This indicates that the eigenvectors of H are also orthogonal with respect to
the C-inner product defined by hu; viC WD v�Cnu, which is an indefinite scalar
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product [20]. Furthermore, the positive (negative) eigenvalues of H are also the C-
positive (C-negative) eigenvalues of the definite pencil ˝ � �Cn.1

These two types of orthogonal properties can be used to construct structure
preserving projections that play a key role in Krylov subspace based eigensolvers.
Suppose that �.Xk; Yk/ 2 C2n�2k is orthonormal with respect to the ˝-inner product.
Then projection using �.Xk; Yk/ yields a 2k � 2k Hermitian matrix of the form

Hk WD �.Xk; Yk/
�˝H�.Xk; Yk/ D �.Xk; Yk/

�˝Cn˝�.Xk; Yk/ DW Cn�.Ak; Bk/:

(7)

It can be easily shown that the eigenvalues of the projected Hermitian matrix Hk

also occur in pairs ˙� , as Hk admits a structured spectral decomposition Hk D
�.Uk; Vk/Ck�.�k; 0/�.Uk; Vk/

�, where �.Uk; Vk/
��.Uk; Vk/ D I2k. Furthermore,

the matrix �.Xk; Yk/�.Uk; Vk/ is again orthonormal with respect to the ˝-inner
product. Thus we regard (7) as a structure preserving projection. But we remark
that �k is not always positive definite here as Hk can sometimes be singular.

Similarly, if �.Xk; Yk/ 2 C2n�2k is orthonormal with respect to the C-inner
product, that is, �.Xk; Yk/

�Cn�.Xk; Yk/ D Ck. Then

Hk WD Ck�.Xk; Yk/
�CnH�.Xk; Yk/ D Ck

�
�.Xk; Yk/

�˝�.Xk; Yk/
�

(8)

is a 2k � 2k definite BSE Hamiltonian. Therefore the projection (8) in C-inner
product can also be regarded as structure preserving.

3 Variational Properties

3.1 Min–Max Principles

The ith smallest eigenvalues of the Hermitian–definite pencil Cn � �˝ , denoted by
�i, can be characterized by the Courant–Fischer min–max principle

�i D min
dim.V /Di

max
z2V
z¤0

z�Cnz

z�˝z
(9)

D max
dim.V /D2n�iC1

min
z2V
z¤0

z�Cnz

z�˝z
; (10)

1A vector v is called C-positive, C-negative, C-neutral, respectively, if v�Cnv > 0, v�Cnv <

0, v�Cnv D 0. An eigenvalue of ˝ � �Cn is called C-positive (C-negative) if its associated
eigenvector is C-positive (C-negative).
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where V is a linear subspace of C2n. Notice that

�C
i D 1

�2n�iC1

> 0; .1 � i � n/:

Taking the reciprocal of (9) and (10) yields Theorem 2 below. The theorem is
also a direct consequence of the Wielandt min–max principle discussed in [10,
Theorem 2.2] for the definite pencil ˝ � �Cn.

Theorem 2 Let H D Cn˝ be a definite Bethe–Salpeter Hamiltonian matrix as
defined in (1). Then

�C
i D max

dim.V /D2n�iC1
min
z2V

z�Cnz>0

z�˝z

z�Cnz
(11)

D min
dim.V /Di

max
z2V

z�Cnz>0

z�˝z

z�Cnz
(12)

for 1 � i � n.
An important special case is i D 1, for which we have the following Corollary 1.

Corollary 1 ([19]) The smallest positive eigenvalue of a definite Bethe–Salpeter
Hamiltonian matrix H D Cn˝ satisfies

�C
1 D min

x�x�y�y¤0
%.x; y/; (13)

where

%.x; y/ D

�
x
y

�� �
A B
B A

� �
x
y

�

jx�x � y�yj : (14)

is the Thouless functional.
Thanks to this result, the computation of �C

1 can be converted to minimizing
the Thouless functional (14). Thus optimization based eigensolvers, such as the
Davidson algorithm [6] and the LOBPCG algorithm [8], can be adopted to compute
�C

1 .
Finally, we remark that, from a computational point of view, the use of (12)

requires additional care, because for an arbitrarily chosen subspace V � C2n the
quantity

sup
z2V

z�Cnz>0

z�˝z

z�Cnz
D sup

z2V
z�CnzD1

z�˝z

can easily become C1 when V contains C-neutral vectors.
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3.2 Trace Minimization Principles

In many applications, only a few smallest positive eigenvalues of H are of practical
interest. The computation of these interior eigenvalues requires additional care since
interior eigenvalues are in general much more difficult to compute compared to
external ones. Recently, (13) has been extended to a trace minimization principle
for real BSE Hamiltonians [1], so that several eigenvalues can be computed
simultaneously using a blocked algorithm [2, 9]. In the following, we present
two trace minimization principles, corresponding to the two types of structured
preserving projections discussed in Sect. 2.2.

Theorem 3 Let H D Cn˝ be a definite Bethe–Salpeter Hamiltonian matrix as
defined in (1). Then

�
� 1

�C
1

C � � � C 1

�C
k

�
D min

�.X;Y/�˝�.X;Y/DI2k

trace.X�X � Y�Y/ (15)

holds for 1 � k � n.

Proof We rewrite the eigenvalue problem Hz D �z as Cnz D ��1˝z. Then by the
trace minimization principle for Hermitian–definite GEP, we obtain

�
� 1

�C
1

C � � � C 1

�C
k

�
D min

Z�˝ZDIk

trace.Z�CnZ/:

Notice that

S1 WD
��

X
Y

�
2 C

2n�kW �.X; Y/�˝�.X; Y/ D I2k

	

is a subset of

S2 WD ˚
Z 2 C

2n�kW Z�˝Z D Ik



:

We have

min
Z2S2

trace.Z�CnZ/ � min
Z2S1

trace.Z�CnZ/:

The equality is attainable, since the minimizer in S2 can be chosen as the
eigenvectors of H, which is also in S1. As a result, (15) follows directly from the
fact that ŒX�; Y��CnŒX�; Y��� D X�X � Y�Y. ut
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Theorem 4 Let H D Cn˝ be a definite Bethe–Salpeter Hamiltonian matrix as
defined in (1). Then

�C
1 C � � � C �C

k D min
�.X;Y/�Cn�.X;Y/DCk

trace.X�AX C X�BY C Y�BX C Y�AY/

(16)

holds for 1 � k � n.

Proof As the eigenvalues of H are also the eigenvalues of the definite pencil ˝ �
�Cn, by the trace minimization property of definite pencils (see, for example, [9,
Theorem 2.4]), we obtain

�C
1 C � � � C �C

k D min
Z�CnZDIk

trace.Z�˝Z/

D 1

2
min

Z�CnZDCk

trace.Z�˝Z/:

The rest of the proof is nearly identical to that of Theorem 3. Because

S1 WD
��

X
Y

�
2 C

2n�kW �.X; Y/�Cn�.X; Y/ D Ck

	

is a subset of

S2 WD ˚
Z 2 C

2n�kW Z�CnZ D Ck



;

we have

min
Z2S2

trace.Z�˝Z/ � min
Z2S1

trace.Z�˝Z/:

The equality is attainable by choosing the corresponding eigenvectors of H, which
belong to both S1 and S2. ut

Theorems 3 and 4 can both be used to derive structure preserving optimization
based eigensolvers. We shall discuss the computation of eigenvalues in separate
publications. We also refer the readers to [10] for more general variational princi-
ples.

3.3 Interlacing Properties

We have already seen that the two types of orthogonality conditions on the
eigenvectors of H can both be used to construct structure preserving projections
that can be used for eigenvalue computations. In this subsection we point out some
difference on the location of the Ritz values.
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When the ˝-inner product is used for projection, we have the following Cauchy
type interlacing property.

Theorem 5 Let H D Cn˝ be a definite Bethe–Salpeter Hamiltonian matrix as
defined in (1). Suppose that �.X; Y/�˝�.X; Y/ D I2k, where 1 � k � n. Then the
eigenvalues of �.X; Y/�˝H�.X; Y/ are real and appear in pairs ˙� . Moreover2

�C
i

�
�.X; Y/�˝H�.X; Y/

� � �C
nCi�k.H/; .1 � i � k/: (17)

Proof The first half of the theorem follows from the discussions in Sect. 2.2. We
only show the interlacing property. Notice that U WD ˝1=2�.X; Y/ has orthonormal
columns in the standard inner product, that is, U�U D I2k. By the Cauchy interlacing
theorem, we have

�C
i

�
�.X; Y/�˝H�.X; Y/

� D �C
i

�
U�˝1=2Cn˝1=2U

�
� �C

nCi�k

�
˝1=2Cn˝1=2

�
D �C

nCi�k

�
H

�
: ut

In contrast to the standard Cauchy interlacing theorem, there is no nontrivial
lower bound on the Ritz value �C

i

�
�.X; Y/�˝H�.X; Y/

�
here. In fact, the projected

matrix �.X; Y/�˝H�.X; Y/ can even be zero. For instance,

A D In; B D 0; X D 1p
2

2
4Ik

Ik

0

3
5 ; Y D 1p

2

2
4 Ik

�Ik

0

3
5

is an example for such an extreme case (assuming 2k � n).
For projections based on the C-inner product, we establish Theorem 6 below.

Similar to Theorem 5, Ritz values are only bounded in one direction. However, in
this case, it is possible to provide a meaningful (though complicated) upper bound
for the Ritz value. We refer the readers to [1, Theorem 4.1] for the case of real BSE.
Further investigation in this direction is beyond the scope of this paper.

Theorem 6 Let H D Cn˝ be a definite Bethe–Salpeter Hamiltonian matrix as
defined in (1). Suppose that �.X; Y/�Cn�.X; Y/ D Ck, where 1 � k � n. Then the
eigenvalues of Ck�.X; Y/�CnH�.X; Y/ appear in pairs ˙� . Moreover

�C
i

�
Ck�.X; Y/�CnH�.X; Y/

� � �C
i .H/; .1 � i � k/: (18)

Proof Notice that the eigenvalues of Ck
�
�.X; Y/�˝�.X; Y/

�
can also be regarded

as the eigenvalues of the definite pencil �.X; Y/�.˝ � �Cn/�.X; Y/. Then the

2In the case when �.X; Y/�˝H�.X; Y/ is singular, we assign half of the zero eigenvalues with the
positive sign in the notation �

C

i

�
�.X; Y/�˝H�.X; Y/

�
.
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conclusion follows from the Cauchy interlacing property of definite pencils [9,
Theorem 2.3]. ut

From a computational perspective, (18) provides more useful information
than (17), because the Ritz value �C

i

�
Ck�.X; Y/�CnH�.X; Y/

�
is bounded in terms

of the corresponding eigenvalue �C
i .H/ to be approximated. The inequality (17)

gives an upper bound of the Ritz value. But we have less control over the location
of �C

i

�
�.X; Y/�˝H�.X; Y/

�
.

Finally, we remark that the trace minimization principle (16) can also be derived
by the interlacing property (18).

4 Eigenvalue Perturbation Bounds

4.1 Weyl Type Inequalities

In the perturbation theory of symmetric eigenvalue problems, Weyl’s inequality
implies that the eigenvalues of a Hermitian matrix are well conditioned when a
Hermitian perturbation is introduced. In the following we establish similar results
for definite Bethe–Salpeter eigenvalue problems.

Theorem 7 Let H and H C 	H be definite Bethe–Salpeter Hamiltonian matrices.
Then

ˇ̌̌
ˇ̌�C

i .H C 	H/ � �C
i .H/

�C
i .H/

ˇ̌̌
ˇ̌ � 
2.H/

k	Hk2

kHk2

; .1 � i � n/;

where 
2.H/ D kHk2kH�1k2.

Proof Let 	˝ D Cn	H. Then ˝ C	˝ is positive definite. We rewrite Hz D �z as
the GEP Cnz D ��1˝z. It follows from the Weyl inequality on Hermitian–definite
GEP [12, Theorem 2.1] that

ˇ̌
ˇ̌̌ 1

�C
i .H/

� 1

�C
i .H C 	H/

ˇ̌
ˇ̌̌ � k˝�1k2k	˝k2

�C
i .H C 	H/

:

By simple arithmetic manipulations, we arrive at

ˇ̌
ˇ̌̌�C

i .H C 	H/ � �C
i .H/

�C
i .H/

ˇ̌
ˇ̌̌ � 
2.˝/

k	˝k2

k˝k2

D 
2.H/
k	Hk2

kHk2

: ut
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Theorem 7 characterizes the sensitivity of the eigenvalues of H when a structured
perturbation is introduced—the relative condition number of �C

i .H/ is bounded by

2.H/. When the perturbation is also a definite BSE Hamiltonian, the eigenvalues
are perturbed monotonically. We have the following result.

Theorem 8 Let H, 	H 2 C2n�2n be definite Bethe–Salpeter Hamiltonian matrices.
Then

�C
i .H C 	H/ � �C

i .H/ C �C
1 .	H/; .1 � i � n/:

Proof Let 	˝ D Cn	H. Then by Theorem 2 we have

�C
i .H C 	H/ D max

dim.V /D2n�iC1
min
z2V

z�Cnz>0



z�˝z

z�Cnz
C z�	˝z

z�Cnz

�

� max
dim.V /D2n�iC1

min
z2V

z�Cnz>0



z�˝z

z�Cnz
C �C

1 .	H/

�

D �C
i .H/ C �C

1 .	H/: ut

A special perturbation in the context of Bethe–Salpeter eigenvalue problems
is to drop the off-diagonal blocks in H. Such a perturbation is known as the
Tamm–Dancoff approximation (TDA) [5, 18]. Similar to the monotonic perturbation
behavior above, it has been shown in [16] that TDA overestimates all positive
eigenvalues of H. In the following, we present a simpler proof of this property than
the one given in [16].

Theorem 9 ([16, Theorem 4]) Let H be a definite Bethe–Salpeter Hamiltonian
matrix as defined in (1). Then

�C
i .H/ � �C

i .A/; .1 � i � n/:

Proof Notice that H2 D .Cn˝Cn/˝ with both Cn˝Cn and ˝ positive definite. By
the arithmetic–geometric inequality on positive definite matrices [4, Sect. 3.4], we
obtain

�C
i .H/ D

q
�C

2i

�
.Cn˝Cn/˝

� � �C
2i



Cn˝Cn C ˝

2

�
D �C

2i


 "
A 0

0 A

# �
D �C

i .A/: ut

Combining Theorems 7 and 9, we obtain the following corollary. It characterizes
to what extent existing results in the literature obtained from TDA are reliable.
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Corollary 2 If H is a Bethe–Salpeter Hamiltonian matrix as defined in (1), then

0 � �C
i .A/ � �C

i .H/

�C
i .H/

� 
2.H/
kBk2

kHk2

; .1 � i � n/:

4.2 Residual Bounds

Another type of perturbation bounds on eigenvalues measures the accuracy of
approximate eigenvalues in terms of the residual norm. These bounds are of interest
in eigenvalue computations. In the following we discuss several residual bounds for
the definite Bethe–Salpeter eigenvalue problem.

Theorem 10 Let H D Cn˝ be a definite Bethe–Salpeter Hamiltonian matrix.
Suppose that X, Y 2 Cn�k satisfy

�.X; Y/�˝�.X; Y/ D I2k; �.X; Y/�Cn�.X; Y/ D
�
� 0

0 ��

��1

;

for some k between 1 and n, where � D diag f�1; : : : ; �kg � 0. Then there exists a
BSE Hamiltonian 	H D Cn	˝ D Cn�.	A; 	B/ such that

.H C 	H/�.X; Y/ D �.X; Y/

�
� 0

0 ��

�
: (19)

and

k	Hk2 � 2kHk1=2
2 kRk2; (20)

where

R D H�.X; Y/ � �.X; Y/

�
� 0

0 ��

�
:

Proof It follows from the definition of R that

�.X; Y/�CnR D I2k � �.X; Y/�Cn�.X; Y/

�
� 0

0 ��

�
D 0:

Let

	˝ D CnR�.X; Y/�˝ C ˝�.X; Y/R�Cn:
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Then 	˝ is Hermitian. Since � is real, we have

R D Cn�.A; B/�.X; Y/��.X; Y/Cn�.�; 0/ D Cn�.AXCBY�X�; AYCBXCY�/;

indicating that

˝�.X; Y/R�Cn D �.A; B/�.X; Y/�.AX C BY � X�; AY C BX C Y�/�

has the block structure �.�; �/. Thus 	H WD Cn	˝ is a BSE Hamiltonian. It can be
easily verified that (19) is satisfied. Finally,

k	Hk2 D k	˝k2 � 2k˝1=2k2k˝1=2�.X; Y/k2kR�k2 D 2kHk1=2
2 kRk2: ut

Roughly speaking, (20) implies that for definite BSE, Rayleigh–Ritz based
algorithms that produce small residual norms are backward stable. When 
2.H/ is of
modest size, backward stability implies forward stability according to Theorem 7.
The following theorem provides a slightly better estimate compared to simply
combining Theorems 7 and 10.

Theorem 11 Under the same assumption of Theorem 10, there exist k positive
eigenvalues of H, �j1 � � � � � �jk , such that

j�i � �ji j � kHk1=2
2 kRk2; .1 � i � k/:

Proof Notice that U WD ˝1=2�.X; Y/ has orthonormal columns (in the standard
inner product), and

˝1=2R D ˝1=2Cn˝1=2U � U

�
� 0

0 ��

�
:

By the residual bound for standard Hermitian eigenvalue problems (see [14,
Theorem 11.5.1] or [17, Sect. IV.4.4]), we obtain that there are 2k eigenvalues of
˝1=2Cn˝1=2, Q��jk � � � � � Q��j1 � Q�j1 � � � � � Q�jk , such that

max
n
j�i C Q��ji j; j�i � Q�ji j

o
� k˝k1=2

2 kRk2 D kHk1=2
2 kRk2; .1 � i � k/:

Note that at least one of the inequalities Q�j1 > 0 and Q��j1 < 0 holds. As the
eigenvalues of ˝1=2Cn˝1=2 are identical to those of H, the conclusion follows
immediately by choosing

�ji D
( Q�ji ; if Q�j1 > 0;

�Q��ji ; otherwise,
.1 � i � k/: ut
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Finally, we end this section by a Temple–Kato type quadratic residual bound
as stated in Theorem 12. The quadratic residual bound explains the fact that the
accuracy of a computed eigenvalues is in general much higher compared to that
of the corresponding eigenpair. Such a behavior has been reported for real Bethe–
Salpeter eigenvalue problem in [9]. It is certainly possible to extend Theorem 12 to
a subspace manner using techniques in [11, 13].

Theorem 12 Let .�; Oz/ be an approximate eigenpair of a definite BSE Hamiltonian
H D Cn˝ satisfying

Oz�˝ Oz
Oz�CnOz D �:

Then the eigenvalue of H closest to � , denoted by �, satisfies

ˇ̌
��1 � ��1

ˇ̌ � kH�1k2kHOz � � Ozk2
2

gap.�/Oz�˝ Oz ;

where

gap.�/ WD min
�i.H/¤�

ˇ̌
��1 � �i.H/�1

ˇ̌
:

Proof The theorem is a direct consequence of [14, Theorem 11.7.1] on the
equivalent Hermitian eigenvalue problem

�
˝�1=2Cn˝�1=2

��
˝1=2z

� D �
�
˝1=2z

�
.
ut

5 Summary

The Bethe–Salpeter eigenvalue problem is an important class of structured eigen-
value problems arising from several physics and chemistry applications. The most
important case, the definite Bethe–Salpeter eigenvalue problem, has a number
of interesting properties. We identified two types of orthogonality conditions on
the eigenvectors, and discussed several properties of the corresponding structure
preserving projections. Although most of our theoretical results can be derived by
extending similar results for general symmetric eigenvalue problems to this class
of problems, they play an important role in developing and analyzing structure
preserving algorithms for solving this type of problems. Numerical algorithms will
be discussed in a separate publication.
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