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Abstract We have developed a computer code to find eigenvalues and eigenvectors
of non-Hermitian sparse matrices arising in lattice quantum chromodynamics
(lattice QCD). The Sakurai-Sugiura (SS) method (Sakurai and Sugiura, J Comput
Appl Math 159:119, 2003) is employed here, which is based on a contour integral,
allowing us to obtain desired eigenvalues located inside a given contour of the com-
plex plane.We apply the method here to calculating several low-lying eigenvalues of
the non-HermitianO.a/-improvedWilson-Dirac operatorD (Sakurai et al., Comput
Phys Commun 181:113, 2010). Evaluation of the low-lying eigenvalues is crucial
since they determine the sign of its determinant detD, important quantity in lattice
QCD. We are particularly interested in such cases as finding the lowest eigenvalues
to be equal or close to zero in the complex plane. Our implementation is tested for
the Wilson-Dirac operator in free case, for which the eigenvalues are analytically

H. Suno (�)
RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 650-0047, Japan

RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
e-mail: suno@riken.jp

Y. Nakamura
RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 650-0047, Japan

K.-I. Ishikawa
Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima
739-8526, Japan

Y. Kuramashi
RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 650-0047, Japan

Center for Computational Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan

Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

Y. Futamura • A. Imakura • T. Sakurai
Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

© Springer International Publishing AG 2017
T. Sakurai et al. (eds.), Eigenvalue Problems: Algorithms, Software
and Applications in Petascale Computing, Lecture Notes in Computational Science
and Engineering 117, https://doi.org/10.1007/978-3-319-62426-6_6

81

mailto:suno@riken.jp
https://doi.org/10.1007/978-3-319-62426-6_6


82 H. Suno et al.

known. We also carry out several numerical experiments using different sets of
gauge field configurations obtained in quenched approximation as well as in full
QCD simulation almost at the physical point. Various lattice sizes LxLyLzLt are
considered from 83 � 16 to 964, amounting to the matrix order 12LxLyLzLt from
98,304 to 1,019,215,872.

1 Introduction

The determinant of the Wilson-Dirac operator, detD, plays an important role in
lattice QCD. In general, the determinant of an L � L matrix D can be written, in
terms of its eigenvalues �l, as

detD D
LY

lD1
�l; (1)

so that all the information about the Wilson fermion determinant, or the fermion
measure, is concentrated in the eigenspectrum. This makes the eigenspectrum
calculation of the Wilson-Dirac operator an interesting subject. Because the eigen-
spectrum possesses the vertical and horizontal symmetries and that the complex
eigenvalues are therefore always paired, the determinant can be further expressed in
the form:

detD D
Y

�l2R
�l

Y

�l02C
j�l0 j2: (2)

We are thus particularly interested in calculating several low-lying real eigenvalues
of the Wilson-Dirac operator, since the sign problem may occur due to the real,
negative eigenvalues.

In this work, we develop exploratorily a computer code for calculating the low-
lying eigenspectrum of the Wilson-Dirac operator. For such sparse eigenproblems
as the Wilson-Dirac equation, the Implicitly Restarted Arnoldi Method (IRAM) [1]
is one of the conventional choices. It is noteworthy mentioning earlier attempts
to improve eigenvalue computations of the non-Hermiltian Dirac operator, such as
in [2]. We adopt here the Sakurai-Sugiura (SS) method since this makes it possible
to set more flexibly the region for searching eigenvalues. The SS method is based
on contour integrals, allowing us to calculate eigenvalues located in a given domain
of the complex plane as well as the associated eigenvectors. Our computer code
will be applied to calculating low-lying eigenvalues of the non-Hermitian O.a/-
improvedWilson-Dirac operator.We consider the spatiotemporal lattice sizes 83�16
and 964, amounting to the matrix order of 98,304 and 1,019,215,872, respectively.
Eigenvalue calculations will be performed using gauge field configurations for the
free case, those generated in quenched approximation as well as those generated by
a full QCD simulation, focusing on such cases as finding the low-lying eigenvalues
to be localized very close to zero in the complex plane.
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2 Sakurai-Sugiura Method for the Wilson-Dirac Operator

The lattice QCD is defined on a hypercubic four-dimensional lattice of finite extent
expressed as Lx�Ly�Lz�Lt with Lx;y;z being the three-dimensional spatial extent and
Lt the temporal one. The lattice spacing is set to unity for notational convenience.
The fields are defined on the sites n with periodic boundary conditions. We define
two types of fields on the lattice. One is the gauge field represented byU�.n/a;b with
� D 1; 2; 3; 4 (corresponding respectively to x, y, z, t) and a; b D 1; 2; 3, which is a
3 � 3 SU(3) matrix assigned on each link. The other is the quark field q.n/a˛ which
resides on each site carrying the Dirac index ˛ D 1; 2; 3; 4 and the color index
a D 1; 2; 3. The O.a/-improvedWilson-Dirac operator is written as

Da;b
˛;ˇ.n;m/ D ı˛;ˇı

a;bı.n;m/� �

4X

�D1
Œ.1 � ��/˛;ˇ.U�.n//

a;bı.n C O�;m/

C .1C ��/˛;ˇ..U�.m//
b;a/�ı.n � O�;m/�

C �cSW

4X

�;�D1

i

2
.���/˛;ˇ.F��.n//

a;bı.n;m/; (3)

where O� denotes the unit vector in the � direction. � is the hopping parameter,
and the coefficient cSW is a parameter to be adjusted for the O.a/-improvement.
The Euclidean gamma matrices are defined in terms of the Minkowski ones in the
Bjorken-Drell convention: �j D �i� j

BD . j D 1; 2; 3/, �4 D �0BD, �5 D �5BD, and
��� D 1

2
Œ��; ���. The explicit representation for �1;2;3;4;5 are given in [3], together

with the expression for the field strength F��.n/ in terms of the gauge field U�.n/.
The O.a/-improved Wilson-Dirac operator defined in Eq. (3) is a sparse, complex
non-Hermitian square matrix D 2 CL�L , where only 51 out of L D Lx � Ly �
Lz � Lt � 3 � 4 entries in each row have nonzero values.

In this work, we consider an eigenproblem

Dxl D �lxl; .l D 1; 2; : : : ;L /; (4)

where �l and xl are eigenvalues and eigenvectors, respectively. In order to extract
eigenpairs .�l; xl/ from the matrix D in Eq. (4), we adopt the Sakurai-Sugiura
method, proposed in [4–6]. This method is based on contour integrals, allowing us to
calculate eigenvalues located in a given domain of the complex plane, together with
the associated eigenvectors. In this method, we first define matrices Sk 2 C

L�L as

Sk � 1

2	i

I




zk.zI � D/�1Vdz; k D 0; 1; : : : ;M � 1: (5)

Here, 
 is a positively oriented closed curve in the complex plane inside which
we seek for eigenvalues, and M denotes the maximum moment degree. The matrix
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V 2 CL�L, called source matrix, contains L column vectors V D Œv1; v2; : : : ; vL�,
and we take a random vector for each of these source vectors. We assume that 

is given by a circle and the integration is evaluated via a trapezoidal rule on 
 .
By designating the center and the radius of the circle as � and �, respectively, and
by defining the quadrature points as zj D � C �e2	 i. j�1=2/=N ; j D 1; 2; : : : ;N, we
approximate the integral in Eq. (5) via an N-point trapezoidal rule:

Sk � OSk � 1

N

NX

jD1
zkj .zjI � D/�1V: (6)

We then carry out the singular value decomposition for the matrix OS D
ŒOS0; OS1; : : : ; OSM�1� 2 CL�LM as follows

OS D QQ˙W; (7)

QQ D Œq1; q2; : : : ; qLM� 2 C
L�LM; (8)

˙ D diag.�1; �2; : : : ; �LM/: (9)

We next determine the numerical rank m of the matrix OS. The value of m is fixed
as the number of singular values satisfying �i > ı, with ı being the threshold
for determining the numerical rank and usually set to ı D 10�12. The original
eigenproblem is transformed to a smaller eigenproblem via the transformation
matrix Q D Œq1; q2; : : : ; qm�, with only the first m column vectors from QQ are
incorporated.We finally solve the smaller eigenequationQHDQul D �lul and obtain
an approximation to the eigenpairs �l � �l and xl � Qul. Although our purpose
is to know the eigenvalue distribution and that the eigenvectors are not necessary,
we choose to calculate them since we need to check the accuracy via the relative
residual norms.

As can be seen from Eq. (6), the Sakurai-Sugiura method produces a subspace
with the matrix basis involving the inverses of the matrices .zjI � D/. The matrix
inversion can be performed solving the shifted linear equations

.zjI � D/yjl D vl: (10)

There exist several implementations based on direct methods such as LAPACK
and MUMPS libraries. These implementations, however, are hardly applicable
to such linear problems as arising in lattice QCD due to their large matrix
sizes, and some iterative methods are desirable to solve such large sparse linear
equations. In this work, we implement exploratorily the BiCGStab algorithm as is
presented in Algorithm 1. The BiCGStab algorithm will be found to converge very
slowly, suffering from the ill-condition problem of the shifted linear equations. We
choose, however, to employ the solution vectors as are obtained from a sufficiently
large number of BiCGStab iterations. The shift-invariance property of the Krylov
subspace of D under any translation indicates that substantial time saving can
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Algorithm 1 BiCGStab algorithm for solving Ay � .zI � D/y D v

1: initial guess y 2 C
L ,

2: compute r D v � Ay,
3: set p D r0 D r,
4: choose Qr such that .Qr; r/¤ 0,
5: while jjrjj2=jjvjj2 > � do:
6: ˛ D .Qr; r/=.Qr;Ap/,
7: y yC ˛p,
8: r r � ˛Ap,
9:  D .Ar; r/=.Ar;Ar/,
10: y yC r,
11: r r � Ar,
12: ˇ D .˛=/ � .Qr; r/=.Qr; r0/,
13: p rC ˇ.p� Ap/,
14: r0 D r,
15: end while.

be achieved by solving all shifted equations with only one sequence of Krylov
subspaces, which can be a subject of the future development. In practice, the center
� and the radius � of the contour can be determined by running the code beforehand
with small values of N, L andM, which also allows us to estimate approximatively
the multiplicity of eigenvalues inside 
 . Then, the default values of N D 32 and
M D 16 can be mostly used, but the value of L is crucial, and need to be large in
case of large multiplicity or in order to obtain higher accuracy.

Code development is carried out based on the lattice QCD simulation program
LDDHMC/ ver1.3K0.52ovlpcomm1.2 developed for the K computer [7, 8]. The K
computer, at the RIKEN Advanced Institute for Computational Science, consists
of 82,944 computational nodes and 5184 I/O nodes connected by the so-called
“Tofu” network, providing 11.28 Pflops of computing capability. The Tofu network
topology is six-dimensional one with 3D-mesh times 3D-torus shape. Each node has
a single 2.0GHz SPARC64 VIIIfx processor equipping 8 cores with SIMD enabled
256 registers, 6MB shared L2 cache and 16GB of memory. The L1 cache sizes per
each core are 32KB/2WAY (instruction) and 32KB/2WAY (data).

3 Simulation Results

Our implementation is tested here for the free-case Wilson-Dirac operator, of which
the eigenspectrum can be analytically obtained. For the free case, .U�.n//a;b D ıab,
theWilson-Dirac action, in the momentum space ( .x/ D R

dk exp.ikx/ Q .k/), turns
out to be

QD.k/ D 1 � �

4X

�D1
Œ2 cos.k�/ � 2i�� sin.k�/�: (11)
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Since the allowed momentum components must be the discrete elements of the
Brillouin zone (k� D 2	

L�
l�), we then obtain the expression for the free Wilson-Dirac

eigenvalues as

�freefl�g D 1�2�
2

4
4X

�D1
cos

�
2	

L�
l�

�
˙ i

vuut
4X

�D1
sin2

�
2	

L�
l�

�3

5 ; l� D 0; 1; : : : ;L��1:

(12)

Each set of the numbers fl�g correspond to 12 eigenvalues, 2 sets of 6 multiple
eigenvalues with the plus and minus signs in Eq. (12). Note also that for the hopping
parameter � D 1=8, the minimum eigenvalue coincide with the origin, z D 0.

Figure 1 shows the eigenvalues of the free-case Wilson-Dirac operator calculated
by the SS method for the lattice size 83 � 16 and the hopping parameter � D 1=8.
We have used the number of quadrature N D 32, the number of source vector
L D 64 and the maximum moment degree M D 16. We notice three sets of
eigenvalues inside the integration contour of which the quadrature points zj are
indicated by asterisks. Each of these three sets contains 12 multiple eigenvalues, so
that in total 36 eigenvalues are found inside the integration contour. The BiCGStab
algorithm used for solving the shifted linear equation (10) is found to converge
very slowly for some quadrature points zj, due to the ill-condition problem: for
the quadrature point the most on the right-hand side z1, the residual jjrjj2=jjvjj2
decreases only to about 10�8 � 10�10 with 1000 BiCGStab iterations, while it
decreases less than 10�14 with about 200 BiCGStab iterations for the quadrature
point the most on the left-hand side z17. However, using the solution vectors obtained
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83 × 16,Free,κ = 0.125

Fig. 1 Eigenvalues of the free-case Wilson-Dirac operator in a 83 � 16 lattice for the hopping
parameter � D 1=8. The eigenvalues obtained from the SS method are indicated as red circles,
those obtained from the analytical expression are indicated as black crosses. Green (blue) asterisks
indicate the quadrature points zj for which the BiCGStab algorithm converges (does not converge)
to less than 10�14 of the relative residuals norms with 1000 iterations
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Fig. 2 The same as in Fig. 1, but for the lattice size 964

with about 1000 iterations, we have been able to obtain the above eigenvalues
accurately with the relative residual norms about 10�7. This may indicate that even
if the shifted equations (10) are not solved with high precision, we can obtain a
certain precision about the eigenvalues. If we decrease the number of BiCGStab
iterations, we could still obtain acceptable values for the eigenvalues but with more
or less lower accuracy. Our eigenvalues obtained by the SS method are visually
indistinguishable from those obtained from the analytical expression in Eq. (12).
Figure 2 shows the same results but for the larger lattice size, 964. We have used
the parameters for the SS method .N;L;M/ D .32; 128; 16/. Here, inside the
integration contour, we have found one set of 12 multiple eigenvalues at the origin
and 2 sets of 36 multiple eigenvalues above and below the origin, 84 eigenvalues
in total. The relative residual norms have been found to be around 5 � 10�4. These
eigenvalues calculated by the SSmethod are also shown to be indistinguishable from
those from the analytical expression in Eq. (12). Note that, we set L D 128 since it
must be greater than or equal to the maximum multiplicity of the eigenvalues in 
 .
If there is no multiplicity, we usually set a small value to L e.g. L D 8.

We have also carried out eigenvalue calculations with a sample of gauge field
configurations generated in quenched approximation. We generate these config-
urations on a 83 � 16 lattice with the Iwasaki gauge action ˇ D 1:9 using the
lattice QCD program LDDHMC/ver1.3K0.52ovlpcomm 1.2 [7, 8]. Figure 3 shows
the eigenvalues of the O.a/-improved Wilson-Dirac operator with these gauge
configurations in quenched approximation for the parameters � D 0:1493 and
cSW D 1:6 . These values of � and cSW have been chosen so that the minimum real
eigenvalue is close to the origin in the complex plane. We have used the parameters
for the SS method .N;L;M/ D .32; 96; 16/. The relative residual norms of the
eigenvalues have been found to be around 10�5.

Finally, we have performed eigenvalue calculations using a set gauge field
configurations generated in a full QCD calculation. These gauge field configurations
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Fig. 3 Eigenvalues of the O.a/-improved Wilson-Dirac operator in a 83 � 16 lattice for the
hopping parameter � D 0:1493 and the improvement parameter cSW D 1:6, with gauge field
configurations generated in quenched approximation. The eigenvalues obtained from the SS
method are indicated as red circles. Green (blue) asterisks indicate the quadrature points zj for
which the BiCGStab algorithm converges (does not converge) to less than 10�14 of the relative
residuals norms with 1000 iterations

are generated by a 2 C 1 flavor QCD simulation near the physical point on a 964

lattice [9] with the hopping parameters .�ud; �s/ D .0:126117; 0:124700/and cSW D
1:110. The other details are given in [9]. Figure 4 shows the eigenvalues calculated
by the SS method for the hopping and improvement parameters � D 0:126117

and cSW D 1:110. We have used the parameters for the SS method .N;L;M/ D
.32; 16; 16/, and the maximum number of BiCGStab iterations 30,000 for solving
the shifted linear equations. The relative residual norms of the eigenvalues have been
found to be around 5 � 10�4.

The above eigenvalue calculations have been performed on the K computer, using
16 nodes for the lattice size 83�16 and 16,384 nodes for the lattice size 964. Almost
the whole computer time is consumed in the multiplication of the quark field by the
Wilson-Dirac operator. The time spent by each matrix-vectormultiplication is found
to be 1:29�10�3 s for the lattice size 83�16, and 5:5�10�3 s for the lattice size 964.
For the 83 � 16 free case, the elapsed time amounts to 2160 s with about 1:67� 106
matrix-vector multiplications being performed. For the 964 free case, the elapsed
time is 21,500 s with about 3:93�106 matrix-vector multiplications. For the 83�16
quenched-approximation case, the elapsed time is found to be 3480 s with about
3:01� 106 matrix-vector multiplications, while for the 964 Full QCD case, we have
found the elapsed time to be 65,300 s with 1:27� 107 matrix-vector multiplications.
In Fig. 5, we show the performance per node of the matrix-vector multiplication as
a function of the lattice size.
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Fig. 4 Eigenvalues of the O.a/-improved Wilson-Dirac operator in a 964 lattice for the hopping
parameter � D 0:126117 and the improvement parameter cSW D 1:110, with gauge field
configurations generated in a full QCD simulation. The eigenvalues obtained from the SS method
are indicated as red circles. Green (blue) asterisks indicate the quadrature points zj for which the
BiCGStab algorithm converges (does not converge) to less than 10�14 of the relative residuals
norms with 30,000 iterations
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Fig. 5 Performance (in GFLOPS) per node of the matrix-vector multiplication as a function of
the lattice size. Note that for the lattice sizes 83 � 16, 123 � 24, 243 � 48, and 483 � 96, we use
respectively 16, 16, 256, and 2048 nodes of the K computer

4 Summary

In this work, we have exploratorily developed a computer code for calculating eigen-
values and eigenvectors of non-Hermitian matrices arising in lattice QCD, using the
Sakurai-Sugiura method. We have applied our implementation to calculating low-
lying eigenvalues of the O.a/-improved Wilson-Dirac operator with gauge field
configurations for the free case and those generated in quenched approximation
and in full QCD. Eigenvalues have been obtained with relative residual norms from
about 10�7 to 5 � 10�4, with the accuracy being limited by the slow convergence
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of the BiCGStab algorithm for solving the shifted linear equations. We think that
the Sakurai-Sugiura method is a promising way to solve eigenvalue problems in
lattice QCD under the condition that it is combined with a more efficient shifted
linear equation solver, which is desirable in order to improve the accuracy of these
eigenvalues. For the future work, some preconditioner might be necessary for the
iterative linear solver. We are actually carrying out implementation of a Krylov
subspace iterative method specifically for solving shifted linear systems [10].
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